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pollution load to receiving water and the cost of wastewater treatment together with cost 14 

of pump operation. 15 

• Spatial and temporal variations of flow and water qualities in stormwater runoff are 16 

considered to the model. 17 

• The model can control the gates dynamically with respect to the time, based on the 18 

feedback from the control settings of the previous time-step. 19 
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Abstract  23 

Sewer network planners use control algorithms, based on optimization techniques, to control 24 

urban wastewater systems. These control algorithms have been used to ease the stress on the 25 

sewer networks and then, to reduce or to minimize the combined sewer overflows (CSOs). CSOs 26 

are not only risking human health but also adversely affecting the aquatic lives. Therefore, many 27 

cities try to avoid CSOs. However, this cannot be done to the perfect level due to the capacity 28 

limitations of the existing combined sewer networks. In addition, climate variabilities have 29 

caused unpredictable precipitation increments and therefore, the control is extremely difficult. 30 

Therefore, considering the spatial and temporal variations of runoffs and qualities of stormwater 31 

generated from the precipitation, an enhanced optimal control algorithm is illustrated in this 32 

paper to control the existing combined sewer networks. Minimizing the pollution load to the 33 

receiving water and minimizing the cost of wastewater treatment and pump operation are the two 34 

objective functions in the developed optimization algorithm. The algorithm was then 35 

successfully applied to a real-world combined sewer network in Liverpool, United Kingdom. 36 

Results reveal that the developed optimal control model is capable of handling the dynamic 37 

control settings of combined sewer system to minimize the two objective functions 38 

simultaneously. With a little computational appreciation, the developed optimal control model 39 

can be well-used in the real-time control of combined sewer networks. 40 

 41 
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1. Introduction 46 

In many countries, the existing sewer networks are not designed to handle the collective 47 

stormwater and wastewater during the stormy periods (Zhao et al., 2017). Because of this 48 

capacity limitation, combined sewer overflows (CSOs) occur. Moreover, on-going climate 49 

variability and climate changes may cause intensified precipitation events in some areas which 50 

may also lead to frequent CSOs (Tavakol-Davani et al., 2016; Dirckx et al., 2017; Jean et al., 51 

2018; Zhang et al., 2018a). Though, CSOs sometimes prevent flooding in important places 52 

(Zhao et al., 2017) but it can bring significant environmental risk if they are not properly 53 

controlled (Jalliffier-Verne et al., 2016; Madoux-Humery et al., 2016; Brokamp et al., 2017). 54 

The receiving water bodies are in danger due to sudden accumulation of pollution loads from 55 

CSOs (Zhang et al., 2018b; Schertzinger et al., 2019; Soriano and Rubió, 2019). Many 56 

researchers conducted detailed research on identifying the various pollutants in CSOs, impact of 57 

CSOs on ecosystem and drinking water qualities (Gasperi et al., 2012; Jalliffier-Verne et al., 58 

2016; García et al., 2017; Hermoso et al., 2018; Wei et al., 2019). García et al., (2017) have 59 

experimentally obtained the pollutographs for two cities in Spain along the lines of CSOs. 60 

Rathnayake (2013) also derived pollutographs for various water quality constituents considering 61 

spatial and temporal variations. Again, the CSOs can cause severe urban flooding (Meneses et 62 

al., 2018) at unexpected locations and reduce the wastewater treatment plants’ efficiency (Zhang 63 

et al., 2018b). Therefore, minimizing CSOs in urban areas is an important task for many 64 

municipal councils. These may be done by using structural or non-structural measures. The 65 

physical constructions developed to reduce the CSOs are the structural measures in controlling 66 

CSOs (for example, underground tunnels to store combined sewer flows in stormy days). 67 

However, Non-structural measures do not involve any physical constructions but they involve 68 
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the usage of knowledge and experiences to develop various policies and control approaches to 69 

reduce the CSOs in existing sewer networks. The financial capabilities and disturbances to the 70 

habitants have limited the structural measures in minimizing the CSOs (Zhang et al., 2018a). 71 

Thus, non-structural measures are given a higher priority in today’s world.  Therefore, non-72 

structural measures, including control algorithms based on optimization theories, are becoming 73 

popular (Zimmer et al., 2015 & 2018). Nevertheless, structural measures are still used when the 74 

space and financial capacities are permitted (Nasri and Haynes, 2015). 75 

Even though, the non-structural measures are used to overcome the issues from CSOs, multiple 76 

interactions in various sub-systems such as, catchments, sewer systems, wastewater treatment 77 

plant and receiving water bodies make the control of urban wastewater system a greater 78 

challenge (Saagi et al., 2016 & 2018). In addition, the dynamic behavior of flow and wastewater 79 

quality in sewer systems make the scenario more complex (Rathnayake and Tanyimboh, 2015). 80 

Therefore, a holistic solution for the optimal control of combined sewer system is still to be 81 

tabled.    82 

Many researchers showcased the usage of green infrastructure (GI) as a measure to reduce the 83 

CSOs (Lucas and Sample, 2015; Sørup et al., 2016; Tao et al., 2017; Talebi and Pitt, 2019). 84 

Green infrastructure is an approach to balance the natural water cycle using engineered or non-85 

engineered techniques of water management. Some other researchers have introduced model 86 

predictive control (MPC) approaches to minimize CSOs (Joseph-Duran et al., 2015; Zhao et al., 87 

2017; Snodgrass et al., 2018). Zimmer et al., (2015) presented an MPC model to reduce the 88 

CSOs for a deep-tunnel sewer system. They have further extended their work (Zimmer et al., 89 

2018) to explore the efficiency and effectiveness of different MPC approaches.   90 
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Storage tanks in combined sewer systems are utilized properly as another solution to CSOs. The 91 

overall idea of this method is to reduce the CSOs volume flow rates. Therefore, these control 92 

models are based on the volumetric measures. Models based on storage tanks have been applied 93 

as case studies in many places (Ryu et al., 2015; Hermoso et al., 2018; Georgaki et al., 2018; 94 

Wang and Guo, 2018; Zhang et al., 2018a; Zhang et al., 2018b). These studies include the 95 

optimal sizing and optimal locating of storage tanks (Hermoso et al., 2018).  96 

Real time control (RTC) plays a major role in sewer network control. The control algorithms 97 

continuously get the feedback from the sewer system and adjust the settings accordingly. 98 

However, this is not easily applicable for all combined sewer systems, due to the logistical 99 

issues. Nevertheless, many researchers tried to implement RTC strategies to combined sewer 100 

systems as a holistic solution for CSOs (Enterm et al., 1998; Dirckx et al., 2017; Mahmoodian et 101 

al., 2017; Meneses et al., 2018; Congcong et al., 2019). However, some of these simplified RTC 102 

systems can be found in many places to measure the water quality constituents which may 103 

include Graz in Austria (Hofer et al., 2018), Copenhagen in Denmark (Vezzaro et al., 2014), 104 

Lodz in Poland (Brzezińska et al., 2016), Trondheim (Weinteich et al., 1997) and Fredrikstad 105 

(Nie et al., 2009) in Norway and Wilhelmshaven (Seggelke et al., 2013) and Odenthal (Erbe et 106 

al., 2002) in Germany. These RTC models in sewer systems are simple but fast in computation 107 

(Mahmoodian et al., 2017). But dynamic control based on receiving water qualities and 108 

minimizing CSOs is yet to be presented. Nevertheless, optimization techniques including multi-109 

objective optimization are widely used in these control algorithms (Mauricio-Iglesias et al., 110 

2015; Morales et al., 2015; Morales, 2016; Ogidan et al., 2016). Therefore, there is a need for a 111 

holistic approach to minimize the CSOs and maximize the receiving water qualities considering 112 

the dynamic spatial and temporal behaviors of the sewer systems and its attributes. This paper 113 
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presents a novel dynamic control algorithm based on the pollution control in receiving water due 114 

to CSOs and overall treatment and pumping cost of the sewer network. The control algorithm is 115 

based on the multi-objective optimization function to minimize both pollution load to receiving 116 

water and overall cost in sewer system simultaneously. In addition, it is capable of presenting 117 

dynamic control strategies based on the feedback, unlike most other rule-based control strategies. 118 

The temporal and spatial variation of pollutants in stormwater runoff is also highly important in 119 

finding the pollution load to the receiving water from various locations (Anne-Sophie et al., 120 

2015; Müller et al., 2017). Therefore, the presented method is capable of handling both spatial 121 

and temporal distributions of stromwater flow rates and also the various pollution concentrations 122 

in stormwater. The developed novel dynamic control algorithm was successfully tested to the 123 

real world combined sewer network and promising results are presented. 124 

2. Hydraulics of the storage tanks in sewer networks 125 

Storage tanks in sewer networks play an important role in minimizing possible CSOs. They store 126 

wastewater during the stressed (stormy) periods and release back to the sewer network in non-127 

stressed (dry) periods. The storage tanks are very common in combined sewer networks and can 128 

be categorized into on-line storage tanks or off-line storage tanks (Read and Vickridge, 1997; 129 

Read 2004). The storage tank category is mainly selected based on the surrounding land areas 130 

and land uses of the sewer networks. If the land area is crowded or highly valuable, the sewer 131 

network planners can decide to have the storage tank at a faraway location where the land area is 132 

not much valuable. This process requires additional hydraulic components such as pumps to have 133 

two directional flows. If surrounding land area is not so costly, the storage tanks can be placed 134 

nearer to the sewer system, and thus the control is easy and it may not require a pump. Therefore, 135 
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a complex larger sewer network may have both features of on-line storage tanks and/or off-line 136 

storage tanks. 137 

On-line storage tanks are attached to the CSO chambers. The schematic diagrams of on-line and 138 

off-line storage tanks are shown in Figure. 1. The on-line storage tanks start to fill (��) when the 139 

inflow (��,�) is more than the maximum allowable through flow (��,�) to the sewer network 140 

(Figure 1a). A throttle is usually used to control the discharge from the on-line storage tank. 141 

When the water level in the storage tank reaches to the maximum, the flow to the storage tank 142 

from sewer chamber is blocked. Therefore, the system allows the sewer chamber to have 143 

overflows (��,�). However, when the water level in sewer chamber reduces to a controllable 144 

level, the bottom orifice combining storage tank and sewer chamber is opened and the stored 145 

flow is easily transferred back to the sewer chamber. 146 

 

�� – flow to the storage tank from sewer chamber 

	
� – water level of the storage tank 
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ℎ�,� – water level in the sewer chamber 

	� – spill level of the sewer chamber 

��,� – catchment inflow to 
�� interceptor node 

��,� – flow from 
�� sewer chamber to 
�� interceptor node 

��,� – combined sewer overflow discharge at 
�� interceptor node 

(a) 
 

 
(b) 

 147 

Figure 1. Schematic diagram of sewer chamber with (a) on-line storage tank and (b) off-line 148 

storage tank 149 

 150 

Figure 1b shows the schematic diagram of the off-line storage tank in the combined sewer 151 

systems. Unlike the on-line storage tanks, the off-line storage tanks are physically separated from 152 

CSO chambers. The off-line storage tanks are placed far away from the sewer chambers. When 153 

the land area around sewer chambers are highly valuable, the designers move the on-line storage 154 

tanks to off-line storage tanks. Therefore, storage tanks in sewer system in rural areas may be 155 

preferable than the urban areas.  156 
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The flow is diverted to the off-line tank from the sewer chamber during the stormy seasons. This 157 

can either be via gravity fed pipes or pumped pipes. During unstressed periods the stored 158 

wastewater can be released back to the sewer chamber. However, the releasing of wastewater 159 

must be via pumped pipes if wastewater was diverted via gravity fed pipes or vice versa. 160 

Therefore, the off-line storage tank always comes with a hydraulic pump, which add an 161 

additional cost to the operation. But the extended pipeline (away from the sewer chamber) in off-162 

line storage tank also gives an additional storage facility during the stormy period.  163 

3. Mathematical formulation for the optimization problem 164 

This section presents a development of an algorithm to control the combined sewer systems 165 

dynamically. The dynamic control is based on the feedback from each time-steps by solving the 166 

following multi-objective optimization algorithm. The developed algorithm considers two 167 

objective functions which are time, flow and water quality dependent. 168 

 169 

3.1 Objective functions 170 

The first objective function (��) is formulated to minimize the pollution load discharges to the 171 

natural water from the CSOs at each time-step. The mathematical expression of the first 172 

objective function is given in the Equation 1. 173 

 174 

1
1

n

i

i

F Minimize P
=

= ∑  (1) 

 175 

where �� is the pollution load discharged from ith sewer chamber at a given time-step and n is the 176 

number of CSOs or number of sewer chambers. ��  is calculated using the effluent quality index 177 

(EQI) defined to each CSO. EQI is a single index to measure the pollution load. It integrates 178 
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several pollutants together including the concentrations of total suspended solid (TSS), 179 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrates and nitrites 180 

(NOX), total Kjedahl nitrogen (TKN) and total phosphorus (TP). Equation 2 gives the 181 

mathematical expression for the EQI. 182 

 183 
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 184 

where ����),  �� and �� are the combined sewer overflow rate, final and initial time, respectively. 185 

CTSS, CCOD, CNOX, CBOD, CTKN and CTP are the concentrations of total suspended solids, chemical 186 

oxygen demand, nitrates and nitrites, five-day biochemical oxygen demand, total Kjeldahl 187 

nitrogen and total phosphate, respectively and measured in milligram per liters (mg/L). 188 

Numerical values in front of the concentrations are the weightages used to integrate the different 189 

pollutants to build up the pollution load. More information on this effluent quality index can be 190 

found in Benedetti et al., (2006), Kim et al., (2009) and Rathnayake (2018). 191 

The second objective function (��) is formulated to minimize the treatment plant cost and the 192 

operational cost of pumps in the sewer system at a given time-step. The mathematical behavior 193 

of the objective function is presented in Equation 3. 194 

 195 

�� = �
�
�
�� � � +  ") (3) 

 196 

where CT (€/year) is the wastewater treatment plant cost and the CP (€/year) is the operational 197 

cost of pumps in sewer system. CT and CP are based on the wastewater flowrate. For example, 198 
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for a particular system, the pump cost is calculated based on the wastewater volume, which is 199 

pumped from the hydraulic pump. Cost of treatment plant can be expressed according to the 200 

Equation 4. 201 

 202 

 � =
#$
%
$&

1642353 × ���./01,                                                                                           �� ≤ 3�345

1891.154 × �345�./01 + 7.84 × �� − 3.38 × �345 + 7584,      6�345 ≥ �� ≥ 3�345 
1891.154 × �345�./01 + 3.38 × �345 + 7584,                                              6�345 ≤ �� 

; (4) 

 203 

where �� (m3/s) and ��345 (m3/s) are the treated wastewater volume flowrate and the dry 204 

weather flowrate, respectively. More information about this treatment plant cost function can be 205 

found in Rathnayake and Tanyimboh (2015) and Rathnayake (2013). The above presented 206 

treatment cost function looks at the total operational cost of wastewater treatment plant 207 

including, wastewater treatment cost, personal cost, energy cost, maintenance cost, etc. In 208 

addition, the treatment cost formula can be modified time-to-time using a simple coefficient 209 

based on the considered country’s economy.  210 

The pump operational cost ( ") is formulated as a function of pumped wastewater volume flow 211 

rate (�") given in Equation 5. The equation developed is based on the power required to pump 212 

the wastewater to the required head and it is a function of the pumped wastewater volume flow 213 

rate.  214 

 215 

 " = < =>	"?@AB@?BC�C4�" �" (5) 

 216 
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where K, ρ, g, HP, ηpump, ηmotor and �" are the cost for unit power in electricity, density of 217 

wastewater, gravitational acceleration, head given to the wastewater by the pump, efficiency of 218 

the pump, efficiency of the motor and pump operation time, respectively. More information on 219 

the development of this generic pump operational cost can be found in Rathnayake (2018). 220 

 221 

3.2 Constraints 222 

The above stated two objective functions (�� and ��) are under a set of constraints. In other 223 

words, the solutions of these two objective functions must be limited to the given set of 224 

constraints. The sewer system hydraulically satisfies the continuity equation. Figure 2 shows the 225 

schematics of the node in the sewer network. Referring to the Figure 2, the continuity equations 226 

can be illustrated as shown in Equations 6 - 8. 227 

 228 

 229 

��,� – catchment inflow to 
�� interceptor node 230 

��,� – combined sewer overflow discharge at 
�� interceptor node 231 

��,� – through flow in interceptor sewer at 
�� node 232 

��,� – flow from 
�� sewer chamber to 
�� interceptor node 233 
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ℎ�,� – water level in the sewer chamber 234 

	� – spill level of the sewer chamber 235 

 236 

Figure 2 Schematic diagram of combined sewer chamber 237 

 238 

��,� + ��D�,� − ��,� = 0 (6) 

  

FG H�I,J
H� = ��,� − ��,� ;         ℎ�,� < 	� (7) 

  

FG H�I,J
H� = ��,� − ��,� − ��,� ;       ℎ�,� > 	� (8) 

 239 

where AC is the surface area of the sewer chamber. In addition, the sewer system is under the 240 

capacity constraints. They are introduced to satisfy the non-silting and non-scouring flow rates 241 

(velocities) in sewer network. These capacity constraints are given in Equation 9.  242 

 243 

0 ≤ ��,� ≤ �BMN,� (9) 

 244 

where ��,� and �BMN,�  are the flow rates inside the ith sewer conduit at time t and the maximum 245 

allowable flow rate in ith sewer conduit, respectively. 246 

 247 

3.3 Solution technique for the optimization problem 248 

Multi-objective optimization problems can be solved in various ways (Marler and Arora, 2004). 249 

Weighted global criterion method (Zhang and Shivpuri, 2009; Costa et al., 2011; Zhao et al., 250 
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2012), weighted sum method (Kim and de Weck, 2004; Marler and Arora, 2009; Wang et al., 251 

2018), Lexicographic method (Sun et al., 1999; Jee et al., 2007; Aghaei et al., 2011), weighted 252 

min-max method (Wang et al., 1996; Shimoda et al., 1996; Singh, 2002), exponential weighted 253 

criterion (Carpinelli et al., 2014 ; Kang et al., 2014), weighted product method (Wang et al., 254 

2010), goal programming methods (Charnes and Cooper, 1977; Hu et al., 2007), bounded 255 

objective function method (Abo-Sinna and Baky, 2007; Zheng et al., 2011), physical 256 

programming methods (Qiu et al., 2011; Yuan et al., 2014) and generic algorithms (Grefenstette, 257 

1986; Srinivas and Deb, 1994) are several methods in the literature to obtain solutions from 258 

multi-objective optimization problems. A genetic algorithm-based optimization solver was used 259 

to obtain the optimal solutions for the developed multi-objective optimization problem in this 260 

study. Despite the other available approaches, a genetic algorithm solver was selected due to the 261 

complexity of the optimization problem.  262 

Genetic algorithms mimic the biological evolution in searching for the minimum or maximum 263 

solutions (Marler and Arora, 2004). They continuously update the population of solutions in each 264 

step. Crossover and mutation processes are introduced by most of the generic algorithms to 265 

produce new offspring (children) from the parent population. More information on the process of 266 

genetic algorithms can be found in Davis (1991). 267 

Two objective functions given in Equations 1 and 3 were solved in the genetic algorithms’ 268 

environment. However, these objective functions were treated independently without simplifying 269 

them to one objective function using relative weights. As it was explicitly stated in Equations 2, 270 

4 and 5, the two objective functions vary with time and space. Therefore, the temporal and 271 

spatial variation of flow rates and concentrations of various water quality constituents are 272 

included. The parameters which are used to calculate the objective functions (�� and ��) were 273 
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directly obtained from the complete hydraulic simulations and water quality simulations of the 274 

sewer network. Therefore, the hydraulic simulations and water quality simulations were carried 275 

out for number of function evaluations (for example 10000 function evaluations) and more 276 

importantly, the full hydraulic simulations were carried out using Saint-Venant equations.  277 

 278 

 279 



16 

 

Figure 3 Flowchart to the solution algorithm for the developed multi-objective optimization 280 

problem 281 

 282 

Hydraulic model, SWMM 5.0 (Rossman, 2009) and multi-objective optimization module, NSGA 283 

II (Deb et al., 2002) were linked together to obtain the above stated parameters (inputs of the 284 

multi-objective optimization problem). SWMM 5.0 was developed by the U.S. Environmental 285 

Protection Agency (USEPA) and applied to many real-world examples all over the world 286 

(Berndtsson and Niemczynowicz, 1988; Rodriguez et al., 2003; Maneta et al., 2007; Leisenring 287 

and Moradkhani, 2012; Brunetti et al., 2016). The model is capable of conducting simulations 288 

and analysis to stormwater networks and sewer network to satisfy the hydrological, hydraulics 289 

and water quality requirements. On the other hand, NSGA II optimization algorithm is 290 

extensively used in real-world optimization problems including water resource management 291 

issues (Alizadeh et al., 2017; Bekele and Nicklow, 2007; Chang and Chang, 2009; Lei et al., 292 

2018; Naserizade et al., 2018). 293 

A set of orifices with gates placed in the CSO chambers were used to control the flow in the 294 

combined sewer system. Therefore, the decision variables of the developed multi-objective 295 

optimization problem are the gate openings of the orifices at different time-steps. The flowchart 296 

to the solution algorithm is presented in Figure 3. The gate openings in the orifices for the first 297 

time-step (0 – 15 minutes) were randomly generated in NSGA II. Then, a full hydraulic 298 

simulation including water quality of the wastewater was carried out inside the SWMM 5.0 299 

hydraulic model. The results from the simulation were fed to the NSGA II optimization 300 

algorithm and the two objective functions (�� and ��) were calculated accordingly. Then, the 301 

optimization algorithm was run to identify the optimal solutions. Depending on the sewer 302 

network controller, one optimal solution was selected from the Pareto optimal front and the 303 
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control settings for that optimal solution were obtained. Those control settings (gate openings) 304 

were then, used as the input data for first time step in the hydraulic model for the second time-305 

step (15 – 30 minutes) optimization process. The process was carried out for the whole storm 306 

period and control settings were obtained. Finally, sets of orifice gate openings were presented 307 

and these control settings can be used by the sewer network controllers.  308 

 309 

4. Real world application 310 

A real-world combined sewer network in Liverpool, United Kingdom was selected to test the 311 

developed dynamic control model. The interceptor sewer network (around 3200 m long) given 312 

by Thomas et al. (1999, 2000) and Thomas (2000) was further modified to incorporate the 313 

objective functions (�� and ��). These modifications include an introduction of several storage 314 

tanks (both on-line and off-line) and a hydraulic pump (P) to the off-line storage tank (T10). 315 

More details about these modifications can be found in Rathnayake (2018). The schematic 316 

diagram for the modified interceptor sewer network is given in Figure 4. 317 

 318 

 319 

Figure 4 Schematic diagram of interceptor sewer 320 
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The on-line storage tanks (T8 and T9) start to fill automatically when the wastewater level in the 321 

corresponding sewer chambers (T2 and T5, respectively) reaches the maximum capacities. The 322 

on-line storage tanks stop the inflow wastewater, when they reach their maximum capacities. 323 

Therefore, the on-line storage tanks do not allow any CSOs. The stored wastewater can be 324 

released back to the sewer system at the lower stressed periods. The control settings of the off-325 

line storage tank (T10) are slightly different from the on-line storage tanks. When the wastewater 326 

level reaches to the spill level of the sewer chamber (T3), the wastewater is pumped to the off-327 

line storage tank. However, the pump stops its operations when the off-line storage tank reaches 328 

to the maximum capacity. However, the stored wastewater is released back to the sewer system 329 

in a less stressed period under the gravity. These control settings in the storage tanks and pump 330 

were done using the control rules of the hydraulic model.  331 

The wastewater flows through the conduits (C1 to C7) are constrained according to the Equation 332 

9. The flows through C1 to C3 were kept at 3.26 m3/s and those of C4 to C7 were kept at 7.72 333 

m3/s. More details about the dimensions of the sewer chambers and conduits can be found in 334 

Rathnayake (2013, 2018). T10 off-line storage tank was placed 2 km away from the 335 

corresponding sewer chamber, T3. The elevation difference from T3 to T10 is 21 m and the 336 

chamber and the off-line storage tank are connected by 0.2 m diameter, 2000 m long conduit. 337 

Therefore, a pump (P) was introduced to allow the wastewater flow from T3 sewer chamber to 338 

T10 off-line storage tank. The pump automatically starts and pumps water from T3 to T10 when 339 

the wastewater level in T3 reaches to its spill level (6 m). The pump automatically stops when 340 

the wastewater in the T10 reaches to its maximum capacity and also if the wastewater level in T3 341 

sewer chamber reduces to an acceptable level (4 m level). These automated controls were coded 342 

inside the SWMM 5.0 hydraulic model using the pump control rules.  343 
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Stormwater inflows from seven different catchments were fed to the sewer chambers. The 344 

catchment names are listed at corresponding sewer chambers (Figure 4). They are Rimrose, 345 

Strand Road, Millers Bridge, Bankhall Relief, Northern, Bankhall and Sandhills Lane. Five 346 

different land-uses (residential, industrial, agricultural, mid urban and commercial) were 347 

assigned to these catchments. More details on the catchments and their land-uses can be found in 348 

Rathnayake (2013). Stormwater runoff includes runoff hydrographs from 2.5 hours storms for 349 

each catchment and pollutographs for the corresponding runoff hydrographs. TSS, COD, BOD, 350 

TKN, NOX and TP pollutographs were fed to each sewer chamber from the corresponding 351 

catchments. Therefore, the sewer chambers have inputs of spatial and temporal variations of 352 

runoffs and six different pollutographs. In addition, the flow rates from dry weather flows and 353 

the corresponding concentrations of pollution constituents were fed. More information on these 354 

inputs to the sewer chambers can be found in Rathnayake (2013, 2018) and Rathnayake and 355 

Tanyimboh (2015).   356 

Using the sewer flow dynamics in flow rates and wastewater qualities stated above, the 357 

developed multi-objective optimization algorithm was run to obtain the optimal solutions (�� and 358 

��). 10,000 function evaluations for one time-step (10,000 hydraulic and water quality 359 

simulations per one time-step) were carried out using the real coded NSGA II optimization 360 

algorithm. The gates introduced at sewer chambers were controlled according to the optimization 361 

algorithm based on the pollution load to the receiving water and the total cost of the system. 362 

Therefore, the gates of the sewer networks were controlled dynamically (with time and space); 363 

however, according to the solutions from the developed multi-objective optimization approach. 364 

Real coded optimization algorithm generates solutions in real numbers. This is important in gate 365 

controls as gate openings can be any value in between the minimum (fully closed) and maximum 366 



20 

 

(fully opened). Population sizes of 100 for 100 generations were chosen for the optimization 367 

process. The crossover probability was kept at 0.9 (Deb et al., 2002); however, different 368 

mutation probabilities were tested while calibrating the algorithm. Several random seeds were 369 

used for random runs for each time-step to check the convergence of the optimization algorithm.  370 

The optimization algorithm was initially run for the first time-step (0-15 minutes) and then, two 371 

extreme solutions were selected for the further analysis. They were minimum cost solution and 372 

the minimum pollution load solution. The gate openings were obtained for these two solutions 373 

and fed to obtain the two optimal corresponding solutions for the next time step. Similarly, 374 

optimal control settings for the other time steps (15 minutes by 15 minutes) until the end of the 375 

storm were obtained for the two extreme solutions (minimum cost and minimum pollution load). 376 

These simulations were carried out in a personal computer (Intel® Core™ i3) which has 3.40 377 

GHz and 4 GB RAM. The simulation times were about 10-50 minutes. 378 

5. Results and discussion 379 

Results and discussion section is divided into several subsections to illustrate the results in detail. 380 

It starts with the optimization results for the time-step (0-15 minutes) and identified two potential 381 

optimal solutions to proceed for the dynamic optimization process. Results of the overall 382 

robustness of the developed algorithm is then presented. Next, the optimal control settings of the 383 

gates are presented to illustrate the dynamic behavior of the control in the time axis. Finally, the 384 

hydraulic verification results are presented to verify the developed multi-objective optimization 385 

model in control of the combined sewer system. 386 

As it was stated in the preceding paragraph, the optimization simulations were carried out for 387 

two different solutions; the minimum pollution load solution and the minimum cost solution until 388 

the end of the storm runoff. However, the optimization simulations were performed at 15 389 
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minutes time steps; thus, the control settings (gate openings) can be obtained in the intervals of 390 

15 minutes until the end of storm. The simulations started at 0 – 15 minutes and then, proceeded 391 

for the next 15 minutes. 392 

 393 

5.1 Optimization solutions for the first time-steps (0-15 minutes) 394 

Pareto optimal front for the first time-step for 0-15 minutes is shown in Figure 5. The shape of 395 

the Pareto optimal front clearly presents minimizing behavior of the two objective functions. 396 

Two extreme solutions (minimum pollution load and minimum cost) were selected for the 397 

optimization process for the 15-30 minutes time-step. These two extreme solutions are shown as 398 

MPt1 (minimum pollution load solution at first time step) and MCt1 (minimum cost solution at 399 

first time step) in Figure 5. 400 

 401 

Figure 5 Pareto optimal front for 15 minutes 402 

5.2 Solutions for the dynamic optimization process Based on the two extreme solutions in 0-15 403 

minutes time-step, the dynamic optimization process was carried out for the minimum pollution 404 

load and minimum cost solutions for the total period of the storm (2 hours and 30 minutes). The 405 

Pareto optimal fronts obtained for minimum cost solution at different time-steps for the total 406 



22 

 

storm period are exhibited in Figures 6a-i. As it was stated in the “Solution technique for the 407 

optimization problem” and “Real world application” sections, the control settings from a 408 

particular time-step for the minimum cost were used as the data to the next time-step 409 

optimization process. For example; control settings for MCt2 was used in finding the control 410 

settings for MCt3. 411 

 412 

 

(a) For 15-30 minutes 

 

(b) For 30-45 minutes 

 

(c) For 45-60 minutes 

 

(d) For 60-75 minutes 
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(e) For 75-90 minutes 

 

(f) For 90-105 minutes 

 

(g) For 105-120 minutes 

 

(h) For 120-135 minutes 

 

(i) For 135-150 minutes 

Figure 6 Pareto optimal fronts for minimum cost solution over the time 413 

 414 

All these Pareto fronts show the usual minimizing behavior or shape. In each time-step, the 415 

control settings for the minimum cost solution were extracted and then fed to the next time-step 416 

optimization process. Pareto optimal fronts over the time for the minimum pollution load 417 
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solution are also similar to the Figures 6a-i (actual figure not shown). However, the Pareto 418 

optimal fronts show the minimizing behavior from their curved shapes (i.e. concave up with 419 

negative slopes).  420 

 421 

5.3 Robustness of the optimization algorithm 422 

The Figure 7a-b illustrate the Pareto optimal fronts for different initial seeds obtained for 15-30 423 

minutes for minimum pollution load solution and at 105-120 minutes for minimum cost solution 424 

respectively. Each plot contains optimal fronts from 10 random runs with different initial 425 

populations in the genetic algorithm. They clearly show the coinciding effect of the optimal 426 

solutions from different initial seeds, but after 100 generations. Therefore, the Figures 7a-b 427 

clearly demonstrate the consistency and the stability of the developed genetic algorithm. 428 

 429 

 

(a) At 30 minutes for minimum pollution 

load solution 

  

(b) At 2 hours for minimum cost solution 

Figure 7 Pareto optimal fronts for different initial seeds 430 

The Figure 8 presents the progress of the genetic algorithm in optimal solution obtaining for the 431 

third time-step (30-45 minutes). As it can be expected in genetic algorithms in searching optimal 432 



25 

 

solutions, Figure 8 illustrates a rapid convergence toward the minimum cost solution in 1000 433 

function evaluations compared to the minimum cost in 100 function evaluations. However, after 434 

that, the cost solution converges to the minimum solution. Nevertheless, if the sewer controller is 435 

looking for a solution at a reasonable computational cost, he/she can stop the optimization 436 

process at 2000 function evaluations rather than completing 10000 function evaluations in the 437 

optimization process. This control possibility is given in Table 1.  438 

 

Figure 8 Progress of GA for minimum cost solution at T3 

 

However, a similar but an interesting progressing behavior can be observed in minimum 439 

pollution load solutions. Unlike, the Figure 8, the process does not show a rapid convergence 440 

after the 100 function evaluations. Instead, it shows an increase of the pollution load solution. In 441 

fact, even the final optimal pollution load after 10000 function evaluations is numerically higher 442 

than the pollution load at 100 function evaluations. The circled solution was further investigated 443 

and found that it is an infeasible solution, which was generated initially in the process. Therefore, 444 

this solution can be ignored as we are only looking for the feasible solutions. After ignoring the 445 
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first infeasible solution, the process shows the usual minimizing convergence. Therefore, the 446 

productivity of the developed genetic algorithm in achieving optimal results was achieved.  447 

  448 

5.4 Comparison of solutions 449 

Table 1 presents the comparison of solutions for 2000 and 10000 function evaluations for the 450 

solution presented in Figure 8. The table clearly shows the benefit of obtaining optimal solutions 451 

at the premature level of the process. For example, there is no significant difference in cost 452 

solutions for 3rd time step at 2000 and 10000 function evaluations (€404 and €400, respectively). 453 

In addition, their corresponding pollution loads are the same (53 T each). Similar observations 454 

can be seen for the other time steps as well as the solutions in minimum pollution load solutions. 455 

 456 

Table 1 Comparison of solutions at 2000 and 10000 function evaluations 457 

Minimum cost solution at 3rd time step 

 Cost (€) Corresponding 

pollution load (T) 

At 2000 function 

evaluations 

404 53 

At 10000 function 

evaluations 

400 53 

 458 

The results after the complete optimization process for the whole storm period revealed that the 459 

minimum pollution load solution has pollution load of 176 tons for the total storm period (for 0-460 

150 minutes). This pollution load is at a cost of €11617. However, the minimum cost solution 461 
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has a cost of €1997 over the total storm period at 273 tons of pollution load. Therefore, the 462 

solutions satisfy the aim of the developed objective functions in the multi-objective optimization 463 

environment.  464 

In addition, the most important finding of this optimization is the dynamic control of the sewer 465 

system for the two extreme solutions. In other words, it was found two sets of orifice openings 466 

for the minimum pollution load and minimum cost solution over the 150 minutes. The minimum 467 

pollution load solution has 7 orifice opening settings for O1- O7. Each orifice opening has a 468 

dynamic controlling behavior based on the developed novel optimization algorithm. This 469 

dynamic control behavior presents 10 steps of orifice openings for 0-150 minutes in 15 minute 470 

intervals. The similar control settings were found to the minimum cost solution. Therefore, each 471 

orifice has 10 control settings over the 150 minutes.  472 

 473 

5.5 Optimal control gate openings 474 

Some of the orifice settings obtained from the optimization process was illustrated in Figure 9. 475 

Figure 9a presents the orifice openings for minimum pollution load for O1 orifice. It clearly 476 

shows the dynamic behavior in each time-step. From 15 minutes to 15 minutes, the orifice 477 

opening changes. However, the opening heights were not from pre-defined step to step openings; 478 

instead the openings can be any height along real number axis from minimum opening to the 479 

maximum opening height. In other words, the opening heights are not in the binary axis where is 480 

has step responses, but in real number axis with any number of decimals. In comparison, Figure 481 

9b presents orifice opening heights for O1 orifice for the minimum cost solution. Similar to the 482 

minimum pollution load solution case, Figure 9b also shows the dynamic behavior of the orifice 483 

heights over the 150 minutes. However, after the first 15 minutes, the orifice O1 is practically 484 
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closed until 75 minutes and then slightly opened for 75-90 and 90-105 minutes. It is again closed 485 

for 30 minutes and opened for the 135-150 minutes. Therefore, in comparison to the O1 486 

openings at Figure 9a, figure 9b shows reduced openings for minimum cost solution. 487 

Incidentally, this can be seen bit awkward situation and one would think the two figures have to 488 

be swapped for the titles of them. In other words, one would expect to have smaller openings of 489 

orifices and then to minimize the sewer overflows from the chamber for the minimum pollution 490 

load solution. Similarly, to have larger orifice openings in minimum cost solution which can lead 491 

more sewer overflows and then, to reduce the load at treatment plant to minimize the cost. 492 

However, it is well noted here that the objective function on pollution load is not totally based on 493 

the volumetric flow rate of combined sewer overflow, but it has many other water quality 494 

constituents’ concentrations. Therefore, this justifies the novelty of the developed optimization 495 

algorithm from many other developed algorithms in the basis of volumetric minimization of 496 

combined sewer overflow.  497 

 498 

 

(a) Orifice openings for O1 for the 

minimum pollution load solution 

 

(b) Orifice openings for O1 for the 

minimum cost solution 
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(c) Orifice openings for 15-30 minutes for 

the minimum pollution load solution 

(d) Orifice openings for 120-135 minutes 

for the minimum pollution load 

solution  

(e) Orifice openings for 15-30 minutes for 

the minimum cost solution 

 

(f) Orifice openings for 135-150 minutes 

for the minimum pollution load 

solution 

Figure 9 Orifice openings for some of the orifices 499 

Figures 9c and 9d present the orifice openings for 15-30 minutes time step and 120-135 minutes 500 

time step for the minimum pollution load solution. The figures clearly show the different control 501 

settings (orifice openings) for different orifices (O1 to O7). Therefore, it gives the applicability 502 

of the developed algorithm in spatial variation of control settings. In addition, the two figures at 503 

different time-steps guarantee the temporal variations of the control settings. Similarly, Figures 504 
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9e and 9f illustrate the orifice openings for 15-30 minutes time step and 135-150 minutes time 505 

step for the minimum cost solution. Orifice openings for the same time-step; however, for the 506 

two different extreme solutions are given in figures 9c and 9e. They clearly exhibit the 507 

applicability of the developed algorithm in different approaches. Therefore, the orifice openings 508 

(control settings) can be obtained depending on the desire of the sewer network controller. If the 509 

cost is more important, the controller can go for a cost prioritizing solution, whereas, if the 510 

pollution load is more important, the controller can look at a solution, which priorities the 511 

pollution load. The most important feature is that the controller can even look into these 512 

solutions at a smaller time step (even at 15 minutes). In addition, these four Figures 9c-f clearly 513 

show the spatial and temporal features of the control algorithm.  514 

 515 

5.6 Hydraulic analysis of selected solutions 516 

The Figure 10 presents the flow through sewer conduits for the total storm period for the 517 

minimum pollution load solution. These flow rates were obtained from the hydraulic simulations 518 

by feeding the control settings found from the optimization analysis. The dashed line on top of 519 

each figure (Figures 10a-g) gives the maximum possible flow rate allowed through the sewer 520 

conduits. These flow rates were imposed to the control algorithm as the constraints. The figures 521 

clearly show that none of the sewer conduits have flow rates more than the allowed flow rates. 522 

Those justify the constraint handling ability of the developed algorithm. In addition, they show 523 

the temporal variation of the flow rates through sewer conduits. However, the flow rates through 524 

sewer conduits are lowered from the controlling algorithm to keep the minimum cost solution. A 525 

significant component of the cost function depends on the treated wastewater volume. Therefore, 526 

in the minimum cost solution, the algorithm tries to reduce the flow rate to the sewer treatment 527 
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plant, thus to reduce the treatment cost. However, in contrast, the flow rates through the conduits 528 

for minimum pollution load solution have to be higher than the flow rates shown in Figure 10. 529 

More flows are allowed through the conduits to minimize the pollution loads from the CSOs. 530 

This observation can be seen in the hydraulic simulated results for the minimum pollution load 531 

solution.   532 

 533 

(a) Flow through C1 (b) Flow through C2 

(c) Flow through C3 (d) Flow through C4 
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(e) Flow through C5 (f) Flow through C6 

 

(g) Flow through C7 

Figure 10 Flow rates through sewer conduits for minimum cost solution 534 

 535 

Figures 11a illustrates the wastewater heights in the T1 sewer chamber for the minimum cost 536 

solution. The dashed line shows the maximum height, which the sewer chamber can hold before 537 

any CSOs. Therefore, the wastewater heights more than the dashed lines, reflect the CSOs. These 538 

sewer chambers acting as another storage tanks (on-line); however, they are with the possibility 539 

of having CSOs.  The hydraulic importance of having the storage tanks were discussed earlier; 540 

nevertheless, they keep a reasonable sewer volume without releasing as CSOs. Therefore, the 541 

optimization algorithm tries to have some overflows depending on the volumes or capacities of 542 
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the sewer chambers. Figure 11b presents the wastewater heights in one of the on-line storage 543 

tanks. Similar to the sewer chambers, the dashed lines represent the maximum heights of the 544 

storage tank. However, unlike the sewer chambers, the wastewater heights are not exceeding the 545 

maximum heights of the storage tanks. Therefore, the algorithm has the ability to keep the role of 546 

the storage tanks, i.e. with no CSOs. Even though the storage tanks do not have any CSOs, they 547 

are completely filled by the wastewater for the total time. Therefore, the stored wastewater can 548 

be released back to the sewer system after the storm.  549 

Nevertheless, Figure 11c illustrates the wastewater heights in the off-line storage tank. This off-550 

line tank works with a hydraulic pump. Interestingly, the storage tank is not completely filled 551 

similar to the other two on-line storage tanks. This is because the implementations of new cost 552 

function, which includes the cost of pump operation. As it was stated earlier, pump operational 553 

cost is a function of the pumped wastewater volume flow rate. Therefore, to minimize pump 554 

operational cost, the algorithm minimizes the pumped volume flow rate. Instead, the control 555 

algorithm allows to transfer the wastewater to the on-line storage tanks. Similar results can be 556 

seen in the minimum pollution load solution wastewater heights. Thus the results clearly 557 

revealed that the roles of sewer chambers, on-line storage tanks and off-line storage tanks with 558 

improved cost objective functions are satisfied.  559 
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(a) Wastewater height of T1 (b) Wastewater height of T8 

(c) Wastewater height of T10 

 

 

  

 
 

  
 

Figures 11 wastewater heights in the sewer chambers and storage tanks for the minimum cost 560 

solution 561 

The control algorithm developed in this study is unique as it can simultaneously minimize two of 562 

the most important objectives i.e., pollution load to receiving water from CSOs and the total 563 

wastewater treatment and pumping cost of the system. The presented algorithm is the first 564 

attempt capable of handling the simultaneous solutions of the multiple objectives and processing 565 

the control settings varied in temporal and spatial domains. Unlike most of the other real time 566 

optimal controls, this approach finds the hydraulic, hydrological and water quality solutions from 567 

full hydraulic simulations. Though this method was applied to an existing network in Liverpool, 568 

UK but the optimization algorithm is generic and can be applied anywhere. 569 

 570 

6. Conclusions 571 
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A novel algorithm based on multi-objective optimization is presented here to control the 572 

combined sewer networks. The algorithm is capable of minimizing the pollution load to the 573 

receiving water from the CSOs together with the cost of wastewater treatment and pumping cost 574 

in sewer system. The algorithm produces temporally and spatially varied dynamic control 575 

settings of the gates in sewer system. These control settings can be obtained as per the 576 

requirements of the authorities of the combined sewer system depending on the available 577 

financial situation and environmental regulations of the country. Usage of storage tanks in 578 

combined sewer systems was justified in the optimal solutions as the algorithm allows the 579 

storage tanks to be completely utilized. However, when it comes to incorporate a pump, which 580 

adds an operation and maintenance cost that particular storage tank was discouraged by the 581 

algorithm. Therefore, the introduced objective functions to the algorithm are satisfying the 582 

requirement of the authorities as well as the generic public.  583 

Even though the algorithm produces dynamic control settings based on the feedbacks given to 584 

the system, the solution algorithm is yet to be applied in the real-time. This is due to the 585 

computational cost of the algorithm. The algorithm needs to be improved in simulation times, so 586 

that it can be applied real-time. However, the developed control algorithm is well-structured to 587 

deal with the receiving water qualities and the cost incurred in the wastewater systems. The 588 

approach provides a holistic solution as it incorporates the spatial and temporal variations of 589 

flows and pollution concentrations in addition to the non-simplified hydraulic and water quality 590 

modeling in combined sewer network. Furthermore, the input parameters for the cost function 591 

can be easily improved depending on the economic status of a particular country or concerned 592 

area. Therefore, the algorithm would make a greater change in the related applications.  593 

 594 
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