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Abstract 

Worldwide, learning computer programming is considered difficult for 

novice students when they are first exposed to it at university. Due to this, 

students may become demotivated, lose interest and slowly withdraw from 

programming units. Thus, there tends to be high attrition rates in early 

tertiary-level programming units; this is a well-known problem in computing 

education. Previous studies have investigated the cause of the difficulties in 

learning to program and have identified a number of curricular approaches 

to assist students to overcome these. However, the problem still exists, 

suggesting the need for further research. 

This study investigates the factors that may affect the performance of 

students studying the unit ‘Introduction to Computer Programming’, 

henceforth referred to as CS1 in the country of Bhutan. At the Royal 

University of Bhutan (RUB), CS1 is the first and compulsory module studied 

by students enrolled in science and engineering programs. These students 

find programming difficult, which has led to high failure rates in CS1 at 

RUB. This high failure rate and students’ inability to comprehend the 

programming concepts at RUB is a cause of concern for both for the 

researcher and the institution. Thus, the researcher has set out to investigate 

the factors that may affect student performance in CS1. 

The conceptual framework for this study was adapted from Biggs 3P model 

of learning to describe the factors that may affect students’ performance in 

CS1. The first P (input factors) describes the factors that students bring 

before the commencement of CS1 and the institutional factors that are 
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already in place. The input factors discussed in this thesis are prior computing 

experience, Year 12 performance in mathematics, physics and chemistry, and 

institutional factors are teaching methods and practices, programming 

paradigm, programming environment and language used in CS1. The second 

P (learning process factors) describes the learning environment in which CS1 

takes place. The learning process factors discussed in this thesis are students’ 

learning approaches, students’ ability in programming skills, students’ 

learning methods and practices. The last P (student performance) is the final 

outcome after learning has taken place. Student performance in this study 

was measured by student scores in the final semester examination, overall 

semester performance and a researcher-designed programming skills test. 

The programming skills test was devised to measure students’ ability across 

five programming skills, identified in this study as algorithm design, 

translating, tracing, explaining and writing. The structure of the observed 

learning outcomes was adapted to determine in-depth information about the 

students’ level of understanding in the test. The relationships among the 

programming skill variables and between student performance and 

programming skill variables were examined in this study. Multiple 

regression analysis was conducted to investigate the relative contribution of 

each of these programming skill variables to student performance. The 

results of multiple regression analysis and the path analysis reported that 48 

percent of the variance was explained by the programming skill variables, in 

which writing contributed the most and algorithm design the least to student 

performance. 
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This study employed a convergent parallel mixed methods design and a 

variety of data collection methods including a test, survey questionnaire, and 

individual and group interviews designed to address the research questions. 

The qualitative data were used to confirm/disconfirm the quantitative data 

and to provide deeper meaning. Participants for this study were students and 

lecturers learning and teaching CS1 in July–November 2016 at three colleges 

of RUB, which are geographically separated by rugged terrain. A total of 292 

students took the test and 277 participated in the survey. All eight lecturers 

participated in a survey and an interview. 

This study is significant, as it is the only study to investigate the variables 

discussed in this thesis in the country of Bhutan. Thus, it will have 

implications for the teaching and learning of CS1. The outcome of the study 

will provide CS1 lecturers at RUB with greater insight into their teaching 

practices and present them with data to inform curricula decisions as they 

work to improve student performance.  

The results from this study will also provide a foundation for further research 

in terms of the new variables introduced that are important in teaching CS1 

as well as draws further attention to the current variables for existing 

computing tertiary educators.  
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Glossary of Terms 

Programming skills The basic essential skills required by students in 
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algorithm design, translating, tracing, explaining and 
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study, algorithm design is represented in the form of 

algorithms and flowcharts. An algorithm is the process 

of writing detailed step-by-step instructions to solve a 

problem using either simple English or a pseudocode. 

A pseudocode is a mixture of English language and 

programming language constructs. A flowchart is a 

graphical representation of an algorithm. 
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Chapter 1: Introduction 

1.1 Introduction 

This thesis presents an investigation of factors that may affect the performance 

of students studying Introduction to Computer Programming (CS1). CS1 is the first, 

and compulsory, module studied by many undergraduate students from various fields 

of science, technology and engineering. Learning to program is not easy for many 

students upon their first introduction to it. This is because students not only have to 

learn to solve a problem, they also have to learn the syntax and semantics of a 

programming language to enable them to express their solution in a form that 

computers understand (Mannila, Peltomäki, & Salakoski, 2006). The difficulty faced 

by students in learning CS1 has led to high failure rates in CS1 taught at the Royal 

University of Bhutan (RUB). An important question behind the motivation for this 

study is: How can we improve student performance in CS1? 

The following sections will present information on the thesis origin, 

background, research objectives and significance. An overview of the methodology 

and thesis concludes this chapter. 

1.2 Thesis Origin 

This section details the origin of this thesis. It represents an opportunity to 

explore and research computer science education, particularly in the context of CS1. I 

began my teaching career at Sherubtse College (SC), RUB in 2008. Since then, I have 

taught computer science-related subjects to students enrolled in Bachelor of Science 

in Computer Science and Bachelor of Science in Physical Science. 

The impetus for this study was my experience teaching CS1 to first-semester 

students and the similar experiences shared by other tutors teaching CS1 to science 
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and engineering students in other colleges of RUB. High failure rates in CS1 have been 

observed and identified as an issue. 

When I interacted with students in my class, most indicate that learning to 

program is difficult since the content is new. This difficulty in learning to program is 

a challenge faced by many students at RUB when they are introduced to it in Semester 

1. 

As a tutor, when I reflected on my teaching experience and students’ 

performance, I wondered whether it was the teaching methods/practices in the 

classroom or how students approached learning to program that determined their 

performance in CS1. With a full-time teaching load and other faculty responsibilities, 

research is near to impossible. However, I continued to persist in finding a solution to 

my research-related considerations and was exhilarated when I received a scholarship 

in 2015 to pursue my research interests at Curtin University, Western Australia. 

1.3 Background 

This section presents the background information for this study by providing a 

brief history of RUB and the context of CS1 offered at RUB colleges. This will be 

followed by a clear definition of programming skills as used in this thesis. 

RUB was established in 2003, offering tertiary education from various 

locations across the country (Department of Academic Affairs, October 2013). RUB 

is the only university in Bhutan (with 10 constituent colleges and two affiliated 

colleges under the umbrella of RUB) besides one medical university, Khesar Gyalpo 

University of Medical Sciences of Bhutan, which was established in 2013. Of 10 

colleges, four offer degree and diploma programs that include CS1 in their first 

semester. All students taking those programs are required to take CS1. This mandatory 

module is the focus of this study. 
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The researcher has observed that students in these RUB programs have high 

failure rates in CS1 when they are introduced to it in their first semester. The researcher 

has experience as a participant observer and in teaching CS1 classes. During the 

assessment of students’ programming solutions, the researcher observed a significant 

number of solutions that indicated that students were not achieving the intended course 

outcomes. The high failure rate and students’ inability to comprehend the 

programming concepts at RUB is a cause for concern for the researcher and the 

institution. The researcher observed that of 60 students in one lecturer’s classes, 50 

percent failed (below 50 marks) in the semester-end results during spring 2015. A 

similar result was reported when the researcher taught the same course in spring 2013. 

The high failure rates in CS1 prompted the researcher to investigate the factors that 

may affect student performance in CS1. 

Students’ performance in CS1 was measured by the overall marks (out of 100) 

scored by students in a semester. It was based on students’ performance in various 

assessment components: continuous assessment (CA) and final semester examination 

(FSE). CA constitutes 50 percent of the overall mark; it includes assignments, class 

tests, practical examinations and mid-semester examinations. The FSE is written at the 

end of the semester and constitutes 50 percent of the mark. These assessments test 

students’ ability to explain the theoretical and practical components of programming. 

Most students taking CS1 do not have any prior programming experience. The 

learning of CS1 takes place both in a classroom setting—a theory class—and in a 

computer laboratory—a practical class. Each theory class has 30–60 students and the 

practical class has 30 students maximum. Four hours a week are dedicated to theory 

(one hour per tutorial) and three consecutive hours a week comprise practical classes. 

The lecturer provides instructions in the theory class using slideshow presentations 
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and traditional teaching methods, such as notes on chalk and board or whiteboard. For 

the practical class, the lecturer uploads a tutorial/problem set in the learning 

management system in advance. Students then download these and begin planning and 

working on the problem during practical class. The lecturer assists students in 

understanding the problem and encourages them to work in pairs or groups. At RUB, 

a CS1 lecturer is responsible for not only delivering instructions, setting assignments, 

examination questions and laboratory problems and conducting laboratory sessions, 

but also for marking all assignments, examinations and laboratory problems. In 

Western universities, such as University of New Brunswick, Canada and Curtin 

University, Western Australia (researchers’ observation when studying in these 

universities), teaching assistants and tutors assist in marking and conducting laboratory 

sessions. In one semester, students are required to submit several programming 

assignments, sit at least two examinations (mid-semester and final semester) and one 

practical examination in the computer laboratory. The assessments may differ slightly 

across colleges. For instance, the College of Science and Technology (CST) conducts 

three examinations in one semester. 

In learning CS1, there are five basic but essential programming skills that every 

student is expected to master (Biró, Csenoch, Abari, & Máth, 2016; Crews & Ziegler, 

1998; Hooshyar, Ahmad, Shamshirband, Yousefi, & Horng, 2015; Lister, Fidge, & 

Teague, 2009; Venables, Tan, & Lister, 2009). These skills are referred to in this thesis 

as ‘programming skills’ and they are algorithm design, translating, tracing, explaining 

and writing. This section will define these programming skills as understood by the 

researcher and to be used for the purpose of this study: 

a) Algorithm design is a procedure to create a logic in solving a problem. This skill 

tests students’ ability to analyse the problem, and understand and design a 
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complete solution. Algorithm design can be expressed in simple natural languages 

like English, pseudocodes or flowcharts (Goel, 2010; Hardnett, 2011). Both 

algorithms and flowcharts are used to represent algorithm design in this study. 

Algorithm refers to the process of writing detailed step-by-step instructions to 

solve a problem using either simple English or a pseudocode. A pseudocode is a 

mixture of English and the structural constructs of a programming language 

(Afriyie, 2007; Goel, 2010; Grover, 2001; Jeyapoovan, 2015). A flowchart is a 

graphical representation of an algorithm. An example of an algorithm design is 

shown in Figure 1.1. 

 

Figure 1.1. Example of algorithm design. 

b) Translating is a process of converting a given algorithm design into any high-

level programming language. The C programming language was used as an 

example in this study. This skill tests students’ ability to correctly translate the 

logic from the given algorithm design into C programming language. This step 

requires students to know basic C programming language features. The 

translated program does not need to be an executable program, which means 

students are not required to remember the syntax, such as semicolons (;) double 
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quotation marks (“ ”) and commas (,). However, the basic programming 

features and logic must be correct, complete and almost close to an executable 

program. In fact, it is preferable if students can produce translated programs 

that are executable. Figure 1.2 and Figure 1.3 show examples of translating 

from an algorithm and flowchart to the C programming language respectively. 

 

Figure 1.2. Example of translating (a). 

 

 

Figure 1.3. Example of translating (b). 
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c) Tracing is a process of manually executing program statements one by one, 

keeping track of the values in all variables, updating values as they change and 

showing the desired output. This skill tests students’ ability to read a given 

piece of code and understand how the program works. An example of manually 

tracing a piece of code and producing a correct output is shown in Figure 1.4. 

 

Figure 1.4. Example of tracing. 

d) Explaining is the process of explaining, in plain English, the purpose of a 

given piece of code. This skill tests students’ ability to comprehend the written 

code. Figure 1.5 shows an example of explaining. 
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Figure 1.5. Example of explaining. 

e) Writing is the process of writing code in C programming language to solve a 

problem. This skill tests students’ ability to write correct programs in C. In 

writing, students are expected to produce executable code that can run in a 

programming environment. An example of writing is as shown in Figure 1.6. 

 

Figure 1.6. Example of writing. 
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1.4 Research Objectives 

This section states the objectives and specifies the research questions to be 

addressed in this study. The main aim of this thesis is to investigate the factors that 

may affect students’ performance in CS1 at RUB. These were investigated via seven 

objectives: 

1. Discover if students’ prior computing experience has any impact on their 

performance in CS1. 

2. Explore the first programming language, programming paradigm, 

programming environment and teaching/learning methods and practices as 

experienced/perceived by lecturers and students in CS1 that may improve 

students’ performance in CS1. 

3. Test for associations between students’ performance in CS1 and their Year 

12 (Y12) performance in mathematics, physics and chemistry. 

4. Investigate associations between students’ performance in CS1 and 

students’ learning approaches. 

5. Discover any relationship among the programming skill variables. 

6. Investigate associations between students’ performance in CS1 and 

programming skill variables. 

7. Identify if there is a learning hierarchy in programming skills or not. 

These research objectives are addressed by asking seven research questions: 

1. What is students’ prior computing experience and does this affect 

performance in CS1? 

2. What are students’ and lecturers’ experiences/perceptions of first 

programming language, programming paradigm, programming 

environment and teaching/learning methods and practices? 
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3. What is the association, if any, between students’ performance in CS1 and 

students’ Y12 performance in mathematics, physics and chemistry? 

4. What is the association, if any, between students’ performance in CS1 and 

students’ learning approaches? 

5. What is the association, if any, among programming skill variables? 

6. What is the association, if any, between students’ performance in CS1 and 

students’ ability in programming skills? 

7. Is there a hierarchy among students’ programming skills in terms of their 

contribution to students’ performance in CS1? 

 

The above research questions were specifically selected based on the relevance 

and the need for teaching and learning CS1 at RUB.  For instance, research question 1 

and 3 were selected to discover if students’ prior computing experience and Year 12 

(Y12) performance in mathematics, physics and chemistry has any impact on their 

performance in CS1 or not because in Bhutan student results in these areas are used to 

select students in science and engineering programmes where CS1 is a mandatory 

module in their first semester.  Research question 2 was selected to explore on the first 

programming language, programming paradigm, programming environment and 

teaching/learning methods and practices that may improve students’ performance in 

CS1. This is because the researcher wants to explore more on these variables at the 

other colleges under RUB as Sherubtse College (where the researcher has taught) used 

C as the first programming language which is a procedural programming paradigm 

and most lectures used Turbo C++ and Dev-C++ as the programming environment. 

The answers to this research questions will give the complete knowledge on the first 

programming language, programming environments and teaching/learning methods 
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and practices that may improve student performance in CS1 at RUB. Similarly, 

research question 4 was selected to investigate if students’ learning approaches has 

any impact on their performance in CS1 or not as it would be beneficial to know the 

approaches of learning that Bhutanese students take in learning CS1 and also to 

examine which learning approach has the impact on student performance in CS1. 

Furthermore, the research questions 5 and 6 was selected to discover if Bhutanese 

students’ results exhibit any relationship among the programming skills variables and 

also between the programming skill variables and the performance in CS1. In the same 

line, research question 7 was selected to discover if Bhutanese students’ results show 

any existence of the learning hierarchy in programming skills or not. The answers to 

these research questions may help the lectures and students at RUB to improve 

teaching and learning of CS1.  

 

1.5 Significance of this Study 

This section addresses the reasons why this study is significant. The results 

from this study made the following significant contribution, not only to RUB but also 

to computing research worldwide. 

This study provides lecturers of CS1 at RUB a deeper insight into first 

programming language, programming paradigm, programming environment and 

teaching/learning methods and practices. This is significant because it enables 

lecturers to better reflect on their current teaching methods and practices and make 

informed decisions. It also adds to and validates the existing body of computing 

research in the first programming paradigm and language choice to be used in CS1 and 

teaching/learning methods and practices that may improve students’ performance in 

CS1. 
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This study has also examined student approaches to learning in CS1, which is 

associated with student performance in CS1. Thus, this study has contributed to the 

body of computing research by exploring quantitatively the relationship between 

students’ learning approaches and their performance in CS1. 

For RUB to produce competent graduates in science and technology, it is 

important to focus on the foundation module (CS1) as this will facilitate the successful 

completion of the program. Part of the original contribution of this study comes from 

the fact that it is conducted in Bhutan. A comprehensive literature review revealed no 

studies have examined the variables used in this study in the country of Bhutan. Thus, 

this study sample is unique and provided valuable data for other researchers with 

similar interests in the computing discipline. 

The identification of five foundational programming skills—algorithm design, 

translating, tracing, explaining and writing—contributed to the body of knowledge in 

regard to programming skills. Although considerable research has been conducted in 

programming skills, such as tracing, explaining and writing (see Chapter 2), students’ 

skills in algorithm design and translating have not been explored alongside tracing, 

explaining and writing (to the researcher’s knowledge). Therefore, this study has made 

a unique contribution to the body of knowledge in CS1 programming skills. 

Subsequently, the structure of the observed learning outcome (SOLO) taxonomy was 

adapted to evaluate students’ responses to programming skills test (PST) questions 

(see Section 3.2.1 and Appendix A). This has contributed new information in regard 

to the SOLO descriptions for each programming skill, and thus, provide avenues for 

comparison of results. Both of these contributions (programming skills and use of 

SOLO taxonomy) are significant to the CS1 teaching community because they enable 

a deeper understanding of the two concepts leading to better practice, especially in 
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terms of focus and sequence of teaching the programming skills in introductory 

computing. 

1.6 Overview of the Methodology 

This section outlines the research methodology used in this study. This study 

used a convergent parallel mixed methods design (see Section 3.4, page 52) to collect 

data through both quantitative and qualitative methods, but mostly quantitative. 

Qualitative data were collected to confirm/disconfirm quantitative results and provide 

deeper understanding (Creswell, 2013, p. 213). The qualitative and quantitative data 

were collected via a variety of methods: survey questionnaires (for lecturers and 

students), lecturer and student individual interviews, student group interviews and 

student PST scores. The rationale for choosing this method was to best answer the 

research questions and triangulate the results. Figure 1.7 shows the methods of data 

collection used in this study. 
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Student individual interviews 

 

Student individual interviews 

 

Student group interviews 

 

Student surveys 

PST 

 

Lecturer interviews 

Figure 1.7. Data collection methods. 

Students from three colleges who have completed a course in CS1 in their first 

semester at RUB in July–November 2016 participated in this study. A total of 292 

students participated in the PST and 277 students participated in the survey. 

This study achieved 100 percent participation from lecturers from three 

colleges. Eight lecturers participated in this study, of which six taught the module in 

2016 and two in the previous years. 

Students’ ability in programming skills was measured using the PST answer 

scripts of students’, using SOLO taxonomy (Biggs & Collis, 1982) . The SOLO 
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description used to evaluate the responses to algorithm design, translating, tracing 

explaining and writing questions are shown in Chapter 3. 

Students’ approaches to learning CS1 were identified using the Biggs revised 

two-factor study process questionnaire (R-SPQ-2F) which consists of 20 closed-

response questions scored on a 5-point Likert scale (Biggs et al., 2001). Other 

information was collected from the survey and interviews. 

Data analysis was completed using SPSS for quantitative data. Qualitative data 

were manually classified according to each research question. Other areas unrelated to 

research questions but of research interest are noted. Qualitative data were collected 

to cross-validate the quantitative data. 

1.7 Thesis Overview 

This thesis consists of eight chapters and 12 appendices. This chapter has 

introduced the thesis by describing the origin and background information of this 

study. The research objectives and research questions have been specified. The 

significance of this study has been discussed and the research methodology briefly 

described. Finally, an overview of each chapter has been provided. 

Chapter 2 reviews the extant literature, describing factors affecting students’ 

performance in higher education with particular focus on CS1. The theoretical 

framework built based on the literature will be discussed. 

Chapter 3 provides an in‐depth description of the research methodology used 

in this study. The research questions will be outlined, sample and measures described 

and various data collection methods detailed.  

Chapter 4 and 5 presents the results of the students’ and lecturers’ quantitative 

univariate analysis followed by qualitative results. Chapter 6 further presents the 

results of quantitative bivariate and multivariate analysis, including path analysis. 
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Chapter 7 discusses the results presented in Chapters 4, 5 and 6 by 

systematically answering each research question and discussing the answers in depth. 

Common key areas emerging from the qualitative data will be discussed. 

Finally, Chapter 8 concludes this thesis with a brief summary of the findings 

with reference to the research questions proposed in this study. This chapter also 

outlines wider contributions and limitations and suggests future research directions. 

Twelve appendices follow the references. Appendix A is a copy of the PST 

instrument. Appendix B is the PST marking criteria, using SOLO classification, while 

Appendix C is a copy of a sample student’s responses to PST questions. Appendices 

D and E are copies of the participant consent form and information letter respectively. 

Appendix F is a copy of the ethics approval letter from the Human Research Ethics 

Committee of Curtin University. Appendices G and H are copies of the student survey 

and lecturer survey. Appendix I is the results of the assumptions for normality. 

Appendix J is the Biggs’s revised two-factor study process questionnaire and 

Appendix K describes the proposed CS1 module. Finally, Appendix L is a copy of the 

FSE paper of three colleges at RUB. 

1.8 Summary 

This chapter opened with an introduction to this thesis, outlining the sections 

addressed here. The sections described the origin of this thesis and background 

information related to this study. They stated research objectives and research 

questions, discussed the significance of this study, provided an overview of the 

methodology used in this study and an overview of each chapter. Chapter 2 will review 

the related literature. 
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Chapter 2: Literature Review 

2.1 Introduction 

The previous chapter introduced this study and how it originated. It provided 

background information, outlined research objectives and research questions and 

presented its significance and research methodologies, and described each chapter. 

This chapter will report on the literature that has explored the factors that affect 

students’ performance in CS1. 

This chapter begins with a review of the factors that affect students’ 

performance in higher education, followed by an overview of the existing studies on 

the factors that affect student performance in the learning of units such as Introduction 

to Computer Programming (CS1), from which the theoretical framework was 

constructed. It then presents an overview of these factors listed under input and 

learning process factors. Further, the review of the measures of student success in CS1 

is presented along with a review of the structure of the observed learning outcome 

(SOLO) taxonomy. 

Overall, chapter 2 reviews the literature and in doing so, justifies the need for 

the current study. 

2.2 Factors that Affect Students’ Performance in Higher Education: 

Developing the Theoretical Framework 

It is often a challenge to measure students’ academic performance in higher 

education, as it is dependent on different socioeconomic, psychological and 

environmental factors. Research has shown that socioeconomic factors such as gender, 

age, parents’ income and educational background, alcohol consumption, substance 

abuse and high school performance can affect students’ academic performance in 
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higher education (Hijaz & Naqvi, 2006; Mushtaq & Khan, 2012; Pritchard & Wilson, 

2003). 

The literature review identified that there is a significant influence on students’ 

academic performance when students experience psychological factors such as stress, 

depression, anxiety or suicidal tendencies while pursuing higher education (Pritchard 

& Wilson, 2003). It was found that high level of stress affect students’ mental, 

emotional and physical health, which might lead to depression and anxiety, thereby 

affecting students’ ability to learn and potentially their academic performance 

(Kamtsios & Karagiannopoulou, 2015). The top three academic stressors identified 

were examination, excessive content to learn and lack of time to revise what has been 

learnt (Yusoff, Rahim, Baba, Ismail, & Pa, 2013). Rising expectations and 

responsibilities may generate negative emotions, which in extremes, can lead to 

suicide (Bhattacharya & Bhattacharya, 2015). 

Environmental factors such as social support from peer and teacher, family 

encouragement and support, peer relationships, teacher–student relationships, 

experience of teachers and classroom facilities play a vital role in students’ academic 

achievement. Social support is commonly defined as the existence or availability of 

people on whom we can rely, people who let us know they care for, value and love us. 

Social support has been identified as a resource that enables individuals to cope with 

stress (Yang, 2004). Family encouragement and support have been identified as 

important contributing factors for students’ academic success (Gloria & Robinson 

Kurpius, 2001). 

Biggs (1987) used the 3P model (see Figure 2.1) to describe the factors that 

may influence students’ performance in learning. The Biggs 3P model comprises three 

components: presage, process and product. The presage component exists before the 
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student enters the learning context and includes factors such as prior knowledge, 

abilities, intelligence quotient and personality characteristics (e.g., age, sex and home 

background). It also includes situational factors such as subject area, teaching methods, 

time taken to complete a task and the structure of the course. The process component 

describes the learning situations and includes factors such as students’ motives and 

approaches to learning. The product component is the outcome after learning has taken 

place. The outcome can be objective, for example, in terms of examination scores or 

subjective or the level of satisfaction attained. Biggs stated that product was 

significantly influenced by presage and process factors. 

The model shows how student presage factors interact with situational factors 

during the learning process and lead to the achievement of the product. It argues that 

the instructor is responsible for the design and structure of the learning environment 

and the student is responsible for engaging appropriately with the activities. 

 

 

Figure 2.1. Biggs 3P model of learning. 

For simplicity, this study has replaced the term presage with input factors, 

process with learning process factors and product with student performance. Section 

2.3 provides an overview of the existing studies addressing the factors that affect 
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student performance in the learning of CS1, from which a more specific theoretical 

framework will be constructed and presented toward the end of this chapter. 

2.3 Factors That Affect Students’ Performance in Learning 

Introduction to Computer Programming 

Several factors that may influence students’ performance in CS1 at university-

level courses have been discussed in the literature. These factors are previous 

programming experience, previous non-programming computer experience, 

encouragement to pursue computer science, motivation, comfort level in the course, 

work style preference, attribution to success/failure, self-efficacy, mental model, 

learning approaches, gender, mathematics background (Bergin & Reilly, 2005a; 

Wiedenbeck, Labelle, & Kain, 2004), teaching methods (Krpan, Mladenović, & Rosić, 

2015) and cognitive factors such as problem-solving, abstract reasoning, problem 

translation, skills, logical ability and cognitive style (Bergin & Reilly, 2005b). Other 

factors that may affect students’ performance and are of research interest include 

students’ ability in programming skills (Tan & Venables, 2010), programming 

paradigm (Gupta, 2004), programming environment and first programming language 

choice. 

Wilson and Shrock (2001), Hagan and Markham (2000) and Wilson (2002) 

reported that comfort level in class was the best predictor of course success followed 

by mathematics background. Hagan and Markham (2000) and Kersteen, Linn, Clancy, 

and Hardyck (1988) found that previous programming experience and previous non-

programming computer experience were an indicator of success in programming. 

Conversely, Bergin and Reilly (2005b) reported no significant difference between 

students with or without previous programming experience and between students with 

or without previous non-programming computer experience. 
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While considerable research has been done on factors that affect student 

performance in CS1, the parameters used were different. The literature review revealed 

that the parameters used were: students’ enrolment program (computer science, social 

science, humanities and engineering), level (degree and diploma), educational settings 

(the United States, United Kingdom, India, Europe etc.), programming language 

taught (Python, Java and C++) and the measure of student success in CS1 (overall 

computer science grades, mid-term grade, final semester exam grade and continuous 

assessment). The parameters used in this study were based on situational factors 

currently evident at RUB. These were: students’ enrolment in a computer science and 

engineering course at degree or diploma level, Bhutanese educational settings, 

teaching of C as the programming language, measurement of student success in CS1 

as final semester examination (FSE), overall semester (OS) and programming skill test 

(PST) scores. 

Sections 2.3.1–2.3.8 briefly review research studies for each of the factors that 

are likely to impact learning in CS1: 

2.3.1 Prior computing experience 

Prior computing experience can be further categorised as prior programming 

experience and prior non-programming computer experience (Bergin & Reilly, 2005b; 

Wilson, 2002). Prior programming experience includes any prior formal programming 

or self-initiated programming courses taken outside a formal class. Prior non-

programming computer experience includes using the Internet for information 

searches: games (online or offline) and application software such as Office, 

spreadsheets, presentation programs and databases (Wilson, 2002). 

Studies have shown that students with prior programming experience 

performed significantly better in CS1 than those without (Hagan & Markham, 2000; 
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Holden & Weeden, 2003; Taylor & Luegina, 1991; Wilcox & Lionelle, 2018; Wilson, 

2002). In Hagan and Markham (2000) and Holden and Weeden (2003), Java was the 

language used in their first programming course. They found a significant difference 

between students with prior experience in programming and those without. Moreover, 

the more programming languages in which students had experience, the better was 

their performance. 

Few studies have examined the impact of prior non-programming computer 

experience on students’ performance in CS1 (Bergin & Reilly, 2005b; Wilson, 2002). 

Wilson (2002) found that students with previous programming experience and game 

playing had significantly better or worse performance in CS1 respectively. Previous 

programming experience had a positive influence, while game playing had a negative 

influence on mid-term grade. Conversely, Bergin and Reilly (2005b) found no 

significant difference between students with or without previous programming 

experience or between students with or without non-programming computer 

experience. 

Therefore, based on the literature, the researcher considered it important to 

examine these two variables in Bhutanese environment so the results from this study 

can better inform the Education Ministry of Bhutan on whether to include basic 

programming subjects in Year 11 and 12, or if not, for science students who may be 

likely to take CS1 in their first semester of university. 

2.3.2 Year 12 performance in mathematics, physics and chemistry 

In computer programming, problem-solving can be broken down into four 

steps: 1) understand the problem, 2) determine how to solve the problem, 3) translate 

the solution into a computer language program, and 4) test and debug the program 

(Winslow, 1996). Since students learn general problem-solving skills in high school 
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mathematics, several studies have determined that student mathematics background is 

a good indicator of success in CS1 (Konvalina, Wileman, & Stephens, 1983; Patil & 

Goje, 2009; Wilson, 2002; Winslow, 1996; Zaffar, Hashmani, & Savita, 2018). 

In Byrne and Lyons (2001), mathematics background was shown to have 

significant influence on programming performance. Byrne and Lyons (2001) and 

(Campbell & McCabe, 1984) beliefs that students’ mathematics concepts to 

comprehend to master mathematics problems are similar to those of programming. 

They involve problem-solving ability, which is crucial for success in science and 

engineering. The researcher also observed while teaching CS1 that students who 

achieved high grades in Year 12 (Y12) mathematics perform better than those who did 

not achieve high grades. Similarly, prior performance in science subjects, although 

less studied, has shown to have a positive influence on students’ performance in 

programming (Byrne & Lyons, 2001; Werth, 1986; Zaffar et al., 2018). 

After the review of the literature, the researcher found no studies that have 

examined students’ Y12 performance in mathematics, physics and chemistry in 

relation to their performance in CS1, especially in Bhutan. Therefore, the researcher 

considered it necessary to establish whether there is any link between students’ Y12 

performance in mathematics and science subjects and their success in CS1. This would 

allow more or less attention to be given to students studying CS1. 

2.3.3 Programming paradigms 

A programming paradigm is an approach to programming a computer based on 

a mathematical theory or a coherent set of principles. Each paradigm supports a set of 

concepts that makes it ideal for a certain kind of problem (Van Roy, 2009). In simple 

terms, paradigm means ‘a way of doing things or thinking about things’ (Burton & 

Bruhn, 2003). 
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The choice of programming paradigm for beginners is one of the most debated 

topics in the literature (The Joint Task Force on Computing Curricula Association for 

Computing Machinery (ACM) IEEE Computer Society, 2013). Therefore, a brief 

review on the discussion of two popular programming paradigms suitable for CS1 are 

presented in Sections 2.3.3.1–2.3.3.2. The researcher acknowledges that there are more 

programming paradigms, which are beyond the scope of this study (Van Roy, 2009). 

2.3.3.1 Object-oriented paradigm 

The object-oriented programming paradigm uses abstraction in the form of 

classes and object to create real-world environments. Just as an object in the real world 

may be described by its attributes and behaviours, an object in object-oriented 

programming consists of a collection of variables (attributes) and procedures 

(behaviours) bundled permanently together (encapsulated) as a unit. Similar objects 

are regarded as special instances (modified copies) of a general class; the class is used 

as the template to make the objects. Objects become the basic programming unit, rather 

than procedures. A natural development of this picture of classes and objects is to view 

them as programs in their own right. That is, a class or its object copy is a self-

contained collection of data and code that can function as a complete subprogram. 

Contained within each class or object are all the elementary building blocks of 

primitive data types and the procedures that act on them (Burton & Bruhn, 2003). 

As object-oriented programming becomes increasingly popular in the 

workplace, many college and tertiary institution have adopted object-oriented 

programming in their first programming courses (Kölling & Rosenberg, 1996; 

Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999). Moreover, object-

oriented programming is believed to directly support many of the software engineering 

concepts that are difficult to convey in procedural programming such as code re-use, 
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encapsulation, incremental development, testing and program design (Decker & 

Hirshfield, 1994). However, introducing object-oriented programming for beginners 

remains difficult, as acknowledged by many researchers. Kruglyk and Lvov (2012) 

stated that it requires the knowledge of object-oriented programming almost 

immediately, making it difficult for beginners. Kölling (1999) and Kölling and 

Rosenberg (1996) stated that the lack of a truly object-oriented development 

environment has created difficulty in teaching object-oriented programming. The most 

commonly used languages in introducing object-oriented programming are C++ and 

Java. 

2.3.3.2 Procedural paradigm 

The procedural programming paradigm is a linear or top-down approach in 

programming. It uses procedures or subroutines to perform computations. According 

to Burton and Bruhn (2003), the main steps in writing a simple procedural program 

may be summarised as:  

1. Read and understand the problem. 

2. Devise a solution to the problem. 

3. Formalise the solution as an algorithm. 

4. Write the program. 

5. Test and debug the program. 

6. Document the program. 

Burton and Bruhn (2003) asserted that students must master these steps before 

considering modelling a real-world object, which means students must first learn 

procedural programming and then move to object-oriented programming. 

Gupta (2004) also recommended procedural programming for beginners, 

stating that procedural programming is easy to understand and continues to be the most 
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popular choice among teachers for an introductory programming module. He further 

added that procedural programming is ‘straightforward to convert intuitive algorithms 

into code’ while in object-oriented programming, one needs to ‘actually go into the 

structure and design of the system and how its components interact with each other’ 

(Gupta, 2004). 

Although procedural programming has been taught in first programming 

courses for a long time, many universities are now slowly moving to object-oriented 

programming. The main reason for this transition is the ‘dread of paradigm shift’, 

which means once your mind is set on procedural programming, it takes time to switch 

to object-oriented programming. Thus, Kölling (1999) proposed to begin with object-

oriented programming. He stated that the path to object-orientation through procedural 

is not required. Conversely, Brilliant and Wiseman (1996) reported that students find 

procedural programming easy to understand and find object-oriented programming 

difficult, so it is better to start with procedural programming. Therefore, this study will 

collect information from lecturers who have taught CS1 at RUB in regard to the first 

programming paradigm that better suits CS1. The most commonly used languages in 

introducing the procedural programming are Pascal and C. 

2.3.4 First programming language 

Choice of programming paradigm drives the choice of programming language. 

It is crucial to choose the suitable first programming language, as it will have a 

profound impact on ‘programming style, coding technique, and code quality’ (Gupta, 

2004). Gupta (2004) discussed some of the requirements of a good introductory 

programming language. An introductory programming language for university 

students should be simple and easy to understand, orthogonal (i.e., not too many ways 
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of doing the same thing) and have simple input/output functions. Take, for instance, 

the most popular ‘Hello, World!’ program, written in Java as shown in Figure 2.2: 

 

Figure 2.2. ‘Hello, World!’ program, written in Java. 

 

In Prolog, it is written as shown in Figure 2.3: 

 

Figure 2.3. ‘Hello, World!’ program, written in Prolog. 

 

In Python, it is written as shown in Figure 2.4 : 

 

Figure 2.4. ‘Hello, World!’ program, written in Python. 

And in C, it is written as shown in Figure 2.5: 

 

Figure 2.5. ‘Hello, World!’ program, written in C. 

To someone new to programming, the Python and C code look simple, easy 

and straightforward to understand. Gupta (2004) suggested C as the better choice for 
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new college students, as C is simple enough for students to be able to immediately 

write simple programs while being flexible enough to allow students to gradually learn 

to write complex programs. Moreover, he said that C introduces the basic elements 

common to most widely used ‘real-world’ programming languages, and provides a 

good foundation for learning other languages. 

Other studies (Dierbach, 2014; Radenski, 2006; Sanders & Langford, 2008; 

Shannon, 2003; Yadin, 2011) also suggested Python as the better choice of 

programming language for CS1, as the syntax is simple and the structure is 

uncomplicated, which means it is easy for students to read and write code. Instructors 

also find it easy to teach Python, as the language is so simple that students do not create 

typical syntax errors due to missing semicolons or braces (Shannon, 2003). This frees 

students from detailed language syntax and allows them to concentrate on algorithms 

and problem-solving (Yadin, 2011). 

Conversely, McCracken et al. (2001) reasoned that there is no difference 

between the programming languages; rather, it is a matter of how the course is taught. 

Therefore, this study will explore lecturer and student perceptions of the first 

programming language choice, as this issue has not been settled in the literature. 

2.3.5 Programming environment 

Many programming environments can be used in learning to program (Gómez-

Albarrán, 2005). One such environment is the integrated development environment 

(IDE). IDE comes packaged with a code editor, a compiler, a debugger and a graphical 

user interface (GUI) builder, which makes it easier for beginners to learn 

programming. Sophisticated programming environments are not suitable for 

beginners, as they assume a level of sophistication that beginning students do not 

possess. They are designed for experts, not students. These types of environments not 
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only waste students’ time in learning to use the environment, but also increase 

students’ level of frustration (Freund & Roberts, 1996; Kruglyk & Lvov, 2012). Thus, 

valuable time has to be spent teaching students to use the environment rather than 

teaching the concepts of programming. Moreover, the error messages generated by 

sophisticated environments are often uninformative, sometimes misleading and often 

require knowledge of advanced topics that novice students have yet to learn (Gómez-

Albarrán, 2005). To address these drawbacks, research has focused on developing 

simple programming environments that students can easily use to write, compile, 

execute and debug their codes. 

Freund and Roberts (1996) developed a programming environment called 

Thetis at Stanford University for students learning C in introductory computer science 

courses. Thetis consists of a C interpreter and associated user interface that provides 

students with simple and easily understood editing, debugging and visualisation 

capabilities. Both students and instructors have indicated that Thetis provides a better 

learning environment for students in CS1. 

Lipman (2014) created CS1, a web-based programming environment for first-

year computer science students to write, run and debug C programs. Students do not 

have to consider text editors or IDEs, Linux commands and compiling. Using CS1 has 

yielded good results in improving students’ comprehension of CS1 concepts. 

AnimPascal, BlueJ and DrJava are other programming environment developed for 

Pascal and Java programming language (Gómez-Albarrán, 2005). 

This issue of using suitable programming environments for CS1 students 

continues to be debated in the literature. Therefore, the perceptions of lecturers and 

students using programming environments adopted to learn CS1 using C at RUB will 

be investigated in this study. 
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2.3.6 Teaching/learning methods and practices 

Since most students struggle to learn to program in their first semester, it is 

crucial to examine appropriate teaching/learning methods and practices that assist 

students in overcoming the difficulties of learning to program. Several 

teaching/learning methods and practices were reported in the review of the literature 

that may benefit student in learning to program: pair/group programming, live coding, 

game-based learning, puzzle-based learning, problem-based learning, pre-recorded 

lecturers and approach, deployment, result and improvement (ADRI). 

Pair programming is a method in which two programmers work side by side 

on the same code at the same computer (Thomas, Ratcliffe, & Robertson, 2003). The 

two programmers take the role of a driver and a reviewer. The driver creates a code 

and takes control of the keyboard and mouse, while the reviewer reviews the code. 

They switch roles after a period (Bevan, Werner, & McDowell, 2002; McDowell, 

Werner, Bullock, & Fernald, 2002). Porter, Guzdial, McDowell, and Simon (2013), 

Thomas et al. (2003), McDowell et al. (2002), Bevan et al. (2002) and Williams, 

Wiebe, Yang, Ferzli, and Miller (2002) showed that students who used pair 

programming produced quality programs and learnt the materials faster. Group 

programming is similar to pair programming, but involves more than two students 

working on programming assignments. The only study in Bhutan reported that 

students learning programming in groups performed better in their examinations than 

those coding alone or watching someone else coding (Tshering, Lhamo, Yu, & 

Berglund, 2017). Also, in group programming, students are reported to be more 

motivated and gain experience in developing portions of a program in a group 

(Chamillard & Braun, 2000). Pair and group programming methods encourage 

students to collaborate and discuss with their peers which leads to better learning. Also, 
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programs are completed in less time, are better designed and have fewer errors. 

Students are also better motivated to stay on task, have more confidence in their 

solutions and show a positive attitude towards collaboration (Mohorovičić & Strčić, 

2011). 

Live coding involves solving programming problems by lecturers writing code 

from start to finish in the class during instruction periods (Paxton, 2002; Rubin, 2013). 

This method and practice in CS1 instruction requires lecturers to narrate their thoughts 

and actions while typing, compiling and testing code, and allowing students to 

participate in the coding process. Live coding can provide excellent learning 

opportunities for the students, such as code design and the debug process, which are 

very useful skill in programming. Rubin (2013) and Paxton (2002) found live coding 

to be an effective method in improving student learning outcomes over verbal 

explanation of static code examples. 

Game-based learning teaches students the concepts of programming through 

understanding how a game works. Students reported that they had to spend more time 

understanding how a game worked than understanding the programming concepts. 

Once they understood, their motivation and enthusiasm increased (Mohorovičić & 

Strčić, 2011). Kazimoglu, Kiernan, Bacon, and Mackinnon (2012) designed an 

educational game called Program your robot, which enables students to practice 

working with introductory programming constructs within an environment that 

facilitates learning of introductory computer programming skills such as algorithm 

building, debugging and simulation. Students enjoyed playing the game and reported 

that this type of approach enhanced problem-solving abilities for those learning 

introductory computer programming. Other studies have incorporated games in 
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introductory computer programming, which increased students’ motivation and 

achieved significant learning gains (Hicks, 2010; Sung et al., 2010). 

Puzzle-based learning aims to teach students critical thinking and problem-

solving techniques (Merrick, 2010). In puzzle-based learning, students reconstruct 

program pieces by selecting the correct program piece and placing them in the correct 

order (Mohorovičić & Strčić, 2011). Research has shown that puzzle-based learning 

increases students’ interests in participating in programming courses (Merrick, 2010). 

Problem-based learning engages students in problem-solving. Students can 

work individually or in groups and solve a problem by applying the knowledge they 

learnt earlier. Research has shown that problem-based learning has long-term benefits 

for students. Students can retain knowledge for longer and achieved better results in 

follow-up courses than did students who used traditional methods of learning. 

Problem-based learning can also enhance students’ communication skills, creative 

thinking, motivation and responsibility (Mohorovičić & Strčić, 2011). 

Pre-recorded lectures are multimedia recordings of lectures made available 

for students who are slow in absorbing information in class. Although pre-recorded 

lectures made no significant difference in students’ final grades, students offered 

positive feedback and stated that pre-recorded lectures helped them to better 

understand some programming concepts. 

ADRI is another approach of teaching and learning CS1 introduced by Malik 

and Coldwell-Neilson (2017). ADRI stands for approach, deployment, result and 

improvement. Four stages of ADRI were proposed by Malik and Coldwell-Neilson 

(2017) to enhance students’ learning outcomes in CS1. The first stage (approach) 

covers problem-solving skills such as pseudocodes and flowcharts. The second stage 

(deployment) emphasises programming knowledge such as syntax and semantics of 
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the programming language. The third stage (result) deals with program input, the 

process used to solve a problem statement and expected outputs, while the fourth stage 

(improvement) provides more practice with different programming language 

constructs. The teaching/learning materials were prepared based on the four stages of 

the ADRI approach. An ADRI-based editor was also developed to support the ADRI 

approach and assist students in the learning process. Their study reported that ADRI 

was a better teaching/learning approach than the traditional approach, as ADRI 

provides all the basic skills required to comprehend programming constructs. Further, 

the final exam grades showed that the students performed better in the course offering 

ADRI than students who finished the course offered with the traditional approach. 

Discussion with lecturers at RUB determined they currently practise pair/group 

programming and live coding when teaching CS1. Puzzle-based, game-based and 

problem-based learning is in-built with laboratory programming exercises done in 

pairs and programming assignments done in groups. Therefore, this research seeks to 

examine the benefits of practising pair/group programming and the live-coding 

method of teaching/learning in CS1 and further explore other teaching/learning 

methods and practices that have benefited students in learning to program. This can be 

gauged using surveys and interviews. Results are presented in Chapter 4 and 5. 

2.3.7 Students’ ability in programming skills 

An extensive study on the relationships between code tracing, explaining and 

writing skills was conducted by a multi-institutional, multi-national group in computer 

science education—the BRACElet Project (Building Research in Australasian 

Computing Education) (Tan & Venables, 2010). Another BRACElet study by 

Philpott, Robbins, and Whalley (2007) found that students who could only trace code 

below 50 percent could not usually explain code. In the similar study, Sheard et al. 
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(2008) found that the ability of students to explain code correlated positively with their 

ability to write code. Studies within the BRACElet Project suggest the possibility of 

hierarchy in programming skills (Lister et al., 2010; Lister et al., 2009). First, the 

student acquires the ability to trace code. The ability to explain code develops, 

followed by the ability to write code when students become competent in both tracing 

and explaining (Lister et al., 2009; Schoeman, Gelderblom, & Smith, 2012; Venables 

et al., 2009). This hierarchy was further investigated in this study. However, according 

to Schoeman et al. (2012), the skills do not necessarily develop in strict hierarchical 

order. Instead, they may develop in parallel and reinforce each other. 

Following the existing literature (Biró, Csenoch, Abari & Máth, 2016; Crews 

& Ziegler, 1998; Hooshyar, Ahmad, Shamshirband, Yousefi & Horng, 2015; Lister, 

Fidge & Teague, 2009; Venables, Tan & Lister, 2009) and based on researcher 

experience teaching CS1, the researcher identified five essential skills that students are 

expected to acquire when learning CS1. These skills are referred to in this study as 

‘programming skills’ and they are algorithm design, translating, tracing, explaining 

and writing. Algorithm design and translating were added as unique elements to the 

study and were not mentioned in the literature as a whole. These additional elements 

were hypothesised based on the researcher’s personal experience teaching CS1 at 

RUB. It’s good to explore the relationship amongst the programming skills and also 

examine if there exist any hierarchy in the programming skills in Bhutanese 

environment.  These programming skills are explained, with examples, in Section 1.3. 

2.3.8 Learning approaches 

There are number of ways that students approach their studies (Buckley, Pitt, 

Norton, & Owens, 2010; Gadelrab, 2011; Schmeck, Geisler‐Brenstein, & Cercy, 

1991). Higher education research has identified students’ approaches to learning as 
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having a significant impact on their performance (Biggs, Kember, & Leung, 2001; de 

Raadt et al., 2005; Tait & Entwistle, 1996; Trigwell & Prosser, 1991). Thus, to achieve 

student success, educators need to understand student learning, in particular, how 

students set about their learning tasks, their intentions and strategies, and how these 

affect the quality of their performance (Byrne, Flood, & Willis, 2002, p. 19). 

According to Biggs (1987), learning approach may be classified as either deep 

or surface. Learning to program is also affected by how students approach their 

learning: either through a deep and surface approach. The deep approach of learning 

seeks to understand a topic, while the surface approach refers to memorising a topic 

and reproducing materials. In learning programming, a surface approach can be used 

to memorise the syntax of the programming language, but a deep approach is essential 

to understand the logic of the program construction (de Raadt et al., 2005). 

de Raadt et al. (2005) used Biggs’s R-SPQ-2F to measure students’ learning 

approaches to tasks in a programming course. They reported that the correlation 

between the elements of the Biggs questionnaire and students’ final marks in an 

introductory computer programming course was stronger than cognitive task and prior 

experience. As per the recommendation of de Raadt et al. (2005) to include R-SPQ-2F 

to explain students’ success in programming, the researcher has chosen R-SPQ-2F to 

examine students’ approaches to learning in programming. However, the researcher 

acknowledges there are other methods of examining student approaches to learning. 

It would be interesting to investigate how Bhutanese students approach their 

learning in CS1 and also to explore the relationship between their learning approach 

and their performance in CS1. Accordingly, the results can enable lectures and students 

to make informed practices in the students’ approach to learning in CS1 at RUB.  
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2.4 Measure of Student Success in CS1 

This section discuss the extant studies on measuring students’ performance in 

CS1. Previous research has used final course and mid-term grades to measure students’ 

success in CS1 (Bergin & Reilly, 2005a; Malik & Coldwell-Neilson, 2017; 

Wiedenbeck et al., 2004; Wilson & Shrock, 2001). Based on the knowledge gained 

from the extant studies, this study used PST, FSE and OS scores to measure student 

performance in CS1.  

The PST was designed and devised by the researcher to explore the 

programming skills identified in this study (see Section 3.2.1 and Appendix A). 

Students’ PST responses were evaluated and classified according to the structure of 

the observed learning outcomes (SOLO) taxonomy. The SOLO taxonomy was adapted 

to determine in-depth information about students’ level of understanding. Section 2.4.1 

will present a detailed description of the SOLO taxonomy. 

2.4.1 SOLO taxonomy 

The SOLO taxonomy proposed by Biggs and Collis (1982) is an educational 

taxonomy used to evaluate the learning outcomes of the learner. It can be adopted 

across different disciplines (Jimoyiannis, 2013). SOLO is a hierarchical structure 

comprising five major levels (Biggs & Collis, 1982): 

1. Prestructural [P]: This is the lowest level in the SOLO category. The 

student response in this level demonstrates significant misconception or the 

response is totally wrong. 

2. Unistructural [U]: The student response in this level demonstrates a 

correct grasp of only some part of the task. 
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3. Multistructural [M]: The student response in this level demonstrates an 

understanding of most of the parts of the tasks but fails to integrate the parts 

as a whole. 

4. Relational [R]: The student response in this level demonstrates an 

understanding of the task as a single coherent whole. 

5. Extended abstract [EA]: This is the highest level in the SOLO category. 

The student response in this level demonstrates an understanding beyond 

the scope of the task, thereby creating a new situation or knowledge. 

The existing literature shows how SOLO has been used reliably to classify 

students’ response to programming skills tasks, such as reading and writing 

(Jimoyiannis, 2013; Lister et al., 2010; Sheard et al., 2008; Shi, Cui, Zhang, & Sun, 

2017; Shuhidan, Hamilton, & D'Souza, 2009). Thus, SOLO is a reliable taxonomy to 

evaluate students’ response to the programming skills tasks listed in this study. 

The SOLO categories of Clear et al. (2008) shown in Table 2.1 were adapted 

in this study to evaluate students’ ability to explain a given piece of code. 

Table 2.1 

SOLO Categories for Explaining Questions 

SOLO Category Description 

Relational [R] Provides a summary of what the code does in 

terms of the code’s purpose (The ‘forest’) 

Relational error [RE] Provides a summary of what the code does in 

terms of the code’s purpose, but with some minor 

error 

Multistructural [M] A line-by-line description is provided of all the 

code (the individual ‘trees’) 

Multistructural omission 

[MO] 

A line-by-line description is provided for most of 

the code, but with some detail omitted 
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SOLO Category Description 

Multistructural error [ME] A line-by-line description is provided for most of 

the code, but with some minor errors 

Unistructural [U] Provides a description for one portion of the code 

Prestructural [P] Substantially lacks knowledge of programming 

constructs or is unrelated to the question 

Source: (Clear et al., 2008) 

 In Clear et al. (2008), some students’ responses to ‘explain in plain English 

what the given piece of code does’ at their end of first programming paper examination 

were analysed according to the SOLO taxonomy (shown in Table 2.1). How students’ 

responses to the ‘explain in plain English’ question (see Figure 2.6 below) is 

demonstrated here. 

 

Figure 2.6. ‘Explain in plain English’ question analysed in Clear et al. (2008). 

Students who provided a summary of the purpose of the piece of code were 

assigned R (relational). Those who provided a summary with some minor errors were 

assigned RE (relational error), while those who provided a line-by-line description of 

all the code were assigned M (multistructural). Students who provided a line-by-line 

description for most of the code but with some details omitted were assigned MO 

(multistructural omission), while those who provided a line-by-line description for 

most of the code but with some minor errors were assigned ME (multistructural error). 

Finally, those who provided only a description for one portion of the code were 

assigned U (unistructural) and those who provided a response unrelated to the question 
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were assigned P (prestructural). The sample of students’ responses and SOLO 

categories were: 

 This method returns the sum of the numbers in the array [R]. 

 Trying to add all the numbers stored in the arrayList that is less than the 

length of the arrayList. Go through each number from index 0 to the index 

just before, then end of the arrayList [RE]. 

 It sets the double num to zero and executes the loop as long as iLoop is less 

than the length of aNumbers. If it does execute the loop, it adds the value 

of num to aNumbers and re-executes the loop by incrementing. Once the 

condition is no longer met, it returns num [M]. 

 The method loops through the aNumbers and adds the aNumber to num 

and gives the output of that equation num + = aNumber[iLoop] [MO]. 

 The method increments the loop and returns a number of type double as 

long as the loop is less than the length of aNumbers [U]. 

The SOLO descriptions for the explaining questions adapted in this study are 

further explained in Chapter 3. Similarly, the SOLO categories for code writing tasks 

in this study were based on the SOLO categories proposed by Shuhidan et al. (2009); 

Whalley, Clear, Robbins, and Thompson (2011) and Lister et al. (2010). 

According to Shuhidan et al. (2009) (see Table 2.2), each SOLO level 

represents increasing cognitive load. The lowest level, prestructural, represent students 

whose responses contained several pieces of unconnected information, but who were 

unable to connect as a whole. As the level increases, students’ responses make more 

sense and make the necessary connections. Further, Shuhidan et al. (2009) found that 

it is important to analyse each component part of the solution and determine if students 

can link all components to fulfil the relational level. For example, the list of 
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components to satisfy for the writing question (i.e., write code to calculate the highest 

and lowest integer, from a set of integers passed via the commandline) would be: 

 ability to create a loop 

 ability to extract or convert the argument correctly 

 ability to find the highest value 

 ability to find the lowest value 

 ability to code correctly. 

This approach of listing components of the solution was used in this study and 

is explained in detail in Chapter 3. 
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Table 2.2 

SOLO Categories for Code Writing Solutions 

SOLO Category Description 

Extended abstract Novices able to make connections beyond the scope 

of question and able to transfer knowledge a new 

situation 

Relational Fully correct or almost right. Novices appreciate 

significance in relation to the whole program and can 

generalise outside of program 

Multistructural Numbers of connections made. Novices can create 

code for loops and comparisons, but with a few minor 

slips, leading to failure to connect the whole idea. 

They may fail to convert arguments, use correct 

operators or interpret general explanation 

Unistructural Simple connections are made. Novices can compare 

or write loops but fail to implement or derive the 

connections of loops in relation to manipulation of 

arrays or usage of further structures 

Prestructural There are bits of unconnected information. Novices 

know something, but the overall argument makes no 

sense 

No attempt or totally wrong The answer is blank or totally wrong 

Source: (Shuhidan et al., 2009). 

 

According to Whalley et al. (2011) (see  

Table 2.3), SOLO levels are placed into two phases, suggesting that learning 

passes through various stages from a more quantitative phase (surface) to a more 

qualitative phase (deep, connecting and relating ideas) as learning tasks and their 

complexity increase. 
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Table 2.3 

SOLO Categories for Code Writing Solutions 

Phase SOLO Category Description 

Q
u
al

it
at

iv
e 

Extended abstract—

extending [EA] 

Used constructs and concepts beyond those required in 

the exercise to provide an improved solution 

Relational—

encompassing [R] 

Provided a valid well-structured program that removes 

all redundancy and has a clear logical structure. 

Specifications were integrated to form a logical whole 

Q
u
an

ti
ta

ti
v
e 

 

Multistructural—

refinement [M] 

Represented a translation close to a direct translation. 

Code may have been reordered to make a more 

integrated and/or valid solution 

Unistructural—

direct translation 

[U] 

Represented a direct translation of the specifications. 

Code will be in the sequence of the specifications 

Prestructural [P] Substantially lacked knowledge of programming 

constructs or answer was unrelated to the question 

Source: Whalley et al. (2011). 

The SOLO descriptions of Shuhidan et al. (2009) and Whalley et al. (2011) 

were used as a guide to develop the SOLO descriptions that fit this study in classifying 

student responses to writing questions. Chapter 3 presents the details of how the SOLO 

descriptions were adapted based on the literature. 

2.5 Theoretical Framework 

The theoretical framework that underpins this study was Biggs 3P model of 

learning (Biggs, 1987). This model was chosen, as it fitted well with a study taking 

place in a university that examines factors that might affect students’ performance in 

CS1. This study focused on the factors governing input and learning process factors, 
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and examined the relationships among those factors to improve students’ performance 

in CS1. 

The theoretical framework shown in Figure 2.7 was built based on the 

theoretical framework of the Biggs 3P model of learning. The specific factors 

identified for this study are based on the existing literature, the researcher’s experience 

and discussion with the lecturers of RUB who are responsible for students’ 

performance in CS1 at RUB. 

 

Figure 2.7. Theoretical framework 

Input factors are those factors that students possess before entering the 

learning situation and commencing the study of CS1. Input factors identified in this 

study are prior computing experience, Y12 performance in mathematics, physics and 

chemistry, and gender. Input factors can also include institutional factors already in 

place, such as teaching methods and practices, programming paradigm, programming 

environment and language used in CS1. 

Learning process factors are those factors that describe the strategies and 

activities while learning is taking place. Learning process factors examined in this 
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study are students’ approaches to learning, ability in programming skills and learning 

methods and practices. 

Student performance is the outcome of learning. Student performance in this 

study measures the achievement attained after a semester course in CS1. This 

achievement was measured in terms of their score in the FSE, PST and OS 

performance in CS1. 

This study hypothesised that there is a relationships among input and learning 

process factors and student performance, as well as among the factors within these 

categories. 

2.6 Summary 

In this chapter, the review of the literature relating to the factors that affect 

student performance in CS1 was conducted. The theoretical framework for this study 

was presented, along with the review of each of the elements listed in the conceptual 

framework. The review of the literature outlined the few studies that have examined 

the factors that affect students’ performance in CS1. However, the parameters used in 

each study were different. Thus, this study will examine the factors that affect students’ 

performance in CS1 for students enrolled in the computer science and engineering 

program at the degree and diploma level at RUB in the Bhutanese educational context. 

The use of SOLO taxonomy to analyse student responses to a question was also 

reviewed. 

Chapter 3 will present a detailed description of the research methodologies 

used in this study. This includes preparation for the study, description of the data 

collection methods and overview of the data analysis. 
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Chapter 3: Methodology 

3.1 Introduction 

Chapter 2 provided a review of the literature on the factors that affect students’ 

performance in CS1 and indicated a conceptual framework upon which studies of 

factors have been based. This chapter presents a detailed description of the 

methodology used in this study. It begins by describing the preparations carried out 

prior to data collection and recruitment of research participants. It explains why a 

mixed methods design approach was selected for this study, revisits the research 

questions and specifies unique variables of each research question. Data collection 

methods employed to gather data related to these variables are discussed next. It then 

explains the data analysis measures used to analyse quantitative and qualitative data. 

3.2 Preparation for Data Collection 

Prior to data collection, preparations were made considering the key areas of 

this research. This section will describe these preparations. 

3.2.1 Devise programming skills test questions 

The programming skills test (PST) questions were designed by the researcher 

by examining the course syllabus and consulting with the lecturers from respective 

colleges. The questions were devised to cover the five categories of programming 

skills based on researcher experience and the earlier work of Lopez, Whalley, Robbins, 

and Lister (2008) and Lister et al. (2009). Two questions addressed each programming 

skill: algorithm design, translating, tracing, explaining and writing. There are 10 

questions in total in the PST. Appendix A provides a copy of the PST instrument used 

for this study. 
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3.2.2 Design and select survey questionnaires 

In consultation with supervisors, the student survey questionnaire with open-

ended questions was specifically designed for this study to address the variables in 

each research question. Similarly, the lecturer survey questionnaire was also designed 

specifically for this study to address similar variables. Appendices G and H include a 

copy of the student and lecturer survey questionnaires respectively. 

To determine students’ learning approaches in CS1, the Biggs’s R-SPQ-2F, 

which consists of 20 closed-response questions scored on a 5-point Likert scale (see 

Appendix J), was selected to measure students’ learning approaches (Biggs et al., 

2001). 

The student and lecturer survey questionnaires, consent forms (see Appendix 

D) and information letters (see Appendix E) were printed, packed and carried to 

Bhutan in February 2017. 

3.3 Research Participants 

Research participants for this study were students enrolled in programmes in 

which CS1 is a compulsory module in the first semester at three constituent colleges 

of RUB. These three constituent colleges are Sherubtse College (SC), Jigme Namgyel 

Engineering College (JNEC) and College of Science and Technology (CST), which 

are geographically spread across the country and offer a variety of undergraduate 

programs. 

SC offers programmes in different areas such as geography, economics, 

history, Dzongkha, population and development studies, political science, sociology, 

environmental science, media studies, English, life sciences, mathematics, chemistry, 

physics and computer science. Students enrolled in computer science were participants 

in this study. 
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JNEC offers programmes at both bachelor and diploma level, including power 

engineering, civil engineering, electrical engineering, mechanical engineering, 

computer hardware and networking, electronics and communication engineering, 

surveying, and materials and procurement management. Students enrolled in the 

diploma programme in computer hardware and networking were participants in this 

study. 

CST offers programmes in civil engineering, electrical engineering, electronics 

and communications engineering, architecture and information technology. Students 

enrolled in all these programme were participants in this study. 

The institution that provided the highest number of student participants was 

from the CST. This is because CST offers five programs in which CS1 is studied in 

the first semester, while JNEC and SC offer only one program. 

The PST data were collected in November–December 2016 (i.e., end of the 

first semester). Other data, like survey and interviews, were collected in February–

March 2017 (i.e., beginning of second semester). This study aimed to obtain 100 

percent student participants, so no sampling technique was used. 

The data were collected and entered into SPSS. The final sample consisted of 

292 students in a PST of 342 students enrolled in July 2016, and 277 students in a 

survey of 309 students (some students failed in the first semester). Table 3.1 shows the 

number of students enrolled in the program and who participated in a PST. Table 3.2 

shows the number of students (program-wise) in the second semester (total column) 

and those who participated in the survey. 
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Table 3.1 

Number of Students Who Participated in a PST From Each Program 

Program Enrolled Participated 

B.Sc. Computer Science 27 26 

Diploma in Computer Hardware 

and Networking 

43 43 

Bachelor of Architecture 19 11 

B.Eng. in Information Technology 38 33 

B.Eng. in Civil 116 98 

B.Eng. in Electrical 68 54 

B.Eng. in Electronics and 

Communication 

31 27 

Total 342 292 

 

Table 3.2 

Number of Students Who Participated in a Survey From Each Program 

Programme Total Participated 

B.Sc. Computer Science 27 27 

Diploma in Computer Hardware 

and Networking 

41 37 

Bachelor of Architecture 19 18 

B.Eng. in Information Technology 31 30 

B.Eng. in Civil 109 83 

B.Eng. in Electrical 51 53 

B.Eng. in Electronics and 

Communication 

31 29 

Total 309 277 

 

Eight lecturers who taught CS1 in 2016 and the previous year participated in a 

survey and an interview, representing 100 percent lecturer participation. 
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3.4 Research Methods 

As mentioned in Section 3.6, this study used various data collection methods 

such as a test, survey questionnaire with closed and open-ended questions, and 

individual and group interviews. These data collection methods involved both 

quantitative and qualitative data, but mostly quantitative. Creswell (2014) defined 

mixed methods design as the methods that ‘involves combining or integration of 

qualitative and quantitative research and data in the research study’. Creswell (2014) 

stated the existence of many designs in the mixed methods field, such as convergent 

parallel mixed methods, explanatory sequential mixed methods and exploratory 

sequential mixed methods. 

The rationale for choosing a mixed method was to best answer the research 

questions listed in Section 3.5. The multiple quantitative and qualitative data collection 

methods were used in this study to answer the research questions. The quantitative 

data collected from the PST were used to measure students’ success across five 

programming skills. The quantitative and qualitative data collected from the 

student/lecturer survey questionnaire (which includes both closed and open-ended 

responses) was used to answer the research questions in regard to students’ prior 

computing experience, students’ and lecturers’ experience/perceptions of first 

programming language, programming paradigm, programming environment and 

teaching/learning methods and practices, students’ Y12 performance in mathematics, 

physics and chemistry, and students’ learning approach. The qualitative data from the 

semi-structured student/lecturer interviews and student group interviews were 

collected using the same variables to provide a deeper understanding of the 

quantitative findings and to triangulate the results (Creswell, 2013). Triangulation is 
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described as the use of two or more methods of data collection in the study of some 

aspect of human behaviour (Cohen, 2017). 

The quantitative data were used to generalise the statistical tests to a larger 

sample and the qualitative data were used to achieve an in-depth analysis. The PST 

and quantitative and qualitative data from the closed and open-ended questions from 

the survey, and the qualitative data from interviews were collected independently at 

the same time. The qualitative data obtained from the quantitative data in the survey 

were analysed together, interpreted and reported under the quantitative survey results 

section in Chapter 4 and 5. For example, the survey question included: ‘In your 

experience and opinion, which programming language should you learn in CS1?’ 

Students selected one programming language from the list given (quantitative 

response). The next question was, ‘What made you choose that language?’ (qualitative 

response). The open-ended questions (i.e., ‘Do you have any suggestions on how we 

can improve teaching and learning of CS1?’) were analysed separately by classifying 

the responses based on the number of occurrences. These are reported under the 

qualitative results section in Chapter 4 and 5. The qualitative data from interviews 

were analysed separately and reported in the qualitative results section in Chapter 4 

and 5. The quantitative and qualitative results were compared and contrasted in 

Chapters 4, 5 and 6. The qualitative results were used to confirm or disconfirm the 

quantitative findings. 

The mixed methods design used in this study was convergent parallel mixed 

methods design (Creswell, 2014). According to Creswell (2014), convergent parallel 

mixed methods design involves both quantitative and qualitative data collected 

independently and in parallel to each other. They are analysed separately and 

converged to compare and contrast the findings. 
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3.5 Research Questions 

As mentioned in Chapter 1, this study aims to address seven research questions: 

1. What are the students’ prior computing experience and does this affect 

performance in CS1?  

2. What are the students’ and lecturers’ experience/perceptions of first 

programming language, programming paradigm, programming 

environment and teaching/learning methods and practices? 

3. What is the association, if any, between students’ performance in CS1 and 

students’ Y12 performance in mathematics, physics and chemistry? 

4. What is the association, if any, between students’ performance in CS1 and 

students’ learning approach? 

5. What is the association, if any, among the programming skills variables? 

6. What is the association, if any, between students’ performance in CS1 and 

students’ ability in programming skills? 

7. Is there a hierarchy among students’ programming skills in terms of their 

contribution to student performance in CS1? 

The key variables in these research questions were students’ performance, 

students’ learning approaches, students’ programming skills, students’ prior 

computing experience, students’ Y12 performance in mathematics, physics and 

chemistry modules, and students’ and lecturers’ experience/perceptions of first 

programming language, programming paradigm, programming environment and 

teaching/ learning methods and practices. To obtain a significant amount of data 

relating to each of these specific variables, this study employed a number of data 

collection methods, which will be discussed in Section 3.6. 
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3.6 Data Collection Methods 

This section will discuss the methods of data collection used in this study: PST, 

survey questionnaires, individual and group interviews. The survey was administered 

by the researcher after explaining the information sheets and obtaining consent to 

participants. Verbal consent was obtained for individual interviews and group 

interviews. 

3.6.1 Programming skills test 

As mentioned in Chapter 1 and Section 3.3, due to the geographic location of 

the three participating colleges, the researcher personally was not able to administer 

all methods of data collection in the given time frame. Lecturers who were teaching 

CS1 were invited to assist the researcher in administering the PST after students had 

completed one semester of instruction in CS1. The information letter was sent via 

email to lecturers and the lecturers who volunteered provided their consent via email. 

The researcher then emailed consent forms, information letters and PST questions 

along with instructions on how to administer the PST. 

The lecturers in their respective colleges printed and photocopied PST 

questions, consent forms and information letters to be given to students during 

administration of PST. This enabled administration of the PST in the same time frame 

in all three participating colleges. The researcher requested that all volunteer lecturers 

keep PST answer scripts in a safe place, which was collected after two months (i.e., 

after winter break) when the researcher visited the colleges for survey and interviews. 

Subsequently, at Curtin University, the SOLO levels were initially classified 

by marking 30 sample PST answer scripts that were chosen randomly. The SOLO 

levels were gradually refined as necessary. The raw score of the equivalent SOLO 

levels were used as data for analysis. The details of how the SOLO levels were 
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classified and applied to evaluate students’ responses to PST questions are shown in 

Section 3.7. 

3.6.2 Survey questionnaire 

The student survey questionnaire was used to collect data on students’ 

experience in programming skills, prior computing experience, Y12 performance in 

mathematics, physics and chemistry modules and experience/perceptions of first 

programming language, programming paradigm, programming environment and 

learning methods and practices. The students’ overall semester (OS) score in CS1 was 

also recorded in the survey. The lecturer survey questionnaire was used to collect data 

on the same variables. 

To collect data to determine student’s learning approaches in CS1, the Biggs 

R-SPQ-2F, which consists of 20 closed-response questions scored on a 5-point Likert 

scale (see Appendix J), was used to measure students’ learning approaches (Biggs et 

al., 2001). For example, the questions include: 

Question 4: I work hard at my studies because I find the material interesting. 

Question 7: I find most new topics interesting and often spend extra time trying to 

obtain more information about them. 

Students’ responses to questions are ‘This item is… ‘: 

 A (scoring 1 point)—never or only rarely true of me 

 B (scoring 2 points)—sometimes true of me 

 C (scoring 3 points)—true of me about half the time 

 D (scoring 4 points)—frequently true of me 

 F (scoring 5 points)—always or almost always true of me. 
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A score for the deep approach was constructed by summing the deep motive 

and deep strategy subscales, and a score for the surface approach was constructed by 

summing the surface motive and surface strategy. 

These survey questionnaires were administered in English by the researcher to 

volunteer students and lecturers of the three participating colleges. Table 3.3 provides 

an overview of the student survey instrument. 

Table 3.3 

Overview of Student Survey Questionnaire 

Variables Item No. Data Type 

Prior computing experience 1–3 Quantitative 

Y12 performance in mathematics, physics and 

chemistry modules 

4 Quantitative 

OS score in CS1 (student performance) 5 Quantitative 

Experience/perceptions of first programming 

language, programming paradigm, programming 

environment and student learning methods/practices 

6–11 Quantitative+ 

Qualitative 

Experience on programming skills 12–13 Quantitative 

Open question on how we can improve teaching and 

learning of CS1 

14 Qualitative 

Learning approaches 15 (1–20) Quantitative 

 

3.6.3 Individual interviews 

Student participants for individual interviews were selected from each program 

based on their FSE score. As far as possible, one student of the high performers, one 

of low performers and one of average performers were selected, ensuring the inclusion 

of at least one female student for gender equality. In some cases, students identified 

did not want to participate, which was respected. Instead, students from the same 

program were invited to volunteer. Verbal consent was then obtained from both 
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students and lecturers. A semi-structured face-to-face interview was conducted with 

the students and lecturers to collect data on the same variables (mentioned above in 

the survey questionnaire). This was done to support the quantitative data and explore 

key areas for this study. Results of individual interviews are presented in Chapter 4 

and 5. 

3.6.4 Group interviews 

Group interviews were conducted for each program. Interviews were semi-

structured as an individual interview discussed above and directs a key areas for the 

group to discuss. The key advantage of group interviews is to bring together a group 

of students enrolled in the same program with varied opinions to generate a wider 

range of responses than in individual interviews (Cohen, 2017). The results of group 

interviews are presented in Chapter 4. 

3.7 Classification of SOLO Levels 

This sections describes how students’ PST responses were classified based on 

SOLO levels. When classifying according to the SOLO taxonomy, students’ solutions 

were examined as a coherent whole (Shuhidan et al., 2009). Individual components 

were specified for each question under algorithm design, translating and writing skills 

(Shuhidan et al., 2009). These components are the building blocks that students must 

complete in response to a question. Those individual components were further 

classified with symbols: easier (E), harder (H), specified (S) and unspecified (U). The 

symbols E and H on each component were determined after marking 30 sample answer 

scripts based on the responses of students in PST for that particular question. For 

instance, if more than 50 percent of the sample students’ responses missed to typecast 

the result of an integer division, this component of the question was assigned H, 

otherwise it was assigned E. Components with the symbol E were basic, while 
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components with the symbol H were harder and required more time and consideration 

than those marked E. This dichotomous approach was taken to avoid having to classify 

these extra components on a scale of difficulty. It was simplest to consider them as 

either easier or harder. The components with the symbol S were specified/given in the 

question and the components with the symbol U were not given in the question but 

were nonetheless essential to achieve a classification at the relational level. For the 

student to achieve relational level of understanding to a question, the response to that 

question had to demonstrate an ability to complete all components of the questions. 

 Based on the specification and the required complexity of the response to a 

question, the SOLO levels for each of the programming skills are different. For 

instance, algorithm design and explaining has five SOLO levels. This is because the 

student needs to spend some time in completing these tasks as well as the amount of 

tasks that needs to be completed is little more than translating and tracing skills. While 

in translating and tracing, it has three SOLO levels as the amount of effort and 

cognitive skills required here is not much compared to other programming skills since 

in translating, the algorithm and flowchart is already given and in tracing, the piece of 

program is already given as well. Writing has the highest levels of SOLO. This is 

because, students have to spent time in building the logic and remember the 

programming syntax to write the complete executable program. Thus the six SOLO 

levels in writing will determine how much students are able to complete in the writing 

tasks.    

The following sections present the specification of individual components, 

description of SOLO levels and demonstration of how students’ responses were 

evaluated. 
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a) Algorithm design: Algorithm design question 2 in the PST was to ‘Find the 

smallest number among the three numbers entered by the user and display the 

result’. A suitable algorithm solution may look like this: 

Step 1: Start 

Step 2: Declare variables a, b and c. 

Step 3: Read a, b and c. 

Step 4: If a < b 

  If a < c 

          Display a is the smallest number. 

             Else 

         Display c is the smallest number. 

       Else 

              If b < c 

        Display b is the smallest number. 

              Else 

         Display c is the smallest number. 

Step 5: Stop. 
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The following components were identified in students’ response to algorithm 

questions: 

a) ability to declare variables (E–U) 

b) ability to externally supply inputs (E–S) 

c) ability to show the computation (E–S for Q1) and (H–S for Q2) 

d) ability to show what output is produced (E–S) 

e) ability to write clear and unambiguous instructions (E–U) 

A clear and unambiguous instruction will be to use the words declare, read/get, 

display/print in the instructions. 

f) ability to terminate the algorithm in a finite number of steps (E–U) 

g) ability to write an algorithm in correct logical order (H–U). 

A simple example is: Step 3: Read a, b and c instruction should come only after 

Step 2: Declare variables a, b and c. Overall, the algorithm should complete the 

individual components listed in this order from a–f. 

These individual components are shown in Figure 3.1. 

 

Figure 3.1. Individual components of an algorithm. 
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The suitable flowchart solution to the algorithm design Question 2 may look 

like in Figure 3.2. 

 

Figure 3.2. Suitable flowchart solution for algorithm design question 2. 

 

Ten components were identified in students’ responses to flowchart questions: 

1. ability to declare variables (E–U) 

2. ability to externally supply inputs (E–S) 

3. ability to show the computation (E–S for Q1) and (H–S for Q2) 

4. ability to show what output is produced (E–S) 

5. ability to write clear and unambiguous instructions (E–U) 

6. as mentioned earlier, a clear and unambiguous instruction will be to use the 

words declare, read/get, display/print in the instructions 

7. ability to terminate the flowchart in a finite number of steps (E–U) 

8. ability to draw a flowchart in correct logical order (H–U) 
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9. ability to draw a flowchart with correct symbols (H–U) 

Students were expected to draw flowchart with the correct symbols as 

shown below: 

 Start and end of a process 

 Input/output symbol 

 Process symbol 

 Decision symbol 

 Directional flow of logic 

 

These individual components are shown in Figure 3.3. 

 

Figure 3.3. Individual components of flowchart. 

 

After identifying the components for algorithm design (algorithm and 

flowchart) questions, the SOLO classification for algorithm design questions were 

established, as shown in Table 3.4. 
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Table 3.4 

SOLO Levels for Algorithm Design Questions 

SOLO Level Indicator Raw Score 

Relational [R] Able to complete all components to form a 

coherent whole 

5 

Relational error [RE] Able to complete all components but has some 

minor errors or omissions 

4 

Multistructural [M] Able to complete most components. All H–S 

and E–S components complete and valid 

3 

Multistructural error 

[ME] 

Able to complete most components but has 

some minor errors or omissions 

2 

Unistructural [U] Able to complete some components only 1 

Prestructural [P]  There are pieces that make no sense or the 

answer is totally wrong 

0 

No attempt [N] The answer is blank 999 

 

Figure 3.4 shows the R (relational) and RE (relational error) SOLO levels and 

their equivalent scores for the response to the algorithm design Question 2 of the PST. 

The student response was classified as R, as the response satisfied all the individual 

components listed above for that question. The student response was classified as RE, 

as the student omitted the instruction to declare the variables. Students’ ability to 

declare the variables was assigned as E and U; this is the only minor omission as shown 

in Figure 3.4. 
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Figure 3.4. R and RE SOLO levels and scores for algorithm design question 2 of the 

PST. 

Figure 3.5 shows the M (multistructural) and ME (multistructural error) SOLO 

levels and their equivalent scores for the response to the algorithm design Question 2 

of the PST. The student response was classified as M, as it satisfied most of the 

individual components, with all of the H–S and E–S components complete and valid. 

The student response was classified as ME, as it satisfied most of the individual 

components, with all H–S and E–S components complete but with errors. 

 

 

Figure 3.5. M and ME SOLO levels and scores for algorithm design question 2 of the 

PST. 

Figure 3.6 shows the U (unistructural) and P (prestructural) SOLO levels and 

their equivalent scores for the response to the algorithm design Question 2 of the PST. 

The student response was classified as U, as it satisfied some of the individual 

components only. The response was classified as P, as it did not satisfy any of the 
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individual components. Moreover, the response is totally wrong. The P response 

shows that the student did not understand the question at all. 

 

 

Figure 3.6. U and P SOLO levels and scores for algorithm design question 2 of the 

PST. 

b) Translating: Translating question 1 in the PST was to translate the following 

algorithm into C programming codes. 

Start 

Declare integer variables a, b, BIG, 

SMALL. 

Read a and b 

If a is less than b, then 

           BIG = b 

           SMALL = a 

Else 

           BIG = a 

           SMALL = b 

Write BIG, SMALL 

End 
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A suitable translated solution may appear as that shown in Figure 3.7. 

 

Figure 3.7. Suitable solution for translating question 1 of the PST. 

 

Six components were identified in students’ response to translating question 1: 

1. ability to declare variables of correct data types (E–S) 

2. ability to read variables from the console (E–S) 

3. ability to use if/else statement with correct computation (E–S) 

4. ability to show the desired output (E–S) 

5. ability to translate into well-structured program in clear logical order (E–

U) 

Student was expected to translate into well-structured C programming 

language in a clear logical order, as given in the algorithm design. The correct 

syntaxes are preferred but not mandatory. However, the translated program 

should be closer to executable program. 

 

These individual components are shown in Figure 3.8. 
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Figure 3.8. Individual components of translating question 1 of the PST. 

The SOLO levels shown in Table 3.5, based on the components, were 

identified on a students’ response to translating question 1 of the PST. 

Table 3.5 

SOLO Levels for Translating Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to complete all components to form a 

coherent whole 

3 

Multistructural [M] Able to complete most components. All H–S 

and E–S components complete and valid 

2 

Unistructural [U] Able to complete some components only 1 

Prestructural [P]  There are pieces that make no sense or the 

answer is totally wrong 

0 

No attempt [N] The answer is blank 999 

 

Student responses to the translating question 1 of the PST were categorised, as 

shown in Figures 3.9 and 3.10, by examining the individual components and using 

SOLO descriptions (see Table 3.5). 

Figure 3.9 shows the student responses that were assigned R and M SOLO 

levels. The student response was assigned R, as it fulfils all individual components 
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listed above and the response was assigned M, as the student was able to complete 

most of the components, with H–S and E–S components complete. In Figure 3.9, the 

student has written extra print statements at the end of the program, which is not 

necessary, as the print statements to print the desired outputs are written within the if-

else statement. Thus, this kind of response was classified as M because the student was 

not able to translate well-structured programs in clear logical order. 

 
 

Figure 3.9. R and M SOLO levels and scores for translating question 1 of the PST. 

 

Figure 3.10 shows the student responses that were assigned U and P SOLO 

levels. The student response was assigned U, as the response fulfilled some individual 

components only and the response was assigned P, as the student was not able to 

translate the program correctly. For instance, the algorithm stated the variables a and 

b to be of integer datatype (int a, b;) but the student declared them as character 

datatypes (char a,b;), which shows that the student has not understood the algorithm 

clearly. 
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Figure 3.10. U and P SOLO levels and scores for translating question 1 of the PST. 

c) Tracing: Tracing question 2 in the PST was to manually trace the following piece 

of code and answer, parts a) and b).  

 

 

 

 

 

Write the value of x when i = 1 

Write the value of x at line 12.  

 

The answers are: a) 0 and b) 3. 

The SOLO levels for tracing questions are shown in Table 3.6. 



 

68 

Table 3.6 

SOLO Levels for Tracing Questions 

SOLO level Indicator 
Raw 

Score 

Relational [R] Able to provide correct solution to parts a) and b) 3 

Multistructural [M] Able to provide solution to parts a) and b) with 

minor errors or omissions 

2 

Unistructural [U] Only one part of the two completed correctly 1 

Prestructural [P]  There are pieces that makes no sense or the answer 

is totally wrong 

0 

No attempt [N] The answer is blank 999 

 

Figure 3.11 shows how student responses to tracing question 2 of the PST were 

categorised based on SOLO descriptions listed in Table 3.6. 

The response in Figure 3.11 was assigned R, as the student was able to show 

correct output to parts a and b, while the response was assigned M, as the student was 

able to show the correct output only for part a; the output in part b was incomplete. 

The value of x is updated from 0, 1 and 3 and the final answer printed is 3. 

 

 

Figure 3.11. R and M SOLO levels and scores for tracing question 2 of the PST. 

 

The response in Figure 3.12 was assigned U, as the student was able to show 

correct output for only one part of the question. The response was assigned P, as the 

student was not able to show the correct output for both the parts. 
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Figure 3.12. U and P SOLO levels and scores for tracing question 2 of the PST. 

d) Explaining: Explaining question 2 of the PST was to explain in plain English the 

purpose of the following piece of code: 

 

The suitable solution may look like this: 

The code counts the number of even numbers in a given array. 

 

Table 3.7 shows the SOLO levels for the explaining questions. 
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Table 3.7 

SOLO Levels for Explaining Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to provide a summary of what the code 

does in terms of its purpose 

5 

Relational error [RE] Able to provide a summary of what the code 

does in terms of its purpose but with some 

minor errors or omissions 

4 

Multistructural [M] Able to provide a line-by-line description of all 

the code 

3 

Multistructural error 

[ME] 

Able to provide a line-by-line description of 

most of the code but with some minor errors or 

omissions 

2 

Unistructural [U] Able to provide description of one portion of 

the code 

1 

Prestructural [P] There are pieces that make no sense or the 

answer is totally wrong 

0 

No attempt [N] The answer is blank 999 

 

Figure 3.13 shows how student responses to the explaining question 2 of the 

PST were categorised as R and RE based on the SOLO descriptions listed in Table 3.7. 

The response in Figure 3.13 was assigned R, as the student was able to provide a 

summary of what the given piece of code did, while the response was assigned RE, as 

the student was able to provide an R response but also provided extra information not 

given in the code. For example, ‘The purpose of the code is to print the even elements 

in the array’ was not given in the code. The second half of the response, ‘to count how 

many even elements there are’, is an R response. However, as the student was unable 

to provide a summary of the purpose of the code, it was assigned RE. 
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Figure 3.13. R and RE SOLO levels and scores for explaining question 2 of the PST. 

Figure 3.14 shows how the student responses to the explaining question 2 of 

the PST were categorised as M and ME. The student response was assigned M, as the 

student provided a line-by-line description of all the code instead of a summary. The 

response was assigned ME, as the student was able to provide a line-by-line description 

of most of the code, but with some minor errors or omissions. 

 

 

Figure 3.14. M and ME SOLO levels and scores for explaining question 2 of the PST. 
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Figure 3.15 shows how student responses to the explaining question 2 of the 

PST were categorised as U and P. The student response was assigned U, as the student 

was able to provide a description of only one portion of the code. The response was 

assigned P, as the student provided pieces of information that were not correct. 

 

 

Figure 3.15. U and P SOLO levels and scores for explaining Question 2 in a PST. 

e) Writing: Writing question 2 in the PST was to ‘Write a program in C that 

calculates the sum of every third integer, beginning with i = 2’ (i.e., calculate the 

sum of 2 + 5 + 8 + 11 + …) for all values of i that are less than 30. A suitable 

solution may be:  
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Seven components were identified to students’ response to writing question 2: 

1. ability to declare variables of correct data types (E–S) 

2. ability to initialise a variable used to accumulate sum in the program (H–

U) 

3. ability to formulate correct loops (H–U) 

Use of any loops such as while or do-while and not necessary the for loop 

shown here 

4. ability to compute the sum correctly (H–S) 

5. ability to print the sum correctly (E–U) 

6. ability to write well-structured program in clear logical order (H–U). 

The student was expected to write codes using C programming language in a 

well-structured manner with clear logical order closer to the suitable solution 

shown previously. 

Figure 3.16 shows these individual components. 

 

Figure 3.16. Individual components of writing question 2 of the PST. 
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Thus, the SOLO description for the writing questions in the PST was 

established as shown in Table 3.8, based on the individual components shown 

previously. 

Table 3.8 

SOLO Classification for Writing Questions 

SOLO Level Indicator Raw Score 

Relational [R] Able to complete all components as a coherent 

whole 

6 

Relational Error [RE] Able to complete all components but has some 

minor syntax or logic errors or omissions 

5 

Multistructural [M] Able to complete most components. All H–S 

and E–S components complete and valid 

4 

Multistructural error 

[ME] 

Able to complete most components but with 

some minor syntax or logic errors or omissions 

3 

Unistructural [U] Able to complete some components only 2 

Unistructural error 

[UE] 

Able to complete some components only with 

some syntax or logic errors 

1 

Prestructural [P] There are pieces that make no sense or the 

answer is totally wrong 

0 

No attempt [N] The answer is blank 999 

 

Figure 3.7 shows the relational SOLO levels and their equivalent score for the 

R and RE responses to writing question 2 of the PST. The student response was 

classified as R, as the response satisfies all individual components listed. Although the 

second response completed all components, there was a missing statement to print the 

sum. Thus, the response was classified as RE. 
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Figure 3.17. R and RE SOLO levels and scores for writing question 2 in the PST. 

Figure 3.18 shows the M and ME SOLO levels and their equivalent score for 

the response to the writing question 2 of the PST. The response was classified as M, 

as it satisfied all components of H–S and E–S but with a minor omission or error, with 

U component. Accordingly, if the response satisfied all components of H–S and E–S 

but with error or omissions, the response was classified as ME. 

 

 

Figure 3.18. M and ME SOLO levels and scores for writing question 2 of the PST. 
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Figure 3.19 shows the U and UE (unistructural error) SOLO levels and their 

equivalent scores for the response to writing question 2 of the PST. The sample student 

response was classified as U, as the student was able to complete only some of the 

components. Similarly, the second sample response completed only some of the 

components, with syntax and logic errors. Such responses were classified as UE. 

 

 

Figure 3.19. U and UE SOLO levels and scores for writing Question 2 of the PST. 

Figure 3.20 shows the P SOLO levels and their equivalent score for the 

response to writing question 2 in the PST. As shown, the student provided a completely 

incorrect answer to the questions. Instead of writing a program, the student drew a 

flowchart, which shows the student did not understand the question clearly. Such types 

of responses were classified as P. 

 

Figure 3.20. P SOLO levels and scores for writing Question 2 in the PST. 
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The assessment of PST answer scripts using SOLO taxonomy (as shown in this 

chapter) for the remaining questions under algorithm design, translating, tracing, 

explaining and writing is shown in Appendix C. 

3.8 Ethical Considerations 

Several ethical issues were considered when gathering data for this study. 

Following the guidelines of informed consent (Cohen, 2017), the information letter 

(see Appendix E) that explained the purpose of the research and procedures along with 

the consent forms (Appendix D) was given to participants before any data collection 

activities were carried out. 

The first ethical consideration considered voluntarism in participation in the 

PST and survey. Voluntarism ensures that participants have the right to decide whether 

to take part in the PST/survey. Volunteer student participants were then provided with 

the information letter, which consisted of a brief summary of the study and how their 

participation would assist in achieving the purpose of this research. It also contained 

information in regard to the privacy and confidentiality of students’ details and 

assurances that information would remain confidential and names would not be 

identified or produced in any documents. 

The second ethical consideration was in regard to the anonymity of student 

participants. Complete anonymity was not possible within the context of this study. 

Thus, student participants were asked to write their student registration number and 

enrolment program only for the PST and survey. Participants were also verbally 

informed that their student registration numbers would not be reported in this thesis or 

in any other papers. Instead, a unique identifier such as S001, S002 or S003 would be 

assigned if needed. The student registration number was required for analysing data 
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across various data collection methods. Once students volunteered to participate in this 

study and read the information letter, they were provided with the consent form to sign. 

The third ethical consideration involved power and position. As Bhutan is a 

country of rich culture where there is great respect for elders and people in higher 

positions, the researcher was concerned that students may have volunteered out of 

respect for their lecturer, even if they did not want to. If this were to occur, students’ 

might feel pressured and may not have been able to provide correct answers. To avoid 

this situation, the researcher briefed the volunteer lecturers prior to the administration 

of the PST to reduce power difference and enable students to have power over 

decision-making (Cohen, 2017). Students were also assured that their performance in 

the PST would not affect their grades, and data from the PST would be used solely for 

the purpose of this study. Similarly, when the researcher visited the three colleges of 

RUB to administer the survey and interviews, students were informed by their lecturers 

of their right to participate in the survey or not. Prior to survey, the researcher briefly 

introduced the study and explained the contents of the information letter and consent 

form. Students were made to feel important and encouraged to be at ease while filling 

out the survey. Verbal consent was obtained from students selected for individual and 

group interviews. Where selected students refused to participate, other students were 

invited to participate. 

The fourth issue was withdrawal from participation. This ensured that 

participants could withdraw and discontinue their participation in the study at any stage 

without prejudice to them. This was stated in the information letter. 

Finally, lecturer participants in the survey were provided with the information 

letter and consent form. Verbal consent was obtained from lecturers prior to the 
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interview. The researcher verbally informed lecturers that the data collected would be 

used solely for the purpose of research and would not affect their academic career. 

Ethical approval (HRE2016-0318) was granted by the Human Research Ethics 

Committee of Curtin University (see Appendix F). 

3.9 Data Analysis 

Data were first entered in Microsoft Excel and imported into SPSS, a statistical 

data analysis package. SPSS was used to analyse the quantitative data collected via the 

data collection methods described in Section 3.6. The quantitative data were first 

analysed using univariate statistical analysis for descriptive statistics. Subsequently, 

the quantitative data were analysed using bivariate correlations analysis and multiple 

linear regression, which included assumption testing. Path analysis was also 

conducted. The results of the descriptive statistics, bivariate correlation analysis, 

multiple linear regression and path analysis are presented and discussed in Chapters 4, 

5 and 6. 

The qualitative data were first transcribed into Microsoft Excel and manually 

analysed by focusing on the areas related to the research questions. For a particular 

research question, the researcher was required to read all student responses and 

summarise them. New ideas/areas that emerged that were not related to the research 

questions were also noted and summarised. The results of the student and lecturer 

qualitative data are presented in Chapter 4 and 5. 

A second assessor was invited to evaluate sample students’ PST responses to 

obtain inter-rater reliability (IRR) to check the consistency of the PST marking criteria 

with the researcher’s marking. IRR was evaluated using intra-class correlation 

coefficient. Results are presented in Chapter 5 (see Section 5.4). 

 



 

80 

3.10 Summary 

This chapter has provided a detailed description of the research methodology 

used in this study and has explained the rationale behind using a mixed methods in 

collecting both quantitative and qualitative data. The research questions that guided 

this study were presented. Details about the data collection methods to address each 

research question was shown and ethical considerations made prior to data collection 

were described. The data analysis process was also summarised. Chapters 4, 5 and 6 

present the analysis results of the quantitative and qualitative data. 
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Chapter 4: Students’ Quantitative Univariate and Qualitative 

Results 

4.1 Introduction 

Chapter 3 described the preparation for data collection and outlined the 

research questions. The instruments were discussed and presented. This chapter 

presents the student quantitative univariate programming skills test (PST) and survey 

results, followed by student qualitative results.  

The first section presents the measure of student success in Introduction to 

Computer Programming (CS1) that was used in this study. Student performance 

(student success in CS1) was measured by performance in the PST, final semester 

examination (FSE) and overall semester (OS) performance. Students’ quantitative 

univariate results from the PST and survey data are presented next. As mentioned 

previously, the PST consisted of questions that interrogate students’ ability across five 

programming skills: algorithm design, translating, tracing, explaining and writing. The 

descriptive statistics for those programming skills are presented here. This is followed 

by the student survey and interview results for the areas covered in the students’ 

questionnaire, such as prior computing experience; first programming language, 

programming paradigm, programming environment, and teaching/learning methods 

and practices that have improved learning in CS1; Year 12 (Y12) performance in 

mathematics, physics and chemistry; order of programming skills to be learnt in CS1; 

order of contribution of programming skills to student performance as perceived and 

experienced by students in CS1; approaches to learning in CS1 and suggestions for the 

improvement of teaching/learning of CS1 at RUB. The independent sample t-test was 

also conducted to validate the results. 
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4.2 Measure of Student Performance in CS1 

This section presents the data used to measure student performance in CS1. In 

this study, student performance was the dependent variable. Student performance in 

CS1 was measured by their performance in the PST, FSE and the OS. 

Students’ performance in the PST, FSE and OS 

Students’ PST results were collected from the PST administered to all student 

participants from Sherubtse College (SC), Jigme Namgyel Engineering College 

(JNEC) and College of Science and Technology (CST), who were enrolled in the 

science and engineering program and who had completed CS1 in their first semester 

(July–November 2016). 

Students’ FSE scores were collected from the respective lecturers who taught 

CS1 in July–November 2016 in the three colleges at Royal University of Bhutan 

(RUB). FSEs were independently administered by an individual college. Similarly, OS 

scores were collected from the respective lecturers and the student survey. Table 4.1 

shows the descriptive statistics of the PST, FSE and OS. There is little difference 

between the means of PST (52.44) and FSE (55.77) compared to the mean of OS 

(61.95). The standard deviations of PST (17.40) and FSE (15.54) were fairly similar 

compared to the standard deviation of OS (11.63). This could be because the PST and 

FSE were written in an examination settings while the OS is the total of continuous 

assessment (CA) (50 percent) and FSE (50 percent). CA consists of mid-semester 

examination, class tests, assignments and practical examinations. 
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Table 4.1 

Descriptive Statistics of Student Performance (PST, FSE, OS) 

Student Performance n Mean Standard Deviation 

PST 292 52.44 17.40 

FSE 285 55.77 15.54 

OS 270 61.95 11.63 

Note: n is not equal, as missing data were omitted. 

 

4.3 Student Quantitative Univariate Results 

This section presents the quantitative univariate results of student PST and 

surveys. A total of 327 students participated in this study out of 342 students. The 

response rate was 96 percent which is close to 100 percent. The reason behind this 

high response rate has been discussed in Section 3.8 under ethical consideration. As 

the Bhutanese socio-cultural environment is unique in terms of respect for elders, 

people in higher positions and lecturers, the students may have participated out of 

respect to their lecturer. However, the researcher made every possible way to minimise 

this power difference and enable students to have autonomy over their decision. As a 

result of this a small number of students did choose not to participate. 

Of 327 students, 292 students participated in the PST and 277 participated in 

the survey. The number of students who participated in both the PST and survey was 

238. 

Table 4.2 shows the number of students who participated from seven 

programmes in three colleges at RUB. As discussed in Chapter 3, SC offers B.Sc. in 

Computer Science—the number of the students who participated was 27. JNEC offers 

a Diploma in Computer Hardware and Networking—the number of students who 
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participated was 43. Finally, CST offers five engineering programs—the number of 

students who participated was 257, the highest number of students from any of the 

three RUB colleges. 

Table 4.2 

Student Representation in this Study from Three RUB Colleges 

College Program Male Female Total  

CST B.Eng. in Electronics and 

Communication 

24 6 30 

 B.Eng. in Electrical 47 18 65 

 Bachelor of Architecture 11 7 18 

 B.Eng. in Information Technology 26 12 38 

 B.Eng. in Civil 70 36 106 

JNEC Diploma in Computer Hardware and 

Networking 

22 21 43 

SC B.Sc. Computer Science 20 7 27 

 Total students 220 107 327 

 

4.3.1 PST results 

This section presents the summary statistics of data collected via the PST. The 

raw scores of the equivalent SOLO levels were used in the analysis. 

A total of 292 students in three colleges at RUB undertook the PST specifically 

devised for this study. Females represented about 34 percent (n = 99) of the population 

and males about 66 percent (n = 193). CST students represented 76 percent (n = 223), 

JNEC 15 percent (n = 43) and SC nine percent (n = 26) of the sample. 

As discussed in Chapter 3, PST data were collected using a printed PST paper 

administered by lecturers who volunteered to assist the researcher. The PST was 

administered after student participants had completed one semester of instruction in 

CS1 and before the FSE. The PST was devised by the researcher in consultation with 

lecturers to interrogate students’ abilities across five programming skills: algorithm 
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design, translating, tracing, explaining and writing. The PST consisted of 10 questions. 

There were two questions for each programming skill. Subsequently, the SOLO 

taxonomy was adapted to evaluate students’ responses to PST questions (as discussed 

and presented in Chapter 3). Student scores were converted to a percentage for ease of 

comparison. 

Table 4.3 presents the college-wise summary statistics of the students’ 

performance in the PST. On average, CST students performed best in the PST (54.23), 

followed by SC (45.16) and JNEC (45.16). The reason for the higher mean at CST 

could be that most top performing students’ first option is to obtain entry into one of 

the engineering degree programs in CST, then a computer science degree program in 

SC and finally, the diploma program at JNEC. 

Table 4.3 

College Summary Statistics in PST 

College n Mean Standard Deviation 

CST 223 54.23 18.19 

SC 26 49.18 13.11 

JNEC 43 45.16 13.54 

 

Table 4.4 presents the summary statistics for each college with participant 

representatives in the PST. On average, students enrolled in the architecture program 

performed well in the PST (63.34) compared to students enrolled in other programs. 

This may be because only the top performing students opted for this program, so they 

may have done well in CS1. Students who were qualified but were not selected based 

on merits in the engineering program opted for Computer Science or a Diploma in 

Computer Hardware and Networking—and their PST average was 49.18 and 45.16 

respectively. 
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Table 4.4 

Programme Summary Statistics in PST 

Program n Mean Standard Deviation 

Bachelor of Architecture 11 63.34 17.99 

B.Eng. in Electronics and Communication 27 59.72 13.86 

B.Eng. in Information Technology 33 55.06 14.42 

B.Eng. in Civil 98 53.40 20.84 

B.Eng. in Electrical 54 50.62 15.86 

B.Sc. Computer Science 26 49.18 13.11 

Diploma in Computer Hardware and Networking 43 45.16 13.54 

 

Table 4.5 shows the summary statistics of the overall PST scores in each of the 

programming skills. On average, students performed well in algorithm design, 

translating, explaining and tracing, followed by writing. Since algorithm design is a 

skill that students learnt before other programming skills, and writing is a skill that 

student should be able to attain at the end of the course, the results reported here were 

consistent with the pattern that would be expected. That is, algorithm design has the 

highest mean, followed by translating, explaining, tracing and writing. 

Table 4.5 

Summary Statistics of the Programming Skills and Overall PST Score 

Programming Skills n Mean Standard Deviation 

Algorithm design 290 61.72 23.78 

Translating 291 59.51 28.08 

Explaining 287 56.48 32.70 

Tracing 288 46.76 23.76 

Writing 278 41.67 21.62 

Test score 292 52.44 17.40 

Note: n is not equal across categories, as missing data were omitted. Some participants did not 

respond. 
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4.3.2 Quantitative survey results 

This section presents the summary of data collected via survey questionnaire. 

The survey data presented here represent the responses of 277 students in three 

colleges of RUB. 

Figure 4.1 shows the number of students who participated in the survey across 

seven programs. CST represented 77 percent (n = 213), JNEC 13 percent (n = 37) and 

SC 10 percent (n = 27) respectively. Females represented about 34 percent (n = 94) 

and males about 66 percent (n = 183). 

 

Figure 4.1. Number of student participants from seven programs in the survey. 

Data were collected using a printed survey questionnaire, which was 

administered by the researcher to student participants. The areas covered in the 

questionnaire were: prior computing experience; Y12 performance in mathematics, 

physics and chemistry; programming environments used in CS1, first programming 
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language to be taught in CS1, first programming paradigm and teaching/learning 

methods and practices that have improved students’ performance in CS1; order of 

programming skills to be learnt in CS1; contribution of programming skills to success 

in CS1; approaches to learning in CS1; and suggestions for improvements in teaching 

and learning in CS1. The question on suggestions to improve teaching and learning 

was open ended, so the results will be covered in Section 4.4.1. 

The survey questionnaire consisted of 15 questions. Questions were closed-

ended, single and multiple responses, scaled responses and open-ended questions. 

Sections 4.3.2.1–4.3.2.7 report on the summary statistics of the areas covered in the 

survey questionnaire. 

4.3.2.1 Prior computing experience 

Prior computing experience was categorised as prior programming and prior 

non-programming computer experience. Question 1 asked students to indicate whether 

they had prior computer programming experience. They may have gained prior 

programming experience as a result of taking any programming courses in high school 

or private training courses prior to learning CS1. Of the 277 student participants, only 

39 had some computer programming experience. In Question 2, these 39 students were 

asked to identify which computer programming language/s that they had experienced. 

Students’ responses indicated some experience in C (n = 24), C++ (n = 11), Java 

(n = 7), JavaScript (n = 3) and Python (n = 1). Students were able to select more than 

one language in which they had experience. 

Table 4.6 shows the results of a t-test and descriptive statistics of FSE, OS and 

PST by prior programming experience. The only significant difference (t-test) between 

means for the groups was found when comparing groups on their OS score. Students 

with prior programming experience (n = 33) scored OS M = 65.72 (SD = 9.70). By 
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comparison, students without prior programming experience (n = 218) scored a lower 

mean for OS, M = 61.24 (SD = 11.80). 

The relevant distributions were sufficiently normal for the purposes of 

conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider, Ziegler, Danay, 

Beyer, & Bühner, 2010). Additionally, the assumption of homogeneity of variances 

was tested and satisfied via Levene’s F test, F(249) = 0.161, p = 0.689 (p > 0.05 

indicates unequal variances).  The independent sample t-test was associated with a 

statistically significant effect, t(249) = 2.08, p = 0.039. Thus, students with prior 

programming experience were associated with a statistically significantly larger mean 

in OS than those who had no prior programming experience. 

Table 4.6 

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Prior 

Programming Experience 

Student  

Performance 

Prior Programming Experience 95% CI for 

Mean 

Difference 

  

Yes  No   

 M SD n  M SD N t Df 

FSE 58.29 11.98 37  55.98 14.43 220 [-2.63,7.25] .92 255 

OS 65.73 9.70 33  61.24 11.80 218 [.23,8.74] 2.08* 249 

PST 57.05 17.48 32  52.44 15.77 208 [-1.38,10.60] 1.52 236 

Note: *𝑝 < 0.05, n=327. Total student participants in PST and survey. Missing data were omitted. 

While there were statistically significant differences in means between the 

students with and without prior programming experience in OS, no statistical 

difference existed between students with and without prior programming experience 

in terms of FSE and PST scores. 

Question 3 asked students to indicate their prior non-programming computer 

experiences by stating their perceived average number of hours per week that they had 

spent on information searches using the internet, computer games and application 
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software such as Office, spreadsheets, presentation programs and databases. The 

purpose of this question was to investigate whether such activities benefited students 

in learning CS1. There was a difference in means between non-programming computer 

experiences categorised into two groups based on the average number of hours spent 

on each activities on the scores of student performance. However, an independent 

samples t-test showed that this was not statistically significant. This suggests that these 

non-programming computer activities were not important in terms of predicting 

success in CS1. The correlational analysis in Chapter 6 will further confirm these 

results. 

4.3.2.2 Y12 performance in mathematics, physics and chemistry 

Question 4 asked students to record their Y12 scores in mathematics, physics 

and chemistry. The mean of students’ Y12 performance in mathematics was 78.8, 

physics was 73.5 and chemistry was 67.7. Based on the means of students’ 

performances in mathematics, physics and chemistry, students were grouped for each 

subject into two categories: those who scored more than the mean (A) and those who 

scored less or equal to the mean (B). The reason for categorisation was to examine 

whether Y12 performance in mathematics, physics and chemistry had any impact on 

student performance in CS1. 

Table 4.7 shows the results of the t-test and descriptive statistics of FSE, OS 

and PST by students’ Y12 performance in mathematics for categories A and B. 

Students with Y12 performance in mathematics for category A (n = 150) scored as 

follows for FSE: M = 59.16 (SD = 13.32). By comparison, students’ Y12 performance 

in mathematics for category B (n = 107) scored as follows for FSE: M = 52.77 

(SD = 14.43). To test the hypothesis that students’ Y12 performance in mathematics 

for categories A and B were associated with statistically significantly different mean 
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in FSE, an independent sample t-test was performed. Distributions for A and B were 

sufficiently normal for the purposes of conducting a t-test (i.e., skew < |2.0| and 

kurtosis < |9.0|) (Schmider et al., 2010). Additionally, the assumption of homogeneity 

of variances was tested and satisfied via Levene’s F test, F(255) = 0.206, p = 0.651. 

The independent sample t-test was associated with a statistically significant effect, 

t(255) = 3.664, p = 0.000. Thus, students who scored highly in Y12 mathematics had 

a statistically significantly larger mean in FSE than those who scored less. 

Table 4.7 

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Students’ Y12 

Performance in Mathematics for Categories A and B 

Student  

Performance 

Average Y12 Mathematics Score 95% CI for 

Mean 

Difference 

  

A  B   

 M SD n  M SD N t Df 

FSE 59.16 13.32 150  52.77 14.43 107 [2.95,9.83] 3.66* 255 

OS 64.99 9.89 141  57.81 12.29 110 [4.42,9.94] 5.13* 249 

PST 56.47 16.65 135  49.16 14.64 103 [3.25,11.34] 3.54* 236 

Note: *𝑝 < 0.05, n=327. Total student participants in test and survey. Missing data were omitted. 

In Table 4.7, we can observe that students with better scores in Y12 

mathematics were associated with a statistically significantly larger mean in OS than 

those with lower scores in Y12 mathematics. In addition, students with better scores 

in Y12 mathematics were associated with a statistically significantly larger mean in 

the PST than with those lower scores in Y12 mathematics. 

Table 4.8 shows the results of the t-test and descriptive statistics of FSE, OS 

and PST by students’ Y12 performance in physics for categories A and B. Students 

with Y12 performance in physics for category A (n = 146) scored as follows for FSE: 

M = 58.17 (SD = 13.49). By comparison, students’ Y12 physics score for category B 

(N = 111) scored as follows for FSE: M = 54.29 (SD = 14.67). To test the hypothesis 

that students’ Y12 performance in physics for categories A and B were associated with 
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statistically significantly different mean in FSE, an independent sample t-test was 

performed. Distributions for A and B were sufficiently normal for the purposes of 

conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider et al., 2010). 

Additionally, the assumption of homogeneity of variances was tested and satisfied via 

Levene’s F test, F(255) = 0.093, p = 0.761. The independent sample t-test was 

associated with a statistically significant effect, t(255) = 2.197, p = 0.029. Thus, 

students who scored highly Y12 physics had a statistically significantly larger mean in 

FSE than those who scored less. 

Table 4.8 

Results of t-Test and Descriptive Statistics of FSE, OS and PST by Students’ Y12 

Performance in Physics for Categories A and B 

Student  

Performance 

Average Y12 Physics Score 95% CI for 

Mean 

Difference 

  

A  B   

 M SD n  M SD n T Df 

FSE 58.18 13.50 146  54.30 14.67 111 [.401,7.35] 2.19* 255 

OS 64.21 10.26 139  58.91 12.41 112 [2.48,8.12] 3.70** 249 

PST 55.22 16.87 131  50.97 15.07 107 [.12,8.37] 2.02* 236 

Note: *𝑝 < 0.05, **𝑝 < 0.05 n=327. Total student participants in test and survey. Missing data were 

omitted. 

From Table 4.8, we can observe that the students with better scores in Y12 

physics were associated with a statistically significantly larger mean in OS than those 

with lower scores in Y12 physics. Similarly, students with better scores in Y12 physics 

were associated with a statistically significantly larger mean in PST than those with 

lower scores in Y12 physics. 

Table 4.9 shows the results of t-test and descriptive statistics of FSE, OS and 

PST by students’ Y12 performance in chemistry for categories A and B. Students with 

Y12 performance in chemistry for category A (n = 138) scored as follows for OS: 

M = 63.92 (SD = 10.61). By comparison, students’ Y12 performance in chemistry for 
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category B (N = 114) scored as follows for OS: M = 59.13 (SD = 12.27). To test the 

hypothesis that students’ Y12 performance in chemistry for categories A and B were 

associated with statistically significantly different mean in OS, an independent sample 

t-test was performed. Distributions for A and B were sufficiently normal for the 

purposes of conducting a t-test (i.e., skew < |2.0| and kurtosis < |9.0|) (Schmider et al., 

2010). Additionally, the assumption of homogeneity of variances was tested and 

satisfied via Levene’s F test, F(250) = 0.854, p = 0.356. The independent sample t-

test was associated with a statistically significant effect, t(250) = 3.33, p = 0.001. 

Thus, students who scored highly in Y12 chemistry had a statistically significantly 

larger mean in OS than those who scored less. 

Table 4.9 

Results of t-Test and Descriptive Statistics of FSE, OS and Test by Students’ Y12 

Performance in Chemistry for Categories A and B 

Student  

Performance 

Average Y12 Chemistry Score 95% CI for 

Mean 

Difference 

  

A  B   

 M SD n  M SD n t Df 

FSE 57.86 13.85 139  54.71 14.28 120 [-.29,6.59] 1.80 257 

OS 63.92 10.61 138  59.13 12.27 114 [1.95,7.64] 3.33* 250 

PST 55.62 17.33 122  50.62 14.62 118 [.91,9.08] 2.41* 238 

Note: *𝑝 < 0.05, n=327. Total student participants in test and survey. Missing data were omitted. 

From Table 4.9, we can observe that students with better scores in Y12 

chemistry were associated with a statistically significantly larger mean in the PST than 

those with lower scores in Y12 chemistry. By comparing the means of FSE between 

these two categories of students, the results from Table 4.9 show that Y12 chemistry 

scores are not statistically significant in terms of contribution to success in the PST. 

The correlational analysis in Chapter 6 will further confirm these results. 
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4.3.2.3 Programming environments used in CS1 

Question 6 asked students to select the programming environments used by 

lecturers to teach CS1. The results show that the most commonly used programming 

environments by lecturers was Turbo C++ (n = 124), followed by Microsoft Visual 

Studio (n = 76), terminal/command line (n = 33) and Dev-C++ (n = 11)  

Question 7 asked students whether the programming environment used by their 

lecturer in CS1 was easy to use; 111 students of 124 said that it was easy to use Turbo 

C++, 68 students of 76 said that it was easy to use Microsoft Visual Studio, 30 students 

of 33 said that it was easy to use the terminal/command line and 10 students of 11 said 

that it was easy to use Dev-C++. The remaining students stated that the programming 

tools used by their lecturers were not easy to use; 13 students of 124 said that it was 

not easy to use Turbo C++: 

S039: Poor technology background 

S156: Difficult to understand the interface and felt bit uninteresting 

S217: Did not get much time to learn the interface 

 

Figure 4.2 shows the interface and screen of Turbo C++. 

  

Figure 4.2. Interface and screen of Turbo C++. 
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We can conclude from the response that some students found it difficult to 

understand the interface of Turbo C++ and did not like the colour of the screen. The 

default colour is blue, as shown in Figure 4.2. 

The interface of Dev-C++ is shown in Figure 4.3. Only one student of 11 said 

that it was not easy to use Dev-C++ but opted not to state the reason. The remaining 

10 students found Dev-C++ user-friendly, which means that the interface was easy to 

use and understand, and not difficult to learn. The sample programs reported in this 

thesis were written, compiled and run in Dev-C++ by the researcher. The researcher 

finds Dev-C++ easy to use and simple to install; moreover, it is free. 

 

Figure 4.3. Interface of Dev-C++. 

Three students of 33 said that it was not easy to use terminal/command line. 

Only one student stated their reason, but this reason was found not to be relevant. 

Figure 4.4 shows how to compile C programs using the command line in windows. 

The command to compile C program in the Linux operating system is the same. 



 

96 

 

Figure 4.4. Command to compile and run C program using command line in windows. 

Eight students of 76 said that it was not easy to use Microsoft Visual Studio. 

Two students provided the following reasons: 

S178: Hard time to deal with software 

S181: Software not user-friendly 

 

Figure 4.5 shows the interface of Microsoft Visual Studio. 

 

Figure 4.5. Interface of Microsoft Visual Studio 

Source: ("Get started with Visual Studio 2017,"). 



 

97 

Question 8 asked students if they had experienced any other easy-to-use 

programming environments apart from those their lecturer used in CS1. Eight students 

of 277 explored other programming tools, such as PyCharm and Code::Blocks and 

stated that these were easy to use. The lecturer could try these programming 

environments and determine if they are simple to use for beginners. 

4.3.2.4 First programming language to be taught in CS1 

Question 9 asked students to give their opinion based on their experience in 

regard to the first programming language to be taught in CS1. Table 4.10 outlines the 

programming language students asserted should be taught in CS1; 59 percent of 

student nominated C as the first programming language that should be taught in CS1. 

This is probably because they have learnt C in CS1. Students who responded with 

C++, Java, Python, VB.Net and C# might have had some experience prior to CS1. 

Table 4.10 

Number of Students’ Response to First Programming Language to be Taught in CS1 

(n = 277) 

Programming Language n Percent 

C 164 59% 

C++ 73 26% 

Java 57 21% 

Python 18 7% 

VB.Net 6 2% 

C# 4 1% 

Note: Participants could select more than one response. 

Question 10 asked students to provide reasons for selecting a particular 

language to be taught in CS1. Students stated: 

S004: It [C] is the fundamental of any programming language. 

S009: It [C] is easier compared to other languages like Java, C++, etc. 
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S008: Because of curiosity and interest in that language [C++]. 

S024: Some of us already learnt Java in class 12, so I think it will be easier for 

us too [Java]. 

S038: I heard that it is an interesting programming language [Java]. 

Students’ comments on the first programming language to be taught in CS1 

shows their understanding of C as a foundation language that is easy to learn compared 

to other programming languages. Some students with experience in Java wanted to 

continue with Java in CS1, believing it would be easier for them to learn. Other 

students who responded with C++ and Java were curious to explore these languages. 

4.3.2.5 Teaching/learning methods and practices that have helped in the 

learning of CS1 

Question 11 asked students to indicate the teaching/learning methods and 

practices they had experienced that helped them learn in CS1. Table 4.11 shows the 

teaching/learning methods and practices that students experienced in CS1 that helped 

them learn. Of the four teaching/learning practices and methods listed in Table 4.11, 

live coding by the lecturer (i.e., when lecturers teach by demonstrating the program 

from scratch using the programming environment in the class rather than explaining a 

static code from the slide) was found to be the most helpful in learning CS1 (60 

percent) followed by reading the materials online (49 percent), pair/group 

programming (i.e., working in pairs and groups: 46 percent) and watching YouTube 

tutorials (20 percent). 
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Table 4.11 

Teaching/Learning Methods (n = 277) 

Teaching/ Learning Methods and Practices n Percent 

Live coding by lecturers 168 60% 

Reading online materials 135 49% 

Pair/group programming 128 46% 

YouTube tutorials 57 20% 

Note: Participants could select more than one response and list their own. Reading materials 

online and YouTube tutorials were listed. 

4.3.2.6 Students’ perceptions of the order of programming skills to be learnt 

in CS1 

Question 12 asked students to order the five programming skills based on their 

experience in learning CS1 from 1 (first programming skill learnt) to 5 (last 

programming skill learnt). Students were also asked to write the same number on the 

programming skills if they felt that some of the programming skills could be learnt in 

parallel. Table 4.11 presents the results based students’ experience of learning in CS1. 

The results indicate that algorithm design (2.08) was the skill that the students 

generally suggested to begin with, followed by explaining (2.3) and translating (2.58). 

We can also surmise that students believed these three skills may be learnt at similar 

times, as the difference in means was low. Similarly, writing (3.0) and tracing (3.58) 

can be learnt at similar times, as there was little difference in their means. Students’ 

interview responses to this question (see Section 4.4.2) will further provide 

information on this. 
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Table 4.12 

Summary Statistics of the Order of Programming Skills to be Learnt in CS1 

(n = 277) 

Programming Skills Mean Std. Deviation 

Tracing  3.58 1.31 

Writing 3.00 1.33 

Translating 2.58 1.01 

Explaining 2.30 1.43 

Algorithm design 2.08 1.19 

Note. n=272. Some participants did not respond. 

4.3.2.7 Students’ perception of the order of programming skills in terms of 

contribution to student performance in CS1 

Question 13 asked students to order the five programming skills based on their 

experience in learning CS1 to student performance in CS1 from 5 (highest) to 1 

(lowest). Students were also asked to write the same number on the programming skills 

if they believed some of the programming skills were equally associated to their 

success in CS1. Table 4.13 presents the results based on students’ experience in 

learning in CS1. The results show that writing contributes the most (3.14) to student 

performance, followed by explaining (2.99), tracing (2.97), algorithm design (2.86) 

and translating (2.73). 

We can also say that explaining, tracing, algorithm design and translating are 

perceived by students to be approximately equally associated with success in CS1 after 

writing, as their means were not statistically significant. The path analysis in Chapter 

6 will further examine the hierarchy among the five programming skills. 
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Table 4.13 

Summary Statistics of the Order of Programming Skills in Terms of Contribution to 

Student Performance in CS1 (n = 277) 

Programming Skills Mean Std. Deviation 

Writing 3.14 1.40 

Explaining 2.99 1.53 

Tracing  2.97 1.43 

Algorithm design 2.86 1.43 

Translating 2.73 1.19 

Note: n = 267. Some participants did not respond. 

4.3.2.8 Approaches to learning in CS1 

Question 15 asked students to indicate their approach in learning CS1 by 

answering 20 items scored on a 5-point Likert scale of Biggs’s (R-SPQ-2F). 

Questionnaire items were categorised into two learning approaches: deep and surface. 

There are two subscales of deep approach (deep motive and deep strategy) and two 

subscales of surface approach (surface motive and surface strategy). Table 4.14 shows 

the summarised statistics scores of the completed Biggs questionnaire. The mean and 

standard deviation show that students are not particularly aligned with either deep or 

surface learning approaches. See Section 6.2.5 for correlation of learning approach 

with student performance. 
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Table 4.14 

Aggregate Statistics on Students’ Leaning Approach Using Biggs Questionnaire 

(n = 277) 

Learning Approach (Total Score) Mean Standard Deviation 

Deep approach (50) 27.56 5.45 

Deep motive (25)  13.00 3.27 

Deep strategy (25) 14.53 2.99 

Surface approach (50) 27.96 5.94 

Surface motive (25) 13.76 3.23 

Surface strategy (25) 14.20 3.49 

Note: n = 275. Some participants did not respond. 

4.4 Student Qualitative Results 

This sections reports on the results of student qualitative data from the survey, 

and individual and group interviews. The qualitative data were classified by examining 

the number of occurrences of key terms. Results were summarised. 

4.4.1 Student qualitative survey results 

Question 14 of the survey asked students to suggest how we could improve 

teaching/learning of CS1 at RUB. Students’ response to this questions were classified 

based on the number of occurrences of the particular areas: 

a) Same tutor for both theory and practical session 

Students stressed that it was important for them to have the same tutor for both 

theory and practical sessions. At CST, theory classes were taken by one lecturer 

and practical classes by another lecturer. Student responses were: 

S043: Better to have same tutor for both theory and practical sessions. 

S208: Theory and practical should be taught by the same teacher. Moreover, 

things taught in the class should be practically close in the lab. 
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S056: Same tutor for both theory class and practical classes. 

It is true that the best scenario would be to have the same tutor for theory and 

practical sessions. 

b) Theory and practical classes in parallel 

Students also stressed about having theory and practical classes in parallel and 

not on different days. Only JNEC offered theory and practical classes in 

parallel in the computer laboratory. SC and CST have theory classes for one 

hour every day for four days and practical classes for three consecutive hours 

a week. A sample of students’ responses were: 

S066: Better if the teachers teach the theory and practicals in a parallel system 

so that each students can follow. 

S127: Theory and practical should run parallel. 

S085: If we are allowed to bring our personal laptops in the lecture and 

practice parallel with what the tutor is teaching in the class, so that students 

may be able to perform better. 

Students’ suggestions for conducting theory and practical classes together in 

computer laboratory does not seem feasible in the current situation. Currently, 

at SC and CST, computer laboratory are shared among students enrolled in 

programs with practical components. However, the researcher believes that 

allowing students to bring their laptops to the theory class should not be a 

problem. 

c) Experience lecturer in CS1 

Students strongly suggested that experienced lecturers should be assigned to 

teach CS1. This seems true, as based on the researcher’s experience teaching a 



 

104 

module whose prerequisite is CS1, extra time needs to be spent explaining the 

basic concepts of programming, which students were supposed to learn in CS1. 

A sample of students’ responses were: 

S139: Experienced teacher should teach CS1. 

S245: If an experienced teacher teaching CS1 is assigned for teaching, 

students can learn more and understand the concepts clearly. 

S234: Experienced teacher who knows programming well and with high-level 

communication skills. 

S205: By sending experienced tutors, as some of the tutors are not sure about 

the topics themselves. 

S080: Require more experienced teacher teaching this module. 

S087: Tutors should seek help from seniors to teach CS1. 

S260: Students will learn maximum if the teacher with more experience and 

good teaching technique is given, as the programming is complex and logical 

compared to others. 

d) Live coding and pair programming 

Students suggested lecturers should demonstrate programs live from scratch 

using programming environments when teaching CS1 classes and encourage 

students to work in pairs. A sample of students’ responses were: 

S019: Live coding by the tutor is very useful. 

S024: Supervised pair-learning and live coding with the teacher in the class. 

S184: The tutor can write two to three lines of codes and explain to the students 

how that particular code works and let the students write their own code for a 

particular program. 
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S158: Flow of the program should be made clear to the students. 

 

4.4.2 Student interview results 

This section reports on the qualitative data collected from individual and group 

interviews; 23 and 24 students participated in individual and group interviews 

respectively. Table 4.15 presents the details of students from seven programs who 

participated in individual interviews. Table 4.16 shows the number of students who 

participated in a group interview at the three colleges of RUB. 

Table 4.15 

Programme and Number of Student Participants in Individual Interviews 

College Programme Male Female Total  

CST B. Eng. in Electronics and 

Communication 

1 2 3 

 B. Eng. in Electrical 2 1 3 

 Bachelor of Architecture 1 3 4 

 B. Eng. in Information 

Technology 

3 0 3 

 B. Eng. in Civil 1 2 3 

JNEC Diploma in Computer 

Hardware and Networking 

2 2 4 

SC B.Sc. Computer Science 2 1 3 

 Total students 12 11 23 
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Table 4.16 

College and Number of Student Participants in Group Interviews 

College Male Female Total  

CST Group 1 3 2 5 

CST Group 2 5 3 8 

JNEC 3 3 6 

SC 3 2 5 

Total students 14 10 24 

 

The areas covered in interviews were similar to those covered in the survey 

(see Section 4.3). The semi-structured interview questions were utilised but the order 

of the questions asked and the resulting conversations were not controlled. The 

following is a summary report of students’ responses to the areas covered in individual 

and group interviews. 

4.4.2.1 Prior computing experience 

Students with non-programming computer experience such as information 

searches using the internet, computer games and application software such as Office 

stated that experience in these activities did not help them learn in CS1. Three students 

of 23 in individual interviews stated that the experience in searching for information 

using the Internet and Office usage helped them learn in CS1. According to Student 

S219, experience in Microsoft Word helped him type programs faster. Students S077 

and S215 stated that knowing how to search for information using Google helped them 

find information related to topics in CS1 that they found difficult: 

S219: I feel it helps in typing the program faster. 
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S077: Knowing how to Google helped me to find information on topics that I 

find difficult in CS1. 

S215: Knowing how to research information helped in learning CS1. 

The student with some programming experience stated that they understood 

the concepts in CS1 classes easier than their friends, who had no experience in any 

programming language. A total of 21 of 23 students stated that it would be better if 

students had some programming experience prior to taking CS1. All students in a 

group interview collectively said that they required programming experience prior to 

taking CS1 classes. Group 4 stated: 

G4: Those students who had previous knowledge on programming did pretty 

well in CS1 while we struggled. 

This results confirms the quantitative survey results reported in Section 4.3.2, 

in which the average mean of students’ performance in CS1 having prior programming 

experience was higher than for students without programming experience. 

4.4.2.2 Y12 performance in mathematics, physics and chemistry 

More than 50 percent of the students interviewed stated that good performance 

in mathematics is required, while performance in physics and chemistry is not 

necessary prior to learning CS1: 

S274: For writing programs on area, perimeter, factorials, Fibonacci 

numbers, etc., we need mathematics background. 

S125: Mathematics logic is required. 

S077: I don’t think we require chemistry background. Maybe physics. 

Students’ interview responses align with the quantitative survey results 

reported previously—students who scored highly in Y12 mathematics performed well 

in CS1. 
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4.4.2.3 Programming environments used in CS1 

A total of 11 of 23 students interviewed reported that they used Turbo C++ in 

CS1. More than half of the students who have learnt programming in CS1 using Turbo 

C++ stated that it is not user-friendly and not compatible with the operating system: 

S123: It is not easy to use. 

S125: It is not compatible with the operating system. I cannot open the screen 

in full. Also, the software crashes in the middle of writing programs. 

G01: Interface was not user-friendly. 

G04: It wasn’t very user-friendly. You know, whenever we open the screen, we 

cannot minimise and also we cannot copy and paste. I find it very difficult to 

use. 

These results do not align with the survey results discussed previously, in 

which few students (13 of 124) stated that Turbo C++ was not user-friendly. 

Eight of 23 students’ interviewed had used Microsoft Visual Studio in CS1. 

Over half of the students who learnt programming in CS1 using Microsoft Visual 

Studio stated that it is user-friendly: 

S071: Easy and user-friendly. 

S018: It was not easy to use initially but later on I got used to it. 

These results align with the survey results discussed previously, in which only 

eight of 76 students stated that Microsoft Visual Studio was not user-friendly. The 

remaining students found it easy to use. 

Only two of 23 students’ interviewed had used terminal/command line in CS1. 

Out of two, only one student found it difficult to use: 

S274: Bit difficult. Need to remember all the commands. 
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These results align with the survey results discussed previously, in which few 

students (three of 33) stated that using terminal/command-line was easy. The 

remaining students found it difficult to remember the commands. 

Students who had explored other programming tools, such as PyCharm and 

Dev C++, stated that these were user-friendly. 

S127: I used PyCharm. It was easy to use and also more efficient. 

S125: PyCharm. It is more user-friendly. I prefer PyCharm, as it is easier to 

use than Turbo C++. 

S123: I used Dev C++. It is user-friendly. I prefer Dev C++ to Turbo C++, as 

Dev C++ is more user-friendly. 

The students’ interview responses confirmed that students had explored other 

programming environments and found them easy to use. Thus, it is worth exploring 

PyCharm and Dev C++ and their suitability for use in CS1. 

4.4.2.4 First programming language to be taught in CS1 

More than half of the students stated that CS1 should be taught using C as the 

programming language, while two students of 23 stated that Python should be the first 

programming language learnt: 

S127: I heard that Python is simple and basic so I guess Python can be used in 

CS1. 

S125: I heard that Python is simpler than C, so maybe Python can be used to 

teach beginners. 

All the students in a group interview stated that the first programming language 

learnt should be C: 

G01: C is the foundation of other languages. 
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G03: Should be taught for beginners, as we are learning C++ in the second 

semester. 

4.4.2.5 Teaching/learning methods and practices that have helped in the 

learning of CS1 

All 23 students interviewed stated that working with pairs or in groups and live 

coding by lecturers helped them learn in CS1: 

S127: Working with friends helps in debugging the code [group programming]. 

S123: I can understand better from peers [pair/group programming]. 

S125: Working in groups helps us in sharing and exchanging knowledge and 

ideas [group programming]. 

S154: Working with friends helps in explaining to each other. Sometimes 

friends understand the concepts better than you [pair programming]. 

S010: Makes it easier to understand [live coding]. 

G4: It helps especially in finding errors [live coding]. 

Students’ responses in interviews and surveys indicate that live coding by 

lecturers and working in pairs/groups seems to benefit students in learning CS1. 

4.4.2.6 Students’ perceptions of the order of programming skills to be learnt 

in CS1 

All students interviewed (individual and group) stated that learning CS1 should 

begin with algorithm design before progressing to the next programming skills. Most 

students interviewed gave the preferred order of programming skills (begins with 1) to 

be learnt in CS1 as: 

1. algorithm design 

2. translating 

3. writing 
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4. tracing 

5. explaining. 

This was compared with the order reported in the quantitative results (mean 

value shown in parentheses). The lower the mean value, the earlier the skills that 

students stated to be learnt first.  

1. algorithm design (2.08) 

2. explaining (2.30) 

3. translating (2.58) 

4. writing (3.00) 

5. tracing (3.58). 

Explaining was perceived to be the last programming skill to be learnt 

(according to interview results) while tracing was perceived to be the last programming 

skill to be learnt (from survey results).Both interview and survey results stated that 

student should start with algorithm design first and follow with the other programming 

skills in no particular order.  

4.4.2.7 Students’ perception of the order of programming skills in terms of 

their contribution to the Student Performance in CS1 

A total of 12 students of 23 stated that writing contributes more to student 

performance in CS1, while six of 23 cited algorithm design as contributing highly to 

student performance. Others identified either explaining or translating as contributors 

to performance: 

S127: I think writing [writing] should be contributing more to the success of 

CS1. Because if you know how to write code, then tracing, translating and 

explaining becomes easier to understand. 
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S125: Writing [writing], as most of the questions in the exam were based on 

writing. 

S134: I feel if students know how to write algorithm [algorithm design] and 

represent the logic in flowcharts, then obviously students can write the 

program. 

S274: If the algorithm [algorithm design] is wrong, then the whole program is 

wrong. 

Compared to survey results, writing was reported as having the highest 

contribution to student performance in CS1 (3.14), which aligns with the interview 

response. Algorithm design was reported as fourth in the order in the survey (2.86), 

not second, as stated in an interview. The path analysis in the Chapter 6 will further 

confirm this order of programming skills in terms of their contribution to student 

performance in CS1. 

4.4.2.8 Suggestions on how to improve teaching/learning of CS1 at RUB 

Individual and group students’ interview responses to this question emphasised 

four key areas: same tutor for both theory and practical, prior programming experience, 

pair/group programming and live coding. 

a) Same tutor for both theory and practical sessions 

From the student interviews, the researcher discovered that in CST, they have 

two lectures assigned each for theory and practical sessions in the computer 

laboratory. At SC and JNEC, only one lecturer was assigned to teach CS1 for 

both theory and practical. Students who had one lecturer for theory and one for 

practical sessions strongly recommended assigning only one lecturer to teach 

CS1, as they found it difficult to follow: 
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S191: Same tutor should teach the class. We had theory classes taught by one 

tutor and practical classes taught by another. It was difficult to follow. 

b) Prior programming experience 

Students in individual and group interviews said that it would benefit them in 

the learning of CS1 if one programming subject was introduced for students 

taking science as their major in Y12 to become familiar with programming 

concepts: 

S125: Computer science should be introduced in high school at basic level. 

G2: If the Ministry of Education can introduce some sort of programming 

courses in the primary and the high school, it would be better, as students will 

be familiarised with some programming concepts when they enrol in colleges 

and study CS1. 

G4: As a beginner to computer programming, I did not really understand what 

C programming was in the first few days of class. I feel it is important to 

introduce one programming subject to all the science students in Y12 so they 

are not lost in the class during CS1 classes. 

This qualitative result aligns with the quantitative results—the mean of student 

performance for those with prior programming experience was higher than for 

those without prior experience. Thus, it is clear that students must be 

familiarised with some basic programming concepts in Y12 so they are not 

overwhelmed when introduced to CS1 in the first semester. 

As for those with non-programming computer experience, most had prior 

experience in activities such as Office, playing games, browsing the Internet 

and using social media. 
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c) Live coding and pair/group learning 

The topics of live coding and pair/group learning/programming arose 

repeatedly in students’ response to the open-ended question in the survey. 

Students interviewed also said that live coding by lecturers helped them learn 

how to write a program in the programming environment, debug and observe 

the output of the program. Similarly, students stated that they learnt more in 

pairs and groups, than they did alone. 

S134: Students should be grouped into pairs and let them explore the topics 

[pair programming]. 

S071: Tutors should allow students to bring their laptops to the class so 

students can do live coding [live coding] with the tutors instead of students 

watching tutors to demonstrate. 

G4: I think to explain the concepts of programming well, the tutor should focus 

more on live coding [live coding]. 

Table 4.17 compares students’ open-ended survey questions and interview 

responses to the suggestion of how to improve teaching/learning of CS1 at RUB. 

Commonly mentioned topics in the survey and interviews were that the same tutor 

should conduct theory and practical sessions, and the benefits of live coding and pair 

programming. Conducting theory and practical sessions in parallel and the use of 

experienced lecturers to teach CS1 were issues raised in the survey. Students discussed 

requiring prior programming experience in the interview. 
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Table 4.17 

Comparison of Students’ Survey Open-Ended Question and Interview Responses to 

the Suggestion of How to Improve Teaching/Learning of CS1 at RUB 

Survey Interview 

Same tutor for both theory and practical 

sessions 

Same tutor for both theory and practical 

sessions 

Live coding and pair programming Live coding and pair/group learning 

Theory and practical classes in parallel Prior programming experience 

Experienced lecturer for CS1  

 

4.4.2.9 Approaches to learning in CS1 

Students’ interviewed were asked questions about their approaches to learning 

in CS1. The sample of students’ responses that fell under the deep approach are shown 

below: 

S127: I practised the programs that were taught in the class. I browsed the 

Internet for more explanation and wrote more programs [deep approach]. 

S071: Research until I pretty much understood the topics and practice writing 

programs [deep approach]. 

S215: I referred books, asked friends, browsed internet, watched YouTube 

video tutorials and finally asked module tutor. I enjoyed CS1 classes and as a 

result I scored high marks as well [deep approach]. 

S243: Practise program codes. Revised the program taught in the class and 

lab. I tried different ways of writing the program to get the same solution. I got 

more practice by helping my friends. I can understand the concepts well and I 

was interested in learning computer programming [deep approach]. 

Only one student interviewed fell under the surface approach: 

S134: I studied only the notes given out by the tutor [surface approach]. 
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S10: I revised only the class notes given by the tutor [surface approach]. 

Looking at the performance of these students in PST, FSE and OS, it is evident 

that students who employed deep approach of learning did well in CS1 as compared 

to those students who employed surface approach of learning. For instance, student 

S127 scored 68.67 in PST, 60 in FSE and 65 in OS; student S215 scored 66.33 in PST, 

75 in FSE and 82 in OS; and student S243 scored 56 in PST, 57 in FSE and 59 in OS. 

Conversely, student S134 scored 29 in PST, 18.75 in FSE and 19 in OS; and student 

S10 scored 28 in PST, 30.50 in FSE and 50 in OS. 

 All the students in a group interview responded their approaches to learning 

CS1 which fell under the deep approach of learning. The responses are shown below: 

 G1 and G3: Watch YouTube video tutorials, ask friends, browse Internet and 

 ask tutor 

G2: Browse Internet. Use mobile apps to learn C programming. Refer library 

 books and ask friends. 

G4: Practice and surf Internet for explanation and also ask friends. Refer 

 lecture notes. 

4.5 Summary 

This chapter reported on the quantitative univariate results from the student 

PST and survey followed by qualitative results from the student survey and interviews.  

It was reported that, on average, students enrolled in the architecture program 

performed well in the PST compared to students enrolled in other programs. On 

average, students performed well in algorithm design, translating, explaining and 

tracing followed by writing. The results reported were consistent with the pattern that 

would be expected. Overall, on average, the CST College performed well in the PST, 

followed by SC and JNEC. 
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It was reported that only 39 students of the 277 student participants had some 

computer programming experience prior to taking CS1. These students had experience 

in C, C++, Java, JavaScript and Python. The descriptive statistics showed that the 

students with prior programming experience performed better in CS1 across FSE, OS 

and PST. However, the independent sample t-test results showed that this was 

statistically significant for students’ with prior programming experience in terms of 

OS only, not to FSE and PST. Similarly, the means of FSE, OS and the PST were all 

higher for students who spent less time playing computer games and all lower for 

students who spent more time playing computer games. However, the independent 

sample t-test results showed none of the non-programming computer activities were 

statistically significant. 

The independent sample t-test results showed that students’ Y12 performance 

in mathematics and physics were statistically significant when comparing means 

between groups for the FSE, OS and the PST. Students’ Y12 performance in chemistry 

was found statistically significant only in terms of the difference between means 

between groups for OS and the PST, not to FSE. 

The most commonly used programming environments used by the lecturers to 

teach CS1 at RUB was Turbo C++ and Microsoft Visual Studio. Some students also 

explored PyCharm and Code::Blocks. C programming language was reported as an 

ideal programming language to teach in CS1. 

It was reported that teaching/learning methods and practices such as live 

coding, pair/group programming, reading materials online and watching YouTube 

tutorials would benefit student in learning CS1. 

The order of programming skills to be learnt in CS1 and the order of 

programming skills in terms of their contribution to student performance was also 
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presented in this chapter. Students made some suggestions to improve the 

teaching/learning of CS1: The same tutor should teach both theory and practical 

classes, theory and practical classes should be taught in parallel, experienced lecturer 

should teach CS1, live coding and pair/group programming should be encouraged and 

students should have prior programming experience. The results from this chapter will 

be further discussed in the multivariate analysis in Chapter 6. 
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Chapter 5: Lecturer’ Quantitative Univariate and Qualitative 

Results 

5.1 Introduction  

Chapter 4 presented the students’ quantitative univariate programming skills 

test (PST) and survey results, followed by students’ qualitative results. This chapter 

presents the lecturers’ quantitative univariate results followed by lecturers’ qualitative 

results. The results of inter-rater reliability (IRR) between the researcher’s marking 

and a second marker on sample scripts of students’ PST are also presented in this 

chapter. 

5.2 Lecturers’ Quantitative Univariate Results 

The total of eight lecturers, seven male and one female, from three Royal 

University of Bhutan (RUB) colleges participated in the survey. The only female 

lecturer participant was from College of Science and Technology (CST). 

Survey data were collected using a printed questionnaire, which was given to 

the lecturer participants by the researcher. Once the survey was completed, it was 

handed back to the researcher. The areas covered in the lecturer survey questionnaire 

were very similar to those in the student survey (see Section 4.3.2): prior computing 

experience; Y12 performance in mathematics, physics and chemistry; programming 

environments used in CS1; first programming language to be taught in CS1, first 

programming paradigm; teaching/learning methods and practices that have improved 

students’ learning in CS1; order of programming skills to be learnt in CS1; 

contribution of programming skills to student performance in CS1; and students’ 

approaches to learning in CS1. 
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The survey questionnaire consisted of 15 questions in total. Questions were 

closed-ended, single and multiple responses and open-ended questions. Sections 

5.2.1–5.2.8 report on the summary statistics of survey questionnaire. 

5.2.1 Prior computing experience 

As mentioned in Section 4.3.2, prior computing experience was categorised as 

prior programming and prior non-programming computer experiences. Question 1 

asked the lecturer to indicate whether it is beneficial for students to have some 

programming experience prior to taking CS1 classes or not. Seven lecturers of eight 

stated that it is beneficial for students to have prior computer programming experience. 

Question 2 asked the lecturer to select the prior programming language that 

would give students an advantage in CS1. Table 5.1 shows that all lecturer participants 

stated that experience in C would give students an advantage in CS1, followed by 

experience in Java and Python. 

Table 5.1 

Lecturers’ Response to Students’ Prior Programming Language Experience (n=8) 

Programming Language n 

C 8 

Java 5 

Python 5 

C++ 2 

C# 2 

Note: Participants could select more than one response. 

Question 3 asked lecturers to select prior non-programming computer 

experience that would assist students in CS1. From Table 5.2, we observed that most 

lecturers stated that prior experience using the Internet to search for information and 

use of application software would assist students in CS1. 
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Table 5.2 

Lecturers’ Responses to Prior Experience in Non-Programming Computer Activities 

(n=8) 

Non-Computer Programming Experience n 

Application software 7 

Information search 6 

Computer games 1 

Note: Participants could select more than one response. 

5.2.2 Y12 performance in mathematics, physics and chemistry 

Question 4 asked lecturers to suggest the minimum Y12 scores required for 

mathematics, physics and chemistry. Table 5.3 reports the mean and standard deviation 

of students’ Y12 scores in mathematics, physics and chemistry. From the table, we can 

observe that lecturer recommend that students have a good performance in 

mathematics (at least 62.86), followed by physics (57.86) and chemistry (55). 

Table 5.3 

Summary Statistics of Students’ Minimum Y12 Score in Mathematics, Physics and 

Chemistry, as Suggested by Lecturers 

Y12 Subject n Mean Standard Deviation 

Mathematics 7 62.86 7.56 

Physics 7 57.86 6.99 

Chemistry 7 55 5.00 

 

The results presented here align with the student survey and interview data, in 

which students’ performance in mathematics should be always higher than their 

performance in physics and chemistry. 
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5.2.3 Programming paradigm 

Question 5 asked the lecturer to indicate the programming paradigm that is 

suitable for CS1. Although six lecturers of eight stated that a procedural programming 

paradigm suits CS1, two lecturer stated that object-oriented programming would suit 

CS1 and one lecturer stated that both paradigms would suit. Further discussion on this 

will be presented in Chapter 7. 

5.2.4 Programming environments used in CS1 

Question 6 asked lecturers to select the programming environment they have 

used to teach CS1. Table 5.4 reports on this data. The results show that the most 

commonly used programming environment by the lecturers to teach CS1 was Turbo 

C++, followed by Microsoft Visual Studio. 

Table 5.4 

Programming Environment Used by Lecturers to Teach CS1 (n=8) 

Programming Tool n 

Turbo C++ 5 

Microsoft Visual Studio 4 

Terminal/command line 1 

Note: Participants could select more than one response. 

The results presented in Table 5.4 confirm the results of the student surveys 

and interviews in regard to the programming environments used by lecturers to teach 

CS1: Turbo C++ and Microsoft Visual Studio. 

Question 8 asked the lecturer to indicate an ideal programming environment to 

be used in CS1 based on their teaching experience, while Question 9 asked the lecturer 

to state the reason. Four of seven lecturers (one lecturer chose not to respond) chose 

Turbo C++ as an ideal programming tool to be used in CS1 for the following reasons: 



 

123 

L01: Simple compiler with not many GUI [graphical user interface] buttons and 

options which would normally keep away from distraction. It has all that is 

required to get started with learning how to program. 

L03: Turbo C++ is one of the oldest Borland compilers which lets 

programmers use all the functions unlike other compiler. Dev-C++ does not 

recognise a few header files that can be used in Turbo C++. 

L08: Compared to Visual Studio, Turbo C++ lets students write code from 

scratch so it gives a platform for the students to practise code writing in detail. 

While in Visual Studio, many functions are in-built and getting autocorrected 

where the learning platform is minimal. 

Two lecturers out of eight chose using terminal/command line as an ideal 

programming tool to be used in CS1: 

L04: Since students are familiarised with Linux operating system, they can 

easily write and compile programs using basic text editor and command line 

tool. The students do not have to worry about the availability of the software. 

L06: The environment seems user-friendly and easier for the students to use. 

They can compile, locate the errors easily and then run the program 

successfully 

Only one lecturer of seven chose Microsoft Visual Studio as an ideal 

programming tool to be used in CS1: 

L05: The environment seems user-friendly and easier for the students to use. 

They can compile, locate the errors easily and then run the program 

successfully. 

Although most lecturers identified Turbo C++ as the ideal programming tool 

for use in CS1, it is recommended (based on student surveys and interviews) to further 
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explore other programming tools, such as PyCharm, Dev C++ and Code::Blocks. 

Further discussion on this will be presented in Chapter 7. 

5.2.5 First programming language to be taught in CS1 

Question 10 asked lecturers to indicate the first programming language to be 

taught in CS1 based on their experience teaching CS1. Table 5.5 reports on the first 

programming language to be taught in CS1, as indicated by lecturers. 

Table 5.5 

Lecturers’ Response to the First Programming Language to be Taught in CS1 (n=8) 

Programming Language n 

C 8 

C++ 1 

Java 1 

Python 1 

VB.Net 0 

C# 0 

Note: Participants could select more than one response. 

All lecturers stated that C should be the first programming language to be 

taught in CS1: 

L01: Easy to learn, language is designed to be readable. Applications of these 

programming languages are relevant in scientific computing. 

L03: C is a general-purpose, procedural and imperative language which is the 

basic of computer programming languages. Having foundation knowledge and 

skills in the above language can let students learn any other language. 

L04: Since C language is a procedural language, students are given a platform 

to think about solving real-time examples and C is simple, thereby students see 

it as convenient to learn. 
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L06: C is popular and many languages are inspired from it. A student who has 

learnt C can move easily to other language. We teach object-oriented 

programming in second semester, so C is an ideal language for new students 

to learn. 

5.2.6 Teaching/learning methods and practices that best suit students in 

learning CS1 

Question 11 asked lecturers to indicate the teaching/learning methods and 

practices that best suit students in learning CS1. Of three teaching/learning methods 

and practices listed in Table 5.6, live coding by the lecturer was found to be highly 

suited for students in CS1, followed by working in pairs/groups. This aligns with the 

student survey and interview results discussed previously. Only one lecturer 

emphasised the importance of practising writing code independently. 

Table 5.6 

Lecturer Response to Teaching/Learning Methods and Practices in CS1 (n=8) 

Teaching/Learning Methods and Practices n Percent 

Live coding by the lecturers 7 87.5% 

Pair/group programming 2 25% 

Practise writing code independently  1 12.5% 

Note: Participants could select more than one response and list their own. Practising writing 

code independently was listed. 

5.2.7 Lecturers’ perceptions of the order of programming skills to be 

taught in CS1 

Question 13 asked lecturers to order the five programming skills to be taught 

based on their experience teaching CS1 from 1 (first programming skill to teach) to 5 

(last programming skill to teach). Lecturers were also asked to write the same number 

on the programming skills if they believe that some of the programming skills could 

be taught in parallel. According to Table 5.7, algorithm design (1.25) was the skill 
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suggested as the most appropriate to begin with, followed by translating (2.25), 

explaining (2.50), writing (3.13) and tracing (4.38). Lecturers believe that translating 

and explaining may be learnt at the same time, as the difference in means was low. 

Both lecturers and students suggested to begin with algorithm design and end with 

tracing. Refer to Section 4.2.3 for the student survey results. 

Table 5.7 

Summary Statistics of the Order of Programming Skills to be Taught in CS1 (n = 8) 

Programming Skills Mean Std. Deviation 

Tracing 4.38 1.06 

Writing 3.13 1.13 

Explaining 2.50 1.07 

Translating 2.25 0.71 

Algorithm design 1.25 0.46 

 

5.2.8 Lecturers’ perception of the order of programming skills in terms of 

their contribution to the Student Performance in CS1 

Question 14 asked lecturers to order the five programming skills in terms of 

their contribution to students’ performance in CS1 from 5 (highest) to 1 (lowest). 

Lecturers were also asked to write the same number on the programming skills if they 

consider that some programming skills contribute equally to student performance in 

CS1. Table 5.8 shows that algorithm design (4) contributes the most to student 

performance, followed by translating (3.38) and writing (3.38), explaining (2.88) and 

tracing (2). The results presented in Table 5.8 do not align with the student survey 

results presented in Table 4.13, in which students perceived that writing contributes 

the most to student performance in CS1. The path analysis in Chapter 6 will further 

examine the order of the five programming skills in terms of their contribution to 

students’ performance in CS1. 
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Table 5.8 

Summary Statistics on the Order of Programming Skills in Terms of Contribution to 

Student Performance in CS1 (n = 8) 

Programming Skills Mean Std. Deviation 

Algorithm Design  4.00 1.41 

Translating 3.38 0.92 

Writing  3.38 0.92 

Explaining 2.88 1.64 

Tracing 2.00 1.19 

 

5.3 Lecturer Qualitative Results 

This sections reports on the results of the lecturers’ qualitative data from the 

survey and individual interviews. As mentioned in the student qualitative results, the 

lecturer qualitative data were also classified by examining the number of occurrences 

of key terms. Results were summarised and compared with the results presented 

previously in this chapter. 

5.3.1 Lecturer qualitative survey results 

Question 15 asked lecturers to suggest how to improve teaching/learning of 

CS1 at RUB. Lecturers’ responses were classified similarly to the students’ responses 

to this question—based on the number of occurrences of the areas listed below: 

a) Prior computer programming experience 

Lecturers L2 and L5 suggested that students should have some computer 

programming experience in high school before taking CS1 in college: 

L2: Have at least some programming language concepts before they join 

college. 
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L5: The students should be taught some of the basics related to programming 

when they are in high school or lower secondary school. 

This point was not raised by the students in the survey, but most students 

interviewed stated that some programming experience prior to taking CS1 classes 

would be of benefit. 

b) Live coding 

Lecturer L3 raised the importance of illustrating programs (live coding) during 

teaching sessions to benefit students in the learning of CS1. 

L3: Teaching and learning through illustration of application of programming 

(real-time application). Live coding in laboratory teaching. 

c) Conduct theory and practical classes in parallel 

Although lecturer L8 recommended conducting theory and practical sessions in 

parallel or without gaps to assist students in implementing the concepts faster, this 

was an issue due to the large number of students enrolled in one program. For 

instance, at CST, more than 100 students were enrolled in civil engineering in 

November 2016 and computer laboratory could accommodate only 30 students at 

a time. 

L8: If we conduct theory and practical together without gaps in between, 

students can implement the concept faster. But it is very difficult due to the 

large number of students. 

d) Frequent review of CS1 module descriptor 

Lecturer recommended visiting the CS1 module descriptor as often as possible 

to update the content. However, he stated the RUB curricula review take place only 

after four years. 
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L8: Reviewing CS1 module descriptor frequently (in short duration) may help 

students to learn in better ways with improvement of new technology. But RUB 

regulation allows to review only after four years. 

The comparison of student and lecturer responses to this open-ended question 

is shown in Table 5.9. Both students and lecturers suggests having theory and practical 

sessions in parallel and recommended the demonstration of programs by coding live 

in the class. 

Table 5.9 

Comparison of Student and Lecturer Suggestions on How to Improve 

Teaching/Learning of CS1 at RUB 

Student Response Lecturer Response 

Theory and practical classes in parallel Theory and practical classes in parallel 

Live coding and pair programming Live coding  

Experienced lecturer in CS1 Prior programming experience 

Same tutor for both theory and practical 

sessions 

Frequent review of CS1 module descriptor 

 

5.3.2 Lecturer qualitative interview results 

This section reports on the data collected from lecturer interviews. Eight 

lecturers participated in individual interviews. Table 5.10 presents the details of the 

lecturer participants from the three colleges of RUB. 

Table 5.10 

Lecturer Interview Participants 

College Male Female Total  

CST 4 1 5 

JNEC 1 0 1 

SC 2 0 2 

 7 1 8 
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The areas covered in the interview were similar to those covered in the survey 

(see Section 5.2). The semi-structured interview questions were utilised but the order 

of the questions asked and the conversation was not controlled. The following presents 

a summary report of lecturers’ responses. 

5.3.2.1 Prior computing experience 

Lecturers L5 and L8 interviewed stated that it would benefit students to have 

some programming experience prior to taking CS1: 

L5: I think some kind of programming concepts should be introduced in high 

school. I feel if they have the concepts, it might help them to learn CS1 faster. 

L8: Some kind of programming experience would be beneficial. I have 

observed that students who had some experience in programming understood 

the concepts in CS1 faster than the ones who had no prior experience. 

Similarly, lecturers L1 and L4 asserted that basic computer literacy was 

sufficient prior to taking CS1: 

L1: Basic literacy in IT would suffice. At least one can use computer, 

understands what a computer is and do a bit of word processing and 

spreadsheets should be fine to get started. 

L4: A basic knowledge of Office should be sufficient. 

From the results of lecturer survey and interview, we can conclude that basic 

computer literacy should be introduced to students taking science in Y12, in addition 

to basic programming concepts. 

5.3.2.2 Y12 performance in mathematics, physics and chemistry 

As stated in the lecturer survey data and student interview data, the requirement 

to perform well in mathematics in Y12 stands out from the rest of the subjects, like 

physics and chemistry as L1, L4 and L6 pointed out:  
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L1: I think so because mathematics is not just limited to calculations and 

numbers but students also learn logical reasoning while solving mathematical 

problems. I feel that students who have very sound background in mathematics 

may find it easy to learn CS1 as programming also involves logical reasoning. 

L4: Mathematics helps students to gain brain analysing power. 

L6: I have observed that students who scored well in their Y12 mathematics 

did pretty well in CS1. 

Lecturer L7 professed a different view. They said students who perform well 

in Y12 mathematics do not necessary perform well in CS1: 

L7: I think it depends. For example, students who did very well in Y12 

mathematics have failed in CS1 and students who scored average marks in 

mathematics did well in CS1. So I think mathematics background is not really 

an indicator of success in CS1. 

The correlation analysis in Chapter 6 will further validate these results and 

indicate the extent to which mathematics performance is an indicator of success in 

CS1. 

5.3.2.3 Programming paradigm 

Lecturers L4, L6 and L8 recommended that procedural programming 

paradigms be taught for beginners in CS1 for several reasons. They stated that it would 

be too much for students to learn the concepts of object-oriented programming, as they 

do not have any prior programming experience. Thus, starting with procedural 

programming would help them learn object-oriented programming easier: 

L4: If we teach object-oriented programming first, then it is like putting cart in 

front of the horse. 
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L6: Although object-oriented programming is useful in real-life application, 

students here did not have any prior programming experience so it would be 

too much for them to learn the concepts of object-oriented programming. If 

they have the concepts of procedural language then learning object-oriented 

programming would be easier. 

L8: I think experience in procedural programming will help in learning object-

oriented programming better as object-oriented programming is complex and 

might not be suitable for the beginners. 

5.3.2.4 Programming environments used in CS1 

Half of the lecturers recommended Turbo C++ as an ideal programming 

environment to be used in CS1 because the interface is simple, there are limited 

distractions on the buttons and introducing fancy integrated development 

environments (IDE) may have a negative impact on students’ learning of programming 

syntaxes and grammars, as the auto-complete function might not help students 

remember the syntax and grammar. 

L1: It is one of the preferred IDEs and a good platform to get started, as the 

interface is simple and there are not many distractions on the buttons. One 

thing I would like to mention especially when we are teaching the beginners, I 

think introducing fancy IDEs may also have some negative impact, as the auto-

completion function does not help students remember the syntax and grammar. 

L8: I feel using Turbo C++ will help the students to learn programming better 

than Microsoft Visual Studio, as this tool has code auto-completion functions, 

which will not allow the students to learn the language syntax and grammar. 

The remaining 50 percent of lecturers recommended Microsoft Visual Studio 

or terminal/command line as the ideal programming environments to be used in CS1.  
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Lecturer L6 stated that using Linux terminal/command line allows students to focus 

on learning the language rather than learning how to use IDE: 

L5: Both me and my students find it comfortable and user-friendly to use this 

[Microsoft Visual Studio] environment. 

L6: At the beginning, students can just focus on learning the language rather 

than learning how to use IDE [terminal/command line]. 

5.3.2.5 First programming language to be taught in CS1 

More than half the lecturers interviewed said that C should be the first 

programming language to teach in CS1, as it is the basic programming language. They 

believe that learning basic language would make learning any other language easier: 

L5: I believe C is the basic programming language and if students learn the 

basic language, then they can learn other language. 

Lecturer L1 suggested Python as the first programming language in CS1 

because the language is simple and appropriate for the beginners: 

L1: I haven't tried myself but some of my friends who are experts commented 

that Python would be one language that has come out time and again because 

of its simplicity. So introducing beginning programmers using Python would 

be more appropriate. That’s why we are suggesting Python to be used in our 

upcoming programmes. 

5.3.2.6 Teaching/learning methods and practices that best suit students 

learning CS1 

The lecturer responses covered three key areas: live coding, tutorial and group 

programming. Tutorial as a topic emerged from the lecturer interviews in regard to 

teaching/learning methods and practices that may assist students learning CS1. The 
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lecturer said that conducting tutorial classes once a week and giving one-on-one 

consultation benefits students learning CS1: 

L4: What I do whether in the class or in the computer lab, I take one problem 

and then show how we can solve that problem by writing an algorithm and 

drawing a flowchart. Then I translate them into programming codes and 

demonstrate how we can write programs, compile and run to get the outcomes. 

I also explain the outcome of the program. I think this methods helped students 

in learning CS1 [live coding]. 

L6: I used to explain the concepts first and give live demonstration of the 

programs and I asked students to do the same in the class [live coding]. 

L5: In the tutorial class, I give one-on-one consultation on the problems that 

students face. In each tutorial class, we have not more than 10 students and it 

is held once in a week. It helps both the tutor and the student to interact more. 

Moreover, in the practical class, students were given list of questions to solve 

[tutorial]. 

L6: I grouped students [group programming] and let them work on the given 

problem and let them demonstrate their program to the whole class. I feel that 

has helped students to understand the code better. 

The key points that arose from the student and lecturer survey and interview 

results were live coding and group programming. The one-on-one consultation was 

not pointed out by students. 

5.3.2.7 Lecturers’ perceptions of the best order of programming skills to be 

taught in CS1 

All lecturers and students interviewed stated the programming skill to begin 

with is algorithm design and the last is either tracing or explaining. All other 
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programming skills fall in between. Table 5.11 shows the order of programming skills 

to be learnt in CS1. Half of the lecturers interviewed listed the order as: 

1. algorithm design 

2. translating 

3. writing 

4. explaining 

5. tracing 

The remaining half of the lecturers interviewed listed the order as: 

1. algorithm design 

2. translating 

3. writing 

4. tracing 

5. explaining 

Table 5.11 

Comparison between Students’ and Lecturers’ Order of Programming Skills to be 

Learnt/Taught in CS1 

Four (50%) Lecturers Four (50%) Lecturers 12 (52%) Student 

1. Algorithm design Algorithm design Algorithm design 

2. Translating Translating Translating 

3. Writing Writing Writing 

4. Explaining Tracing Tracing 

5. Tracing Explaining Explaining 

 

The order of programming skills presented in the first column of the table 

aligns with the order presented in the survey results, in which algorithm design (1.25) 

was suggested as the first skill and tracing was the last (4.38). Similarly, the order 
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presented in the second column (lecturer interview response) aligns with the order 

presented in the third column (student interview response). 

5.3.2.8 Lecturers’ perception of the order of programming skills in terms of 

Contribution to Student Performance in CS1 

Although some lecturers interviewed said that writing contributes most to 

student performance in CS1, lecturers L1 and L5 stated that algorithm design 

contributes the most: 

L1: The basic foundation that I count should always attribute to the success 

(i.e., how you understand programming, so beginning with flowchart and 

writing an algorithm is the first thing). If you know that, then it can help student 

to develop program codes, so algorithm design should be the first priority. 

L5: I think algorithm design is the foundation skill for the other skills. If 

students understand this skill, then the other skills should be easier to 

understand as well. 

Lecturers and students shared the same view—either writing or algorithm 

design contributes most to student performance in CS1. Lecturers and students said 

that writing contributes the most because if students are competent in writing 

programs, it means they are already competent in other programming skills. Similarly, 

both lecturers and students said that algorithm design contributes the most because it 

is a foundation skill. If student knows this skill well, other skills can follow, which 

ultimately contributes to success in CS1. 

Therefore, we can report that both algorithm design and writing skills 

contribute the most to student performance in CS1. The path analysis in Chapter 6 will 

confirm this result. 
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5.3.2.9 Suggestions for the improvement of teaching/learning of CS1 at RUB 

As mentioned previously, in student and lecturer surveys and student 

interviews, lecturers’ responses to this question were classified according to the 

number of occurrences of the following key areas. Four key areas were identified: 

conduct theory and practical classes in parallel, teach CS1 using experienced lecturers, 

pair-learning and student motivation. 

a) Conduct theory and practical classes in parallel 

As stated in the student survey results, lecturer L8 believe it would benefit students 

in CS1 if both theory and practical classes ran in parallel. Lecturer L8 said that 

students might forget the concepts they learnt in the theory class due to the gaps 

between the theory and practical class: 

L8: Based on my experience, I feel that both theory and practical classes 

should be conducted at the same time in the computer lab. The current situation 

is that we have theory classes first in the classrooms and then after 3–4 days, 

we have practical class in the computer lab. By then, students forget the 

concepts because of the gap between the theory and practical. So I strongly 

recommend to take both theory and then practical at the same time in the 

computer lab. 

Therefore, the lecturer strongly recommended conducting both theory and 

practical classes at the same time in the computer laboratory. This issue will be 

further discussed in Chapter 7. 

b) Teaching of CS1 by an experienced lecturer 

As stated in the student survey results, lecturer L1 shared the same view that 

experienced lecturers should be assigned to teach CS1. He said it would be a 
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challenge for both the tutor and the student if the tutor begins teaching immediately 

after graduation. According to him, an experienced lecturer should teach so he can 

bring examples that can stimulate students’ thinking: 

L1: To improve teaching and learning is to do with the teacher. The teacher 

should be experienced to some extent, that he can bring certain examples which 

can stimulate thinking among the students. That is very important. If the 

teacher himself just graduated and started to teach and has no experience, I 

think it will definitely challenge both the teacher and the student in bringing 

out the best application of what they are learning. I think that is more important 

in order to improve teaching and teaching of CS1 at RUB. 

c) Group programming 

Both students and lecturers suggested group work to improve learning in CS1. 

Lecturer L6 recommended that other RUB colleges develop a programming club 

in which students from all semesters come together and learn programming; senior 

students can help junior students write programs: 

L7: Encourage students to work in groups. 

L6: At CST, we have programming club where students do additional 

programming tasks and I would recommend other RUB colleges to do the same 

as well. 

d) Motivation and interest 

One key area mentioned by lecturers (but not students) was motivation and interest. 

The lecturer stated that lecturers must be in a position to motivate students and 

students must take interest in the subject they are learning. Lecturer L1 stated that 

students should know the purpose of learning programming to gain motivation 
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throughout the programming journey. He also mentioned that students should be 

aware of their career prospects—what they aspire to do and why they are learning 

the module—to generate some kind of motivation to learn the module. It is useless 

to learn it as paper just to pass and obtain the degree, as they would not be able to 

do much in the application unless motivated to understand why they are learning: 

L1: If they do not have the motivation as to how they are going to use and 

where they are going to use, I think it would become very difficult for students 

to at least get started with their learning. So I think first, students should be 

sufficiently made aware about their career prospects and what they are going 

to do and why they are learning such topics, such languages and such tools in 

the class. If they know that, I think that would generate some kind of motivation 

to learn the module. Otherwise they will always learn it as a kind of paper just 

to pass and get the degree. Ultimately when it comes to application, I think 

they will not be able to do much unless if they were so motivated to understand 

why they are learning.  

L5: First, the interest should come from the student. They should explore more 

on their own and not depend on their tutor. 

5.3.2.10 Insights on how students in CS1 should approach their learning to 

achieve success 

Lecturers’ response to this question provided four key areas: understanding the 

logical construct of the program, student interest, practice and exploration. 

a) Understand the logical construct of the program 

Two lecturers interviewed highlighted the importance of the student understanding 

the logical construct of the program. This can be achieved by representing the logic 

in the form of a flowchart and writing algorithms: 
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L1: The logical construct of a program is very important to understand how 

the program works. To command the computer to do something, students 

should understand how they can command, so I believe the fundamental 

understanding of how the program run is by drawing a flowchart and writing 

an algorithm. I always give an example of making a cup of tea. Maybe there 

are different ways of making a tea but there are certain processes as to what 

you need first, what the ingredients are and what you will get at the end. There 

is no programming in there but it shows the logical flow of how the 

programming can be done. 

b) Student interest 

According to Lecturers L3 and L6, students’ interest in learning a particular subject 

seems to be another contributing factor to success in that subject. This is something 

to investigate further in the future, as it may be beyond the scope of this thesis: 

L3: The interest should come from the students to learn any subjects. Once you 

give your interest, I think success will be there with no doubt. 

L6: Students should be passionate to learn and must willing to invest enough 

time to learn that particular concepts. 

c) Practice 

Another important key point raised by Lecturers L5 and L6 was the importance of 

practise in writing programs to achieve success in CS1. They believe that 

programming language is like any other human language. To master it, we need to 

practise: 

L5: They should refer more books and practice more, browse Internet and 

moreover they can approach the tutor if they don't understand. 
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L6: Try to complete all the questions that are assigned during the practical 

class. Practise, practise, practise and keep on practising. C is a language as 

any other human languages, it can be mastered only through practise and 

repetition. 

d) Exploration 

According to Lecturers L5 and L8, students should go beyond the classroom and 

explore on their own and not depend solely on the lecture notes. Students should 

explore the topics by referring to more books, practising more and reading online. 

Moreover, they should approach their tutor and friends if they do not understand: 

L5: It is the responsibility of every tutor to explain the concepts well, then 

students should not depend on the tutor, they should explore more on those 

topics. Exploring means they should refer more books, practise more, browse 

the Internet and moreover they can approach the tutor if they don't understand. 

Also ask their friends. 

L8: Students should not depend only on the notes that lecturer has provided. 

They should explore more on their own and practice writing program codes. 

5.4 Inter-Rater Reliability 

IRR analysis was conducted to check the reliability of the PST results using 

the two-way mixed (instructor fixed and student random) model with absolute 

agreement (evaluating how close markers were in terms of their score). The output 

result shows that Instructor 2 (68.75) is stricter than Instructor 1 (70.16). By 

examining the average measures (0.964), there is high IRR between the two markers, 

as shown in Table 5.12. 
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Table 5.12 

IRR between Two Markers 

 Interclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

 Lower Bound Upper Bound Value df1 df2 Sig 

Single Measures .930a .85 .97 29.36 26 26 .000 

Average Measures .964c .92 .98 29.36 26 26 .000 

Note: Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimate 

otherwise.   

5.5 Summary 

This chapter reported on the quantitative univariate results from the lecturer 

survey and qualitative results from the lecturer survey and interviews. This chapter 

also presented the IRR between the two markers of the students’ PST. 

The most commonly used programming environments by the lecturers to teach 

CS1 at RUB was Turbo C++ and Microsoft Visual Studio. C programming language 

was reported as an ideal programming language to teach in CS1. 

It was reported that teaching/learning methods and practices such as live 

coding, pair/group programming, writing code independently would benefits student 

in learning CS1. 

The lecturers’ best order of programming skills to be learnt in CS1 and the 

order of programming skills in terms of their contribution to student performance was 

also presented in this chapter.   

Lecturers made some suggestions to improve the teaching/learning of CS1: the 

same tutor should teach both theory and practical classes, theory and practical classes 

should be taught in parallel, experienced lecturer should teach CS1, live coding and 
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pair/group programming should be encouraged, students should have prior computer 

programming experience, students should be motivated and interested in learning, and 

one-on-one consultations in tutorial sessions should be considered. 

The lecturer also provided some insights on how students in CS1 should 

approach their learning to achieve success in CS1. The results from this chapter will 

be further discussed in the multivariate analysis in Chapter 6 and 7. 





 

145 

Chapter 6: Bivariate and Multivariate Results 

6.1 Introduction 

Chapter 4 and 5 described the quantitative univariate results from the students’ 

programming skills test (PST) and student and lecturer survey. It also reported on the 

data collected from student and lecturer interviews. This chapter presents quantitative 

bivariate and multivariate analysis of the students’ PST and survey data. Data were 

analysed using simple correlations that describe the bivariate association between the 

variables. The values of correlations were calculated using bivariate Pearson 

correlation coefficients with a two-tailed test of significance. Data were then further 

analysed using multiple regression, which determines the predictors of student 

performance. In addition, path analysis was conducted. 

The following sections begin with the presentation of the bivariate results from 

the students PST and survey data. They report on the association between student 

performance and: students’ prior computing experience; students’ Y12 performance 

in mathematics, physics and chemistry; students’ performance in programming skills 

such as algorithm design, translating, tracing, explaining and writing; and students’ 

learning approach. It also explores the association between programming skills. 

Finally, it presents the results of linear multiple regression conducted to 

investigate the significant programming skill predictors that determine student 

performance in CS1, along with path diagrams constructed using the results of the 

multiple regression. 

6.2 Student Bivariate Results 

This section presents the bivariate results of the student input factors, learning 

process factors and student performance. 
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6.2.1 Association between student performance and students’ prior 

computing experience 

As mentioned previously, prior computing experience was categorised as prior 

programming experience and prior non-programming computer experience. The 

univariate analysis in the previous chapter identified a statistically significant 

differences in means between students with and without prior programming 

experience to OS performance and no statistical difference in means between students 

with and without prior programming experience to FSE and PST scores (see Table 

4.6). An examination of the simple correlation analysis shown in Table 6.1 indicates 

that an association between students’ having prior programming experience and OS in 

CS1. Thus, this result seems to support the univariate results presented in Chapter 4, 

although the correlation was very low. 

Table 6.1 

Association between Students’ Prior Programming Experience and Student 

Performance (n = 327)  

 FSE (n) OS (n) PST(n) 

Programming experience .072 (261) .130* (254) .077 (242) 

Note: *𝑝 < 0.05.  

Similarly, the univariate analysis for prior non-programming computer 

experience—such as information searches using the Internet and use application 

software such as Office and computer games—showed the difference in means of 

student performance with and without prior non-programming computer experience. 

However, it was not a statistically significant difference. An examination of the simple 

correlation analysis shown in Table 6.2 indicates a significant negative association 

between students who played computer games prior to taking CS1 and students’ 
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performance in FSE in CS1. The remaining non-programming computer experience 

was not statistically significant to any of the student performance measures. The results 

indicate that only computer games seemed to have negative impact on students’ 

performance in CS1. Prior experience in information searches and application software 

did not seem to have any impact on students’ performance in CS1. 

Table 6.2 

Association between Students who Played Computer Games and Student 

Performance (n = 327) 

NPE FSE (n) OS (n) PST (n) 

Computer games –0.140*(206) –0.129(209) 0.022(193) 

Note: *𝑝 < 0.05. 

6.2.2 Association between student performance and students’ Y12 

performance in mathematics, physics and chemistry 

Table 6.3 reports the results for the associations between student performance 

and Y12 performance in mathematics, physics and chemistry. The simple correlation 

analysis showed significant positive association between student performance and 

their Y12 performance in mathematics, physics and chemistry. While the results 

showed that students’ Y12 performance in mathematics had a higher degree of 

association to FSE and OS, followed by physics and chemistry, students’ Y12 

performance in physics had a higher degree of association to the PST, followed by 

chemistry and mathematics. 
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Table 6.3 

Association between Student Performance and Y12 Performance in Mathematics, 

Physics and Chemistry (n = 327) 

Y12 Performance FSE (n) OS (n) PST (n) 

Mathematics 0.234**(257) 0.322**(251) 0.182**(238) 

Physics 0.221**(257) 0.305**(251) 0.193**(238) 

Chemistry 0.169**(259) 0.279**(252) 0.183**(240) 

Note: *𝑝 < 0.05. **𝑝 < 0.01.  

The univariate analysis results presented in Chapter 4 showed a statistically 

significant difference in means of student performance for students who scored highly 

in mathematics, physics and chemistry (see Table 4.7–Table 4.9) 

 It was confirmed from the univariate and bivariate correlation analysis that 

students’ Y12 performance in mathematics, physics and chemistry did have some 

impact on student performance in CS1. 

6.2.3 Association between students’ ability in programming skills 

Table 6.4 shows the association among algorithm design, translating, tracing, 

explaining and writing. The simple correlation analysis indicates positive and 

significant associations among programming skills. Although the concepts of 

programming skills seem to develop in sequence—that is, they start with algorithm 

design and end with writing—skills like translating, tracing, explaining and writing 

overlap each other and develop simultaneously, so some correlation would be 

expected. As shown in Table 6.4, the degree of association between tracing and 

explaining is higher compared to others. This is followed by explaining and writing; 

translating and explaining, and translating and writing. This indicates that students 

competent in tracing a piece of code can explain what this code does in plain English 

and vice versa. Similarly, the ability to write code indicates that the student is 
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competent in explaining the purpose of the piece of code in plain English. The reverse 

may not be true all the time, as in explaining, the code is already given. The student 

just needs tracing skills to trace a piece of code and then explain the purpose in plain 

English. The association between translating and explaining indicates that students 

able to translate the algorithm design correctly into any high-level programming 

language can also explain in plain English what the translated code does and vice 

versa. The association between translating and writing indicates that students 

competent in translating the algorithm design correctly into any high-level 

programming language are also competent in writing codes. It seems true that the 

translated programs are closer to executable written programs. 

Table 6.4 

Association among Algorithm Design, Translating, Tracing, Explaining and Writing 

(n = 292) 

Programming 

Skills 

Algorithm 

Design 
Translating Tracing Explaining Writing 

Algorithm 

design 

 0.164** (289) 0.229**(286) 0.186**(285) 0.225**(276) 

Translating   0.176**(287) 0.350**(286) 0.322**(277) 

Tracing    0.366**(284) 0.215**(278) 

Explaining     0.354**(277) 

Writing      

Note: **𝑝 < 0.01.  

6.2.4 Association between student performance and students’ ability in 

programming skills 

Table 6.5 shows the association between student performance and their ability 

in programming skills. The correlation results indicate a positive significant 

association between student performance and ability in algorithm design, translating, 

tracing, explaining and writing. The degree of association between student 
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performance and explaining was higher than the degree of association between student 

performance and the rest of the programming skills. This was followed by writing, 

translating, tracing and algorithm design. This may be suggestive of a possible 

hierarchy in the programming skills, which is further discussed in Section 6.3. 

Table 6.5 

Association between Student Performance and Ability in Programming Skills (n = 

327) 

Programming Skills FSE (n) OS (n) 

Algorithm design 0.252**(283) 0.170**(219) 

Translating 0.415**(284) 0.378**(220) 

Tracing 0.353**(282) 0.304**(218) 

Explaining 0.555**(280) 0.517**(219) 

Writing 0.522**(272) 0.402**(213) 

Note: **𝑝 < 0.01.  

6.2.5 Association between student performance and students’ learning 

approach 

As mentioned in Section 3.6.2, to examine how students’ approach their 

learning in CS1, Biggs’s R-SPQ-2F (which consists of 20 closed-response questions 

scored on a 5-point Likert scale) was chosen. The elements of the instrument were 

grouped under deep approach (deep motive and deep strategy) and surface approach 

(surface motive and surface strategy). Table 6.6 shows the association of students’ 

learning approaches and their performance in CS1. 
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Table 6.6 

Association between Student Performance and Students’ Learning Approach  

(n = 327) 

Learning Approach FSE (n) OS (n) PST (n)  

Deep approach 0.096(252) 0.142*(245) 0.133(233) 

Deep motive 0.084(252) 0.124(245) 0.101(233) 

Question 4 0.156*(249) 0.160*(242) 0.077(231) 

Deep strategy 0.082(252) 0.122(245) 0.130*(233) 

Question 7 0.086(251) 0.126*(244) 0.100(232) 

Question 8 0.147*(250) 0.165**(243) 0.192**(231) 

Surface approach –0.141*(251) –0.135*(244) –0.126(232) 

Surface motive –0.152*(251) –0.144*(244) –0.176**(232) 

Question 12 –0.094(247) –0.079(241) –0.166*(228) 

Question 13 –0.095(250) –0.077(243) –0.149*(231) 

Question 15 –0.156*(251) –0.159*(244) –0.127(232) 

Surface strategy –.0101(251) –0.197(244) –0.051(232) 

Note: *𝑝 < 0.05. **𝑝 < 0.01.  

The correlation analysis results show that both deep and surface approaches 

had significant correlation to student performance in CS1. That is, the deep approach 

was positively correlated to student performance and the surface approach was 

negatively correlated to student performance; these were the expected results. 

Although the correlations were significant, they were very low (0.142 [OS], –0.141 

[FSE] and –0.135 [OS]). Some questions that significantly correlated to student 

performance was also shown in the table. The questions include: 

Question 4: I work hard at my studies because I find the material interesting. 

[Deep motive] 

Question 7: I find most new topics interesting and often spend extra time trying 

to obtain more information about them. [Deep strategy] 
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Question 8: I test myself on important topics until I understand them 

completely. [Deep strategy] 

Question 12: I do not find my course very interesting so I keep my work to the 

minimum. [Surface motive] 

Question 13: I find I can get by in most assessments by memorising key sections 

rather than trying to understand them. [Surface motive] 

Question 15: I see no point in learning material which is not likely to be in the 

examination. [Surface motive] 

Although correlation coefficients of these questions to student performance 

were consistent (in terms of sign) with the expected outcomes from this instrument, 

they were very low. Therefore, we cannot conclude that students’ learning approaches 

are determinants of student performance in CS1. This result may be attributed to the 

fact that English is not the students’/participants’ first language, making it difficult for 

them to comprehend the questions in the questionnaire. 

6.3 Multivariate Results 

In Chapter 4 and 5, lecturers and student were asked in the survey and interview 

about their perception of the order of programming skills in terms of their contribution 

to student performance in CS1. This section presents the relative contribution of the 

programming skills variables to student performance through multiple regression and 

path analysis to confirm/disconfirm the order of programming skills listed as perceived 

by the lecturers and students in Chapter 4 and 5. 

6.3.1 Multiple regression analysis 

The first part of this section presents results of a multiple regression with 

students’ performance in algorithm design, translating, tracing, explaining and writing 

as an independent variables (predictor variables) and FSE, OS and modified FSE 
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(MFSE) as dependent variables (output variables). The researcher realised that some 

questions in FSE were not related to the programming skill variables in this study. 

Thus, to improve regression model, the researcher removed questions that did not fall 

under algorithm design, translating, tracing, explaining and writing and recorded the 

new score as MFSE. The questions removed from FSE related to the theory of 

language features, such as defining ‘symbolic constant’ and declaring it; 

differentiating between ‘call by value’ and ‘call by reference’; writing notes on ‘C pre-

processor’; explaining how to use ‘jump’ and ‘goto’ statements; where C programming 

language was developed; and questions on number systems conversion. The MFSE 

score for SC was 36, JNEC was 31.75 and CST was 39.5, which was out of 50 (SC), 

40 (JNEC) and 50(CST) respectively. The CS1 FSE paper of SC, JNEC and CST is in 

Appendix L. 

The second part of this section presents results of a multiple regression with 

students’ performance in algorithm design, translating, tracing and explaining as 

predictor variables and writing as the output variable. 

6.3.1.1 Multiple regression results with students’ performance in algorithm 

design, translating, tracing, explaining and writing as independent variables 

and FSE, OS and MFSE as dependent variables 

Table 6.7 shows the six assumptions that were checked before running multiple 

regression. All assumptions listed in Table 6.7 for the independent and dependent 

variables were met and statistical results are shown in Appendix I. 
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Table 6.7 

Verifying the Assumptions to Run Multiple Regression  

Assumptions FSE  OS MFSE 

The relationship between the predictor variables and the 

output variable is linear 

   

There is no multicollinearity in your data    

The values of the residuals are independent    

The variance of the residuals is constant (homoscedasticity)    

The values of the residuals are normally distributed    

There are no influential cases (significant outliers) biasing 

your model 

   

 

Table 6.8 presents the results of the multiple regression analysis with student 

performance as the dependent variable and students’ performance in algorithm design, 

translating, tracing, explaining and writing as independent variables. 

Table 6.8 

Multiple Regression Results with Student Performance as Dependent Variable and 

Programming Skills as Independent Variables 

 Student Performance 

 
FSE OS MFSE 

Variables 𝑩  95% CI 𝑩 95% CI 𝑩 95% CI 

Constant 27.63** [22.70,32.55] 41.73** [36.85,46.61] 19.53** [14.26,24.80] 

Algorithm design  0.036 [–0.024,0.096] 0.018 [–0.040,0.077] 0.018 [–0.045,0.082] 

Translating 0.078** [0.024,0.131] 0.066* [0.016,0.117] 0.116** [0.061,0.172] 

Tracing  0.083** [0.020,0.145] 0.068* [0.011,0.126] 0.104** [0.039,0.169] 

Explaining 0.151** [0.102,0.200] 0.126** [0.079,0.173] 0.105** [0.099,0.201] 

Writing 0.220** [0151,0.290] 0.110** [0.043,0.176] 0.234** [0.162,0.307] 

𝑹2 0.454 0.365 0.484 

𝑭  43.64** 23.701** 47.83** 

Note: *𝑝 < 0.05. **𝑝 < 0.01.  
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Multiple regression results with FSE as the dependent variable and algorithm 

design, translating, tracing, explaining and writing as independent variables indicates 

that the model explained 45 percent of the variance and that the model was a significant 

predictor of FSE, 𝐹(5,262) = 43.64, 𝑝 = .000. translating (𝐵 = .078, 𝑝 < .05), 

tracing (𝐵 = .083, 𝑝 < .05), explaining (𝐵 = .151, 𝑝 < .05) and writing (𝐵 =

.220, 𝑝 < .05) contributed significantly to the model, algorithm design (𝐵 = .036, 𝑝 <

.240) did not. The final predictive model was: FSE = 27.63 + (.078 * translating) + 

(.083 * tracing) + (.151 * explaining) + (.220 * writing). 

Multiple regression results with OS as the dependent variables and algorithm 

design, translating, tracing, explaining and writing as independent variables indicates 

that the model explained 36.5 percent of the variance and that the model was a 

significant predictor of OS, 𝐹(5,206) = 23.70, 𝑝 = .000. While translating (𝐵 =

.066, 𝑝 < .05), tracing (𝐵 = .068, 𝑝 < .05), explaining (𝐵 = .126, 𝑝 < .05) and 

writing (𝐵 = .110, 𝑝 < .05) contributed significantly to the model, algorithm design 

(𝐵 = .018, 𝑝 < .534) did not. The final predictive model was: OS = 41.73 + (.066 * 

translating) + (.068 * tracing) + (.126 * explaining) + (.110 * writing). 

A multiple regression result with MFSE as the dependent variable and 

algorithm design, translating, tracing, explaining and writing as predictor variables 

indicates that the model explained 48.4 percent of the variance and that the model was 

a significant predictor of MFSE, 𝐹(5,255) = 47.825, 𝑝 = .000. While translating 

(𝐵 = .116, 𝑝 < .05), tracing (𝐵 = .104, 𝑝 < .05), explaining (𝐵 = .150, 𝑝 < .05) and 

writing (𝐵 = .234, 𝑝 < .05) contributed significantly to the model, algorithm design 

(𝐵 = .018, 𝑝 < .573) did not. The final predictive model was: MFSE = 19.532 + (.116 

* translating) + (.104 * tracing) + (.150 * explaining) + (.234 * writing). 
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After running series of multiple regression, we can observe that the results 

using MFSE as an output variable is better in terms of variations explained by their 

independent variables compared to FSE and OS. 

In each model, writing and explaining had the largest beta value and 

contributed most towards the predicted value of the dependent variable. 

6.3.1.2 Multiple regression results with students’ performance in algorithm 

design, translating, tracing and explaining as independent variables and 

writing as the dependent variable 

At the end of one semester of CS1, students’ were expected to write programs 

in any high-level computer programming language to solve problems. Also, since 

students’ ability in writing represents the final programming skills for students in CS1, 

the researcher decided to use writing as a dependent variable and other programming 

skills variables—algorithm design, translating, tracing and explaining—as 

independent variables. Table 6.9 presents multiple regression results with writing as 

the dependent variable and algorithm design, translating, tracing and explaining as 

independent variables.  

The results of the regression indicates that the model explained 18.8 percent of 

the variance in writing and the model was a significant predictor of 

writing, 𝐹(4,269) = 15.56, 𝑝 = .000. While algorithm design (𝐵 = .120, 𝑝 < .05), 

translating (𝐵 = .158, 𝑝 < .05) and explaining (𝐵 = .163, 𝑝 < .05) contributed 

significantly to the model, tracing (𝐵 = .042, 𝑝 < .444) did not. The final predictive 

model was: writing = 13.94 + (.120 * algorithm design) + (.158 * translating) + (.163 

* explaining). 
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Table 6.9 

Multiple Regression Results with Writing as Dependent Variable and Other 

Programming Skills as Independent Variables 

Variables 

Writing 

𝑩  95% CI 

Constant 13.94** [5.23,22.36] 

Algorithm design  0.120* [0.016,0.223] 

Translating 0.158** [0.068,0.248] 

Tracing  0.042 [–0.066,0.150] 

Explaining 0.163** [0.081,0.245] 

𝑹2 0.188  

𝑭  15.56**  

Note: *𝑝 < 0.05. **𝑝 < 0.01.  

Thus, algorithm design, translating and explaining are the significant predictors 

of writing which means students have to be competent in algorithm design, translating 

and explaining in order to perform well in writing. Although 18.8% is a relatively 

small amount of the variance in writing that is being accounted for by the other 

programming skills variables, it should be noted that this is only part of the final model 

that is developed in subsequent sections. 

6.3.2 Path analysis 

To better understand the multiple regression results shown above, the path 

diagram presented in this section was created to better visualise the relative 

contribution of the predictor variables to the outcome variables. Figure 6.1 shows the 

hypothesised causal ordering for how algorithm design, translating, tracing, explaining 

and writing predict student performance. 
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Figure 6.1. Hypothesised path model. 

Figure 6.2—Figure 6.4 shows the path diagrams created with FSE, OS and 

MFSE as dependent variables and algorithm design, translating, tracing, explaining 

and writing as independent variables. Once the significant predictors of FSE, OS and 

MFSE were identified, the process was repeated with writing as the dependent variable 

and algorithm design, translating, tracing and explaining as independent variables. 

In the path diagrams, variables are shown in the box, the beta coefficient with 

Pearson correlation in brackets is shown along the paths. 𝑅2 and error variance (𝑒 

values) are shown underneath writing, FSE, OS and MFSE. Error variance values were 

computed using 𝑒 =  √1 − 𝑅2. 

As shown in Figure 6.2, students’ marks on algorithm design questions 

accounted for only 4.7 percent of the variance in the marks scored on writing questions 

(𝑅2 = 0.047). The marks students scored on translating questions accounted for only 

15 percent of the variance in the marks scored on writing questions (𝑅2 = 0.153) and 

the marks students scored on explaining questions accounted for only 13 percent of 

the variance in the marks scored on writing questions (𝑅2 = 0.13). In combination, the 
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algorithm design, translating and explaining questions accounted for 19 percent of the 

variance in the marks scored on writing (𝑅2 = 0.188). 

 

Figure 6.2. Path diagram with FSE and writing as output variables and programming 

skills as predictor variables. 

 

Also, students’ marks on translating questions accounted for only 15 percent 

of the variance in the marks scored on FSE (𝑅2 = 0.15). Students’ marks on tracing 

questions accounted for only 12 percent of the variance in the marks scored on FSE 

(𝑅2 = 0.12). The marks students scored on explaining questions accounted for only 30 

percent of the variance in the marks scored on FSE (𝑅2 = 0.30) and students’ marks on 

writing questions accounted for only 27 percent of the variance in the marks scored on 

FSE (𝑅2 = 0.27). In combination, translating, tracing, explaining and writing questions 

accounted for 45 percent of the variance in the marks scored on FSE (𝑅2= 0.454). 

Figure 6.3 indicates that students’ marks on translating questions accounted for 

only 12 percent of the variance in the marks scored on OS (𝑅2 = 0.12). Marks scored 

on tracing questions accounted for only 10 percent of the variance in the marks scored 

on OS (𝑅2 = 0.10). Students’ marks on explaining questions accounted for only 27 
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percent of the variance in the marks scored on OS (𝑅2 = 0.27) and the marks scored on 

writing questions accounted for only 16 percent of the variance in the marks scored on 

OS (𝑅2 = 0.16). In combination, translating, tracing, explaining and writing questions 

accounted for 36.5 percent of the variance in the marks scored on OS (𝑅2 = 0.365). 

 

Figure 6.3. Path diagram with OS and writing as dependent variables and 

programming skills as independent variables. 

 

Figure 6.4 indicates that students’ marks on translating questions accounted for 

only 19 percent of the variance in the marks scored on MFSE (𝑅2 = 0.19). Marks scored 

on tracing questions accounted for only 13 percent of the variance in the marks scored 

on MFSE (𝑅2 = 0.13). Students’ marks on explaining questions accounted for only 30 

percent of the variance in the marks scored on MFSE (𝑅2 = 0.30) and the marks 

students scored on writing questions accounted for only 28 percent of the variance in 

the marks scored on MFSE (𝑅2 = 0.28). In combination, translating, tracing, explaining 

and writing questions accounted for 48 percent of the variance in the marks scored on 

MFSE (𝑅2 = 0.484).  
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Figure 6.4. Path diagram with MFSE and writing as dependent variables and 

programming skills as independent variables. 

 

From the path diagrams, we can observe that the results using MFSE as a 

dependent variable explain more of the variance in the model than do FSE and OS. 

The following hierarchy was reported after examination of the multiple regression 

results and path diagram. Number 1 (algorithm design) contributed least to student 

performance and number 5 (writing) contributed most to student performance: 

1. algorithm design 

2. tracing 

3. translating 

4. explaining 

5. writing. 

6.4 Summary 

This chapter presented results on the quantitative bivariate and multivariate 

analysis of the student PST and survey data. From the correlation analysis, writing and 

explaining were shown to have a greater degree of association to student performance, 
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followed by translating and tracing, with algorithm design having the least association. 

This was consistent with the deep approach of learning having positive correlation to 

student performance, and surface approach of learning having a negative correlation 

to student performance. Although correlation coefficients were consistent, the values 

were either very low or not significant, mainly due to the fact that the English is not 

the students’/participants’ first language. This may have made it difficult for them to 

comprehend the questions. 

From the regression analysis, several direct and indirect programming skills 

were identified as predictors of student performance (FSM, OS and MFSE). In each of 

the students’ performance taken as a dependent variable, algorithm design was found 

to be an indirect predictor via writing, while translating, explaining, tracing and writing 

were found to be direct predictors of student performance. 

From path analysis, multiple regression results using MFSE as a dependent 

variable explained more of the variance in the model (48.4 percent) compared to using 

FSE (45 percent) and OS (36.5 percent) as dependent variables. 

After examination of the multiple regression results and path diagram, the 

hierarchy of programming skills in terms of their contribution to student performance 

was reported in this order: algorithm design (least contribution), tracing, translating, 

explaining and writing (greatest contribution) to student performance. 

The results presented in this chapter along with the results presented in Chapter 

4 and 5 will be discussed further in Chapter 7. 
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Chapter 7: Answers to Research Questions and Discussion 

7.1 Introduction 

Chapter 6 presented the results of the bivariate and multivariate analysis of the 

quantitative data. This chapter discusses the results in light of the research questions. 

Research questions will be first answered and then discussed. The results of this study 

will be compared and contrasted with those from previous studies where possible. The 

key variables identified in the qualitative data will also be discussed. 

Recommendations for CS1 at RUB will be made, followed by a summary of this 

chapter. 

7.2 Answers to Research Questions and Discussion 

7.2.1 What was the students’ prior computing experience and does this 

affect performance in CS1? 

7.2.1.1 Prior non-programming computer experience 

Students’ prior non-programming computer experience was mostly in Internet 

searching, computer games and application software such as Microsoft Word, 

PowerPoint and Excel respectively. The statistical analysis did not show any 

significant result between students who spent more hours on information searches and 

application software and their performance in CS1. The only significant result was a 

negative correlation between students’ spending more hours on computer games and 

their performance in CS1. 

The results from this study showed no significant difference between students 

with prior non-programming computer experience and students without prior non-

programming computer experience to student performance in CS1. The only 

significant correlation found was between students’ spending more hours on computer 



 

164 

games (negative). There was little research on non-programming computer experience 

and its impact in students’ performance in CS1. Studies that have examined this also 

reported that the prior non-programming experience does not affect student 

performance in CS1, except computer gaming experience, which has a negative impact 

on students’ performance in CS1. Five of the eight lecturers interviewed also said that 

this would not affect students’ performance in CS1. However, it would be easier for 

students initially in CS1 classes to have at least basic computer knowledge on how to 

use and understand what computers can do (i.e., word processing and spreadsheets). 

While students were not exposed to non-programming computer activities in 

Y12 (especially how to Google and search for information and basic knowledge of 

Office), all student were exposed to non-programming computer activities during the 

time they learnt CS1. For example, Sherubtse College (SC) curriculum has a module 

titled ‘Office Productivity Tools’ offered in the first semester to all new students. In 

this module, students learn how to create documents, manipulate and analyse data 

using spreadsheets, prepare presentations and develop simple databases. However, the 

other two participating colleges (College of Science and Technology (CST) and Jigme 

Namgyel Engineering College (JNEC)) do not offer this module in their curricula. 

Moreover, there is a university-wide module titled ‘Academic Skills’ offered to all first 

semester students. In this module, student learn academic-related skills such as 

academic writing, oral presentation, critical thinking and effective communication 

skills. Therefore, students with no prior non-programming computer experience were 

learning in parallel with CS1. Further research may be required to investigate the 

impact of learning non-programming computer activities in parallel with CS1 on 

students’ performance in CS1. 
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7.2.1.2 Prior programming experience 

Students’ prior programming experience was mostly in C, Java, JavaScript and 

Python respectively. The statistical analysis showed that students with some 

programming experience performed better in CS1 than those without. The interview 

results indicated that students with experience in computer programming language 

found it easier to understand the concepts in CS1 classes than their friends with no 

experience in any programming language. 

The results from this study—that prior programming experience is positively 

correlated with student performance—are consistent with the studies reviewed in 

Section 2.4.1. The researcher believes that having some programming knowledge 

before commencing CS1 would be advantage for students in the initial stage only, as 

the researcher has observed during the teaching of CS1 that students with no prior 

knowledge of programming find it difficult initially but later excel over students with 

prior programming knowledge. This aligns with the results of Wilcox and Lionelle 

(2018), who found that students with prior exposure to programming performed 

significantly better in CS1, but this reduces in the subsequent CS2 course. This is 

further discussed in Section 7.3. 

7.2.2 What are students’ and lecturers’ experience/perceptions of first 

programming language, programming paradigm, programming 

environment and teaching/learning methods and practices? 

7.2.2.1 First programming language, programming paradigm and 

programming environment 

 Lecturers and students stated that C should be the first programming 

language (see Table 4.10, 4.4.2.4, Table 5.5 and 5.3.2.5). 
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 The lecturer stated that the procedural programming paradigm should be 

taught for the beginners (see Sections 5.2.3 and 5.3.2.3). 

 Both lecturers and students stated that Turbo C++ and Microsoft Visual 

Studio should be used as a programming environment to learn 

programming. Some students also mentioned PyCharm and Code::Blocks 

(see Sections 4.3.2.3, Table 5.4 and 5.3.2.4). 

The first programming languages widely used to teach in the universities 

worldwide (as discussed in the literature) were Java, C, C++ and Python. C was chosen 

by most students and lecturers at RUB as the first programming language. The reason 

may be that C was taught and learnt as the first programming language over a decade 

ago and lecturers were adept in teaching C. Also, since lecturers were familiar with C, 

they were resistant to change to another programming language. Some lecturers stated 

that many popular programming languages are based on C, so if students learn C, they 

will not face any problems switching to another programming language. Some 

lecturers and students suggested starting with Python, as they heard from others that it 

was simple to grasp. Currently at RUB, computer science and information technology 

students study C in first semester, C++ in second semester and Java in the fourth 

semester. Students enrolled in engineering programs such as architecture, electrical, 

and electronics and communication study C in first semester and this is the only 

module of programming that they study during their program. Students enrolled in 

civil engineering study C in the first semester and C++ in the second semester only.  

After the literature review, the researcher recommended either C, C++, Python 

or Java for use as the first programming language. This is because several research has 

reported that the choice of the first programming language does not have a deep impact 

on difficulties that students may experience in learning to program (Ivanović, 
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Budimac, Radovanović, & Savić, 2015; Xinogalos, Pitner, Ivanović, & Savić, 2018). 

What matters most is the overall quality of the course and the lecturer who delivers the 

instruction. Students stated that it would benefit them if experienced lecturers were 

assigned to teach CS1. This is true, as it is important for students studying CS1 to build 

good foundations for their subsequent education in programming. 

At RUB, most lecturers identified the procedural paradigm as a suitable 

paradigm to introduce for beginners. However, some studies (Kölling, 1999) reported 

that it was not necessary to start with procedural paradigm; object-oriented paradigm 

could be introduced right away. At RUB, since C is used in CS1, it is a procedural 

programming paradigm. According to Aleksić and Ivanović (2016), most courses are 

based on procedural than objected-oriented paradigms. Thus, after the review of the 

literature and based on the results of this study, the researcher believes that at RUB, 

the procedural paradigm should be taught in the first semester and the object-oriented 

paradigm should be introduced in later semesters using the same or different 

programming language for computer science and information technology students. 

Engineering students can use either procedural or object-oriented paradigms, as they 

study only in first semester (except civil students, who study in the second semester as 

well). Although C programming language was used at RUB in CS1, staff professional 

development might assist in trying other commonly used programming languages in 

CS1. 

At RUB, lecturers and students chose Turbo C++ and Microsoft Visual Studio 

as programming environments to learn programming. Again, these programming 

environments have been used for more than a decade, so lecturers and students are 

familiar with it. The researcher has used Turbo C++ and Dev-C++ as a programming 

environment while teaching CS1. Although both Turbo C++ and Dev-C++ provide a 
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user-friendly interface, display clear and accurate error messages, allow easy typing, 

compilation and running, the researcher prefers Dev-C++, as it is convenient to use. 

Turbo C++ takes control of the screen and you cannot move the cursor out of the 

environment. Sometimes you cannot even maximise or minimise the screen. Most 

often, the program ends abruptly and must be reopened. Moreover, based on the 

experience of Turbo C++ interface, the researcher would argue that Turbo C++ is now 

obsolete and it is time to move into new programming environments that are both easy 

and convenient for beginners to use. Thus, it is worth considering other programming 

environment possibilities and trialling these before changing curricula. 

7.2.2.2 Teaching/learning methods and practices 

For teaching/learning methods and practices, both lecturers and students stated 

that students benefit in learning CS1 from coding live in the class and programming in 

pairs or groups (see Table 4.11, Section 4.4.2.5, Table 5.6 and Section 5.3.2.6). A 

lecturer also stated that students should practise writing code independently (see 

Section 5.2.6). Students stated that reading materials online and watching YouTube 

tutorials helped them in learning to program (see Table 4.11). 

Although the literature reported numerous teaching/learning methods and 

practices that might assist students in overcoming the difficulties of learning to 

program, at RUB, the teaching/learning methods and practices that they found 

beneficial for students were: live coding by lecturers in the lecture session and 

pair/group programming in the laboratory. Students stated that live coding by the 

lecturers has helped them understand the program better and made it easier to find 

errors. Similarly, working in pairs/groups has helped them debug programs and 

understand concepts better by exchanging knowledge and ideas among peers. Thus, 

based on these results, the researcher considers in continuing with these methods and 
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practices, as the benefits have also been reported in previous studies (Paxton, 2002; 

Rubin, 2013). In addition, the researchers considers it might help students who are 

slow in following the class by watching pre-recorded lecturers in their own time as this 

method has generated positive feedback from students in previous studies 

(Mohorovičić & Strčić, 2011). 

In addition to learning in pair/groups, encouraging students to write code on 

their own without help from their pair/groups might also help them learn to program. 

This is important, as they learn to write programs independently. It may also be useful 

to guide students in how to search for relevant materials online that might also assist 

them in understanding the concepts better. Thus, teaching/learning methods and 

practices such as live coding, pair/group programming, independent coding, reading 

materials online and watching YouTube tutorials that have helped students in RUB to 

learn to program might assist other students taking CS1 in other universities 

worldwide. It may also inform lecturers’ teaching methods and practices. 

7.2.3 What is the association, if any, between students’ performance in 

CS1 and students’ Y12 performance in mathematics, physics and 

chemistry? 

The Pearson correlational analysis showed a low positive significant 

correlation between mathematics, physics and chemistry, and student performance 

(see Table 6.3). 

Though correlations were found to be significant, these were low. Prior 

performance in mathematics had a slightly higher correlation with student 

performance in CS1 than did physics and chemistry. This may be true, as previous 

studies have also revealed that mathematics is a predictor of students’ success in CS1 

(Ayub & Karnalim, 2017; Bennedsen & Caspersen, 2005; Bergin & Reilly, 2005b; 
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Qian & Lehman, 2016; Wilson & Shrock, 2001). In contrast, Watson, Li, and Godwin 

(2014) reported no significant correlation between either mathematics, physics or 

chemistry, and student performance. Few studies have examined the association 

between students’ Y12 performance in physics and chemistry and their performance 

in CS1. 

At RUB, students in computer science and engineering programs are selected 

based on their Y12 scores in mathematics, physics and chemistry. Students must pass 

(by over 50 percent) in mathematics, physics and chemistry. Selections are based on 

merit ranking of computed value by the subject ability rating. The ability rating of 

mathematics and physics is 5 and chemistry is 4. The results from this study indicate 

that the performance of students’ in Y12 mathematics, physics and chemistry have a 

significant impact on student taking CS1 classes. The researcher believes students who 

are competent in mathematics and scored highly in their Y12 examination might 

perform well in CS1, as both mathematics and programming problems require logic. 

Thus, the researcher proposes to some amendments in the ability ratings for the 

selection of students in a program that consists of a programming module in the first 

semester. For example, the ability rating for mathematics could be 5, physics could be 

4 and chemistry could be 3. This ability rating may apply only to computer science 

and information technology students. 

7.2.4 What is the association, if any, between students’ performance in 

CS1 and students’ learning approach? 

The results shows consistent expected results, with a deep approach having a 

positive significant correlation to student performance, and a surface approach having 

a negative significant correlation to student performance. However, these correlations 

were very low (see Table 6.6). A possible explanation for this may be the Bhutanese 
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students’ inability to fully comprehend the questionnaire items, as English is the 

second language in Bhutan. Furthermore during interviews, despite the low 

correlations, the students’ who gave a description of using a deep approach to learning 

in CS1 did well as compared to those students who described using a surface approach 

to learning. Thus, it is likely that a deep approach to learning improves students’ 

performance in CS1.    

Despite the low correlations, the results were similar to previous studies—a 

positive trend between a deep approach and student performance, and a negative trend 

between a surface approach and student performance. 

Examining the individual items of the Biggs questionnaire, some items under 

deep approach correlated positively to student performance and some surface approach 

elements correlated negatively to student performance. Elements under deep motive—

such as ‘I work hard at my studies because I find the material interesting’—and 

elements under deep strategy—such as ‘I find most new topics interesting and often 

spend extra time trying to obtain more information about them’ and ‘I test myself on 

important topics until I understand them completely’—correlated positively to student 

performance. Elements under surface motive—‘I do not find my course very 

interesting so I keep my work to the minimum’, ‘I find I can get by in most assessments 

by memorising key sections rather than trying to understand them’ and ‘I see no point 

in learning material which is not likely to be in the examination’—and elements under 

surface strategy—‘I learn some things by rote, going over and over them until I know 

them by heart even if I do not understand them’ and ‘I believe that lecturers shouldn’t 

expect students to spend significant amounts of time studying material everyone 

knows won’t be examined’—correlated negatively to student performance. 
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Similarly, lecturers’ response to an interview question on their insights into 

how students in CS1 should approach their learning to achieve success mostly fell 

under the deep approach of learning (see Section 5.3.2.10). Thus, the results indicate 

that students’ approaches to learning is a factor that determines success in CS1. The 

lecturer might be able to encourage students taking CS1 to adopt deep approaches to 

learning, as learning approach can be changed based on context, even though the 

student may have their own preference of learning approach. One way to attend to this 

may be to allocate the first week of CS1 classes to orienting students on the learning 

strategies that may help them to achieve good performance in CS1 instead of delving 

straight into CS1 content. 

7.2.5 What is the association, if any, among the programming skill 

variables? 

The results showed a positive significant correlation (𝑝 < 0.01) between 

students’ ability in algorithm design, translating, tracing, explaining and writing (see 

Table 6.4).  

According to BRACElet studies (see Section 2.4.7), students who did well on 

explaining tasks usually performed well on writing tasks, and students who could only 

trace code below 50 percent could not usually explain code. The results from this study 

support the results of the BRACElet studies, as some associations between the 

programming skills exist. The positive significant association between explaining and 

writing indicates that when students become competent in explaining written code, 

they can then be able to write code and vice versa. Similarly, the positive significant 

association between tracing and explaining, and between tracing and writing indicates 

that students who have mastered tracing skills can perform well in explaining and 

writing. Further, it appears that students who can translate the logic from algorithm 
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design into any high-level programming language could explain the translated 

program and ultimately write the complete executable program. Thus, the association 

among the programming skills indicates that these skills develop simultaneously and 

are not independent. 

7.2.6 What is the association, if any, between students’ performance in 

CS1 and students’ ability in programming skills? 

The results showed a positive significant association (𝑝 < 0.01) between 

student performance and ability in algorithm design, translating, tracing, explaining 

and writing. Explaining had the highest correlation with student performance, 

followed by writing, translating, tracing and algorithm design (see Table 6.5). 

The association indicates that both explaining and writing skills are equally 

important to student performance in CS1. For example, students who can explain the 

algorithm design correctly can translate this into a programming language and explain 

the translated program. Explaining skills can also apply to the program that has already 

been given, when the student has to go through the program and explain in plain 

English the purpose of the code. Thus, students who are competent in explaining across 

the programming skills are likely to do well in writing, and ultimately, the overall 

exam. 

The association between algorithm design and student performance (which was 

the lowest of all programming skills) indicates that students who can do well only in 

algorithm design may not be able to perform well in CS1. Similarly, the association 

between translating and student performance, and tracing and student performance 

indicates that students’ competencies in these skills are not sufficient to score well in 

CS1. Further, students need to acquire all five programming skills to perform well in 

CS1, as the examination in CS1 includes questions across all programming skills. 
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Thus, from these correlation results, it is reasonable to assume that these programming 

skill variables play a role in student performance in CS1. 

7.2.7 Is there a hierarchy among students’ programming skills in terms of 

their contribution to student performance in CS1? 

The following hypothesised hierarchy was reported after examination of the 

correlation and path diagram created in chapter 6 (see Section 6.3.2). Number 1 

(algorithm design) contributed least to student performance in CS1 and number 5 

(writing) contributed most to student performance in CS1. They are numbered in this 

order, as the researcher believes that this is the order in which programming skills 

should be taught to benefit students’ learning: 

1. algorithm design 

2. tracing 

3. translating 

4. explaining 

5. writing. 

The hypothesised hierarchy reported in this study seems logical as per the 

researcher’s experience teaching CS1. For example, teaching algorithm design first 

before moving on to other programming skills. It seems logical that students should 

first be taught algorithm design in parallel with tracing and explaining the algorithm 

design. Once student becomes competent in algorithm design and can explain and trace 

the algorithm, the process of translating should be taught. At this stage, students must 

be introduced to the features, syntax and grammars of the programming language. 

Once students becomes competent in translating, tracing and explaining the code 

should be taught. Lastly, students should be taught how to write programs. 



 

175 

Although the programming skills are listed in order, the researcher is not 

implying that the ranking after algorithm design should be developed in strict hierarchy 

as shown above. The researcher supports the idea that tracing and explaining overlap 

with algorithm design, translating overlaps with writing, and tracing and explaining 

overlap with writing. The programming skills after algorithm design should develop 

in parallel and reinforce each other. This is supported by the correlations between the 

skills. 

The hierarchy reported in this study is also similar to the hierarchy reported in 

the literature (Lopez et al., 2008). According to Lopez et al. (2008), writing is at the 

highest level and tracing and explaining are intermediate levels. This study has added 

algorithm design and translating to the list of tracing, explaining and writing, which 

previous studies have not done as a whole. The multiple regression analysis showed 

that translating, tracing, explaining and writing skills directly contribute to student 

performance, while algorithm design indirectly contributes to student performance via 

writing. It is true that algorithm design may not contribute directly to student 

performance, as students have to learn translating, tracing, explaining and writing to 

be able to perform well in CS1. 

Based on the results of this study, the researcher proposed the outline of CS1 

over 15 weeks as shown in Table 7.1. At RUB, one semester runs for 18 weeks; three 

weeks of the 18 were removed for the mid-semester exam, FSE and practical exam 

(refer Appendix K for a detailed proposed module description). In one week, three 

hours of lecture classes and a one-hour tutorial were considered in addition to three 

hours of laboratory practical sessions in a week. 
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Table 7.1 

Researcher Proposed Outline of CS1 

Week Topics  and programming skills 

1 Learning strategies 

2–4 Algorithms and problem-solving (tracing and explaining an 

algorithm) 

5 Introduce language features: data types, assignments, variable 

declaration, operators, expressions and simple input/output 

functions 

6 Translate simple algorithms into programming code (translating). 

Using programming environment, write translated programs, 

compile, run and debug 

7–10 Introduce language features: control structures, functions, arrays 

and files 

11–12 Translate complex algorithms into programming code (translating). 

Manually execute the translated programs (tracing) and explain the 

purpose of the translated code (explaining) 

13 Introduce simple code writing from the given problem (writing) 

using programming environment. Manual tracing and explaining 

should be parallel as well 

14 Introduce complex code writing from the given problem (writing) 

using programming environment. Manual tracing and explaining 

should be parallel as well 

15 Introduce additional language features depending on the 

programming language used in CS1 involving tracing, explaining 

and writing programs. 

 

7.3 Suggestions on how to Improve Teaching/Learning of CS1 at RUB 

In the student and lecturer qualitative data on how to improve teaching/learning 

in CS1 at RUB, the most frequently mentioned areas by both students and lecturers 

were: conduct theory and practical classes in parallel, CS1 to be taught by an 
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experienced lecturer, encourage pair/group programming, live coding, offer the same 

tutor for both theory and practical sessions and prior programming experience. 

a) Conduct theory and practical classes in parallel 

Although most students preferred to have both the theory and the practical 

classes running in parallel in the computer laboratory, the researcher believes (based 

on their prior teaching experience at RUB) that this is not feasible, since there are a 

limited number of computer laboratories that cater to all students enrolled in a 

program. Moreover, the computer laboratory can accommodate only up to 35 students 

at a time. There are over 100 students enrolled in civil engineering. As an alternative, 

as one student suggested that lecturers should allow students to bring their laptops to 

the theory class to enable them to write programs when the lecturer is live coding in 

the class. Currently, we do not have that practice at SC and CST. Participants from 

JNEC were taught theory and practical classes at the same time in the computer 

laboratory, since it was the only program (Diploma in Computer Hardware and 

Networking) with computer laboratory components during the time of data collection. 

It may no longer be feasible, as JNEC has introduced degree programs in engineering 

that may require computer laboratories. 

b) CS1 to be taught by an experienced lecturer 

Both lecturer and students recommended that experienced lecturers be assigned 

to teach CS1. Most participants in this study were taught by four lecturers, who had 

just graduated from their degree programs. Only some participants were taught by the 

remaining four lecturers, who had completed their master’s degree and have 1–2 years’ 

experience teaching CS1. The researcher strongly supports assigning an experienced 

lecturer to teach CS1, as CS1 is the foundation module and building strong foundation 

is a necessity for the success of the remaining computer subjects in latter semesters. 
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c) Encourage pair/group programming and live coding 

 Both students and lecturers proposed including pair/group programming in the 

teaching/learning of CS1. Previous studies (see Chapter 2) on practising pair/group 

programming reported that this was effective for students in learning CS1. Similarly, 

live coding by lecturers was reported in previous studies to be beneficial for students, 

as students can observe the lecturer type the programs from scratch, and in the process, 

explaining and encouraging students to participate. In this way, students can also learn 

to compile, execute and debug programs. Lecturers can also give small programs to 

write in groups and let one student from each group code live in front of their peers. 

This might allow students to gain confidence in writing programs and motivate them. 

d) Same tutor for both theory and practical sessions 

 Students expressed a preference to have only one tutor teaching both theory 

and practical classes. This does not happen all the time at RUB. However, sometimes 

when the theory tutor was given other modules to teach due to a shortage of tutors in 

that module, practical sessions were given to other tutors with lighter teaching loads. 

As long as the theory and practical tutor coordinate with each other this should not be 

a problem. 

e) Prior programming experience 

Some lecturers and students said that students should be exposed to 

programming concepts in Y12 so they do not feel overwhelmed when they are 

introduced to CS1. Previous research and this study has shown that students with prior 

programming experience perform better in CS1. Conversely, other studies showed 

prior programming experience does not have any impact on students’ performance in 

CS1. While some studies reported on students’ success in CS1 with and without prior 

programming experience, the specific programming experience that students should 
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have when learning CS1 was not specified. Thus, further research is required to 

explore which programming-related concepts students should learn in Y12 that may 

benefit them in learning CS1. For example, computational thinking and problem-

solving or programming concepts using a programming language. 

 

7.4 Recommendations for CS1 at RUB 

This thesis set out to investigate the factors that may affect the performance of 

students’ studying CS1 at RUB. The following recommendations are made for CS1 at 

RUB based on the findings of this study: 

1. Students’ prior computing experience 

The researcher recommends that RUB collaborate with the School Education 

and Curriculum Division, of the Ministry of Education, Bhutan to explore avenues to 

enhance the existing curriculum by incorporating a subject in Y12 for all the science 

students that covers basic computer knowledge on Office packages, basic 

programming concepts and problem-solving skills. Moreover, the module on ‘Office 

Productivity Tools’ could then be removed from the first semester. 

2. First programming language, programming paradigm, programming 

environment and teaching/learning methods and practices 

The researcher recommends RUB retain procedural paradigm with either C, 

C++, Java or Python as the programming language in the first semester and introduce 

object-oriented paradigm in later semesters using the same or different programming 

language for computer science and information technology students. Although C 

programming language is used at RUB in CS1, staff professional development might 

assist in trying other commonly used programming languages in CS1, such as Java and 
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Python. In regard to programming environment, the researcher highly recommends 

consideration of a simple and current environment as an alternative to Turbo C++ 

(obsolete) and Microsoft Visual Studio (sophisticated).  

For teaching/learning methods and practices in CS1, the researcher highly 

recommends that lecturers allow students to bring their laptops to theory classes so 

they can write programs when the lecturer is live coding in class. Thus, students can 

obtain hands-on practice immediately after the theory sessions or during live coding 

by the lecturers. Also, students should be encouraged to work in pairs/groups initially, 

and later encouraged to practise writing code independently. Also, lectures should be 

recorded and uploaded to the course webpage for use by slow learners and students 

who wish to revise. 

3. Students’ learning approach 

The researcher recommends that lecturers at RUB encourage students to adopt 

deep approaches of learning before starting CS1 classes. One week of CS1 classes may 

be allocated to teach learning strategies that students can adopt to achieve success in 

CS1. 

4. Teaching/learning approach of programming skills in CS1 

The researcher recommends the approach of teaching/learning programming 

skills in CS1 as shown in Figure 7.1. Begin with the introduction of how to solve 

simple problems using algorithm design (flowchart and algorithm). Then introduce 

simple language features like variables, data types, simple input/output functions, 

assignments and operators. This should be followed by translating the logic from 

algorithm design into programming language. Then, start writing the translated 

programs using the programming environment, compile, debug and execute the 
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program. Demonstrate manual tracing of the written program and show how to 

summarise the purpose of the written program (explaining). Students should also be 

taught how to trace and explain algorithm design and translated programs. 

 

Figure 7.1. Approach of teaching/learning in CS1. 

 

The process of algorithm design, translating, tracing, explaining and writing 

should be repeated to solve problems with increased difficulty level. New 

programming language features should be introduced, such as arrays, strings, user 

defined functions and input/output functions of arrays and strings. As students become 

competent in algorithm design, translating, tracing and explaining, they can be taught 

how to write programs directly once given the problem, with or without translating, 

depending on the students’ capabilities. 

7.5 Summary 

This chapter has discussed the results from this study and answered the 

research questions. The first research question, which addressed students’ prior 

computing experience and its impact on student performance in CS1, was discussed. 

The second research question, which focused on students’ and lecturers’ 

experience/perceptions of first programming language, programming paradigm, 

programming environment and teaching/learning methods and practices, was 

discussed. The results provided information relating to first programming language 



 

182 

and paradigm to be taught in CS1, the programming environment to be adapted in 

learning to program and teaching/learning methods and practices that might assist 

students in learning to program and improve student performance in CS1. 

The third research question focused on students’ Y12 performance in 

mathematics, physics and chemistry and its association to student performance in CS1. 

The results of this question were discussed. The fourth research question—students’ 

learning approaches and their impact on student performance in CS1—was discussed. 

The fifth research question, which focused on the relationship among the programming 

skill variables, was discussed. The sixth research question which focused on students’ 

ability in programming skills and their impact on student performance in CS1 was 

discussed. 

The seventh research question was whether there is hierarchy among the 

programming skills in terms of their contribution to student performance in CS1. The 

possible hierarchy presented was: 1) algorithm design, 2) tracing, 3) translating, 4) 

explaining, and 5) writing, where algorithm design was the lowest level and writing 

was the highest level. However, associations among the programming skills indicated 

that skills develop in parallel and reinforce each other. 

This chapter also discussed the key variables identified from the qualitative 

data. This was followed by the recommendations for CS1 at RUB. 
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Chapter 8: Conclusion 

8.1 Introduction 

Chapter 7 answered the research questions and discussed the results. This 

chapter provides a brief description of the preceding chapters and addresses each 

research question. Wider implications and contributions, limitations and directions for 

future research are indicated, and concluding remarks are provided. 

Chapter 1 introduced this study and presented the origin of this thesis, provided 

background information, outlined research objectives and presented an overview of 

the thesis. Chapter 2 established the theoretical framework and reviewed the literature 

that examined the key variables under investigation in this study. Chapter 3 presented 

the detailed description of the methodology used for this study. Chapter 4 and 5 

presented descriptive statistics and qualitative results of the data. Chapter 6 presented 

bivariate and multivariate analyses of the data. Chapter 7 answered the research 

questions and discussed the findings. 

8.2 Research Findings 

This section briefly summaries the results reported in Chapters 4, 5 and 6. 

Students’ prior non-programming computer experience, such as Internet information 

searches and use of Office tools does not have any significant association with 

students’ performance in CS1, except computer games, which had a negative 

significant association with student performance. Students with some programming 

skills in C, Java, JavaScript and Python performed better in CS1 and the association 

was significant and positive. 

Both lecturers and students perceived that C should be the first programming 

language for CS1 and; Turbo C++ and Microsoft Visual Studio should be used as 
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programming environment to learn C. Moreover, both lecturers and students stated it 

would assist students in learning to program by practising teaching/learning methods 

such as live coding by the lecturer in class, pair/group programming, independent 

coding, reading materials online and watching YouTube tutorials. This study also 

identified a positive significant correlation between student performance in CS1 and 

students’ Y12 performance in mathematics, physics and chemistry. 

Further, this study showed that the deep approach of learning had a positive 

significant correlation to student performance in CS1, while the surface approach of 

learning had a negative significant correlation to student performance in CS1. 

In addition, the results showed a positive significant correlation among the 

programming skill variables: algorithm design, translating, tracing, explaining and 

writing. This indicates that these skills develop in parallel and reinforce each other. 

Moreover, the results showed a positive significant correlation between student 

performance and ability in programming skills, which suggests a possible hierarchy in 

programming skills. The regression analysis further showed that algorithm design 

contributes to student performance via writing, and writing contributes most to student 

performance. Thus the hypothesised hierarchy was reported as algorithm design, 

tracing, translating, explaining and writing, where algorithm design is at the lowest 

level and writing is at the highest in the hierarchy. 

8.3 Wider Implications and Contribution 

This study has contributed new findings in the areas that might affect student 

performance in CS1: prior computing experience, first programming paradigm and 

language, programming environment, teaching/learning methods and practices, Y12 

performance in mathematics, physics and chemistry, students’ learning approach, 

programming skills and new SOLO descriptions. 
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The results from prior computing experience provide information in regard to 

the requirement of prior non-programming computer experience and programming 

experience. The results from this study may benefit educators in selecting students to 

study CS1. 

Additionally, the results from first programming paradigm and language, 

programming environment, teaching/learning methods and practices provide clear 

insight into the aspects of lecturers’ and students’ perceptions/experience at RUB. The 

practice of live coding and pair/group programming in learning to program confirms 

its benefits. Thus, the information from this study can be utilised by educators to 

inform curricula decisions. 

Further, students’ Y12 performance in mathematics, physics and chemistry 

also provides clear insight for educators in regard to the importance of these subjects 

prior to taking CS1 classes. 

Moreover, the positive impact of students’ deep approach of learning in CS1 

on student performance in CS1 provides information to both students and lecturers to 

encourage a more productive approach to learning in CS1. In addition, the PST 

questions developed by the researcher to measure students’ skills across the five 

programming skills (with algorithm design and translating skills added) contributes to 

the body of knowledge in CS1 programming skills. This will also provide a foundation 

for further research in terms of the new variables introduced that are important in 

teaching CS1 as well as drawing further attention to the current variables for existing 

computing tertiary educators.  

Subsequently, the SOLO taxonomy adapted to evaluate students’ responses to 

PST questions also contributes new information in regard to the SOLO descriptions 

for each programming skill, thereby providing avenues for comparison. 
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8.4 Limitations 

The main goal of this study was to investigate the factors that may affect 

student performance in CS1 at RUB. Although this goal has been achieved, the study 

was limited in several ways. 

This study involved students enrolled in science and engineering programs 

from three colleges that are geographically spread across the country. This posed 

several limitations. One such limitation was that one cohort of students enrolled in 

B.Sc. Physical Science could not be included in this study, as these students study CS1 

in their second semester, while students enrolled in other programs identified for this 

research study CS1 in the first semester. As data were collected immediately after 

students’ completion of CS1 in their first semester, there would be a gap of five months 

if this study were to include those students. It would not only be expensive to travel 

back to these students after five months, but also the reliability and the validity of the 

programming skills test (PST) instrument may no longer hold after such a long gap. 

Therefore, the researcher decided to exclude these students for practical and pragmatic 

reasons. 

For the same geographic reasons, the researcher could not administer the PST 

personally, as it would be a challenge for the researcher to travel from one college to 

another due to rugged terrains in Bhutan. Thus, the PST had to be administered by 

lecturers who volunteered to assist the researcher in their respective colleges at the 

same time. Further, considering the time that students spent answering the PST 

questions, the number of questions under each category of programming skills was 

limited to two. Ideally, it could have been at least five, with varying difficulties, 

administering one or two programming skills at a time to obtain quality results. 
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Moreover, the PST and survey, individual and group interviews could not be 

administered at the same time due to the reasons mentioned above. The researcher 

travelled to colleges for survey and interviews only when the students joined colleges 

after six weeks of winter break. Although there was a gap of six weeks between the 

PST and the survey, this arrangement was made to secure maximum student 

participants, as students were eager to leave college after their last examination. The 

ideal situation would be for the PST, survey and interviews be conducted immediately 

after the students completed a semester course in CS1. 

Another limitation was that the three participating colleges administered their 

own examinations, so the difficulty level of the content covered in these examinations 

may not be identical. That is, the FSE and OS performance used in this study to 

measure student performance may have been different in terms of content. 

One possible limitation to this study could be that one college, Gyalpozhing 

College of Information Technology (GCIT), that offers a program that includes a 

module on CS1 under RUB could not be included in this study. This is because GCIT 

was officially inaugurated on 6 October 2017 and began enrolling its first cohort of 

students in July 2018. The data for this study were collected in November 2016 (PST) 

and February–March 2017 (survey and interviews). 

Additionally, the experience and qualification of the lecturers teaching CS1 

were not the same across the three colleges. One college had four lecturers who had 

just completed their degree and were searching for an opportunity to upgrade their 

qualification. We asked about their opinions and experiences in the survey and 

interviews regarding CS1; however, we were less likely to receive creative and 

innovative ideas, as they themselves did not have much experience and exposure. 
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Although the medium of instruction is in English, it is not the participants’ first 

language, which may have affected their comprehension of the Bigg’s survey 

questionnaire. However, English was not a problem for students in responding to the 

exam and PST questions used in this study as the students had gained familiarity with 

the language used throughout the course. 

The final limitation was that the findings from this study were very localised 

and may not be generalisable to an international audience, as differences may exist 

between the educational system in Bhutan and other countries. However, the findings 

may contribute to the body of literature in computer science education. 

 

8.5 Future Research Directions 

Future research directions could be in the following areas: confirmation, 

extension and further investigation of the path model.  

One key element of this research was to extend the model, include other 

variables and further the statistical analysis. Further research could also be extended 

to investigate the specific type of programming-related experience that students should 

have in Y12 prior to the study of CS1.  

Moreover, in the future, investigation of the path model could be conducted, 

with different groups of students from other countries & institutions to confirm or 

disconfirm the path model. 

 

8.6 Summary and Concluding Remarks 

In summary, this thesis provides new information to the existing body of 

computing research. The study identified several factors that may influence student 

performance in CS1 at RUB: prior computing experience, first programming language, 
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programming paradigm, programming environment, teaching/learning methods and 

practices, Y12 performance in mathematics, physics and chemistry, student learning 

approaches and programming skills. Programming skills such as algorithm design and 

translating were extra variables added to the study and path model, which other 

literature has not yet reported. 

Moreover, this is the first time a study in Bhutan has examined all the variables 

identified in this research, thereby contributing new information to the body of 

computer science education literature. 

The results from this study have implications for lecturers teaching CS1 who 

are interested in assisting students in improving success in CS1, particularly at RUB 

in Bhutan. 
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Appendix A: Programming Skills Test Instrument 
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Appendix B: Programming Skills Test Marking Criteria Using SOLO 

Classification 

Section A: Algorithm Design 

Q1: Find the average of three numbers entered by the user and display the result.  

A suitable algorithm and flowchart solution may look like this: 

   Algorithm       Flowchart 

Step 1: Start 

Step 2: Declare variables a, b, c and avg  

Step 3: Read a, b and c. 

Step 4: Compute avg = (a+b+c)/3 

Step 5: Display avg. 

Step 6: Stop 

     

Q2: Find the smallest number among the three numbers entered by the user and display 

the result. A suitable algorithm and flowchart solution may look like as shown: 

Algorithm 

Step 1: Start 

Step 2: Declare variables a, b and c. 

Step 3: Read a, b and c. 

Step 4: If a<b 

   If a<c 

    Display a is the smallest number.     

       Else 

   Display c is the smallest number. 

     Else 

   If b<c 

     Display b is the smallest number. 

  Else 

    Display c is the smallest number. 

  Step 5: Stop 
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Flowchart 

 

The following components are examined in students’ response to algorithm: 

a) Ability to declare variables (E-U).  

b) Ability to externally supply inputs (E-S). 

c) Ability to show the computation (E-S for Q1) and (H-S for Q2). 

d) Ability to show what output is produced (E-S). 

e) Ability to write clear and unambiguous instructions (E-U). 

f) Ability to terminate the algorithm in a finite number of steps (E-U). 

g) Ability to write algorithm in correct logical order (H-U). 
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The following components are examined in students’ response to flowchart: 

a) Ability to declare variables (E-U).  

b) Ability to externally supply inputs (E-S). 

c) Ability to show the computation (E-S for Q1) and (H-S for Q2). 

d) Ability to show what output is produced (E-S). 

e) Ability to write clear and unambiguous instructions (E-U). 

f) Ability to terminate the flowchart in a finite number of steps (E-U). 

g) Ability to draw flowchart in correct logical order (H-U). 

h) Ability to draw flowchart with correct symbols (H-U). 

Table B.1 

SOLO classification for Algorithm Design Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to complete all of the components to form a 

coherent whole. 

5 

Relational Error [RE] Able to complete all of the components but has 

some minor errors or omissions. 

4 

Multistructural [M] Able to complete most of the components. All H-S 

and E-S components complete and valid. 

3 

Multistructural Error 

[ME] 

Able to complete most of the components but has 

some minor errors or omissions. 

2 

Unistructural [U] Able to complete some components only. 1 

Prestructural [P]  There are pieces which makes no sense or the 

answer is totally wrong. 

0 

No attempt [N] The answer is blank. 999 
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Section B: Translating 

Q1: 

 

1. Start  

2. Declare variable a, b, BIG, SMALL.  

3. Read a,b  

4. If a is less than b then  

4.1. BIG = b  

4.2. SMALL = a  

5. Else  

5.1. BIG = a  

5.2. SMALL = b  

6. Write BIG, SMALL  

7. End 

 

A suitable solution may look like this: 

 

1. int a,b,BIG,SMALL; 

2. scanf(“%d %d”, &a,&b); 

3. if(a<b) 

4. { 

5.  BIG = b; 

6.  SMALL = a; 

7. }  

8. else { 

9.     BIG=a; 

10.     SMALL = b; } 

11. printf(“Big = %d, Small = %d”, 

BIG,SMALL); 

 

The following components are examined in students’ response to Translating Q1: 

a) Ability to declare variables of correct data types -Line 1 (E-S). 

b) Ability to read the variables from the console -Line 2 (E-S).  

c) Ability to use if/else statement with correct computation - Line 3-10 (E-S). 

d) Ability to show the desired output - Line 11 (E-S). 

e) Ability to write well-structured program in clear logical order (E-U). 

 

 

Q2: 
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A suitable solution may look like 

this: 

1. int i; 

2. for(i=2;i<=6;i++) 

            { 

                printf(“%d”, i+2); 

            } 

  OR 

1. int i=2; 

2. while(i<=6) 

3. { 

4.   printf(“%d”, i+2); 

5.  i=i+1; 

6. } 

The following components are examined in students’ response to Translating Q2: 

a) Ability to declare variables of correct data types -Line 1 (E-U). 

b) Ability to formulate correct loop - Line 2 (H-S). 

c) Ability to show the desired output - Line 4 (E-S). 

d) Ability to write well-structured program in clear logical order (E-U). 

Table xx shows the SOLO classification for Translating questions 

  

Table B.2  

SOLO Classification for Translating Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to complete all of the components to form a 

coherent whole. 

3 

Multistructural [M] Able to complete most of the components. All H-S 

and E-S components complete and valid.   

2 

Unistructural [U] Able to complete some components only. 1 

Prestructural [P]  There are pieces which makes no sense or the 

answer is totally wrong. 

0 

No attempt [N] The answer is blank. 999 
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Section C: Tracing 

Q1: 

 

 

a) Which branch of if/else structure will be 

executed if x = 5.  

Sol: Line 9 will be executed. 

b)  What is the output of the program when 

x=6.  

Sol: 24 

 

 

 

Q2: 

 

a) Write the value of x when i = 1  

Sol: x=0 

b) Write the value of x at line 12.  

Sol: x=3 
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Table B.3 shows the SOLO classification for Tracing questions. 

 

Table B.3 

SOLO Classification for Tracing Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to provide correct solution to both parts a) and b). 3 

Multistructural [M] Able to provide solution to part a) and b) with minor 

errors or omissions. 

2 

Unistructural [U] Only one part of the two is completed correctly. 1 

Prestructural [P]  There are bits of pieces which makes no sense or the 

answer is totally wrong. 

0 

No attempt [N] The answer is blank. 999 

  

 

Section D: Explaining 

Explain in plain English the purpose of the following code: 

Q1:  

 

 

 

 

 

 

A suitable solution may look like this: 

 

The code swaps the values in a and b.  
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Q2:  

 

 

 

 

 

A suitable solution may look like this: 

 

The code counts the number of even 

numbers in a given array. 

 

Table B.4 shows the SOLO classification for Explaining questions. 

Table B.4  

SOLO Classification for Explaining questions 

SOLO level Indicator Raw Score 

Relational [R] Able to provide a summary of what the code does in 

terms of its purpose. 

5 

Relational Error [RE] Able to provide a summary of what the code does in 

terms of its purpose but has some minor errors or 

omissions. 

4 

Multistructural [M] Able to provide a line-by-line description of all the 

code. 

3 

Multistructural Error 

[ME] 

Able to provide a line-by-line description of most of 

the code but has some minor errors or omissions. 

2 

Unistructural [U] Able to provide description of one portion of the 

code. 

1 

Prestructural [P]  There are bits of pieces which makes no sense or the 

answer is totally wrong. 

0 

No attempt [N] The answer is blank. 999 
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Section E: Writing 

Q1: Write a program in C that reads two integer number in the variables x and y. Divide 

x by y and report the result. You should confirm that y (divisor) is not zero before 

performing the division, as division by 0 is not possible and will cause your program 

to crash.  

A suitable solution may look like this: 

 

The following components are examined to students’ response to Writing Q1: 

a) Ability to declare variables of correct data types - Line 5 and 6 (E-U). 

b) Ability to read the variables from the console - Line 8 (E-S).  

c) Ability to check the divisor for zero and act accordingly - Line 10, 12 and 

14 (E-S). 

d) Ability to compute correct division – Line 16 (H-S). 

e) Ability to show the desired output - Line 17 (E-S). 

f) Ability to write well-structured program in clear logical order (H-U). 
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Q2: Write a program in C that calculates the sum of every third integer, beginning with 

i = 2 (i.e. calculate the sum of 2 + 5 +8 + 11 + ……) for all values of i that are less 

than 30.  

A suitable solution may look like this: 

 

The following components are examined to students’ response to Writing Q2: 

a) Ability to declare variables of correct data types - Line 5 (E-S). 

b) Ability to initialise a variable used to accumulate sum in the program - Line 

5 where sum = 0 (H-U). 

c) Ability to formulate correct loop - Line 7 (H-U). 

d) Ability to compute correct sum- Line 9 (H-S). 

e) Ability to show the desired output- Line 11(E-U). 

f) Ability to write well-structured program in clear logical order (H-U). 

Table B. 5 shows the SOLO classification for Writing questions 

Table B. 5  

SOLO Classification for Writing Questions 

SOLO level Indicator Raw Score 

Relational [R] Able to complete all of the components as a 

coherent whole. 

6 

Relational Error [RE] Able to complete all of the components but has 

some minor syntax or logic errors or omissions. 

5 

Multistructural [M] Able to complete most of the components. All H-S 

and E-S components complete and valid.  

4 

Multistructural Error 

[ME] 

Able to complete most of the components but has 

some minor syntax or logic errors or omissions. 

3 
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SOLO level Indicator Raw Score 

Unistructural [U] Able to complete some components only. 2 

Unistructural error 

[UE] 

Able to complete some components only with some 

syntax or logic errors. 

 

Prestructural [P]  There are bits of pieces which makes no sense or the 

answer is totally wrong. 

0 

No attempt [N] The answer is blank. 999 
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Appendix C: Sample Students’ Responses to Programming Skills Test 

Questions Marked Using SOLO Classification 

Figure C.1,  Figure C.2 and Figure C.3 shows the sample students’ response to 

algorithm design Q1 

  

Figure C.1. R and RE response to algorithm design Q1. 

 

 

 

 Figure C.2. M and ME response to algorithm design Q1. 
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Figure C.3. U and P response to algorithm design Q1. 

 

Figure C.4, Figure C.5 and Figure C.6 shows the sample students’ response to 

algorithm design Q2 

 

 

 

Figure C.4. R and RE response to algorithm design Q2. 
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Figure C.5. M and ME response to algorithm design Q2. 

 

 

 

Figure C.6. U and P response to algorithm design Q2. 
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Figure C.7 and Figure C.8 shows the sample students’ response to translating Q1. 

 

 

Figure C.7. R and M response to translating Q1. 

 

 

 

Figure C.8. U and P response to Translating Q1. 

 

 

 



 

221 

Figure C.9 and Figure C.10 shows the sample students’ response to translating Q2. 

 

 

Figure C.9. R and M response to translating Q2. 

 

 

 

 

Figure C.10. U and P response to translating Q2. 
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Figure C.11 shows the sample students’ response to tracing Q1. 

 

 

 

 

 

 

 

Figure C.11. R, M, U and P response to tracing Q1. 
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Figure C.12 shows the sample students’ response to tracing Q2. 

 

 

 

 

Figure C.12. R, M, U and P response to tracing Q2. 

 

Figure C.13, Figure C.14 and Figure C.15 shows the sample students’ response to 

explaining Q1. 

 

 

Figure C.13. R and RE response to explaining Q1. 
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Figure C.14. M and ME response to explaining Q1. 

 

 

 

Figure C.15. U and P response to explaining Q1. 
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Figure C.16, Figure C. 17 and Figure C.18 shows the sample students’ response to 

explaining Q2. 

 

 

 

 

Figure C.16. R and RE response to explaining Q2. 

 

 

Figure C. 17. M and ME response to explaining Q2. 
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Figure C.18. U and P response to explaining Q2. 

 

Figure C.19, Figure C.20, Figure C.21 and Figure C.22 shows the sample students’ 

response to writing Q1. 

 
 

Figure C.19. R and RE response to writing Q1. 
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Figure C.20. M and ME response to writing Q1. 

 

 

 
 

Figure C.21. U and UE response to writing Q1. 
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Figure C.22. P response to writing Q1. 

 

Figure C.23, Figure C.24, Figure C.25 and Figure C.26 shows the sample students’ 

response to writing Q2. 

 

 

Figure C.23. R and RE response to writing Q2. 
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Figure C.24. M and ME response to writing Q2. 

 

 
 

 

 

Figure C.25. U and UE response to writing Q2. 
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Figure C.26. P response to writing Q2. 
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Appendix D: Participant Consent Form 
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Appendix E: Participant Information Letter 
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Appendix F: Ethics Approval Letter 
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Appendix G: Student Survey Form 
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Appendix H: Lecturer Survey Form 

  

 





 

243 
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Appendix I: Testing the Assumptions for Normality 

Assumption #1: The relationship between Independent Variables (IVs) and 

Dependent Variables (DV) 

The first assumption of Multiple Regression is that the relationship between the IVs 

and the DV can be characterised by a straight line. The scatterplots shown in Figure 

I.1 checks the relationship between each of the IVs and DV. 

 

 

  

 

Figure I.1. Scatterplot showing the relationship between FSE and DV are linear. 
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Assumption #2: There is no multicollinearity in the data.  

This is essentially the assumption that your predictors are not too highly correlated 

with one another. This assumption is verified by multicollinearity. First checking 

the values of correlation coefficients less than 0.8 as shown in Figure I. 2. 

 

Figure I. 2. Correlation coefficient between Student Performance and programming 

skills. 

 

In addition to that VIF scores are well below 10, and the tolerance scores to be above 

0.2; which is the case with these variable as shown in the Figure I.3, Figure I.4, Figure 

I. 5 and Figure I. 6.  

 

 

Figure I.3. Collinearity Statistics highlighting tolerance and VIF (a) 
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Figure I.4. Collinearity Statistics highlighting tolerance and VIF (b). 

 

 

Figure I. 5. Collinearity Statistics highlighting tolerance and VIF (c). 

 

Figure I. 6. Collinearity Statistics highlighting tolerance and VIF (d). 

 

Assumption #3: The values of the residuals are independent. 

This is basically the same as saying that we need our observations (or individual data 

points) to be independent from one another (or uncorrelated). We can test this 
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assumption using the Durban-Watson statistic. Figure I. 7 shows that the Durban-

Watson statistic is between 0 and 4.  

  

 
 

Figure I. 7. Durban-Watson statistic for the IVs. 

 

Assumption #4: The variance of the residuals is constant. 

 This is called homoscedasticity, and is the assumption that the variation in the 

residuals (or the amount of error in the model) is similar at each point across the model. 

In other words, the spread of the residuals should be fairly constant at each point of 

the predictor variables (or across the linear model). To test the fourth assumption, we 

have plotted the standardised values of our model would predict against the 

standardised residuals obtained. From Figure I. 8, it appears to be more random than 

funnelled, this assumption is probably satisfied.  

 

 



 

249 

 
 

 
 

Figure I. 8. Scatter plot of standardised predicted value against residuals.  

 

Assumption #5: The values of the residuals are normally distributed. 

This can be tested by looking at the distribution of residuals. We can do this by 

checking the Normal probability plot. From Figure I.9, we can see that most of the 

dots lie closer to the diagonal line and residuals are distributed close to normal.  
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Figure I.9. P-P plots for the model with different DVs. 

Assumption #6: There are no influential cases biasing the model. 

The significant outliers and influential data points can place undue influence on our 

model which can be verified using Cook’s Distance. From Figure I.10, we can see 

that each of the values are less than 1 showing there is not significant outliers.  
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Figure I.10. Cooks distance from the regression analysis with DVs namely FSE, OS, 

MFSE and Writing.  

 





 

253 

Appendix J: Biggs Revised Study Process Questionnaire (R-SPQ-2F) 

This questionnaire has a number of questions about your attitudes towards your studies 

and your usual way of studying.  

There is no right way of studying. It depends on what suits your own style and the 

course you are studying. It is accordingly important that you answer each question as 

honestly as you can. If you think your answer to a question would depend on the 

subject being studied, give the answer that would apply to the subject(s) most 

important to you. 

Please read each of the following items completely and circle the one which accurately 

describes your feelings. Each letter stand for the following response. “This item is …” 

A—never or only rarely true of me 

B —sometimes true of me 

C—true of me about half the time 

D —frequently true of me 

E— always or almost always true of me 

Do not worry about projecting a good image. Your answers are CONFIDENTIAL. 

Thank you for your cooperation. 

 

The responses to items are scored as follows: 

A = 1, B = 2, C = 3, D = 4, E = 5 

To obtain main scale scores add item scores as follows: 

Deep Approach = 1 + 2 + 5 + 6 + 9 + 10 + 13 + 14 + 17 + 18 

Surface Approach = 3 + 4 + 7 + 8 + 11 + 12 + 15 + 16 + 19 + 20 

Subscale scores can be calculated as follows: 

Deep Motive = 1 + 5 + 9 + 13 + 17 

Deep Strategy = 2 + 6 + 10 + 14 + 18 

Surface Motive = 3 + 7 + 11 + 15 + 19 

Surface Strategy = 4 + 8 + 12 + 16 + 20 
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1. I find that at times studying gives me a feeling of deep personal 

satisfaction.  

A B C D E 

2. I feel that virtually any topic can be highly interesting once I get 

into it. 

A B C D E 

3. I find that studying academic topics can at times be as exciting as 

a good novel or movie.  

A B C D E 

4. I work hard at my studies because I find the material interesting. A B C D E 

5. I come to most classes with questions in mind that I want 

answering. 

A B C D E 

D
ee

p
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a
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6. I find that I have to do enough work on a topic so that I can form 

my own conclusions before I am satisfied. 

A B C D E 

7. I find most new topics interesting and often spend extra time 

trying to obtain more information about them. 

A B C D E 

8. I test myself on important topics until I understand them 

completely. 

A B C D E 

9. I spend a lot of my free time finding out more about interesting 

topics which have been discussed in different classes. 

A B C D E 

10. I make a point of looking at most of the suggested readings that 

go with the lectures. 

A B C D E 

S
u
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11. My aim is to pass the course while doing as little work as possible. A B C D E 

12. I do not find my course very interesting so I keep my work to the 

minimum. 

A B C D E 

13. I find I can get by in most assessments by memorising key 

sections rather than trying to understand them. 

A B C D E 

14. I find it is not helpful to study topics in depth. It confuses and 

wastes time, when all you need is a passing acquaintance with 

topics. 

A B C D E 

15. I see no point in learning material which is not likely to be in the 

examination. 

A B C D E 

S
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16. I only study seriously what’s given out in class or in the course 

outlines. 

A B C D E 

17. I learn some things by rote, going over and over them until I know 

them by heart even if I do not understand them. 

A B C D E 

18. I generally restrict my study to what is specifically set as I think it 

is unnecessary to do anything extra. 

A B C D E 

19. I believe that lecturers shouldn’t expect students to spend 

significant amounts of time studying material everyone knows 

won’t be examined. 

A B C D E 

20. I find the best way to pass examinations is to try to remember 

answers to likely questions. 

A B C D E 
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Appendix K: Proposed CS1 Module Description 

Module Title: Introduction to Computer Programming 

 

Module code: CS1 

 

General Objectives  

This module introduces the fundamental principles of computer programming with an 

emphasis on problem solving strategies using structured programming techniques. The 

C programming language is used to introduce problem analysis, algorithm design and 

program implementation. 

Learning Outcomes 

By the end of this module, students will be expected to 

1. Analyse problems and derive their solutions. 

2. Develop algorithms and draw the flow of logic for a given problem. 

3. Write, compile, and debug simple computer programs for the given the 

problem statements. 

4. Utilise a wide range of features available in C to write programs to solve 

problems.  

5. Analyse problem requirements in order to understand what type of data and 

processes are involved in the system.  

6. Design modular approach to satisfy those requirements.  

7. Organize program code to implement the design.  

8. Verify that the results obtained satisfy the original requirements.  

 

Learning and Teaching Approach Used 

1. Lecture     4 hours per week 

a. Lecture    3 hours 

b. Tutorial   1 hour 
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2. Practical    3 hrs per week 

a. Demonstration (Tutor)  1 hour 

b. Practice/Exercise (Student) 2 hours 

Assessment 

1. Continuous Assessment                50 Marks 

a. Assignments      10 Marks 

b. Mid-Semester Examination   20 Marks 

c. Practical Examination and Viva  20 Marks 

 

2. Semester End Examination     50 Marks 

 

Subject Matter 

Week 1: Learning strategies 

Week 2, 3 & 4: Algorithms and problem solving (tracing and explaining an 

algorithms)  

Week 5: Introduce language features: data types, assignments, variable declaration, 

operators, expressions and simple input/output functions. 

Week 6: Translate simple algorithms into programming code (translating). Using 

programming environment, write translated programs, compile, run and debug. 

Week 7, 8, 9 & 10: Introduce language features: control structures, functions, arrays 

and files.  

Week 11 & 12: Translate complex algorithms into programming code (translating). 

Manually execute the translated programs (tracing) and explain the purpose of the 

translated code (explaining). 
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Week 13: Introduce simple code writing from the given problem (writing) using 

programming environment. Manual tracing and explaining should go in parallel as 

well. 

Week 14: Introduce complex code writing from the given problem (writing) using 

programming environment. Manual tracing and explaining should go in parallel as 

well. 

Week 15: Introduce additional language features depending on what programming 

language is used in CS1 involving tracing, explaining and writing programs. 

 





 

259 

Appendix L: CS1 FSE paper of three colleges at RUB 
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