

School of Education

STEM Education Research Group

Teaching and Learning Introductory Computer Programming at

the Royal University of Bhutan: Factors Affecting Student

Performance

Mani Pelmo

This thesis is presented for the degree of

Doctor of Philosophy

of

Curtin University

December 2019

Declaration

To the best of my knowledge and belief, this thesis contains no material

previously published by any other person except where due

acknowledgement has been made.

This thesis contains no material that has been accepted for the award of any

other degree or diploma in any university.

Signature:

Date: 12 December 2019

v

Abstract

Worldwide, learning computer programming is considered difficult for

novice students when they are first exposed to it at university. Due to this,

students may become demotivated, lose interest and slowly withdraw from

programming units. Thus, there tends to be high attrition rates in early

tertiary-level programming units; this is a well-known problem in computing

education. Previous studies have investigated the cause of the difficulties in

learning to program and have identified a number of curricular approaches

to assist students to overcome these. However, the problem still exists,

suggesting the need for further research.

This study investigates the factors that may affect the performance of

students studying the unit ‘Introduction to Computer Programming’,

henceforth referred to as CS1 in the country of Bhutan. At the Royal

University of Bhutan (RUB), CS1 is the first and compulsory module studied

by students enrolled in science and engineering programs. These students

find programming difficult, which has led to high failure rates in CS1 at

RUB. This high failure rate and students’ inability to comprehend the

programming concepts at RUB is a cause of concern for both for the

researcher and the institution. Thus, the researcher has set out to investigate

the factors that may affect student performance in CS1.

The conceptual framework for this study was adapted from Biggs 3P model

of learning to describe the factors that may affect students’ performance in

CS1. The first P (input factors) describes the factors that students bring

before the commencement of CS1 and the institutional factors that are

vi

already in place. The input factors discussed in this thesis are prior computing

experience, Year 12 performance in mathematics, physics and chemistry, and

institutional factors are teaching methods and practices, programming

paradigm, programming environment and language used in CS1. The second

P (learning process factors) describes the learning environment in which CS1

takes place. The learning process factors discussed in this thesis are students’

learning approaches, students’ ability in programming skills, students’

learning methods and practices. The last P (student performance) is the final

outcome after learning has taken place. Student performance in this study

was measured by student scores in the final semester examination, overall

semester performance and a researcher-designed programming skills test.

The programming skills test was devised to measure students’ ability across

five programming skills, identified in this study as algorithm design,

translating, tracing, explaining and writing. The structure of the observed

learning outcomes was adapted to determine in-depth information about the

students’ level of understanding in the test. The relationships among the

programming skill variables and between student performance and

programming skill variables were examined in this study. Multiple

regression analysis was conducted to investigate the relative contribution of

each of these programming skill variables to student performance. The

results of multiple regression analysis and the path analysis reported that 48

percent of the variance was explained by the programming skill variables, in

which writing contributed the most and algorithm design the least to student

performance.

vii

This study employed a convergent parallel mixed methods design and a

variety of data collection methods including a test, survey questionnaire, and

individual and group interviews designed to address the research questions.

The qualitative data were used to confirm/disconfirm the quantitative data

and to provide deeper meaning. Participants for this study were students and

lecturers learning and teaching CS1 in July–November 2016 at three colleges

of RUB, which are geographically separated by rugged terrain. A total of 292

students took the test and 277 participated in the survey. All eight lecturers

participated in a survey and an interview.

This study is significant, as it is the only study to investigate the variables

discussed in this thesis in the country of Bhutan. Thus, it will have

implications for the teaching and learning of CS1. The outcome of the study

will provide CS1 lecturers at RUB with greater insight into their teaching

practices and present them with data to inform curricula decisions as they

work to improve student performance.

The results from this study will also provide a foundation for further research

in terms of the new variables introduced that are important in teaching CS1

as well as draws further attention to the current variables for existing

computing tertiary educators.

ix

Acknowledgements

First, I would like to thank the Schlumberger Foundation, Faculty for the

Future for sponsoring my studies for four years, and Curtin University for the final

five months. I would also like to thank the Royal University of Bhutan (RUB) for its

support in the scholarship application process and for granting study leave. Thank you

also to Curtin University for accepting me and providing resources. Without its

support, my PhD would have remained a dream. Thank you to the Schlumberger

Foundation, RUB and Curtin University for realising my dream to study for a PhD.

Finally, I would like to acknowledge and thank the following people who have

been part of my journey. Professor David Treagust, of Curtin University, provided

valuable support and help during the application process to Curtin University and

Schlumberger Foundation. Without his commitment, I would not be where I am today.

Thank you also for being my co-supervisor and rendering your assistance in times of

need.

Dr Tony Rickards, my ex-supervisor, thank you for your unwavering support,

guidance, encouragement and motivation during my initial year. I have been lucky to

work with such a caring supervisor who cared not only about my work, but also my

wellbeing and family.

Dr Martin Cooper, my primary supervisor at Curtin University, thank you for

your patience and for taking responsibility for my work. Thank you for being positive

and guiding me throughout this research. I have always appreciated your advice and

the support you have given. Thank you, it was a privilege working with you.

x

Thank you to Dr Lisa Lines of Capstone Editing for proofreading and editing

my thesis according to the guidelines laid out in the university-endorsed national

‘Guidelines for Editing Research Theses’.

Rinzin, my loving husband, thank you for being next to me throughout my

journey, providing unconditional support and encouragement to keep me going. Also,

I sincerely thank you for looking after our two beautiful daughters, Yangchen and

Seday. Yangchen and Seday, thank you for understanding when I could not attend your

functions and events at school or take you to parks and swimming pools. Remember,

you are the reason I wake up every day.

My loving parents back in Bhutan, thank you for having faith in me and

showing that nothing is impossible in life if only you try.

Last but not the least, I sincerely thank all lecturers at RUB who assisted in my

research. My sincere thanks also goes to all friends and colleagues who have been part

of my journey.

xi

Contents

Declaration ... iii

Abstract ... v

Acknowledgements .. ix

Contents ... xi

List of Figures ... xv

List of Tables .. xvii

List of Abbreviations .. xix

Glossary of Terms ... xxi

Chapter 1: Introduction .. 1
1.1 Introduction .. 1

1.2 Thesis Origin .. 1

1.3 Background .. 2

1.4 Research Objectives ... 9

1.5 Significance of this Study ... 11

1.6 Overview of the Methodology ... 13

1.7 Thesis Overview ... 15

1.8 Summary .. 16

Chapter 2: Literature Review ... 17
2.1 Introduction .. 17

2.2 Factors that Affect Students’ Performance in Higher Education:

Developing the Theoretical Framework ... 17

2.3 Factors That Affect Students’ Performance in Learning Introduction to

Computer Programming ... 20

2.3.1 Prior computing experience ... 21

2.3.2 Year 12 performance in mathematics, physics and chemistry 22

2.3.3 Programming paradigms .. 23

2.3.4 First programming language .. 26

2.3.5 Programming environment .. 28

2.3.6 Teaching/learning methods and practices .. 30

2.3.7 Students’ ability in programming skills ... 33

2.3.8 Learning approaches .. 34

2.4 Measure of Student Success in CS1 ... 36

2.4.1 SOLO taxonomy .. 36

2.5 Theoretical Framework .. 42

2.6 Summary .. 44

Chapter 3: Methodology .. 45
3.1 Introduction .. 45

3.2 Preparation for Data Collection .. 45

3.2.1 Devise programming skills test questions ... 45

3.2.2 Design and select survey questionnaires ... 46

3.3 Research Participants ... 46

3.4 Research Methods .. 49

xii

3.5 Research Questions .. 51

3.6 Data Collection Methods .. 52

3.6.1 Programming skills test ... 52

3.6.2 Survey questionnaire ... 53

3.6.3 Individual interviews ... 54

3.6.4 Group interviews ... 55

3.7 Classification of SOLO Levels ... 55

3.8 Ethical Considerations .. 77

3.9 Data Analysis ... 79

3.10 Summary .. 80

Chapter 4: Students’ Quantitative Univariate and Qualitative Results 81
4.1 Introduction .. 81

4.2 Measure of Student Performance in CS1 ... 82

4.3 Student Quantitative Univariate Results .. 83

4.3.1 PST results ... 84

4.3.2 Quantitative survey results .. 87

4.4 Student Qualitative Results .. 102

4.4.1 Student qualitative survey results .. 102

4.4.2 Student interview results .. 105

4.5 Summary .. 116

Chapter 5: Lecturer’ Quantitative Univariate and Qualitative Results 119
5.1 Introduction .. 119

5.2 Lecturers’ Quantitative Univariate Results .. 119

5.2.1 Prior computing experience ... 120

5.2.2 Y12 performance in mathematics, physics and chemistry 121

5.2.3 Programming paradigm ... 122

5.2.4 Programming environments used in CS1 .. 122

5.2.5 First programming language to be taught in CS1 124

5.2.6 Teaching/learning methods and practices that best suit students in

learning CS1 ... 125

5.2.7 Lecturers’ perceptions of the order of programming skills to be taught

in CS1 ... 125

5.2.8 Lecturers’ perception of the order of programming skills in terms of

their contribution to the Student Performance in CS1 126

5.3 Lecturer Qualitative Results ... 127

5.3.1 Lecturer qualitative survey results ... 127

5.3.2 Lecturer qualitative interview results .. 129

5.4 Inter-Rater Reliability ... 141

5.5 Summary .. 142

Chapter 6: Bivariate and Multivariate Results ... 145
6.1 Introduction .. 145

6.2 Student Bivariate Results ... 145

6.2.1 Association between student performance and students’ prior

computing experience ... 146

6.2.2 Association between student performance and students’ Y12

performance in mathematics, physics and chemistry 147

6.2.3 Association between students’ ability in programming skills 148

6.2.4 Association between student performance and students’ ability in

programming skills ... 149

xiii

6.2.5 Association between student performance and students’ learning

approach .. 150

6.3 Multivariate Results ... 152

6.3.1 Multiple regression analysis .. 152

6.3.2 Path analysis .. 157

6.4 Summary .. 161

Chapter 7: Answers to Research Questions and Discussion 163
7.1 Introduction .. 163

7.2 Answers to Research Questions and Discussion .. 163

7.2.1 What was the students’ prior computing experience and does this

affect performance in CS1? .. 163

7.2.2 What are students’ and lecturers’ experience/perceptions of first

programming language, programming paradigm, programming

environment and teaching/learning methods and practices? 165

7.2.3 What is the association, if any, between students’ performance in CS1

and students’ Y12 performance in mathematics, physics and chemistry? 169

7.2.4 What is the association, if any, between students’ performance in CS1

and students’ learning approach? .. 170

7.2.5 What is the association, if any, among the programming skill

variables? .. 172

7.2.6 What is the association, if any, between students’ performance in CS1

and students’ ability in programming skills? .. 173

7.2.7 Is there a hierarchy among students’ programming skills in terms of

their contribution to student performance in CS1? 174

7.3 Suggestions on how to Improve Teaching/Learning of CS1 at RUB 176

7.4 Recommendations for CS1 at RUB .. 179

7.5 Summary .. 181

Chapter 8: Conclusion ... 183
8.1 Introduction .. 183

8.2 Research Findings .. 183

8.3 Wider Implications and Contribution ... 184

8.4 Limitations .. 186

8.5 Future Research Directions .. 188

8.6 Summary and Concluding Remarks ... 188

Appendices .. 199
Appendix A: Programming Skills Test Instrument .. 201

Appendix B: Programming Skills Test Marking Criteria Using SOLO

Classification ... 205

Appendix C: Sample Students’ Responses to Programming Skills Test Questions

Marked Using SOLO Classification ... 217

Appendix D: Participant Consent Form ... 231

Appendix E: Participant Information Letter .. 233

Appendix F: Ethics Approval Letter .. 235

Appendix G: Student Survey Form .. 237

Appendix H: Lecturer Survey Form .. 241

Appendix I: Testing the Assumptions for Normality ... 245

xiv

Appendix J: Biggs Revised Study Process Questionnaire (R-SPQ-2F) 253

Appendix K: Proposed CS1 Module Description .. 255

Appendix L: CS1 FSE paper of three colleges at RUB ... 259

xv

List of Figures

Figure 1.1. Example of algorithm design. .. 5

Figure 1.2. Example of translating (a). .. 6

Figure 1.3. Example of translating (b). .. 6

Figure 1.4. Example of tracing. .. 7

Figure 1.5. Example of explaining. .. 8

Figure 1.6. Example of writing. ... 8

Figure 1.7. Data collection methods. ... 14

Figure 2.1. Biggs 3P model of learning. .. 19

Figure 2.6. ‘Explain in plain English’ question analysed in Clear et al. (2008). 38

Figure 3.1. Individual components of an algorithm. .. 58

Figure 3.2. Suitable flowchart solution for algorithm design question 2. 59

Figure 3.3. Individual components of flowchart. ... 60

Figure 3.4. R and RE SOLO levels and scores for algorithm design question 2 of

the PST. ... 62

Figure 3.5. M and ME SOLO levels and scores for algorithm design question 2

of the PST. ... 62

Figure 3.6. U and P SOLO levels and scores for algorithm design question 2 of

the PST. ... 63

Figure 3.7. Suitable solution for translating question 1 of the PST. 64

Figure 3.8. Individual components of translating question 1 of the PST. 65

Figure 3.9. R and M SOLO levels and scores for translating question 1 of the

PST. ... 66

Figure 3.10. U and P SOLO levels and scores for translating question 1 of the

PST. ... 67

Figure 3.11. R and M SOLO levels and scores for tracing question 2 of the PST. ... 68

Figure 3.12. U and P SOLO levels and scores for tracing question 2 of the PST. 69

Figure 3.13. R and RE SOLO levels and scores for explaining question 2 of the

PST. ... 71

Figure 3.14. M and ME SOLO levels and scores for explaining question 2 of the

PST. ... 71

Figure 3.15. U and P SOLO levels and scores for explaining Question 2 in a

PST. ... 72

Figure 3.16. Individual components of writing question 2 of the PST. 73

Figure 3.17. R and RE SOLO levels and scores for writing question 2 in the PST... 75

Figure 3.18. M and ME SOLO levels and scores for writing question 2 of the

PST. ... 75

xvi

Figure 3.19. U and UE SOLO levels and scores for writing Question 2 of the

PST. ... 76

Figure 3.20. P SOLO levels and scores for writing Question 2 in the PST. 76

Figure 4.1. Number of student participants from seven programs in the survey. 87

Figure 4.2. Interface and screen of Turbo C++. ... 94

Figure 4.3. Interface of Dev-C++. .. 95

Figure 4.4. Command to compile and run C program using command line in

windows. ... 96

Figure 4.5. Interface of Microsoft Visual Studio ... 96

Figure 6.1. Hypothesised path model. .. 158

Figure 6.2. Path diagram with FSE and writing as output variables and

programming skills as predictor variables. ... 159

Figure 6.3. Path diagram with OS and writing as dependent variables and

programming skills as independent variables. 160

Figure 6.4. Path diagram with MFSE and writing as dependent variables and

programming skills as independent variables. 161

Figure 7.1. Approach of teaching/learning in CS1. ... 181

xvii

List of Tables

Table 2.1 SOLO Categories for Explaining Questions .. 37

Table 2.2 SOLO Categories for Code Writing Solutions ... 41

Table 2.3 SOLO Categories for Code Writing Solutions ... 42

Table 3.1 Number of Students Who Participated in a PST From Each Program 48

Table 3.2 Number of Students Who Participated in a Survey From Each

Program .. 48

Table 3.3 Overview of Student Survey Questionnaire ... 54

Table 3.4 SOLO Levels for Algorithm Design Questions .. 61

Table 3.5 SOLO Levels for Translating Questions .. 65

Table 3.6 SOLO Levels for Tracing Questions .. 68

Table 3.7 SOLO Levels for Explaining Questions ... 70

Table 3.8 SOLO Classification for Writing Questions .. 74

Table 4.1 Descriptive Statistics of Student Performance (PST, FSE, OS) 83

Table 4.2 Student Representation in this Study from Three RUB Colleges 84

Table 4.3 College Summary Statistics in PST .. 85

Table 4.4 Programme Summary Statistics in PST ... 86

Table 4.5 Summary Statistics of the Programming Skills and Overall PST Score 86

Table 4.6 Results of t-Test and Descriptive Statistics of FSE, OS and PST by

Prior Programming Experience .. 89

Table 4.8 Results of t-Test and Descriptive Statistics of FSE, OS and PST by

Students’ Y12 Performance in Physics for Categories A and B 92

Table 4.9 Results of t-Test and Descriptive Statistics of FSE, OS and Test by

Students’ Y12 Performance in Chemistry for Categories A and B 93

Table 4.10 Number of Students’ Response to First Programming Language to be

Taught in CS1 (n = 277) ... 97

Table 4.11 Teaching/Learning Methods (n = 277) .. 99

Table 4.12 Summary Statistics of the Order of Programming Skills to be Learnt

in CS1 (n = 277) .. 100

Table 4.13 Summary Statistics of the Order of Programming Skills in Terms of

Contribution to Student Performance in CS1 (n = 277) 101

Table 4.14 Aggregate Statistics on Students’ Leaning Approach Using Biggs

Questionnaire (n = 277) .. 102

Table 4.15 Program and Gender of Student Participants in Individual Interviews 105

Table 4.16 College and Gender of Student Participants in Group Interviews 106

xviii

Table 4.17 Comparison of Students’ Survey Open-Ended Question and Interview

Responses to the Suggestion of How to Improve Teaching/Learning

of CS1 at RUB ... 115

Table 5.1 Lecturers’ Response to Students’ Prior Programming Language

Experience (n=8) .. 120

Table 5.2 Lecturers’ Responses to Prior Experience in Non-Programming

Computer Activities (n=8) ... 121

Table 5.3 Summary Statistics of Students’ Minimum Y12 Score in Mathematics,

Physics and Chemistry, as Suggested by Lecturers 121

Table 5.4 Programming Environment Used by Lecturers to Teach CS1 (n=8) 122

Table 5.5 Lecturers’ Response to the First Programming Language to be Taught

in CS1 (n=8) .. 124

Table 5.6 Lecturer Response to Teaching/Learning Methods and Practices in

CS1 (n=8) .. 125

Table 5.7 Summary Statistics of the Order of Programming Skills to be Taught in

CS1 (n = 8) .. 126

Table 5.8 Summary Statistics on the Order of Programming Skills in Terms of

Contribution to Student Performance in CS1 (n = 8) 127

Table 5.9 Comparison of Student and Lecturer Suggestions on How to Improve

Teaching/Learning of CS1 at RUB ... 129

Table 5.10 Lecturer Interview Participants ... 129

Table 5.11 Comparison between Students’ and Lecturers’ Order of

Programming Skills to be Learnt/Taught in CS1 135

Table 6.1 Association between Students’ Prior Programming Experience and

Student Performance (n = 327) ... 146

Table 6.2 Association between Students who Played Computer Games and

Student Performance (n = 327) ... 147

Table 6.3 Association between Student Performance and Y12 Performance in

Mathematics, Physics and Chemistry (n = 327) 148

Table 6.4 Association among Algorithm Design, Translating, Tracing,

Explaining and Writing (n = 292) ... 149

Table 6.5 Association between Student Performance and Ability in Programming

Skills (n = 327) .. 150

Table 6.6 Association between Student Performance and Students’ Learning

Approach ... 151

(n = 327) 151

Table 6.7 Verifying the Assumptions to Run Multiple Regression 154

Table 6.8 Multiple Regression Results with Student Performance as Dependent

Variable and Programming Skills as Independent Variables 154

Table 6.9 Multiple Regression Results with Writing as Dependent Variable and

Other Programming Skills as Independent Variables........................... 157

Table 7.1 Researcher Proposed Outline of CS1 .. 176

xix

List of Abbreviations

CA continuous assessment

CS1 Introduction to Computer Programming

CST College of Science and Technology

FSE final semester examination

 GCIT Gyalposhing College of Information Technology

GUI graphical user interface

IDE integrated development environment

IRR inter-rater reliability

JNECS Jigme Namgyel Engineering College

MFSE modified final semester examination

OS overall semester

 PST programming skills test

R-SPQ-2F revised two-factor study process questionnaire

RUB Royal University of Bhutan

SC Sherubtse College

SOLO structure of the observed learning outcome

Y12 Year 12

xxi

Glossary of Terms

Programming skills The basic essential skills required by students in

Introduction to Computer Programming, such as

algorithm design, translating, tracing, explaining and

writing.

Algorithm design Procedure to create a logic in solving a problem. In this

study, algorithm design is represented in the form of

algorithms and flowcharts. An algorithm is the process

of writing detailed step-by-step instructions to solve a

problem using either simple English or a pseudocode.

A pseudocode is a mixture of English language and

programming language constructs. A flowchart is a

graphical representation of an algorithm.

Translating The process of converting a given algorithm design into

any high-level programming language.

Tracing The process of manually executing program statements

one by one, keeping track of values in all variables,

updating the values as they change, and showing the

desired output.

Explaining The process of explaining in plain English the purpose of

a given piece of code.

Writing The process of writing executable code in any high-level

programming language to solve a given problem.

Student performance Students’ scores in the programming skills test, final

semester examination and overall semester

performance.

1

Chapter 1: Introduction

1.1 Introduction

This thesis presents an investigation of factors that may affect the performance

of students studying Introduction to Computer Programming (CS1). CS1 is the first,

and compulsory, module studied by many undergraduate students from various fields

of science, technology and engineering. Learning to program is not easy for many

students upon their first introduction to it. This is because students not only have to

learn to solve a problem, they also have to learn the syntax and semantics of a

programming language to enable them to express their solution in a form that

computers understand (Mannila, Peltomäki, & Salakoski, 2006). The difficulty faced

by students in learning CS1 has led to high failure rates in CS1 taught at the Royal

University of Bhutan (RUB). An important question behind the motivation for this

study is: How can we improve student performance in CS1?

The following sections will present information on the thesis origin,

background, research objectives and significance. An overview of the methodology

and thesis concludes this chapter.

1.2 Thesis Origin

This section details the origin of this thesis. It represents an opportunity to

explore and research computer science education, particularly in the context of CS1. I

began my teaching career at Sherubtse College (SC), RUB in 2008. Since then, I have

taught computer science-related subjects to students enrolled in Bachelor of Science

in Computer Science and Bachelor of Science in Physical Science.

The impetus for this study was my experience teaching CS1 to first-semester

students and the similar experiences shared by other tutors teaching CS1 to science

2

and engineering students in other colleges of RUB. High failure rates in CS1 have been

observed and identified as an issue.

When I interacted with students in my class, most indicate that learning to

program is difficult since the content is new. This difficulty in learning to program is

a challenge faced by many students at RUB when they are introduced to it in Semester

1.

As a tutor, when I reflected on my teaching experience and students’

performance, I wondered whether it was the teaching methods/practices in the

classroom or how students approached learning to program that determined their

performance in CS1. With a full-time teaching load and other faculty responsibilities,

research is near to impossible. However, I continued to persist in finding a solution to

my research-related considerations and was exhilarated when I received a scholarship

in 2015 to pursue my research interests at Curtin University, Western Australia.

1.3 Background

This section presents the background information for this study by providing a

brief history of RUB and the context of CS1 offered at RUB colleges. This will be

followed by a clear definition of programming skills as used in this thesis.

RUB was established in 2003, offering tertiary education from various

locations across the country (Department of Academic Affairs, October 2013). RUB

is the only university in Bhutan (with 10 constituent colleges and two affiliated

colleges under the umbrella of RUB) besides one medical university, Khesar Gyalpo

University of Medical Sciences of Bhutan, which was established in 2013. Of 10

colleges, four offer degree and diploma programs that include CS1 in their first

semester. All students taking those programs are required to take CS1. This mandatory

module is the focus of this study.

3

The researcher has observed that students in these RUB programs have high

failure rates in CS1 when they are introduced to it in their first semester. The researcher

has experience as a participant observer and in teaching CS1 classes. During the

assessment of students’ programming solutions, the researcher observed a significant

number of solutions that indicated that students were not achieving the intended course

outcomes. The high failure rate and students’ inability to comprehend the

programming concepts at RUB is a cause for concern for the researcher and the

institution. The researcher observed that of 60 students in one lecturer’s classes, 50

percent failed (below 50 marks) in the semester-end results during spring 2015. A

similar result was reported when the researcher taught the same course in spring 2013.

The high failure rates in CS1 prompted the researcher to investigate the factors that

may affect student performance in CS1.

Students’ performance in CS1 was measured by the overall marks (out of 100)

scored by students in a semester. It was based on students’ performance in various

assessment components: continuous assessment (CA) and final semester examination

(FSE). CA constitutes 50 percent of the overall mark; it includes assignments, class

tests, practical examinations and mid-semester examinations. The FSE is written at the

end of the semester and constitutes 50 percent of the mark. These assessments test

students’ ability to explain the theoretical and practical components of programming.

Most students taking CS1 do not have any prior programming experience. The

learning of CS1 takes place both in a classroom setting—a theory class—and in a

computer laboratory—a practical class. Each theory class has 30–60 students and the

practical class has 30 students maximum. Four hours a week are dedicated to theory

(one hour per tutorial) and three consecutive hours a week comprise practical classes.

The lecturer provides instructions in the theory class using slideshow presentations

4

and traditional teaching methods, such as notes on chalk and board or whiteboard. For

the practical class, the lecturer uploads a tutorial/problem set in the learning

management system in advance. Students then download these and begin planning and

working on the problem during practical class. The lecturer assists students in

understanding the problem and encourages them to work in pairs or groups. At RUB,

a CS1 lecturer is responsible for not only delivering instructions, setting assignments,

examination questions and laboratory problems and conducting laboratory sessions,

but also for marking all assignments, examinations and laboratory problems. In

Western universities, such as University of New Brunswick, Canada and Curtin

University, Western Australia (researchers’ observation when studying in these

universities), teaching assistants and tutors assist in marking and conducting laboratory

sessions. In one semester, students are required to submit several programming

assignments, sit at least two examinations (mid-semester and final semester) and one

practical examination in the computer laboratory. The assessments may differ slightly

across colleges. For instance, the College of Science and Technology (CST) conducts

three examinations in one semester.

In learning CS1, there are five basic but essential programming skills that every

student is expected to master (Biró, Csenoch, Abari, & Máth, 2016; Crews & Ziegler,

1998; Hooshyar, Ahmad, Shamshirband, Yousefi, & Horng, 2015; Lister, Fidge, &

Teague, 2009; Venables, Tan, & Lister, 2009). These skills are referred to in this thesis

as ‘programming skills’ and they are algorithm design, translating, tracing, explaining

and writing. This section will define these programming skills as understood by the

researcher and to be used for the purpose of this study:

a) Algorithm design is a procedure to create a logic in solving a problem. This skill

tests students’ ability to analyse the problem, and understand and design a

5

complete solution. Algorithm design can be expressed in simple natural languages

like English, pseudocodes or flowcharts (Goel, 2010; Hardnett, 2011). Both

algorithms and flowcharts are used to represent algorithm design in this study.

Algorithm refers to the process of writing detailed step-by-step instructions to

solve a problem using either simple English or a pseudocode. A pseudocode is a

mixture of English and the structural constructs of a programming language

(Afriyie, 2007; Goel, 2010; Grover, 2001; Jeyapoovan, 2015). A flowchart is a

graphical representation of an algorithm. An example of an algorithm design is

shown in Figure 1.1.

Figure 1.1. Example of algorithm design.

b) Translating is a process of converting a given algorithm design into any high-

level programming language. The C programming language was used as an

example in this study. This skill tests students’ ability to correctly translate the

logic from the given algorithm design into C programming language. This step

requires students to know basic C programming language features. The

translated program does not need to be an executable program, which means

students are not required to remember the syntax, such as semicolons (;) double

6

quotation marks (“ ”) and commas (,). However, the basic programming

features and logic must be correct, complete and almost close to an executable

program. In fact, it is preferable if students can produce translated programs

that are executable. Figure 1.2 and Figure 1.3 show examples of translating

from an algorithm and flowchart to the C programming language respectively.

Figure 1.2. Example of translating (a).

Figure 1.3. Example of translating (b).

7

c) Tracing is a process of manually executing program statements one by one,

keeping track of the values in all variables, updating values as they change and

showing the desired output. This skill tests students’ ability to read a given

piece of code and understand how the program works. An example of manually

tracing a piece of code and producing a correct output is shown in Figure 1.4.

Figure 1.4. Example of tracing.

d) Explaining is the process of explaining, in plain English, the purpose of a

given piece of code. This skill tests students’ ability to comprehend the written

code. Figure 1.5 shows an example of explaining.

8

Figure 1.5. Example of explaining.

e) Writing is the process of writing code in C programming language to solve a

problem. This skill tests students’ ability to write correct programs in C. In

writing, students are expected to produce executable code that can run in a

programming environment. An example of writing is as shown in Figure 1.6.

Figure 1.6. Example of writing.

9

1.4 Research Objectives

This section states the objectives and specifies the research questions to be

addressed in this study. The main aim of this thesis is to investigate the factors that

may affect students’ performance in CS1 at RUB. These were investigated via seven

objectives:

1. Discover if students’ prior computing experience has any impact on their

performance in CS1.

2. Explore the first programming language, programming paradigm,

programming environment and teaching/learning methods and practices as

experienced/perceived by lecturers and students in CS1 that may improve

students’ performance in CS1.

3. Test for associations between students’ performance in CS1 and their Year

12 (Y12) performance in mathematics, physics and chemistry.

4. Investigate associations between students’ performance in CS1 and

students’ learning approaches.

5. Discover any relationship among the programming skill variables.

6. Investigate associations between students’ performance in CS1 and

programming skill variables.

7. Identify if there is a learning hierarchy in programming skills or not.

These research objectives are addressed by asking seven research questions:

1. What is students’ prior computing experience and does this affect

performance in CS1?

2. What are students’ and lecturers’ experiences/perceptions of first

programming language, programming paradigm, programming

environment and teaching/learning methods and practices?

10

3. What is the association, if any, between students’ performance in CS1 and

students’ Y12 performance in mathematics, physics and chemistry?

4. What is the association, if any, between students’ performance in CS1 and

students’ learning approaches?

5. What is the association, if any, among programming skill variables?

6. What is the association, if any, between students’ performance in CS1 and

students’ ability in programming skills?

7. Is there a hierarchy among students’ programming skills in terms of their

contribution to students’ performance in CS1?

The above research questions were specifically selected based on the relevance

and the need for teaching and learning CS1 at RUB. For instance, research question 1

and 3 were selected to discover if students’ prior computing experience and Year 12

(Y12) performance in mathematics, physics and chemistry has any impact on their

performance in CS1 or not because in Bhutan student results in these areas are used to

select students in science and engineering programmes where CS1 is a mandatory

module in their first semester. Research question 2 was selected to explore on the first

programming language, programming paradigm, programming environment and

teaching/learning methods and practices that may improve students’ performance in

CS1. This is because the researcher wants to explore more on these variables at the

other colleges under RUB as Sherubtse College (where the researcher has taught) used

C as the first programming language which is a procedural programming paradigm

and most lectures used Turbo C++ and Dev-C++ as the programming environment.

The answers to this research questions will give the complete knowledge on the first

programming language, programming environments and teaching/learning methods

11

and practices that may improve student performance in CS1 at RUB. Similarly,

research question 4 was selected to investigate if students’ learning approaches has

any impact on their performance in CS1 or not as it would be beneficial to know the

approaches of learning that Bhutanese students take in learning CS1 and also to

examine which learning approach has the impact on student performance in CS1.

Furthermore, the research questions 5 and 6 was selected to discover if Bhutanese

students’ results exhibit any relationship among the programming skills variables and

also between the programming skill variables and the performance in CS1. In the same

line, research question 7 was selected to discover if Bhutanese students’ results show

any existence of the learning hierarchy in programming skills or not. The answers to

these research questions may help the lectures and students at RUB to improve

teaching and learning of CS1.

1.5 Significance of this Study

This section addresses the reasons why this study is significant. The results

from this study made the following significant contribution, not only to RUB but also

to computing research worldwide.

This study provides lecturers of CS1 at RUB a deeper insight into first

programming language, programming paradigm, programming environment and

teaching/learning methods and practices. This is significant because it enables

lecturers to better reflect on their current teaching methods and practices and make

informed decisions. It also adds to and validates the existing body of computing

research in the first programming paradigm and language choice to be used in CS1 and

teaching/learning methods and practices that may improve students’ performance in

CS1.

12

This study has also examined student approaches to learning in CS1, which is

associated with student performance in CS1. Thus, this study has contributed to the

body of computing research by exploring quantitatively the relationship between

students’ learning approaches and their performance in CS1.

For RUB to produce competent graduates in science and technology, it is

important to focus on the foundation module (CS1) as this will facilitate the successful

completion of the program. Part of the original contribution of this study comes from

the fact that it is conducted in Bhutan. A comprehensive literature review revealed no

studies have examined the variables used in this study in the country of Bhutan. Thus,

this study sample is unique and provided valuable data for other researchers with

similar interests in the computing discipline.

The identification of five foundational programming skills—algorithm design,

translating, tracing, explaining and writing—contributed to the body of knowledge in

regard to programming skills. Although considerable research has been conducted in

programming skills, such as tracing, explaining and writing (see Chapter 2), students’

skills in algorithm design and translating have not been explored alongside tracing,

explaining and writing (to the researcher’s knowledge). Therefore, this study has made

a unique contribution to the body of knowledge in CS1 programming skills.

Subsequently, the structure of the observed learning outcome (SOLO) taxonomy was

adapted to evaluate students’ responses to programming skills test (PST) questions

(see Section 3.2.1 and Appendix A). This has contributed new information in regard

to the SOLO descriptions for each programming skill, and thus, provide avenues for

comparison of results. Both of these contributions (programming skills and use of

SOLO taxonomy) are significant to the CS1 teaching community because they enable

a deeper understanding of the two concepts leading to better practice, especially in

13

terms of focus and sequence of teaching the programming skills in introductory

computing.

1.6 Overview of the Methodology

This section outlines the research methodology used in this study. This study

used a convergent parallel mixed methods design (see Section 3.4, page 52) to collect

data through both quantitative and qualitative methods, but mostly quantitative.

Qualitative data were collected to confirm/disconfirm quantitative results and provide

deeper understanding (Creswell, 2013, p. 213). The qualitative and quantitative data

were collected via a variety of methods: survey questionnaires (for lecturers and

students), lecturer and student individual interviews, student group interviews and

student PST scores. The rationale for choosing this method was to best answer the

research questions and triangulate the results. Figure 1.7 shows the methods of data

collection used in this study.

14

Student individual interviews

Student individual interviews

Student group interviews

Student surveys

PST

Lecturer interviews

Figure 1.7. Data collection methods.

Students from three colleges who have completed a course in CS1 in their first

semester at RUB in July–November 2016 participated in this study. A total of 292

students participated in the PST and 277 students participated in the survey.

This study achieved 100 percent participation from lecturers from three

colleges. Eight lecturers participated in this study, of which six taught the module in

2016 and two in the previous years.

Students’ ability in programming skills was measured using the PST answer

scripts of students’, using SOLO taxonomy (Biggs & Collis, 1982) . The SOLO

15

description used to evaluate the responses to algorithm design, translating, tracing

explaining and writing questions are shown in Chapter 3.

Students’ approaches to learning CS1 were identified using the Biggs revised

two-factor study process questionnaire (R-SPQ-2F) which consists of 20 closed-

response questions scored on a 5-point Likert scale (Biggs et al., 2001). Other

information was collected from the survey and interviews.

Data analysis was completed using SPSS for quantitative data. Qualitative data

were manually classified according to each research question. Other areas unrelated to

research questions but of research interest are noted. Qualitative data were collected

to cross-validate the quantitative data.

1.7 Thesis Overview

This thesis consists of eight chapters and 12 appendices. This chapter has

introduced the thesis by describing the origin and background information of this

study. The research objectives and research questions have been specified. The

significance of this study has been discussed and the research methodology briefly

described. Finally, an overview of each chapter has been provided.

Chapter 2 reviews the extant literature, describing factors affecting students’

performance in higher education with particular focus on CS1. The theoretical

framework built based on the literature will be discussed.

Chapter 3 provides an in‐depth description of the research methodology used

in this study. The research questions will be outlined, sample and measures described

and various data collection methods detailed.

Chapter 4 and 5 presents the results of the students’ and lecturers’ quantitative

univariate analysis followed by qualitative results. Chapter 6 further presents the

results of quantitative bivariate and multivariate analysis, including path analysis.

16

Chapter 7 discusses the results presented in Chapters 4, 5 and 6 by

systematically answering each research question and discussing the answers in depth.

Common key areas emerging from the qualitative data will be discussed.

Finally, Chapter 8 concludes this thesis with a brief summary of the findings

with reference to the research questions proposed in this study. This chapter also

outlines wider contributions and limitations and suggests future research directions.

Twelve appendices follow the references. Appendix A is a copy of the PST

instrument. Appendix B is the PST marking criteria, using SOLO classification, while

Appendix C is a copy of a sample student’s responses to PST questions. Appendices

D and E are copies of the participant consent form and information letter respectively.

Appendix F is a copy of the ethics approval letter from the Human Research Ethics

Committee of Curtin University. Appendices G and H are copies of the student survey

and lecturer survey. Appendix I is the results of the assumptions for normality.

Appendix J is the Biggs’s revised two-factor study process questionnaire and

Appendix K describes the proposed CS1 module. Finally, Appendix L is a copy of the

FSE paper of three colleges at RUB.

1.8 Summary

This chapter opened with an introduction to this thesis, outlining the sections

addressed here. The sections described the origin of this thesis and background

information related to this study. They stated research objectives and research

questions, discussed the significance of this study, provided an overview of the

methodology used in this study and an overview of each chapter. Chapter 2 will review

the related literature.

17

Chapter 2: Literature Review

2.1 Introduction

The previous chapter introduced this study and how it originated. It provided

background information, outlined research objectives and research questions and

presented its significance and research methodologies, and described each chapter.

This chapter will report on the literature that has explored the factors that affect

students’ performance in CS1.

This chapter begins with a review of the factors that affect students’

performance in higher education, followed by an overview of the existing studies on

the factors that affect student performance in the learning of units such as Introduction

to Computer Programming (CS1), from which the theoretical framework was

constructed. It then presents an overview of these factors listed under input and

learning process factors. Further, the review of the measures of student success in CS1

is presented along with a review of the structure of the observed learning outcome

(SOLO) taxonomy.

Overall, chapter 2 reviews the literature and in doing so, justifies the need for

the current study.

2.2 Factors that Affect Students’ Performance in Higher Education:

Developing the Theoretical Framework

It is often a challenge to measure students’ academic performance in higher

education, as it is dependent on different socioeconomic, psychological and

environmental factors. Research has shown that socioeconomic factors such as gender,

age, parents’ income and educational background, alcohol consumption, substance

abuse and high school performance can affect students’ academic performance in

18

higher education (Hijaz & Naqvi, 2006; Mushtaq & Khan, 2012; Pritchard & Wilson,

2003).

The literature review identified that there is a significant influence on students’

academic performance when students experience psychological factors such as stress,

depression, anxiety or suicidal tendencies while pursuing higher education (Pritchard

& Wilson, 2003). It was found that high level of stress affect students’ mental,

emotional and physical health, which might lead to depression and anxiety, thereby

affecting students’ ability to learn and potentially their academic performance

(Kamtsios & Karagiannopoulou, 2015). The top three academic stressors identified

were examination, excessive content to learn and lack of time to revise what has been

learnt (Yusoff, Rahim, Baba, Ismail, & Pa, 2013). Rising expectations and

responsibilities may generate negative emotions, which in extremes, can lead to

suicide (Bhattacharya & Bhattacharya, 2015).

Environmental factors such as social support from peer and teacher, family

encouragement and support, peer relationships, teacher–student relationships,

experience of teachers and classroom facilities play a vital role in students’ academic

achievement. Social support is commonly defined as the existence or availability of

people on whom we can rely, people who let us know they care for, value and love us.

Social support has been identified as a resource that enables individuals to cope with

stress (Yang, 2004). Family encouragement and support have been identified as

important contributing factors for students’ academic success (Gloria & Robinson

Kurpius, 2001).

Biggs (1987) used the 3P model (see Figure 2.1) to describe the factors that

may influence students’ performance in learning. The Biggs 3P model comprises three

components: presage, process and product. The presage component exists before the

19

student enters the learning context and includes factors such as prior knowledge,

abilities, intelligence quotient and personality characteristics (e.g., age, sex and home

background). It also includes situational factors such as subject area, teaching methods,

time taken to complete a task and the structure of the course. The process component

describes the learning situations and includes factors such as students’ motives and

approaches to learning. The product component is the outcome after learning has taken

place. The outcome can be objective, for example, in terms of examination scores or

subjective or the level of satisfaction attained. Biggs stated that product was

significantly influenced by presage and process factors.

The model shows how student presage factors interact with situational factors

during the learning process and lead to the achievement of the product. It argues that

the instructor is responsible for the design and structure of the learning environment

and the student is responsible for engaging appropriately with the activities.

Figure 2.1. Biggs 3P model of learning.

For simplicity, this study has replaced the term presage with input factors,

process with learning process factors and product with student performance. Section

2.3 provides an overview of the existing studies addressing the factors that affect

20

student performance in the learning of CS1, from which a more specific theoretical

framework will be constructed and presented toward the end of this chapter.

2.3 Factors That Affect Students’ Performance in Learning

Introduction to Computer Programming

Several factors that may influence students’ performance in CS1 at university-

level courses have been discussed in the literature. These factors are previous

programming experience, previous non-programming computer experience,

encouragement to pursue computer science, motivation, comfort level in the course,

work style preference, attribution to success/failure, self-efficacy, mental model,

learning approaches, gender, mathematics background (Bergin & Reilly, 2005a;

Wiedenbeck, Labelle, & Kain, 2004), teaching methods (Krpan, Mladenović, & Rosić,

2015) and cognitive factors such as problem-solving, abstract reasoning, problem

translation, skills, logical ability and cognitive style (Bergin & Reilly, 2005b). Other

factors that may affect students’ performance and are of research interest include

students’ ability in programming skills (Tan & Venables, 2010), programming

paradigm (Gupta, 2004), programming environment and first programming language

choice.

Wilson and Shrock (2001), Hagan and Markham (2000) and Wilson (2002)

reported that comfort level in class was the best predictor of course success followed

by mathematics background. Hagan and Markham (2000) and Kersteen, Linn, Clancy,

and Hardyck (1988) found that previous programming experience and previous non-

programming computer experience were an indicator of success in programming.

Conversely, Bergin and Reilly (2005b) reported no significant difference between

students with or without previous programming experience and between students with

or without previous non-programming computer experience.

21

While considerable research has been done on factors that affect student

performance in CS1, the parameters used were different. The literature review revealed

that the parameters used were: students’ enrolment program (computer science, social

science, humanities and engineering), level (degree and diploma), educational settings

(the United States, United Kingdom, India, Europe etc.), programming language

taught (Python, Java and C++) and the measure of student success in CS1 (overall

computer science grades, mid-term grade, final semester exam grade and continuous

assessment). The parameters used in this study were based on situational factors

currently evident at RUB. These were: students’ enrolment in a computer science and

engineering course at degree or diploma level, Bhutanese educational settings,

teaching of C as the programming language, measurement of student success in CS1

as final semester examination (FSE), overall semester (OS) and programming skill test

(PST) scores.

Sections 2.3.1–2.3.8 briefly review research studies for each of the factors that

are likely to impact learning in CS1:

2.3.1 Prior computing experience

Prior computing experience can be further categorised as prior programming

experience and prior non-programming computer experience (Bergin & Reilly, 2005b;

Wilson, 2002). Prior programming experience includes any prior formal programming

or self-initiated programming courses taken outside a formal class. Prior non-

programming computer experience includes using the Internet for information

searches: games (online or offline) and application software such as Office,

spreadsheets, presentation programs and databases (Wilson, 2002).

Studies have shown that students with prior programming experience

performed significantly better in CS1 than those without (Hagan & Markham, 2000;

22

Holden & Weeden, 2003; Taylor & Luegina, 1991; Wilcox & Lionelle, 2018; Wilson,

2002). In Hagan and Markham (2000) and Holden and Weeden (2003), Java was the

language used in their first programming course. They found a significant difference

between students with prior experience in programming and those without. Moreover,

the more programming languages in which students had experience, the better was

their performance.

Few studies have examined the impact of prior non-programming computer

experience on students’ performance in CS1 (Bergin & Reilly, 2005b; Wilson, 2002).

Wilson (2002) found that students with previous programming experience and game

playing had significantly better or worse performance in CS1 respectively. Previous

programming experience had a positive influence, while game playing had a negative

influence on mid-term grade. Conversely, Bergin and Reilly (2005b) found no

significant difference between students with or without previous programming

experience or between students with or without non-programming computer

experience.

Therefore, based on the literature, the researcher considered it important to

examine these two variables in Bhutanese environment so the results from this study

can better inform the Education Ministry of Bhutan on whether to include basic

programming subjects in Year 11 and 12, or if not, for science students who may be

likely to take CS1 in their first semester of university.

2.3.2 Year 12 performance in mathematics, physics and chemistry

In computer programming, problem-solving can be broken down into four

steps: 1) understand the problem, 2) determine how to solve the problem, 3) translate

the solution into a computer language program, and 4) test and debug the program

(Winslow, 1996). Since students learn general problem-solving skills in high school

23

mathematics, several studies have determined that student mathematics background is

a good indicator of success in CS1 (Konvalina, Wileman, & Stephens, 1983; Patil &

Goje, 2009; Wilson, 2002; Winslow, 1996; Zaffar, Hashmani, & Savita, 2018).

In Byrne and Lyons (2001), mathematics background was shown to have

significant influence on programming performance. Byrne and Lyons (2001) and

(Campbell & McCabe, 1984) beliefs that students’ mathematics concepts to

comprehend to master mathematics problems are similar to those of programming.

They involve problem-solving ability, which is crucial for success in science and

engineering. The researcher also observed while teaching CS1 that students who

achieved high grades in Year 12 (Y12) mathematics perform better than those who did

not achieve high grades. Similarly, prior performance in science subjects, although

less studied, has shown to have a positive influence on students’ performance in

programming (Byrne & Lyons, 2001; Werth, 1986; Zaffar et al., 2018).

After the review of the literature, the researcher found no studies that have

examined students’ Y12 performance in mathematics, physics and chemistry in

relation to their performance in CS1, especially in Bhutan. Therefore, the researcher

considered it necessary to establish whether there is any link between students’ Y12

performance in mathematics and science subjects and their success in CS1. This would

allow more or less attention to be given to students studying CS1.

2.3.3 Programming paradigms

A programming paradigm is an approach to programming a computer based on

a mathematical theory or a coherent set of principles. Each paradigm supports a set of

concepts that makes it ideal for a certain kind of problem (Van Roy, 2009). In simple

terms, paradigm means ‘a way of doing things or thinking about things’ (Burton &

Bruhn, 2003).

24

The choice of programming paradigm for beginners is one of the most debated

topics in the literature (The Joint Task Force on Computing Curricula Association for

Computing Machinery (ACM) IEEE Computer Society, 2013). Therefore, a brief

review on the discussion of two popular programming paradigms suitable for CS1 are

presented in Sections 2.3.3.1–2.3.3.2. The researcher acknowledges that there are more

programming paradigms, which are beyond the scope of this study (Van Roy, 2009).

2.3.3.1 Object-oriented paradigm

The object-oriented programming paradigm uses abstraction in the form of

classes and object to create real-world environments. Just as an object in the real world

may be described by its attributes and behaviours, an object in object-oriented

programming consists of a collection of variables (attributes) and procedures

(behaviours) bundled permanently together (encapsulated) as a unit. Similar objects

are regarded as special instances (modified copies) of a general class; the class is used

as the template to make the objects. Objects become the basic programming unit, rather

than procedures. A natural development of this picture of classes and objects is to view

them as programs in their own right. That is, a class or its object copy is a self-

contained collection of data and code that can function as a complete subprogram.

Contained within each class or object are all the elementary building blocks of

primitive data types and the procedures that act on them (Burton & Bruhn, 2003).

As object-oriented programming becomes increasingly popular in the

workplace, many college and tertiary institution have adopted object-oriented

programming in their first programming courses (Kölling & Rosenberg, 1996;

Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999). Moreover, object-

oriented programming is believed to directly support many of the software engineering

concepts that are difficult to convey in procedural programming such as code re-use,

25

encapsulation, incremental development, testing and program design (Decker &

Hirshfield, 1994). However, introducing object-oriented programming for beginners

remains difficult, as acknowledged by many researchers. Kruglyk and Lvov (2012)

stated that it requires the knowledge of object-oriented programming almost

immediately, making it difficult for beginners. Kölling (1999) and Kölling and

Rosenberg (1996) stated that the lack of a truly object-oriented development

environment has created difficulty in teaching object-oriented programming. The most

commonly used languages in introducing object-oriented programming are C++ and

Java.

2.3.3.2 Procedural paradigm

The procedural programming paradigm is a linear or top-down approach in

programming. It uses procedures or subroutines to perform computations. According

to Burton and Bruhn (2003), the main steps in writing a simple procedural program

may be summarised as:

1. Read and understand the problem.

2. Devise a solution to the problem.

3. Formalise the solution as an algorithm.

4. Write the program.

5. Test and debug the program.

6. Document the program.

Burton and Bruhn (2003) asserted that students must master these steps before

considering modelling a real-world object, which means students must first learn

procedural programming and then move to object-oriented programming.

Gupta (2004) also recommended procedural programming for beginners,

stating that procedural programming is easy to understand and continues to be the most

26

popular choice among teachers for an introductory programming module. He further

added that procedural programming is ‘straightforward to convert intuitive algorithms

into code’ while in object-oriented programming, one needs to ‘actually go into the

structure and design of the system and how its components interact with each other’

(Gupta, 2004).

Although procedural programming has been taught in first programming

courses for a long time, many universities are now slowly moving to object-oriented

programming. The main reason for this transition is the ‘dread of paradigm shift’,

which means once your mind is set on procedural programming, it takes time to switch

to object-oriented programming. Thus, Kölling (1999) proposed to begin with object-

oriented programming. He stated that the path to object-orientation through procedural

is not required. Conversely, Brilliant and Wiseman (1996) reported that students find

procedural programming easy to understand and find object-oriented programming

difficult, so it is better to start with procedural programming. Therefore, this study will

collect information from lecturers who have taught CS1 at RUB in regard to the first

programming paradigm that better suits CS1. The most commonly used languages in

introducing the procedural programming are Pascal and C.

2.3.4 First programming language

Choice of programming paradigm drives the choice of programming language.

It is crucial to choose the suitable first programming language, as it will have a

profound impact on ‘programming style, coding technique, and code quality’ (Gupta,

2004). Gupta (2004) discussed some of the requirements of a good introductory

programming language. An introductory programming language for university

students should be simple and easy to understand, orthogonal (i.e., not too many ways

27

of doing the same thing) and have simple input/output functions. Take, for instance,

the most popular ‘Hello, World!’ program, written in Java as shown in Figure 2.2:

Figure 2.2. ‘Hello, World!’ program, written in Java.

In Prolog, it is written as shown in Figure 2.3:

Figure 2.3. ‘Hello, World!’ program, written in Prolog.

In Python, it is written as shown in Figure 2.4 :

Figure 2.4. ‘Hello, World!’ program, written in Python.

And in C, it is written as shown in Figure 2.5:

Figure 2.5. ‘Hello, World!’ program, written in C.

To someone new to programming, the Python and C code look simple, easy

and straightforward to understand. Gupta (2004) suggested C as the better choice for

28

new college students, as C is simple enough for students to be able to immediately

write simple programs while being flexible enough to allow students to gradually learn

to write complex programs. Moreover, he said that C introduces the basic elements

common to most widely used ‘real-world’ programming languages, and provides a

good foundation for learning other languages.

Other studies (Dierbach, 2014; Radenski, 2006; Sanders & Langford, 2008;

Shannon, 2003; Yadin, 2011) also suggested Python as the better choice of

programming language for CS1, as the syntax is simple and the structure is

uncomplicated, which means it is easy for students to read and write code. Instructors

also find it easy to teach Python, as the language is so simple that students do not create

typical syntax errors due to missing semicolons or braces (Shannon, 2003). This frees

students from detailed language syntax and allows them to concentrate on algorithms

and problem-solving (Yadin, 2011).

Conversely, McCracken et al. (2001) reasoned that there is no difference

between the programming languages; rather, it is a matter of how the course is taught.

Therefore, this study will explore lecturer and student perceptions of the first

programming language choice, as this issue has not been settled in the literature.

2.3.5 Programming environment

Many programming environments can be used in learning to program (Gómez-

Albarrán, 2005). One such environment is the integrated development environment

(IDE). IDE comes packaged with a code editor, a compiler, a debugger and a graphical

user interface (GUI) builder, which makes it easier for beginners to learn

programming. Sophisticated programming environments are not suitable for

beginners, as they assume a level of sophistication that beginning students do not

possess. They are designed for experts, not students. These types of environments not

29

only waste students’ time in learning to use the environment, but also increase

students’ level of frustration (Freund & Roberts, 1996; Kruglyk & Lvov, 2012). Thus,

valuable time has to be spent teaching students to use the environment rather than

teaching the concepts of programming. Moreover, the error messages generated by

sophisticated environments are often uninformative, sometimes misleading and often

require knowledge of advanced topics that novice students have yet to learn (Gómez-

Albarrán, 2005). To address these drawbacks, research has focused on developing

simple programming environments that students can easily use to write, compile,

execute and debug their codes.

Freund and Roberts (1996) developed a programming environment called

Thetis at Stanford University for students learning C in introductory computer science

courses. Thetis consists of a C interpreter and associated user interface that provides

students with simple and easily understood editing, debugging and visualisation

capabilities. Both students and instructors have indicated that Thetis provides a better

learning environment for students in CS1.

Lipman (2014) created CS1, a web-based programming environment for first-

year computer science students to write, run and debug C programs. Students do not

have to consider text editors or IDEs, Linux commands and compiling. Using CS1 has

yielded good results in improving students’ comprehension of CS1 concepts.

AnimPascal, BlueJ and DrJava are other programming environment developed for

Pascal and Java programming language (Gómez-Albarrán, 2005).

This issue of using suitable programming environments for CS1 students

continues to be debated in the literature. Therefore, the perceptions of lecturers and

students using programming environments adopted to learn CS1 using C at RUB will

be investigated in this study.

30

2.3.6 Teaching/learning methods and practices

Since most students struggle to learn to program in their first semester, it is

crucial to examine appropriate teaching/learning methods and practices that assist

students in overcoming the difficulties of learning to program. Several

teaching/learning methods and practices were reported in the review of the literature

that may benefit student in learning to program: pair/group programming, live coding,

game-based learning, puzzle-based learning, problem-based learning, pre-recorded

lecturers and approach, deployment, result and improvement (ADRI).

Pair programming is a method in which two programmers work side by side

on the same code at the same computer (Thomas, Ratcliffe, & Robertson, 2003). The

two programmers take the role of a driver and a reviewer. The driver creates a code

and takes control of the keyboard and mouse, while the reviewer reviews the code.

They switch roles after a period (Bevan, Werner, & McDowell, 2002; McDowell,

Werner, Bullock, & Fernald, 2002). Porter, Guzdial, McDowell, and Simon (2013),

Thomas et al. (2003), McDowell et al. (2002), Bevan et al. (2002) and Williams,

Wiebe, Yang, Ferzli, and Miller (2002) showed that students who used pair

programming produced quality programs and learnt the materials faster. Group

programming is similar to pair programming, but involves more than two students

working on programming assignments. The only study in Bhutan reported that

students learning programming in groups performed better in their examinations than

those coding alone or watching someone else coding (Tshering, Lhamo, Yu, &

Berglund, 2017). Also, in group programming, students are reported to be more

motivated and gain experience in developing portions of a program in a group

(Chamillard & Braun, 2000). Pair and group programming methods encourage

students to collaborate and discuss with their peers which leads to better learning. Also,

31

programs are completed in less time, are better designed and have fewer errors.

Students are also better motivated to stay on task, have more confidence in their

solutions and show a positive attitude towards collaboration (Mohorovičić & Strčić,

2011).

Live coding involves solving programming problems by lecturers writing code

from start to finish in the class during instruction periods (Paxton, 2002; Rubin, 2013).

This method and practice in CS1 instruction requires lecturers to narrate their thoughts

and actions while typing, compiling and testing code, and allowing students to

participate in the coding process. Live coding can provide excellent learning

opportunities for the students, such as code design and the debug process, which are

very useful skill in programming. Rubin (2013) and Paxton (2002) found live coding

to be an effective method in improving student learning outcomes over verbal

explanation of static code examples.

Game-based learning teaches students the concepts of programming through

understanding how a game works. Students reported that they had to spend more time

understanding how a game worked than understanding the programming concepts.

Once they understood, their motivation and enthusiasm increased (Mohorovičić &

Strčić, 2011). Kazimoglu, Kiernan, Bacon, and Mackinnon (2012) designed an

educational game called Program your robot, which enables students to practice

working with introductory programming constructs within an environment that

facilitates learning of introductory computer programming skills such as algorithm

building, debugging and simulation. Students enjoyed playing the game and reported

that this type of approach enhanced problem-solving abilities for those learning

introductory computer programming. Other studies have incorporated games in

32

introductory computer programming, which increased students’ motivation and

achieved significant learning gains (Hicks, 2010; Sung et al., 2010).

Puzzle-based learning aims to teach students critical thinking and problem-

solving techniques (Merrick, 2010). In puzzle-based learning, students reconstruct

program pieces by selecting the correct program piece and placing them in the correct

order (Mohorovičić & Strčić, 2011). Research has shown that puzzle-based learning

increases students’ interests in participating in programming courses (Merrick, 2010).

Problem-based learning engages students in problem-solving. Students can

work individually or in groups and solve a problem by applying the knowledge they

learnt earlier. Research has shown that problem-based learning has long-term benefits

for students. Students can retain knowledge for longer and achieved better results in

follow-up courses than did students who used traditional methods of learning.

Problem-based learning can also enhance students’ communication skills, creative

thinking, motivation and responsibility (Mohorovičić & Strčić, 2011).

Pre-recorded lectures are multimedia recordings of lectures made available

for students who are slow in absorbing information in class. Although pre-recorded

lectures made no significant difference in students’ final grades, students offered

positive feedback and stated that pre-recorded lectures helped them to better

understand some programming concepts.

ADRI is another approach of teaching and learning CS1 introduced by Malik

and Coldwell-Neilson (2017). ADRI stands for approach, deployment, result and

improvement. Four stages of ADRI were proposed by Malik and Coldwell-Neilson

(2017) to enhance students’ learning outcomes in CS1. The first stage (approach)

covers problem-solving skills such as pseudocodes and flowcharts. The second stage

(deployment) emphasises programming knowledge such as syntax and semantics of

33

the programming language. The third stage (result) deals with program input, the

process used to solve a problem statement and expected outputs, while the fourth stage

(improvement) provides more practice with different programming language

constructs. The teaching/learning materials were prepared based on the four stages of

the ADRI approach. An ADRI-based editor was also developed to support the ADRI

approach and assist students in the learning process. Their study reported that ADRI

was a better teaching/learning approach than the traditional approach, as ADRI

provides all the basic skills required to comprehend programming constructs. Further,

the final exam grades showed that the students performed better in the course offering

ADRI than students who finished the course offered with the traditional approach.

Discussion with lecturers at RUB determined they currently practise pair/group

programming and live coding when teaching CS1. Puzzle-based, game-based and

problem-based learning is in-built with laboratory programming exercises done in

pairs and programming assignments done in groups. Therefore, this research seeks to

examine the benefits of practising pair/group programming and the live-coding

method of teaching/learning in CS1 and further explore other teaching/learning

methods and practices that have benefited students in learning to program. This can be

gauged using surveys and interviews. Results are presented in Chapter 4 and 5.

2.3.7 Students’ ability in programming skills

An extensive study on the relationships between code tracing, explaining and

writing skills was conducted by a multi-institutional, multi-national group in computer

science education—the BRACElet Project (Building Research in Australasian

Computing Education) (Tan & Venables, 2010). Another BRACElet study by

Philpott, Robbins, and Whalley (2007) found that students who could only trace code

below 50 percent could not usually explain code. In the similar study, Sheard et al.

34

(2008) found that the ability of students to explain code correlated positively with their

ability to write code. Studies within the BRACElet Project suggest the possibility of

hierarchy in programming skills (Lister et al., 2010; Lister et al., 2009). First, the

student acquires the ability to trace code. The ability to explain code develops,

followed by the ability to write code when students become competent in both tracing

and explaining (Lister et al., 2009; Schoeman, Gelderblom, & Smith, 2012; Venables

et al., 2009). This hierarchy was further investigated in this study. However, according

to Schoeman et al. (2012), the skills do not necessarily develop in strict hierarchical

order. Instead, they may develop in parallel and reinforce each other.

Following the existing literature (Biró, Csenoch, Abari & Máth, 2016; Crews

& Ziegler, 1998; Hooshyar, Ahmad, Shamshirband, Yousefi & Horng, 2015; Lister,

Fidge & Teague, 2009; Venables, Tan & Lister, 2009) and based on researcher

experience teaching CS1, the researcher identified five essential skills that students are

expected to acquire when learning CS1. These skills are referred to in this study as

‘programming skills’ and they are algorithm design, translating, tracing, explaining

and writing. Algorithm design and translating were added as unique elements to the

study and were not mentioned in the literature as a whole. These additional elements

were hypothesised based on the researcher’s personal experience teaching CS1 at

RUB. It’s good to explore the relationship amongst the programming skills and also

examine if there exist any hierarchy in the programming skills in Bhutanese

environment. These programming skills are explained, with examples, in Section 1.3.

2.3.8 Learning approaches

There are number of ways that students approach their studies (Buckley, Pitt,

Norton, & Owens, 2010; Gadelrab, 2011; Schmeck, Geisler‐Brenstein, & Cercy,

1991). Higher education research has identified students’ approaches to learning as

35

having a significant impact on their performance (Biggs, Kember, & Leung, 2001; de

Raadt et al., 2005; Tait & Entwistle, 1996; Trigwell & Prosser, 1991). Thus, to achieve

student success, educators need to understand student learning, in particular, how

students set about their learning tasks, their intentions and strategies, and how these

affect the quality of their performance (Byrne, Flood, & Willis, 2002, p. 19).

According to Biggs (1987), learning approach may be classified as either deep

or surface. Learning to program is also affected by how students approach their

learning: either through a deep and surface approach. The deep approach of learning

seeks to understand a topic, while the surface approach refers to memorising a topic

and reproducing materials. In learning programming, a surface approach can be used

to memorise the syntax of the programming language, but a deep approach is essential

to understand the logic of the program construction (de Raadt et al., 2005).

de Raadt et al. (2005) used Biggs’s R-SPQ-2F to measure students’ learning

approaches to tasks in a programming course. They reported that the correlation

between the elements of the Biggs questionnaire and students’ final marks in an

introductory computer programming course was stronger than cognitive task and prior

experience. As per the recommendation of de Raadt et al. (2005) to include R-SPQ-2F

to explain students’ success in programming, the researcher has chosen R-SPQ-2F to

examine students’ approaches to learning in programming. However, the researcher

acknowledges there are other methods of examining student approaches to learning.

It would be interesting to investigate how Bhutanese students approach their

learning in CS1 and also to explore the relationship between their learning approach

and their performance in CS1. Accordingly, the results can enable lectures and students

to make informed practices in the students’ approach to learning in CS1 at RUB.

36

2.4 Measure of Student Success in CS1

This section discuss the extant studies on measuring students’ performance in

CS1. Previous research has used final course and mid-term grades to measure students’

success in CS1 (Bergin & Reilly, 2005a; Malik & Coldwell-Neilson, 2017;

Wiedenbeck et al., 2004; Wilson & Shrock, 2001). Based on the knowledge gained

from the extant studies, this study used PST, FSE and OS scores to measure student

performance in CS1.

The PST was designed and devised by the researcher to explore the

programming skills identified in this study (see Section 3.2.1 and Appendix A).

Students’ PST responses were evaluated and classified according to the structure of

the observed learning outcomes (SOLO) taxonomy. The SOLO taxonomy was adapted

to determine in-depth information about students’ level of understanding. Section 2.4.1

will present a detailed description of the SOLO taxonomy.

2.4.1 SOLO taxonomy

The SOLO taxonomy proposed by Biggs and Collis (1982) is an educational

taxonomy used to evaluate the learning outcomes of the learner. It can be adopted

across different disciplines (Jimoyiannis, 2013). SOLO is a hierarchical structure

comprising five major levels (Biggs & Collis, 1982):

1. Prestructural [P]: This is the lowest level in the SOLO category. The

student response in this level demonstrates significant misconception or the

response is totally wrong.

2. Unistructural [U]: The student response in this level demonstrates a

correct grasp of only some part of the task.

37

3. Multistructural [M]: The student response in this level demonstrates an

understanding of most of the parts of the tasks but fails to integrate the parts

as a whole.

4. Relational [R]: The student response in this level demonstrates an

understanding of the task as a single coherent whole.

5. Extended abstract [EA]: This is the highest level in the SOLO category.

The student response in this level demonstrates an understanding beyond

the scope of the task, thereby creating a new situation or knowledge.

The existing literature shows how SOLO has been used reliably to classify

students’ response to programming skills tasks, such as reading and writing

(Jimoyiannis, 2013; Lister et al., 2010; Sheard et al., 2008; Shi, Cui, Zhang, & Sun,

2017; Shuhidan, Hamilton, & D'Souza, 2009). Thus, SOLO is a reliable taxonomy to

evaluate students’ response to the programming skills tasks listed in this study.

The SOLO categories of Clear et al. (2008) shown in Table 2.1 were adapted

in this study to evaluate students’ ability to explain a given piece of code.

Table 2.1

SOLO Categories for Explaining Questions

SOLO Category Description

Relational [R] Provides a summary of what the code does in

terms of the code’s purpose (The ‘forest’)

Relational error [RE] Provides a summary of what the code does in

terms of the code’s purpose, but with some minor

error

Multistructural [M] A line-by-line description is provided of all the

code (the individual ‘trees’)

Multistructural omission

[MO]

A line-by-line description is provided for most of

the code, but with some detail omitted

38

SOLO Category Description

Multistructural error [ME] A line-by-line description is provided for most of

the code, but with some minor errors

Unistructural [U] Provides a description for one portion of the code

Prestructural [P] Substantially lacks knowledge of programming

constructs or is unrelated to the question

Source: (Clear et al., 2008)

 In Clear et al. (2008), some students’ responses to ‘explain in plain English

what the given piece of code does’ at their end of first programming paper examination

were analysed according to the SOLO taxonomy (shown in Table 2.1). How students’

responses to the ‘explain in plain English’ question (see Figure 2.6 below) is

demonstrated here.

Figure 2.6. ‘Explain in plain English’ question analysed in Clear et al. (2008).

Students who provided a summary of the purpose of the piece of code were

assigned R (relational). Those who provided a summary with some minor errors were

assigned RE (relational error), while those who provided a line-by-line description of

all the code were assigned M (multistructural). Students who provided a line-by-line

description for most of the code but with some details omitted were assigned MO

(multistructural omission), while those who provided a line-by-line description for

most of the code but with some minor errors were assigned ME (multistructural error).

Finally, those who provided only a description for one portion of the code were

assigned U (unistructural) and those who provided a response unrelated to the question

39

were assigned P (prestructural). The sample of students’ responses and SOLO

categories were:

 This method returns the sum of the numbers in the array [R].

 Trying to add all the numbers stored in the arrayList that is less than the

length of the arrayList. Go through each number from index 0 to the index

just before, then end of the arrayList [RE].

 It sets the double num to zero and executes the loop as long as iLoop is less

than the length of aNumbers. If it does execute the loop, it adds the value

of num to aNumbers and re-executes the loop by incrementing. Once the

condition is no longer met, it returns num [M].

 The method loops through the aNumbers and adds the aNumber to num

and gives the output of that equation num + = aNumber[iLoop] [MO].

 The method increments the loop and returns a number of type double as

long as the loop is less than the length of aNumbers [U].

The SOLO descriptions for the explaining questions adapted in this study are

further explained in Chapter 3. Similarly, the SOLO categories for code writing tasks

in this study were based on the SOLO categories proposed by Shuhidan et al. (2009);

Whalley, Clear, Robbins, and Thompson (2011) and Lister et al. (2010).

According to Shuhidan et al. (2009) (see Table 2.2), each SOLO level

represents increasing cognitive load. The lowest level, prestructural, represent students

whose responses contained several pieces of unconnected information, but who were

unable to connect as a whole. As the level increases, students’ responses make more

sense and make the necessary connections. Further, Shuhidan et al. (2009) found that

it is important to analyse each component part of the solution and determine if students

can link all components to fulfil the relational level. For example, the list of

40

components to satisfy for the writing question (i.e., write code to calculate the highest

and lowest integer, from a set of integers passed via the commandline) would be:

 ability to create a loop

 ability to extract or convert the argument correctly

 ability to find the highest value

 ability to find the lowest value

 ability to code correctly.

This approach of listing components of the solution was used in this study and

is explained in detail in Chapter 3.

41

Table 2.2

SOLO Categories for Code Writing Solutions

SOLO Category Description

Extended abstract Novices able to make connections beyond the scope

of question and able to transfer knowledge a new

situation

Relational Fully correct or almost right. Novices appreciate

significance in relation to the whole program and can

generalise outside of program

Multistructural Numbers of connections made. Novices can create

code for loops and comparisons, but with a few minor

slips, leading to failure to connect the whole idea.

They may fail to convert arguments, use correct

operators or interpret general explanation

Unistructural Simple connections are made. Novices can compare

or write loops but fail to implement or derive the

connections of loops in relation to manipulation of

arrays or usage of further structures

Prestructural There are bits of unconnected information. Novices

know something, but the overall argument makes no

sense

No attempt or totally wrong The answer is blank or totally wrong

Source: (Shuhidan et al., 2009).

According to Whalley et al. (2011) (see

Table 2.3), SOLO levels are placed into two phases, suggesting that learning

passes through various stages from a more quantitative phase (surface) to a more

qualitative phase (deep, connecting and relating ideas) as learning tasks and their

complexity increase.

42

Table 2.3

SOLO Categories for Code Writing Solutions

Phase SOLO Category Description

Q
u
al

it
at

iv
e

Extended abstract—

extending [EA]

Used constructs and concepts beyond those required in

the exercise to provide an improved solution

Relational—

encompassing [R]

Provided a valid well-structured program that removes

all redundancy and has a clear logical structure.

Specifications were integrated to form a logical whole

Q
u
an

ti
ta

ti
v
e

Multistructural—

refinement [M]

Represented a translation close to a direct translation.

Code may have been reordered to make a more

integrated and/or valid solution

Unistructural—

direct translation

[U]

Represented a direct translation of the specifications.

Code will be in the sequence of the specifications

Prestructural [P] Substantially lacked knowledge of programming

constructs or answer was unrelated to the question

Source: Whalley et al. (2011).

The SOLO descriptions of Shuhidan et al. (2009) and Whalley et al. (2011)

were used as a guide to develop the SOLO descriptions that fit this study in classifying

student responses to writing questions. Chapter 3 presents the details of how the SOLO

descriptions were adapted based on the literature.

2.5 Theoretical Framework

The theoretical framework that underpins this study was Biggs 3P model of

learning (Biggs, 1987). This model was chosen, as it fitted well with a study taking

place in a university that examines factors that might affect students’ performance in

CS1. This study focused on the factors governing input and learning process factors,

43

and examined the relationships among those factors to improve students’ performance

in CS1.

The theoretical framework shown in Figure 2.7 was built based on the

theoretical framework of the Biggs 3P model of learning. The specific factors

identified for this study are based on the existing literature, the researcher’s experience

and discussion with the lecturers of RUB who are responsible for students’

performance in CS1 at RUB.

Figure 2.7. Theoretical framework

Input factors are those factors that students possess before entering the

learning situation and commencing the study of CS1. Input factors identified in this

study are prior computing experience, Y12 performance in mathematics, physics and

chemistry, and gender. Input factors can also include institutional factors already in

place, such as teaching methods and practices, programming paradigm, programming

environment and language used in CS1.

Learning process factors are those factors that describe the strategies and

activities while learning is taking place. Learning process factors examined in this

44

study are students’ approaches to learning, ability in programming skills and learning

methods and practices.

Student performance is the outcome of learning. Student performance in this

study measures the achievement attained after a semester course in CS1. This

achievement was measured in terms of their score in the FSE, PST and OS

performance in CS1.

This study hypothesised that there is a relationships among input and learning

process factors and student performance, as well as among the factors within these

categories.

2.6 Summary

In this chapter, the review of the literature relating to the factors that affect

student performance in CS1 was conducted. The theoretical framework for this study

was presented, along with the review of each of the elements listed in the conceptual

framework. The review of the literature outlined the few studies that have examined

the factors that affect students’ performance in CS1. However, the parameters used in

each study were different. Thus, this study will examine the factors that affect students’

performance in CS1 for students enrolled in the computer science and engineering

program at the degree and diploma level at RUB in the Bhutanese educational context.

The use of SOLO taxonomy to analyse student responses to a question was also

reviewed.

Chapter 3 will present a detailed description of the research methodologies

used in this study. This includes preparation for the study, description of the data

collection methods and overview of the data analysis.

45

Chapter 3: Methodology

3.1 Introduction

Chapter 2 provided a review of the literature on the factors that affect students’

performance in CS1 and indicated a conceptual framework upon which studies of

factors have been based. This chapter presents a detailed description of the

methodology used in this study. It begins by describing the preparations carried out

prior to data collection and recruitment of research participants. It explains why a

mixed methods design approach was selected for this study, revisits the research

questions and specifies unique variables of each research question. Data collection

methods employed to gather data related to these variables are discussed next. It then

explains the data analysis measures used to analyse quantitative and qualitative data.

3.2 Preparation for Data Collection

Prior to data collection, preparations were made considering the key areas of

this research. This section will describe these preparations.

3.2.1 Devise programming skills test questions

The programming skills test (PST) questions were designed by the researcher

by examining the course syllabus and consulting with the lecturers from respective

colleges. The questions were devised to cover the five categories of programming

skills based on researcher experience and the earlier work of Lopez, Whalley, Robbins,

and Lister (2008) and Lister et al. (2009). Two questions addressed each programming

skill: algorithm design, translating, tracing, explaining and writing. There are 10

questions in total in the PST. Appendix A provides a copy of the PST instrument used

for this study.

46

3.2.2 Design and select survey questionnaires

In consultation with supervisors, the student survey questionnaire with open-

ended questions was specifically designed for this study to address the variables in

each research question. Similarly, the lecturer survey questionnaire was also designed

specifically for this study to address similar variables. Appendices G and H include a

copy of the student and lecturer survey questionnaires respectively.

To determine students’ learning approaches in CS1, the Biggs’s R-SPQ-2F,

which consists of 20 closed-response questions scored on a 5-point Likert scale (see

Appendix J), was selected to measure students’ learning approaches (Biggs et al.,

2001).

The student and lecturer survey questionnaires, consent forms (see Appendix

D) and information letters (see Appendix E) were printed, packed and carried to

Bhutan in February 2017.

3.3 Research Participants

Research participants for this study were students enrolled in programmes in

which CS1 is a compulsory module in the first semester at three constituent colleges

of RUB. These three constituent colleges are Sherubtse College (SC), Jigme Namgyel

Engineering College (JNEC) and College of Science and Technology (CST), which

are geographically spread across the country and offer a variety of undergraduate

programs.

SC offers programmes in different areas such as geography, economics,

history, Dzongkha, population and development studies, political science, sociology,

environmental science, media studies, English, life sciences, mathematics, chemistry,

physics and computer science. Students enrolled in computer science were participants

in this study.

47

JNEC offers programmes at both bachelor and diploma level, including power

engineering, civil engineering, electrical engineering, mechanical engineering,

computer hardware and networking, electronics and communication engineering,

surveying, and materials and procurement management. Students enrolled in the

diploma programme in computer hardware and networking were participants in this

study.

CST offers programmes in civil engineering, electrical engineering, electronics

and communications engineering, architecture and information technology. Students

enrolled in all these programme were participants in this study.

The institution that provided the highest number of student participants was

from the CST. This is because CST offers five programs in which CS1 is studied in

the first semester, while JNEC and SC offer only one program.

The PST data were collected in November–December 2016 (i.e., end of the

first semester). Other data, like survey and interviews, were collected in February–

March 2017 (i.e., beginning of second semester). This study aimed to obtain 100

percent student participants, so no sampling technique was used.

The data were collected and entered into SPSS. The final sample consisted of

292 students in a PST of 342 students enrolled in July 2016, and 277 students in a

survey of 309 students (some students failed in the first semester). Table 3.1 shows the

number of students enrolled in the program and who participated in a PST. Table 3.2

shows the number of students (program-wise) in the second semester (total column)

and those who participated in the survey.

48

Table 3.1

Number of Students Who Participated in a PST From Each Program

Program Enrolled Participated

B.Sc. Computer Science 27 26

Diploma in Computer Hardware

and Networking

43 43

Bachelor of Architecture 19 11

B.Eng. in Information Technology 38 33

B.Eng. in Civil 116 98

B.Eng. in Electrical 68 54

B.Eng. in Electronics and

Communication

31 27

Total 342 292

Table 3.2

Number of Students Who Participated in a Survey From Each Program

Programme Total Participated

B.Sc. Computer Science 27 27

Diploma in Computer Hardware

and Networking

41 37

Bachelor of Architecture 19 18

B.Eng. in Information Technology 31 30

B.Eng. in Civil 109 83

B.Eng. in Electrical 51 53

B.Eng. in Electronics and

Communication

31 29

Total 309 277

Eight lecturers who taught CS1 in 2016 and the previous year participated in a

survey and an interview, representing 100 percent lecturer participation.

49

3.4 Research Methods

As mentioned in Section 3.6, this study used various data collection methods

such as a test, survey questionnaire with closed and open-ended questions, and

individual and group interviews. These data collection methods involved both

quantitative and qualitative data, but mostly quantitative. Creswell (2014) defined

mixed methods design as the methods that ‘involves combining or integration of

qualitative and quantitative research and data in the research study’. Creswell (2014)

stated the existence of many designs in the mixed methods field, such as convergent

parallel mixed methods, explanatory sequential mixed methods and exploratory

sequential mixed methods.

The rationale for choosing a mixed method was to best answer the research

questions listed in Section 3.5. The multiple quantitative and qualitative data collection

methods were used in this study to answer the research questions. The quantitative

data collected from the PST were used to measure students’ success across five

programming skills. The quantitative and qualitative data collected from the

student/lecturer survey questionnaire (which includes both closed and open-ended

responses) was used to answer the research questions in regard to students’ prior

computing experience, students’ and lecturers’ experience/perceptions of first

programming language, programming paradigm, programming environment and

teaching/learning methods and practices, students’ Y12 performance in mathematics,

physics and chemistry, and students’ learning approach. The qualitative data from the

semi-structured student/lecturer interviews and student group interviews were

collected using the same variables to provide a deeper understanding of the

quantitative findings and to triangulate the results (Creswell, 2013). Triangulation is

50

described as the use of two or more methods of data collection in the study of some

aspect of human behaviour (Cohen, 2017).

The quantitative data were used to generalise the statistical tests to a larger

sample and the qualitative data were used to achieve an in-depth analysis. The PST

and quantitative and qualitative data from the closed and open-ended questions from

the survey, and the qualitative data from interviews were collected independently at

the same time. The qualitative data obtained from the quantitative data in the survey

were analysed together, interpreted and reported under the quantitative survey results

section in Chapter 4 and 5. For example, the survey question included: ‘In your

experience and opinion, which programming language should you learn in CS1?’

Students selected one programming language from the list given (quantitative

response). The next question was, ‘What made you choose that language?’ (qualitative

response). The open-ended questions (i.e., ‘Do you have any suggestions on how we

can improve teaching and learning of CS1?’) were analysed separately by classifying

the responses based on the number of occurrences. These are reported under the

qualitative results section in Chapter 4 and 5. The qualitative data from interviews

were analysed separately and reported in the qualitative results section in Chapter 4

and 5. The quantitative and qualitative results were compared and contrasted in

Chapters 4, 5 and 6. The qualitative results were used to confirm or disconfirm the

quantitative findings.

The mixed methods design used in this study was convergent parallel mixed

methods design (Creswell, 2014). According to Creswell (2014), convergent parallel

mixed methods design involves both quantitative and qualitative data collected

independently and in parallel to each other. They are analysed separately and

converged to compare and contrast the findings.

51

3.5 Research Questions

As mentioned in Chapter 1, this study aims to address seven research questions:

1. What are the students’ prior computing experience and does this affect

performance in CS1?

2. What are the students’ and lecturers’ experience/perceptions of first

programming language, programming paradigm, programming

environment and teaching/learning methods and practices?

3. What is the association, if any, between students’ performance in CS1 and

students’ Y12 performance in mathematics, physics and chemistry?

4. What is the association, if any, between students’ performance in CS1 and

students’ learning approach?

5. What is the association, if any, among the programming skills variables?

6. What is the association, if any, between students’ performance in CS1 and

students’ ability in programming skills?

7. Is there a hierarchy among students’ programming skills in terms of their

contribution to student performance in CS1?

The key variables in these research questions were students’ performance,

students’ learning approaches, students’ programming skills, students’ prior

computing experience, students’ Y12 performance in mathematics, physics and

chemistry modules, and students’ and lecturers’ experience/perceptions of first

programming language, programming paradigm, programming environment and

teaching/ learning methods and practices. To obtain a significant amount of data

relating to each of these specific variables, this study employed a number of data

collection methods, which will be discussed in Section 3.6.

52

3.6 Data Collection Methods

This section will discuss the methods of data collection used in this study: PST,

survey questionnaires, individual and group interviews. The survey was administered

by the researcher after explaining the information sheets and obtaining consent to

participants. Verbal consent was obtained for individual interviews and group

interviews.

3.6.1 Programming skills test

As mentioned in Chapter 1 and Section 3.3, due to the geographic location of

the three participating colleges, the researcher personally was not able to administer

all methods of data collection in the given time frame. Lecturers who were teaching

CS1 were invited to assist the researcher in administering the PST after students had

completed one semester of instruction in CS1. The information letter was sent via

email to lecturers and the lecturers who volunteered provided their consent via email.

The researcher then emailed consent forms, information letters and PST questions

along with instructions on how to administer the PST.

The lecturers in their respective colleges printed and photocopied PST

questions, consent forms and information letters to be given to students during

administration of PST. This enabled administration of the PST in the same time frame

in all three participating colleges. The researcher requested that all volunteer lecturers

keep PST answer scripts in a safe place, which was collected after two months (i.e.,

after winter break) when the researcher visited the colleges for survey and interviews.

Subsequently, at Curtin University, the SOLO levels were initially classified

by marking 30 sample PST answer scripts that were chosen randomly. The SOLO

levels were gradually refined as necessary. The raw score of the equivalent SOLO

levels were used as data for analysis. The details of how the SOLO levels were

53

classified and applied to evaluate students’ responses to PST questions are shown in

Section 3.7.

3.6.2 Survey questionnaire

The student survey questionnaire was used to collect data on students’

experience in programming skills, prior computing experience, Y12 performance in

mathematics, physics and chemistry modules and experience/perceptions of first

programming language, programming paradigm, programming environment and

learning methods and practices. The students’ overall semester (OS) score in CS1 was

also recorded in the survey. The lecturer survey questionnaire was used to collect data

on the same variables.

To collect data to determine student’s learning approaches in CS1, the Biggs

R-SPQ-2F, which consists of 20 closed-response questions scored on a 5-point Likert

scale (see Appendix J), was used to measure students’ learning approaches (Biggs et

al., 2001). For example, the questions include:

Question 4: I work hard at my studies because I find the material interesting.

Question 7: I find most new topics interesting and often spend extra time trying to

obtain more information about them.

Students’ responses to questions are ‘This item is… ‘:

 A (scoring 1 point)—never or only rarely true of me

 B (scoring 2 points)—sometimes true of me

 C (scoring 3 points)—true of me about half the time

 D (scoring 4 points)—frequently true of me

 F (scoring 5 points)—always or almost always true of me.

54

A score for the deep approach was constructed by summing the deep motive

and deep strategy subscales, and a score for the surface approach was constructed by

summing the surface motive and surface strategy.

These survey questionnaires were administered in English by the researcher to

volunteer students and lecturers of the three participating colleges. Table 3.3 provides

an overview of the student survey instrument.

Table 3.3

Overview of Student Survey Questionnaire

Variables Item No. Data Type

Prior computing experience 1–3 Quantitative

Y12 performance in mathematics, physics and

chemistry modules

4 Quantitative

OS score in CS1 (student performance) 5 Quantitative

Experience/perceptions of first programming

language, programming paradigm, programming

environment and student learning methods/practices

6–11 Quantitative+

Qualitative

Experience on programming skills 12–13 Quantitative

Open question on how we can improve teaching and

learning of CS1

14 Qualitative

Learning approaches 15 (1–20) Quantitative

3.6.3 Individual interviews

Student participants for individual interviews were selected from each program

based on their FSE score. As far as possible, one student of the high performers, one

of low performers and one of average performers were selected, ensuring the inclusion

of at least one female student for gender equality. In some cases, students identified

did not want to participate, which was respected. Instead, students from the same

program were invited to volunteer. Verbal consent was then obtained from both

55

students and lecturers. A semi-structured face-to-face interview was conducted with

the students and lecturers to collect data on the same variables (mentioned above in

the survey questionnaire). This was done to support the quantitative data and explore

key areas for this study. Results of individual interviews are presented in Chapter 4

and 5.

3.6.4 Group interviews

Group interviews were conducted for each program. Interviews were semi-

structured as an individual interview discussed above and directs a key areas for the

group to discuss. The key advantage of group interviews is to bring together a group

of students enrolled in the same program with varied opinions to generate a wider

range of responses than in individual interviews (Cohen, 2017). The results of group

interviews are presented in Chapter 4.

3.7 Classification of SOLO Levels

This sections describes how students’ PST responses were classified based on

SOLO levels. When classifying according to the SOLO taxonomy, students’ solutions

were examined as a coherent whole (Shuhidan et al., 2009). Individual components

were specified for each question under algorithm design, translating and writing skills

(Shuhidan et al., 2009). These components are the building blocks that students must

complete in response to a question. Those individual components were further

classified with symbols: easier (E), harder (H), specified (S) and unspecified (U). The

symbols E and H on each component were determined after marking 30 sample answer

scripts based on the responses of students in PST for that particular question. For

instance, if more than 50 percent of the sample students’ responses missed to typecast

the result of an integer division, this component of the question was assigned H,

otherwise it was assigned E. Components with the symbol E were basic, while

56

components with the symbol H were harder and required more time and consideration

than those marked E. This dichotomous approach was taken to avoid having to classify

these extra components on a scale of difficulty. It was simplest to consider them as

either easier or harder. The components with the symbol S were specified/given in the

question and the components with the symbol U were not given in the question but

were nonetheless essential to achieve a classification at the relational level. For the

student to achieve relational level of understanding to a question, the response to that

question had to demonstrate an ability to complete all components of the questions.

 Based on the specification and the required complexity of the response to a

question, the SOLO levels for each of the programming skills are different. For

instance, algorithm design and explaining has five SOLO levels. This is because the

student needs to spend some time in completing these tasks as well as the amount of

tasks that needs to be completed is little more than translating and tracing skills. While

in translating and tracing, it has three SOLO levels as the amount of effort and

cognitive skills required here is not much compared to other programming skills since

in translating, the algorithm and flowchart is already given and in tracing, the piece of

program is already given as well. Writing has the highest levels of SOLO. This is

because, students have to spent time in building the logic and remember the

programming syntax to write the complete executable program. Thus the six SOLO

levels in writing will determine how much students are able to complete in the writing

tasks.

The following sections present the specification of individual components,

description of SOLO levels and demonstration of how students’ responses were

evaluated.

57

a) Algorithm design: Algorithm design question 2 in the PST was to ‘Find the

smallest number among the three numbers entered by the user and display the

result’. A suitable algorithm solution may look like this:

Step 1: Start

Step 2: Declare variables a, b and c.

Step 3: Read a, b and c.

Step 4: If a < b

 If a < c

 Display a is the smallest number.

 Else

 Display c is the smallest number.

 Else

 If b < c

 Display b is the smallest number.

 Else

 Display c is the smallest number.

Step 5: Stop.

58

The following components were identified in students’ response to algorithm

questions:

a) ability to declare variables (E–U)

b) ability to externally supply inputs (E–S)

c) ability to show the computation (E–S for Q1) and (H–S for Q2)

d) ability to show what output is produced (E–S)

e) ability to write clear and unambiguous instructions (E–U)

A clear and unambiguous instruction will be to use the words declare, read/get,

display/print in the instructions.

f) ability to terminate the algorithm in a finite number of steps (E–U)

g) ability to write an algorithm in correct logical order (H–U).

A simple example is: Step 3: Read a, b and c instruction should come only after

Step 2: Declare variables a, b and c. Overall, the algorithm should complete the

individual components listed in this order from a–f.

These individual components are shown in Figure 3.1.

Figure 3.1. Individual components of an algorithm.

59

The suitable flowchart solution to the algorithm design Question 2 may look

like in Figure 3.2.

Figure 3.2. Suitable flowchart solution for algorithm design question 2.

Ten components were identified in students’ responses to flowchart questions:

1. ability to declare variables (E–U)

2. ability to externally supply inputs (E–S)

3. ability to show the computation (E–S for Q1) and (H–S for Q2)

4. ability to show what output is produced (E–S)

5. ability to write clear and unambiguous instructions (E–U)

6. as mentioned earlier, a clear and unambiguous instruction will be to use the

words declare, read/get, display/print in the instructions

7. ability to terminate the flowchart in a finite number of steps (E–U)

8. ability to draw a flowchart in correct logical order (H–U)

60

9. ability to draw a flowchart with correct symbols (H–U)

Students were expected to draw flowchart with the correct symbols as

shown below:

 Start and end of a process

 Input/output symbol

 Process symbol

 Decision symbol

 Directional flow of logic

These individual components are shown in Figure 3.3.

Figure 3.3. Individual components of flowchart.

After identifying the components for algorithm design (algorithm and

flowchart) questions, the SOLO classification for algorithm design questions were

established, as shown in Table 3.4.

61

Table 3.4

SOLO Levels for Algorithm Design Questions

SOLO Level Indicator Raw Score

Relational [R] Able to complete all components to form a

coherent whole

5

Relational error [RE] Able to complete all components but has some

minor errors or omissions

4

Multistructural [M] Able to complete most components. All H–S

and E–S components complete and valid

3

Multistructural error

[ME]

Able to complete most components but has

some minor errors or omissions

2

Unistructural [U] Able to complete some components only 1

Prestructural [P] There are pieces that make no sense or the

answer is totally wrong

0

No attempt [N] The answer is blank 999

Figure 3.4 shows the R (relational) and RE (relational error) SOLO levels and

their equivalent scores for the response to the algorithm design Question 2 of the PST.

The student response was classified as R, as the response satisfied all the individual

components listed above for that question. The student response was classified as RE,

as the student omitted the instruction to declare the variables. Students’ ability to

declare the variables was assigned as E and U; this is the only minor omission as shown

in Figure 3.4.

62

Figure 3.4. R and RE SOLO levels and scores for algorithm design question 2 of the

PST.

Figure 3.5 shows the M (multistructural) and ME (multistructural error) SOLO

levels and their equivalent scores for the response to the algorithm design Question 2

of the PST. The student response was classified as M, as it satisfied most of the

individual components, with all of the H–S and E–S components complete and valid.

The student response was classified as ME, as it satisfied most of the individual

components, with all H–S and E–S components complete but with errors.

Figure 3.5. M and ME SOLO levels and scores for algorithm design question 2 of the

PST.

Figure 3.6 shows the U (unistructural) and P (prestructural) SOLO levels and

their equivalent scores for the response to the algorithm design Question 2 of the PST.

The student response was classified as U, as it satisfied some of the individual

components only. The response was classified as P, as it did not satisfy any of the

63

individual components. Moreover, the response is totally wrong. The P response

shows that the student did not understand the question at all.

Figure 3.6. U and P SOLO levels and scores for algorithm design question 2 of the

PST.

b) Translating: Translating question 1 in the PST was to translate the following

algorithm into C programming codes.

Start

Declare integer variables a, b, BIG,

SMALL.

Read a and b

If a is less than b, then

 BIG = b

 SMALL = a

Else

 BIG = a

 SMALL = b

Write BIG, SMALL

End

64

A suitable translated solution may appear as that shown in Figure 3.7.

Figure 3.7. Suitable solution for translating question 1 of the PST.

Six components were identified in students’ response to translating question 1:

1. ability to declare variables of correct data types (E–S)

2. ability to read variables from the console (E–S)

3. ability to use if/else statement with correct computation (E–S)

4. ability to show the desired output (E–S)

5. ability to translate into well-structured program in clear logical order (E–

U)

Student was expected to translate into well-structured C programming

language in a clear logical order, as given in the algorithm design. The correct

syntaxes are preferred but not mandatory. However, the translated program

should be closer to executable program.

These individual components are shown in Figure 3.8.

65

Figure 3.8. Individual components of translating question 1 of the PST.

The SOLO levels shown in Table 3.5, based on the components, were

identified on a students’ response to translating question 1 of the PST.

Table 3.5

SOLO Levels for Translating Questions

SOLO level Indicator Raw Score

Relational [R] Able to complete all components to form a

coherent whole

3

Multistructural [M] Able to complete most components. All H–S

and E–S components complete and valid

2

Unistructural [U] Able to complete some components only 1

Prestructural [P] There are pieces that make no sense or the

answer is totally wrong

0

No attempt [N] The answer is blank 999

Student responses to the translating question 1 of the PST were categorised, as

shown in Figures 3.9 and 3.10, by examining the individual components and using

SOLO descriptions (see Table 3.5).

Figure 3.9 shows the student responses that were assigned R and M SOLO

levels. The student response was assigned R, as it fulfils all individual components

66

listed above and the response was assigned M, as the student was able to complete

most of the components, with H–S and E–S components complete. In Figure 3.9, the

student has written extra print statements at the end of the program, which is not

necessary, as the print statements to print the desired outputs are written within the if-

else statement. Thus, this kind of response was classified as M because the student was

not able to translate well-structured programs in clear logical order.

Figure 3.9. R and M SOLO levels and scores for translating question 1 of the PST.

Figure 3.10 shows the student responses that were assigned U and P SOLO

levels. The student response was assigned U, as the response fulfilled some individual

components only and the response was assigned P, as the student was not able to

translate the program correctly. For instance, the algorithm stated the variables a and

b to be of integer datatype (int a, b;) but the student declared them as character

datatypes (char a,b;), which shows that the student has not understood the algorithm

clearly.

67

Figure 3.10. U and P SOLO levels and scores for translating question 1 of the PST.

c) Tracing: Tracing question 2 in the PST was to manually trace the following piece

of code and answer, parts a) and b).

Write the value of x when i = 1

Write the value of x at line 12.

The answers are: a) 0 and b) 3.

The SOLO levels for tracing questions are shown in Table 3.6.

68

Table 3.6

SOLO Levels for Tracing Questions

SOLO level Indicator
Raw

Score

Relational [R] Able to provide correct solution to parts a) and b) 3

Multistructural [M] Able to provide solution to parts a) and b) with

minor errors or omissions

2

Unistructural [U] Only one part of the two completed correctly 1

Prestructural [P] There are pieces that makes no sense or the answer

is totally wrong

0

No attempt [N] The answer is blank 999

Figure 3.11 shows how student responses to tracing question 2 of the PST were

categorised based on SOLO descriptions listed in Table 3.6.

The response in Figure 3.11 was assigned R, as the student was able to show

correct output to parts a and b, while the response was assigned M, as the student was

able to show the correct output only for part a; the output in part b was incomplete.

The value of x is updated from 0, 1 and 3 and the final answer printed is 3.

Figure 3.11. R and M SOLO levels and scores for tracing question 2 of the PST.

The response in Figure 3.12 was assigned U, as the student was able to show

correct output for only one part of the question. The response was assigned P, as the

student was not able to show the correct output for both the parts.

69

Figure 3.12. U and P SOLO levels and scores for tracing question 2 of the PST.

d) Explaining: Explaining question 2 of the PST was to explain in plain English the

purpose of the following piece of code:

The suitable solution may look like this:

The code counts the number of even numbers in a given array.

Table 3.7 shows the SOLO levels for the explaining questions.

70

Table 3.7

SOLO Levels for Explaining Questions

SOLO level Indicator Raw Score

Relational [R] Able to provide a summary of what the code

does in terms of its purpose

5

Relational error [RE] Able to provide a summary of what the code

does in terms of its purpose but with some

minor errors or omissions

4

Multistructural [M] Able to provide a line-by-line description of all

the code

3

Multistructural error

[ME]

Able to provide a line-by-line description of

most of the code but with some minor errors or

omissions

2

Unistructural [U] Able to provide description of one portion of

the code

1

Prestructural [P] There are pieces that make no sense or the

answer is totally wrong

0

No attempt [N] The answer is blank 999

Figure 3.13 shows how student responses to the explaining question 2 of the

PST were categorised as R and RE based on the SOLO descriptions listed in Table 3.7.

The response in Figure 3.13 was assigned R, as the student was able to provide a

summary of what the given piece of code did, while the response was assigned RE, as

the student was able to provide an R response but also provided extra information not

given in the code. For example, ‘The purpose of the code is to print the even elements

in the array’ was not given in the code. The second half of the response, ‘to count how

many even elements there are’, is an R response. However, as the student was unable

to provide a summary of the purpose of the code, it was assigned RE.

71

Figure 3.13. R and RE SOLO levels and scores for explaining question 2 of the PST.

Figure 3.14 shows how the student responses to the explaining question 2 of

the PST were categorised as M and ME. The student response was assigned M, as the

student provided a line-by-line description of all the code instead of a summary. The

response was assigned ME, as the student was able to provide a line-by-line description

of most of the code, but with some minor errors or omissions.

Figure 3.14. M and ME SOLO levels and scores for explaining question 2 of the PST.

72

Figure 3.15 shows how student responses to the explaining question 2 of the

PST were categorised as U and P. The student response was assigned U, as the student

was able to provide a description of only one portion of the code. The response was

assigned P, as the student provided pieces of information that were not correct.

Figure 3.15. U and P SOLO levels and scores for explaining Question 2 in a PST.

e) Writing: Writing question 2 in the PST was to ‘Write a program in C that

calculates the sum of every third integer, beginning with i = 2’ (i.e., calculate the

sum of 2 + 5 + 8 + 11 + …) for all values of i that are less than 30. A suitable

solution may be:

73

Seven components were identified to students’ response to writing question 2:

1. ability to declare variables of correct data types (E–S)

2. ability to initialise a variable used to accumulate sum in the program (H–

U)

3. ability to formulate correct loops (H–U)

Use of any loops such as while or do-while and not necessary the for loop

shown here

4. ability to compute the sum correctly (H–S)

5. ability to print the sum correctly (E–U)

6. ability to write well-structured program in clear logical order (H–U).

The student was expected to write codes using C programming language in a

well-structured manner with clear logical order closer to the suitable solution

shown previously.

Figure 3.16 shows these individual components.

Figure 3.16. Individual components of writing question 2 of the PST.

74

Thus, the SOLO description for the writing questions in the PST was

established as shown in Table 3.8, based on the individual components shown

previously.

Table 3.8

SOLO Classification for Writing Questions

SOLO Level Indicator Raw Score

Relational [R] Able to complete all components as a coherent

whole

6

Relational Error [RE] Able to complete all components but has some

minor syntax or logic errors or omissions

5

Multistructural [M] Able to complete most components. All H–S

and E–S components complete and valid

4

Multistructural error

[ME]

Able to complete most components but with

some minor syntax or logic errors or omissions

3

Unistructural [U] Able to complete some components only 2

Unistructural error

[UE]

Able to complete some components only with

some syntax or logic errors

1

Prestructural [P] There are pieces that make no sense or the

answer is totally wrong

0

No attempt [N] The answer is blank 999

Figure 3.7 shows the relational SOLO levels and their equivalent score for the

R and RE responses to writing question 2 of the PST. The student response was

classified as R, as the response satisfies all individual components listed. Although the

second response completed all components, there was a missing statement to print the

sum. Thus, the response was classified as RE.

75

Figure 3.17. R and RE SOLO levels and scores for writing question 2 in the PST.

Figure 3.18 shows the M and ME SOLO levels and their equivalent score for

the response to the writing question 2 of the PST. The response was classified as M,

as it satisfied all components of H–S and E–S but with a minor omission or error, with

U component. Accordingly, if the response satisfied all components of H–S and E–S

but with error or omissions, the response was classified as ME.

Figure 3.18. M and ME SOLO levels and scores for writing question 2 of the PST.

76

Figure 3.19 shows the U and UE (unistructural error) SOLO levels and their

equivalent scores for the response to writing question 2 of the PST. The sample student

response was classified as U, as the student was able to complete only some of the

components. Similarly, the second sample response completed only some of the

components, with syntax and logic errors. Such responses were classified as UE.

Figure 3.19. U and UE SOLO levels and scores for writing Question 2 of the PST.

Figure 3.20 shows the P SOLO levels and their equivalent score for the

response to writing question 2 in the PST. As shown, the student provided a completely

incorrect answer to the questions. Instead of writing a program, the student drew a

flowchart, which shows the student did not understand the question clearly. Such types

of responses were classified as P.

Figure 3.20. P SOLO levels and scores for writing Question 2 in the PST.

77

The assessment of PST answer scripts using SOLO taxonomy (as shown in this

chapter) for the remaining questions under algorithm design, translating, tracing,

explaining and writing is shown in Appendix C.

3.8 Ethical Considerations

Several ethical issues were considered when gathering data for this study.

Following the guidelines of informed consent (Cohen, 2017), the information letter

(see Appendix E) that explained the purpose of the research and procedures along with

the consent forms (Appendix D) was given to participants before any data collection

activities were carried out.

The first ethical consideration considered voluntarism in participation in the

PST and survey. Voluntarism ensures that participants have the right to decide whether

to take part in the PST/survey. Volunteer student participants were then provided with

the information letter, which consisted of a brief summary of the study and how their

participation would assist in achieving the purpose of this research. It also contained

information in regard to the privacy and confidentiality of students’ details and

assurances that information would remain confidential and names would not be

identified or produced in any documents.

The second ethical consideration was in regard to the anonymity of student

participants. Complete anonymity was not possible within the context of this study.

Thus, student participants were asked to write their student registration number and

enrolment program only for the PST and survey. Participants were also verbally

informed that their student registration numbers would not be reported in this thesis or

in any other papers. Instead, a unique identifier such as S001, S002 or S003 would be

assigned if needed. The student registration number was required for analysing data

78

across various data collection methods. Once students volunteered to participate in this

study and read the information letter, they were provided with the consent form to sign.

The third ethical consideration involved power and position. As Bhutan is a

country of rich culture where there is great respect for elders and people in higher

positions, the researcher was concerned that students may have volunteered out of

respect for their lecturer, even if they did not want to. If this were to occur, students’

might feel pressured and may not have been able to provide correct answers. To avoid

this situation, the researcher briefed the volunteer lecturers prior to the administration

of the PST to reduce power difference and enable students to have power over

decision-making (Cohen, 2017). Students were also assured that their performance in

the PST would not affect their grades, and data from the PST would be used solely for

the purpose of this study. Similarly, when the researcher visited the three colleges of

RUB to administer the survey and interviews, students were informed by their lecturers

of their right to participate in the survey or not. Prior to survey, the researcher briefly

introduced the study and explained the contents of the information letter and consent

form. Students were made to feel important and encouraged to be at ease while filling

out the survey. Verbal consent was obtained from students selected for individual and

group interviews. Where selected students refused to participate, other students were

invited to participate.

The fourth issue was withdrawal from participation. This ensured that

participants could withdraw and discontinue their participation in the study at any stage

without prejudice to them. This was stated in the information letter.

Finally, lecturer participants in the survey were provided with the information

letter and consent form. Verbal consent was obtained from lecturers prior to the

79

interview. The researcher verbally informed lecturers that the data collected would be

used solely for the purpose of research and would not affect their academic career.

Ethical approval (HRE2016-0318) was granted by the Human Research Ethics

Committee of Curtin University (see Appendix F).

3.9 Data Analysis

Data were first entered in Microsoft Excel and imported into SPSS, a statistical

data analysis package. SPSS was used to analyse the quantitative data collected via the

data collection methods described in Section 3.6. The quantitative data were first

analysed using univariate statistical analysis for descriptive statistics. Subsequently,

the quantitative data were analysed using bivariate correlations analysis and multiple

linear regression, which included assumption testing. Path analysis was also

conducted. The results of the descriptive statistics, bivariate correlation analysis,

multiple linear regression and path analysis are presented and discussed in Chapters 4,

5 and 6.

The qualitative data were first transcribed into Microsoft Excel and manually

analysed by focusing on the areas related to the research questions. For a particular

research question, the researcher was required to read all student responses and

summarise them. New ideas/areas that emerged that were not related to the research

questions were also noted and summarised. The results of the student and lecturer

qualitative data are presented in Chapter 4 and 5.

A second assessor was invited to evaluate sample students’ PST responses to

obtain inter-rater reliability (IRR) to check the consistency of the PST marking criteria

with the researcher’s marking. IRR was evaluated using intra-class correlation

coefficient. Results are presented in Chapter 5 (see Section 5.4).

80

3.10 Summary

This chapter has provided a detailed description of the research methodology

used in this study and has explained the rationale behind using a mixed methods in

collecting both quantitative and qualitative data. The research questions that guided

this study were presented. Details about the data collection methods to address each

research question was shown and ethical considerations made prior to data collection

were described. The data analysis process was also summarised. Chapters 4, 5 and 6

present the analysis results of the quantitative and qualitative data.

81

Chapter 4: Students’ Quantitative Univariate and Qualitative

Results

4.1 Introduction

Chapter 3 described the preparation for data collection and outlined the

research questions. The instruments were discussed and presented. This chapter

presents the student quantitative univariate programming skills test (PST) and survey

results, followed by student qualitative results.

The first section presents the measure of student success in Introduction to

Computer Programming (CS1) that was used in this study. Student performance

(student success in CS1) was measured by performance in the PST, final semester

examination (FSE) and overall semester (OS) performance. Students’ quantitative

univariate results from the PST and survey data are presented next. As mentioned

previously, the PST consisted of questions that interrogate students’ ability across five

programming skills: algorithm design, translating, tracing, explaining and writing. The

descriptive statistics for those programming skills are presented here. This is followed

by the student survey and interview results for the areas covered in the students’

questionnaire, such as prior computing experience; first programming language,

programming paradigm, programming environment, and teaching/learning methods

and practices that have improved learning in CS1; Year 12 (Y12) performance in

mathematics, physics and chemistry; order of programming skills to be learnt in CS1;

order of contribution of programming skills to student performance as perceived and

experienced by students in CS1; approaches to learning in CS1 and suggestions for the

improvement of teaching/learning of CS1 at RUB. The independent sample t-test was

also conducted to validate the results.

82

4.2 Measure of Student Performance in CS1

This section presents the data used to measure student performance in CS1. In

this study, student performance was the dependent variable. Student performance in

CS1 was measured by their performance in the PST, FSE and the OS.

Students’ performance in the PST, FSE and OS

Students’ PST results were collected from the PST administered to all student

participants from Sherubtse College (SC), Jigme Namgyel Engineering College

(JNEC) and College of Science and Technology (CST), who were enrolled in the

science and engineering program and who had completed CS1 in their first semester

(July–November 2016).

Students’ FSE scores were collected from the respective lecturers who taught

CS1 in July–November 2016 in the three colleges at Royal University of Bhutan

(RUB). FSEs were independently administered by an individual college. Similarly, OS

scores were collected from the respective lecturers and the student survey. Table 4.1

shows the descriptive statistics of the PST, FSE and OS. There is little difference

between the means of PST (52.44) and FSE (55.77) compared to the mean of OS

(61.95). The standard deviations of PST (17.40) and FSE (15.54) were fairly similar

compared to the standard deviation of OS (11.63). This could be because the PST and

FSE were written in an examination settings while the OS is the total of continuous

assessment (CA) (50 percent) and FSE (50 percent). CA consists of mid-semester

examination, class tests, assignments and practical examinations.

83

Table 4.1

Descriptive Statistics of Student Performance (PST, FSE, OS)

Student Performance n Mean Standard Deviation

PST 292 52.44 17.40

FSE 285 55.77 15.54

OS 270 61.95 11.63

Note: n is not equal, as missing data were omitted.

4.3 Student Quantitative Univariate Results

This section presents the quantitative univariate results of student PST and

surveys. A total of 327 students participated in this study out of 342 students. The

response rate was 96 percent which is close to 100 percent. The reason behind this

high response rate has been discussed in Section 3.8 under ethical consideration. As

the Bhutanese socio-cultural environment is unique in terms of respect for elders,

people in higher positions and lecturers, the students may have participated out of

respect to their lecturer. However, the researcher made every possible way to minimise

this power difference and enable students to have autonomy over their decision. As a

result of this a small number of students did choose not to participate.

Of 327 students, 292 students participated in the PST and 277 participated in

the survey. The number of students who participated in both the PST and survey was

238.

Table 4.2 shows the number of students who participated from seven

programmes in three colleges at RUB. As discussed in Chapter 3, SC offers B.Sc. in

Computer Science—the number of the students who participated was 27. JNEC offers

a Diploma in Computer Hardware and Networking—the number of students who

84

participated was 43. Finally, CST offers five engineering programs—the number of

students who participated was 257, the highest number of students from any of the

three RUB colleges.

Table 4.2

Student Representation in this Study from Three RUB Colleges

College Program Male Female Total

CST B.Eng. in Electronics and

Communication

24 6 30

 B.Eng. in Electrical 47 18 65

 Bachelor of Architecture 11 7 18

 B.Eng. in Information Technology 26 12 38

 B.Eng. in Civil 70 36 106

JNEC Diploma in Computer Hardware and

Networking

22 21 43

SC B.Sc. Computer Science 20 7 27

 Total students 220 107 327

4.3.1 PST results

This section presents the summary statistics of data collected via the PST. The

raw scores of the equivalent SOLO levels were used in the analysis.

A total of 292 students in three colleges at RUB undertook the PST specifically

devised for this study. Females represented about 34 percent (n = 99) of the population

and males about 66 percent (n = 193). CST students represented 76 percent (n = 223),

JNEC 15 percent (n = 43) and SC nine percent (n = 26) of the sample.

As discussed in Chapter 3, PST data were collected using a printed PST paper

administered by lecturers who volunteered to assist the researcher. The PST was

administered after student participants had completed one semester of instruction in

CS1 and before the FSE. The PST was devised by the researcher in consultation with

lecturers to interrogate students’ abilities across five programming skills: algorithm

85

design, translating, tracing, explaining and writing. The PST consisted of 10 questions.

There were two questions for each programming skill. Subsequently, the SOLO

taxonomy was adapted to evaluate students’ responses to PST questions (as discussed

and presented in Chapter 3). Student scores were converted to a percentage for ease of

comparison.

Table 4.3 presents the college-wise summary statistics of the students’

performance in the PST. On average, CST students performed best in the PST (54.23),

followed by SC (45.16) and JNEC (45.16). The reason for the higher mean at CST

could be that most top performing students’ first option is to obtain entry into one of

the engineering degree programs in CST, then a computer science degree program in

SC and finally, the diploma program at JNEC.

Table 4.3

College Summary Statistics in PST

College n Mean Standard Deviation

CST 223 54.23 18.19

SC 26 49.18 13.11

JNEC 43 45.16 13.54

Table 4.4 presents the summary statistics for each college with participant

representatives in the PST. On average, students enrolled in the architecture program

performed well in the PST (63.34) compared to students enrolled in other programs.

This may be because only the top performing students opted for this program, so they

may have done well in CS1. Students who were qualified but were not selected based

on merits in the engineering program opted for Computer Science or a Diploma in

Computer Hardware and Networking—and their PST average was 49.18 and 45.16

respectively.

86

Table 4.4

Programme Summary Statistics in PST

Program n Mean Standard Deviation

Bachelor of Architecture 11 63.34 17.99

B.Eng. in Electronics and Communication 27 59.72 13.86

B.Eng. in Information Technology 33 55.06 14.42

B.Eng. in Civil 98 53.40 20.84

B.Eng. in Electrical 54 50.62 15.86

B.Sc. Computer Science 26 49.18 13.11

Diploma in Computer Hardware and Networking 43 45.16 13.54

Table 4.5 shows the summary statistics of the overall PST scores in each of the

programming skills. On average, students performed well in algorithm design,

translating, explaining and tracing, followed by writing. Since algorithm design is a

skill that students learnt before other programming skills, and writing is a skill that

student should be able to attain at the end of the course, the results reported here were

consistent with the pattern that would be expected. That is, algorithm design has the

highest mean, followed by translating, explaining, tracing and writing.

Table 4.5

Summary Statistics of the Programming Skills and Overall PST Score

Programming Skills n Mean Standard Deviation

Algorithm design 290 61.72 23.78

Translating 291 59.51 28.08

Explaining 287 56.48 32.70

Tracing 288 46.76 23.76

Writing 278 41.67 21.62

Test score 292 52.44 17.40

Note: n is not equal across categories, as missing data were omitted. Some participants did not

respond.

87

4.3.2 Quantitative survey results

This section presents the summary of data collected via survey questionnaire.

The survey data presented here represent the responses of 277 students in three

colleges of RUB.

Figure 4.1 shows the number of students who participated in the survey across

seven programs. CST represented 77 percent (n = 213), JNEC 13 percent (n = 37) and

SC 10 percent (n = 27) respectively. Females represented about 34 percent (n = 94)

and males about 66 percent (n = 183).

Figure 4.1. Number of student participants from seven programs in the survey.

Data were collected using a printed survey questionnaire, which was

administered by the researcher to student participants. The areas covered in the

questionnaire were: prior computing experience; Y12 performance in mathematics,

physics and chemistry; programming environments used in CS1, first programming

88

language to be taught in CS1, first programming paradigm and teaching/learning

methods and practices that have improved students’ performance in CS1; order of

programming skills to be learnt in CS1; contribution of programming skills to success

in CS1; approaches to learning in CS1; and suggestions for improvements in teaching

and learning in CS1. The question on suggestions to improve teaching and learning

was open ended, so the results will be covered in Section 4.4.1.

The survey questionnaire consisted of 15 questions. Questions were closed-

ended, single and multiple responses, scaled responses and open-ended questions.

Sections 4.3.2.1–4.3.2.7 report on the summary statistics of the areas covered in the

survey questionnaire.

4.3.2.1 Prior computing experience

Prior computing experience was categorised as prior programming and prior

non-programming computer experience. Question 1 asked students to indicate whether

they had prior computer programming experience. They may have gained prior

programming experience as a result of taking any programming courses in high school

or private training courses prior to learning CS1. Of the 277 student participants, only

39 had some computer programming experience. In Question 2, these 39 students were

asked to identify which computer programming language/s that they had experienced.

Students’ responses indicated some experience in C (n = 24), C++ (n = 11), Java

(n = 7), JavaScript (n = 3) and Python (n = 1). Students were able to select more than

one language in which they had experience.

Table 4.6 shows the results of a t-test and descriptive statistics of FSE, OS and

PST by prior programming experience. The only significant difference (t-test) between

means for the groups was found when comparing groups on their OS score. Students

with prior programming experience (n = 33) scored OS M = 65.72 (SD = 9.70). By

89

comparison, students without prior programming experience (n = 218) scored a lower

mean for OS, M = 61.24 (SD = 11.80).

The relevant distributions were sufficiently normal for the purposes of

conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider, Ziegler, Danay,

Beyer, & Bühner, 2010). Additionally, the assumption of homogeneity of variances

was tested and satisfied via Levene’s F test, F(249) = 0.161, p = 0.689 (p > 0.05

indicates unequal variances). The independent sample t-test was associated with a

statistically significant effect, t(249) = 2.08, p = 0.039. Thus, students with prior

programming experience were associated with a statistically significantly larger mean

in OS than those who had no prior programming experience.

Table 4.6

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Prior

Programming Experience

Student

Performance

Prior Programming Experience 95% CI for

Mean

Difference

Yes No

 M SD n M SD N t Df

FSE 58.29 11.98 37 55.98 14.43 220 [-2.63,7.25] .92 255

OS 65.73 9.70 33 61.24 11.80 218 [.23,8.74] 2.08* 249

PST 57.05 17.48 32 52.44 15.77 208 [-1.38,10.60] 1.52 236

Note: *𝑝 < 0.05, n=327. Total student participants in PST and survey. Missing data were omitted.

While there were statistically significant differences in means between the

students with and without prior programming experience in OS, no statistical

difference existed between students with and without prior programming experience

in terms of FSE and PST scores.

Question 3 asked students to indicate their prior non-programming computer

experiences by stating their perceived average number of hours per week that they had

spent on information searches using the internet, computer games and application

90

software such as Office, spreadsheets, presentation programs and databases. The

purpose of this question was to investigate whether such activities benefited students

in learning CS1. There was a difference in means between non-programming computer

experiences categorised into two groups based on the average number of hours spent

on each activities on the scores of student performance. However, an independent

samples t-test showed that this was not statistically significant. This suggests that these

non-programming computer activities were not important in terms of predicting

success in CS1. The correlational analysis in Chapter 6 will further confirm these

results.

4.3.2.2 Y12 performance in mathematics, physics and chemistry

Question 4 asked students to record their Y12 scores in mathematics, physics

and chemistry. The mean of students’ Y12 performance in mathematics was 78.8,

physics was 73.5 and chemistry was 67.7. Based on the means of students’

performances in mathematics, physics and chemistry, students were grouped for each

subject into two categories: those who scored more than the mean (A) and those who

scored less or equal to the mean (B). The reason for categorisation was to examine

whether Y12 performance in mathematics, physics and chemistry had any impact on

student performance in CS1.

Table 4.7 shows the results of the t-test and descriptive statistics of FSE, OS

and PST by students’ Y12 performance in mathematics for categories A and B.

Students with Y12 performance in mathematics for category A (n = 150) scored as

follows for FSE: M = 59.16 (SD = 13.32). By comparison, students’ Y12 performance

in mathematics for category B (n = 107) scored as follows for FSE: M = 52.77

(SD = 14.43). To test the hypothesis that students’ Y12 performance in mathematics

for categories A and B were associated with statistically significantly different mean

91

in FSE, an independent sample t-test was performed. Distributions for A and B were

sufficiently normal for the purposes of conducting a t-test (i.e., skew < |2.0| and

kurtosis < |9.0|) (Schmider et al., 2010). Additionally, the assumption of homogeneity

of variances was tested and satisfied via Levene’s F test, F(255) = 0.206, p = 0.651.

The independent sample t-test was associated with a statistically significant effect,

t(255) = 3.664, p = 0.000. Thus, students who scored highly in Y12 mathematics had

a statistically significantly larger mean in FSE than those who scored less.

Table 4.7

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Students’ Y12

Performance in Mathematics for Categories A and B

Student

Performance

Average Y12 Mathematics Score 95% CI for

Mean

Difference

A B

 M SD n M SD N t Df

FSE 59.16 13.32 150 52.77 14.43 107 [2.95,9.83] 3.66* 255

OS 64.99 9.89 141 57.81 12.29 110 [4.42,9.94] 5.13* 249

PST 56.47 16.65 135 49.16 14.64 103 [3.25,11.34] 3.54* 236

Note: *𝑝 < 0.05, n=327. Total student participants in test and survey. Missing data were omitted.

In Table 4.7, we can observe that students with better scores in Y12

mathematics were associated with a statistically significantly larger mean in OS than

those with lower scores in Y12 mathematics. In addition, students with better scores

in Y12 mathematics were associated with a statistically significantly larger mean in

the PST than with those lower scores in Y12 mathematics.

Table 4.8 shows the results of the t-test and descriptive statistics of FSE, OS

and PST by students’ Y12 performance in physics for categories A and B. Students

with Y12 performance in physics for category A (n = 146) scored as follows for FSE:

M = 58.17 (SD = 13.49). By comparison, students’ Y12 physics score for category B

(N = 111) scored as follows for FSE: M = 54.29 (SD = 14.67). To test the hypothesis

that students’ Y12 performance in physics for categories A and B were associated with

92

statistically significantly different mean in FSE, an independent sample t-test was

performed. Distributions for A and B were sufficiently normal for the purposes of

conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider et al., 2010).

Additionally, the assumption of homogeneity of variances was tested and satisfied via

Levene’s F test, F(255) = 0.093, p = 0.761. The independent sample t-test was

associated with a statistically significant effect, t(255) = 2.197, p = 0.029. Thus,

students who scored highly Y12 physics had a statistically significantly larger mean in

FSE than those who scored less.

Table 4.8

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Students’ Y12

Performance in Physics for Categories A and B

Student

Performance

Average Y12 Physics Score 95% CI for

Mean

Difference

A B

 M SD n M SD n T Df

FSE 58.18 13.50 146 54.30 14.67 111 [.401,7.35] 2.19* 255

OS 64.21 10.26 139 58.91 12.41 112 [2.48,8.12] 3.70** 249

PST 55.22 16.87 131 50.97 15.07 107 [.12,8.37] 2.02* 236

Note: *𝑝 < 0.05, **𝑝 < 0.05 n=327. Total student participants in test and survey. Missing data were

omitted.

From Table 4.8, we can observe that the students with better scores in Y12

physics were associated with a statistically significantly larger mean in OS than those

with lower scores in Y12 physics. Similarly, students with better scores in Y12 physics

were associated with a statistically significantly larger mean in PST than those with

lower scores in Y12 physics.

Table 4.9 shows the results of t-test and descriptive statistics of FSE, OS and

PST by students’ Y12 performance in chemistry for categories A and B. Students with

Y12 performance in chemistry for category A (n = 138) scored as follows for OS:

M = 63.92 (SD = 10.61). By comparison, students’ Y12 performance in chemistry for

93

category B (N = 114) scored as follows for OS: M = 59.13 (SD = 12.27). To test the

hypothesis that students’ Y12 performance in chemistry for categories A and B were

associated with statistically significantly different mean in OS, an independent sample

t-test was performed. Distributions for A and B were sufficiently normal for the

purposes of conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider et al.,

2010). Additionally, the assumption of homogeneity of variances was tested and

satisfied via Levene’s F test, F(250) = 0.854, p = 0.356. The independent sample t-

test was associated with a statistically significant effect, t(250) = 3.33, p = 0.001.

Thus, students who scored highly in Y12 chemistry had a statistically significantly

larger mean in OS than those who scored less.

Table 4.9

Results of t-Test and Descriptive Statistics of FSE, OS and Test by Students’ Y12

Performance in Chemistry for Categories A and B

Student

Performance

Average Y12 Chemistry Score 95% CI for

Mean

Difference

A B

 M SD n M SD n t Df

FSE 57.86 13.85 139 54.71 14.28 120 [-.29,6.59] 1.80 257

OS 63.92 10.61 138 59.13 12.27 114 [1.95,7.64] 3.33* 250

PST 55.62 17.33 122 50.62 14.62 118 [.91,9.08] 2.41* 238

Note: *𝑝 < 0.05, n=327. Total student participants in test and survey. Missing data were omitted.

From Table 4.9, we can observe that students with better scores in Y12

chemistry were associated with a statistically significantly larger mean in the PST than

those with lower scores in Y12 chemistry. By comparing the means of FSE between

these two categories of students, the results from Table 4.9 show that Y12 chemistry

scores are not statistically significant in terms of contribution to success in the PST.

The correlational analysis in Chapter 6 will further confirm these results.

94

4.3.2.3 Programming environments used in CS1

Question 6 asked students to select the programming environments used by

lecturers to teach CS1. The results show that the most commonly used programming

environments by lecturers was Turbo C++ (n = 124), followed by Microsoft Visual

Studio (n = 76), terminal/command line (n = 33) and Dev-C++ (n = 11)

Question 7 asked students whether the programming environment used by their

lecturer in CS1 was easy to use; 111 students of 124 said that it was easy to use Turbo

C++, 68 students of 76 said that it was easy to use Microsoft Visual Studio, 30 students

of 33 said that it was easy to use the terminal/command line and 10 students of 11 said

that it was easy to use Dev-C++. The remaining students stated that the programming

tools used by their lecturers were not easy to use; 13 students of 124 said that it was

not easy to use Turbo C++:

S039: Poor technology background

S156: Difficult to understand the interface and felt bit uninteresting

S217: Did not get much time to learn the interface

Figure 4.2 shows the interface and screen of Turbo C++.

Figure 4.2. Interface and screen of Turbo C++.

95

We can conclude from the response that some students found it difficult to

understand the interface of Turbo C++ and did not like the colour of the screen. The

default colour is blue, as shown in Figure 4.2.

The interface of Dev-C++ is shown in Figure 4.3. Only one student of 11 said

that it was not easy to use Dev-C++ but opted not to state the reason. The remaining

10 students found Dev-C++ user-friendly, which means that the interface was easy to

use and understand, and not difficult to learn. The sample programs reported in this

thesis were written, compiled and run in Dev-C++ by the researcher. The researcher

finds Dev-C++ easy to use and simple to install; moreover, it is free.

Figure 4.3. Interface of Dev-C++.

Three students of 33 said that it was not easy to use terminal/command line.

Only one student stated their reason, but this reason was found not to be relevant.

Figure 4.4 shows how to compile C programs using the command line in windows.

The command to compile C program in the Linux operating system is the same.

96

Figure 4.4. Command to compile and run C program using command line in windows.

Eight students of 76 said that it was not easy to use Microsoft Visual Studio.

Two students provided the following reasons:

S178: Hard time to deal with software

S181: Software not user-friendly

Figure 4.5 shows the interface of Microsoft Visual Studio.

Figure 4.5. Interface of Microsoft Visual Studio

Source: ("Get started with Visual Studio 2017,").

97

Question 8 asked students if they had experienced any other easy-to-use

programming environments apart from those their lecturer used in CS1. Eight students

of 277 explored other programming tools, such as PyCharm and Code::Blocks and

stated that these were easy to use. The lecturer could try these programming

environments and determine if they are simple to use for beginners.

4.3.2.4 First programming language to be taught in CS1

Question 9 asked students to give their opinion based on their experience in

regard to the first programming language to be taught in CS1. Table 4.10 outlines the

programming language students asserted should be taught in CS1; 59 percent of

student nominated C as the first programming language that should be taught in CS1.

This is probably because they have learnt C in CS1. Students who responded with

C++, Java, Python, VB.Net and C# might have had some experience prior to CS1.

Table 4.10

Number of Students’ Response to First Programming Language to be Taught in CS1

(n = 277)

Programming Language n Percent

C 164 59%

C++ 73 26%

Java 57 21%

Python 18 7%

VB.Net 6 2%

C# 4 1%

Note: Participants could select more than one response.

Question 10 asked students to provide reasons for selecting a particular

language to be taught in CS1. Students stated:

S004: It [C] is the fundamental of any programming language.

S009: It [C] is easier compared to other languages like Java, C++, etc.

98

S008: Because of curiosity and interest in that language [C++].

S024: Some of us already learnt Java in class 12, so I think it will be easier for

us too [Java].

S038: I heard that it is an interesting programming language [Java].

Students’ comments on the first programming language to be taught in CS1

shows their understanding of C as a foundation language that is easy to learn compared

to other programming languages. Some students with experience in Java wanted to

continue with Java in CS1, believing it would be easier for them to learn. Other

students who responded with C++ and Java were curious to explore these languages.

4.3.2.5 Teaching/learning methods and practices that have helped in the

learning of CS1

Question 11 asked students to indicate the teaching/learning methods and

practices they had experienced that helped them learn in CS1. Table 4.11 shows the

teaching/learning methods and practices that students experienced in CS1 that helped

them learn. Of the four teaching/learning practices and methods listed in Table 4.11,

live coding by the lecturer (i.e., when lecturers teach by demonstrating the program

from scratch using the programming environment in the class rather than explaining a

static code from the slide) was found to be the most helpful in learning CS1 (60

percent) followed by reading the materials online (49 percent), pair/group

programming (i.e., working in pairs and groups: 46 percent) and watching YouTube

tutorials (20 percent).

99

Table 4.11

Teaching/Learning Methods (n = 277)

Teaching/ Learning Methods and Practices n Percent

Live coding by lecturers 168 60%

Reading online materials 135 49%

Pair/group programming 128 46%

YouTube tutorials 57 20%

Note: Participants could select more than one response and list their own. Reading materials

online and YouTube tutorials were listed.

4.3.2.6 Students’ perceptions of the order of programming skills to be learnt

in CS1

Question 12 asked students to order the five programming skills based on their

experience in learning CS1 from 1 (first programming skill learnt) to 5 (last

programming skill learnt). Students were also asked to write the same number on the

programming skills if they felt that some of the programming skills could be learnt in

parallel. Table 4.11 presents the results based students’ experience of learning in CS1.

The results indicate that algorithm design (2.08) was the skill that the students

generally suggested to begin with, followed by explaining (2.3) and translating (2.58).

We can also surmise that students believed these three skills may be learnt at similar

times, as the difference in means was low. Similarly, writing (3.0) and tracing (3.58)

can be learnt at similar times, as there was little difference in their means. Students’

interview responses to this question (see Section 4.4.2) will further provide

information on this.

100

Table 4.12

Summary Statistics of the Order of Programming Skills to be Learnt in CS1

(n = 277)

Programming Skills Mean Std. Deviation

Tracing 3.58 1.31

Writing 3.00 1.33

Translating 2.58 1.01

Explaining 2.30 1.43

Algorithm design 2.08 1.19

Note. n=272. Some participants did not respond.

4.3.2.7 Students’ perception of the order of programming skills in terms of

contribution to student performance in CS1

Question 13 asked students to order the five programming skills based on their

experience in learning CS1 to student performance in CS1 from 5 (highest) to 1

(lowest). Students were also asked to write the same number on the programming skills

if they believed some of the programming skills were equally associated to their

success in CS1. Table 4.13 presents the results based on students’ experience in

learning in CS1. The results show that writing contributes the most (3.14) to student

performance, followed by explaining (2.99), tracing (2.97), algorithm design (2.86)

and translating (2.73).

We can also say that explaining, tracing, algorithm design and translating are

perceived by students to be approximately equally associated with success in CS1 after

writing, as their means were not statistically significant. The path analysis in Chapter

6 will further examine the hierarchy among the five programming skills.

101

Table 4.13

Summary Statistics of the Order of Programming Skills in Terms of Contribution to

Student Performance in CS1 (n = 277)

Programming Skills Mean Std. Deviation

Writing 3.14 1.40

Explaining 2.99 1.53

Tracing 2.97 1.43

Algorithm design 2.86 1.43

Translating 2.73 1.19

Note: n = 267. Some participants did not respond.

4.3.2.8 Approaches to learning in CS1

Question 15 asked students to indicate their approach in learning CS1 by

answering 20 items scored on a 5-point Likert scale of Biggs’s (R-SPQ-2F).

Questionnaire items were categorised into two learning approaches: deep and surface.

There are two subscales of deep approach (deep motive and deep strategy) and two

subscales of surface approach (surface motive and surface strategy). Table 4.14 shows

the summarised statistics scores of the completed Biggs questionnaire. The mean and

standard deviation show that students are not particularly aligned with either deep or

surface learning approaches. See Section 6.2.5 for correlation of learning approach

with student performance.

102

Table 4.14

Aggregate Statistics on Students’ Leaning Approach Using Biggs Questionnaire

(n = 277)

Learning Approach (Total Score) Mean Standard Deviation

Deep approach (50) 27.56 5.45

Deep motive (25) 13.00 3.27

Deep strategy (25) 14.53 2.99

Surface approach (50) 27.96 5.94

Surface motive (25) 13.76 3.23

Surface strategy (25) 14.20 3.49

Note: n = 275. Some participants did not respond.

4.4 Student Qualitative Results

This sections reports on the results of student qualitative data from the survey,

and individual and group interviews. The qualitative data were classified by examining

the number of occurrences of key terms. Results were summarised.

4.4.1 Student qualitative survey results

Question 14 of the survey asked students to suggest how we could improve

teaching/learning of CS1 at RUB. Students’ response to this questions were classified

based on the number of occurrences of the particular areas:

a) Same tutor for both theory and practical session

Students stressed that it was important for them to have the same tutor for both

theory and practical sessions. At CST, theory classes were taken by one lecturer

and practical classes by another lecturer. Student responses were:

S043: Better to have same tutor for both theory and practical sessions.

S208: Theory and practical should be taught by the same teacher. Moreover,

things taught in the class should be practically close in the lab.

103

S056: Same tutor for both theory class and practical classes.

It is true that the best scenario would be to have the same tutor for theory and

practical sessions.

b) Theory and practical classes in parallel

Students also stressed about having theory and practical classes in parallel and

not on different days. Only JNEC offered theory and practical classes in

parallel in the computer laboratory. SC and CST have theory classes for one

hour every day for four days and practical classes for three consecutive hours

a week. A sample of students’ responses were:

S066: Better if the teachers teach the theory and practicals in a parallel system

so that each students can follow.

S127: Theory and practical should run parallel.

S085: If we are allowed to bring our personal laptops in the lecture and

practice parallel with what the tutor is teaching in the class, so that students

may be able to perform better.

Students’ suggestions for conducting theory and practical classes together in

computer laboratory does not seem feasible in the current situation. Currently,

at SC and CST, computer laboratory are shared among students enrolled in

programs with practical components. However, the researcher believes that

allowing students to bring their laptops to the theory class should not be a

problem.

c) Experience lecturer in CS1

Students strongly suggested that experienced lecturers should be assigned to

teach CS1. This seems true, as based on the researcher’s experience teaching a

104

module whose prerequisite is CS1, extra time needs to be spent explaining the

basic concepts of programming, which students were supposed to learn in CS1.

A sample of students’ responses were:

S139: Experienced teacher should teach CS1.

S245: If an experienced teacher teaching CS1 is assigned for teaching,

students can learn more and understand the concepts clearly.

S234: Experienced teacher who knows programming well and with high-level

communication skills.

S205: By sending experienced tutors, as some of the tutors are not sure about

the topics themselves.

S080: Require more experienced teacher teaching this module.

S087: Tutors should seek help from seniors to teach CS1.

S260: Students will learn maximum if the teacher with more experience and

good teaching technique is given, as the programming is complex and logical

compared to others.

d) Live coding and pair programming

Students suggested lecturers should demonstrate programs live from scratch

using programming environments when teaching CS1 classes and encourage

students to work in pairs. A sample of students’ responses were:

S019: Live coding by the tutor is very useful.

S024: Supervised pair-learning and live coding with the teacher in the class.

S184: The tutor can write two to three lines of codes and explain to the students

how that particular code works and let the students write their own code for a

particular program.

105

S158: Flow of the program should be made clear to the students.

4.4.2 Student interview results

This section reports on the qualitative data collected from individual and group

interviews; 23 and 24 students participated in individual and group interviews

respectively. Table 4.15 presents the details of students from seven programs who

participated in individual interviews. Table 4.16 shows the number of students who

participated in a group interview at the three colleges of RUB.

Table 4.15

Programme and Number of Student Participants in Individual Interviews

College Programme Male Female Total

CST B. Eng. in Electronics and

Communication

1 2 3

 B. Eng. in Electrical 2 1 3

 Bachelor of Architecture 1 3 4

 B. Eng. in Information

Technology

3 0 3

 B. Eng. in Civil 1 2 3

JNEC Diploma in Computer

Hardware and Networking

2 2 4

SC B.Sc. Computer Science 2 1 3

 Total students 12 11 23

106

Table 4.16

College and Number of Student Participants in Group Interviews

College Male Female Total

CST Group 1 3 2 5

CST Group 2 5 3 8

JNEC 3 3 6

SC 3 2 5

Total students 14 10 24

The areas covered in interviews were similar to those covered in the survey

(see Section 4.3). The semi-structured interview questions were utilised but the order

of the questions asked and the resulting conversations were not controlled. The

following is a summary report of students’ responses to the areas covered in individual

and group interviews.

4.4.2.1 Prior computing experience

Students with non-programming computer experience such as information

searches using the internet, computer games and application software such as Office

stated that experience in these activities did not help them learn in CS1. Three students

of 23 in individual interviews stated that the experience in searching for information

using the Internet and Office usage helped them learn in CS1. According to Student

S219, experience in Microsoft Word helped him type programs faster. Students S077

and S215 stated that knowing how to search for information using Google helped them

find information related to topics in CS1 that they found difficult:

S219: I feel it helps in typing the program faster.

107

S077: Knowing how to Google helped me to find information on topics that I

find difficult in CS1.

S215: Knowing how to research information helped in learning CS1.

The student with some programming experience stated that they understood

the concepts in CS1 classes easier than their friends, who had no experience in any

programming language. A total of 21 of 23 students stated that it would be better if

students had some programming experience prior to taking CS1. All students in a

group interview collectively said that they required programming experience prior to

taking CS1 classes. Group 4 stated:

G4: Those students who had previous knowledge on programming did pretty

well in CS1 while we struggled.

This results confirms the quantitative survey results reported in Section 4.3.2,

in which the average mean of students’ performance in CS1 having prior programming

experience was higher than for students without programming experience.

4.4.2.2 Y12 performance in mathematics, physics and chemistry

More than 50 percent of the students interviewed stated that good performance

in mathematics is required, while performance in physics and chemistry is not

necessary prior to learning CS1:

S274: For writing programs on area, perimeter, factorials, Fibonacci

numbers, etc., we need mathematics background.

S125: Mathematics logic is required.

S077: I don’t think we require chemistry background. Maybe physics.

Students’ interview responses align with the quantitative survey results

reported previously—students who scored highly in Y12 mathematics performed well

in CS1.

108

4.4.2.3 Programming environments used in CS1

A total of 11 of 23 students interviewed reported that they used Turbo C++ in

CS1. More than half of the students who have learnt programming in CS1 using Turbo

C++ stated that it is not user-friendly and not compatible with the operating system:

S123: It is not easy to use.

S125: It is not compatible with the operating system. I cannot open the screen

in full. Also, the software crashes in the middle of writing programs.

G01: Interface was not user-friendly.

G04: It wasn’t very user-friendly. You know, whenever we open the screen, we

cannot minimise and also we cannot copy and paste. I find it very difficult to

use.

These results do not align with the survey results discussed previously, in

which few students (13 of 124) stated that Turbo C++ was not user-friendly.

Eight of 23 students’ interviewed had used Microsoft Visual Studio in CS1.

Over half of the students who learnt programming in CS1 using Microsoft Visual

Studio stated that it is user-friendly:

S071: Easy and user-friendly.

S018: It was not easy to use initially but later on I got used to it.

These results align with the survey results discussed previously, in which only

eight of 76 students stated that Microsoft Visual Studio was not user-friendly. The

remaining students found it easy to use.

Only two of 23 students’ interviewed had used terminal/command line in CS1.

Out of two, only one student found it difficult to use:

S274: Bit difficult. Need to remember all the commands.

109

These results align with the survey results discussed previously, in which few

students (three of 33) stated that using terminal/command-line was easy. The

remaining students found it difficult to remember the commands.

Students who had explored other programming tools, such as PyCharm and

Dev C++, stated that these were user-friendly.

S127: I used PyCharm. It was easy to use and also more efficient.

S125: PyCharm. It is more user-friendly. I prefer PyCharm, as it is easier to

use than Turbo C++.

S123: I used Dev C++. It is user-friendly. I prefer Dev C++ to Turbo C++, as

Dev C++ is more user-friendly.

The students’ interview responses confirmed that students had explored other

programming environments and found them easy to use. Thus, it is worth exploring

PyCharm and Dev C++ and their suitability for use in CS1.

4.4.2.4 First programming language to be taught in CS1

More than half of the students stated that CS1 should be taught using C as the

programming language, while two students of 23 stated that Python should be the first

programming language learnt:

S127: I heard that Python is simple and basic so I guess Python can be used in

CS1.

S125: I heard that Python is simpler than C, so maybe Python can be used to

teach beginners.

All the students in a group interview stated that the first programming language

learnt should be C:

G01: C is the foundation of other languages.

110

G03: Should be taught for beginners, as we are learning C++ in the second

semester.

4.4.2.5 Teaching/learning methods and practices that have helped in the

learning of CS1

All 23 students interviewed stated that working with pairs or in groups and live

coding by lecturers helped them learn in CS1:

S127: Working with friends helps in debugging the code [group programming].

S123: I can understand better from peers [pair/group programming].

S125: Working in groups helps us in sharing and exchanging knowledge and

ideas [group programming].

S154: Working with friends helps in explaining to each other. Sometimes

friends understand the concepts better than you [pair programming].

S010: Makes it easier to understand [live coding].

G4: It helps especially in finding errors [live coding].

Students’ responses in interviews and surveys indicate that live coding by

lecturers and working in pairs/groups seems to benefit students in learning CS1.

4.4.2.6 Students’ perceptions of the order of programming skills to be learnt

in CS1

All students interviewed (individual and group) stated that learning CS1 should

begin with algorithm design before progressing to the next programming skills. Most

students interviewed gave the preferred order of programming skills (begins with 1) to

be learnt in CS1 as:

1. algorithm design

2. translating

3. writing

111

4. tracing

5. explaining.

This was compared with the order reported in the quantitative results (mean

value shown in parentheses). The lower the mean value, the earlier the skills that

students stated to be learnt first.

1. algorithm design (2.08)

2. explaining (2.30)

3. translating (2.58)

4. writing (3.00)

5. tracing (3.58).

Explaining was perceived to be the last programming skill to be learnt

(according to interview results) while tracing was perceived to be the last programming

skill to be learnt (from survey results).Both interview and survey results stated that

student should start with algorithm design first and follow with the other programming

skills in no particular order.

4.4.2.7 Students’ perception of the order of programming skills in terms of

their contribution to the Student Performance in CS1

A total of 12 students of 23 stated that writing contributes more to student

performance in CS1, while six of 23 cited algorithm design as contributing highly to

student performance. Others identified either explaining or translating as contributors

to performance:

S127: I think writing [writing] should be contributing more to the success of

CS1. Because if you know how to write code, then tracing, translating and

explaining becomes easier to understand.

112

S125: Writing [writing], as most of the questions in the exam were based on

writing.

S134: I feel if students know how to write algorithm [algorithm design] and

represent the logic in flowcharts, then obviously students can write the

program.

S274: If the algorithm [algorithm design] is wrong, then the whole program is

wrong.

Compared to survey results, writing was reported as having the highest

contribution to student performance in CS1 (3.14), which aligns with the interview

response. Algorithm design was reported as fourth in the order in the survey (2.86),

not second, as stated in an interview. The path analysis in the Chapter 6 will further

confirm this order of programming skills in terms of their contribution to student

performance in CS1.

4.4.2.8 Suggestions on how to improve teaching/learning of CS1 at RUB

Individual and group students’ interview responses to this question emphasised

four key areas: same tutor for both theory and practical, prior programming experience,

pair/group programming and live coding.

a) Same tutor for both theory and practical sessions

From the student interviews, the researcher discovered that in CST, they have

two lectures assigned each for theory and practical sessions in the computer

laboratory. At SC and JNEC, only one lecturer was assigned to teach CS1 for

both theory and practical. Students who had one lecturer for theory and one for

practical sessions strongly recommended assigning only one lecturer to teach

CS1, as they found it difficult to follow:

113

S191: Same tutor should teach the class. We had theory classes taught by one

tutor and practical classes taught by another. It was difficult to follow.

b) Prior programming experience

Students in individual and group interviews said that it would benefit them in

the learning of CS1 if one programming subject was introduced for students

taking science as their major in Y12 to become familiar with programming

concepts:

S125: Computer science should be introduced in high school at basic level.

G2: If the Ministry of Education can introduce some sort of programming

courses in the primary and the high school, it would be better, as students will

be familiarised with some programming concepts when they enrol in colleges

and study CS1.

G4: As a beginner to computer programming, I did not really understand what

C programming was in the first few days of class. I feel it is important to

introduce one programming subject to all the science students in Y12 so they

are not lost in the class during CS1 classes.

This qualitative result aligns with the quantitative results—the mean of student

performance for those with prior programming experience was higher than for

those without prior experience. Thus, it is clear that students must be

familiarised with some basic programming concepts in Y12 so they are not

overwhelmed when introduced to CS1 in the first semester.

As for those with non-programming computer experience, most had prior

experience in activities such as Office, playing games, browsing the Internet

and using social media.

114

c) Live coding and pair/group learning

The topics of live coding and pair/group learning/programming arose

repeatedly in students’ response to the open-ended question in the survey.

Students interviewed also said that live coding by lecturers helped them learn

how to write a program in the programming environment, debug and observe

the output of the program. Similarly, students stated that they learnt more in

pairs and groups, than they did alone.

S134: Students should be grouped into pairs and let them explore the topics

[pair programming].

S071: Tutors should allow students to bring their laptops to the class so

students can do live coding [live coding] with the tutors instead of students

watching tutors to demonstrate.

G4: I think to explain the concepts of programming well, the tutor should focus

more on live coding [live coding].

Table 4.17 compares students’ open-ended survey questions and interview

responses to the suggestion of how to improve teaching/learning of CS1 at RUB.

Commonly mentioned topics in the survey and interviews were that the same tutor

should conduct theory and practical sessions, and the benefits of live coding and pair

programming. Conducting theory and practical sessions in parallel and the use of

experienced lecturers to teach CS1 were issues raised in the survey. Students discussed

requiring prior programming experience in the interview.

115

Table 4.17

Comparison of Students’ Survey Open-Ended Question and Interview Responses to

the Suggestion of How to Improve Teaching/Learning of CS1 at RUB

Survey Interview

Same tutor for both theory and practical

sessions

Same tutor for both theory and practical

sessions

Live coding and pair programming Live coding and pair/group learning

Theory and practical classes in parallel Prior programming experience

Experienced lecturer for CS1

4.4.2.9 Approaches to learning in CS1

Students’ interviewed were asked questions about their approaches to learning

in CS1. The sample of students’ responses that fell under the deep approach are shown

below:

S127: I practised the programs that were taught in the class. I browsed the

Internet for more explanation and wrote more programs [deep approach].

S071: Research until I pretty much understood the topics and practice writing

programs [deep approach].

S215: I referred books, asked friends, browsed internet, watched YouTube

video tutorials and finally asked module tutor. I enjoyed CS1 classes and as a

result I scored high marks as well [deep approach].

S243: Practise program codes. Revised the program taught in the class and

lab. I tried different ways of writing the program to get the same solution. I got

more practice by helping my friends. I can understand the concepts well and I

was interested in learning computer programming [deep approach].

Only one student interviewed fell under the surface approach:

S134: I studied only the notes given out by the tutor [surface approach].

116

S10: I revised only the class notes given by the tutor [surface approach].

Looking at the performance of these students in PST, FSE and OS, it is evident

that students who employed deep approach of learning did well in CS1 as compared

to those students who employed surface approach of learning. For instance, student

S127 scored 68.67 in PST, 60 in FSE and 65 in OS; student S215 scored 66.33 in PST,

75 in FSE and 82 in OS; and student S243 scored 56 in PST, 57 in FSE and 59 in OS.

Conversely, student S134 scored 29 in PST, 18.75 in FSE and 19 in OS; and student

S10 scored 28 in PST, 30.50 in FSE and 50 in OS.

 All the students in a group interview responded their approaches to learning

CS1 which fell under the deep approach of learning. The responses are shown below:

 G1 and G3: Watch YouTube video tutorials, ask friends, browse Internet and

 ask tutor

G2: Browse Internet. Use mobile apps to learn C programming. Refer library

 books and ask friends.

G4: Practice and surf Internet for explanation and also ask friends. Refer

 lecture notes.

4.5 Summary

This chapter reported on the quantitative univariate results from the student

PST and survey followed by qualitative results from the student survey and interviews.

It was reported that, on average, students enrolled in the architecture program

performed well in the PST compared to students enrolled in other programs. On

average, students performed well in algorithm design, translating, explaining and

tracing followed by writing. The results reported were consistent with the pattern that

would be expected. Overall, on average, the CST College performed well in the PST,

followed by SC and JNEC.

117

It was reported that only 39 students of the 277 student participants had some

computer programming experience prior to taking CS1. These students had experience

in C, C++, Java, JavaScript and Python. The descriptive statistics showed that the

students with prior programming experience performed better in CS1 across FSE, OS

and PST. However, the independent sample t-test results showed that this was

statistically significant for students’ with prior programming experience in terms of

OS only, not to FSE and PST. Similarly, the means of FSE, OS and the PST were all

higher for students who spent less time playing computer games and all lower for

students who spent more time playing computer games. However, the independent

sample t-test results showed none of the non-programming computer activities were

statistically significant.

The independent sample t-test results showed that students’ Y12 performance

in mathematics and physics were statistically significant when comparing means

between groups for the FSE, OS and the PST. Students’ Y12 performance in chemistry

was found statistically significant only in terms of the difference between means

between groups for OS and the PST, not to FSE.

The most commonly used programming environments used by the lecturers to

teach CS1 at RUB was Turbo C++ and Microsoft Visual Studio. Some students also

explored PyCharm and Code::Blocks. C programming language was reported as an

ideal programming language to teach in CS1.

It was reported that teaching/learning methods and practices such as live

coding, pair/group programming, reading materials online and watching YouTube

tutorials would benefit student in learning CS1.

The order of programming skills to be learnt in CS1 and the order of

programming skills in terms of their contribution to student performance was also

118

presented in this chapter. Students made some suggestions to improve the

teaching/learning of CS1: The same tutor should teach both theory and practical

classes, theory and practical classes should be taught in parallel, experienced lecturer

should teach CS1, live coding and pair/group programming should be encouraged and

students should have prior programming experience. The results from this chapter will

be further discussed in the multivariate analysis in Chapter 6.

119

Chapter 5: Lecturer’ Quantitative Univariate and Qualitative

Results

5.1 Introduction

Chapter 4 presented the students’ quantitative univariate programming skills

test (PST) and survey results, followed by students’ qualitative results. This chapter

presents the lecturers’ quantitative univariate results followed by lecturers’ qualitative

results. The results of inter-rater reliability (IRR) between the researcher’s marking

and a second marker on sample scripts of students’ PST are also presented in this

chapter.

5.2 Lecturers’ Quantitative Univariate Results

The total of eight lecturers, seven male and one female, from three Royal

University of Bhutan (RUB) colleges participated in the survey. The only female

lecturer participant was from College of Science and Technology (CST).

Survey data were collected using a printed questionnaire, which was given to

the lecturer participants by the researcher. Once the survey was completed, it was

handed back to the researcher. The areas covered in the lecturer survey questionnaire

were very similar to those in the student survey (see Section 4.3.2): prior computing

experience; Y12 performance in mathematics, physics and chemistry; programming

environments used in CS1; first programming language to be taught in CS1, first

programming paradigm; teaching/learning methods and practices that have improved

students’ learning in CS1; order of programming skills to be learnt in CS1;

contribution of programming skills to student performance in CS1; and students’

approaches to learning in CS1.

120

The survey questionnaire consisted of 15 questions in total. Questions were

closed-ended, single and multiple responses and open-ended questions. Sections

5.2.1–5.2.8 report on the summary statistics of survey questionnaire.

5.2.1 Prior computing experience

As mentioned in Section 4.3.2, prior computing experience was categorised as

prior programming and prior non-programming computer experiences. Question 1

asked the lecturer to indicate whether it is beneficial for students to have some

programming experience prior to taking CS1 classes or not. Seven lecturers of eight

stated that it is beneficial for students to have prior computer programming experience.

Question 2 asked the lecturer to select the prior programming language that

would give students an advantage in CS1. Table 5.1 shows that all lecturer participants

stated that experience in C would give students an advantage in CS1, followed by

experience in Java and Python.

Table 5.1

Lecturers’ Response to Students’ Prior Programming Language Experience (n=8)

Programming Language n

C 8

Java 5

Python 5

C++ 2

C# 2

Note: Participants could select more than one response.

Question 3 asked lecturers to select prior non-programming computer

experience that would assist students in CS1. From Table 5.2, we observed that most

lecturers stated that prior experience using the Internet to search for information and

use of application software would assist students in CS1.

121

Table 5.2

Lecturers’ Responses to Prior Experience in Non-Programming Computer Activities

(n=8)

Non-Computer Programming Experience n

Application software 7

Information search 6

Computer games 1

Note: Participants could select more than one response.

5.2.2 Y12 performance in mathematics, physics and chemistry

Question 4 asked lecturers to suggest the minimum Y12 scores required for

mathematics, physics and chemistry. Table 5.3 reports the mean and standard deviation

of students’ Y12 scores in mathematics, physics and chemistry. From the table, we can

observe that lecturer recommend that students have a good performance in

mathematics (at least 62.86), followed by physics (57.86) and chemistry (55).

Table 5.3

Summary Statistics of Students’ Minimum Y12 Score in Mathematics, Physics and

Chemistry, as Suggested by Lecturers

Y12 Subject n Mean Standard Deviation

Mathematics 7 62.86 7.56

Physics 7 57.86 6.99

Chemistry 7 55 5.00

The results presented here align with the student survey and interview data, in

which students’ performance in mathematics should be always higher than their

performance in physics and chemistry.

122

5.2.3 Programming paradigm

Question 5 asked the lecturer to indicate the programming paradigm that is

suitable for CS1. Although six lecturers of eight stated that a procedural programming

paradigm suits CS1, two lecturer stated that object-oriented programming would suit

CS1 and one lecturer stated that both paradigms would suit. Further discussion on this

will be presented in Chapter 7.

5.2.4 Programming environments used in CS1

Question 6 asked lecturers to select the programming environment they have

used to teach CS1. Table 5.4 reports on this data. The results show that the most

commonly used programming environment by the lecturers to teach CS1 was Turbo

C++, followed by Microsoft Visual Studio.

Table 5.4

Programming Environment Used by Lecturers to Teach CS1 (n=8)

Programming Tool n

Turbo C++ 5

Microsoft Visual Studio 4

Terminal/command line 1

Note: Participants could select more than one response.

The results presented in Table 5.4 confirm the results of the student surveys

and interviews in regard to the programming environments used by lecturers to teach

CS1: Turbo C++ and Microsoft Visual Studio.

Question 8 asked the lecturer to indicate an ideal programming environment to

be used in CS1 based on their teaching experience, while Question 9 asked the lecturer

to state the reason. Four of seven lecturers (one lecturer chose not to respond) chose

Turbo C++ as an ideal programming tool to be used in CS1 for the following reasons:

123

L01: Simple compiler with not many GUI [graphical user interface] buttons and

options which would normally keep away from distraction. It has all that is

required to get started with learning how to program.

L03: Turbo C++ is one of the oldest Borland compilers which lets

programmers use all the functions unlike other compiler. Dev-C++ does not

recognise a few header files that can be used in Turbo C++.

L08: Compared to Visual Studio, Turbo C++ lets students write code from

scratch so it gives a platform for the students to practise code writing in detail.

While in Visual Studio, many functions are in-built and getting autocorrected

where the learning platform is minimal.

Two lecturers out of eight chose using terminal/command line as an ideal

programming tool to be used in CS1:

L04: Since students are familiarised with Linux operating system, they can

easily write and compile programs using basic text editor and command line

tool. The students do not have to worry about the availability of the software.

L06: The environment seems user-friendly and easier for the students to use.

They can compile, locate the errors easily and then run the program

successfully

Only one lecturer of seven chose Microsoft Visual Studio as an ideal

programming tool to be used in CS1:

L05: The environment seems user-friendly and easier for the students to use.

They can compile, locate the errors easily and then run the program

successfully.

Although most lecturers identified Turbo C++ as the ideal programming tool

for use in CS1, it is recommended (based on student surveys and interviews) to further

124

explore other programming tools, such as PyCharm, Dev C++ and Code::Blocks.

Further discussion on this will be presented in Chapter 7.

5.2.5 First programming language to be taught in CS1

Question 10 asked lecturers to indicate the first programming language to be

taught in CS1 based on their experience teaching CS1. Table 5.5 reports on the first

programming language to be taught in CS1, as indicated by lecturers.

Table 5.5

Lecturers’ Response to the First Programming Language to be Taught in CS1 (n=8)

Programming Language n

C 8

C++ 1

Java 1

Python 1

VB.Net 0

C# 0

Note: Participants could select more than one response.

All lecturers stated that C should be the first programming language to be

taught in CS1:

L01: Easy to learn, language is designed to be readable. Applications of these

programming languages are relevant in scientific computing.

L03: C is a general-purpose, procedural and imperative language which is the

basic of computer programming languages. Having foundation knowledge and

skills in the above language can let students learn any other language.

L04: Since C language is a procedural language, students are given a platform

to think about solving real-time examples and C is simple, thereby students see

it as convenient to learn.

125

L06: C is popular and many languages are inspired from it. A student who has

learnt C can move easily to other language. We teach object-oriented

programming in second semester, so C is an ideal language for new students

to learn.

5.2.6 Teaching/learning methods and practices that best suit students in

learning CS1

Question 11 asked lecturers to indicate the teaching/learning methods and

practices that best suit students in learning CS1. Of three teaching/learning methods

and practices listed in Table 5.6, live coding by the lecturer was found to be highly

suited for students in CS1, followed by working in pairs/groups. This aligns with the

student survey and interview results discussed previously. Only one lecturer

emphasised the importance of practising writing code independently.

Table 5.6

Lecturer Response to Teaching/Learning Methods and Practices in CS1 (n=8)

Teaching/Learning Methods and Practices n Percent

Live coding by the lecturers 7 87.5%

Pair/group programming 2 25%

Practise writing code independently 1 12.5%

Note: Participants could select more than one response and list their own. Practising writing

code independently was listed.

5.2.7 Lecturers’ perceptions of the order of programming skills to be

taught in CS1

Question 13 asked lecturers to order the five programming skills to be taught

based on their experience teaching CS1 from 1 (first programming skill to teach) to 5

(last programming skill to teach). Lecturers were also asked to write the same number

on the programming skills if they believe that some of the programming skills could

be taught in parallel. According to Table 5.7, algorithm design (1.25) was the skill

126

suggested as the most appropriate to begin with, followed by translating (2.25),

explaining (2.50), writing (3.13) and tracing (4.38). Lecturers believe that translating

and explaining may be learnt at the same time, as the difference in means was low.

Both lecturers and students suggested to begin with algorithm design and end with

tracing. Refer to Section 4.2.3 for the student survey results.

Table 5.7

Summary Statistics of the Order of Programming Skills to be Taught in CS1 (n = 8)

Programming Skills Mean Std. Deviation

Tracing 4.38 1.06

Writing 3.13 1.13

Explaining 2.50 1.07

Translating 2.25 0.71

Algorithm design 1.25 0.46

5.2.8 Lecturers’ perception of the order of programming skills in terms of

their contribution to the Student Performance in CS1

Question 14 asked lecturers to order the five programming skills in terms of

their contribution to students’ performance in CS1 from 5 (highest) to 1 (lowest).

Lecturers were also asked to write the same number on the programming skills if they

consider that some programming skills contribute equally to student performance in

CS1. Table 5.8 shows that algorithm design (4) contributes the most to student

performance, followed by translating (3.38) and writing (3.38), explaining (2.88) and

tracing (2). The results presented in Table 5.8 do not align with the student survey

results presented in Table 4.13, in which students perceived that writing contributes

the most to student performance in CS1. The path analysis in Chapter 6 will further

examine the order of the five programming skills in terms of their contribution to

students’ performance in CS1.

127

Table 5.8

Summary Statistics on the Order of Programming Skills in Terms of Contribution to

Student Performance in CS1 (n = 8)

Programming Skills Mean Std. Deviation

Algorithm Design 4.00 1.41

Translating 3.38 0.92

Writing 3.38 0.92

Explaining 2.88 1.64

Tracing 2.00 1.19

5.3 Lecturer Qualitative Results

This sections reports on the results of the lecturers’ qualitative data from the

survey and individual interviews. As mentioned in the student qualitative results, the

lecturer qualitative data were also classified by examining the number of occurrences

of key terms. Results were summarised and compared with the results presented

previously in this chapter.

5.3.1 Lecturer qualitative survey results

Question 15 asked lecturers to suggest how to improve teaching/learning of

CS1 at RUB. Lecturers’ responses were classified similarly to the students’ responses

to this question—based on the number of occurrences of the areas listed below:

a) Prior computer programming experience

Lecturers L2 and L5 suggested that students should have some computer

programming experience in high school before taking CS1 in college:

L2: Have at least some programming language concepts before they join

college.

128

L5: The students should be taught some of the basics related to programming

when they are in high school or lower secondary school.

This point was not raised by the students in the survey, but most students

interviewed stated that some programming experience prior to taking CS1 classes

would be of benefit.

b) Live coding

Lecturer L3 raised the importance of illustrating programs (live coding) during

teaching sessions to benefit students in the learning of CS1.

L3: Teaching and learning through illustration of application of programming

(real-time application). Live coding in laboratory teaching.

c) Conduct theory and practical classes in parallel

Although lecturer L8 recommended conducting theory and practical sessions in

parallel or without gaps to assist students in implementing the concepts faster, this

was an issue due to the large number of students enrolled in one program. For

instance, at CST, more than 100 students were enrolled in civil engineering in

November 2016 and computer laboratory could accommodate only 30 students at

a time.

L8: If we conduct theory and practical together without gaps in between,

students can implement the concept faster. But it is very difficult due to the

large number of students.

d) Frequent review of CS1 module descriptor

Lecturer recommended visiting the CS1 module descriptor as often as possible

to update the content. However, he stated the RUB curricula review take place only

after four years.

129

L8: Reviewing CS1 module descriptor frequently (in short duration) may help

students to learn in better ways with improvement of new technology. But RUB

regulation allows to review only after four years.

The comparison of student and lecturer responses to this open-ended question

is shown in Table 5.9. Both students and lecturers suggests having theory and practical

sessions in parallel and recommended the demonstration of programs by coding live

in the class.

Table 5.9

Comparison of Student and Lecturer Suggestions on How to Improve

Teaching/Learning of CS1 at RUB

Student Response Lecturer Response

Theory and practical classes in parallel Theory and practical classes in parallel

Live coding and pair programming Live coding

Experienced lecturer in CS1 Prior programming experience

Same tutor for both theory and practical

sessions

Frequent review of CS1 module descriptor

5.3.2 Lecturer qualitative interview results

This section reports on the data collected from lecturer interviews. Eight

lecturers participated in individual interviews. Table 5.10 presents the details of the

lecturer participants from the three colleges of RUB.

Table 5.10

Lecturer Interview Participants

College Male Female Total

CST 4 1 5

JNEC 1 0 1

SC 2 0 2

 7 1 8

130

The areas covered in the interview were similar to those covered in the survey

(see Section 5.2). The semi-structured interview questions were utilised but the order

of the questions asked and the conversation was not controlled. The following presents

a summary report of lecturers’ responses.

5.3.2.1 Prior computing experience

Lecturers L5 and L8 interviewed stated that it would benefit students to have

some programming experience prior to taking CS1:

L5: I think some kind of programming concepts should be introduced in high

school. I feel if they have the concepts, it might help them to learn CS1 faster.

L8: Some kind of programming experience would be beneficial. I have

observed that students who had some experience in programming understood

the concepts in CS1 faster than the ones who had no prior experience.

Similarly, lecturers L1 and L4 asserted that basic computer literacy was

sufficient prior to taking CS1:

L1: Basic literacy in IT would suffice. At least one can use computer,

understands what a computer is and do a bit of word processing and

spreadsheets should be fine to get started.

L4: A basic knowledge of Office should be sufficient.

From the results of lecturer survey and interview, we can conclude that basic

computer literacy should be introduced to students taking science in Y12, in addition

to basic programming concepts.

5.3.2.2 Y12 performance in mathematics, physics and chemistry

As stated in the lecturer survey data and student interview data, the requirement

to perform well in mathematics in Y12 stands out from the rest of the subjects, like

physics and chemistry as L1, L4 and L6 pointed out:

131

L1: I think so because mathematics is not just limited to calculations and

numbers but students also learn logical reasoning while solving mathematical

problems. I feel that students who have very sound background in mathematics

may find it easy to learn CS1 as programming also involves logical reasoning.

L4: Mathematics helps students to gain brain analysing power.

L6: I have observed that students who scored well in their Y12 mathematics

did pretty well in CS1.

Lecturer L7 professed a different view. They said students who perform well

in Y12 mathematics do not necessary perform well in CS1:

L7: I think it depends. For example, students who did very well in Y12

mathematics have failed in CS1 and students who scored average marks in

mathematics did well in CS1. So I think mathematics background is not really

an indicator of success in CS1.

The correlation analysis in Chapter 6 will further validate these results and

indicate the extent to which mathematics performance is an indicator of success in

CS1.

5.3.2.3 Programming paradigm

Lecturers L4, L6 and L8 recommended that procedural programming

paradigms be taught for beginners in CS1 for several reasons. They stated that it would

be too much for students to learn the concepts of object-oriented programming, as they

do not have any prior programming experience. Thus, starting with procedural

programming would help them learn object-oriented programming easier:

L4: If we teach object-oriented programming first, then it is like putting cart in

front of the horse.

132

L6: Although object-oriented programming is useful in real-life application,

students here did not have any prior programming experience so it would be

too much for them to learn the concepts of object-oriented programming. If

they have the concepts of procedural language then learning object-oriented

programming would be easier.

L8: I think experience in procedural programming will help in learning object-

oriented programming better as object-oriented programming is complex and

might not be suitable for the beginners.

5.3.2.4 Programming environments used in CS1

Half of the lecturers recommended Turbo C++ as an ideal programming

environment to be used in CS1 because the interface is simple, there are limited

distractions on the buttons and introducing fancy integrated development

environments (IDE) may have a negative impact on students’ learning of programming

syntaxes and grammars, as the auto-complete function might not help students

remember the syntax and grammar.

L1: It is one of the preferred IDEs and a good platform to get started, as the

interface is simple and there are not many distractions on the buttons. One

thing I would like to mention especially when we are teaching the beginners, I

think introducing fancy IDEs may also have some negative impact, as the auto-

completion function does not help students remember the syntax and grammar.

L8: I feel using Turbo C++ will help the students to learn programming better

than Microsoft Visual Studio, as this tool has code auto-completion functions,

which will not allow the students to learn the language syntax and grammar.

The remaining 50 percent of lecturers recommended Microsoft Visual Studio

or terminal/command line as the ideal programming environments to be used in CS1.

133

Lecturer L6 stated that using Linux terminal/command line allows students to focus

on learning the language rather than learning how to use IDE:

L5: Both me and my students find it comfortable and user-friendly to use this

[Microsoft Visual Studio] environment.

L6: At the beginning, students can just focus on learning the language rather

than learning how to use IDE [terminal/command line].

5.3.2.5 First programming language to be taught in CS1

More than half the lecturers interviewed said that C should be the first

programming language to teach in CS1, as it is the basic programming language. They

believe that learning basic language would make learning any other language easier:

L5: I believe C is the basic programming language and if students learn the

basic language, then they can learn other language.

Lecturer L1 suggested Python as the first programming language in CS1

because the language is simple and appropriate for the beginners:

L1: I haven't tried myself but some of my friends who are experts commented

that Python would be one language that has come out time and again because

of its simplicity. So introducing beginning programmers using Python would

be more appropriate. That’s why we are suggesting Python to be used in our

upcoming programmes.

5.3.2.6 Teaching/learning methods and practices that best suit students

learning CS1

The lecturer responses covered three key areas: live coding, tutorial and group

programming. Tutorial as a topic emerged from the lecturer interviews in regard to

teaching/learning methods and practices that may assist students learning CS1. The

134

lecturer said that conducting tutorial classes once a week and giving one-on-one

consultation benefits students learning CS1:

L4: What I do whether in the class or in the computer lab, I take one problem

and then show how we can solve that problem by writing an algorithm and

drawing a flowchart. Then I translate them into programming codes and

demonstrate how we can write programs, compile and run to get the outcomes.

I also explain the outcome of the program. I think this methods helped students

in learning CS1 [live coding].

L6: I used to explain the concepts first and give live demonstration of the

programs and I asked students to do the same in the class [live coding].

L5: In the tutorial class, I give one-on-one consultation on the problems that

students face. In each tutorial class, we have not more than 10 students and it

is held once in a week. It helps both the tutor and the student to interact more.

Moreover, in the practical class, students were given list of questions to solve

[tutorial].

L6: I grouped students [group programming] and let them work on the given

problem and let them demonstrate their program to the whole class. I feel that

has helped students to understand the code better.

The key points that arose from the student and lecturer survey and interview

results were live coding and group programming. The one-on-one consultation was

not pointed out by students.

5.3.2.7 Lecturers’ perceptions of the best order of programming skills to be

taught in CS1

All lecturers and students interviewed stated the programming skill to begin

with is algorithm design and the last is either tracing or explaining. All other

135

programming skills fall in between. Table 5.11 shows the order of programming skills

to be learnt in CS1. Half of the lecturers interviewed listed the order as:

1. algorithm design

2. translating

3. writing

4. explaining

5. tracing

The remaining half of the lecturers interviewed listed the order as:

1. algorithm design

2. translating

3. writing

4. tracing

5. explaining

Table 5.11

Comparison between Students’ and Lecturers’ Order of Programming Skills to be

Learnt/Taught in CS1

Four (50%) Lecturers Four (50%) Lecturers 12 (52%) Student

1. Algorithm design Algorithm design Algorithm design

2. Translating Translating Translating

3. Writing Writing Writing

4. Explaining Tracing Tracing

5. Tracing Explaining Explaining

The order of programming skills presented in the first column of the table

aligns with the order presented in the survey results, in which algorithm design (1.25)

was suggested as the first skill and tracing was the last (4.38). Similarly, the order

136

presented in the second column (lecturer interview response) aligns with the order

presented in the third column (student interview response).

5.3.2.8 Lecturers’ perception of the order of programming skills in terms of

Contribution to Student Performance in CS1

Although some lecturers interviewed said that writing contributes most to

student performance in CS1, lecturers L1 and L5 stated that algorithm design

contributes the most:

L1: The basic foundation that I count should always attribute to the success

(i.e., how you understand programming, so beginning with flowchart and

writing an algorithm is the first thing). If you know that, then it can help student

to develop program codes, so algorithm design should be the first priority.

L5: I think algorithm design is the foundation skill for the other skills. If

students understand this skill, then the other skills should be easier to

understand as well.

Lecturers and students shared the same view—either writing or algorithm

design contributes most to student performance in CS1. Lecturers and students said

that writing contributes the most because if students are competent in writing

programs, it means they are already competent in other programming skills. Similarly,

both lecturers and students said that algorithm design contributes the most because it

is a foundation skill. If student knows this skill well, other skills can follow, which

ultimately contributes to success in CS1.

Therefore, we can report that both algorithm design and writing skills

contribute the most to student performance in CS1. The path analysis in Chapter 6 will

confirm this result.

137

5.3.2.9 Suggestions for the improvement of teaching/learning of CS1 at RUB

As mentioned previously, in student and lecturer surveys and student

interviews, lecturers’ responses to this question were classified according to the

number of occurrences of the following key areas. Four key areas were identified:

conduct theory and practical classes in parallel, teach CS1 using experienced lecturers,

pair-learning and student motivation.

a) Conduct theory and practical classes in parallel

As stated in the student survey results, lecturer L8 believe it would benefit students

in CS1 if both theory and practical classes ran in parallel. Lecturer L8 said that

students might forget the concepts they learnt in the theory class due to the gaps

between the theory and practical class:

L8: Based on my experience, I feel that both theory and practical classes

should be conducted at the same time in the computer lab. The current situation

is that we have theory classes first in the classrooms and then after 3–4 days,

we have practical class in the computer lab. By then, students forget the

concepts because of the gap between the theory and practical. So I strongly

recommend to take both theory and then practical at the same time in the

computer lab.

Therefore, the lecturer strongly recommended conducting both theory and

practical classes at the same time in the computer laboratory. This issue will be

further discussed in Chapter 7.

b) Teaching of CS1 by an experienced lecturer

As stated in the student survey results, lecturer L1 shared the same view that

experienced lecturers should be assigned to teach CS1. He said it would be a

138

challenge for both the tutor and the student if the tutor begins teaching immediately

after graduation. According to him, an experienced lecturer should teach so he can

bring examples that can stimulate students’ thinking:

L1: To improve teaching and learning is to do with the teacher. The teacher

should be experienced to some extent, that he can bring certain examples which

can stimulate thinking among the students. That is very important. If the

teacher himself just graduated and started to teach and has no experience, I

think it will definitely challenge both the teacher and the student in bringing

out the best application of what they are learning. I think that is more important

in order to improve teaching and teaching of CS1 at RUB.

c) Group programming

Both students and lecturers suggested group work to improve learning in CS1.

Lecturer L6 recommended that other RUB colleges develop a programming club

in which students from all semesters come together and learn programming; senior

students can help junior students write programs:

L7: Encourage students to work in groups.

L6: At CST, we have programming club where students do additional

programming tasks and I would recommend other RUB colleges to do the same

as well.

d) Motivation and interest

One key area mentioned by lecturers (but not students) was motivation and interest.

The lecturer stated that lecturers must be in a position to motivate students and

students must take interest in the subject they are learning. Lecturer L1 stated that

students should know the purpose of learning programming to gain motivation

139

throughout the programming journey. He also mentioned that students should be

aware of their career prospects—what they aspire to do and why they are learning

the module—to generate some kind of motivation to learn the module. It is useless

to learn it as paper just to pass and obtain the degree, as they would not be able to

do much in the application unless motivated to understand why they are learning:

L1: If they do not have the motivation as to how they are going to use and

where they are going to use, I think it would become very difficult for students

to at least get started with their learning. So I think first, students should be

sufficiently made aware about their career prospects and what they are going

to do and why they are learning such topics, such languages and such tools in

the class. If they know that, I think that would generate some kind of motivation

to learn the module. Otherwise they will always learn it as a kind of paper just

to pass and get the degree. Ultimately when it comes to application, I think

they will not be able to do much unless if they were so motivated to understand

why they are learning.

L5: First, the interest should come from the student. They should explore more

on their own and not depend on their tutor.

5.3.2.10 Insights on how students in CS1 should approach their learning to

achieve success

Lecturers’ response to this question provided four key areas: understanding the

logical construct of the program, student interest, practice and exploration.

a) Understand the logical construct of the program

Two lecturers interviewed highlighted the importance of the student understanding

the logical construct of the program. This can be achieved by representing the logic

in the form of a flowchart and writing algorithms:

140

L1: The logical construct of a program is very important to understand how

the program works. To command the computer to do something, students

should understand how they can command, so I believe the fundamental

understanding of how the program run is by drawing a flowchart and writing

an algorithm. I always give an example of making a cup of tea. Maybe there

are different ways of making a tea but there are certain processes as to what

you need first, what the ingredients are and what you will get at the end. There

is no programming in there but it shows the logical flow of how the

programming can be done.

b) Student interest

According to Lecturers L3 and L6, students’ interest in learning a particular subject

seems to be another contributing factor to success in that subject. This is something

to investigate further in the future, as it may be beyond the scope of this thesis:

L3: The interest should come from the students to learn any subjects. Once you

give your interest, I think success will be there with no doubt.

L6: Students should be passionate to learn and must willing to invest enough

time to learn that particular concepts.

c) Practice

Another important key point raised by Lecturers L5 and L6 was the importance of

practise in writing programs to achieve success in CS1. They believe that

programming language is like any other human language. To master it, we need to

practise:

L5: They should refer more books and practice more, browse Internet and

moreover they can approach the tutor if they don't understand.

141

L6: Try to complete all the questions that are assigned during the practical

class. Practise, practise, practise and keep on practising. C is a language as

any other human languages, it can be mastered only through practise and

repetition.

d) Exploration

According to Lecturers L5 and L8, students should go beyond the classroom and

explore on their own and not depend solely on the lecture notes. Students should

explore the topics by referring to more books, practising more and reading online.

Moreover, they should approach their tutor and friends if they do not understand:

L5: It is the responsibility of every tutor to explain the concepts well, then

students should not depend on the tutor, they should explore more on those

topics. Exploring means they should refer more books, practise more, browse

the Internet and moreover they can approach the tutor if they don't understand.

Also ask their friends.

L8: Students should not depend only on the notes that lecturer has provided.

They should explore more on their own and practice writing program codes.

5.4 Inter-Rater Reliability

IRR analysis was conducted to check the reliability of the PST results using

the two-way mixed (instructor fixed and student random) model with absolute

agreement (evaluating how close markers were in terms of their score). The output

result shows that Instructor 2 (68.75) is stricter than Instructor 1 (70.16). By

examining the average measures (0.964), there is high IRR between the two markers,

as shown in Table 5.12.

142

Table 5.12

IRR between Two Markers

 Interclass

Correlationb

95% Confidence Interval F Test with True Value 0

 Lower Bound Upper Bound Value df1 df2 Sig

Single Measures .930a .85 .97 29.36 26 26 .000

Average Measures .964c .92 .98 29.36 26 26 .000

Note: Two-way mixed effects model where people effects are random and measures effects are fixed.

a. The estimator is the same, whether the interaction effect is present or not.

b. Type A intraclass correlation coefficients using an absolute agreement definition.

c. This estimate is computed assuming the interaction effect is absent, because it is not estimate

otherwise.

5.5 Summary

This chapter reported on the quantitative univariate results from the lecturer

survey and qualitative results from the lecturer survey and interviews. This chapter

also presented the IRR between the two markers of the students’ PST.

The most commonly used programming environments by the lecturers to teach

CS1 at RUB was Turbo C++ and Microsoft Visual Studio. C programming language

was reported as an ideal programming language to teach in CS1.

It was reported that teaching/learning methods and practices such as live

coding, pair/group programming, writing code independently would benefits student

in learning CS1.

The lecturers’ best order of programming skills to be learnt in CS1 and the

order of programming skills in terms of their contribution to student performance was

also presented in this chapter.

Lecturers made some suggestions to improve the teaching/learning of CS1: the

same tutor should teach both theory and practical classes, theory and practical classes

should be taught in parallel, experienced lecturer should teach CS1, live coding and

143

pair/group programming should be encouraged, students should have prior computer

programming experience, students should be motivated and interested in learning, and

one-on-one consultations in tutorial sessions should be considered.

The lecturer also provided some insights on how students in CS1 should

approach their learning to achieve success in CS1. The results from this chapter will

be further discussed in the multivariate analysis in Chapter 6 and 7.

145

Chapter 6: Bivariate and Multivariate Results

6.1 Introduction

Chapter 4 and 5 described the quantitative univariate results from the students’

programming skills test (PST) and student and lecturer survey. It also reported on the

data collected from student and lecturer interviews. This chapter presents quantitative

bivariate and multivariate analysis of the students’ PST and survey data. Data were

analysed using simple correlations that describe the bivariate association between the

variables. The values of correlations were calculated using bivariate Pearson

correlation coefficients with a two-tailed test of significance. Data were then further

analysed using multiple regression, which determines the predictors of student

performance. In addition, path analysis was conducted.

The following sections begin with the presentation of the bivariate results from

the students PST and survey data. They report on the association between student

performance and: students’ prior computing experience; students’ Y12 performance

in mathematics, physics and chemistry; students’ performance in programming skills

such as algorithm design, translating, tracing, explaining and writing; and students’

learning approach. It also explores the association between programming skills.

Finally, it presents the results of linear multiple regression conducted to

investigate the significant programming skill predictors that determine student

performance in CS1, along with path diagrams constructed using the results of the

multiple regression.

6.2 Student Bivariate Results

This section presents the bivariate results of the student input factors, learning

process factors and student performance.

146

6.2.1 Association between student performance and students’ prior

computing experience

As mentioned previously, prior computing experience was categorised as prior

programming experience and prior non-programming computer experience. The

univariate analysis in the previous chapter identified a statistically significant

differences in means between students with and without prior programming

experience to OS performance and no statistical difference in means between students

with and without prior programming experience to FSE and PST scores (see Table

4.6). An examination of the simple correlation analysis shown in Table 6.1 indicates

that an association between students’ having prior programming experience and OS in

CS1. Thus, this result seems to support the univariate results presented in Chapter 4,

although the correlation was very low.

Table 6.1

Association between Students’ Prior Programming Experience and Student

Performance (n = 327)

 FSE (n) OS (n) PST(n)

Programming experience .072 (261) .130* (254) .077 (242)

Note: *𝑝 < 0.05.

Similarly, the univariate analysis for prior non-programming computer

experience—such as information searches using the Internet and use application

software such as Office and computer games—showed the difference in means of

student performance with and without prior non-programming computer experience.

However, it was not a statistically significant difference. An examination of the simple

correlation analysis shown in Table 6.2 indicates a significant negative association

between students who played computer games prior to taking CS1 and students’

147

performance in FSE in CS1. The remaining non-programming computer experience

was not statistically significant to any of the student performance measures. The results

indicate that only computer games seemed to have negative impact on students’

performance in CS1. Prior experience in information searches and application software

did not seem to have any impact on students’ performance in CS1.

Table 6.2

Association between Students who Played Computer Games and Student

Performance (n = 327)

NPE FSE (n) OS (n) PST (n)

Computer games –0.140*(206) –0.129(209) 0.022(193)

Note: *𝑝 < 0.05.

6.2.2 Association between student performance and students’ Y12

performance in mathematics, physics and chemistry

Table 6.3 reports the results for the associations between student performance

and Y12 performance in mathematics, physics and chemistry. The simple correlation

analysis showed significant positive association between student performance and

their Y12 performance in mathematics, physics and chemistry. While the results

showed that students’ Y12 performance in mathematics had a higher degree of

association to FSE and OS, followed by physics and chemistry, students’ Y12

performance in physics had a higher degree of association to the PST, followed by

chemistry and mathematics.

148

Table 6.3

Association between Student Performance and Y12 Performance in Mathematics,

Physics and Chemistry (n = 327)

Y12 Performance FSE (n) OS (n) PST (n)

Mathematics 0.234**(257) 0.322**(251) 0.182**(238)

Physics 0.221**(257) 0.305**(251) 0.193**(238)

Chemistry 0.169**(259) 0.279**(252) 0.183**(240)

Note: *𝑝 < 0.05. **𝑝 < 0.01.

The univariate analysis results presented in Chapter 4 showed a statistically

significant difference in means of student performance for students who scored highly

in mathematics, physics and chemistry (see Table 4.7–Table 4.9)

 It was confirmed from the univariate and bivariate correlation analysis that

students’ Y12 performance in mathematics, physics and chemistry did have some

impact on student performance in CS1.

6.2.3 Association between students’ ability in programming skills

Table 6.4 shows the association among algorithm design, translating, tracing,

explaining and writing. The simple correlation analysis indicates positive and

significant associations among programming skills. Although the concepts of

programming skills seem to develop in sequence—that is, they start with algorithm

design and end with writing—skills like translating, tracing, explaining and writing

overlap each other and develop simultaneously, so some correlation would be

expected. As shown in Table 6.4, the degree of association between tracing and

explaining is higher compared to others. This is followed by explaining and writing;

translating and explaining, and translating and writing. This indicates that students

competent in tracing a piece of code can explain what this code does in plain English

and vice versa. Similarly, the ability to write code indicates that the student is

149

competent in explaining the purpose of the piece of code in plain English. The reverse

may not be true all the time, as in explaining, the code is already given. The student

just needs tracing skills to trace a piece of code and then explain the purpose in plain

English. The association between translating and explaining indicates that students

able to translate the algorithm design correctly into any high-level programming

language can also explain in plain English what the translated code does and vice

versa. The association between translating and writing indicates that students

competent in translating the algorithm design correctly into any high-level

programming language are also competent in writing codes. It seems true that the

translated programs are closer to executable written programs.

Table 6.4

Association among Algorithm Design, Translating, Tracing, Explaining and Writing

(n = 292)

Programming

Skills

Algorithm

Design
Translating Tracing Explaining Writing

Algorithm

design

 0.164** (289) 0.229**(286) 0.186**(285) 0.225**(276)

Translating 0.176**(287) 0.350**(286) 0.322**(277)

Tracing 0.366**(284) 0.215**(278)

Explaining 0.354**(277)

Writing

Note: **𝑝 < 0.01.

6.2.4 Association between student performance and students’ ability in

programming skills

Table 6.5 shows the association between student performance and their ability

in programming skills. The correlation results indicate a positive significant

association between student performance and ability in algorithm design, translating,

tracing, explaining and writing. The degree of association between student

150

performance and explaining was higher than the degree of association between student

performance and the rest of the programming skills. This was followed by writing,

translating, tracing and algorithm design. This may be suggestive of a possible

hierarchy in the programming skills, which is further discussed in Section 6.3.

Table 6.5

Association between Student Performance and Ability in Programming Skills (n =

327)

Programming Skills FSE (n) OS (n)

Algorithm design 0.252**(283) 0.170**(219)

Translating 0.415**(284) 0.378**(220)

Tracing 0.353**(282) 0.304**(218)

Explaining 0.555**(280) 0.517**(219)

Writing 0.522**(272) 0.402**(213)

Note: **𝑝 < 0.01.

6.2.5 Association between student performance and students’ learning

approach

As mentioned in Section 3.6.2, to examine how students’ approach their

learning in CS1, Biggs’s R-SPQ-2F (which consists of 20 closed-response questions

scored on a 5-point Likert scale) was chosen. The elements of the instrument were

grouped under deep approach (deep motive and deep strategy) and surface approach

(surface motive and surface strategy). Table 6.6 shows the association of students’

learning approaches and their performance in CS1.

151

Table 6.6

Association between Student Performance and Students’ Learning Approach

(n = 327)

Learning Approach FSE (n) OS (n) PST (n)

Deep approach 0.096(252) 0.142*(245) 0.133(233)

Deep motive 0.084(252) 0.124(245) 0.101(233)

Question 4 0.156*(249) 0.160*(242) 0.077(231)

Deep strategy 0.082(252) 0.122(245) 0.130*(233)

Question 7 0.086(251) 0.126*(244) 0.100(232)

Question 8 0.147*(250) 0.165**(243) 0.192**(231)

Surface approach –0.141*(251) –0.135*(244) –0.126(232)

Surface motive –0.152*(251) –0.144*(244) –0.176**(232)

Question 12 –0.094(247) –0.079(241) –0.166*(228)

Question 13 –0.095(250) –0.077(243) –0.149*(231)

Question 15 –0.156*(251) –0.159*(244) –0.127(232)

Surface strategy –.0101(251) –0.197(244) –0.051(232)

Note: *𝑝 < 0.05. **𝑝 < 0.01.

The correlation analysis results show that both deep and surface approaches

had significant correlation to student performance in CS1. That is, the deep approach

was positively correlated to student performance and the surface approach was

negatively correlated to student performance; these were the expected results.

Although the correlations were significant, they were very low (0.142 [OS], –0.141

[FSE] and –0.135 [OS]). Some questions that significantly correlated to student

performance was also shown in the table. The questions include:

Question 4: I work hard at my studies because I find the material interesting.

[Deep motive]

Question 7: I find most new topics interesting and often spend extra time trying

to obtain more information about them. [Deep strategy]

152

Question 8: I test myself on important topics until I understand them

completely. [Deep strategy]

Question 12: I do not find my course very interesting so I keep my work to the

minimum. [Surface motive]

Question 13: I find I can get by in most assessments by memorising key sections

rather than trying to understand them. [Surface motive]

Question 15: I see no point in learning material which is not likely to be in the

examination. [Surface motive]

Although correlation coefficients of these questions to student performance

were consistent (in terms of sign) with the expected outcomes from this instrument,

they were very low. Therefore, we cannot conclude that students’ learning approaches

are determinants of student performance in CS1. This result may be attributed to the

fact that English is not the students’/participants’ first language, making it difficult for

them to comprehend the questions in the questionnaire.

6.3 Multivariate Results

In Chapter 4 and 5, lecturers and student were asked in the survey and interview

about their perception of the order of programming skills in terms of their contribution

to student performance in CS1. This section presents the relative contribution of the

programming skills variables to student performance through multiple regression and

path analysis to confirm/disconfirm the order of programming skills listed as perceived

by the lecturers and students in Chapter 4 and 5.

6.3.1 Multiple regression analysis

The first part of this section presents results of a multiple regression with

students’ performance in algorithm design, translating, tracing, explaining and writing

as an independent variables (predictor variables) and FSE, OS and modified FSE

153

(MFSE) as dependent variables (output variables). The researcher realised that some

questions in FSE were not related to the programming skill variables in this study.

Thus, to improve regression model, the researcher removed questions that did not fall

under algorithm design, translating, tracing, explaining and writing and recorded the

new score as MFSE. The questions removed from FSE related to the theory of

language features, such as defining ‘symbolic constant’ and declaring it;

differentiating between ‘call by value’ and ‘call by reference’; writing notes on ‘C pre-

processor’; explaining how to use ‘jump’ and ‘goto’ statements; where C programming

language was developed; and questions on number systems conversion. The MFSE

score for SC was 36, JNEC was 31.75 and CST was 39.5, which was out of 50 (SC),

40 (JNEC) and 50(CST) respectively. The CS1 FSE paper of SC, JNEC and CST is in

Appendix L.

The second part of this section presents results of a multiple regression with

students’ performance in algorithm design, translating, tracing and explaining as

predictor variables and writing as the output variable.

6.3.1.1 Multiple regression results with students’ performance in algorithm

design, translating, tracing, explaining and writing as independent variables

and FSE, OS and MFSE as dependent variables

Table 6.7 shows the six assumptions that were checked before running multiple

regression. All assumptions listed in Table 6.7 for the independent and dependent

variables were met and statistical results are shown in Appendix I.

154

Table 6.7

Verifying the Assumptions to Run Multiple Regression

Assumptions FSE OS MFSE

The relationship between the predictor variables and the

output variable is linear

There is no multicollinearity in your data

The values of the residuals are independent

The variance of the residuals is constant (homoscedasticity)

The values of the residuals are normally distributed

There are no influential cases (significant outliers) biasing

your model

Table 6.8 presents the results of the multiple regression analysis with student

performance as the dependent variable and students’ performance in algorithm design,

translating, tracing, explaining and writing as independent variables.

Table 6.8

Multiple Regression Results with Student Performance as Dependent Variable and

Programming Skills as Independent Variables

 Student Performance

FSE OS MFSE

Variables 𝑩 95% CI 𝑩 95% CI 𝑩 95% CI

Constant 27.63** [22.70,32.55] 41.73** [36.85,46.61] 19.53** [14.26,24.80]

Algorithm design 0.036 [–0.024,0.096] 0.018 [–0.040,0.077] 0.018 [–0.045,0.082]

Translating 0.078** [0.024,0.131] 0.066* [0.016,0.117] 0.116** [0.061,0.172]

Tracing 0.083** [0.020,0.145] 0.068* [0.011,0.126] 0.104** [0.039,0.169]

Explaining 0.151** [0.102,0.200] 0.126** [0.079,0.173] 0.105** [0.099,0.201]

Writing 0.220** [0151,0.290] 0.110** [0.043,0.176] 0.234** [0.162,0.307]

𝑹2 0.454 0.365 0.484

𝑭 43.64** 23.701** 47.83**

Note: *𝑝 < 0.05. **𝑝 < 0.01.

155

Multiple regression results with FSE as the dependent variable and algorithm

design, translating, tracing, explaining and writing as independent variables indicates

that the model explained 45 percent of the variance and that the model was a significant

predictor of FSE, 𝐹(5,262) = 43.64, 𝑝 = .000. translating (𝐵 = .078, 𝑝 < .05),

tracing (𝐵 = .083, 𝑝 < .05), explaining (𝐵 = .151, 𝑝 < .05) and writing (𝐵 =

.220, 𝑝 < .05) contributed significantly to the model, algorithm design (𝐵 = .036, 𝑝 <

.240) did not. The final predictive model was: FSE = 27.63 + (.078 * translating) +

(.083 * tracing) + (.151 * explaining) + (.220 * writing).

Multiple regression results with OS as the dependent variables and algorithm

design, translating, tracing, explaining and writing as independent variables indicates

that the model explained 36.5 percent of the variance and that the model was a

significant predictor of OS, 𝐹(5,206) = 23.70, 𝑝 = .000. While translating (𝐵 =

.066, 𝑝 < .05), tracing (𝐵 = .068, 𝑝 < .05), explaining (𝐵 = .126, 𝑝 < .05) and

writing (𝐵 = .110, 𝑝 < .05) contributed significantly to the model, algorithm design

(𝐵 = .018, 𝑝 < .534) did not. The final predictive model was: OS = 41.73 + (.066 *

translating) + (.068 * tracing) + (.126 * explaining) + (.110 * writing).

A multiple regression result with MFSE as the dependent variable and

algorithm design, translating, tracing, explaining and writing as predictor variables

indicates that the model explained 48.4 percent of the variance and that the model was

a significant predictor of MFSE, 𝐹(5,255) = 47.825, 𝑝 = .000. While translating

(𝐵 = .116, 𝑝 < .05), tracing (𝐵 = .104, 𝑝 < .05), explaining (𝐵 = .150, 𝑝 < .05) and

writing (𝐵 = .234, 𝑝 < .05) contributed significantly to the model, algorithm design

(𝐵 = .018, 𝑝 < .573) did not. The final predictive model was: MFSE = 19.532 + (.116

* translating) + (.104 * tracing) + (.150 * explaining) + (.234 * writing).

156

After running series of multiple regression, we can observe that the results

using MFSE as an output variable is better in terms of variations explained by their

independent variables compared to FSE and OS.

In each model, writing and explaining had the largest beta value and

contributed most towards the predicted value of the dependent variable.

6.3.1.2 Multiple regression results with students’ performance in algorithm

design, translating, tracing and explaining as independent variables and

writing as the dependent variable

At the end of one semester of CS1, students’ were expected to write programs

in any high-level computer programming language to solve problems. Also, since

students’ ability in writing represents the final programming skills for students in CS1,

the researcher decided to use writing as a dependent variable and other programming

skills variables—algorithm design, translating, tracing and explaining—as

independent variables. Table 6.9 presents multiple regression results with writing as

the dependent variable and algorithm design, translating, tracing and explaining as

independent variables.

The results of the regression indicates that the model explained 18.8 percent of

the variance in writing and the model was a significant predictor of

writing, 𝐹(4,269) = 15.56, 𝑝 = .000. While algorithm design (𝐵 = .120, 𝑝 < .05),

translating (𝐵 = .158, 𝑝 < .05) and explaining (𝐵 = .163, 𝑝 < .05) contributed

significantly to the model, tracing (𝐵 = .042, 𝑝 < .444) did not. The final predictive

model was: writing = 13.94 + (.120 * algorithm design) + (.158 * translating) + (.163

* explaining).

157

Table 6.9

Multiple Regression Results with Writing as Dependent Variable and Other

Programming Skills as Independent Variables

Variables

Writing

𝑩 95% CI

Constant 13.94** [5.23,22.36]

Algorithm design 0.120* [0.016,0.223]

Translating 0.158** [0.068,0.248]

Tracing 0.042 [–0.066,0.150]

Explaining 0.163** [0.081,0.245]

𝑹2 0.188

𝑭 15.56**

Note: *𝑝 < 0.05. **𝑝 < 0.01.

Thus, algorithm design, translating and explaining are the significant predictors

of writing which means students have to be competent in algorithm design, translating

and explaining in order to perform well in writing. Although 18.8% is a relatively

small amount of the variance in writing that is being accounted for by the other

programming skills variables, it should be noted that this is only part of the final model

that is developed in subsequent sections.

6.3.2 Path analysis

To better understand the multiple regression results shown above, the path

diagram presented in this section was created to better visualise the relative

contribution of the predictor variables to the outcome variables. Figure 6.1 shows the

hypothesised causal ordering for how algorithm design, translating, tracing, explaining

and writing predict student performance.

158

Figure 6.1. Hypothesised path model.

Figure 6.2—Figure 6.4 shows the path diagrams created with FSE, OS and

MFSE as dependent variables and algorithm design, translating, tracing, explaining

and writing as independent variables. Once the significant predictors of FSE, OS and

MFSE were identified, the process was repeated with writing as the dependent variable

and algorithm design, translating, tracing and explaining as independent variables.

In the path diagrams, variables are shown in the box, the beta coefficient with

Pearson correlation in brackets is shown along the paths. 𝑅2 and error variance (𝑒

values) are shown underneath writing, FSE, OS and MFSE. Error variance values were

computed using 𝑒 = √1 − 𝑅2.

As shown in Figure 6.2, students’ marks on algorithm design questions

accounted for only 4.7 percent of the variance in the marks scored on writing questions

(𝑅2 = 0.047). The marks students scored on translating questions accounted for only

15 percent of the variance in the marks scored on writing questions (𝑅2 = 0.153) and

the marks students scored on explaining questions accounted for only 13 percent of

the variance in the marks scored on writing questions (𝑅2 = 0.13). In combination, the

159

algorithm design, translating and explaining questions accounted for 19 percent of the

variance in the marks scored on writing (𝑅2 = 0.188).

Figure 6.2. Path diagram with FSE and writing as output variables and programming

skills as predictor variables.

Also, students’ marks on translating questions accounted for only 15 percent

of the variance in the marks scored on FSE (𝑅2 = 0.15). Students’ marks on tracing

questions accounted for only 12 percent of the variance in the marks scored on FSE

(𝑅2 = 0.12). The marks students scored on explaining questions accounted for only 30

percent of the variance in the marks scored on FSE (𝑅2 = 0.30) and students’ marks on

writing questions accounted for only 27 percent of the variance in the marks scored on

FSE (𝑅2 = 0.27). In combination, translating, tracing, explaining and writing questions

accounted for 45 percent of the variance in the marks scored on FSE (𝑅2= 0.454).

Figure 6.3 indicates that students’ marks on translating questions accounted for

only 12 percent of the variance in the marks scored on OS (𝑅2 = 0.12). Marks scored

on tracing questions accounted for only 10 percent of the variance in the marks scored

on OS (𝑅2 = 0.10). Students’ marks on explaining questions accounted for only 27

160

percent of the variance in the marks scored on OS (𝑅2 = 0.27) and the marks scored on

writing questions accounted for only 16 percent of the variance in the marks scored on

OS (𝑅2 = 0.16). In combination, translating, tracing, explaining and writing questions

accounted for 36.5 percent of the variance in the marks scored on OS (𝑅2 = 0.365).

Figure 6.3. Path diagram with OS and writing as dependent variables and

programming skills as independent variables.

Figure 6.4 indicates that students’ marks on translating questions accounted for

only 19 percent of the variance in the marks scored on MFSE (𝑅2 = 0.19). Marks scored

on tracing questions accounted for only 13 percent of the variance in the marks scored

on MFSE (𝑅2 = 0.13). Students’ marks on explaining questions accounted for only 30

percent of the variance in the marks scored on MFSE (𝑅2 = 0.30) and the marks

students scored on writing questions accounted for only 28 percent of the variance in

the marks scored on MFSE (𝑅2 = 0.28). In combination, translating, tracing, explaining

and writing questions accounted for 48 percent of the variance in the marks scored on

MFSE (𝑅2 = 0.484).

161

Figure 6.4. Path diagram with MFSE and writing as dependent variables and

programming skills as independent variables.

From the path diagrams, we can observe that the results using MFSE as a

dependent variable explain more of the variance in the model than do FSE and OS.

The following hierarchy was reported after examination of the multiple regression

results and path diagram. Number 1 (algorithm design) contributed least to student

performance and number 5 (writing) contributed most to student performance:

1. algorithm design

2. tracing

3. translating

4. explaining

5. writing.

6.4 Summary

This chapter presented results on the quantitative bivariate and multivariate

analysis of the student PST and survey data. From the correlation analysis, writing and

explaining were shown to have a greater degree of association to student performance,

162

followed by translating and tracing, with algorithm design having the least association.

This was consistent with the deep approach of learning having positive correlation to

student performance, and surface approach of learning having a negative correlation

to student performance. Although correlation coefficients were consistent, the values

were either very low or not significant, mainly due to the fact that the English is not

the students’/participants’ first language. This may have made it difficult for them to

comprehend the questions.

From the regression analysis, several direct and indirect programming skills

were identified as predictors of student performance (FSM, OS and MFSE). In each of

the students’ performance taken as a dependent variable, algorithm design was found

to be an indirect predictor via writing, while translating, explaining, tracing and writing

were found to be direct predictors of student performance.

From path analysis, multiple regression results using MFSE as a dependent

variable explained more of the variance in the model (48.4 percent) compared to using

FSE (45 percent) and OS (36.5 percent) as dependent variables.

After examination of the multiple regression results and path diagram, the

hierarchy of programming skills in terms of their contribution to student performance

was reported in this order: algorithm design (least contribution), tracing, translating,

explaining and writing (greatest contribution) to student performance.

The results presented in this chapter along with the results presented in Chapter

4 and 5 will be discussed further in Chapter 7.

163

Chapter 7: Answers to Research Questions and Discussion

7.1 Introduction

Chapter 6 presented the results of the bivariate and multivariate analysis of the

quantitative data. This chapter discusses the results in light of the research questions.

Research questions will be first answered and then discussed. The results of this study

will be compared and contrasted with those from previous studies where possible. The

key variables identified in the qualitative data will also be discussed.

Recommendations for CS1 at RUB will be made, followed by a summary of this

chapter.

7.2 Answers to Research Questions and Discussion

7.2.1 What was the students’ prior computing experience and does this

affect performance in CS1?

7.2.1.1 Prior non-programming computer experience

Students’ prior non-programming computer experience was mostly in Internet

searching, computer games and application software such as Microsoft Word,

PowerPoint and Excel respectively. The statistical analysis did not show any

significant result between students who spent more hours on information searches and

application software and their performance in CS1. The only significant result was a

negative correlation between students’ spending more hours on computer games and

their performance in CS1.

The results from this study showed no significant difference between students

with prior non-programming computer experience and students without prior non-

programming computer experience to student performance in CS1. The only

significant correlation found was between students’ spending more hours on computer

164

games (negative). There was little research on non-programming computer experience

and its impact in students’ performance in CS1. Studies that have examined this also

reported that the prior non-programming experience does not affect student

performance in CS1, except computer gaming experience, which has a negative impact

on students’ performance in CS1. Five of the eight lecturers interviewed also said that

this would not affect students’ performance in CS1. However, it would be easier for

students initially in CS1 classes to have at least basic computer knowledge on how to

use and understand what computers can do (i.e., word processing and spreadsheets).

While students were not exposed to non-programming computer activities in

Y12 (especially how to Google and search for information and basic knowledge of

Office), all student were exposed to non-programming computer activities during the

time they learnt CS1. For example, Sherubtse College (SC) curriculum has a module

titled ‘Office Productivity Tools’ offered in the first semester to all new students. In

this module, students learn how to create documents, manipulate and analyse data

using spreadsheets, prepare presentations and develop simple databases. However, the

other two participating colleges (College of Science and Technology (CST) and Jigme

Namgyel Engineering College (JNEC)) do not offer this module in their curricula.

Moreover, there is a university-wide module titled ‘Academic Skills’ offered to all first

semester students. In this module, student learn academic-related skills such as

academic writing, oral presentation, critical thinking and effective communication

skills. Therefore, students with no prior non-programming computer experience were

learning in parallel with CS1. Further research may be required to investigate the

impact of learning non-programming computer activities in parallel with CS1 on

students’ performance in CS1.

165

7.2.1.2 Prior programming experience

Students’ prior programming experience was mostly in C, Java, JavaScript and

Python respectively. The statistical analysis showed that students with some

programming experience performed better in CS1 than those without. The interview

results indicated that students with experience in computer programming language

found it easier to understand the concepts in CS1 classes than their friends with no

experience in any programming language.

The results from this study—that prior programming experience is positively

correlated with student performance—are consistent with the studies reviewed in

Section 2.4.1. The researcher believes that having some programming knowledge

before commencing CS1 would be advantage for students in the initial stage only, as

the researcher has observed during the teaching of CS1 that students with no prior

knowledge of programming find it difficult initially but later excel over students with

prior programming knowledge. This aligns with the results of Wilcox and Lionelle

(2018), who found that students with prior exposure to programming performed

significantly better in CS1, but this reduces in the subsequent CS2 course. This is

further discussed in Section 7.3.

7.2.2 What are students’ and lecturers’ experience/perceptions of first

programming language, programming paradigm, programming

environment and teaching/learning methods and practices?

7.2.2.1 First programming language, programming paradigm and

programming environment

 Lecturers and students stated that C should be the first programming

language (see Table 4.10, 4.4.2.4, Table 5.5 and 5.3.2.5).

166

 The lecturer stated that the procedural programming paradigm should be

taught for the beginners (see Sections 5.2.3 and 5.3.2.3).

 Both lecturers and students stated that Turbo C++ and Microsoft Visual

Studio should be used as a programming environment to learn

programming. Some students also mentioned PyCharm and Code::Blocks

(see Sections 4.3.2.3, Table 5.4 and 5.3.2.4).

The first programming languages widely used to teach in the universities

worldwide (as discussed in the literature) were Java, C, C++ and Python. C was chosen

by most students and lecturers at RUB as the first programming language. The reason

may be that C was taught and learnt as the first programming language over a decade

ago and lecturers were adept in teaching C. Also, since lecturers were familiar with C,

they were resistant to change to another programming language. Some lecturers stated

that many popular programming languages are based on C, so if students learn C, they

will not face any problems switching to another programming language. Some

lecturers and students suggested starting with Python, as they heard from others that it

was simple to grasp. Currently at RUB, computer science and information technology

students study C in first semester, C++ in second semester and Java in the fourth

semester. Students enrolled in engineering programs such as architecture, electrical,

and electronics and communication study C in first semester and this is the only

module of programming that they study during their program. Students enrolled in

civil engineering study C in the first semester and C++ in the second semester only.

After the literature review, the researcher recommended either C, C++, Python

or Java for use as the first programming language. This is because several research has

reported that the choice of the first programming language does not have a deep impact

on difficulties that students may experience in learning to program (Ivanović,

167

Budimac, Radovanović, & Savić, 2015; Xinogalos, Pitner, Ivanović, & Savić, 2018).

What matters most is the overall quality of the course and the lecturer who delivers the

instruction. Students stated that it would benefit them if experienced lecturers were

assigned to teach CS1. This is true, as it is important for students studying CS1 to build

good foundations for their subsequent education in programming.

At RUB, most lecturers identified the procedural paradigm as a suitable

paradigm to introduce for beginners. However, some studies (Kölling, 1999) reported

that it was not necessary to start with procedural paradigm; object-oriented paradigm

could be introduced right away. At RUB, since C is used in CS1, it is a procedural

programming paradigm. According to Aleksić and Ivanović (2016), most courses are

based on procedural than objected-oriented paradigms. Thus, after the review of the

literature and based on the results of this study, the researcher believes that at RUB,

the procedural paradigm should be taught in the first semester and the object-oriented

paradigm should be introduced in later semesters using the same or different

programming language for computer science and information technology students.

Engineering students can use either procedural or object-oriented paradigms, as they

study only in first semester (except civil students, who study in the second semester as

well). Although C programming language was used at RUB in CS1, staff professional

development might assist in trying other commonly used programming languages in

CS1.

At RUB, lecturers and students chose Turbo C++ and Microsoft Visual Studio

as programming environments to learn programming. Again, these programming

environments have been used for more than a decade, so lecturers and students are

familiar with it. The researcher has used Turbo C++ and Dev-C++ as a programming

environment while teaching CS1. Although both Turbo C++ and Dev-C++ provide a

168

user-friendly interface, display clear and accurate error messages, allow easy typing,

compilation and running, the researcher prefers Dev-C++, as it is convenient to use.

Turbo C++ takes control of the screen and you cannot move the cursor out of the

environment. Sometimes you cannot even maximise or minimise the screen. Most

often, the program ends abruptly and must be reopened. Moreover, based on the

experience of Turbo C++ interface, the researcher would argue that Turbo C++ is now

obsolete and it is time to move into new programming environments that are both easy

and convenient for beginners to use. Thus, it is worth considering other programming

environment possibilities and trialling these before changing curricula.

7.2.2.2 Teaching/learning methods and practices

For teaching/learning methods and practices, both lecturers and students stated

that students benefit in learning CS1 from coding live in the class and programming in

pairs or groups (see Table 4.11, Section 4.4.2.5, Table 5.6 and Section 5.3.2.6). A

lecturer also stated that students should practise writing code independently (see

Section 5.2.6). Students stated that reading materials online and watching YouTube

tutorials helped them in learning to program (see Table 4.11).

Although the literature reported numerous teaching/learning methods and

practices that might assist students in overcoming the difficulties of learning to

program, at RUB, the teaching/learning methods and practices that they found

beneficial for students were: live coding by lecturers in the lecture session and

pair/group programming in the laboratory. Students stated that live coding by the

lecturers has helped them understand the program better and made it easier to find

errors. Similarly, working in pairs/groups has helped them debug programs and

understand concepts better by exchanging knowledge and ideas among peers. Thus,

based on these results, the researcher considers in continuing with these methods and

169

practices, as the benefits have also been reported in previous studies (Paxton, 2002;

Rubin, 2013). In addition, the researchers considers it might help students who are

slow in following the class by watching pre-recorded lecturers in their own time as this

method has generated positive feedback from students in previous studies

(Mohorovičić & Strčić, 2011).

In addition to learning in pair/groups, encouraging students to write code on

their own without help from their pair/groups might also help them learn to program.

This is important, as they learn to write programs independently. It may also be useful

to guide students in how to search for relevant materials online that might also assist

them in understanding the concepts better. Thus, teaching/learning methods and

practices such as live coding, pair/group programming, independent coding, reading

materials online and watching YouTube tutorials that have helped students in RUB to

learn to program might assist other students taking CS1 in other universities

worldwide. It may also inform lecturers’ teaching methods and practices.

7.2.3 What is the association, if any, between students’ performance in

CS1 and students’ Y12 performance in mathematics, physics and

chemistry?

The Pearson correlational analysis showed a low positive significant

correlation between mathematics, physics and chemistry, and student performance

(see Table 6.3).

Though correlations were found to be significant, these were low. Prior

performance in mathematics had a slightly higher correlation with student

performance in CS1 than did physics and chemistry. This may be true, as previous

studies have also revealed that mathematics is a predictor of students’ success in CS1

(Ayub & Karnalim, 2017; Bennedsen & Caspersen, 2005; Bergin & Reilly, 2005b;

170

Qian & Lehman, 2016; Wilson & Shrock, 2001). In contrast, Watson, Li, and Godwin

(2014) reported no significant correlation between either mathematics, physics or

chemistry, and student performance. Few studies have examined the association

between students’ Y12 performance in physics and chemistry and their performance

in CS1.

At RUB, students in computer science and engineering programs are selected

based on their Y12 scores in mathematics, physics and chemistry. Students must pass

(by over 50 percent) in mathematics, physics and chemistry. Selections are based on

merit ranking of computed value by the subject ability rating. The ability rating of

mathematics and physics is 5 and chemistry is 4. The results from this study indicate

that the performance of students’ in Y12 mathematics, physics and chemistry have a

significant impact on student taking CS1 classes. The researcher believes students who

are competent in mathematics and scored highly in their Y12 examination might

perform well in CS1, as both mathematics and programming problems require logic.

Thus, the researcher proposes to some amendments in the ability ratings for the

selection of students in a program that consists of a programming module in the first

semester. For example, the ability rating for mathematics could be 5, physics could be

4 and chemistry could be 3. This ability rating may apply only to computer science

and information technology students.

7.2.4 What is the association, if any, between students’ performance in

CS1 and students’ learning approach?

The results shows consistent expected results, with a deep approach having a

positive significant correlation to student performance, and a surface approach having

a negative significant correlation to student performance. However, these correlations

were very low (see Table 6.6). A possible explanation for this may be the Bhutanese

171

students’ inability to fully comprehend the questionnaire items, as English is the

second language in Bhutan. Furthermore during interviews, despite the low

correlations, the students’ who gave a description of using a deep approach to learning

in CS1 did well as compared to those students who described using a surface approach

to learning. Thus, it is likely that a deep approach to learning improves students’

performance in CS1.

Despite the low correlations, the results were similar to previous studies—a

positive trend between a deep approach and student performance, and a negative trend

between a surface approach and student performance.

Examining the individual items of the Biggs questionnaire, some items under

deep approach correlated positively to student performance and some surface approach

elements correlated negatively to student performance. Elements under deep motive—

such as ‘I work hard at my studies because I find the material interesting’—and

elements under deep strategy—such as ‘I find most new topics interesting and often

spend extra time trying to obtain more information about them’ and ‘I test myself on

important topics until I understand them completely’—correlated positively to student

performance. Elements under surface motive—‘I do not find my course very

interesting so I keep my work to the minimum’, ‘I find I can get by in most assessments

by memorising key sections rather than trying to understand them’ and ‘I see no point

in learning material which is not likely to be in the examination’—and elements under

surface strategy—‘I learn some things by rote, going over and over them until I know

them by heart even if I do not understand them’ and ‘I believe that lecturers shouldn’t

expect students to spend significant amounts of time studying material everyone

knows won’t be examined’—correlated negatively to student performance.

172

Similarly, lecturers’ response to an interview question on their insights into

how students in CS1 should approach their learning to achieve success mostly fell

under the deep approach of learning (see Section 5.3.2.10). Thus, the results indicate

that students’ approaches to learning is a factor that determines success in CS1. The

lecturer might be able to encourage students taking CS1 to adopt deep approaches to

learning, as learning approach can be changed based on context, even though the

student may have their own preference of learning approach. One way to attend to this

may be to allocate the first week of CS1 classes to orienting students on the learning

strategies that may help them to achieve good performance in CS1 instead of delving

straight into CS1 content.

7.2.5 What is the association, if any, among the programming skill

variables?

The results showed a positive significant correlation (𝑝 < 0.01) between

students’ ability in algorithm design, translating, tracing, explaining and writing (see

Table 6.4).

According to BRACElet studies (see Section 2.4.7), students who did well on

explaining tasks usually performed well on writing tasks, and students who could only

trace code below 50 percent could not usually explain code. The results from this study

support the results of the BRACElet studies, as some associations between the

programming skills exist. The positive significant association between explaining and

writing indicates that when students become competent in explaining written code,

they can then be able to write code and vice versa. Similarly, the positive significant

association between tracing and explaining, and between tracing and writing indicates

that students who have mastered tracing skills can perform well in explaining and

writing. Further, it appears that students who can translate the logic from algorithm

173

design into any high-level programming language could explain the translated

program and ultimately write the complete executable program. Thus, the association

among the programming skills indicates that these skills develop simultaneously and

are not independent.

7.2.6 What is the association, if any, between students’ performance in

CS1 and students’ ability in programming skills?

The results showed a positive significant association (𝑝 < 0.01) between

student performance and ability in algorithm design, translating, tracing, explaining

and writing. Explaining had the highest correlation with student performance,

followed by writing, translating, tracing and algorithm design (see Table 6.5).

The association indicates that both explaining and writing skills are equally

important to student performance in CS1. For example, students who can explain the

algorithm design correctly can translate this into a programming language and explain

the translated program. Explaining skills can also apply to the program that has already

been given, when the student has to go through the program and explain in plain

English the purpose of the code. Thus, students who are competent in explaining across

the programming skills are likely to do well in writing, and ultimately, the overall

exam.

The association between algorithm design and student performance (which was

the lowest of all programming skills) indicates that students who can do well only in

algorithm design may not be able to perform well in CS1. Similarly, the association

between translating and student performance, and tracing and student performance

indicates that students’ competencies in these skills are not sufficient to score well in

CS1. Further, students need to acquire all five programming skills to perform well in

CS1, as the examination in CS1 includes questions across all programming skills.

174

Thus, from these correlation results, it is reasonable to assume that these programming

skill variables play a role in student performance in CS1.

7.2.7 Is there a hierarchy among students’ programming skills in terms of

their contribution to student performance in CS1?

The following hypothesised hierarchy was reported after examination of the

correlation and path diagram created in chapter 6 (see Section 6.3.2). Number 1

(algorithm design) contributed least to student performance in CS1 and number 5

(writing) contributed most to student performance in CS1. They are numbered in this

order, as the researcher believes that this is the order in which programming skills

should be taught to benefit students’ learning:

1. algorithm design

2. tracing

3. translating

4. explaining

5. writing.

The hypothesised hierarchy reported in this study seems logical as per the

researcher’s experience teaching CS1. For example, teaching algorithm design first

before moving on to other programming skills. It seems logical that students should

first be taught algorithm design in parallel with tracing and explaining the algorithm

design. Once student becomes competent in algorithm design and can explain and trace

the algorithm, the process of translating should be taught. At this stage, students must

be introduced to the features, syntax and grammars of the programming language.

Once students becomes competent in translating, tracing and explaining the code

should be taught. Lastly, students should be taught how to write programs.

175

Although the programming skills are listed in order, the researcher is not

implying that the ranking after algorithm design should be developed in strict hierarchy

as shown above. The researcher supports the idea that tracing and explaining overlap

with algorithm design, translating overlaps with writing, and tracing and explaining

overlap with writing. The programming skills after algorithm design should develop

in parallel and reinforce each other. This is supported by the correlations between the

skills.

The hierarchy reported in this study is also similar to the hierarchy reported in

the literature (Lopez et al., 2008). According to Lopez et al. (2008), writing is at the

highest level and tracing and explaining are intermediate levels. This study has added

algorithm design and translating to the list of tracing, explaining and writing, which

previous studies have not done as a whole. The multiple regression analysis showed

that translating, tracing, explaining and writing skills directly contribute to student

performance, while algorithm design indirectly contributes to student performance via

writing. It is true that algorithm design may not contribute directly to student

performance, as students have to learn translating, tracing, explaining and writing to

be able to perform well in CS1.

Based on the results of this study, the researcher proposed the outline of CS1

over 15 weeks as shown in Table 7.1. At RUB, one semester runs for 18 weeks; three

weeks of the 18 were removed for the mid-semester exam, FSE and practical exam

(refer Appendix K for a detailed proposed module description). In one week, three

hours of lecture classes and a one-hour tutorial were considered in addition to three

hours of laboratory practical sessions in a week.

176

Table 7.1

Researcher Proposed Outline of CS1

Week Topics and programming skills

1 Learning strategies

2–4 Algorithms and problem-solving (tracing and explaining an

algorithm)

5 Introduce language features: data types, assignments, variable

declaration, operators, expressions and simple input/output

functions

6 Translate simple algorithms into programming code (translating).

Using programming environment, write translated programs,

compile, run and debug

7–10 Introduce language features: control structures, functions, arrays

and files

11–12 Translate complex algorithms into programming code (translating).

Manually execute the translated programs (tracing) and explain the

purpose of the translated code (explaining)

13 Introduce simple code writing from the given problem (writing)

using programming environment. Manual tracing and explaining

should be parallel as well

14 Introduce complex code writing from the given problem (writing)

using programming environment. Manual tracing and explaining

should be parallel as well

15 Introduce additional language features depending on the

programming language used in CS1 involving tracing, explaining

and writing programs.

7.3 Suggestions on how to Improve Teaching/Learning of CS1 at RUB

In the student and lecturer qualitative data on how to improve teaching/learning

in CS1 at RUB, the most frequently mentioned areas by both students and lecturers

were: conduct theory and practical classes in parallel, CS1 to be taught by an

177

experienced lecturer, encourage pair/group programming, live coding, offer the same

tutor for both theory and practical sessions and prior programming experience.

a) Conduct theory and practical classes in parallel

Although most students preferred to have both the theory and the practical

classes running in parallel in the computer laboratory, the researcher believes (based

on their prior teaching experience at RUB) that this is not feasible, since there are a

limited number of computer laboratories that cater to all students enrolled in a

program. Moreover, the computer laboratory can accommodate only up to 35 students

at a time. There are over 100 students enrolled in civil engineering. As an alternative,

as one student suggested that lecturers should allow students to bring their laptops to

the theory class to enable them to write programs when the lecturer is live coding in

the class. Currently, we do not have that practice at SC and CST. Participants from

JNEC were taught theory and practical classes at the same time in the computer

laboratory, since it was the only program (Diploma in Computer Hardware and

Networking) with computer laboratory components during the time of data collection.

It may no longer be feasible, as JNEC has introduced degree programs in engineering

that may require computer laboratories.

b) CS1 to be taught by an experienced lecturer

Both lecturer and students recommended that experienced lecturers be assigned

to teach CS1. Most participants in this study were taught by four lecturers, who had

just graduated from their degree programs. Only some participants were taught by the

remaining four lecturers, who had completed their master’s degree and have 1–2 years’

experience teaching CS1. The researcher strongly supports assigning an experienced

lecturer to teach CS1, as CS1 is the foundation module and building strong foundation

is a necessity for the success of the remaining computer subjects in latter semesters.

178

c) Encourage pair/group programming and live coding

 Both students and lecturers proposed including pair/group programming in the

teaching/learning of CS1. Previous studies (see Chapter 2) on practising pair/group

programming reported that this was effective for students in learning CS1. Similarly,

live coding by lecturers was reported in previous studies to be beneficial for students,

as students can observe the lecturer type the programs from scratch, and in the process,

explaining and encouraging students to participate. In this way, students can also learn

to compile, execute and debug programs. Lecturers can also give small programs to

write in groups and let one student from each group code live in front of their peers.

This might allow students to gain confidence in writing programs and motivate them.

d) Same tutor for both theory and practical sessions

 Students expressed a preference to have only one tutor teaching both theory

and practical classes. This does not happen all the time at RUB. However, sometimes

when the theory tutor was given other modules to teach due to a shortage of tutors in

that module, practical sessions were given to other tutors with lighter teaching loads.

As long as the theory and practical tutor coordinate with each other this should not be

a problem.

e) Prior programming experience

Some lecturers and students said that students should be exposed to

programming concepts in Y12 so they do not feel overwhelmed when they are

introduced to CS1. Previous research and this study has shown that students with prior

programming experience perform better in CS1. Conversely, other studies showed

prior programming experience does not have any impact on students’ performance in

CS1. While some studies reported on students’ success in CS1 with and without prior

programming experience, the specific programming experience that students should

179

have when learning CS1 was not specified. Thus, further research is required to

explore which programming-related concepts students should learn in Y12 that may

benefit them in learning CS1. For example, computational thinking and problem-

solving or programming concepts using a programming language.

7.4 Recommendations for CS1 at RUB

This thesis set out to investigate the factors that may affect the performance of

students’ studying CS1 at RUB. The following recommendations are made for CS1 at

RUB based on the findings of this study:

1. Students’ prior computing experience

The researcher recommends that RUB collaborate with the School Education

and Curriculum Division, of the Ministry of Education, Bhutan to explore avenues to

enhance the existing curriculum by incorporating a subject in Y12 for all the science

students that covers basic computer knowledge on Office packages, basic

programming concepts and problem-solving skills. Moreover, the module on ‘Office

Productivity Tools’ could then be removed from the first semester.

2. First programming language, programming paradigm, programming

environment and teaching/learning methods and practices

The researcher recommends RUB retain procedural paradigm with either C,

C++, Java or Python as the programming language in the first semester and introduce

object-oriented paradigm in later semesters using the same or different programming

language for computer science and information technology students. Although C

programming language is used at RUB in CS1, staff professional development might

assist in trying other commonly used programming languages in CS1, such as Java and

180

Python. In regard to programming environment, the researcher highly recommends

consideration of a simple and current environment as an alternative to Turbo C++

(obsolete) and Microsoft Visual Studio (sophisticated).

For teaching/learning methods and practices in CS1, the researcher highly

recommends that lecturers allow students to bring their laptops to theory classes so

they can write programs when the lecturer is live coding in class. Thus, students can

obtain hands-on practice immediately after the theory sessions or during live coding

by the lecturers. Also, students should be encouraged to work in pairs/groups initially,

and later encouraged to practise writing code independently. Also, lectures should be

recorded and uploaded to the course webpage for use by slow learners and students

who wish to revise.

3. Students’ learning approach

The researcher recommends that lecturers at RUB encourage students to adopt

deep approaches of learning before starting CS1 classes. One week of CS1 classes may

be allocated to teach learning strategies that students can adopt to achieve success in

CS1.

4. Teaching/learning approach of programming skills in CS1

The researcher recommends the approach of teaching/learning programming

skills in CS1 as shown in Figure 7.1. Begin with the introduction of how to solve

simple problems using algorithm design (flowchart and algorithm). Then introduce

simple language features like variables, data types, simple input/output functions,

assignments and operators. This should be followed by translating the logic from

algorithm design into programming language. Then, start writing the translated

programs using the programming environment, compile, debug and execute the

181

program. Demonstrate manual tracing of the written program and show how to

summarise the purpose of the written program (explaining). Students should also be

taught how to trace and explain algorithm design and translated programs.

Figure 7.1. Approach of teaching/learning in CS1.

The process of algorithm design, translating, tracing, explaining and writing

should be repeated to solve problems with increased difficulty level. New

programming language features should be introduced, such as arrays, strings, user

defined functions and input/output functions of arrays and strings. As students become

competent in algorithm design, translating, tracing and explaining, they can be taught

how to write programs directly once given the problem, with or without translating,

depending on the students’ capabilities.

7.5 Summary

This chapter has discussed the results from this study and answered the

research questions. The first research question, which addressed students’ prior

computing experience and its impact on student performance in CS1, was discussed.

The second research question, which focused on students’ and lecturers’

experience/perceptions of first programming language, programming paradigm,

programming environment and teaching/learning methods and practices, was

discussed. The results provided information relating to first programming language

182

and paradigm to be taught in CS1, the programming environment to be adapted in

learning to program and teaching/learning methods and practices that might assist

students in learning to program and improve student performance in CS1.

The third research question focused on students’ Y12 performance in

mathematics, physics and chemistry and its association to student performance in CS1.

The results of this question were discussed. The fourth research question—students’

learning approaches and their impact on student performance in CS1—was discussed.

The fifth research question, which focused on the relationship among the programming

skill variables, was discussed. The sixth research question which focused on students’

ability in programming skills and their impact on student performance in CS1 was

discussed.

The seventh research question was whether there is hierarchy among the

programming skills in terms of their contribution to student performance in CS1. The

possible hierarchy presented was: 1) algorithm design, 2) tracing, 3) translating, 4)

explaining, and 5) writing, where algorithm design was the lowest level and writing

was the highest level. However, associations among the programming skills indicated

that skills develop in parallel and reinforce each other.

This chapter also discussed the key variables identified from the qualitative

data. This was followed by the recommendations for CS1 at RUB.

183

Chapter 8: Conclusion

8.1 Introduction

Chapter 7 answered the research questions and discussed the results. This

chapter provides a brief description of the preceding chapters and addresses each

research question. Wider implications and contributions, limitations and directions for

future research are indicated, and concluding remarks are provided.

Chapter 1 introduced this study and presented the origin of this thesis, provided

background information, outlined research objectives and presented an overview of

the thesis. Chapter 2 established the theoretical framework and reviewed the literature

that examined the key variables under investigation in this study. Chapter 3 presented

the detailed description of the methodology used for this study. Chapter 4 and 5

presented descriptive statistics and qualitative results of the data. Chapter 6 presented

bivariate and multivariate analyses of the data. Chapter 7 answered the research

questions and discussed the findings.

8.2 Research Findings

This section briefly summaries the results reported in Chapters 4, 5 and 6.

Students’ prior non-programming computer experience, such as Internet information

searches and use of Office tools does not have any significant association with

students’ performance in CS1, except computer games, which had a negative

significant association with student performance. Students with some programming

skills in C, Java, JavaScript and Python performed better in CS1 and the association

was significant and positive.

Both lecturers and students perceived that C should be the first programming

language for CS1 and; Turbo C++ and Microsoft Visual Studio should be used as

184

programming environment to learn C. Moreover, both lecturers and students stated it

would assist students in learning to program by practising teaching/learning methods

such as live coding by the lecturer in class, pair/group programming, independent

coding, reading materials online and watching YouTube tutorials. This study also

identified a positive significant correlation between student performance in CS1 and

students’ Y12 performance in mathematics, physics and chemistry.

Further, this study showed that the deep approach of learning had a positive

significant correlation to student performance in CS1, while the surface approach of

learning had a negative significant correlation to student performance in CS1.

In addition, the results showed a positive significant correlation among the

programming skill variables: algorithm design, translating, tracing, explaining and

writing. This indicates that these skills develop in parallel and reinforce each other.

Moreover, the results showed a positive significant correlation between student

performance and ability in programming skills, which suggests a possible hierarchy in

programming skills. The regression analysis further showed that algorithm design

contributes to student performance via writing, and writing contributes most to student

performance. Thus the hypothesised hierarchy was reported as algorithm design,

tracing, translating, explaining and writing, where algorithm design is at the lowest

level and writing is at the highest in the hierarchy.

8.3 Wider Implications and Contribution

This study has contributed new findings in the areas that might affect student

performance in CS1: prior computing experience, first programming paradigm and

language, programming environment, teaching/learning methods and practices, Y12

performance in mathematics, physics and chemistry, students’ learning approach,

programming skills and new SOLO descriptions.

185

The results from prior computing experience provide information in regard to

the requirement of prior non-programming computer experience and programming

experience. The results from this study may benefit educators in selecting students to

study CS1.

Additionally, the results from first programming paradigm and language,

programming environment, teaching/learning methods and practices provide clear

insight into the aspects of lecturers’ and students’ perceptions/experience at RUB. The

practice of live coding and pair/group programming in learning to program confirms

its benefits. Thus, the information from this study can be utilised by educators to

inform curricula decisions.

Further, students’ Y12 performance in mathematics, physics and chemistry

also provides clear insight for educators in regard to the importance of these subjects

prior to taking CS1 classes.

Moreover, the positive impact of students’ deep approach of learning in CS1

on student performance in CS1 provides information to both students and lecturers to

encourage a more productive approach to learning in CS1. In addition, the PST

questions developed by the researcher to measure students’ skills across the five

programming skills (with algorithm design and translating skills added) contributes to

the body of knowledge in CS1 programming skills. This will also provide a foundation

for further research in terms of the new variables introduced that are important in

teaching CS1 as well as drawing further attention to the current variables for existing

computing tertiary educators.

Subsequently, the SOLO taxonomy adapted to evaluate students’ responses to

PST questions also contributes new information in regard to the SOLO descriptions

for each programming skill, thereby providing avenues for comparison.

186

8.4 Limitations

The main goal of this study was to investigate the factors that may affect

student performance in CS1 at RUB. Although this goal has been achieved, the study

was limited in several ways.

This study involved students enrolled in science and engineering programs

from three colleges that are geographically spread across the country. This posed

several limitations. One such limitation was that one cohort of students enrolled in

B.Sc. Physical Science could not be included in this study, as these students study CS1

in their second semester, while students enrolled in other programs identified for this

research study CS1 in the first semester. As data were collected immediately after

students’ completion of CS1 in their first semester, there would be a gap of five months

if this study were to include those students. It would not only be expensive to travel

back to these students after five months, but also the reliability and the validity of the

programming skills test (PST) instrument may no longer hold after such a long gap.

Therefore, the researcher decided to exclude these students for practical and pragmatic

reasons.

For the same geographic reasons, the researcher could not administer the PST

personally, as it would be a challenge for the researcher to travel from one college to

another due to rugged terrains in Bhutan. Thus, the PST had to be administered by

lecturers who volunteered to assist the researcher in their respective colleges at the

same time. Further, considering the time that students spent answering the PST

questions, the number of questions under each category of programming skills was

limited to two. Ideally, it could have been at least five, with varying difficulties,

administering one or two programming skills at a time to obtain quality results.

187

Moreover, the PST and survey, individual and group interviews could not be

administered at the same time due to the reasons mentioned above. The researcher

travelled to colleges for survey and interviews only when the students joined colleges

after six weeks of winter break. Although there was a gap of six weeks between the

PST and the survey, this arrangement was made to secure maximum student

participants, as students were eager to leave college after their last examination. The

ideal situation would be for the PST, survey and interviews be conducted immediately

after the students completed a semester course in CS1.

Another limitation was that the three participating colleges administered their

own examinations, so the difficulty level of the content covered in these examinations

may not be identical. That is, the FSE and OS performance used in this study to

measure student performance may have been different in terms of content.

One possible limitation to this study could be that one college, Gyalpozhing

College of Information Technology (GCIT), that offers a program that includes a

module on CS1 under RUB could not be included in this study. This is because GCIT

was officially inaugurated on 6 October 2017 and began enrolling its first cohort of

students in July 2018. The data for this study were collected in November 2016 (PST)

and February–March 2017 (survey and interviews).

Additionally, the experience and qualification of the lecturers teaching CS1

were not the same across the three colleges. One college had four lecturers who had

just completed their degree and were searching for an opportunity to upgrade their

qualification. We asked about their opinions and experiences in the survey and

interviews regarding CS1; however, we were less likely to receive creative and

innovative ideas, as they themselves did not have much experience and exposure.

188

Although the medium of instruction is in English, it is not the participants’ first

language, which may have affected their comprehension of the Bigg’s survey

questionnaire. However, English was not a problem for students in responding to the

exam and PST questions used in this study as the students had gained familiarity with

the language used throughout the course.

The final limitation was that the findings from this study were very localised

and may not be generalisable to an international audience, as differences may exist

between the educational system in Bhutan and other countries. However, the findings

may contribute to the body of literature in computer science education.

8.5 Future Research Directions

Future research directions could be in the following areas: confirmation,

extension and further investigation of the path model.

One key element of this research was to extend the model, include other

variables and further the statistical analysis. Further research could also be extended

to investigate the specific type of programming-related experience that students should

have in Y12 prior to the study of CS1.

Moreover, in the future, investigation of the path model could be conducted,

with different groups of students from other countries & institutions to confirm or

disconfirm the path model.

8.6 Summary and Concluding Remarks

In summary, this thesis provides new information to the existing body of

computing research. The study identified several factors that may influence student

performance in CS1 at RUB: prior computing experience, first programming language,

189

programming paradigm, programming environment, teaching/learning methods and

practices, Y12 performance in mathematics, physics and chemistry, student learning

approaches and programming skills. Programming skills such as algorithm design and

translating were extra variables added to the study and path model, which other

literature has not yet reported.

Moreover, this is the first time a study in Bhutan has examined all the variables

identified in this research, thereby contributing new information to the body of

computer science education literature.

The results from this study have implications for lecturers teaching CS1 who

are interested in assisting students in improving success in CS1, particularly at RUB

in Bhutan.

191

References

Afriyie, B. S. (2007). Introduction to Computer Fundamentals (Second ed.). Victoria, BC Canada:

Trafford Publishing.

Aleksić, V. & Ivanović, M. (2016). Introductory programming subject in European higher education.

Informatics in Education, 15(2), 163.

Ayub, M. & Karnalim, O. (2017). Predicting outcomes in introductory programming using J48

classification. World Transactions on Engineering and Technology Education, 15(2), 132-136.

Bennedsen, J. & Caspersen, M. E. (2005). An investigation of potential success factors for an

introductory model-driven programming course. Proceedings of the first International

Workshop on Computing Education Research, 155-163. doi:10.1145/1089786.1089801

Bergin, S. & Reilly, R. (2005a). The influence of motivation and comfort-level on learning to program

Proceedings of the 17th Workshop of the Psychology of Programming Interest Group (pp. 293-

304). Brighton, UK: Psychology of Programming Interest Group.

Bergin, S. & Reilly, R. (2005b, February 23 - 27). Programming: Factors that influence success. Paper

presented at the 36th SIGCSE Technical Symposium on Computer Science Education St.

Louis, Missouri, US. doi:10.1145/1047344.1047480

Bevan, J., Werner, L. & McDowell, C. (2002). Guidelines for the use of pair programming in a freshman

programming class. Proceedings of the 15th Conference on Software Engineering Education

and Training, 100-107. doi: 10.1109/CSEE.2002.995202

Bhattacharya, R. & Bhattacharya, B. (2015). Psychological factors affecting student's academic

performance in higher education among students International Journal for Research &

Development in Technology, 4(1), 63-71.

Biggs, J., Kember, D. & Leung, D. Y. (2001). The revised two‐factor study process questionnaire: R‐
SPQ‐2F. British Journal of Educational Psychology, 71(1), 133-149.

doi:10.1348/000709901158433

Biggs, J. B. (1987). Student approaches to learning and studying. Research monograph. Melbourne:

Australian Council for Educational Research.

Biggs, J. B. & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (structure

of the observed learning outcome). Melbourne, VIC: Academic Press.

Biró, P., Csenoch, M., Abari, K. & Máth, J. (2016). First year students’ algorithmic skills in tertiary

computer science education (Kunifuji S., Papadopoulos G., Skulimowski A., Kacprzyk J. ed.,

Vol. 416, pp. 351-358). Berlin: Springer.

Brilliant, S. S. & Wiseman, T. R. (1996). The first programming paradigm and language dilemma.

Proceedings of the 27th SIGCSE Technical Symposium on Computer Science Education, 28(1),

338-342. doi:10.1145/236452.236572

Buckley, C. A., Pitt, E., Norton, B. & Owens, T. (2010). Students’ approaches to study, conceptions of

learning and judgements about the value of networked technologies. Active Learning in Higher

Education, 11(1), 55-65.

Burton, P. J. & Bruhn, R. E. (2003). Teaching programming in the OOP era. ACM SIGCSE Bulletin,

35(2), 111-114. doi:10.1145/782941.782993

192

Byrne, M., Flood, B. & Willis, P. (2002). Approaches to learning of European business students.

Journal of Further and Higher Education, 26(1), 19-28. doi:10.1080/03098770120108275

Byrne, P. & Lyons, G. (2001). The effect of student attributes on success in programming. ACM

SIGCSE Bulletin, 33(3), 49-52.

Campbell, P. F. & McCabe, G. P. (1984). Predicting the success of freshmen in a computer science

major. Communications of the ACM, 27(11), 1108-1113.

Chamillard, A. & Braun, K. A. (2000). Evaluating programming ability in an introductory computer

science course. ACM SIGCSE Bulletin, 32(1), 212-216. doi:10.1145/331795.331857

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M., Sheard, J., et al. (2008). Reliably classifying

novice programmer exam responses using the SOLO taxonomy. National Advisory Committee

on Computing Qualifications.

Cohen, L. (2017). Research methods in education (8th ed.): London: Taylor and Francis.

Creswell, J. W. (2013). Research design (International student edition): Qualitative, quantitative, and

mixed methods approaches (4th ed.). Thousand Oaks, US: Sage publications.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th

ed.). London: Sage publications.

Crews, T. & Ziegler, U. (1998). The flowchart interpreter for introductory programming courses.

Proceedings of the 28th Annual Frontiers in Education Conference. Moving from 'Teacher-

Centered' to 'Learner-Centered' Education, 307 - 312 doi: 10.1109/FIE.1998.736854

de Raadt, M., Hamilton, M., Lister, R., Tutty, J., Baker, B., Box, I., et al. (2005). Approaches to learning

in computer programming students and their effect on success. On Proceedings of the 28th

HERDSA Annual Conference: Higher Eduation in a Changing World. Sydney, Australia

Higher Education Research and Development Society of Australasia

Decker, R. & Hirshfield, S. (1994). The top 10 reasons why object-oriented programming can't be taught

in CS 1. ACM SIGCSE Bulletin, 26(1), 51-55.

Dierbach, C. (2014). Python as a first programming language. Journal of Computing Sciences in

Colleges, 29(6), 153-154.

Freund, S. N. & Roberts, E. S. (1996). Thetis: An ANSI C programming environment designed for

introductory use. SIGCSE, 96, 300-304. doi:10.1145/236452.236560

Gadelrab, H. F. (2011). Factorial structure and predictive validity of approaches and study skills

inventory for students (ASSIST) in Egypt: A confirmatory factor analysis approach. Electronic

Journal of Research in Educational Psychology, 9(3), 1197-1218.

Get started with Visual Studio 2017. Retrieved from https://tutorials.visualstudio.com/vs-get-

started/user-interface

Gloria, A. M. & Robinson Kurpius, S. E. (2001). Influences of self-beliefs, social support, and comfort

in the university environment on the academic nonpersistence decisions of American Indian

undergraduates. Cultural Diversity and Ethnic Minority Psychology, 7(1), 88.

doi:10.1037/1099-9809.7.1.88

Goel, A. (2010). Computer fundamentals: Pearson Education India.

Gómez-Albarrán, M. (2005). The teaching and learning of programming: a survey of supporting

software tools. Computer Journal, 48(2), 130-144. doi:10.1093/comjnl/bxh080

Grover, P. S. (2001). PASCAL Programming Fundamentals (8 ed.): Allied Publishers Limited.

https://tutorials.visualstudio.com/vs-get-started/user-interface
https://tutorials.visualstudio.com/vs-get-started/user-interface

193

Gupta, D. (2004). What is a good first programming language? Crossroads, 10(4), 7-7.

doi:10.1145/1027313.1027320

Hagan, D. & Markham, S. (2000). Does it help to have some programming experience before beginning

a computing degree program? Paper presented at the ACM SIGCSE Bulletin.

Hicks, A. (2010). Towards social gaming methods for improving game-based computer science

education. Proceedings of the Fifth International Conference on the Foundations of Digital

Games, 259-261. doi:10.1145/1822348.1822386

Hijaz, S. T. & Naqvi, S. R. (2006). Factors affecting students’ performance: A case of private colleges

in Bangladesh. Journal of sociology, 3(1), 44-45.

Holden, E. & Weeden, E. (2003). The impact of prior experience in an information technology

programming course sequence. Proceedings of the 4th Conference on Information Technology

Curriculum, 41-46. doi:10.1145/947121.947131

Hooshyar, D., Ahmad, R. B., Shamshirband, S., Yousefi, M. & Horng, S.-J. (2015). A flowchart-based

programming environment for improving problem solving skills of CS minors in computer

programming. Asian International Journal of Life Sciences, 24(2), 629-646.

Ivanović, M., Budimac, Z., Radovanović, M. & Savić, M. (2015). Does the choice of the first

programming language influence students' grades? Proceedings of the 16th International

Conference on Computer Systems and Technologies, 305-312. doi:10.1145/2812428.2812448

Jeyapoovan, T. (2015). Fundamentals of Computing and Programming in C: Vikas Publishing House

Pvt. Ltd.

Jimoyiannis, A. (2013). Using SOLO taxonomy to explore students’ mental models of the programming

variable and the assignment statement. Themes in Science and Technology Education, 4(2),

53-74.

Kamtsios, S. & Karagiannopoulou, E. (2015). Exploring relationships between academic hardiness,

academic stressors and achievement in university undergraduates. Journal of Applied

Educational and Policy Research, 1(1).

Kazimoglu, C., Kiernan, M., Bacon, L. & Mackinnon, L. (2012). A serious game for developing

computational thinking and learning introductory computer programming. Procedia-Social

and Behavioral Sciences, 47, 1991-1999.

Kersteen, Z. A., Linn, M. C., Clancy, M. & Hardyck, C. (1988). Previous experience and the learning

of computer programming: The computer helps those who help themselves. Journal of

educational computing research, 4(3), 321-333.

Kölling, M. (1999). The problem of teaching object-oriented programming, Part 1: Languages. Journal

of Object-oriented programming, 11(8), 8-15.

Kölling, M. & Rosenberg, J. (1996). An object-oriented program development environment for the first

programming course. Proceedings of the 27th SIGCSE Technical Symposium on Computer

Science Education, 28(1), 83-87. doi:10.1145/236452.236514

Konvalina, J., Wileman, S. A. & Stephens, L. J. (1983). Math proficiency: A key to success for computer

science students. Communications of the ACM, 26(5), 377-382.

Krpan, D., Mladenović, S. & Rosić, M. (2015). Undergraduate programming courses, students’

perception and success. Procedia-Social and Behavioral Sciences, 174, 3868-3872.

Kruglyk, V. & Lvov, M. (2012, June 6 - 10). Choosing the first educational programming language.

Paper presented at the International Conference on ICT in Education, Research, and Industrial

194

Applications:: Integration, Harmonization and Knowledge Transfer, Kherson State University,

Kherson, Ukraine.

Lipman, D. (2014). Learn CS1: A new, browser-based C programming environment for CS1. Journal

of Computing Sciences in Colleges, 29(6), 144-150.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jacková, J., et al. (2010). Naturally

occurring data as research instrument: Analyzing examination responses to study the novice

programmer. ACM SIGCSE Bulletin, 41(4), 156-173. doi:10.1145/1709424.1709460

Lister, R., Fidge, C. & Teague, D. (2009). Further evidence of a relationship between explaining, tracing

and writing skills in introductory programming. Proceedings of the 14th annual ACM SIGCSE

Conference on Innovation and Technology in Computer Science Education, 41(3), 161-165.

doi:10.1145/1562877.1562930

Lopez, M., Whalley, J., Robbins, P. & Lister, R. (2008). Relationships between reading, tracing and

writing skills in introductory programming. Proceedings of the Fourth international Workshop

on Computing Education Research, 101-112. doi:10.1145/1404520.1404531

Malik, S. I. & Coldwell-Neilson, J. (2017). Comparison of tradition and ADRI based teaching

approaches in an introductory programming course. Journal of Information Technology

Education: Research, 16, 267-283.

Mannila, L., Peltomäki, M. & Salakoski, T. (2006). What about a simple language? Analyzing the

difficulties in learning to program. Computer Science Education, 16(3), 211-227.

doi:10.1080/08993400600912384

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., et al. (2001). A

multi-national, multi-institutional study of assessment of programming skills of first-year CS

students. ACM SIGCSE Bulletin, 33(4), 125-180.

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2002). The effects of pair-programming on

performance in an introductory programming course. Proceedings of the 33rd SIGCSE

Technical Symposium on Computer Science Education, 34(1), 38-42.

doi:10.1145/563517.563353

Merrick, K. E. (2010). An empirical evaluation of puzzle-based learning as an interest approach for

teaching introductory computer science. IEEE Transactions on Education, 53(4), 677-680.

doi:10.1109/TE.2009.2039217

Mohorovičić, S. & Strčić, V. (2011, September 21 - 23). An overview of computer programming

teaching methods. Paper presented at the 22nd Central European Conference on Information

and Intelligent Systems, Varaždin, Croatia.

Mushtaq, I. & Khan, S. N. (2012). Factors affecting students' academic performance. Global Journal of

Management and Business Research, 12(9).

Patil, S. P. & Goje, A. C. (2009, April 17 - 20). The effect of developments in student attributes on

success in Programming of management students. Paper presented at the 2009 International

Conference on Education Technology and Computer, Singapore. doi: 10.1109/ICETC.2009.35

Paxton, J. (2002). Live programming as a lecture technique. Journal of Computing Sciences in Colleges,

18(2), 51-56.

Philpott, A., Robbins, P. & Whalley, J. (2007, July 8-11). Accessing the steps on the road to relational

thinking. Paper presented at the 20th Annual Conference of the National Advisory Committee

on Computing Qualifications, Nelson, New Zealand.

Porter, L., Guzdial, M., McDowell, C. & Simon, B. (2013). Success in introductory programming: What

works? Communications of the ACM, 56(8), 34-36. doi:10.1145/2492007.2492020

195

Pritchard, M. E. & Wilson, G. S. (2003). Using emotional and social factors to predict student success.

Journal of College Student Development, 44(1), 18-28. doi:10.1353/csd.2003.0008

Qian, Y. & Lehman, J. D. (2016). Correlates of success in introductory programming: A study with

middle school students. Journal of Education and Learning, 5(2), 73-83.

Radenski, A. (2006). Python First: A lab-based digital introduction to computer science. Proceedings

of the 11th annual SIGCSE conference on Innovation and technology in computer science

education, 38(3), 197-201. doi:10.1145/1140123.1140177

Rubin, M. J. (2013). The effectiveness of live-coding to teach introductory programming. Proceeding

of the 44th ACM Technical Symposium on Computer Science Education, 651-656.

doi:10.1145/2445196.2445388

Sanders, I. D. & Langford, S. (2008). Students' perceptions of python as a first programming language

at wits. Proceedings of the 13th annual conference on Innovation and technology in computer

science education, 40(3), 365-365. doi:10.1145/1384271.1384407

Schmeck, R. R., Geisler‐Brenstein, E. & Cercy, S. P. (1991). Self‐concept and learning: The revised

inventory of learning processes. Educational Psychology, 11(3-4), 343-362.

doi:10.1080/0144341910110310

Schmider, E., Ziegler, M., Danay, E., Beyer, L. & Bühner, M. (2010). Is it really robust? Reinvestigating

the robustness of ANOVA against violations of the normal distribution assumption.

Methodology: European Journal of Research Methods for the Behavioral and Social Sciences,

6(4), 147 - 151. doi:10.1027/1614-2241/a000016

Schoeman, M., Gelderblom, H. & Smith, E. (2012). A tutorial to teach tracing to first-year programming

students. Progressio–South African Journal for Open and Distance Learning Practice, 34(3),

59-80.

Shannon, C. (2003). Another breadth-first approach to CS I using python. Proceedings of the 34th

SIGCSE technical symposium on Computer science education, 35(1), 248-251.

doi:10.1145/792548.611980

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E. & Whalley, J. L. (2008). Going SOLO to

assess novice programmers. Proceedings of the 13th annual conference on Innovation and

technology in computer science education, 40(3), 209-213. doi:10.1145/1597849.1384328

Shi, N., Cui, W., Zhang, P. & Sun, X. (2017). Evaluating the Effectiveness Roles of Variables in the

Novice Programmers Learning. Journal of educational computing research,

0735633117707312.

Shuhidan, S., Hamilton, M. & D'Souza, D. (2009). A taxonomic study of novice programming

summative assessment. Proceedings of the 11th Australasian Conference on Computing

Education, 95, 147-156.

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W., Goldstein, D. S. & Nordlinger, J. (2010). Game-

themed programming assignment modules: A pathway for gradual integration of gaming

context into existing introductory programming courses. IEEE Transactions on Education,

54(3), 416-427. doi:10.1109/TE.2010.2064315

Tait, H. & Entwistle, N. (1996). Identifying students at risk through ineffective study strategies. Higher

education, 31(1), 97-116.

Tan, G. & Venables, A. (2010). Wearing the assessment ‘BRACElet’. Journal of Information

Technology Education: Innovations in Practice, 9(1), 25-34.

196

Taylor, H. G. & Luegina, M. (1991). An analysis of success factors in college computer science: High

school methodology is a key element. Journal of Research on Computing in Education, 24(2),

240-245.

The Joint Task Force on Computing Curricula Association for Computing Machinery (ACM) IEEE

Computer Society. (2013). Computer Science Curricula 2013:Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science. Retrieved from

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Thomas, L., Ratcliffe, M. & Robertson, A. (2003). Code warriors and code-a-phobes: a study in attitude

and pair programming. Proceedings of the 34th SIGCSE technical symposium on Computer

science education, 35(1), 363-367. doi:10.1145/611892.612007

Trigwell, K. & Prosser, M. (1991). Improving the quality of student learning: The influence of learning

context and student approaches to learning on learning outcomes. Higher education, 22(3),

251-266.

Tshering, P., Lhamo, D., Yu, L. & Berglund, A. (2017). How do first year students learn C programming

in Bhutan? International Conference on Learning and Teaching in Computing and

Engineering, 25-29. doi:10.1109/LaTiCE.2017.12

Van Roy, P. (2009). Programming paradigms for dummies: What every programmer should know. New

computational paradigms for computer music, 104, 616-621.

Venables, A., Tan, G. & Lister, R. (2009, August 10 - 11). A closer look at tracing, explaining and code

writing skills in the novice programmer. Paper presented at the Fifth International Workshop

on Computing Education Research Workshop, Berkeley, CA, US.

doi:10.1145/1584322.1584336

Watson, C., Li, F. W. & Godwin, J. L. (2014). No tests required: Comparing traditional and dynamic

predictors of programming success. New York, NY: Association for Computing Machinery

Werth, L. H. (1986). Predicting student performance in a beginning computer science class. ACM

SIGCSE Bulletin - Proceedings of the 17th SIGCSE Technical Symposium on Computer

Science Education, 18(1), 138 - 143. doi:10.1145/953055.5701

Whalley, J., Clear, T., Robbins, P. & Thompson, E. (2011). Salient elements in novice solutions to code

writing problems. Proceedings of the 13th Australasian Computing Education Conference,

114, 37-46.

Wiedenbeck, S., Labelle, D. & Kain, V. N. (2004, April 5-7). Factors affecting course outcomes in

introductory programming. Paper presented at the 16th Annual Workshop of the Psychology

of Programming Interest Group, Carlow, Ireland.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore, C. L. (1999). A comparison of the

comprehension of object-oriented and procedural programs by novice programmers.

Interacting with Computers, 11(3), 255-282. doi:10.1016/S0953-5438(98)00029-0

Wilcox, C. & Lionelle, A. (2018). Quantifying the benefits of prior programming experience in an

introductory computer science course. Proceedings of the 49th ACM Technical Symposium on

Computer Science Education, 80-85. doi:10.1145/3159450.3159480

Williams, L., Wiebe, E., Yang, K., Ferzli, M. & Miller, C. (2002). In support of pair programming in

the introductory computer science course. Computer Science Education, 12(3), 197-212.

doi:10.1076/csed.12.3.197.8618

Wilson, B. C. (2002). A study of factors promoting success in computer science including gender

differences. Computer Science Education, 12(1-2), 141-164. doi:10.1076/csed.12.1.141.8211

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

197

Wilson, B. C. & Shrock, S. (2001). Contributing to success in an introductory computer science course:

A study of twelve factors. Paper presented at the 32nd SIGCSE Technical Symposium on

Computer Science Education, Charlotte, NC. doi:10.1145/364447.364581

Winslow, L. E. (1996). Programming pedagogy—A psychological overview. ACM SIGCSE Bulletin,

28(3), 17-22. doi:10.1145/234867.234872

Xinogalos, S., Pitner, T., Ivanović, M. & Savić, M. (2018). Students’ perspective on the first

programming language: C-like or Pascal-like languages? Education and Information

technologies, 23(1), 287-302. doi:10.1007/s10639-017-9601-6

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course. ACM inroads,

2(4), 71-76. doi:10.1145/2038876.2038894

Yang, H.-J. (2004). Factors affecting student burnout and academic achievement in multiple enrollment

programs in Taiwan’s technical–vocational colleges. International Journal of Educational

Development, 24(3), 283-301. doi:10.1016/j.ijedudev.2003.12.001

Yusoff, M. S. B., Rahim, A. F. A., Baba, A. A., Ismail, S. B. & Pa, M. N. M. (2013). Prevalence and

associated factors of stress, anxiety and depression among prospective medical students. Asian

Journal of Psychiatry, 6(2), 128-133. doi:10.1016/j.ajp.2012.09.012

Zaffar, M., Hashmani, M. A. & Savita, K. (2018). A Study of prediction models for students enrolled in

programming subjects. Paper presented at the 4th International Conference on Computer and

Information Sciences Kuala Lumpur, Malaysia

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

199

Appendices

201

Appendix A: Programming Skills Test Instrument

202

203

204

205

Appendix B: Programming Skills Test Marking Criteria Using SOLO

Classification

Section A: Algorithm Design

Q1: Find the average of three numbers entered by the user and display the result.

A suitable algorithm and flowchart solution may look like this:

 Algorithm Flowchart

Step 1: Start

Step 2: Declare variables a, b, c and avg

Step 3: Read a, b and c.

Step 4: Compute avg = (a+b+c)/3

Step 5: Display avg.

Step 6: Stop

Q2: Find the smallest number among the three numbers entered by the user and display

the result. A suitable algorithm and flowchart solution may look like as shown:

Algorithm

Step 1: Start

Step 2: Declare variables a, b and c.

Step 3: Read a, b and c.

Step 4: If a<b

 If a<c

 Display a is the smallest number.

 Else

 Display c is the smallest number.

 Else

 If b<c

 Display b is the smallest number.

 Else

 Display c is the smallest number.

 Step 5: Stop

206

Flowchart

The following components are examined in students’ response to algorithm:

a) Ability to declare variables (E-U).

b) Ability to externally supply inputs (E-S).

c) Ability to show the computation (E-S for Q1) and (H-S for Q2).

d) Ability to show what output is produced (E-S).

e) Ability to write clear and unambiguous instructions (E-U).

f) Ability to terminate the algorithm in a finite number of steps (E-U).

g) Ability to write algorithm in correct logical order (H-U).

207

The following components are examined in students’ response to flowchart:

a) Ability to declare variables (E-U).

b) Ability to externally supply inputs (E-S).

c) Ability to show the computation (E-S for Q1) and (H-S for Q2).

d) Ability to show what output is produced (E-S).

e) Ability to write clear and unambiguous instructions (E-U).

f) Ability to terminate the flowchart in a finite number of steps (E-U).

g) Ability to draw flowchart in correct logical order (H-U).

h) Ability to draw flowchart with correct symbols (H-U).

Table B.1

SOLO classification for Algorithm Design Questions

SOLO level Indicator Raw Score

Relational [R] Able to complete all of the components to form a

coherent whole.

5

Relational Error [RE] Able to complete all of the components but has

some minor errors or omissions.

4

Multistructural [M] Able to complete most of the components. All H-S

and E-S components complete and valid.

3

Multistructural Error

[ME]

Able to complete most of the components but has

some minor errors or omissions.

2

Unistructural [U] Able to complete some components only. 1

Prestructural [P] There are pieces which makes no sense or the

answer is totally wrong.

0

No attempt [N] The answer is blank. 999

208

Section B: Translating

Q1:

1. Start

2. Declare variable a, b, BIG, SMALL.

3. Read a,b

4. If a is less than b then

4.1. BIG = b

4.2. SMALL = a

5. Else

5.1. BIG = a

5.2. SMALL = b

6. Write BIG, SMALL

7. End

A suitable solution may look like this:

1. int a,b,BIG,SMALL;

2. scanf(“%d %d”, &a,&b);

3. if(a<b)

4. {

5. BIG = b;

6. SMALL = a;

7. }

8. else {

9. BIG=a;

10. SMALL = b; }

11. printf(“Big = %d, Small = %d”,

BIG,SMALL);

The following components are examined in students’ response to Translating Q1:

a) Ability to declare variables of correct data types -Line 1 (E-S).

b) Ability to read the variables from the console -Line 2 (E-S).

c) Ability to use if/else statement with correct computation - Line 3-10 (E-S).

d) Ability to show the desired output - Line 11 (E-S).

e) Ability to write well-structured program in clear logical order (E-U).

Q2:

209

A suitable solution may look like

this:

1. int i;

2. for(i=2;i<=6;i++)

 {

 printf(“%d”, i+2);

 }

 OR

1. int i=2;

2. while(i<=6)

3. {

4. printf(“%d”, i+2);

5. i=i+1;

6. }

The following components are examined in students’ response to Translating Q2:

a) Ability to declare variables of correct data types -Line 1 (E-U).

b) Ability to formulate correct loop - Line 2 (H-S).

c) Ability to show the desired output - Line 4 (E-S).

d) Ability to write well-structured program in clear logical order (E-U).

Table xx shows the SOLO classification for Translating questions

Table B.2

SOLO Classification for Translating Questions

SOLO level Indicator Raw Score

Relational [R] Able to complete all of the components to form a

coherent whole.

3

Multistructural [M] Able to complete most of the components. All H-S

and E-S components complete and valid.

2

Unistructural [U] Able to complete some components only. 1

Prestructural [P] There are pieces which makes no sense or the

answer is totally wrong.

0

No attempt [N] The answer is blank. 999

210

Section C: Tracing

Q1:

a) Which branch of if/else structure will be

executed if x = 5.

Sol: Line 9 will be executed.

b) What is the output of the program when

x=6.

Sol: 24

Q2:

a) Write the value of x when i = 1

Sol: x=0

b) Write the value of x at line 12.

Sol: x=3

211

Table B.3 shows the SOLO classification for Tracing questions.

Table B.3

SOLO Classification for Tracing Questions

SOLO level Indicator Raw Score

Relational [R] Able to provide correct solution to both parts a) and b). 3

Multistructural [M] Able to provide solution to part a) and b) with minor

errors or omissions.

2

Unistructural [U] Only one part of the two is completed correctly. 1

Prestructural [P] There are bits of pieces which makes no sense or the

answer is totally wrong.

0

No attempt [N] The answer is blank. 999

Section D: Explaining

Explain in plain English the purpose of the following code:

Q1:

A suitable solution may look like this:

The code swaps the values in a and b.

212

Q2:

A suitable solution may look like this:

The code counts the number of even

numbers in a given array.

Table B.4 shows the SOLO classification for Explaining questions.

Table B.4

SOLO Classification for Explaining questions

SOLO level Indicator Raw Score

Relational [R] Able to provide a summary of what the code does in

terms of its purpose.

5

Relational Error [RE] Able to provide a summary of what the code does in

terms of its purpose but has some minor errors or

omissions.

4

Multistructural [M] Able to provide a line-by-line description of all the

code.

3

Multistructural Error

[ME]

Able to provide a line-by-line description of most of

the code but has some minor errors or omissions.

2

Unistructural [U] Able to provide description of one portion of the

code.

1

Prestructural [P] There are bits of pieces which makes no sense or the

answer is totally wrong.

0

No attempt [N] The answer is blank. 999

213

Section E: Writing

Q1: Write a program in C that reads two integer number in the variables x and y. Divide

x by y and report the result. You should confirm that y (divisor) is not zero before

performing the division, as division by 0 is not possible and will cause your program

to crash.

A suitable solution may look like this:

The following components are examined to students’ response to Writing Q1:

a) Ability to declare variables of correct data types - Line 5 and 6 (E-U).

b) Ability to read the variables from the console - Line 8 (E-S).

c) Ability to check the divisor for zero and act accordingly - Line 10, 12 and

14 (E-S).

d) Ability to compute correct division – Line 16 (H-S).

e) Ability to show the desired output - Line 17 (E-S).

f) Ability to write well-structured program in clear logical order (H-U).

214

Q2: Write a program in C that calculates the sum of every third integer, beginning with

i = 2 (i.e. calculate the sum of 2 + 5 +8 + 11 + ……) for all values of i that are less

than 30.

A suitable solution may look like this:

The following components are examined to students’ response to Writing Q2:

a) Ability to declare variables of correct data types - Line 5 (E-S).

b) Ability to initialise a variable used to accumulate sum in the program - Line

5 where sum = 0 (H-U).

c) Ability to formulate correct loop - Line 7 (H-U).

d) Ability to compute correct sum- Line 9 (H-S).

e) Ability to show the desired output- Line 11(E-U).

f) Ability to write well-structured program in clear logical order (H-U).

Table B. 5 shows the SOLO classification for Writing questions

Table B. 5

SOLO Classification for Writing Questions

SOLO level Indicator Raw Score

Relational [R] Able to complete all of the components as a

coherent whole.

6

Relational Error [RE] Able to complete all of the components but has

some minor syntax or logic errors or omissions.

5

Multistructural [M] Able to complete most of the components. All H-S

and E-S components complete and valid.

4

Multistructural Error

[ME]

Able to complete most of the components but has

some minor syntax or logic errors or omissions.

3

215

SOLO level Indicator Raw Score

Unistructural [U] Able to complete some components only. 2

Unistructural error

[UE]

Able to complete some components only with some

syntax or logic errors.

Prestructural [P] There are bits of pieces which makes no sense or the

answer is totally wrong.

0

No attempt [N] The answer is blank. 999

217

Appendix C: Sample Students’ Responses to Programming Skills Test

Questions Marked Using SOLO Classification

Figure C.1, Figure C.2 and Figure C.3 shows the sample students’ response to

algorithm design Q1

Figure C.1. R and RE response to algorithm design Q1.

 Figure C.2. M and ME response to algorithm design Q1.

218

Figure C.3. U and P response to algorithm design Q1.

Figure C.4, Figure C.5 and Figure C.6 shows the sample students’ response to

algorithm design Q2

Figure C.4. R and RE response to algorithm design Q2.

219

Figure C.5. M and ME response to algorithm design Q2.

Figure C.6. U and P response to algorithm design Q2.

220

Figure C.7 and Figure C.8 shows the sample students’ response to translating Q1.

Figure C.7. R and M response to translating Q1.

Figure C.8. U and P response to Translating Q1.

221

Figure C.9 and Figure C.10 shows the sample students’ response to translating Q2.

Figure C.9. R and M response to translating Q2.

Figure C.10. U and P response to translating Q2.

222

Figure C.11 shows the sample students’ response to tracing Q1.

Figure C.11. R, M, U and P response to tracing Q1.

223

Figure C.12 shows the sample students’ response to tracing Q2.

Figure C.12. R, M, U and P response to tracing Q2.

Figure C.13, Figure C.14 and Figure C.15 shows the sample students’ response to

explaining Q1.

Figure C.13. R and RE response to explaining Q1.

224

Figure C.14. M and ME response to explaining Q1.

Figure C.15. U and P response to explaining Q1.

225

Figure C.16, Figure C. 17 and Figure C.18 shows the sample students’ response to

explaining Q2.

Figure C.16. R and RE response to explaining Q2.

Figure C. 17. M and ME response to explaining Q2.

226

Figure C.18. U and P response to explaining Q2.

Figure C.19, Figure C.20, Figure C.21 and Figure C.22 shows the sample students’

response to writing Q1.

Figure C.19. R and RE response to writing Q1.

227

Figure C.20. M and ME response to writing Q1.

Figure C.21. U and UE response to writing Q1.

228

Figure C.22. P response to writing Q1.

Figure C.23, Figure C.24, Figure C.25 and Figure C.26 shows the sample students’

response to writing Q2.

Figure C.23. R and RE response to writing Q2.

229

Figure C.24. M and ME response to writing Q2.

Figure C.25. U and UE response to writing Q2.

230

Figure C.26. P response to writing Q2.

231

Appendix D: Participant Consent Form

233

Appendix E: Participant Information Letter

234

235

Appendix F: Ethics Approval Letter

236

237

Appendix G: Student Survey Form

239

240

241

Appendix H: Lecturer Survey Form

243

244

245

Appendix I: Testing the Assumptions for Normality

Assumption #1: The relationship between Independent Variables (IVs) and

Dependent Variables (DV)

The first assumption of Multiple Regression is that the relationship between the IVs

and the DV can be characterised by a straight line. The scatterplots shown in Figure

I.1 checks the relationship between each of the IVs and DV.

Figure I.1. Scatterplot showing the relationship between FSE and DV are linear.

246

Assumption #2: There is no multicollinearity in the data.

This is essentially the assumption that your predictors are not too highly correlated

with one another. This assumption is verified by multicollinearity. First checking

the values of correlation coefficients less than 0.8 as shown in Figure I. 2.

Figure I. 2. Correlation coefficient between Student Performance and programming

skills.

In addition to that VIF scores are well below 10, and the tolerance scores to be above

0.2; which is the case with these variable as shown in the Figure I.3, Figure I.4, Figure

I. 5 and Figure I. 6.

Figure I.3. Collinearity Statistics highlighting tolerance and VIF (a)

247

Figure I.4. Collinearity Statistics highlighting tolerance and VIF (b).

Figure I. 5. Collinearity Statistics highlighting tolerance and VIF (c).

Figure I. 6. Collinearity Statistics highlighting tolerance and VIF (d).

Assumption #3: The values of the residuals are independent.

This is basically the same as saying that we need our observations (or individual data

points) to be independent from one another (or uncorrelated). We can test this

248

assumption using the Durban-Watson statistic. Figure I. 7 shows that the Durban-

Watson statistic is between 0 and 4.

Figure I. 7. Durban-Watson statistic for the IVs.

Assumption #4: The variance of the residuals is constant.

 This is called homoscedasticity, and is the assumption that the variation in the

residuals (or the amount of error in the model) is similar at each point across the model.

In other words, the spread of the residuals should be fairly constant at each point of

the predictor variables (or across the linear model). To test the fourth assumption, we

have plotted the standardised values of our model would predict against the

standardised residuals obtained. From Figure I. 8, it appears to be more random than

funnelled, this assumption is probably satisfied.

249

Figure I. 8. Scatter plot of standardised predicted value against residuals.

Assumption #5: The values of the residuals are normally distributed.

This can be tested by looking at the distribution of residuals. We can do this by

checking the Normal probability plot. From Figure I.9, we can see that most of the

dots lie closer to the diagonal line and residuals are distributed close to normal.

250

Figure I.9. P-P plots for the model with different DVs.

Assumption #6: There are no influential cases biasing the model.

The significant outliers and influential data points can place undue influence on our

model which can be verified using Cook’s Distance. From Figure I.10, we can see

that each of the values are less than 1 showing there is not significant outliers.

251

Figure I.10. Cooks distance from the regression analysis with DVs namely FSE, OS,

MFSE and Writing.

253

Appendix J: Biggs Revised Study Process Questionnaire (R-SPQ-2F)

This questionnaire has a number of questions about your attitudes towards your studies

and your usual way of studying.

There is no right way of studying. It depends on what suits your own style and the

course you are studying. It is accordingly important that you answer each question as

honestly as you can. If you think your answer to a question would depend on the

subject being studied, give the answer that would apply to the subject(s) most

important to you.

Please read each of the following items completely and circle the one which accurately

describes your feelings. Each letter stand for the following response. “This item is …”

A—never or only rarely true of me

B —sometimes true of me

C—true of me about half the time

D —frequently true of me

E— always or almost always true of me

Do not worry about projecting a good image. Your answers are CONFIDENTIAL.

Thank you for your cooperation.

The responses to items are scored as follows:

A = 1, B = 2, C = 3, D = 4, E = 5

To obtain main scale scores add item scores as follows:

Deep Approach = 1 + 2 + 5 + 6 + 9 + 10 + 13 + 14 + 17 + 18

Surface Approach = 3 + 4 + 7 + 8 + 11 + 12 + 15 + 16 + 19 + 20

Subscale scores can be calculated as follows:

Deep Motive = 1 + 5 + 9 + 13 + 17

Deep Strategy = 2 + 6 + 10 + 14 + 18

Surface Motive = 3 + 7 + 11 + 15 + 19

Surface Strategy = 4 + 8 + 12 + 16 + 20

254

D
ee

p
 M

o
ti

v
e

1. I find that at times studying gives me a feeling of deep personal

satisfaction.

A B C D E

2. I feel that virtually any topic can be highly interesting once I get

into it.

A B C D E

3. I find that studying academic topics can at times be as exciting as

a good novel or movie.

A B C D E

4. I work hard at my studies because I find the material interesting. A B C D E

5. I come to most classes with questions in mind that I want

answering.

A B C D E

D
ee

p
 S

tr
a
te

g
y

6. I find that I have to do enough work on a topic so that I can form

my own conclusions before I am satisfied.

A B C D E

7. I find most new topics interesting and often spend extra time

trying to obtain more information about them.

A B C D E

8. I test myself on important topics until I understand them

completely.

A B C D E

9. I spend a lot of my free time finding out more about interesting

topics which have been discussed in different classes.

A B C D E

10. I make a point of looking at most of the suggested readings that

go with the lectures.

A B C D E

S
u

rf
a

ce
 M

o
ti

v
e

11. My aim is to pass the course while doing as little work as possible. A B C D E

12. I do not find my course very interesting so I keep my work to the

minimum.

A B C D E

13. I find I can get by in most assessments by memorising key

sections rather than trying to understand them.

A B C D E

14. I find it is not helpful to study topics in depth. It confuses and

wastes time, when all you need is a passing acquaintance with

topics.

A B C D E

15. I see no point in learning material which is not likely to be in the

examination.

A B C D E

S
u

rf
a

ce
 S

tr
a

te
g

y

16. I only study seriously what’s given out in class or in the course

outlines.

A B C D E

17. I learn some things by rote, going over and over them until I know

them by heart even if I do not understand them.

A B C D E

18. I generally restrict my study to what is specifically set as I think it

is unnecessary to do anything extra.

A B C D E

19. I believe that lecturers shouldn’t expect students to spend

significant amounts of time studying material everyone knows

won’t be examined.

A B C D E

20. I find the best way to pass examinations is to try to remember

answers to likely questions.

A B C D E

255

Appendix K: Proposed CS1 Module Description

Module Title: Introduction to Computer Programming

Module code: CS1

General Objectives

This module introduces the fundamental principles of computer programming with an

emphasis on problem solving strategies using structured programming techniques. The

C programming language is used to introduce problem analysis, algorithm design and

program implementation.

Learning Outcomes

By the end of this module, students will be expected to

1. Analyse problems and derive their solutions.

2. Develop algorithms and draw the flow of logic for a given problem.

3. Write, compile, and debug simple computer programs for the given the

problem statements.

4. Utilise a wide range of features available in C to write programs to solve

problems.

5. Analyse problem requirements in order to understand what type of data and

processes are involved in the system.

6. Design modular approach to satisfy those requirements.

7. Organize program code to implement the design.

8. Verify that the results obtained satisfy the original requirements.

Learning and Teaching Approach Used

1. Lecture 4 hours per week

a. Lecture 3 hours

b. Tutorial 1 hour

256

2. Practical 3 hrs per week

a. Demonstration (Tutor) 1 hour

b. Practice/Exercise (Student) 2 hours

Assessment

1. Continuous Assessment 50 Marks

a. Assignments 10 Marks

b. Mid-Semester Examination 20 Marks

c. Practical Examination and Viva 20 Marks

2. Semester End Examination 50 Marks

Subject Matter

Week 1: Learning strategies

Week 2, 3 & 4: Algorithms and problem solving (tracing and explaining an

algorithms)

Week 5: Introduce language features: data types, assignments, variable declaration,

operators, expressions and simple input/output functions.

Week 6: Translate simple algorithms into programming code (translating). Using

programming environment, write translated programs, compile, run and debug.

Week 7, 8, 9 & 10: Introduce language features: control structures, functions, arrays

and files.

Week 11 & 12: Translate complex algorithms into programming code (translating).

Manually execute the translated programs (tracing) and explain the purpose of the

translated code (explaining).

257

Week 13: Introduce simple code writing from the given problem (writing) using

programming environment. Manual tracing and explaining should go in parallel as

well.

Week 14: Introduce complex code writing from the given problem (writing) using

programming environment. Manual tracing and explaining should go in parallel as

well.

Week 15: Introduce additional language features depending on what programming

language is used in CS1 involving tracing, explaining and writing programs.

259

Appendix L: CS1 FSE paper of three colleges at RUB

260

261

262

263

265

266

267

268

