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14 Highlights

15  A suite of coal seam interburden samples from Surat Basin, Australia have been 

16 characterized and investigated for gas potential appraisal, the research outcomes 

17 indicated the great prospect of interburden for future exploitation.

18  After EHD stimulation, the confining-constrained interburden discs were successfully 

19 cracked by introducing some newly induced fractures/voidages from micro- to 

20 macroscales.   

21  During the EHD stimulation process, the maximum shock pressure at both radial and 

22 axial orientations, which was loaded on testing interburden disc S5, was 

23 simultaneously recorded to reveal the philosophy of interburden breakage. 

24  As a pioneering trial to stimulate interburden under stress-state, EHD was employed 

25 on stimulating clay-rich interburden permeability and providing an alternative 

26 technique for argillaceous coal-measure rock development.    
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28 Abstract

29 This paper evaluates the potential methane storage capacity of six clay-rich interburden rock 

30 samples from coal seam gas (CSG) wells in the Surat Basin, Australia. Clay minerals 

31 identified in all samples included kaolinite, illite, smectite, and illite-smectite mixed-layers. 

32 The total organic carbon concentrations in these interburden rocks ranged from 0.66 -

33  1.19 wt%, and thus these rocks can be classified as fair to good hydrocarbon source rocks. 

34 The effective porosity of the rocks determined from mercury intrusion porosimetry and 

35 helium pycnometry ranged from 6.8 % to 12.5 %, and included volumes of micropores and 

36 mesopores. The adsorption isotherm results indicated that the average adsorption capacity of 

37 six interburden was 3.64 cm3/g, a value corresponding to approximately 20% that of Surat 

38 Basin coal.

39 Based on the clay compositions and porosity of the samples, the permeability of these Surat 

40 interburden rocks is estimated to be less than 5 nano Darcy using Yang and Aplin’s empirical 

41 correlation, which was too low for reliable measurement in our laboratory core flooding 

42 apparatus even with a differential pressure of 10 bar applied over a shortened 20 mm length 

43 core. However, after stimulation by electrohydraulic discharge (EHD) shockwaves the 

44 permeability of one of the interburden samples (S2) increased to 0.6 ± 0.11 mD due to 

45 development of fractures and new pores by the EHD stimulation. We characterised the 

46 development of the fractures after EHD shockwaves using x-ray computer tomography. The 

47 findings of this study suggest that dynamic shockwaves such as those generated by EHD have 

48 potential to increase permeability of soft and clay-rich interburden layers in CSG reservoirs 

49 and other layered reservoirs. This potentially opens these ultra-tight gas resources to 

50 exploitation and recovery.

51 Keywords: Coal seam gas; interburden; source rock; dynamic shockwaves; permeability

52

53 1 Introduction

54 Coal seam gas (CSG), also called coalbed methane (CBM), is an important source of natural 

55 gas for the domestic market and liquefied natural gas (LNG) export market in eastern 

56 Australia. In the state of Queensland CSG contributes almost 88% of the gas produced and 

57 approximately 99% of the remaining proved and probable (2P) gas reserves (Mines, 2015). 

58 The primary hydrocarbon targets in CSG wells are the coal layers, but the clay-rich 
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59 interburden layers found between coal-bearing measures could potentially contain significant 

60 volumes of gas in addition to the gas contained in the coal-bearing measures.

61 For example, in the Surat Basin, an intracratonic basin of early Jurassic to early Cretaceous 

62 age covering approximately 300,000 km2 in eastern Australia, CSG wells are completed 

63 across multiple, often thin, gas producing coal seams (Hamilton et al., 2012). The 

64 stratigraphic column shows the net thickness of interburden layers is much larger than the net 

65 thickness of coal-bearing measures (Bustin and Bustin, 2016; Hamilton et al., 2014; Ryan et 

66 al., 2012). These interburden layers consist of carbonaceous mudstone, siltstones, and organic 

67 components that can hold methane as adsorbed gas (Scott et al., 2007b). However, currently 

68 in most appraisals of CSG reservoirs the contribution of the non-coal interburden facies to 

69 stored gas volumes is neglected (Bustin and Bustin, 2016). 

70 The clay constituents acquired from testing Surat interburden were the same as the clays 

71 reported from shale samples (Chen et al., 2016; Tang and Fan, 2014), suggesting that the 

72 inorganic matter in interburden might play a similar role as it does in shales. The clay 

73 minerals in mudrocks were found to be able to have significant gas adsorption capacities due 

74 to theie large micropore volumes and specific surface areas which are necessary for adsorbed 

75 gas storage (Liu et al., 2013; Ross and Bustin, 2007). In particular, Schettler and Parmoly 

76 (Schettler and Parmoly, 1990) stated that, in low kerogen shales, clay minerals can contribute 

77 most to methane adsorption capacity. Given the abundance of clay minerals in the 

78 interburden, the findings reported here confirm that clay-rich mudrocks, which characterise 

79 much of the coal seam interburden, present potential for gas adsorption and storage. 
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80

81 Figure 1 Surat Basin stratigraphic column (Ryan et al., 2012)

82 Due to the differences in the characteristics of reservoirs, the gas development potential of 

83 the interburden is location specific and would need to be assessed at the resource appraisal 

84 stage. This seems generally neglected and interburden rocks in coal measures are still one of 

85 the least understood of sedimentary rocks (Aylmore, 1973; Neuzil, 1994; Potter et al., 2005; 

86 Shneider et al., 2011). Their potential as viable methane sources has not yet been well 

87 developed, compared with that of sandstone, coal or shale. Specifically, fundamental 
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88 questions regarding whether interburden is worth developing as a potential source rock, and if 

89 so, what methodology is applicable for its stimulation, are still unanswered. 

90 Primarily, physical properties pertaining to gas development such as clay mineralogy, 

91 geometry of pore system, mechanical features, isothermal adsorption capacity, porosity and 

92 permeability should be addressed (Dumbleton and West, 1966; Yang and Aplin, 2010). 

93 Unfortunately, published articles on interburden characterization remain limited and rare. 

94 Most of the existing articles about mud and clay rocks have mainly dealt with typical oil/gas 

95 sedimentary basins, and omitting coal seam interburden in coal basins (Ewhurst et al., 1999; 

96 Yang and Apin, 2004), They are usually typified for applications such as seal layers  in 

97 petroleum exploration and production, rather than source rock reservoirs (Ewhurst et al., 

98 1999). While the reservoir characterizations of interburden in petroleum engineering and the 

99 geoscience system, which are relevant to gas formation, storage and fluid flow provide some 

100 guidance, they are obviously different regarding appraisal for CBM (Gamson et al., 1996; 

101 Perera et al., 2010; Ross and Marc, 2009). 

102 Previous interburden research based on other applications suggest that, in general, its 

103 permeability can be as low, in the order of nano-Darcy, whereas its compressibility can be 

104 high enough to lead to overpressure because of the complex compaction behaviour and 

105 diagenesis processes (Broichhausen et al., 2005). The mechanical properties of mudstones 

106 tend to show lower Young’s Modulus and lower brittleness index compared to conventional 

107 sandstone reservoirs or gas shales. This is likely to make them extremely difficult to 

108 disaggregate by classic stimulation techniques, namely hydraulic fracturing (Ajalloeian and 

109 Lashkaripour, 2000; Mcdaniel, 2005). 

110 Hydraulic fracturing is the most widely used and useful technique to enhance gas production 

111 in low permeable but fissile reservoirs such as shales or coal seams. However, the mechanical 

112 response of interburden is likely to be quite different from that of fissile reservoirs, as the 

113 interburden layer is comprised of more quasi-brittle and clay-rich minerals. Hydraulic 

114 fracturing would likely cause severe clay swelling and softening or deformation. Swelling 

115 will likely block the throats and occlude cleats when encountering incompatible fracturing 

116 fluids (Potter et al., 2005) limiting effectiveness of hydraulic fracturing. Other stimulation 

117 techniques such as waterless fracturing has received much attention for unconventional 

118 reservoir development; however, so far none of them has been adopted as a proven technique 

119 by the industry (Gandossi, 2013; Gandossi, 2016).

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



6

120 This paper focuses on the interburden characterization and the evaluation of its potential as 

121 source rock, particularly seeking to address two key parameters affecting commercial 

122 exploitation, i.e., gas storage ability and low permeability. Considering the specific features 

123 related to gas production, an alternative stimulation method, i.e., electrohydraulic discharge 

124 (EHD), which applies dynamic shock loading to stimulate clay-rich interburden and generate 

125 comprehensive fracture networks, is developed and validated on a suite of Surat interburden 

126 samples. The outcomes show that both the flow conductivity and fractures of interburden can 

127 be greatly improved by using EHD stimulation.

128 2 Experimental methods

129 2.1 Samples and geological setting

130 Six core samples, labelled S1 to S6, were collected from interburden layers at depths from 

131 300 to 750 m in Surat Basin CSG wells. Figure 2 shows the rock cores were dark brown, grey 

132 or greyish-brown colours, and the visual appearances suggests these are mudrocks with fine 

133 clay mineral and organic matter. The major-coal bearing targets for CSG wells in the Surat 

134 Basin are in the Walloon subgroup (Ryan et al., 2012). The Hutton Sandstone, Evergreen 

135 Formation and the Precipice Sandstone are the major sediments below the Walloon subgroup 

136 coals in the Surat Basin (Exon, 1976; Hamilton et al., 2014; Martin et al., 2013).

137

138 Figure 2 Interburden cores S1 to S6 from Surat Basin, Australia. The number in brackets for each 
139 sample shows the depth in metres at which the sample was collected.
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141 2.2 Sample characterisation methods

142 Sections of each core were prepared for thin section analysis; cut into fragments for 

143 compositional and porosity characterisation, and high pressure methane adsorption 

144 measurements; and cut into 15 mm cubes for strength measurement. Samples S2 and S5 were 

145 also cut to 63.5 mm diameter and 20 mm (S2) or 19 mm (S5) length cores for permeability 

146 measurements and EHD simulation. 

147 The concentration of organic matter in each sample was estimated from thin sections 

148 analysed under a Leica DM 750 microscope and total organic carbon (TOC) was measured 

149 on a LECO C-230 carbon analyser. Clay minerals in each sample were identified by X-ray 

150 diffraction (XRD, Bruker D8 Advance), and surface elements were determined using energy 

151 dispersive x-ray spectroscopy (EDS) on a Hitachi SU3500 premium VP-SEM scanning 

152 electron microscope operated at 15 kV. All samples were coated with Au before scanning in 

153 the SEM. 

154 The unconfined compressive strength (UCS) of 15 mm cubes cut from the cores was 

155 measured on a CT3400-2000KN instrument (Impact Test Equipment Ltd) following standard 

156 procedures described in ASTM D7012–14. The bulk or apparent density ( ) was measured 𝜌𝐻𝑔

157 by mercury intrusion porosimetry (MIP, Micromeritics AutoPore IV9520) and the skeletal 

158 density ( ) by helium pycnometer (Micromeritics AccuPyc II 1340). The porosity (ϕ) was 𝜌𝐻𝑒

159 calculated using Eq. (1 ):

160                                                   (1 ) ∅(%) =
𝜌𝐻𝑒 ‒ 𝜌𝐻𝑔

𝜌𝐻𝑒
× 100

161 Nitrogen (N2) and carbon dioxide (CO2) sorption isotherms were measured at 77 K and 

162 273 K, respectively, with a TriStar II 3020 apparatus (Micromeritics, USA) after degassing 

163 the samples at 473 K under a vacuum pressure of 10-5 torr for 24 h. Pore size distributions 

164 (PSD) were calculated from the N2 sorption isotherms using a non-local density functional 

165 theory (NLDFT) model supplied in the Tristar II 3020 software. Micropore surface area and 

166 limiting micropore volume were determined from CO2 isotherms using the Dubinin-Astakhov 

167 (DA) equation (Saeidi and Parvini, 2015).

168 High pressure methane adsorption isotherms were measured at 308 K and at pressures up to 

169 8 MPa on a Belsorp-BG apparatus (BEL, Japan) equipped with a magnetic floating balance 

170 (Rubotherm, Germany). Details of the Belsorp-BG apparatus and its operation are described 
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171 in previous articles (Arami-Niya et al., 2017; Arami-Niya et al., 2016). Samples were 

172 degassed in situ at 423 K for 24 h before the high pressure adsorption measurements.

173 Rock cores were scanned, before and after the EHD shock stimulation, in a Siemens Inveon 

174 Multimodality PET/CT scanner operated at 80 kV with a beam current of 0.5 mA. The CT 

175 images were reconstructed, visualised and regularized on the InveonTM Research Workplace 

176 software (Seimens IRW v4.2) to analyse fracture evolution after EHD stimulation.

177 2.3 Electrohydraulic discharge stimulation apparatus

178 The EHD stimulation apparatus shown in Figure 3 consists of (A) a high-voltage pulsed 

179 power instrument (Suematsu Inc., MPC3010S-5J); (B) a Keysight DSOX2024A oscilloscope 

180 to record the EHD waveform; (C) a Teledyne ISCO 260D syringe pump and (D) pressure 

181 transducer (Gems 3200) to control and measure, respectively, the confining fluid pressure on 

182 the core sample held in (J) a Hassler-type biaxial core holder (Core Labs, USA); (E) a Fuji 

183 pressure film for detecting the shockwave pressure at the leeward end of the core; and (I) a 

184 Teledyne ISCO 260D syringe pump, Swagelok tubing, and instrumentation to control and 

185 measure the injection fluid flow and pressures. The pulsed power instrument and core holder 

186 were connected by high-voltage cables that terminated across a 1 mm gap between two 

187 purpose built electrodes placed 1 mm apart and within a parabolic-shaped reflector dish (K). 

188 This parabolic disc is used to reflect the produced shockwaves and enhance the core fracking 

189 effect (Zhang et al., 2012b). In this configuration the high-voltage pulsed power instrument 

190 can generate a voltage of up to 30 kV across the 1 mm electrodes gap.

191 The 63.5 mm diameter cores cut from samples S2 and S5 were loaded separately into the core 

192 holder and held at a confining pressure of 20 bar for 72 hours before permeability 

193 measurements or EHD stimulation. Both cores were subjected to 2000 EHD pulses each at a 

194 constant charging voltage of Uc=30 kV. The pulse frequency and length of pulse were 

195 controlled at 40 pulses per second (PPS) for 50 seconds in the S2 stimulation experiments, 

196 and at 80 PPS for 25 seconds in S5 stimulation. The permeability of cores after EHD 

197 stimulation was measured without changing the confining stress or removing the core from 

198 the core holder.
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200

201 Figure 3 Schematic of compact pulsed power generator with core flooding rig for interburden 
202 stimulation. (A) compact pulsed power generator, (B),(F) oscilloscopes, (C) confining pressure pump, 
203 (D),(G),(H) pressure transducer, (E) Fuji pressure film, (I) injection pressure pump,(J)core flooding 
204 rig,(K)sketch of the electrode design

205

206 2.4 Permeability measurements

207 The permeability of cores was measured with a 4%wt KCL solution before and after EHD 

208 stimulation using a steady-state method in the Hassler-type biaxial core flooding apparatus 

209 (Figure 3). A differential pressure ( ) of approximately 10 bar was applied across the core P

210 using the syringe pump (G) to control inlet fluid pressure with the outlet pressure controlled 

211 with a back pressure regulator to close to atmospheric pressure. The steady-state permeability 

212 was calculated using to Darcy’s law:

213                                                             (2) w
w

Qu Lk
A P




214 where  is permeability in Darcy;  is the pump flow rate in cm3/s,  is the viscosity of wk Q wu

215 4% KCL brine which was assumed to be a constant 0.9 mPa•s at our experimental conditions 

216 (Grimes et al., 1979); A is the cross-sectional area of each core (31.65 cm2); L is the length of 

217 cores (S5 1.9 cm and S2 2.0 cm); and  is the pressure drop across the core in P

218 atmospheres.
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219 3 Results and discussion

220 3.1 Characterisation of interburden rock samples

221 3.1.1 Mineral composition

222 The powder XRD patterns in Figure 4 identify the clay minerals kaolinite, smectite, and illite 

223 in each of the six interburden core samples S1 to S6. The XRD patterns of all six samples 

224 also contain significant peaks associated with quartz, and we have previously identified that 

225 interburden samples from these locations also contain traces of potassium feldspar and 

226 goethite (Ge et al., 2018). Further evidence of the presence of illite, smectite, kaolinite, and 

227 illite/smectite mixed-layer clay minerals in the interburden samples is provided in the EDS 

228 data in Figure 5, and in the SEM images of samples S1 and S2 in Figure 6, which show 

229 surface features with morphologies matching that illite/smectite mixed-layers and kaolinite. 

230 These XRD, SEM, and EDS results are consistent with the expected compositions of the 

231 interburden layers in the Surat Basin.

232

233  

234 Figure 4 Powder XRD patterns of rock samples S1 to S6 collected from interburden layers in Surat 
235 Basin coal seam gas wells.
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237
238 Figure 5 SEM and energy dispersive X-ray spectroscopy (EDS) spectra of smectite, kaolinite, and 
239 illite regions in rock samples S1 and S2 collected from interburden layers of a Surat Basin coal seam 
240 gas well.

241

242

243
244                                           (a)                                                                  (b)

245 Figure 6 SEM images of the surfaces of rock samples collected from interburden layers in a Surat 
246 Basin coal seam gas well. These SEM images are of samples (a) S1 and (b) S2, and are representative 
247 of features observed on all six interburden rock samples in this study.
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248

249 3.1.2 Total organic carbon

250 The optical microscope images in Figure 7 show regions of organic matter dispersed 

251 throughout the clay minerals in thin sections of interburden sample S5. The irregular dark 

252 regions were identified as organic matter, while the grey light areas were clay minerals. The 

253 total organic carbon (TOC) concentrations in the six interburden samples ranged from 

254 0.67 wt% in S4 to 1.19 wt% in S5, as summarised in Table 1. Based on these TOC 

255 concentrations and according to the source rock quality classifications proposed by Bacon et 

256 al. (2000), cores S2 and S5 may be classified as good source rocks and the other four cores 

257 (S1, S3, S4, S6) may be classified as fair source rocks.

258  

259

260 Figure 7 Typical optical microscope photograph of a thin-section of mudrock sample S5 collected 
261 from an interburden layer in a Surat Basin coal seam gas well. The dark regions in the image are the 
262 organic materials.
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264

265 Table 1 Total organic carbon content of rock cores from interburden layers in CSG wells in the Surat 
266 Basins, Australia

267

268 3.1.3 Uniaxial compression test

269 The unconfined compressive strength of 15 mm cubes cut from S2 and S5 was measured to 

270 provide mechanical rock properties that can be used to develop stimulation operations 

271 (Bieniavski, 1968; Rao et al., 2015). Figure 8 shows samples S2 and S5 failed at compressive 

272 strengths of 27.6 MPa and 22.1 MPa, respectively. These two interburden rocks have much 

273 higher compressive strength than Queensland coals which have been measured in our 

274 laboratory, for example typically failure points for New Acland coals are in the range 11.5 -

275  18.1 MPa. These UCS results suggest that fracturing of interburden may be more difficult 

276 than fracturing of coal.

Sample 
Organic C 

(wt%)
Inorganic C (wt%) Total carbon (wt%)

Source rock 

classification 

by Bacon et 

al. (2000)

S1 0.85 0.34 1.19 Fair

S2 1.11 0.06 1.17 Good

S3 0.8 0.06 0.86 Fair

S4 0.66 <0.02 0.67 Fair

S5 1.19 0.12 1.31 Good

S6 0.86 <0.02 0.87 Fair
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277
278 Figure 8 Uniaxial stress-extension curves of 15 mm cubes of samples S2 and S5 interburden.

279

280 3.1.4 Porosity and pore characterisation

281 The bulk and skeletal densities listed in Table 2 for each of the six samples of Surat Basin 

282 interburden layers are within the typical range of densities expected for siltstones and 

283 mudstones (1.9 g/cm3 to 2.6 g/cm3) (Burra and Esterle, 2011). The total effective porosities of 

284 the Surat Basin interburden samples were in the range from 6.8 % (S5) to 12.5 % (S3). A 

285 total effective porosity could not be calculated for S4 because the measured  was greater 𝜌𝐻𝑔

286 than  for this sample; this anomaly is likely due to small variations between the sectioned 𝜌𝐻𝑒

287 samples used for the helium and MIP measurements, and the uncertainties in measurements 

288 of  and . There are few publically available reports of porosities for Surat Basin 𝜌𝐻𝑔 𝜌𝐻𝑒

289 interburden rocks to compare these result to; only one public document by QGC (now Shell) 

290 was found, reporting porosities from 3% to 26% in Surat Basin interburden cores which 

291 indicates a large variability in porosity across interburden layers in the Surat Basin. The 6.8 -

292  12.5 % total effective porosity of the samples as measured for this work was of a similar 

293 magnitude to the total effective porosity of coals from the Bowen Basin (Ramandi et al., 

294 2016).
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295 Table 2 Skeletal density  determined from helium pycnometer, bulk (apparent) density  𝜌𝐻𝑒 𝜌𝐻𝑔
296 determined from mercury intrusion porosimetry (MIP), and total effective porosity ϕ of mudrock 
297 samples collected from coal seam gas wells in the Surat Basin. A total effective porosity for S4 could 
298 not be calculated because the measured  was greater than  for this sample (Experimental 𝜌𝐻𝑔 𝜌𝐻𝑒
299 uncertainties for  and  are below 0.01 g/cm3)𝜌𝐻𝑒 𝜌𝐻𝑔

Sample
 𝜌𝐻𝑒

(g/cm3)
 𝜌𝐻𝑔

(g/cm3)

Total 
effective 
porosity 

(%)
S1 2.66 2.35 11.7±0.9
S2 2.66 2.35 11.7±0.7
S3 2.63 2.30 12.5±1.1
S4 2.65 2.76 ‒
S5 2.64 2.46 6.8±0.6
S6 2.61 2.34 10.3±0.8

300

301 Figure 9 presents (a) cumulative pore volume distributions and (b) incremental pore size 

302 distributions (PSD) of the six interburden samples determined from mercury intrusion 

303 porosimetry. The cumulative intrusion volumes ranged from 0.031 cm3/g in S3 to 0.057 

304 cm3/g (Figure 9a). The PSDs in Figure 9b show two regions of pore widths in the interburden 

305 samples: (i) a large volume of mesopores (widths 0.001 – 0.025 µm on the Figure 9b axis) 

306 and small macropores (widths up to 0.1 µm), and (ii) a smaller volume of fractures and large 

307 apertures with widths 20 – 100 µm. Generally, this type of PSD tendency is common for 

308 clay-rich shaly rocks (Zhang et al., 2012a). For example, the bimodal PSDs in Figure 9b have 

309 similar features to PSDs in Devonian-Mississippian shale samples reported by Ross and 

310 Bustin (2009).

311 There are a mix of Type II and Type IV shaped isotherms (Sing et al., 1985) in the N2 

312 sorption isotherms measured at 77 K in Figure 10a. The Type II continually increasing 

313 isotherm is characteristic of a material with a broad pore size distribution range, which is 

314 consistent with the MIP results. The hysteresis loops of the Type IV component of the 

315 isotherm at relative pressures ranging from around P/P0=0.5 to P/P0=0.9 can be associated 

316 with capillary condensation in mesopores (Sing et al., 1985), and this result is also consistent 

317 with the MIP derived PSD in Figure 9b. For all these interburden rocks, a steep increase of 

318 adsorbed N2 volume was observed at relative pressures approaching P/P0 = 1, which is 

319 attributed to filling of large pores with condensed N2. The total volume of N2 adsorbed on the 

320 interburden samples at P/P0=0.995 varies from 22.7 cm3/g on S6 to 33.1 cm3/g on S3. It may 
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321 be noted that these N2 adsorption capacities are greater than some reported N2 volumes of 

322 around 14 cm3/g on coals from Pennsylvanian (Mastalerz et al., 2012)and Jiulishan (Qi et al., 

323 2017).

324   
325                                             (a)                                                                    (b)

326 Figure 9 (a) Cumulative pore volume and (b) incremental pore size distribution determined by 
327 mercury intrusion porosimetry in interburden samples from CSG wells in the Surat Basin. 

328

329

330      

331 (a)                                                                                    (b)

332 Figure 10 Adsorption isotherms of (a) N2 at 77 K and (b) CO2 at 273 K for interburden samples.

333
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334 Table 3 summarizes the pore textural properties of the six interburden samples derived from 

335 the 77 K N2 isotherms (Figure 10 a) and the 273 K CO2 isotherms (Figure 10 b). The 

336 Brunauer-Emmett-Teller (BET) specific surface area of the six interburden samples vary 

337 from S1 18.98 m2/g to S3 34.35 m2/g, and the total pore volumes range from S6 0.034 cm3/g 

338 to S3 0.050 cm3/g. The trends in N2 adsorption results were consistent with the MIP data and 

339 total effective porosities with S3 having the highest pore volume measured by N2 sorption. 

340 The surface areas calculated by CO2 isotherms with the Dubinin-Astakhov (DA) method are 

341 5 – 10 m2/g greater than the BET surface areas and the DA micropore volumes are slightly 

342 less than the sum of micropore and macropore volumes calculated from the N2 isotherms. 

343 These minor differences are not significant, and can be expected due to the different 

344 measurement conditions, relative pressure ranges, and kinetic limitations in the N2 sorption 

345 measurements (Ghosal and Smith, 1996). 

346 Figure 11 shows the PSD of the six interburden samples determined by NLDFT from the N2 

347 sorption isotherms. The PSD curves reveal micropores (<2 nm) in these rocks, with the 

348 increment pore volume starting from 0.0003 cm3/g in S5 to 0.0007 cm3/g in S3. The range of 

349 micropore volums in the Surat Basin interburden samples are similar to the pore volumes in 

350 the Pennsylvanian coal (0.0006 cm3/g) and Upper Devonian-Mississippian shale samples 

351 (<0.0002 cm3/g) reported by Mastalerz et al. (2012), which may indicate the gas storage 

352 potential of the interburden is similar to those coals and shale rocks.

353 Table 3 Summary of pore textural properties of interburden samples. BET specific surface area, total 
354 pore volume at P/Po=0.98 and micropore and mesopore volume determined from N2 sorption at 77 
355 K. Dubinin-Astakhov (DA) micropore surface area and limiting micropore volume determined from 
356 CO2 adsorption isotherms at 273 K. 

N2 adsorption CO2 adsorption

Sample SBET 
(m²/g)

Vtotal (cm³/g)
Vmicro+Vmeso

(cm3/g)
SD-A (m²/g) Vmicro 

(cm³/g)
S1 18.98 0.036 0.018 32.01 0.018
S2 21.82 0.037 0.016 31.45 0.015
S3 34.35 0.050 0.030 47.36 0.025
S4 28.06 0.046 0.022 31.31 0.016
S5 22.23 0.046 0.023 27.85 0.014
S6 20.68 0.034 0.020 31.11 0.016
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358
359 Figure 11 Pore size distribution of micropores and mesopores in core samples from interburden 
360 layers in CSG wells in the Surat Basin determined by NLDFT from the N2 sorption isotherm measured 
361 at 77 K. 

362 3.1.5 Methane adsorption capacity 

363 Absolute equilibrium adsorption capacities of CH4 at 308 K and pressures up to 8 MPa on the 

364 six Surat Basin interburden samples in this study are shown in Figure 12a. These results are 

365 adsorption capacities measured in the laboratory and should not be confused with the actual 

366 gas content in the reservoir as measured by gas desorption tests from preserved cores. The 

367 sample depth in metres relative to the drilling rig is indicated next to each isotherm. 

368 Although it may be observed in Figure 12a that CH4 adsorption capacity increases with 

369 depth, it is important to note that this depth is only relative to the drilling rig at each well and 

370 no attempt has been made to correlate sample collection depths in the different wells to 

371 geological layers across the Surat Basin. Instead, the main insights from Figure 12a relate to 

372 the physical properties of the rock that are influenced by depth and depositional environment: 

373 such as TOC, clay content, mineral composition, moisture, and porosity (Guo and Guo, 2017; 

374 Ross and Bustin, 2007; Scott, 2008). The trends between CH4 capacity at P=8 MPa and some 

375 of these properties are explored in Figure 12 parts b, c, and d. These figures show higher CH4 

376 adsorption capacities in samples with higher TOC concentrations (Figure 12b), with higher 

377 total effective porosity (Figure 12c), and with greater micropore volume (Figure 12d). These 

378 general trends are consistent with other studies of gas adsorption capacities in porous clay-

379 rich and shaley rocks (Ross and Bustin, 2007; Yu et al., 2014).

380 The Langmuir isotherm model (Langmuir, 1918), in Equation 3, is convenient to predict the 

381 measured adsorption capacities on each interburden sample: 
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382                                   (3 )L

L

V PV
P P






383 where V (cm3/g) is the adsorbed gas volume at pressure P (MPa), and VL and PL are 

384 regression parameters. 

385 The best-fit parameters for Equation 3 determined by a least-squares regression analysis are 

386 listed in Table 4, and compared to a summary of typical ranges of values for VL and PL 

387 summarised by Scott et al. (2007a) literature survey of 86 coals from the Walloon Subgroup 

388 of Surat Basin. This comparison shows that the potential CH4 storage capacity in the Surat 

389 Basin interburden samples in our study are about 20 % of the CH4 capacity of Walloon 

390 Subgroup coals. Although the specific gas capacity of the interburden measured here is less 

391 than for the coals, the total volume of gas potentially stored in interburden layers may be 

392 comparable to total volumes in coal layers in locations where the cumulative thickness of 

393 interburden layers is ten times that the target coal measures (Bustin and Bustin, 2016). The 

394 interburden rocks studied in this paper may be porous and show considerable potential gas 

395 storage capacity, but as discussed in Sections 3.2 and 3.3 the very low permeability of these 

396 rocks needs to be enhanced for economically viable extraction of any accumulated gas from 

397 the interburden layers. 

398
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399

400  

401 (a)                                                                           (b)

402   

403 (c)                                                                            (d)

404 Figure 12 (a) Absolute adsorption capacities of CH4 on core samples from interburden layers in CSG 
405 wells in the Surat Basin measured at 308K; and adsorbed gas volume (cm3/g) at P=8 MPa versus (b) 
406 TOC (wt%), (c) porosity (%) and (d) micropore volume (cm3/g)

407
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408

409 Table 4 Best fit parameters for Langmuir isotherm model Langmuir volume and pressure for six Surat 
410 interburden at a measurement temperature of 308K and an example of the range of Langmuir 
411 parameters for Walloon Subgroup coals reported in the literature

Sample VL(cm3/g) PL(MPa)
S1
S2
S3
S4

2.12
6.21
3.76
3.14

1.41
3.89
1.25
1.68

S5 2.58 1.46
S6 4.06 2.65

Walloon Subgroup coal, 
typical values (After Scott 

et al., 2007a)
3.88~25.10 0.91~12.81

412

413 3.2 Estimate of interburden permeability before EHD stimulation

414 An attempt was made to measure the permeability of cores S5 and S2 in the Hassler-type 

415 biaxial core flooding apparatus before EHD stimulation. However, the permeability of these 

416 two mudrocks was so low that even with a 10 bar pressure drop across a 20 mm core length 

417 there was insufficient liquid passed through the core after 7 hours to get a measureable 

418 permeability. As an alternative approach to estimate the permeability of the interburden rocks 

419 before EHD stimulation , the Yang and Aplin (2010) empirical correlation was used:

420       (4)
0.5 0.5

0.5 0.5

ln( ) 69.59 26.79 44.07 ( 53.61 80.03 132.78 )
(86.61 81.91 163.61 )

k CF CF CF CF
CF CF





            

     

421 where k is the permeability in the direction perpendicular to the bedding plane (in units of 

422 m2); ε is the void ratio (  ); and CF is the fraction of clay in the rock. 𝜀 = ∅ (1 ‒ ∅)

423 The orange shaded box in Figure 13 presents the range of permeability values 

424 predicted with Equation 4 for the six Surat Basin interburden samples based on: (1) the limits 

425 of CF between 30 – 90 % described in Yang and Apin (2004), because there was no direct 

426 measurement of clay content (only qualitative XRD analysis); and (2) the minimum (6.8%, 

427 S6) and maximum (12.5%, S3) measured total effective porosities of the six samples. Using 

428 these parameters, the estimated permeability of the interburden samples is in the nano-Darcy 

429 range (1.19 x 10-7 mD to 1.02E x 10-5 mD), which is similar to the range of permeabilities for 

430 interburden rocks reported by Neuzil (1994). These calculated permeabilities also fall within 

431 the range of mudrock permeabilities reported by QGC (now Shell) for other rocks from their 

432 CSG tenements included on Figure 13.
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433

434

435 Figure 13 Estimated range of permeability of Surat Basin interburden samples (yellow shaded area) 
436 based on Yang and Aplin’s correlation using measured porosity range and clay content range from 
437 30 – 90 %. Examples of actual measured permeability of other cores from Surat Basin  including 
438 mudstones and sandstone-siltstone rich cores.

439
440 3.3 Electrohydraulic discharge stimulation of interburden

441 Figure 14 presents two types of waveforms observed with different breakdown voltage 

442 responses during EHD stimulation of interburden cores at an initial charging voltage 

443 Uc = 30 kV. In the N shaped waveforms (Figure 14 a) the voltage drops from 30 kV to 

444 Ub = 26.5 kV over a 3 µs breakdown time delay. In contrast, in the A shaped waveform 

445 (Figure 14 b) there is an almost instantaneous breakdown at Ub = 30 kV. Both N and A types 

446 were observed in the experiments with both S2 and S5 cores. Generally in EHD processes, 

447 the energy transformation from electrical discharge to shockwave generation is more efficient 

448 when the breakdown voltage is closer to initial charging voltage (Yan et al., 2016b), and thus 

449 it may be expected that A shaped waveform is likely to lead to a more efficient stimulation 

450 and rock fracturing process. With the repeated shockwave generation, the discharging water 

451 and interburden properties could change gradually, for instance detached rock particles mixed 

452 into discharging water, thus in turn both the discharging electrolyte and loading resistance 

453 and/or conductivity could change during the EHD stimulation and these changes may affect 

454 the breakdown voltage and waveform shape even if Uc is kept constant.
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455

456 Figure 14 Two typical types of waveforms recorded during EHD stimulation of interburden cores 
457 with initial charging voltage Uc = 30 kV. (a) N shaped voltage breakdown waveform and (b) A shaped 
458 voltage breakdown.

459
460 After EHD stimulation the permeability of S2 increased several orders of magnitude from 

461 less than 5 nano Darcy to 0.6 ± 0.11 mD (Figure 15). The 3D x-ray CT derived voids maps in 

462 Figure 16a show before EHD stimulation core S2 had no visible fractures extending to the 

463 external surfaces of the core, but in Figure 16b shows that EHD stimulation created several 

464 new fractures that extend to the faces of the core. The fracture network in S2 after EHD-

465 stimulation is a “V” shaped fracture network with a larger void area in the centre of the core. 

466 From the 3D x-ray CT segmentation data, and using the fracture porosity analysis method 

467 described by Ramandi et al. (2016), the theoretical fracture porosity in S2 increased from 

468 0.34 % to 4.17 % after EHD shockwave treatment. These x-ray CT images provide evidence 

469 of the new connected, fractures in core S2 to explain why the permeability of the core 

470 increased significantly after EHD shockwave treatment. Details of the definition of fracture 

471 porosity and calculation of this property from CT-scanning slices are available in from our 

472 group’s early publications (Balucan et al., 2016; Ren et al., 2018).

473
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474

475 Figure 15 Change in permeability in interburden sample S2 before and after EHD stimulation fo 
476 50 seconds at 40 pulses per second and an initial charging voltage of Uc=30 kV. Core flooding 
477 conditions of inlet pressure 10 bar, outlet pressure atmosphere, and confining pressure 20 bar.

478

479 The permeability of core S5 after EHD stimulation was not measured because the Fuji 

480 pressure film was used in the S5 EHD experiments to measure the pressure of the shockwave 

481 and this film would affect the permeability through the core. However, the development of 

482 new fractures in S5 was similar to that in S2 as shown by 3D x-ray CT void maps in Figure 

483 16 (c) and (d). The theoretical fracture porosity in S5 increased from 0.41 % to 5.26 % after 

484 the 2000 EHD shocks (at 80 PPS for 25 seconds) with development of a “Y” shaped fracture 

485 network that propagated through the entire length of the S5 interburden plug. In addition to 

486 the 3D x-ray CT scans, further evidence of the development of pores and fractures in 

487 interburden samples S2 and S5 is provided in the MIP derived pore size distributions shown 

488 in Figure 17. The PSD curves show that in both S2 and S5 volume of pores in both the 

489 mesopore to macropore range, and in the large fracture or aperatures increased after EHD 

490 stimulation. These MIP results are consistent with the CT scanning map changes, witnessing 

491 the increment of pores and fractures not only occurred at macroscopic scales but also 

492 observed at microscopic scales after EHD shock impacts.
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493

494

495

496 Figure 16  3D visualization of the interburden samples. (a) and (b): S2 before and after EHD 
497 stimulation (c) and (d): S5 before and after EHD with confining stress (gray=solids, black and 
498 blue=fractures or voids)
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501

502 Figure 17  MIP curves for S5 and S2 before and after EHD

503

504 The stress conditions applied radially to core S5 in EHD experiment, and the pressure 

505 responses in the radial direction measured by pressure transducer PT3 and in the axial 

506 direction indicated by the Fuji film pressure sensor are shown in Figure 18. The initial 

507 confining pressure applied with the Isco pump was 20 bar, and then during stimulation 

508 significant perturbations were recorded on PT3 of up to 55.4 bar (Figure 18a) due to the 

509 shockwaves generated by EHD. Still, most of the shockwave energy was directed along the 

510 axis of the core holder with the Fuji film indicating pressure disturbance of around 32 MPa or 

511 320 bar (Figure 18b). The resultant pressure shocks induced by EHD exceeds S5’s intrinsic 

512 compressive strength of 22.1 MPa by almost 45%, which is well in excess of the minimum 

513 required stress to fracture the rock (Gajendran et al., 2015).

514
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515

516 Figure 18 Pressure-recording of S5 at (a) radial and (b) axial directions during EHD stimulation

517

518 Compared to the S2 stimulation experiment, EHD stimulation of S5 resulted in wider cracks 

519 and a greater increase in fracture porosity. The difference in EHD stimulation effectiveness 

520 may be due to several factors, such as the compressive strength of each samples, the 

521 composition of the rocks, the initial porosity and fractures in the rock, and the frequency of 

522 EHD pulses. Only two rock samples were tests in these EHD experiments at a limited range 

523 of experimental conditions. Therefore, although these results indicate potential to use EHD to 

524 enhance the permeability of clay-rich mudrocks further research is required to understand the 

525 mechanisms of fracture development by EHD stimulation and to design optimised 

526 stimulation plans.

527 Figure 19 illustrates the key stages in EHD shockwave generation and rock fracturing after 

528 discharge, including: (1) the shockwave generated in the discharge gap propagates through 

529 the water to the rock surface; (2) the shockwave arrives at the rock surface; and (3) the shock 

530 generates compressive stress at the leeward face of the core plug with reflected shockwaves 

531 leading to . In addition to the compressive stresses, reflected shockwaves will create tensile 

532 stress on the core’s leading face. The combination of these compressive and tensile forces  

533 can break aggregations of grains in rock (Andres and Biaecki, 1986), and create new voids 

534 and fractures (Yan et al., 2016a). Furthermore, a cycle of shocks may lead to dynamic wave 
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535 impacts that create shear stresses which can stimulate microcracks and larger fractures in the 

536 rock if the  shear stress exceeds the rock’s fatigue strength (Song et al., 1994). 

537

538 Figure 19 Conceptual schematic for the influence of shockwave on rock disaggregation

539

540 4  Conclusions

541 Six interburden samples were characterised in the laboratory to evaluate the potential gas 

542 storage capacity of coal seam interburden layers in the Surat Basin, and demonstrated the use 

543 of EHD stimulation as a possible method to enhance the permeability of these layers. The 

544 clay-rich mud-rocks from the interburden layers contained 0.66 wt % to 1.19 wt % total 

545 organic carbon, and this organic matter together with the microporosity of the aggregated 

546 clay-minerals provides potential for gas adsorption. The potential CH4 storage capacity of 

547 these samples was up to about 20% of the CH4 capacity of coals in the Surat Basin, and if 

548 there is a large cumulative thickness of the interburden layers penetrated by a CSG well these 

549 layers could contribute significantly to the total volume of gas in the reservoir. 

550 However, the permeability of these mudrocks was very low (nano Darcies). EHD stimulation 

551 was tested as a novel fracturing technique to create new fractures and voids in two core plugs 

552 from the interburden samples, and it was observed that after EHD stimulation the 

553 permeability of S2 increased to 0.6 ± 0.11 mD.  These results suggest that EHD stimulation 

554 could be a potential method to access any gas stored in coal seam interburden layers, and the 

555 method could optimised to be efficient and effective on mudrocks with different mechanical 

556 properties. Further research and development of EHD stimulation methods is required to 

557 advance these technologies.  
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