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Abstract 

This study compares the application of two distinctively different hydrologic models, 

conceptual (HBV) and distributed (BTOPMC), to simulate the future runoff across three 

unregulated catchments of the Australian Hydrologic Reference Stations (HRSs) namely 

Harvey catchment in Western Australia, Beardy and Goulburn catchments in New South 

Wales. These catchments have experienced significant runoff reduction during the last decades 

due to climate change and human activates. Budyko Elasticity method was employed to 

precisely assign the influences of human activities and climate change on the runoff variations. 

After estimating the contribution of climate change in runoff reduction, the downscaled future 

climate signals from a multi-model ensemble of eight-GCMs of the CMIP5 under the RCP4.5 

and RCP8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the 

mid (2046-2065) and late (2080-2099) of the 21st-century. Results show that the conceptual 

model performs better than the distributed model in capturing the observed streamflow across 

the three contributing catchments. The performance of the two models was relatively 

compatible in the overall direction of change with regard to the future streamflow, irrespective 

of the magnitude, and inconsistent regarding the change in the direction of high and low flows 

for both future climate scenarios. Both models predicted a decline in wet and dry season’s 

streamflow across the three contributing catchments. 

Keywords: Climate change, Human activities, Hydrologic Reference Stations, conceptual 

modelling, distributed modelling, CMIP5, Budyko equation, Australia. 

 

mailto:h.al-safi@postgrad.curtin.edu.au


1- Introduction 

The past few decades have seen noticeable changing climate conditions across many parts of 

Australia, particularly rainfall reduction and temperature increase (Al-Safi & Sarukkalige, 

2017a, 2018a). The vast majority of hydrological impact studies showed reduction tendencies 

in future rainfall and runoff across many Australian local catchments especially in the south-

eastern and south-western parts of the continent (Al-Safi & Sarukkalige, 2017b, 2017c and 

2017d; Chiew et al., 2009; McFarlane et al., 2012; Silberstein et al., 2012; Teng et al., 2012; 

Vaze & Teng, 2011). These variations in runoff are believed to be due to impacts of climate 

change and human activities. Accordingly, it is important to investigate the influences of 

climate change and human activities on catchment hydrology and water resources to properly 

managing for the long-term runoff reduction (Liu et al., 2017).  

Two popular methods, hydrologic modelling and Budyko Elasticity method, can be used to 

attribute the effects of climate change and human activities on runoff change. Previous research 

suggests that at shorter study period, such as daily or monthly periods, hydrologic models are 

better tools in investigating the hydrological response of a catchment. Budyko framework, on 

the other hand, is a competent method for the long-term cases (Dooge, 1992; Hu et al., 2012; 

Huang et al., 2016; Li et al., 2012; Liu et al., 2017; Xu et al., 2014; Zeng et al., 2015; Zheng et 

al., 2009). Moreover, unlike hydrologic models, Budyko method is an efficient approach which 

does not need sophisticated parameterization and large input data (Liu et al., 2017). Therefore, 

in this study, in line with the hydrologic modelling procedure, the Budyko method is used to 

define the quotas of impacts of climate change and human activities. 

A wide range of hydrologic studies has investigated the combined effect of climate change and 

human interaction on runoff variations. For instance, Fan et al (2010) analysed the contribution 

of climate change and human impact on runoff variation in Mian River Basin in North China 

using the SWAT model. The results indicated that human activities have the dominant 

influence on runoff variation rather than climate change.  Wang et al (2013) used Budyko 

method to assess the impact of climate change and human activities on runoff in the Haihe 

River basin in China. They concluded that human activities were responsible for more than 

50% of the runoff reduction in the basin. Patterson et al (2013) also used the Budyko equation 

to study the impact of both climate and human interactions on the mean annual streamflow in 

the South Atlantic region in the USA. They concluded that human activities were estimated to 

influence 27% of basins in South Atlantic. This has been attributed to the agricultural land 



expansion and dam constructions in these areas which has significantly affected runoff. Wu et 

al (2017) compared the applications of the SWAT model and Budyko equation to examine 

runoff reduction in the Yanhe Basin in China. They found that the decline in runoff of the 

Yanhe River basin was dominantly related to the climate change rather than human interaction. 

Climate change was estimated to account for 46.1%–60.8% (mean 54.1%) of the total decrease 

in runoff, whereas human activities accounted for 39.1%–53.9% (mean 45.9%). 

After apportioning of climate and human impacts on runoff variation, the next step is to predict 

future hydrological alterations resulting from climate change. Hydrological modelling is a 

widely used procedure to study the impact of changing climate conditions on runoff. This has 

a considerable importance for sustainable water resources management, developed plans for 

the economy, agriculture and other water-related sectors in the studied catchments, to 

overcome the expected economic and population developments in the near and long-term 

future. Local-scale hydrologic modelling based on climate predictions normally involves many 

sources of uncertainty (Al-Safi & Sarukkalige, 2018a; Blöschl & Montanari, 2010). These 

sources could be linked to the different scenarios of Global Climate Models (GCMs), parameter 

uncertainties resulting from different structures of hydrologic models and approximations in 

solution (Brown & Heuvelink, 2005) and the selection of the downscaling procedure.  

There is a continuing debate in the hydrologic modelling research area on whether physically 

based distributed models better capture recorded streamflow than conceptual lumped models 

approach does. Blöschl and Montanari (2010) point out complex models are not necessarily 

better for climate change impact analysis because of higher model uncertainty caused by a 

larger number of parameters. In this study, the ability of two characteristically different 

hydrological models, a conceptual lumped model and a physically based distributed model 

(Hydrologiska Byrans Vattenbalansavdelning, HBV and BTOPMC) was assessed to represent 

the observed streamflow and to simulate the impact of future climate changes on the 

hydrological behaviour of three unregulated local catchments of the Australian HRSs. The 

detailed application of these two models across the three catchments has been done in two 

separate studies (Al-Safi and Sarukkalige, 2018a, 2018b). The selected catchments also 

represent a range of climatic conditions and biophysical characteristics (e.g., latitude, 

longitude, elevation, land use type and soil type) across Australia. Therefore, it is highly 

valuable to assess the applicability of both models to represent the observed discharge and to 

simulate the future runoff at the HRSs. To fairly compare the behaviour of the two hydrological 



models, precisely the same forcing data applied to the distributed model was used to force the 

conceptual model but as lumped input. It is no doubt true that the forcing data has a significant 

effect on model performance, regardless of the kind of model structure. Hence, the quality of 

the observed data has been checked carefully, and the regression relationships between the 

neighbouring stations were used to fill the very few missing data. This study mainly aims at 

comparing and evaluating the outcome of the application of two different modelling concepts 

and interprets the results of these two models in different hydrological environments. 

2- Study area (the unregulated catchments of the Australian HRSs) 

The Australian HRSs network, 222 sites in total, represents an important source of high-quality 

continuous streamflow data across the continent that enables better analysis of the long-term 

streamflow trends (Zhang et al., 2016). In this study, three HRSs corresponding to three 

catchments of three rivers were selected including Harvey River at Dingo Road station in 

Western Australia, Beardy River at Haystack and Goulburn River at Coggan stations in New 

South Wales as shown (Figure 1). Three main motivations were behind the selection of the 

study area. Firstly, despite the diverse environment and ecology of the catchments, the selected 

rivers have received less attention in investigating their hydrological response to future climate 

changes. Secondly, Beardy and Harvey Rivers basins support biodiversity of environmental 

and ecological communities. Lastly, Harvey and Goulburn Rivers represent the main tributaries 

of the surface water supply system in their catchments. Hence, assessing the impacts of future 

climate changes and human activities on the hydrological system of these rivers is a significant 

task to draw efficient and sustainable water management strategies in their contributing 

catchments. 



 

Figure 1 (a) HRSs network sites within the Australian states (b) Harvey River catchment with 

the weather stations (c) Beardy River catchment with the weather stations (d) Goulburn river 

catchment with the weather stations (Al-Safi & Sarukkalige, 2018a) 

2.1 Harvey River at Dingo Road HRS (site ID 613002) 

The corresponding catchment of this station is located around 130 km south of Perth City 

(Figure 1). It stretches between the latitude of 32.55°–33.05° S and longitude of 116.02°–

116.26° E with an entire drainage area of 148 km2. The actual vegetation cover of the catchment 

is mainly evergreen broadleaf forest and woody savannas (USGS, 2011). The catchment has a 

temperate climate with a summer season tend to be hot-dry, the average daily minimum and 

maximum temperature fluctuates between 18°C–28°C and sometimes reaches 40°C and a 

winter season tends to be cool-wet, with an average daily minimum and maximum temperature 

range between 10°C and 18°C (Peel-Harvey Catchment Council, 2012). The period between 

April and October nearly holds 90% of the total annual rainwater with an approximate annual 

mean rainfall of 900 mm (Peel- Harvey Catchment Council, 2012). The annual mean potential 



evaporation (ET) across the catchment is normally going above the annual mean precipitation 

and it approximately reaches 1,460 mm. Harvey River drains directly to the Peel-Harvey 

estuary. The Peel-Harvey estuarine system has a considerable ecological, recreational, 

commercial and scientific importance in south Western Australia. Its fringing environment 

comprises ecologically important wetlands and lakes that have been placed on the list of 

wetlands of international importance (Environmental Protection Authority, 2008). The estuary 

is an internationally important habitat for waterbirds and migratory wading birds, in which tens 

of thousands of waterbirds gather annually with more than 80 species (Environmental 

Protection Authority, 2008). The depth of the Peel-Harvey estuarine system (total area of 133 

km2) is relatively shallow (up to 2 m for the deepest point) and more than 50% of its area has 

a depth of only 0.5 m (Kelsey et al., 2010). 

2.2 Beardy River at Haystack HRS (site ID 416008) 

Beardy catchment is located in the far northeastern part of New South Wales (Figure 1) with 

the latitude of 29.11° to 29.30°S and longitude of 151.18° to 151.50° E and area of 908 km2. 

The actual vegetation cover of the catchment is mainly evergreen broadleaf forest, shrublands, 

woody savannas, croplands and natural vegetation mosaic (USGS, 2011). The climate of the 

catchment is temperate with a relatively warm dry summer, the temperature approximately 

ranges between 27°C–30°C and cool moderate winter, the temperature nearly ranges between 

19°C–20°C (Commonwealth Scientific and Industrial Research Organisation and Australian 

Bureau of Meteorology, 2007). The rainfall distribution over the catchment is extremely 

seasonal in which the summer season holds the maximum rainwater volumes due to the activity 

of summer storm, while the other seasons of the year hold the minimum amounts of rainfall. 

The average monthly summer precipitation is around 100 mm and it decreases to 40–50 mm 

during the period between April and September (Green et al., 2012). The annual mean PE in 

the catchment is higher than the annual mean precipitation with a spatial variation over the 

catchment ranged between 1,200 and 2,000 mm (Green et al., 2012). Beardy River, which is 

an important perennial river that is part of the Murray–Darling basin, is located in the New 

England region of New South Wales, Australia. The Murray–Darling basin is a large 

geographical area in the interior of south-eastern Australia. The basin, which drains around 

one-seventh of the Australian land mass, is one of the most significant agricultural areas in 

Australia (Pigram, 2007). 

 



2.3 Goulburn River at Coggan HRS (site ID 210006) 

The corresponding catchment extends over 3,402 km2 area (Bureau of Meteorology, 2017) (the 

majority are national parks, forest and wasteland areas) (Figure 1). It also forms the whole 

western part of the Hunter River catchment (the largest coastal catchment in NSW). The 

Goulburn River is a major branch of the Hunter River which drains around 50% of the Hunter 

catchment and donates nearly quarter of the mean Hunter River flow (NSW Department of 

Infrastructure, Planning and Natural Resources, 2002). The Goulburn River catchment 

stretches from 31°48` to 32°51` Southern latitude and from 149°40` to 150°36` Eastern 

longitude. The climate of the catchment is subhumid to temperate and varies with elevation 

and ocean proximity (Krogh et al., 2013). As the Goulburn River catchment is relatively located 

far away from the ocean, it receives the lowest annual rainfall (around 620 mm) compared to 

the eastern part of the Hunter catchment which receives around 1,600 mm. The rainfall in the 

catchment is seasonally distributed in which the summer is the wettest season in the year 

(December to February) and the annual potential evaporation normally exceeds the annual 

rainfall to reach more than 1,300 mm and it varies with temperature variations (Krogh et al., 

2013). 

3- Dataset and hydrologic models 

3.1 Observed climate data  

Different datasets were collected from various sources and used as input into the HBV and 

BTOPMC models as illustrated in Table 1. Observed hydro-meteorological data including the 

daily scale rainfall, temperature, and discharge and the long-term monthly mean potential 

evaporation from the contributing catchments of the three HRSs were obtained from the 

Australian Bureau of Meteorology. Weather stations (Figure 1 and Table 1) were selected 

within the contributing catchments and nearby locations considering the availability of long-

term data. The temporal distribution of the hydro-meteorological data is presented in Table 1 

and used to calibrate and validate the two models before the streamflow projection. Spatial 

distribution of rainfall and temperature data was implemented by the two models by applying 

the Thiessen polygon method. 



Table 1 Sources and details of data used in the BTOPMC model application for the three contributing catchments 

Data Type Data Description 

Original 

Spatial 

Resolution 

Data Source Remarks 

Physical data 

Digital Elevation Map 

(DEM) 

3”x3” 

(90mx90m) 
Jarvis et al. (2008) 

Global Shuttle Radar Topography Mission data by the CGIAR Consortium for 

Spatial Information (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) 

Soil Map 
3”x3” 

(90mx90m) FAO (2012) Harmonized world soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) 

Soil properties (texture) ---------- 

Land Cover Map 
30”x30”            

(1km x 1km) 
USGS (2011) 

Global Land Cover Characteristics Database (Version 2.0) 

(http://landcover.usgs.gov/landcoverdata.php) 

Vegetation 

data 

Normalized Difference 

Vegetation Index NDVI 

30”x30”            

(1km x 1km) 

Tucker et al. 

(2010) 

Global monthly data by Distributed Active Archive Center—Global Inventory 

Modelling and Mapping Studies (DAAC- ISLSCP II GIMMS) 

(https://daac.ornl.gov/ISLSCPII/guides/gimms_ndvi_monthly_xdeg.html), input 

for the Shuttleworth-Wallace model 

Meteorological 

data 

Rainfall (mm) 

Point data 
Australian Bureau 

of Meteorology 

Three stations for Harvey Catchment, Daily scale data (1982-2014).                                 

Five stations for Beardy Catchment and seven stations for Goulburn Catchments. 

Daily scale data (1975-2014). 

Mean Temperature oC 

One station for Harvey Catchment at a daily scale (1982-2014).                            

Two stations for Beardy Catchment and three stations for Goulburn Catchments 

at a daily scale (1975-2014) 

Potential Evaporation 

(mm) 

Long-term monthly scale. One station for Harvey Catchment (1982-2014),                           

two stations for Beardy Catchment and three stations for Goulburn Catchments 

(1975-2014) 

Cloud cover (tenth) 

0.5 x 0.5 degree 

(50 x 50 km) 

CRU 2.0 data sets 

from IPCC (2011) 

Global monthly data used for potential evaporation calculation, input for the 

Shuttleworth-Wallace model                                                        

(http://www.ipcc-data.org/obs/get_30yr_means.html) 

Daylight duration (h) 

Diurnal temperature 

range o C 

Extraterrestrial radiation 

(MJ day-2 m-2) 

Vapour pressure (kPa) 

Wind speed (m/s) 

Hydrological 

Data 

Daily observed 

streamflow 
Gauged 

Australian Bureau 

of Meteorology 

Dingo-Road HRS for Harvey Catchment at a daily scale (1982-2014).                                    

Haystack HRS for Beardy Catchment and Coggan HRS for Goulburn Catchment 

at a daily scale (1975-2014) 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://landcover.usgs.gov/landcoverdata.php
https://daac.ornl.gov/ISLSCPII/guides/gimms_ndvi_monthly_xdeg.html
http://www.ipcc-data.org/obs/get_30yr_means.html


3.2 Future climate data  

The global-scale monthly mean climate outputs were extracted from a multi-model ensemble 

of eight-GCMs (Table 2) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) 

under two Representative Concentration Pathways (RCP4.5 and RCP8.5). According to 

CSIRO and BoM (2015), the used GCMs are the best amongst the 40-GCMs of the CMIP5 

that have been selected according to specific criteria to effectively investigate the Australian 

future climate, especially for the impact assessment studies (https://www.climatechange 

inaustralia.gov.au/en/support-andguidance/faqs/eight-climate-models-data/). The mid (2046-

2065) and late (2080-2099) of the current century were selected to represent the future climate 

status. A historical (baseline) climatic periods of 33-years (1982-2014) for the Harvey 

catchment and 40-years (1975-2014) for the Beardy and Goulburn catchments were also 

extracted from the multi-model ensemble. The baseline periods were selected depending on the 

available observed climate forcing data across the three catchments to enable a fair comparison 

between the observed and historical climate on the one hand and the observed and simulated 

discharges on the other hand.  

Table 2 The 8-GCMs used in this study to predict the future rainfall and temperature 

CMIP5 model ID Institute 
Global average Atmosphere 

resolution (km) 

ACCESS1.0 CSIRO-BOM, Australia 210×130 

CanESM2 CCCMA, Canada 310×310 

CNRM-CM5 CNRM-CERFACS, France 155×155 

GFDL-ESM2M NOAA, GFDL, USA 275×220 

CESM1-CAM5 NSF-DOE-NCAR, USA 130×100 

HadGEM2-CC MOHC, UK 210×130 

MIROC5 JAMSTEC, Japan 155×155 

NorESM1-M NCC, Norway 275×210 

A Statistical Downscaling Model developed by the Australian Bureau of Meteorology (BoM-

SDM) using an analogue approach (Timbal et al., 2008) was employed to extract the local-

scale daily rainfall and temperature from the global-scale monthly outputs of each GCM for 

the baseline and the future periods. For the conceptual modelling, the future climate data was 

extracted (downscaled) as a point-specific climate projection. While for the distributed 

modelling approach, the future climate data was extracted as a distributed data with final spatial 

and temporal resolutions of 5 × 5 km (approximately 0.05° × 0.05°) and 24 hours respectively 

which are suitable for the local-scale impact assessment studies. The reliability and statistical 

characteristics of the downscaled climate data have been checked as a high priority by the 



Australian-BoM before using them to force the calibrated models (HBV and BTOPMC) to 

simulate the future streamflow in this study. The daily variability is well reproduced, as 

captured by the day-to-day correlation between the observed and reconstructed series. In 

addition, the downscaling technique is highly skilled in capturing inter-annual variability as 

well as long-term observed climatic trends (Timbal et al., 2008). It was also found that the 

downscaled climate variables are able to reproduce the certain key characteristics of historical 

data such as mean monthly values, autocorrelation and duration of dry spells for rainfall 

(Timbal et al., 2008a). Since the main focus of the present study is to investigate the impact of 

climate change on future streamflow patterns at the studied catchments, therefore, the detailed 

explanation of the downscaling procedure is not provided in the current version and can be 

found in (Timbal et al., 2008). 

For the conceptual modelling procedure, the modified Blaney-Criddle method (Equation 1) 

(Doorenbos and Pruitt, 1977) was employed to calculate the Potential Evaporation (ET) over 

the baseline and the future periods depending on the downscaled daily mean temperature. 

Palutikof et al. (1994) explained that this method computes the potential evaporation by 

utilizing the daily mean temperature (T mean) and daily mean proportion of annual daylight 

hours (P). 

ET = C [D (0.46 T mean +8)]                                                                                         (1) 

Where ET is the monthly average crop potential evaporation (mm/day). C is a correction factor 

calculated based on sunshine hours, minimum relative humidity, and daytime wind speed. D is 

the daily mean proportion of yearly daylight periods (in hours), while T mean refers to the 

downscaled daily mean temperature (°C). 

While for the distributed modelling approach, the global monthly data was adopted to force the 

Shuttleworth-Wallace model (Shuttleworth and Wallace, 1985) to calculate the spatially 

distributed monthly average ET values. 

3.3 Hydrologic models 

A full description of the two hydrologic models (HBV and BTOPMC), their structure, 

parameters and the calibration and validation processes can be found in (Al-Safi & Sarukkalige, 

2018a and 2018b). 



4- Methodology 

In order to assign climate change and human activities influences on runoff change, the first 

step is to find the change point/s in the temporal trend of runoff during the period of study. Any 

runoff reduction/increase before that point is supposed to be due to climate change, while from 

that changing point (year) onward, the human has involved in the variation of runoff, too (Dey 

& Mishra, 2017; Xiangyu Xu et al., 2014). The usual method to define the change point is 

defined by Mann- Kendall statistic (MMK) test (Ashofteh et al., 2016; Fan et al., 2017; Li et 

al., 2012; Liu et al., 2017) which is applied here as well. The application of the Mann-Kendall 

trend test finds that 1993, 2000 and 1978 are the years in which the runoff trends have changed 

for the Harvey, Beardy and Goulburn catchments, respectively (Figure 2). These years are also 

stated as the breaking points by the Australian Bureau of Meteorology (BOM, 2018). 
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Figure 2 Annual runoff trend and the change point at a) Harvey catchment, b) Beardy 

catchment and c) Goulburn catchment 

4.1 Attribution of climate change impacts on runoff variation by means of Budyko 

Elasticity method 

Budyko (1974) claimed that there is a link between available water and available energy and 

potential evaporation in a hydrological system (Alimohammadi, 2012; Budyko, 1974).  

𝐸𝑇 = 𝑓(𝑃, 𝐸𝑇0)                   (2) 

where ET0 is the potential evapotranspiration [mm/day] and p is precipitation [mm/ day]. He 

later introduced his equation (Equation 3) which present a relationship between mean annual 

evaporation ratio and mean annual potential evaporation ratio (drought index) (McMahon et 

al., 2013; Wang et al., 2016): 

𝐸𝑇

𝑃
= [

𝐸𝑇0

𝑃
tanh (

𝐸𝑇0

𝑃
)

−1
(1 − exp(

𝐸𝑇0

𝑃
))]

0.5

  (3) 

Later Choudhury (1999) proposed a generalized form for Budyko equation (Liang et al., 2015; 

Wang et al., 2016; Xu et al., 2014): 

𝐸𝑇

𝑃
=

1

(1+(
𝑃

𝐸𝑇0
)

𝑛
)1/𝑛

  (4) 

Where n is an empirical parameter called the catchment characteristic parameter representing 

soil properties, slope, land use, and climate seasonality (Liang et al., 2015). This parameter 

also defines the Budyko curve shape (Li et al., 2013). In Choudhury, for a given P and ET0, 
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the higher n value signifies a higher ET which means a lower streamflow (Q) value (Xu et al., 

2014). 

To find the parameter n for a catchment, a curve fitting procedure is applied. The objective 

function can be obtained by minimizing the mean squared errors between the calculated annual 

evapotranspiration ratios (ET/P) and the observed ratios (Equation 4) (Li et al., 2013): 

𝑜𝑏𝑗 = 𝑚𝑖𝑛 ∑ {
𝐸𝑇𝑖

𝑃𝑖
− {

1

(1+(
𝑃𝑖

𝐸𝑇0𝑖
)

𝑛
)1/𝑛

}}𝑖

2

  (51) 

A large basin can have multiple characteristic parameter values depending on its major land 

use types (such as grassland, forest, urban,…) (Zhang & Chiew, 2012). This parameter can 

change temporally, too. It means that by changing the land cover over the years and decades, 

catchment characteristic parameters experience different values. As represented in Figure 3, 

catchment characteristic parameters for each case study has shifted on the Budyko curves 

vertically and horizontally. The horizontal change is believed to be as a result of climate change 

impacts while the vertical movement is imposed by human activities. 

 

Figure 2 catchment characteristic parameters in the three HRS stations 

In Budyko type model the variation of water storage is considered to be negligible at long-term 

time scale; therefore, actual evapotranspiration (ET) can be estimated using Equation 5 (Xu et 

al., 2013). 
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𝑃̅ =  𝐸𝑇̅̅ ̅̅ +  𝑄̅ + ∆𝑆  (6) 

𝑄 =  𝑃 − 𝐸𝑇                 (7) 

The total variation of runoff (ΔQ) is, in fact, a combined change of the runoff influenced by 

both climate change (𝛥𝑄𝑐𝑐) and Human activities (𝛥𝑄𝐻𝐴) (Li et al., 2012; Liang et al., 2015).  

∆𝑄 =  ∆𝑄𝑐𝑐 +  ∆𝑄𝐻𝐴  (8) 

Sankarasubramanian et al (2001) and Fu et al (2007) developed a method called Elasticity 

method based on Budyko equations to distinguish the impact of human activities and climate 

change on runoff variation in a catchment. Assuming P and 𝐸𝑇0 are independent variables in 

Equation 2 , Equation 9 was presented (Liang et al., 2015; Yang & Yang, 2011): 

𝑑𝑄𝐶𝐶 =  
𝜕𝑓

𝜕𝑃
𝑑𝑃 + 

𝜕𝑓

𝜕𝐸𝑇0
𝑑𝐸0   (9) 

Equation 10 can be derived considering the definition of elasticity (ɛ𝑋 =  
𝑑𝑄/𝑄

𝑑𝑋/𝑋
), (Liang et al., 

2015; Yang & Yang, 2011): 

𝑑𝑄𝐶𝐶

𝑄
= ɛ𝑃

𝑑𝑃

𝑃
+  ɛ𝐸𝑇0

𝑑𝐸𝑇0

𝐸𝑇0
  (10) 

where ɛ𝑃  and ɛ𝐸𝑇0
 are the P elasticity and ET0 elasticity of Q, respectively. ɛ𝑃  and ɛ𝐸𝑇0

 are 

derived by equation 10 and 11 (Liang et al., 2015; Yang & Yang, 2011) 

ɛ𝑃 =  {1 − 1/ [1 + (
𝑃

𝐸𝑇0
)𝑛]

1+1/𝑛
 } / {1 − 1/ [1 + (

𝑃

𝐸𝑇0
)𝑛]

1/𝑛
 }  (11) 

And   ɛ𝐸𝑇0
=  −

1 

[1+(
𝐸𝑇0

𝑃
)

𝑛
]

1+
1
𝑛

 .
1

1

𝐸𝑇0/𝑃

1

[1+(
𝐸𝑇0

𝑃 )
𝑛

]

1
𝑛

                                     (12) 

where n is the catchment characteristic.  

The runoff variation (Q) due to climate variation can be derived as follows: 

∆𝑄𝐶𝐶 =  ɛ𝑃
∆𝑃

𝑃̅
 𝑄̅ +  ɛ𝐸𝑇0

∆𝐸𝑇0

𝐸𝑇0̅̅ ̅̅ ̅
 𝑄̅  (13) 

where Q, P, and ET0 are the long-term mean annual runoff, precipitation, and potential 

evapotranspiration, respectively. 



Finally, using Equations 8 the impact of human activity on runoff change can be calculated. 

Here, runoff variations induced by climate change and human activities in the three catchments 

are calculated based on the Elasticity method which has been derived from Choudhury 

equation. 

5- Results and Discussion 

5.1 Observed hydrological changes in the study areas 

Considering the long-term annual runoff and application of the Mann-Kendall test to specify 

the temporal points, in which the mean annual runoff has changed dramatically. Based on 

Figure 2 and Table 3, the annual runoff in all catchments has experienced a significant 

reduction during the last decades. In these catchments, annual runoff has been reduced from 

35% to almost 40%. The precipitation has also suffered a considerable decrease from the base 

period (period 1) to the second period (after change) while the values for Evapotranspiration 

have either increased or didn’t experienced a dramatic reduction. 

Table 3 climate parameters variation during the base period and the second period 

 

 

 

Harvey 

Variables 
1971-1993 

(mm) 

1994-2015 

(mm) 

Changes 

(mm) 

Rate of 

Change 

Annual 𝑄̅ 244 148 -96 -39% 

Annual 𝑃̅ 1124 1017 -107 -9.5% 

Annual 𝐸𝑇0
̅̅ ̅̅ ̅ 1758 1804 46 2.6% 

 

 

 

Beardy 

Variables 
1971-2000 

(mm) 

2001-2015 

(mm) 

Changes 

(mm) 

Rate of 

Change 

Annual 𝑄̅ 77 50 -27 -35% 

Annual 𝑃̅ 740 700 -40 -5% 

Annual 𝐸𝑇0
̅̅ ̅̅ ̅ 1641 1668 27 2% 

 

 

 

Goulburn 

Variables 
1951-1978 

(mm) 

1979-2015 

(mm) 

Changes 

(mm) 

Rate of 

Change 

Annual 𝑄̅ 41 17 -15 -37% 

Annual 𝑃̅ 723 615 -108 -15% 

Annual 𝐸𝑇0
̅̅ ̅̅ ̅ 1305 1298 -7 -0.5% 

Further analysis of the runoff changes shows the significant difference between the minimum 

runoff statistics (Q25), mean runoff statistics (Q50) and maximum runoff statistics (Q95) of 



the base period comparing to the second period in all catchments (Table 4). The Q25s in all 

catchments have decreased by more than 33%, Q50s have almost reduced by 54% and Q75s 

have experienced a significant reduction between 36% -68%. For the Harvey catchment, the 

zero-flow frequency was 6%, which almost never happened in the first period. The values of 

zero frequency for Beardy catchment are 6% for the base period, which has increased to 14% 

of the days in the second period. Goulburn catchment did not experience days with the zero-

flow frequency. 

Table (4) runoff statistics variation during the base period and the second period 

 

 

Harvey 

 

Variables 1971-1993 (mm) 1994-2015 (mm) Rate of Change 

Q25 30 20 -33% 

Q50 12.36 5.63 -54% 

Q75 4.8 1.5 - 68% 

 

 

Beardy 

 

Variables 1971-2000 (mm) 2001-2015 (mm) Rate of Change 

Q25 7.2 4.7 -34% 

Q50 1.3 0.7 -48% 

Q75 0.2 0.13 -36% 

 

 

Goulburn 

 

Variables 1951-1978 (mm) 1979-2015 (mm) Rate of Change 

Q25 2 1.3 -35% 

Q50 0.83 0.4 -51% 

Q75 0.4 0.1 -68% 

5.2 Quantifying impacts of climate variation and human activities on streamflow 

The parameters of precipitation elasticity and evapotranspiration elasticity for each catchment 

are calculated by applying annual rainfall and annual potential evapotranspiration for the study 

period. The values of ε(P) and ε(ET0) which suggest the runoff variation sensitivity to 

precipitation and evapotranspiration are derived based on Equations 11 and 12. As presented 

in Table 5 and Figure 4, the values of precipitation elasticity are higher comparing to the 

evapotranspiration elasticities’, which means that the runoff change is more sensitive to rainfall 

than to ET0. 



 

Figure 4 ɛp and ɛ𝐸𝑇0 based on aridity index 

The impacts of Climate change and human activities are estimated using equations 7 to 13 

(Table 5). The results suggest that the main factor of runoff reduction in each catchment is 

different. In Harvey catchment, the impacts of climate change and human involvement were 

not that much different although the climate change had a higher share in this reduction. Beardy 

catchment, on the other hand, was mostly affected by human activities. In Goulburn catchment, 

human activities were responsible for only 30% of the decrease in runoff. Considering the 

location of the Goulburn catchment, which has been less manipulated by human activities, 

suggests we should have expected such a result. 

Table 5 contribution of climate change and human activities on streamflow reduction in the 

contributing catchments based on the proposed methods 

Catchment ∆Q(𝑚𝑚) ɛp ɛ𝐸𝑇0 ∆𝑄𝐶𝐶 (𝑚𝑚) ∆𝑄𝐻𝐴 (𝑚𝑚) ∆𝑄𝐶𝐶 (%) ∆𝑄𝐻𝐴 (%) 

Harvey 96 2.3 -1.3 52 42 55 45 

Beardy 27 2.65 -1.65 12 15 44 56 

Goulburn 21 3.73 -2.73 14.5 6.5 69 31 

 

Now that the elasticity method was used to estimate the runoff variations in the three 

catchments for the base period (period 1) and the second period (after change) by quantifying 
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the impact of both climate change and human interaction on the runoff reduction. The next step 

is to predict the possible future runoff variation under different climate scenarios. Two 

hydrological models are employed for this step. 

5.3 Modelling performance of the two hydrological models 

To evaluate the performance of the two hydrological models, HBV and BTOPMC, across the 

studied catchments, simulation results during the calibration and validation periods were 

assessed and compared. As mentioned earlier, the same observed hydro-meteorological data 

from the three contributing catchments were used to calibrate and validate the conceptual and 

distributed hydrological models. The only difference between the observed forcing data is the 

values of Potential Evapotranspiration (ET). The long-term observed monthly mean values 

were used in the conceptual modelling. Whereas the global monthly data (Table 1) was adopted 

to force the Shuttleworth-Wallace model to calculate the ET values in the distributed 

modelling. The two models were calibrated and validated over the same time periods, and the 

manual calibration was used to optimize the parameters of the two hydrological models. At 

Dingo-Road HRS, the model was calibrated for 22 years (1983–2004) and validated for the 

rest of the recorded period (2005–2014). While at Haystack and Coggan HRSs, the HBV-model 

was calibrated for a 29-year period (1976–2004) and validated for the rest ten years (2005–

2014). The calibration and validation periods were selected to represent a compromise between 

a longer period that would better account for climate variability and a shorter period that would 

better represent current catchment conditions (Vaze et al., 2011).  

To assess the performance of the models, four criteria were used. Nash-Sutcliffe efficiency 

(NSE), relative volume error (VE) and the coefficient of determination (R2) (Equations 14, 15 

and 16) were used in the conceptual modelling. While NSE and Volume Ratio (VR) (Equations 

14 and 17) were used in the distributed modelling. Model parameters were optimised manually 

based on the efficiency criteria and the values in Table (6) represent the best result chosen after 

performing several trials. The goodness-of-fit statistics resulting from comparing the observed 

and simulated discharges based on the optimized parameters of the two hydrological models 

are illustrated in Table (7). It indicates that both models performed well with acceptable 

goodness-of-fit. Figure 5 also shows a graphical comparison between the observed and 

simulated discharges resulting from both hydrological models at the three HRSs (for a specified 

period of two-years each). The visual inspection of the hydrographs specifies that the two 

models are good at producing the observed daily scale streamflow. In addition, the two models 



were validated using independent hydrometeorological data during the period (2005-2014), 

and the goodness-of-fit results were also satisfied (Table 7).  

𝑁𝑆𝐸 = 1–  
  ∑  (𝑸𝑪−𝑸𝑹)𝟐  

∑  (𝑸𝑹−𝑸𝑹𝒎𝒆𝒂𝒏)𝟐  
                                                                                                              (14) 

𝑉𝐸 =  
∑   (𝑸𝑹−𝑸𝑪)  

∑  (𝑸𝑹)  
 X 100                                                                                                   (15) 

R2 =  
[ ∑ (𝑸𝑹− 𝑸𝑹𝒎𝒆𝒂𝒏 )(𝑸𝑪−𝑸𝑪𝒎𝒆𝒂𝒏 )

𝒏
𝒊=𝟏 ]𝟐

∑ (𝑸𝑹− 𝑸𝑹𝒎𝒆𝒂𝒏 )
𝟐𝒏

𝒊=𝟏    .   ∑ (𝑸𝑪− 𝑸𝑪𝒎𝒆𝒂𝒏 )
𝟐𝒏

𝒊=𝟏
                                                       (16) 

VR =   
  ∑  𝑸𝒄  

∑ 𝑸𝑹 
 x 100                                                                                               (17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table (6) HBV model parameters and their optimal values for the calibration period at the 

three contributing catchments 

 

Parameter Symbol Unit 

Optimal value 

Harvey 

catchment 

Optimal value 

Beardy 

catchment 

Optimal value 

Goulburn 

catchment 

C
o
n
ce

p
tu

al
 M

o
d
el

li
n
g

 

Rainfall correction factor rfcf - 0.8 0.9 0.8 

Elevation correction factor 

for precipitation 
pcalt 1/100m 

 

0.1 0.1 0.1 

Temperature lapse tcalt o C/100m 0.6 0.6 0.6 

Maximum of soil moisture 

zone 
FC mm 400 500 250 

Limit for potential 

evaporation 
Lp - 0.7 0.5 0.8 

Shape coefficient Beta - 1.5 2 3 

General correction factor 

for potential evaporation 
ecorr - 0.9 0.9 0.85 

Recession coefficient for 

upper response box 
Khq 1/day 0.25 0.8 0.9 

Recession coefficient for 

lower response box 
K4 1/day 0.04 0.09 0.07 

Maximum percolation 

capacity 
Perc mm/day 1.1 0.9 0.9 

Routing parameter Maxbaz day 0.07 1.1 0.5 

       

D
is

tr
ib

u
te

d
 M

o
d
el

li
n
g

 Groundwater 

Dischargeability 
Do m/day 

Sand = 0.1 

Silt  = 0.05 

Clay = 0.05 

Sand = 0.12 

Silt = 0.06 

Clay = 0.07 

Sand = 0.14 

Silt = 0.05 

Clay = 0.06 

Decay factor of 

transmissivity 
m ----- 0.1 0.075 0.073 

Block average Manning’s 

coefficient 
no ----- 0.01 0.014 0.019 

Maximum root zone 

storage 
Srmax m 0.25 0.3 0.32 

Drying function parameter 𝛼 ----- 5 6 6.5 

Table 7 Modelling performance during the calibration and verification periods at the three 

HRS based on the two modelling approaches 

Conceptual modelling 

approach 

Hydrologic Reference 

Stations 

Calibration Validation 

NSE VE (%) R2 NSE VE (%) R2 

Harvey River at Dingo Road 0.87 -4.2 0.83 0.85 4.4 0.81 

Beardy River at Haystack 0.92 -3.9 0.91 0.90 -4.1 0.89 

Goulburn River at Coggan 0.9 3.8 0.85 0.88 4.2 0.82 

 

Distributed modelling 

approach 

Hydrologic Reference 

Stations 

Calibration Validation 

NSE VR (%) NSE VR 

Harvey River at Dingo Road  0.76 96.2 0.74 114.3 

Beardy River at Haystack 0.79 97.6 0.77 109.3 

Goulburn River at Coggan 0.83 102.4 0.8 107.6 
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Figure (5) Daily observed and simulated streamflow (from the two hydrological models) at 

the three HRSs for the calibration and validation periods 
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However, the modelling results from Table 4 revealed that the conceptual model performs 

better than the distributed model in capturing the observed streamflow across the three 

contributing catchments. The values of Nash-Sutcliffe efficiency (NSE) in the conceptual 

modelling approach are better than those values obtained from the distributed hydrological 

modelling. The results also specified that the peak and low discharges are well captured by the 

conceptual model than the distributed model (Figure 5). This implies that the simple structure 

of the HBV model, which normally requires fewer input data, can represent the hydrological 

behaviour of the catchments better than the more complicated structure of the BTOPMC model 

which usually involves more input data. An additional consideration is that simpler 

hydrological models that are requiring less complex calibration are preferred over the more 

complex and demanding models if only streamflow is of interest, and not the spatial patterns 

of runoff generating processes.  

Based on the above analysis, the general performance of the two models was relatively sensible 

in simulating the historical runoff volume at the three HRSs. The analysis of the results shows 

that there are no large differences in the modelling performance of the two models. On the 

basis of model performances, it seems that the conceptual and distributed hydrological models 

almost perform similarly across the studied catchments. Therefore, both hydrological models 

can be used effectively for climate scenario quantification to assess the impacts of future 

climate changes on the hydrological behaviour of the corresponding catchments of the three 

HRSs. Hence, both models were forced with the ensemble mean of the downscaled climate 

outputs of rainfall and temperature from the eight-GCMs of the CMIP5 model to simulate the 

future daily streamflow at the three HRSs.  

5.4 Application of Hydrological models to predict the future runoff variation in the HRSs 

To reduce the uncertainties in the GCMs projections, the ensemble mean of the downscaled 

climate data was derived and used as input into the HBV and BTOPMC models to simulate the 

future daily streamflow at the three HRSs. To study the hydrologic behaviour of the three 

contributing catchments under the scenarios of climate change, the two models were forced 

with the same climate outputs, the ensemble mean of the eight-GCMs, but as lumped and 

distributed modes for the HBV and BTOPMC models respectively. The key reason was to 

fairly compare the behaviour of the two models under changing climate conditions and to 

explore any changes in the future direction of streamflow at the studied catchments. The 

climate change impacts on future streamflow were analysed by comparing the future monthly 



mean simulations (seasonal streamflow) of the two models for the mid and late of the century 

with the control run (Figure 6). Furthermore, the changes in annual mean streamflow statistics 

of the future climate scenarios (RCP4.5 and RCP8.5) relative to the control run at the three 

HRSs were also compared and presented in Table (8). It shows that the future streamflow 

simulated by the two models tends to decrease across the three contributing catchments under 

both climate scenarios, regardless of the magnitude, relative to the control run. 

 

(a) Harvey catchment at Dingo-Road HRS (Mid-century) 

 

(b) Harvey catchment at Dingo-Road HRS (Late-century) 
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(c) Beardy catchment at Haystack HRS (Mid-century) 

 

(d) Beardy catchment at Haystack HRS (Late-century) 
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(e) Goulburn catchment at Coggan HRS (Mid-century) 

 

(f) Goulburn catchment at Coggan HRS (Late-century) 

Figure 6 A comparison between the control run and the future monthly mean streamflow 

simulated by the two hydrological models 
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Table (8) changes in annual mean streamflow statistics (m3/s) of the future climate scenarios 

relative to the control run at the three HRSs 

 

HRSs 

 

 

Variable 

Observed 

streamflow 

(1982-2014) 

Control run 

(1982-2014) 

Changes in mean annual runoff 

compared to the control run (%) 

(2046-2065) (2080-2099) 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

H
a

rv
ey

 R
iv

er
 a

t 
D

in
g

o
 R

o
a

d
 

C
o
n

ce
p

tu
a
l 

M
o
d

el
li

n
g
 

Q Min. 0.3 0.23 -13 -13 -13 -21 

Q25 0.6 0.6 -33 -33 -53 -66 

Q50 1.1 0.9 -31 -.44 -52 -61 

Q75 1.1 0.9 -30 -44 -52 -61 

Q Max. 1.8 1.7 -23 -23 -29 -35 

Q Mean 0.88 0.8 -31 -37 -48 -60 

D
is

tr
ib

u
te

d
 

M
o
d

el
li

n
g
 

Q Min. 0.3 0.20 -10 -10 -5 -10 
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Q75 1.1 1.2 -38 -44 -54 -62 

Q Max. 1.8 1.9 -20 -18 -26 -34 

Q Mean 0.88 0.95 -26 -32 -42 -53 
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(1975-2014) 

Control run 

(1975-2014) 

Changes in mean annual runoff 

compared to the control run (%) 
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Q Min. 0.6 0.6 0 0 0 0 

Q25 0.8 0.9 -11 -11 -3 -5 

Q50 1.15 1.2 -8 -4 -6 -4 

Q75 2.025 1.9 -4 -27 -31 -4 

Q Max. 5.6 4.6 -15 -37 -28 -19 

Q Mean 1.73 1.68 -1 -24 -16 -11 
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Q Min. 0.6 0.5 -4 -4 -6 -6 

Q25 0.8 0.85 -6 -11 -9 -10 

Q50 1.15 1.4 -4 -14 --21 -8 

Q75 2.025 2.2 -4 -13 -32 -21 

Q Max. 5.6 6.6 -23 -39 -21 -27 

Q Mean 1.73 1.7 -10 -19 -25 -15 
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Q25 1.6 2.4 -4 -54 -33 -33 

Q50 3.1 2.95 -10 -37 -36 -40 

Q75 5.1 4.3 -26 -40 -30 -53 

Q Max. 8.1 8.5 -45 -40 -49 -45 

Q Mean 3.7 3.3 -18 -39 -30 -42 
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Q Min. 1.0 0.8 -6 -33 -22 -28 

Q25 1.6 2.0 -28 -47 -40 -51 

Q50 3.1 2.9 -17 -41 -41 -48 

Q75 5.1 5.5 -49 -43 -49 -52 

Q Max. 8.1 7.5 -19 -42 -35 -45 

Q Mean 3.7 3.1 -6 -33 -22 -28 

 



At Dingo-Road HRS, the HBV model shows a shift in the wet season streamflow from (July-

September) in the baseline period (control run) to (October-December) under the scenarios of 

future climate (Figure 6 a and b). While the monthly mean streamflow simulated by the 

BTOPMC model tends to keep the same temporal distribution as in the baseline period. The 

peak flows simulated by the two hydrologic models indicate reduction tendencies for both 

scenarios; however, the changes are slightly higher for the HBV model (-29%-56%) than for 

the BTOPMC model (-26%-53%) especially for the mid-century (Figure 6 a and b). The low 

flows, particularly the period from January to June, are also expected to decline in the future 

with high reduction tendencies projected by the HBV model than the BTOPMC model. These 

findings specify that the uncertainty resulting from using two structurally distinctive 

hydrological models cannot be ignored. Therefore, even though the input data are same, 

different hydrological models provide different streamflow outputs because of differences in 

model structures. The shift in seasonal streamflow, projected by the HBV model, could be 

related to the shift in future rainfall patterns. 

At Haystack HRS, the behaviour of the two hydrological models is almost the same and 

showing a clear reduction in the overall future streamflow of the wet and dry seasons (Figure 

6 c and d). However, the BTOPMC model predicts slightly higher reduction tendencies than 

the HBV model, specifically for the RCP4.5 scenario during the mid and late of the century. 

The seasonal distribution of the future streamflow simulated by the two models also tends to 

follow the same temporal distribution as in the baseline period. Nevertheless, the decline in the 

wet season's flow (October-March) is higher than the dry seasons (April-September) which 

show insignificant changes (Figure 6 c and d). This indicates that the streamflow during the 

wet season is more sensitive to climate change than the total annual streamflow.  

The attitude of the two hydrologic models is also relatively similar at Coggan HRS on Goulburn 

River. The wet and dry seasons stream flows are expected to decline in the future under both 

climate scenarios (Figure 6 e and f). In contrary to the case of Haystack HRS, the streamflow 

reduction tendencies are higher as simulated by the HBV model than by the BTOPMC model. 

However, the seasonal distribution of the future streamflow simulated by the two models tends 

to follow the same temporal distribution as in the baseline period. 

 

 



6- Discussion 

It is expected that future climatological alterations of precipitation, temperature, 

evapotranspiration and the frequency of extreme weather events will affect many physical and 

biological processes in many Australian local watersheds (McVicar et al., 2010). Consequently, 

this can alter the amount and spatial and temporal distributions of water that flows into 

downstream rivers and estuaries. Variations of climate conditions can directly affect the 

vegetation, ecology and the hydrology of a watershed. As vegetation and hydrology are 

strongly connected, alterations in vegetation conditions themselves can also affect hydrology. 

Therefore, changes in climatic status can alter the hydrology both directly through the water 

supply demands, and indirectly through climate-induced changes in vegetation water use. 

Effective long-term water management strategies at local-scale require an appropriate 

understanding of the eco-hydrological processes of a catchment. Eco-hydrologic alterations 

resulting from changing climate conditions can alter the status of streamflow, 

evapotranspiration, surface storage, and soil dampness and directly affecting the region’s biota 

and habitat (Guo et al., 2014).  

The results of the current study suggest that streamflow in the study areas has been significantly 

influenced by climate change and human activities due to land use and land cover change, 

water management projects and development and excess usage of groundwater which 

manipulate the water resources. The runoff reduction is also expected to continue in the future 

based on the results of hydrologic modelling. Both HBV and BTOPMC models predicted 

dramatic runoff decrease in the future.  

At Harvey River catchment, the expected streamflow decline, measured at Dingo Road gauging 

stations, would possibly reduce the flows received by the Peel-Harvey Estuary. The Harvey 

River discharges directly to the Harvey Estuary, therefore any reduction in the flow amount of 

the River will badly affect the quantities of water received by the Estuary. As the depth of the 

Estuary is quite shallow (up to 2m for the deepest point), and more than 50% of its area has a 

depth of only 0.5m (Kelsey et al., 2010), this will affect the aquatic life, habitat of waterbirds 

and the environmental status of the lagoon. The growing environmental and economic 

importance of the estuary (such as water demands for drinking and agricultural production, 

parasite control, commercial fishing, foreshore development and access, boat use and moorings 

and jetties) have placed additional burdens on the estuarine system. Furthermore, the projected 

reduction in the flow amount of the Harvey River would also reduce the quantities of water 



received by the Stirling and Harvey Reservoirs which represent the main water supply sources 

to the Perth Metropolitan (Al-Safi & Sarukkalige, 2018c). As the population and the economic 

development in Perth and its outskirts is in continuous growth, this would increase the 

competition for the currently available water resources in the area. Therefore, options for 

additional water supply sources in the future would be necessary to support the economic and 

population development in the area. 

For the Beardy River region which is rich in rare flora and fauna, the expected streamflow 

reduction would adversely impact the environmental and ecological communities of the Beardy 

River system particularly the Beardy River Hill Catchment. On the other hand, the Goulburn 

River is the right bank tributary to the Hunter-River in NSW, Australia. It drains approximately 

50% of the Hunter catchment and donates nearly quarter of the mean Hunter River flow. Water 

in the Hunter basin is the main source for power generation, irrigation and agriculture, stock 

manufacturing, coal mining and public water supplies. As the Goulburn River flow is projected 

to decrease due to future climate changes, this would impose further limitations on the surface 

water supply systems in the Hunter River basin.  

Both models predicted a decline in wet and dry seasons streamflow across the three 

contributing catchments. At Haystack and Coggan HRSs, the future monthly mean streamflow 

distribution, simulated by the two models under both climate scenarios, follows the same 

patterns of the baseline period. But, at Dingo-Raod HRS, the HBV model shows a shift of the 

peak season from July–September in the base period to October–December for future climate 

scenarios (Figure 6 a and b). The performance of the two hydrologic models in simulating the 

future streamflow was relatively compatible in the overall direction of change, irrespective of 

the magnitude, and inconsistent regarding the change in the direction of high and low flows for 

both future climate scenarios. However, the conceptual HBV model could be considered more 

suitable than the distributed BTOPMC model for streamflow simulations as it requires fewer 

input data which is an advantage in data-sparse regions. Furthermore, conceptual models are 

preferred over the distributed models in situations when only streamflow is of interest, as in 

the case of this study, and not the spatial patterns of runoff generating processes. However, if 

the assessment of climate change impacts on water balance components is the main concern, 

then, the impact on interflow conditions may be better described by using the physically based 

distributed models.  



Although, as the main interest of this study is to investigate how likely the future streamflow 

of three Australian HRSs will be impacted due to the changes in climatological status, then, 

the priority is given to the conceptual modelling as its overall performance was highly satisfied 

and seems to be more robust than distributed modelling. The conceptual model properly 

represented the extreme events, which increase the possibility of reliable representation of 

future streamflow due to the shifts in extreme events of future climate. Furthermore, the more 

accurate and complicated calculation process of potential evapotranspiration (Shuttleworth-

Wallace method) by the distributed modelling did not improve the modelling performance even 

in the dry periods when the volume of evaporation is highly significant in the water balance. 

Finally, the short computation time of the conceptual modelling, compared to the distributed 

modelling, makes it more appropriate for long-term streamflow simulation under the various 

scenarios of future climate. 

7- Conclusion 

To estimate climate change impacts on runoff across three contributing catchments of the 

Australian HRSs, two hydrologic models, HBV and BTOPMC, were employed to simulate the 

historical streamflow and catchment hydrologic response to climate change. As a first step, 

Budyko elasticity method was applied to understand the history of the hydrological variations 

in the catchments. The elasticity approach, by using the hydrological parameters and their 

variation during the recent decades, suggested not only the climate change had impacts on 

runoff, but also human activities have significantly contributed to the runoff reduction. Climate 

change and human activities played almost the same roles in Harvey and Beardy catchments. 

However, for the Goulburn catchment, human interaction was responsible for almost 70% of 

runoff decrease. The results were predictable as the Goulburn area is mostly covered by 

national parks and forests and has been less affected by human activities.  

After assigning the impact of climate change on runoff variation, the two hydrologic models 

were calibrated and validated using the same observed hydro-meteorological data from the 

three contributing catchments. The ensemble mean of the downscaled climate scenarios, 

RCP4.5 and RCP8.5, derived from the most reliable eight-GCMs of the CMIP5 was used to 

force the two hydrologic models to predict the future runoff changes. The results were then 

compared to assess the applicability of the two models in prediction future runoff under climate 

change scenarios. Both HBV and BTOPMC models estimated a decline in streamflow in the 

study areas. At Haystack and Coggan HRSs, the predicted trend of monthly mean streamflow 



follows the same patterns of the current period. However, at Dingo-Raod HRS, the shift of the 

peak season from July–September in the base period to October–December is predicted. 

The hydrological results of this study will provide a theoretical basis to the local management 

authorities to make scientific and rational control measures and response plans which allow 

them to manage the usage of future water resources in the study area. The impacts of climate 

change may influence human water use and the stability of the ecosystem. More attention and 

effort should be allocated to future water resources management and ecosystem planning in the 

study regions. Further research on feedbacks of vegetation, water balance, processes that 

directly influence plant performance and the ecological effects of weather extremes to improve 

climate change projections on hydrology and ecosystems will be useful in the sustainable 

management of catchment water resources in the future. 
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