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Abstract 13 

By convention, dissolved trace elements in the river water are considered to be the 14 

fraction that passes through a 0.45 µm filter. However, several researchers have 15 

considered filtration cut-off other than 0.45 µm for the separation of dissolved trace 16 

elements from particulate fraction. Recent research indicated that trace elements 17 

could exist in particulate form as colloids and natural nanoparticles. Moreover, the 18 

trace elements in the continental dust (aerosols) constitute a significant component in 19 

their geochemical cycling. Due to their high mobility, the trace elements in the 20 

micron and sub-micron scale have biogeochemical significance in the coastal zone. 21 

In this context, this study focuses on the highly mobile fraction of trace elements in 22 

particulates (< 11 µm) and dissolved form in the Lower Baram River. A factor model 23 

utilizing trace elements in the dissolved and mobile phase in the particulates (< 11 24 

µm) along with water column characteristics and the partition coefficient (Kd) of the 25 
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trace elements indicated a more significant role for manganese oxyhydroxides in 26 

trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The 27 

factor model further illustrated the dissolution of aluminium and authigenic clay 28 

formation. Except for Fe and Al, the contamination risk of mobile trace elements in 29 

particulates (< 11 µm) together with dissolved form are within the permissible limits 30 

as per Malaysian water quality standards during monsoon (MON) and post-monsoon 31 

(POM) seasons. 32 

Keywords: River; Estuary; Trace Elements; Particulates; Partition Coefficient; Iron-33 

Manganese Oxides. 34 
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1. Introduction 35 

The riverine network across the globe play a vital role in weathering the rocks 36 

on the continent and in transferring them to the world oceans in dissolved and 37 

particulate form (Chester and Jickells, 2012; Gaillardet et al., 2014; Qu et al., 2019). 38 

The warm and humid climate of the tropics with intense rainfall enhances weathering 39 

in the river basins (Dessert et al., 2003; Godderis et al., 2009; Goudie and Viles, 40 

2012; Hartmann et al., 2014; Macdonald et al., 2019). The prevailing high energy 41 

conditions in the tropical river basins can rapidly remove the products of weathering 42 

as solutes and particulates from the source area to the sea in a relatively shorter 43 

residence time compared to a more temperate climate (Sultan et al., 2011). Thus, the 44 

contribution of trace elements from tropical river systems to the coastal oceans is 45 

significant, and estuarine regions of such river systems are ideal places to explore the 46 

trace element geochemistry (Sultan et al., 2011; Kilunga et al., 2017; Borah et al., 47 

2018; Prabakaran et al., 2019; Wu et al., 2019; Zhang et al., 2019; Zhou et al., 2019). 48 

Asian rivers with less anthropogenically influenced basins may present an insight 49 

into the weathering and erosion control over aquatic chemistry (Zhang and Huang, 50 

1993). 51 

The estuaries are the delivery points of weathered products, and they also 52 

serve as an interface between the river and the ocean with gradational changes in 53 

their water column characteristics that render a unique environment (Price et al., 54 

1999; Bianchi, 2007; Fernandes et al., 2011; Samanta et al., 2018). The geochemical 55 

processes occurring within the estuarine regions are unique and essential to 56 

understand the fate of trace elements transported through the rivers. These trace 57 

elements influence the coastal water quality and the health of the coastal ecosystem 58 

(Looi et al., 2013; Gopal et al., 2018). 59 
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River induced changes to the marine environment associated with increased 60 

sediment load, nutrients and pollutants are a severe threat to coral ecosystems. Asia 61 

is renowned for its global hotspot status for coral biodiversity especially in the South 62 

China Sea and the Coral Triangle, supporting a diverse population of marine life 63 

including coral, algae, reef fishes and other invertebrates (Roberts, 1993; Bellwood 64 

and Hughes, 2001; Hoeksema, 2007; Huang et al., 2015; Heery et al., 2018). Despite 65 

being resilienet, the Miri-Sibuti Coral Ecosystem in the sub-aqueous Baram delta 66 

region exhibits signs of adverse effects owing to poor water quality and sediment 67 

load that endangered the coral health (Browne et al., 2019). Moreover, fishes in the 68 

coastal Miri exhibits trace metals accumulation but within the permissible limits 69 

(Anandkumar et al., 2017, 2018, 2019). However, long-term trends are not known. 70 

Therefore, knowledge of the behaviour of trace elements in the tropical river 71 

systems, especially in their estuarine region, becomes essential. This work, carried 72 

out in the Lower Baram River of Malaysian Borneo, is one such attempt to 73 

understand the geochemical processes that govern the behaviour of trace elements in 74 

the water column. 75 

1.1 Partitioning of trace elements between dissolved and particulate form 76 

The Baram River originates in the Kelabit Highlands of Borneo and flows 77 

through a dense rainforest before reaching the South China Sea. The river water pH 78 

is slightly acidic that can be ascribed to the presence of dissolved organics (Oliver et 79 

al., 1983) which enhances weathering (Walther, 1996) and results in the formation of 80 

dissolved, particulate and metal-organic complexes that finally reaches the estuary 81 

(Tipping and Heaton, 1983; Guo and Macdonald, 2006; Gaillardet et al., 2014). 82 

The partitioning of trace elements between dissolved and particulate form in 83 

the estuaries has ramifications for their transport to the ocean, interaction with biota, 84 

biogeochemical cycling, and elemental budgeting (Huang et al., 2012; Jin et al., 85 
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2010; Wang and Liu, 2003, 2008; Xiao et al., 2014). Chemically both the dissolved 86 

and particulate form of trace elements exists in their different speciation state. While 87 

dissolved trace elements form organic and inorganic complexes, the particulate form 88 

of the trace elements exists mainly as adsorbed species on clay particles, colloids and 89 

natural nanoparticles that serve as a host for their transport (Dai et al., 1995; 90 

Kretzschmar and Schafer, 2005; Plathe et al., 2013; Tepe and Bau, 2014). There 91 

exists a dynamic equilibrium between dissolved and particulate forms of trace 92 

elements. The prevailing water column characteristics namely pH and redox potential 93 

govern such an equilibrium. This dynamic equilibrium results in a continuous 94 

exchange of the trace elements between dissolved and particulate form. The 95 

equilibrium constant that is unique to the prevailing environmental conditions of the 96 

concerned trace element is defined as the "partition coefficient" (O'Connor and 97 

Connolly, 1980; Shi et al., 1998; Lu and Allen, 2001). Theoretically, the partition 98 

coefficient is expected to be a constant for the given environmental conditions. Thus, 99 

it has been used as a probe to ascertain whether a given trace element has more 100 

affinity to remain in dissolved or particulate form. Such a piece of knowledge has 101 

helped us to understand the behaviour of trace elements in the coastal regions (Tang 102 

et al., 2002; Oursel et al., 2014; Wang et al., 2017). However, practical observations 103 

have always yielded a range of values for the partition coefficient due to the 104 

involvement of various influencing factors (Boyer et al., 2018; Tomczak et al., 2019) 105 

in the water column. Even then the fact remains that if the chemical composition of 106 

the water column, the particle nature and the environmental conditions are identical, 107 

the partition coefficient of a trace element is expected to remain within a very narrow 108 

range in all estuarine systems. On the other hand, the partition coefficient can be 109 

related to the water column characteristics to infer the factors or geochemical 110 

processes that influence the trace elements concentration. This work revolves around 111 

these concepts for the interpretation of geochemical characteristics of the trace 112 
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elements in the estuarine region. However, we have introduced modifications to the 113 

definition of the "partition coefficient" to include reactive trace elements in the 114 

particulates along with the dissolved form. That, we believe, is essential to the 115 

understanding of the role of nanoparticles, colloids and particulates on the trace 116 

elements behaviour in the estuaries (Supplement I). Therefore, for trace elements 117 

118 

polycarbonate filtration assembly and acidified to pH < 2 (refer Section-3.1 for more 119 

details). 120 

2. Study Area 121 

Borneo is the third-largest island in the world situated along the equator, 122 

comprising of the two Malaysian states along with the nation of Brunei and 123 

Indonesia. Sarawak is one of two Malaysian states situated on the northwest coast of 124 

the island of Borneo, bordering the Malaysian state of Sabah to the northeast, 125 

Indonesia to the south, and surrounding Brunei. Extending to the length of around 126 

466 km stretch, the Baram River is the second-longest river in Sarawak next to the 127 

Rajang River (Anandkumar, 2016). Originating in the Kelabit Highlands, the Baram 128 

River initially flows westwards through tropical rainforests and then turns northward 129 

to drain into the South China Sea at Miri (near Kuala Baram). The Baram River 130 

covers a catchment area of about 22,800 km2 and delivers an estimated freshwater of 131 

1590 m3/s and 2.4 × 1010 kg of sediment/year to the South China Sea (Sandal, 1996; 132 

Straub and Mohrig, 2009). The study area (Figure-1) covers the lower stretch of the 133 

Baram River, extending to a length of 111 km from Baram River mouth to Marudi. A 134 

transitioning water column with a gradational salinity increase from Marudi to Kuala 135 

Baram characterises the study area. The geology of the Baram River Basin consists 136 

predominantly of meta-sedimentary to sedimentary rocks aged from Paleogene to 137 

Recent. Oligocene, Miocene and Eocene meta-sedimentary to sedimentary rocks 138 

primarily cover the upstream region. In contrast, the downstream region primarily 139 
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consists of the Quaternary river and coastal alluvium as the Baram River mouth was 140 

initially located near Marudi but has extended towards the north over the past 5000 141 

years (Caline and Huong, 1992). For more details on regional geology, climate, 142 

tectonics, weathering and coastal processes, please refer earlier works (Calvert et al., 143 

1991; Caline and Huong, 1992; Hiscott, 2001; Hutchison, 2005; Wang et al., 2011; 144 

Nagarajan et al., 2014, 2015a, b, 2017a, 2019; Yan et al., 2015; Ramkumar et al., 145 

2018; Prabakaran et al., 2019; Wurster et al., 2019). 146 

3.Methodology 147 

3.1. Choosing the filtration cut-off 148 

In the coastal areas, earlier studies have taken the nominal size of particulates 149 

as  0.2 to 10 µm (Hurst and Bruland, 2007), 0.4 to 10 µm (Weinstein and Moran, 150 

2004) or,  greater than 0.4 µm (Lambert et al., 1984; Helmers, 1996; Weinstein and 151 

Moran, 2004) though custom made filters that approximate the 0.45 µm filter has 152 

also been used for large volume sampling in Atlantic and Pacific oceans for 153 

separating particulates (Krishnaswami and Sarin, 1976; Krishnaswami et al., 1976). 154 

Forest fires in Borneo and surrounding other Southeast Asian regions are a good 155 

source of organic aerosols apart from the continental dust (Durkee et al., 1991; Rasch 156 

et al., 2001; Idris et al., 2005; I-I Lin et al., 2007; Langner et al., 2007; Gabey et al., 157 

2010; 2011; Lee et al., 2017; Bikkina and Sarin, 2019). Thus, atmospheric fallout is 158 

one of the sources of trace elements in the Baram River Basin. The global 159 

atmospheric dust range in size from 100 nm to 100 µm (Pye, 1987; Formenti et al., 160 

2011 and the references cited therein) and the long transported aerosol particles 161 

deposited in the ocean is finer than 10 µm (Pye, 1987; Bikkina and Sarin, 2019). 162 

Gabey et al. (2011) have shown that in Borneo the non-fluorescent aerosols peaked 163 

at 0.8 to 1.2 µm while the fluorescent primary biological aerosol peaked at 3 to 4 µm. 164 

Ohta et al. (2006) have found that the nominal size of aerosol in the Asian region is 165 

11 µm. To take into account the trace elements associated with the atmospheric dust 166 
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fallout and the primary biological aerosol, a filtration cut-off of 11 µm is considered 167 

optimal. Apart from the aerosols, the flocs are another carrier of trace elements in the 168 

estuarine region of the Baram River. There is an increasing salinity in the river water 169 

from Marudi to Kuala Baram and the dissolved iron and manganese are expected to 170 

flocculate and adsorb the dissolved trace elements (Sholkovitz, 1978). Moreover, in 171 

the forested soil mobilisation of Al has been reported by several earlier studies 172 

(Evans, 1986; Mulder and Stein, 1994; Van Hees et al., 2004). The aluminium is 173 

amphoteric (Pacioglu et al., 2016) and exists as Al(OH)3 and polynuclear complexes 174 

(Palleiro et al., 2018) that serve as a potential adsorbent for many trace elements akin 175 

to iron and manganese oxyhydroxides (Singh et al., 1984). Thus, most of the riverine 176 

dissolved trace elements are expected to remain as adsorbed species with a dynamic 177 

equilibrium between their dissolved and particulate forms (Hurst and Bruland, 2007). 178 

e elements associated with 179 

Fe, Mn oxyhydroxides and Al hydroxides could be extracted. 180 

Several studies documented the role of colloids in the bioavailability of trace 181 

elements to aquatic organisms (Ferreira et al., 2008; Zhang and Davison, 2000; Pan 182 

and Wang, 2002; Wang and Guo, 2000, Guo et al., 2002; Seah et al., 2017). 183 

Moreover, the colloidal-sized organic matter, are known to adhere firmly with certain 184 

trace metals and trace organics, thereby influencing the bioavailability of trace 185 

metals to aquatic organisms (Sigleo and Means, 1990; Santschi et al., 1997, 1999; 186 

Wen et al., 1999; Carvalho et al., 1999; Doblin et al., 1999; Wang and Guo, 2000).  187 

188 

purpose of estimating the quantum of available trace elements to aquatic biota, 189 

because colloids play a significant role in the pathway of metals into the food chain 190 

(Farag et al., 2007).  Hence, while considering bioavailability, the quantum of metals 191 

associated with the colloidal phase must also be considered as aquatic organisms are 192 

likely to consume colloidal particles. Therefore taking a filtration cut-193 
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will provide additional knowledge towards trace elements bioavailability to aquatic 194 

populations. 195 

Thus, the trace elements are measured in 11 µm filtered (Whatman No.1) 196 

river water instead of using the 0.45 µm as in many earlier studies (Karbassi et al., 197 

2008; Stolpe and Hassellöv, 2010). After filtration, all water samples were acidified 198 

to pH < 2 to release labile forms of trace elements from the particulates. 199 

Acidification of the water samples shall release trace elements transported by the 200 

river in the form of colloids (Duarte and Cacador, 2012) natural nanoparticles 201 

(Wigginton et al., 2007) and particulates of size < 11 µm. While the results do not 202 

represent the truly dissolved form of the trace elements, it should be noted that the 203 

methodology is designed to desorb the highly labile fraction of trace elements from 204 

the particulates. 205 

3.2. Sample collection, analysis and data processing 206 

Water samples were collected during January and April of 2015, representing 207 

monsoon and postmonsoon seasons, respectively. Thirty two river water samples 208 

were collected in acid cleaned 1000 mL polyethylene containers from the Lower 209 

Baram River (Kuala Baram to Marudi) using an acid-cleaned non-metallic aqua-trap 210 

water sampler. All the samples were brought to the laboratory within 12 hours after 211 

collection. For trace analysis, the samples were filtered through an 11 µm filter 212 

(Whatman No.1) using a polycarbonate filtration assembly and acidified to pH < 2. 213 

The acidified filtrates were stored under refrigeration (< 4° C) until analysis for the 214 

trace elements. The water column properties such as temperature, pH, salinity, total 215 

dissolved solids (TDS), electrical conductivity (EC) and redox potential (Eh) were 216 

measured in the field using necessary probes (Thermoscientific Orion Star Plus, 217 

USA). Dissolved oxygen was measured in the field by using a DO meter (YSI Pro) 218 

and turbidity was measured using Hach-2100Q portable turbidimeter. The major ions 219 
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and nutrients analyses were carried out following standard procedures 220 

(Supplementary Table-1). Trace elements were analysed using a Flame AAS (Perkin 221 

Elmer AA400). Analytical control was assured by preparing the reagent blanks and 222 

utilizing standard solutions as quality control at every five-sample interval. The 223 

precision of AAS analytical results are within 5%, and accuracy is below 10%. 224 

3.3 Statistical analysis 225 

In order to reveal the significant variations of the analysed parameters 226 

between seasons, a paired t-test was performed (Supplementary Table-2). The 227 

partition coefficient (Kd) values were calculated from the reported concentration of 228 

trace elements in the sediment (Prabakaran et al., 2019) and water column. The data, 229 

subjected to Principal Component Analysis (PCA) and varimax rotation using SPSS 230 

software version 17, provided factor loadings for further interpretation. Because the 231 

units of measured parameters were not the same, the entire data set was standardised 232 

before carrying out the factor analysis. 233 

3.4 Risk assessment indices 234 

The Contamination Index (Cd) and Heavy metal Evaluation Index (HEI) were 235 

used to evaluate the water quality of the Lower Baram River. The Contamination 236 

Index (Cd) of Backman et al. (1998) evaluated the degree of contamination of Fe, 237 

Mn, Al, Cu, Zn, Pb, Ni, Cr, Cd, Co and Hg by using the following equation.   238 

 239 

 

 240 

 241 

 

 242 
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 243 

Where, 244 

Cfi = contamination factor for the ith component 245 

CAi = analytical value for the ith component 246 

CNi = upper permissible concentration of the ith component (N denotes the 247 

normative value). 248 

The resultant Cd values comprise three categories as low (Cd < 1), medium (Cd = 1 to 249 

3) and high (Cd> 3). 250 

The HEI revealed the overall water quality with respect to heavy metals (Edet 251 

and Offiong, 2002). This index was calculated using the following equation: 252 

 253 

 

 254 

Where, Hc is the monitored value of the ith parameter, and Hmac is the maximum 255 

admissible concentration of the ith parameter. 256 

4. Results and discussion 257 

The descriptive statistics of the analysed parameters including 258 

physicochemical parameters, major and minor ions, nutrients and trace element 259 

concentrations are given in Table-1.  From the results of the paired t-test, all the 260 

physicochemical parameters vary significantly (P < 0.01) between seasons except 261 

resistivity. Similarly, all the major and minor ions such as chloride, carbonate, 262 

bicarbonate, sodium, potassium, calcium and magnesium varied significantly (P < 263 

0.01; < 0.05 for bicarbonate) between the seasons. Nitrate also showed a significant 264 

difference (P < 0.01), between seasons. Among the trace elements, Fe, Mn, Al, Cr, B, 265 

Zn and Pb varied significantly (P < 0.01; P < 0.05 for Al) between seasons while Cu, 266 

Co, Ni, Cd and Hg were not significantly different (P < 0.05). 267 
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4.1 Geochemistry of trace elements in the Baram River surface water during the 268 

MON season 269 

Factor analysis was carried out to understand the geochemical processes 270 

occurring in the water column. As the ionic composition of the water column, pH, 271 

dissolved oxygen and temperature always have interaction with trace elements 272 

(Gundersen and Steinnes, 2003; de Souza Machado et al., 2016), they have also been 273 

included in this factor model to elucidate the geochemical processes operating within 274 

the Lower Baram River. The component matrix with six factors (Supplementary 275 

Table-3) has eigenvalue > 1 and reveals 81.32% of the variance in the data. 276 

Factor-1 is loaded with Pb, Zn, Mn, Ni, Cu, Co, Hg and Al and explains 277 

28.16% variance in this factor model. The association of these elements suggests the 278 

dissolution of particulate trace elements adsorbed onto manganese oxyhydroxides. 279 

(Sholkovitz et al., 1978; Means et al., 1978; Johnson, 1986; Dong et al., 2000; Li et 280 

al., 2001; Kay et al., 2001; Feng et al., 2007; Zhong and Wang, 2008; Suda and 281 

Makino, 2016). As observed in Supplementary Table-4, a high factor score of 4.96 282 

for the sample BES-26 and significantly lower values for all other samples implies 283 

that such a dissolution is predominant at the confluence of Sungai Bakong (low end 284 

tributary) with the Baram River. The positive loading of Al under factor-1 and its 285 

high concentration in the water column at the confluence of Sungai Bakong (Sample 286 

BES-26) indicates the dissolution of aluminium. Such dissolution is possible by the 287 

low pH of organic-rich water entering the Baram River from Sungai Bakong. 288 

Moreover, during the fieldwork, a strong swirling was observed at this confluence 289 

point, which might aid in thorough mixing and promote dissolution. While it has 290 

been well established that iron and manganese oxyhydroxides are primary carriers of 291 

trace elements, this factor model does not exhibit such a role for iron. Indeed, it is the 292 

strong interaction of Mn-oxyhydroxide surface with Al in the presence of adsorbed 293 

organics (Tipping and Heaton, 1983), which is thought to play a significant role in 294 
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the formation of metal-organic complexes that serve as major carriers of trace 295 

elements. 296 

Factor-2 explained 16.57% variance with the loading of sulphate, B, Fe, K, 297 

Al and temperature. Of these, temperature, sulphate and boron have negative loading 298 

and Fe, K and Al have a positive loading. Though the loading of temperature, 299 

sulphate, boron and Al are on the lower side, they have been taken into account 300 

because only their association provides a meaningful geochemical interpretation. The 301 

association of temperature with sulphate implies the temperature-controlled jarosite 302 

dissolution. The jarosite is a alunite series mineral with the formula 303 

K.Fe3(SO4)2(OH)6 and is a member of the aluminium-phosphate-sulphate (APS) 304 

minerals with the general formula AB3(XO4)2(OH)6, where A is a large cation (Na, 305 

U, K, Ag, NH4
+306 

Fe, Cu and Zn (Dill, 2001). Alunite can form at a pH higher than 3.3. The primary 307 

source for Al is the dissolution of aluminium silicates during microbially mediated 308 

pyrite oxidation, which releases sulphuric acid (Sánchez-España et al., 2016). The 309 

tropical climatic conditions are most suitable for the formation of APS minerals (Dill 310 

et al., 2002), and peraluminous parent rocks enriched in sulphur and phosphorus are 311 

a prerequisite (For a review, refer Dill, 2001). However, the Baram river basin 312 

consists of turbidites and the occurrence of peraluminous rocks is not reported. 313 

The acid sulphate soils are a source of jarosite. Acid sulphate conditions 314 

occur in sand, peat, and more extensively in clays (Dent, 1992). The acid sulphate 315 

soils are the source of jarosite. It is a common observation that in peat and organic-316 

rich mangrove sediments, pyrite oxidation results in the formation of jarosite 317 

(Furukawa, 1988; Shamshuddin et al., 2004; Mohamad et al., 2016). Of the 13 318 

million ha of acid sulphate soil worldwide, around 6.7 million ha is in the Southeast 319 

Asian region (Shamshuddin et al., 2004). In Malaysia, the acid sulphate soil covers 320 

0.5 million ha (500,000 ha) of which Peninsular Malaysia accounts for 110,000 ha 321 
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(Kanapathy, 1973; Abdul Halim et al., 2018). Of this, the very acidic soil occurs in 322 

25,000 ha of swamps, where Nipa fruticans grows (Kanapathy, 1973). Some of the 323 

plant species that thrive in acidic soils include Meluleuca leucadendron, Rhizophora 324 

mucronata and Nipa fruticans (Rahman et al., 2018). The Nipa fruticans also occurs 325 

in the Lower Baram River apart from Sonneratia caseolaris, and no other mangrove 326 

species thrive here. Andriesse et al. (1973) report the occurrence of acid sulphate 327 

soils in the mangrove swamps along the Sarawak river, near Kuching, in the State of 328 

Sarawak. They also occur along the coastal plains of Sarawak (Teng, 2005), the 329 

Liang Formation of Brunei basin (Wu, 1994), Kota Samarahan-Asajaya area of West 330 

Sarawak, Malaysia (Mohamad et al., 2016), and Tukau Formation adjacent to the 331 

study area (Nagarajan et al., 2017b). 332 

Though the mineralogical studies were not carried out for the identification of 333 

aluminium-phosphate-sulphate (APS) minerals, this cannot preclude the chances for 334 

its formation in a terrain where volcanic, sedimentary, and metamorphic processes 335 

have taken place, and alunite has an excellent chance of formation in all these 336 

environments (Dill, 2001). Given the fact that the Baram River basin mainly consists 337 

of turbidites and shale, which are a rich source for the sedimentary pyrite, its 338 

dissolution might release sulphuric acid into the environment resulting in the 339 

formation of alunite group of minerals. 340 

The river carries the aluminium bearing minerals towards downstream in 341 

suspension. The negative loading of sulphate and boron under factor-2 indicates the 342 

dissolution of alunite, whereas the positively loaded Fe, K and Al under the same 343 

factor imply the formation of authigenic clay minerals. Another factor model using 344 

the partition coefficient (Kd) of the elements (Supplementary Table-5) confirms this 345 

proposition. The positively loaded Kd values of Fe and Al, and SO4 points out that in 346 

the absence of sulphate reduction (suboxic conditions) higher dissolved 347 

concentrations of Fe and Al are favoured (Rahman, 2016). Then authigenic clay 348 
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minerals form by consuming the dissolved potassium in the water column which is 349 

implied by its negative factor loading (Mackin and Aller, 1986; Mackenzie and 350 

Kump, 1995; Rahman, 2016; Church, 2016). Such a formation of authigenic clay 351 

minerals is rapid in tropical and sub-tropical deltas (Michalopoulos and Aller, 2004; 352 

Presti and Michalopoulos, 2008; Loucaides et al., 2010; Rahman, 2016) possibly by 353 

enhanced forward reaction under increasing temperature (endothermic). The 354 

formation of authigenic minerals in estuarine and coastal areas is a widely disputed 355 

topic. Therefore, further investigation is necessary. 356 

Factor-3 accounted for 11.08% variance. The EC, Na+ and Cl- exhibit 357 

positive loading, implying the influence of seawater. Eventhough there is no 358 

measurable salinity during MON season due to flooding of the river, the loading of 359 

these parameters on factor-3 demonstrates seawater incursion in the river. The Baram 360 

River has no distributaries and behaves like a salt-wedge estuary. The density 361 

difference drives the seawater underneath the freshwater of the river. The sinuosity 362 

of the Baram River is lesser downstream Marudi and seawater incursion shall be 363 

facilitated in this stretch. This salinity incursion is also observable in the factor 364 

model given in Supplementary Table-5. Moreover, authigenic clay mineral formation 365 

occurs only in the presence of saline water (Mackenzie and Kump, 1995), confirming 366 

the validity of our interpretation. Another source of sodium and chloride ions is sea 367 

salt. Worldwide, the annual sea salt aerosols production is 10 x 1015 to 11.7 x 1015 368 

g/yr [Mæller, 1990; Gong et al., 1997] but estimates for the Baram River basin is not 369 

available. However, sea salt can also form a significant contribution to the dissolved 370 

load of this river. The distinction between the contribution of Na+ and Cl- from the 371 

sea salt and saline water could not be made due to lack of available data. 372 

Factor-4 explained 9.20% variance and shows the loading of pH and DO, 373 

illustrating the role of water column productivity on the pH and dissolved oxygen 374 

(Feely et al., 2010). The water column productivity increases the pH and releases 375 
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oxygen to the water column. Water column productivity is often affected by turbidity 376 

in tropical river systems (Lee, 1990; Davies et al., 2008). Despite their moderate 377 

contribution to overall production, algae (periphyton and phytoplankton) appear to be 378 

the prominent drivers of aquatic food webs in tropical river systems (Lewis et al., 379 

2001; Winemiller, 2004; Douglas et al., 2005). Factor-5 accounted for 8.80 % 380 

variance and loaded with Ca2+, Mg2+, Cl- and HCO3
-. This implies ion exchange 381 

reactions involving Na+, Ca2+ and Mg2+ (Cerling et al., 1989). The majority of the 382 

water samples are not showing up an excess of Na+ over Cl- expected to result from 383 

the weathering of shale terrains (Cerling et al., 1989) (Supplementary Figure-1). 384 

Moreover, due to lack of excess (Ca2+ + Mg2+) over (SO4
2- + alkalinity), it is inferred 385 

that silicate weathering might contribute to excess alkalinity and Na+ and K+ ions 386 

(Cerling et al., 1989) (Supplementary Figure-2). 387 

Factor-6 accounted for 7.59% variance in the factor and loaded with 388 

orthophosphate and nitrate, indicating the remobilisation of the nutrients from the 389 

sediments to the water column (Zhang et al., 1997). Such a remobilisation is possible 390 

upon the degradation of sedimentary organic matter (Emerson et al., 1980; Nedwell 391 

et al., 1994; Morford et al., 2005). Such degradation is likely to release low 392 

molecular weight organics into the water column, (Nedwell et al., 1994; Beck et al., 393 

2008), which may form stable metal-organic complexes (Beck et al., 2008) and serve 394 

as an essential repository for some of the elements like Cu and Zn (Widerlund, 395 

1996). The factor model in Supplementary Table-5 indicates such an association. The 396 

other possible source of orthophosphate and nitrate is agricultural activities in the 397 

river catchment area (Sim et al., 2017). 398 
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4.2 Geochemistry of trace elements in the Baram River surface water during 399 

POM season 400 

Supplementary Table-6 presents the factor model for the POM season. Six 401 

factors accounted for 82.61% of the variance. Factor-1 exhibits loading of salinity, 402 

Cl-, SO4
2-, B, Pb, Co, Cd, Na+, Ca2+ and Mg2+. The Na+/Cl- < 1 implies possible ion 403 

exchange reactions involving Na+, Ca2+ and Mg2+ (Cerling et al., 1989) 404 

(Supplementary Figure-3). Further, an excess of (Ca2+ + Mg2+) over (SO4
2- + HCO3

-) 405 

indicates ion exchange reactions where Na+ replaces Ca2+ and Mg2+ in the clay 406 

minerals (Cerling et al., 1987; El-Sayed et al., 2012) (Supplementary Figure-4). 407 

Correlation between (Na+ + K+) and SO4
2- indicates sulphide oxidation through the 408 

dissolution of jarosite (Mermut and Arshad, 1987) (Supplementary Figure-5). Factor-409 

2 is accounted for 16.43% of the variance with positive loadings of pH and DO, and 410 

negative loading by orthophosphate and ammoniacal-nitrogen. Orthophosphate is 411 

remobilized from the sediments only under reducing conditions (Sundby et al., 1986) 412 

whereas ammonia is a by-product of anaerobic bacterial degradation of organic 413 

matter (Canfield et al., 1993; Baric et al., 2002). With increasing seawater influence, 414 

the pH and DO increase and the production of orthophosphate and ammonical 415 

nitrogen diminishes.  416 

Factor-3 shows positive loading of K and negative loading of Fe that explains 417 

9.20% of the variance indicating either loss of K from Fe bearing clay minerals 418 

(Craw, 1981) or loss of iron from biotite (Acker and Bricker, 1992) that exists in 419 

particulate form in the < 11 µm fraction. Factor-4 accounts for 6.27% of the variance 420 

and is explained by the positive loading of Hg and negative loading of Cu which 421 

indicates two different sources. Factor-5 is loaded with nitrate and accounts for 422 

5.27% variance, indicating nitrification in the water column (Scott and Abumoghli, 423 

1995; Cébron et al., 2003; Strauss et al., 2004). Factor-6 has accounted for 4.99% of 424 

the variance with Zn and Al exhibiting positive and negative loadings, respectively. 425 
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The Kd-Zn exhibits a positive loading under factor-5 (Supplementary Table-7), while 426 

nitrate is negatively loaded, indicating Zn toxicity to water column nitrification (Hu 427 

et al., 2004; Zarcinas and Rogers, 2002). 428 

4.3 Risk assessment indices 429 

The Contamination Index (Cd) for the Baram River water during the MON 430 

and POM seasons is presented in Supplementary Table-8. The river water quality 431 

falls into the high contamination category (Cd > 3) for both seasons. The Cd values 432 

range from 28.49 to 643.36, with a mean of 176.19 during the MON. During POM, 433 

the Cd varies from 36.29 to 92.60 with a mean of 47.26 during the POM season. The 434 

calculated HEI values (Supplementary Table-8) ranged from 39.49 to 654.36 with a 435 

mean of 187.19 during the MON season and 47.29 to 103.60 with a mean of 58.26 436 

during the POM season. The river water samples were filtered using 11 µm filters 437 

that contained both purely dissolved and particulate trace elements. Thus, the water 438 

samples showed a high contamination category as revealed from the risk assessment 439 

indices. Moreover, when compared with the Malaysian water quality standards 440 

(Supplementary Table-9), the majority of the elements fall between the Class I and 441 

IV, however, Fe and Al fall under Class V. 442 

5. Conclusions 443 

Seasonally significant  (P < 0.05) difference exists for temperature, pH, DO, 444 

EC, TDS, salinity, turbidity, redox potential, Cl-, HCO3
-, SO4

2-, NO3
- Na+, K+, Ca2+, 445 

Mg2+, B, Pb, Zn, Mn, Fe, Cr and Al. Whereas, the water column concentrations of  446 

PO4
3-, NH3-N, Ni, Cu, Cd, Co and Hg do not show any significant variation between 447 

seasons. During the monsoon, the desorption of Pb, Zn, Ni, Cu, Co, Hg and Al from 448 

manganese oxyhydroxides carried in the particulate form by the Baram River is 449 

dominant. Jarosoite dissolution, authigenic clay mineral formation, water column 450 
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productivity, ion exchange and remobilisation of the nutrients are other inferred 451 

geochemical processes. During post monsoon, ion exchange is the primary 452 

geochemical process followed by the remobilization of orthophosphate and the 453 

production of ammonical nitrogen. The Contamination Index (Cd) shows that water 454 

samples are highly contaminated. However, such a result needs careful inspection 455 

since the particulate-bound trace elements in < 11 µm fraction is taken up for the 456 

calculation. The water quality is within the safer limits as per the Malaysian water 457 

quality standards, except for Fe and Al. 458 
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Figure 1 Study area map showing sampling locations (after Prabakaran et al. 2019) 

Figure
Click here to download Figure: Figures.docx

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Supplementary Material
Click here to download Supplementary Material: Supplementary material.doc

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Table 1 Descriptive statistics of the physicochemical parameters, nutrient, major and 
minor ions and trace elements levels of surface water during MON and POM seasons 

(n=32 for all parameters; turbidity (MON)  n=28 
 

Parameters 
Range (Mean with Std. 
Deviation) MON Season 

Range (Mean with Std. 
Deviation) POM Season 

Temp. °C 25.6-27.8 (26.7±0.6) 28.7-32.0 (30.13±0.72) 
pH 4.3-6.1 (5.8±0.3) 4.6-7.5 (6.82±0.59) 
DO (mg L-1) 1.3-5.8 (4.1±0.7) 0.4-5.6 (4.53±0.87) 
EC (µS cm-1  ) 0.0-112.9 (43.7±22.0) 39.5-9060.0 (3178.16±3392.73) 
TDS (mg L-1) 0.0-55.0 (21.31±10.7) 19.0-4440.0 (1557.22±1662.40) 
Salinity (ppt) BDL 0.0-5.1 (1.64±1.88) 

 0.01-100.0 (3.15±17.7) 0.0-0.03 (0.01±0.01) 
Turbidity (NTU) 77.3-993.0 (627.76±209.7) 45.5-284.0 (114.77±53.63) 
Redox (mV) 45.2-154.4 (63.6±19.0) -22.2-138.0 (13.68±32.15) 
PO4

-3 BDL-1.7 (0.24±0.3) 0.2-0.9 (0.2±0.1) 
SO4

2  BDL-5.0 (1.31±1.5) BDL-410.0 (131.1±145.1) 
(NH3-N

-) BDL BDL-300.0 (9.4±53.0) 
NO3

- (µg L-1) BDL-50.0 (2.50±9.5) BDL-0.3 (0.04±0.05) 
Cl- (mg L-1) 4.0-26.0 (12.25±6.0) BDL-2940.0 (966.6±1096.1) 
CO3- (mg L-1) BDL BDL 
HCO3- (mg L-1) 18.3-42.7 (32.79±6. 9) 12.2-54.9 (27.7±9.2) 
Na+ (mg L-1) 2.3-14.2 (5.54±2.5) 2.6-1317.0 (377.0±437.6) 
K+ (mg L-1) 1.8-10.7 (4.67±2.2) 1.6-279.2 (61.5±77.3) 
Ca2+ (mg L-1) 0.1-4.3 (1.87±1.1) 0.4-301.0 (34.4±60.853) 
Mg2+ (mg L-1) 2.3-6.9 (4.00±0.1) 1.9-445.2 (77.3±101.5) 
Cu (mg L-1) 0.04-0.2 (0.06±0.02) 0.04-0.1 (0.06±0.02) 
Zn (mg L-1) 0.03-0.4 (0.09±0.08) 0.02-0.2 (0.04±0.02) 
Pb (µg L-1) BDL-78.0 (3.8±14.8) BDL-0.04 (0.01±0.02) 
Co (mg L-1) 0.02-0.1 (0.03±0.02) 0.02-0.06 (0.03±0.01) 
Ni (mg L-1) 0.1-0.3 (0.2±0.03) 0.1-0.2 (0.2±0.01) 
Cd (µg L-1) BDL-5.0 (1.8±1.5) BDL-7.00 (2.6±2.0) 
Mn (mg L-1) 0.1-3.1 (0.4±0.5) 0.06-0.1 (0.08±0.01) 
Fe (mg L-1) 3.4-43.3 (15.6±12.6) 2.3-10.8 (4. 9±1.7) 
Al (mg L-1) 0.7-88.2 (17.1±24.1) 0.4-6.2 (2.3±1.0) 
Cr (mg L-1) 0.2-0.4 (0.3±0.06) 0.1-0.3 (0.2±0.05) 
Hg (µg L-1) BDL-1.7 (0.3±0.3) BDL-0.5 (0.2±0.1) 
B (mg L-1) BDL-2.2 (0.3±0.4) BDL-1.6 (0.8±0.4) 
 

Table
Click here to download Table: Tables.docx

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/




