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Abstract 

 

This paper presents an adaptive dynamic analysis of discontinuous smart beam energy harvester 

systems using a shunt vibration control. The smart structural systems, connected with the shunt and 

harvesting circuit interfaces, consist of the three types of non-homogeneous structural combinations 

with different piezoelectric materials. The constitutive coupled dynamic equations with full 

variational parameters are reduced using the charge type-based Hamiltonian mechanics and the Ritz 

method-based weak-form analytical approach. Unlike the conventional techniques, this study 

elaborates the appearance of the two resonances with a wider shift on a specific range of the optimal 

power output frequencies, using only the first mode of the smart structural systems. Moreover, the 

two-equal peak of the optimal response may potentially occur to appear not only at the first resonance, 

but also at the second resonance. This intrinsically represents strong electromechanical effect, 

depending on the properties and thicknesses of piezoelectric materials and the circuit parameters. The 

accuracy of the theoretical method is tested using the iterative computational process of the optimal 

frequency response with full coupled electromechanical system parameters. Further details of the 

parametric studies are discussed to show the prediction of the energy harvesting with the ability of 

tuning an adaptive frequency response.    

Keywords: Adaptive response; Laminated smart structures; Control system; Vibration energy 

harvesting; Piezoelectricity. 

1 Introduction 

Smart structure with the piezoelectric material has become an attractive research area that provides 

capabilities to generate the electric charge and produce the motion. In specification of smart structure 

applications, the control system becomes one of today’s profound research trends with the key 

components of piezoelectric element and non-active structure. Moreover, the configuration of the 

system itself obviously underlies on the varieties of the physical and technical studies as proposed by 

many researchers. The investigation of the system with either smart beam or plate structure covers 

wide ranging control strategies such as the structural control [1-7], shape control [8-11], feedback 

gain control [12-14], and shunt control [15-17]. In particular attentions to the vibration suppression 

using the shunt control, the resonance of the smart structure with the selected mode can be tuned into 

the desired frequency resulting in the reduction of the amplitude [18-19]. Earlier studies have 

investigated a tuning resonance of the smart structure using the LC circuit-shunted piezo-system [20] 

and the RL-shunted piezo-system [21–24]. For stabilising the signal of the shunt circuit parameters, 

the synchronized switching technique was also developed to improve the performance of the vibration 

reduction [25,26]. Furthermore, various vibration suppression methods for several modes of the 
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structural system have been developed using the multiple circuit branches with the RLC-shunted 

piezo-systems [15,17,27-29]. Since the required inductance value in the shunt circuit is very high, the 

synthetic inductor or gyrator [30]-[33] was developed in order to tune the desired frequency.  

Another recent application of the smart structure for converting the electrical energy from the 

surrounding vibration environment has been developed using various physical systems and theoretical 

methods. The key strategy of the piezoelectric structure power harvesters can be found in the use of a 

tip mass and a shunt impedance circuit for the frequency tuning system. Unlike the control system-

based smart structure for vibration suppression, the energy harvesting system requires the optimal 

physical structure with a relatively small scale, allowing to produce the essential frequency shift from 

high to low value and maximise the power output. The reason is that it is designed to be attached on 

the main structures (e.g. civil engineering structure, automobile, lightweight aerospace, and even 

biomechanical system of human body) that normally excite the vibration. This unused mechanical 

motion can be benefit for the energy conversion so as to recharge battery and enable to powering 

wireless sensor device for the structural health monitoring. In this scenario, most notably structure 

model has included the cantilever laminated piezoelectric structures with the typical unimorph and 

bimorph systems. Various theoretical methods have been developed using the circuit technique 

combinations [34-37], Rayleigh–Ritz methods [38,39], modal analysis methods [40], and the weak-

form technique [41], random vibration analysis [42,43], transfer matrix [44], Galerkin approach 

[45,46], closed-form boundary value methods [47,48], analytical voltage- and charge-type 

Hamiltonian methods [49], electromechanical finite element analyses [50,51], and the segmented 

unimorph smart pipe conveying fluid [52]. Another research work focusing on the composite linear 

multimorph energy harvester [53] has been investigated using the form closed-form distributed 

parameter. More recently, alternative approach for producing the multi-resonance peaks, using the 

closed form boundary value method [54,55], impedance analytical method [56] and finite element-

based SSHI (synchronized switch harvesting on inductor) approach [57,58], has been investigated by 

applying a number of the piezoelectric beam arrays. This strategy allows the power harvesting levels 

to adapt with the ambient vibration that changes over time. In recent research works, triggering the 

multi-resonance peaks using a single piezoelectric bimorph beam with distributed system can also be 

achieved by applying the shunt control-based electrode configurations [59,60]. This tuning strategy 

allows one layer of the smart beam acting as the shunt control with passive electrical network to boost 

another layer for generating the power harvesting. Different tuning response system using the smart 

plate, controlled by the multi-segment array with the on-off switching techniques, has been developed 

using electromechanical finite element analysis [61]. The multi-tuning system provides an effective 

tool to adaptively control the level of power output and frequency domain where it depends on 

switching certain active segments of smart plate. 

    As reported in the literature reviews, the two previous research studies of the smart structures have 

shown examples of the potential engineering applications. Although these two areas are mostly 

investigated independently, the power harvesting- and shunt control-based discontinuous smart 

structures with the non-homogeneous system provide a direct benefit for effectively widening and 

tuning the multi-resonances with adaptive response system. Unlike the previous works, the major 

contributions of the proposed work can be highlighted as follows:  
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1. The constitutive coupled equations using full variational parameters have been derived 

simultaneously using the charge type-based Hamiltonian mechanics and the Ritz method-based 

weak-form analytical approach. These parameters consist of all parametric harvesting and shunt 

circuits, mechanical system of elasticity with mechanical stress-strain and dynamic motions, and 

electromechanical system of electrical displacement, electrical stress and electric-polarity field. 

Note that only key formulations are given for presenting the technical concept of the proposed 

study. 

2. The accuracy of the theoretical method provides faster convergence while only using lower 

number of mode iteration or degree of freedom. The convergence study has been conducted using 

the iterative computational process of the optimal frequency response with full coupled 

electromechanical system parameters.  

3. The three types of discontinuous laminated smart beams with non-homogeneous system have been 

discussed showing the different levels of electromechanical effect on the harvested power and 

tuning ability. Type-1 is the segmented smart beam with the PZN-PT materials for both tuning and 

harvesting layers. Type-2 uses the PZT PSI-5A4E for tuning layer and the PZN-PT for harvesting 

layer. Type-3 uses the PZT PSI-5A4E for both tuning and harvesting layers. Each smart structural 

systems are connected with the shunt circuit and AC–DC circuit interfaces.  

4. The structural system model can give more efficient and practical in creating the transverse 

flexibility. It also potentially reduces the cost of using the piezoelectric materials. The proposed 

adaptive structural system can be important to practically fit the vibration environment that 

sometimes changes over time. 

5. Further parametric studies have been explored to identify the wider shift of the two resonances of 

the optimal power output frequencies, while only using the first mode of the smart structure. 

Moreover, the appearance or disappearance of the two-equal peak at the first resonance and/or the 

second resonance may potentially occur at the optimal response, showing the level of the 

electromechanical effect. This phenomenon shows a proof in which its relevancy was derived 

explicitly by [36]. Detail discussions of the adaptive optimal energy harvesting have also been 

presented using the parametric shunt circuit tuning.  

2 Physical System  

In Fig. 1, discontinuous laminated smart beam with non-homogeneous system and proof mass 

offset is subjected to the base excitation. This system model consists of the two segments. The first 

segment is used for harvesting piezoelectric components connected with the AC-DC harvesting 

circuit. The second segment is used for the tuning piezoelectric system connected with the shunt 

circuit. Moreover, the first and second segments provide the three and two layers, respectively. The 

middle layer is the passive substructure. At this case, the asymmetric neutral axes at the both 

segments are different. The point of attachment for the proof mass whose the centroid has a distance 

offset to the end of the system model obviously depends on the asymmetric neutral axis at the second 

segment. These issues will affect the dynamic equations of the system model. As shown here for a 

modelling example, the series connection at the first segment appears to be a bimorph system. In 

general, when the piezoelectric element undergoes transverse input base motion as assumed here, the 

upper and lower layers of the piezoelectric bimorph can respectively deform with the tension and 
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compressive strains and vice versa where the polarisation of the upper layer will then create opposite 

directions compared with the lower layer. Under repetitive deformations, the AC signal from the 

piezoelectric layers can be generated and converted to the DC signal via a full-bridge rectifier with the 

smoothing RC circuit.  

It is important to note here that the bimorph system at the first segment is not restricted on having 

the similar material and equal thickness between lower and upper layers of the piezoelectric 

components. For many previous works with the distributed piezoelectric structure (continuous 

system), the electric fields of bimorph system with the series and parallel connections are considered 

to multiply by factors of half and one for each piezoelectric layer, respectively. Also, the sign 

conventions of the electric field and polarisation for the series and parallel bimorph configurations 

have also been developed in detail [62-64], where the piezoelectric coupling and internal capacitance 

of the total piezoelectric layers of the symmetrical bimorph system were aimed to be calculated 

separately from the constitutive dynamic equations. As a result, the piezoelectric coupling and internal 

capacitance for the series bimorph gave half and one-fourth of the parallel bimorph, respectively. 

However, this paper is not restricted by all of the aforementioned points. The reason is that the 

proposed technique obviously underlies on the simultaneous derivations by taking into account all 

aspects of the physical systems and circuit analysis using the charge type-based Hamiltonian 

mechanics. The key formulations of the coupled system model as a whole will be expressed in the 

forthcoming section. 
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3 Electromechanical Weak Form Analytical Approach 

 

 A new development of the analytical method for the nonhomogeneous and discontinuous smart 

structure with proof mass offset is developed in this section. It combines the tuning and harvesting 

circuits, mechanical system (elasticity with mechanical stress and dynamic motions) and 

electromechanical system (electrical displacement, electrical stress and electric-polarity field).  

 

 

Fig.1. Smart structural system with offset proof mass under base excitation with harvesting and tuning circuits: 

a) physical system, b) equivalent tuning piezoelectric circuit and tuning shunt circuit 
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3.1 Formulations of fully coupled equations  

The coupled dynamic system of the discontinuous smart beam with the integrated piezoelectric 

energy harvesting and shunt control can be formulated using the extended charge type-based 

Hamiltonian mechanics [49], giving, 
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,                                      (1) 
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Each functional energy form in Eq. (2) can be expressed briefly in Appendix A. Note that since the 

given expressions of energy forms were formulated in terms of the nonhomogeneous and 

discontinuous cantilever smart beam with proof mass offset, they therefore are different to those 

shown in [59-60]. The variational forms of the given functional energy expressions can be prescribed 

as the continuous differentiable functions of virtual displacements, electric displacements and charges 

for the whole system that can be stated as, 
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Applying total differential equations into Eqs. (3.1) and (3.2) gives,     
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 The variational parameters such as the virtual relative transverse displacement field, harvesting 

electrical charge, and tuning electrical charge are required to formulate the weak-form equation.  After 

manipulation and simplification, the electromechanical weak-form equation of Eq. (2) can be further 

formulated using the expressions given in Appendix A in terms of Eqs. (4.1)-(4.2) to yield,     
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Some coefficients can be formulated as, 
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Note that if the general parameter 11Dc c , it will refer to the non-active layer. Other essential 

piezoelectric parameters can be defined in Appendix A. Parameter b is the width of the interlayer and 

term m is number of layers for each segment (term n). The general parameter Hn(x) represents the 

Heaviside functions.  
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Applying KCL for the internal piezoelectric connection (series connection) with harvesting circuit 

and tuning circuit in Fig. 1 gives the electric charge equations, 

                                                3 1 3
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It is important to note that the existence of the parameter in Eq. (8.1) was excluded in the previous 

works in [59-60]. The capacitance at harvesting circuit was only excluded into the constitutive 

coupled equations to formulate the frequency response equations. But, it was then derived separately 

when formulating the signal waveform equations due to complexity of the simultaneous derivations 

[59-60]. However, as shown in this paper, the overall system model, which is used into the non-

homogenous and discontinuous smart beam with variable piezoelectric material, is presented and 

different from the previous works. 

The Ritz method-based weak form [65-67] can be further formulated for the required solution. The 

method requires a test function which is a piecewise continuous function over the physical domain of 

the coupled system as a whole. The function must meet continuity requirements and boundary 

conditions. The normalised eigenfunction series form can be formulated as,  

        
1

ˆ
m

r r

r

w x,t W x w t



   . 

     

                                           (9) 

The first coupled dynamic equation representing the electromechanical system can be formulated by 

substituting Eq. (9) into Eq. (5), giving, 

                   
 2

2

0 2 2 2 20 0

1 1 10

ˆd
ˆ ˆ ˆ ˆ ˆd

d

Lm m
rtip tip

n n q r q r c q

q r n

W L
I H x W x W x x H x I W L W L x I W L

x
  

     
 

      

      
 

 
   

 
2 2 2

20 2

ˆ ˆ ˆd d d
ˆ

d d

q q rtip tip
c r r

W L W L W L
x I W L I w t

dx x x


 



 
   

 
2 22

2 2
10

ˆ ˆd d
d

d d

L
q r

n tn r

n

W x W x
H x C xw t

x x

 
 
 
 

  

      
                  

2 2
1 3 3 1 1

1 21 1 11 2 122 2

0 0

ˆ ˆd d
d d

d d

L L
q qW W

η η H x xq t η H x xq t
x x

       
2

0

10

ˆ d

L

n n q

n

H x I W x x







  

 
 

     
2

2 0 0

ˆd
ˆ 0

d

qtip tip
c q base q

W L
H x x I I W L w t δw t

x

     
    

.                                                            (10) 

The second, third, fourth and fifth coupled dynamic equations represent the electromechanical 

coupling one and two and the harvesting and tuning circuit forms can be formulated respectively as, 

      
 

 
   

   
     

       
31 32

1 3 3 3311 1
1 11 1 11 112 1 3

1 0 1 1

ˆd 1
d δ t 0

d

Lm
r v v

r
d dr v v

W x,t q tC C
η η H x xw t H x q t q

C Cx C C

         
    

 , (11.1) 
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     

 
   

       
12

1 1 12 32
2 12 122 1

1 20

ˆd 1
d 0

d

Lm
r

r

r v

W x,t H x q t
η xw q t δq t

C Cx C

  
      

    

   ,                 (11.2) 

   
           
3 3

3 331 11
31 31 0d

d d

q t q t
R q t δq t

C C

 
 

   
  

,                                    (11.3) 

                  
       

           
1 1

1 1 132 12
32 32 32 0s l

q t q t
L q t R q t δq t

C C

 
 

    
  

.                                    (11.4)                

Eq. (10) and Eqs. (11.1)-(11.4) can be further simplified into matrix form by including the mechanical 

damping coefficients, giving, 

 

 

 

 

 

 

1 1 2 2 2 1

1 1 1

232 32 32

3 3 3
131 31 31

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

qr q r d q r q qr r rqr qr q

s l r C

d r Cd

K P P γC P P C P P γw w wM C Q w

L q R q P P q

R P γ Pq q q

 



           
                         
         
               

 

0

0

base t 
  
 
 
  

, (12) 

where             
2

0 2 2 20

10

ˆ ˆ ˆ ˆd

L

tip
qr n n q r q r

n

M I H x W x W x x I H x W L W L



   

   
   

 
   2 22 2

2 2 20 0 2

ˆ ˆˆ ˆd dd d
ˆ ˆ

d d d d

q qr rtip tip tip
c q c r

W L W LW L W L
H x x I W L x I W L I

x x x x

 
   
 
 

,             (13.1) 

          

qr v qr d qrC c M c K  ,                                                            (13.2) 

      
   2 22

2 2
10

ˆ ˆd d
d

d d

L
q r

qr tn n

n

W x W x
K C H x x

x x

  ,                                      (13.3) 

                   
 2

1 3

1 11 1 2

0

ˆd
d

d

L

r
r

W x
P η η H x x

x
  ,         

 2
1 3

1 11 1 2

0

ˆd
d

d

L
q

q

W x
P η η H x x

x
  ,                    (13.4) 

   
 2

1

2 22 2

0

ˆd
d

d

L

r
r

W x
P η H x x

x
  ,

   
 2

1

2 22 2

0

ˆd
d

d

L
q

q

W x
P η H x x

x
   ,                               (13.5) 

 C

1
P 1 μ

C
      ,   

 

  

1

2

1

2

v

v

C
μ

C C




,                 (13.6) 

                          
1

1Cd
d

P
C

  ,  
   

        

1 3

1 1

1 3 1 3

1 1 1 1

v v

d dv v v v

C C

C C C C C C

 

 
,                                        (13.7) 

       
 2

2

0 2 20 0

10

ˆd
ˆ ˆd

d

L
qtip tip

q n n q q c

n

W L
Q I H x W x x H x I W L x I

x


 
   
 
 

 .                      (13.8) 

3.2 Identification of the exact solution-based Ritz eigenfunctions 

Parameter normalised eigenfunction  r
ˆ .W from Eq. (9) can be proved as,       

 
 

             

1 2
22

2 2

0 2 2 2 2 20 0 2

10

ˆ 1 2

d d
d 2

d d

r
r /

L

tip tip tipr r
n n r r c r

n

W x
W x ,r , ,.., m

W W
I H x W x x H x I W L x I W L L I L

x x


 
              


,  (14) 

where the non-normalised  r .W can be obtained from the generalised space-dependent Ritz 

eigenfunctions as,   
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    
1

, 1 2 ....,

m

r kr k

k

W x c W x r , , m



    .                                          (15) 

Note that the accuracy of the non-normalised Ritz mode shape  kW x can be obtained using the 

closed-form boundary value technique where it can be found in the next stage. The generalised Ritz 

coefficient krc is the eigenvector matrix where each column corresponds to a specific independent 

eigenvalue. The coefficient can only be obtained by replacing Eq. (9) with  
1

( )

m
iωt

r r

r

w x,t c W x e



   

and rearranging Eq. (5) by considering only the characteristic mechanical equation giving, 

2

1

0 , 1 2

m

qr qr r

r

K ω M c q , ,....,m



   
  . Parameters qrK and qrM , whose values depend on  kW x , are the 

non-normalised forms, and different with the normalised forms as given in Eqs. (13.1) and (13.3). 

Once the Ritz coefficient data sets of column vector are collected, they can be transformed into the 

matrix form ( r krc c ). The following procedure is used to obtain  kW x  from Eq. (15) where the 

accuracy of the non-normalised Ritz eigenfunctions can be used for formulating the eigenfrequency 

and eigenmode solutions. Note that these exact solutions can be obtained by extending Eq. (2) to 

particularly formulate the strong-form analytical models in order to obtain the closed-form boundary 

value equations, and the result of which can be further reduced by applying the variational method of 

duBois-Reymond’s theorem. After simplification, the mechanical dynamic equations for the 

nonhomogeneous and discontinuous laminated smart beam with proof mass offset can be formulated 

as,  

 
 4

1
01 1 1 4

0t

w x,t
I w x,t C

x


 


,    

 4
2

02 2 2 4
0t

w x,t
I w x,t C

x


 


  .                (16) 

The static boundary conditions are given as, 

   1 0 0w ,t  ,   
 1 0

0
w ,t

x





.                                 (17) 

The transition boundary conditions are shown as,  

             1 1 2 0w L ,t w ,t ,    
   1 1 2 0w L ,t w ,t

x x

 


 
,                       (18.1) 

   2 2
1 1 2

1 22 2

0
t t

w L ,t w ,t
C C

x xx x

     
   
        

,  
   2 2

1 1 2
1 22 2

0
t t

w L ,t w ,t
C C

x x

 


 
.                  (18.2) 

The dynamic boundary conditions can be formulated as, 

 
 

 2
2 2 2 2

2 2 20 0 2
0

tip tip
c t

w L ,t w L ,t
x I I w L ,t C

x x x

  
   
    

,                           (19.1) 

 
 

 
 2

2 2 2 2
2 2 22 0 2

0
tip tip

c t

w L ,t w L ,t
I x I w L ,t C

x x

 
  

 
.           (19.2) 

It is clearly seen that the extra parameters from the offset proof mass contributes into Eqs. (19.1)-

(19.2). The method of separation of variables for each segment was used by substituting 

     1 1 1, kw x t W x y t  and      2 2 2, kw x t W x y t into Eq. (16). As mentioned previously, since the 

mode shapes for each segment as shown in Fig. 1 are required by Eq. (15), the following general 

solutions of  1kW x  and  2kW x  can be formulated as,  
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    
 

 

1 1 1 1 1 1

2 2 2 2 2 2

cos sin cosh sinh , 0

cos sin cosh sinh , 0

k

k

k

W x A x B x C x D x x L
W x

W x A x B x C x D x x L

   

   

      
 

     

.            (20) 

Using Eq. (20) into Eqs. (17)-(19), the characteristic equations in the matrix form can be formulated, 

giving,  

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a











1

1

1

1

2

2

2

2

0

A

B

C

D

A

B

C

D

  
  
  
  
  
   
  
  
  
  
    

.                             (21) 

Each element of the matrix in Eq. (21) can be seen in Appendix C. As shown in Eq. (20), the two 

dependent parameters 24
01 1tI C  and  44

02 1 01 2t tI C I C   exist where these obviously depend 

on the natural frequency ω of the system (eigenvalue). Next, Eq. (21) must satisfy the nontrivial 

solution for 0nm a , leading to the frequency equation. But nma  still contains dependent parameters 

μ, β, and ω. It must be modified first by showing only a single input parameter. One of the options is 

that β and ω can be replaced using the above relation μ. At this case, whatever the value μ is 

iteratively chosen, the computational process of the frequency equation must be equal to zero, 

showing the eigenvalue related to the particular mode number. Once the proper values μ for any mode 

numbers are obtained, other values β and ω can subsequently be calculated. The eigenmode from Eq. 

(20) with the constants (A1, B1, C1, D1; A2, B2, C2, D2) can then be solved as shown in Appendix C 

where the updated constants clearly depend on the matrix elements of nma  or the parameters μ, β, and 

ω. 

3.3 Solutions of fully coupled dynamic equations  

The orthonormalisations can now be further proved using Eq. (14) and applying the orthogonality 

property of the mechanical dynamic equations as, 

            
             

 2
2

0 2 2 2 20 0

10

ˆd
ˆ ˆ ˆ ˆ ˆd

d

L

rtip tip
n n q r q r c q

n

W L
I H x W x W x x H x I W L W L x I W L

x



 



        

                      
 

 
   2 2 2

20 2

ˆ ˆ ˆd d d 0ˆ
1d d d

q q rtip tip
c r qr

W L W L W L if r q
x I W L I δ

if r qx x x

 
    
 

 ,               (22.1)                               

 
   2 22

2

22 2
10

ˆ ˆ 0d d
d

d d

L
q r

tn n qr r

rn

if r qW x W x
C H x x δ ω

ω if r qx x


  


 .                     (22.2) 

where qr  is the Kronecker delta, defined as unity for q r  and zero for q r . Note that parameters 

 ˆ
rW x  and  ˆ

qW x  indicate normalised mode shapes. Applying the orthonormalisations from Eq. (22) 

into Eq. (12) gives, 

                
1 32

1 1 2 2 2 132 31

ˆ ˆ
2r r r r r r r d r r r r r q basew t ζ ω w t ω P P γC P P C w t P q t P γq t Q w t          

  ,   
(23.1) 

           
             
1 1 1

1 232 32 32

ˆ
0s C r rL q t R q t P q t P μw t    ,                             

(23.2)
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                                                       
3 3

131 31

ˆ
0d Cd r rR q t P q t P γw t     .                                             (23.3) 

As can be seen, the three coupled equations are formulated showing dependable relations to each 

other. The equations can be further formulated into FRFs as shown in the stage. Moreover, the FRFs 

provide accurate results as long as the test function-based Ritz eigenfunction is chosen correctly. At 

this case, since Eq. (23) has been normalised, the modified parameters can be formulated as, 

           1 3 1
1 1 1

ˆd

d

r
r

W L
P η η

x
  ,      1 2

2 2

ˆd

d

r
r

W L
P η

x

 
 
 
 

,  1 1

1

ˆ
m

r r

r

P P



 ,  2 2

1

ˆ
m

r r

r

P P



 .       (24) 

Note that other parameters can be seen in Eq. (13). Laplace transformation can be used to formulate 

the multi-mode electromechanical FRFs equations giving the transfer functions. Here only one 

example of the harvesting electrical power FRF is shown across the load resistance after 

simplification, 

   
1

3

31 1

2 2 2 2 2
1 2

1 1

1

m
r r

rr

jωt m m
base r r

rrr r

Q P

N Gq jω

ω w e P P μ

N EN G







 




 



 
,                                       (25) 

where                          2 2 2 2
1 2 2r r r d r r rN ω P γC P C ω j ζ ω ω     ,             (26.1) 

      2
C s lE P L ω jωR   ,   ωCd dG P j R  .                                 (26.2) 

As shown in Eq. (25), the voltage-charge relation across the resistor or capacitor of the harvesting 

circuit [49] can be used to calculate the FRF as,  

     
3

31

2 2djωt jωt
base base

v jω q jω
jωR

ω w e ω w e


 
  .                                         (27)

      

             

 
Also, the power-charge relation across the resistor and capacitor [49] can be used respectively to 

calculate the FRFs as, 
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 ,                                  (28.1)                 
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 .                               (28.2) 

After simplification, the optimal load resistance can be formulated using Eq. (28.1), giving,   
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  .                                                (29) 

3.4  Harvesting AC-DC Interface Circuit.   

 

The electrical waveforms from AC to DC signals as shown in Fig. 2 can be generated from 

harvesting circuit due to the smart system under dynamic excitation. Note that the process of 

capturing these signals obviously depends upon the control system from the piezoelectric tuning layer 

with shunt circuit component as shown in Fig. 1. Here, the AC-DC full bridge rectifier and smoothing 
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RC circuit are utilised, and the process of the voltage and current output signals at the interface circuit 

can be seen in [36,59]. With this process, the time-waveform signal repeats continuously, provided 

that the smart system is subject to the excitation.      

                                  

Discharging

ti

VDC

IDC

Voltage across Capacitor

VAC

Voltage across Rectifier

t

t

t

tf ti+T/2

Charging

Current 

across 

Capacitor

Current across 

ResistorIDC

tPower across   

ResistorPDC

t

Voltage at Piezoelectric 

Structure

1
st
 half cycle: Diodes (D1 & D2) conduct and 

Diodes (D3 & D4) switch off

1
st
 half cycle 2

nd
 half cycle

2
nd

 half cycle: Diodes (D3 & D4) conduct and 

Diodes (D1 & D2) switch off

+

-

 

 

a. Current flowing with interval ti < t < tf indicating the charging time over every half-cycle of 

the frequency. 

 

As shown at the previous equations, the coupled system can be formulated using Eq. (23) with slight 

modification in Eq. (23.1). The fourth and seventh terms of Eq. (23.1) were removed. The first term of 

Eq. (23.3) was also replaced by vd. Note that this process can also be alternatively proved using 

modifications of the previous parts with Hamiltonian equations. Here, the following equations during 

the period of charging can be reformulated as,  

                  
1 32

2 2 2 132 11

ˆ
2r r r r r r r r r r q basew t ζ ω w t ω P P C w t P q t P q t Q w t         

  ,           
(30.1)

 

           
             
1 1 1

1 232 32 32

ˆ
0s C r rL q t R q t P q t P μw t    ,                                     

(30.2)
 

                                             
         

3 3

111

ˆ
0d r rVv P q t P w t     .                                                 (30.3) 

where
          3 1 3 1 3

1 1 1 1V v v v vP C C C C  . Differentiating Eq. (30.3) with respect to time gives,  

       
3 3

111

ˆ
0d r rVv P q t P w t   .                                                    (31) 

The equation for the harvesting circuit using the KCL equation can be formulated as, 

     
   
3

11 0d
d d

d

v
q t C v

R
   .                                                      (32) 

Substituting parameter
   
3

11q t from Eq. (30.3) into Eq. (30.1) and parameter  3

11q  from (31) into Eq. 

(32), the state space equation can be formulated as,               

Fig.2. Time waveforms of the harvesting circuit   
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.      (33) 

b. Current flowing with interval t f < t < ti + T/2 indicating the discharging times every half-cycle 

of the frequency. 

For this process, the harvesting circuit becomes 0d d d dC v v R  , and its solution gives,  
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.                                                       (34) 

The collection of the time waveform signal data using Eqs. (33) and (34) can be utilised to estimate 

the current and voltage waveform during the charging and discharging periods. The basic formulas of 

the DC currents across the resistor and capacitor and DC power output across the resistor as shown in 

Fig. 2 can be stated respectively as, 

                 _ d

d
DC R

d

v
I

R
 , _ dDC C d dI v C ,  _ _d dp R d DC RP v I .                  (35) 

Note that the parameter dv at DC signal output in Eq. (35) can be formulated, giving, 
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4 Results and Discussions 

 

This section discusses parametric studies of the shunt vibration energy harvesting control of 

discontinuous piezoelectric beam structure with proof mass offset using the optimal power output 

frequency and time waveform responses. At this case, three types of the discontinuous smart beam 

structures with different piezoelectric materials were utilised to explore the adaptive power 

harvesting. These types of the smart system can be seen in Table 1. The material properties of the 

smart beam are given in Table 2. Note that the physical system used here is still the same model as 

shown in Fig. 1. The geometry parameters of length L, width b and substructure thickness h(2) were set 

to 60 mm, 6 mm, and 0.5 mm, respectively. Other thickness parameters for piezoelectric segments of 

both tuning and harvesting layers were set to be variable. The base excitation of the physical system 

was set to 1 m/s2. Note that each  selected  piezoelectric thickness was  utilised  for   both   segments. 

Also each segment (L1 and L2) for the smart beam was equally set to 30 mm. The steel proof mass 

offset with lt, ht and b (width) were set to 15 mm, 10 mm and 6 mm, respectively. 

 

 
Segments Type-1 Type-2 Type-3 

Tuning piezoelectric  PZN-PT PZT PSI-5A4E PZT PSI-5A4E 

Harvesting piezoelectric  PZN-PT PZN-PT PZT PSI-5A4E 

 

 

Material  properties PZT PSI-5A4E PZN-PT  Brass 

Young’s modulus, 11c (GPa) 66 25 105 

Density, ρ (kg/m3) 7800 8000 9000 

Piezoelectric constant, d31 (pm/V) -190 
 

-1200 
- 

Permittivity, 33
T (F/m) 1800 o  6500 o  - 

permittivity of free space, o (pF/m) 8.854 
     

      8.854 - 

    

   Fig. 3 shows the optimal power output frequency response based on number of mode iteration. This 

is an example of the appearance of the two resonances at the first mode using Type-1. It is clearly 

seen that faster convergence of the frequency response can be achieved using lower number of mode 

iteration or degree of freedom. Note that the optimal power output is calculated using the optimal 

harvesting load  resistance where it is  shown in  Eqs. (28.1) and (29). As shown, using m=3 and m=4,  

                          
 Fig. 3. Convergence study using optimal power output FRFs with the piezoelectric thickness of 0.197 mm, tuning 

capacitor C=150 nF, harvesting capacitor Cd  =0.1 μF, tuning resistor Rl=50 Ω, and synthetic inductance Ls=450 H. 

Table 2. Material properties  

Table 1. Types of discontinuous smart beams   
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the results tend to favorably overlap each other. The reason is that the Ritz eigenfunctions were 

iterated using the exact solution of the system model. Note that all results displayed at the next stage 

are based on the first mode of the smart structure systems. But, the iterative computational process for 

the frequency analyses was obviously conducted using the exact four-mode approximation. 

 

In Fig 4, by varying the piezoelectric thickness for each type of discontinuous smart beam, the 

optimal power outputs at the first mode of the smart structure systems are shown with the two 

resonances using optimal tuning inductance value. It should also be noted that the results shown in 

Fig. 4 is based on the optimal synthetic inductance where its value depends upon the tuning circuit 

resonance and tuning capacitance. It was obtained from Eq. 35.2, giving the parameter 2
s C r

L P  . It 

is clearly seen that the parameter will vary if the piezoelectric thickness changes. Note that the 

piezoelectric material also produces an inherent capacitance depending on its thickness. Therefore, the 

optimal synthetic inductance varies according to the size of those thickness parameters. If the 

resonance of the tuning circuit is chosen to be a similar value to that of the resonance of the smart 

structure, the result will give the lowest power amplitude, and it will not be applicable for the power 

harvesting system, but rather for vibration suppression [59]. Here, the optimal synthetic inductances 

used in Fig. 3 only become a reference so as to further identify a stimulus to the adaptive response of 

the power harvesting. However, further results of the system response will be elaborated in the next 

stage using the variable tuning synthetic inductance, load resistance and capacitance. The effect of the 

two resonances at the first mode occurs due to the combination between the electromechanical system 

and tuning circuit. This phenomenon shows relevancy in [36] with different model of analysis. In 

specific case, Type-1 and -2 in Figs. 3a and b obviously show the two-equal peak of the first 

resonance due to using the optimal harvesting load resistances. It means that if certain harvesting load 

resistance values are chosen to plot the power frequency responses, each resonance of those responses 

will coincide well with the optimal responses. Note that the appearance of two-equal peak occurs due 

to the existence of strong electromechanical effect from the PZN-PT structure segment. Those equal 

peaks representing the lower and higher resonances are sometime called the short- and open-circuit 

resonances, respectively. The phenomenon of the two-equal peak as proposed by [36] was also proved 

here. In [36], the explicit equations were derived to show the short- and open-circuit resonances. The 

electromechanical effect is mainly affected by the piezoelectric coupling and capacitance and the load 

resistance. As shown in Table 2, the PZN-PT has higher piezoelectric constant and permittivity 

compared with the PZT PSI-5A4E. Note that both segments of Type-1 use PZN-PT materials with 

variable piezoelectric thickness, giving the strongest electromechanical effect as shown in wider 

bandwidths of the two-equal peak. This indicates that Type-3 gives the weakest electromechanical 

effect and the lowest amplitude. Note that Type-1 and -2 with the piezoelectric thicknesses of 0.197 

mm and 0.267 mm give effective options for the system model because they show wider bandwidths 

of the two-equal peak. Also, majority of the piezoelectric thicknesses for Type-1 and -2 show higher 

amplitudes for both resonances. This occurs because the system model was affected by the shunt 

piezoelectric segment for tuning the frequency response. At this point, the piezoelectric thickness of 

0.197 mm will be further used for analysis as shown in the next stage. The appearance of these 

resonances can be important response to practically fit the vibration environment that sometimes 

changes over time.  
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Here, example of another result related to the variable smart beam length based on the Type-1 was 

added in order to show different dynamic behaviour. First, the different thicknesses of piezo layer 

(Fig. 4) or different length of smart beam (Fig.5) can affect the calculations of the internal capacitance 

and electromechanical coupling of piezoelectric component for producing the power output in the 

frequency domain. Second, the increasing thickness of piezo layer can directly affect the characteristic 

mechanical transverse dynamics of the structure itself for shifting the resonances from lower to higher 

values due to the predominant increase of its stiffness that can create the overall structure to be stiffer. 

In opposite phenomenon, the increasing smart beam length can result in the decrease of resonance 

frequency due to the predominant decrease of its stiffness that can create the overall structure to be 

more flexible.  

       

  
 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 4. Optimal Power harvesting FRFs with variable piezoelectric thickness using tuning capacitor C=60 nF, harvesting 

capacitor Cd  =0.1 μF, tuning resistor Rl=50 Ω, and variable optimal synthetic inductance: a) Type-1, b) Type-2, c) Type-3. 

Fig. 5. Optimal Power harvesting FRFs for Type-1 with variable smart beam length using tuning capacitor C=60 nF, 

harvesting capacitor Cd  =0.1 μF, tuning resistor Rl=50 Ω, and variable optimal synthetic inductance. 
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Also, although discontinuous smart beam model gives more complex system compared with the 

distributed model, it can reduce the cost of using the piezoelectric material and provide the ease of a 

transverse flexibility to vibrate under base excitation.      

 

In Fig. 6, the two resonances of the optimal power outputs using the three types of discontinuous 

smart beams generally appear to form different trends. Note that each type has three figures with three 

different capacitance values. The optimal power outputs with a wider resonance band occur when the 

synthetic inductance changes. It clearly shows that wider shift occurs for all three types. However, the 

Type-1 provides the most responsive shift for tuning the frequencies of the optimal power output, 

followed by Type-2 and Type-3. The optimal configurations depend on the physical properties and 

geometry of the piezoelectric components at both segments and the use of the harvesting and tuning 

circuits. For example, using  harvesting capacitor Cd  =0.1 μF, tuning resistor Rl=50 Ω, and tuning 

capacitor C=60 nF, Figs. 6a, d and g under variable tuning inductance show different shift patterns of 

the optimal response.  

   

   

   
 

 

 

 

Fig. 6. Optimal Power harvesting FRFs with piezoelectric thickness of 0.197 mm using harvesting capacitor Cd  =0.1 μF, 

tuning resistor Rl=50 Ω, and variable synthetic inductance : a) Type-1 with tuning capacitor C=60 nF,, b) Type-1 with 

tuning capacitor C=150 nF, c) Type-1 with tuning capacitor C=250 nF, d) Type-2 with tuning capacitor C=60 nF, e) 

Type-2 with tuning capacitor C=150 nF , f) Type-2 with tuning capacitor C=250, g) Type-3 with tuning capacitor C=60 

nF, h) Type-3 with tuning capacitor C=150 nF, i) Type-3 with tuning capacitor C=250 nF. 

 

 

(b) 

 (a) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 
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In specific case, Figs. 6a-c show the sequence of the system responses for the Type-1 using 

different tuning capacitances where the shift of the second resonance appears to be more responsive 

compared with the first resonance peak under variable synthetic inductance. Only Fig. 6c provides a 

slighter shift at the first resonance. If the synthetic inductance increases further from its current 

maximum point as shown, the first resonance will also turn to be a wider shift in the system response. 

For the Type-2, slightly different optimal power output response, particularly shown in Figs. 6e-f, 

gives a moderate shift for both resonances using variable the synthetic inductance. Moreover, the two 

resonances for the Type-3 give a slower responsive shift as shown in Figs. 6g-I and provide a lower 

power output. It is important to note that the wider shift of the first and second resonances and higher 

power output using moderate synthetic inductance values provide effective response to the adaptive 

tuning energy harvesting. Example can be found at the Type-1 and -2. The two-equal peaks of the first 

or/and second resonance/s for the Type-1 and -2 also exists using variable synthetic inductance. Fig. 

6a clearly shows these peaks, particularly at the first resonance.  

 

   

   

   

 

 

 

 

 

Fig. 7. Optimal Power harvesting FRFs with piezoelectric thickness of 0.197 mm using harvesting capacitor Cd  =0.1 μF,  

synthetic inductance Ls=450 H, and variable tuning resistor: a) Type-1 with tuning capacitor C=60 nF,, b) Type-1 with 

tuning capacitor C=150 nF, c) Type-1 with tuning capacitor C=250 nF, d) Type-2 with tuning capacitor C=60 nF, e) 

Type-2 with tuning capacitor C=150 nF , f) Type-2 with tuning capacitor C=250, g) Type-3 with tuning capacitor C=60 

nF, h) Type-3 with tuning capacitor C=150 nF, i) Type-3 with tuning capacitor C=250 nF. 
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However, when the tuning capacitance changes as shown in Figs. 6b-c, the first and second 

resonances show the two-equal peak, particularly at the lower and higher synthetic inductance values, 

respectively. The similar event also occurs in Fig. 4a-c, but shows different parametric studies. In 

particular, the two-equal peak at both resonances begins to occur at the lower and moderate larger 

synthetic inductances, respectively.   

 

Unlike the tuning response as shown in Fig. 6, the optimal powers with variable tuning load 

resistance using the three types show different trends as given in Fig. 7. In general, all of the results 

with the appearance of the two and single resonances occur at the lower and higher tuning load 

resistances, respectively. Also, it indicates that the system response with the lower tuning load 

resistance, as approaching to the short circuit, provides to form the two resonances. The existence of 

the single resonance can be triggered by the open circuit load resistance at the tuning circuit. The 

existence of the two resonances also occurs due to using the short circuit load resistance at the tuning 

circuit. The two resonances at the lower tuning load resistances become closer each other due to using 

the three different capacitance values. For specific case as shown Figs. 7a-c, the Type-1 provides 

different system responses when using the three different tuning capacitance values. It also shows that 

the resonance peaks predominantly appear at the lower and higher tuning load resistances. This 

indicates that disappearance of the resonance peaks of the optimal power output occurs at the 

moderate range of the tuning load resistance values. Again, the two-equal peak at the first resonance 

also appears in Fig. 7a. Then the two-equal peak in Fig. 7c turns to appear at the second resonance 

using the lower tuning load resistance. But, when the tuning load resistance approaches to open 

circuit, the two-equal peak also appears at the single resonance. For the Type-2, the predominant 

resonance peaks also appear at the lower tuning load resistances as shown in Figs. 7d-f. At the 

moderate range of the tuning load resistance values, the resonance of the optimal power output still 

appears with a slight drop, particularly shown in Figs. 7d-e. Here, the two-equal peak also appears as 

shown in the thick red region. For the Type-3 as shown in Figs. 7g-i, the optimal power outputs at the 

resonance region seem to give lower responsive compared with the results given from Type-1 and -2. 

As shown at the Type-3, the thin red region at the resonance response shows lower frequency 

bandwidth without the two-equal peak.   

The visualisations of the time waveform signals of the DC electrical voltage and power outputs at 

the harvesting circuit are shown using variable frequency excitation, and example is given in Figs. 8 

and 9. As previously noted, the Type-1 and -2 show effective adaptive energy harvesters with wider 

shift of the first and second resonances and higher power outputs. Here, the Type-1 was taken as an 

example for further analysis. In application, the typical forward voltage drop of the silicon diode is 

about 0.7V. Since we used a full-bridge AC-DC rectifier by assuming no losses, the forward voltage 

drop across diode pair  V7.02 was ignored. The voltage drop across diode occurs due to the intrinsic 

property of diode having depletion zone at the p-n junction and the heat dissipation. In particular, the 

heat dissipation occurs due to the increase of electric current flowing through the diode. For the 

piezoelectric harvesting device as a source of AC voltage, the electric current is very low due to high 

impedance of transducer. But, the generated voltage is high. In [58], the ideal power obtained from 

the theoretical calculation and the actual power with consideration of the electric loss obtained from 

the experiment were considered at the diode pair where the efficiency of the system (Pexp/Pideal) is 
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around 80-85%. But from the purpose of providing the essential guidelines for the system, we can 

always perform the analysis without considering this loss effect. As shown in Fig. 8a, the DC voltages 

across the rectifier and capacitor show different levels of amplitudes. It is clearly seen that the DC 

voltage outputs at particular two frequency excitations also appear the two maximum amplitudes 

when the tuning load resistance approaches the short-circuit. These frequency excitations obviously 

approach the resonance regions. The previous results with the frequency response systems have 

proved this behaviour. It intuitively predicts that when the tuning load resistance changes until 

approaching the open-circuit, the DC voltage outputs only show a single maximum point where this 

phenomenon was obviously proved in Fig. 7. The DC voltages at rectifier with different frequency 

excitations show a larger ripple voltage due to intrinsic signal pattern of full-bridge system for 

converting the AC signal for every half-circle. But, the ripple voltage can reduce significantly using 

smoothing RC circuit that can give the benefit for charging and discharging processes for every half-

cycle. The trend of DC power outputs in Fig. 9 also shows a similar pattern with the two maximum 

amplitudes. The results shown here were based on the chosen tuning inductance and capacitance 

values. 

 
 

 

 

 
 

 

 

 

Fig. 8. DC voltage time waveform signals using Type-1 with piezoelectric thickness of 0.197 mm under frequency 

excitations with the harvesting capacitance Cd=0.1µF, harvesting resistor Rd=100 kΩ, tuning resistor Rl=50 Ω, 

tuning capacitance C=150 nF, and synthetic inductance Ls=450 H. 

 

Fig. 9. DC power output time waveform signals using Type-1 piezoelectric thickness of 0.197 mm under 

frequency excitations with the harvesting capacitance Cd=0.1µF, harvesting resistor Rd=100 kΩ, tuning 

resistor Rl=50 Ω, tuning capacitance C=150 nF, and synthetic inductance Ls=450 H. 
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By viewing Fig. 6b, the range of the resonance frequencies at 450 H and 150 nF also proves the 

system response behaviour. If the tuning inductance with the same capacitance increases further, the 

frequency excitations to induce the two maximum amplitudes of DC power output as shown in Fig. 9 

will give a slight narrow. But, at certain points, these two amplitudes will turn to wider response. 

Again, whatever the ripple signal from the DC voltage output is generated, it will affect the 

fluctuation of DC power across load resistance. It is important to note here, the DC power output 

depends on the parametric identification not only of the harvesting circuit (rectifier and smoothing RC 

circuit) in general, but also of the tuning circuit which is capable of controlling the system response of 

DC signal itself.   

 

 

5  Conclusion  

This paper has presented adaptive optimal power harvesting system responses using discontinuous 

piezoelectric beam structures connected with shunt circuit network and AC-DC harvesting circuit. 

The constitutive coupled equations with full variational parameters have been formulated using 

charge-type Hamiltonian method and the Ritz method-based weak-form analytical approach. The 

accuracy of Ritz eigenfunctions for the system model with proof mass offset was based on the 

formulation of the exact eigenmode solution. All the results were based on the first mode of the smart 

structure systems. But, the iterative computational process was obviously conducted using the exact 

four-mode approximation. As shown, three different types of discontinuous laminated smart beams 

have been discussed using the variable shunt circuit parameter. For many case scenarios of the 

vibration analysis including smart structure power harvesting, it is impossible to have the appearance 

of two resonances under the first mode. In particular, both resonances are quite far away each other 

showing the region of the short- and open-circuit resonances for the smart beam operated under the 

first mode. However, the inclusion of the shunt circuit network makes it possible as shown in this 

paper. Each type of the smart structure provided the optimal system responses with the ability for 

widening the multi-resonances. However, it was found that the Type-1 and -2 showed higher 

responsive systems to give the wider shift of the first and second resonances and generate higher 

optimal power output. But, the wider shift of the two resonances depended on the variable tuning 

inductance and capacitance. Also, the appearance of the two resonances at the first mode occurred 

when the tuning load resistance was set to lower value as approaching short circuit. For the optimal 

power output response, the two-equal peak of the first or/and second resonance/s for the Type-1 and -

2 also existed using variable tuning inductance and capacitance. The technique of the two-equal peak 

as proposed by [36] was also proved and adopted here with more specific case of the proposed study. 

The appearance of two-equal peak occurred due to the existence of strong electromechanical effect 

from the PZN-PT structure segment. Those equal peaks representing the lower and higher resonances 

[36] were sometimes called the short- and open-circuit resonances, respectively. The 

electromechanical effect was mainly affected by the piezoelectric coupling and capacitance and load 

resistance. DC time waveform signal outputs with variable frequency excitation also proved that the 

system response can be triggered by using the shunt control. The two maximum DC voltage and 

power amplitudes also appeared when particular two frequency excitations approached the resonance 

regions. But again, the appearance of those maximum amplitudes occurred due to the effect of the 
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tuning load resistance approaching the short-circuit. Moreover, the shift level between the two 

frequency excitations for triggering the maximum amplitudes also relied on the chosen tuning 

inductance and capacitance values.   

Appendix A. Functional energy expressions for the nonhomogeneous and discontinuous 

cantilever smart beam with proof mass offset  

 

The kinetic energy of the system model can be formulated as,    

                            
2 2

1 1

2
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    

  
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cI θ L ,t δθ L ,t I x w L ,t δθ L ,t θ L ,t δw L ,t t


   


.                (A1) 

Parameter 0nI  represent the zeroth mass moment of inertia of the segmented structures whereas 

parameters 0
tip

I  and 2
tip

I  represent the zeroth and second mass moments of the proof mass offset. Also 

note that details of the mathematical expressions for the dynamical structure and proof mass offset as 

shown in Eq. (A1) can be found in [51]. They were reduced since the relative displacement w(x,t) is 

defined as the difference between the absolute displacement wabs(x,t) and the base excitation wbase(t). 

Based on the physical geometry in Fig. 1, Heaviside functions for H1(x)=H(x)−H(x−L1) and 

H2(x)=H(x)−H(x−L2) are introduced to model the two segmented structures with different mode 

shapes along the x-axis. 

For formulating the strain energy of the laminated structure, the physical system consists of the 

three piezoelectric layers (the two layers for harvesting circuit in the first segment and one layer for 

shunt control in the second segment) and one substructure in the second layer. Here, the piezoelectric 

constitutive equations based on Helmholtz free energy can be formulated in terms of stress-electric 

field relations [68-69] as, 

         1 1 1 1 1

1 1 31 3

i i i i i

DT c S g D  ,   
         

1

1 1 1 1 1,

3 31 1 33 3

i i i i S i
E g S ε D



    .                        (A2) 

         2 2 2 2 2

1 1 31 3

i i i i i

DT c S g D  ,   
         

1

2 2 2 2 2,

3 31 1 33 3

i i i i S i
E g S ε D



    .                      (A3) 

where the general parameters T, S, E  and D represent stress, strain, electric field, and electric 

displacement, respectively. Note that the superscripts  1 1,3i  and  2 1i   specifically refer to the 

harvesting and tuning piezoelectric layers located at the first and second segments, respectively. The 

general coefficients cD, g and ε indicate modified elastic constant and modified piezoelectric constant, 

and permittivity at constant strain respectively. The general strain field    2 2
1S x,t z w x,t x     can 

be used for each layer and the substructure stress form can be stated as      2 2 2

1 11 1T c S . The modified 

elastic constant and modified piezoelectric constant for the harvesting and tuning piezoelectric layers 

can be formulated, respectively as, 

          
       

2 1

1 1 1 1, ,

11 31 33ε
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Dc c e
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Note that the parameter 
 1 , 

33ε
i S

indicates the permittivity at constant strain (superscript S) that can be 

further formulated as 
       1 1 1 1

33 33 31 31

i ,S i ,T i i
ε ε e d   where

 1

33

i ,T
ε is the permittivity at constant stress 

(superscript T). The general parameter 31e is piezoelectric coefficient which is obtained 

using 31 31 11
Ee d c . The similar form can also be applied to the parameters at the tuning piezoelectric 

layer with the superscript  2 1i  . 

The total strain energy of the system model can be stated as, 
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The variation of the total strain energy in Eq. (A6) can be further formulated as, 
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Parameter tnC represents the arbitrary stiffness coefficient of the segmented structures. Note that the 

general parameter D3 in (A7) can be modified for the use in the forthcoming reduced dynamic 

equations. For the first segment, that can give       1 1 1
13 11bD q b L and         

3 3 3
1 13 11uD q b L H x  . For 

the second segment, that can become         
1 1 1

2 23 12D q b L H x  .  

The electrical energy term for the piezoelectric layers for the first and second segments can be 

formulated to give, 
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Eq. (A8) can be extended and simplified using Eqs. (A2)-(A3) as, 
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The non-conservative work on the system due to the input base excitation can be stated as, 
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The electrical energy of the capacitor in terms of the tuning circuit can be formulated as, 
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The electrical work dissipated by the resistor can be stated as, 
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               
1 1 3 3

32 32 31 31l dδWR R q t δq t R q t δq t   .                                  (A12)  

The magnetic co-energy of the inductor in terms of tuning and harvesting circuits can be formulated 

as, 

       
1 1

32 32sWL L q t q t  .                           (A13) 

where the synthetic inductance value from Fig. 1b can be reduced from the equivalent impedance 

analysis,    in 1 3 5 2 4Z Z Z Z Z Z by allowing the relations Z1=R1, Z2=R2, Z3=R3, Z5=R5, and Z4= 

1/(jωCs) to give in sZ j L [30, 32-33]. Therefore, the synthetic inductance value for tuning circuit can 

be formulated to give  1 3 5 2s sL R R R C R , which is reduced in detail in Appendix B.  

 

Appendix B. Synthetic inductance circuit for the shunt piezoelectric control 
 

As given  1 3 5 2s sL R R R C R from Eq. (A13) and shown in Fig. 1, the Antoniou-type inductance 

circuit can simply be obtained using the configuration of the circuit terminal relations of the ideal op-

amp systems connected with other circuit components. Under such condition, the two amplifiers with 

the differential gain 
1 2,G G   
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the input terminals at nodes a, c and e (inverting and non-inverting terminals) and zero current 

flowing to these amplifiers. With the given input voltage  
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obtained first, and this may subsequently lead to the calculation of the capacitor voltage, giving the 
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transform). The voltage between R3 and Cs (voltage at node d) can be calculated to yield, 
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As shown in Eq. (B1), the voltage and current across R3 can be respectively formulated as, 
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Then the voltage across R2 can easily be calculated using relation  
3RI s , giving, 
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As shown in Eq. (B3), the voltage between R1 and R2 (voltage at node b) is given by, 
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Next, the voltage and current across R1 gives respectively as, 
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It implies that
     

1

1

32 RI s I s  can be used to determine the earlier given relation of the inductance, 

which can be written in the final form,  

  2

5 3 1

l

s

l

s

V s
sL

V s R

sC R R R

 or 5 3 1

2

s
s

C R R R
L

R
 , as required. Note that the 

Antoniou-type inductance and the Riordan-type inductance show different circuit topologies, but have 

the same formula of synthetic inductance [31]-[33]. 

Appendix C. Eigenmode of the nonhomogeneous and discontinuous cantilever smart beam with 

proof mass offset  

The matrix elements of the characteristic equations in Eq. (21) can be expressed as, 

11 12 13 14 15 16 17 181 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,a a a a a a a a          

21 22 23 24 25 26 27 280 , 1 , 0 , 1 , 0 , 0 , 0 , 0 ,a a a a a a a a         

31 1 32 1 33 1cos , sin , cosh ,a L a L a L     34 1 35 36 37 38sinh , 1 , 0 , 1 , 0 ,a L a a a a      

41 1 42 1 43 1sin , cos , sinh ,a L a L a L      44 1 45 46 47 48cosh , 0 , 1 , 0 , 1 ,a L a a a a        

3 3 3 3
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3 3
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2 2 2 2
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2 2
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tip tip
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To reformulate and simplify both mode shapes from Eq. (20), the unknown constants must be 

algebraically solved to give only one similar constant for both mode shapes. This equal constant can 

be presumed to be unity because the orthonormalisation-based Ritz method and its Ritz constants are 

utilised, such that the Ritz eigenfunction shows the accurate mode shapes.  There are several forms to 

obtain the unknown constants from Eq. (21). Here, after manipulation and simplification, one example 

of the modified mode shapes with only remaining one similar constant A1 can be formulated as, 
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where 1 1
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N

a a a a a aa a a a
a a a a a aa

a a aa
a a a a

a a a a a a
a a a a

a a a a



         
              

        
     

                  
       46

 
 
 

,  

   65 32 34 42 44 5675 87 75 88
46 77 62 64 52 5478

85 35 4685

42 44 46 48

75 65 37 75 56 48
76 65 76 56

85 35 85

D

a a a a a aa a a a
a a a a a aa

a a aa
a a a a

a a a a a a
a a a a

a a a a



         
              

        
     

                  
       46

 
 
 

, 

   65 31 33 65 32 34

1 61 63 1 62 64
35 35

2

65 37
65

35

a a a a a a
A a a B a a

a a
C

a a
a

a

    
       

   
   

 
 
  
 

, 

   56 41 43 56 42 44

1 51 53 1 52 54
46 46

2

56 48
56

46

a a a a a a
A a a B a a

a a
D

a a
a

a

    
       

  
  

 
 
  
 

, 

   1 31 33 1 32 34 2 37

2
35

A a a B a a C a
A

a

   
  ,

   1 41 43 1 42 44 2 48

2
46

A a a B a a D a
B

a

   
  . 

Eq. (C1) is essential formula for calculating the normalised eigenfunction in Eq. (14). Each part of Eq. 

(14) consists of the iterative normalised mode shape for each segment having the multiplication with 

the Heaviside functions for H1(x)=H(x)−H(x−L1) and H2(x)=H(x)−H(x−L2). It represents the 

eigenmode of the discontinuous structures with different mode shapes along the x-axis. At this point, 

whatever the chosen value x for satisfying Wk(x) exists at the interval of the first segment 10 x L  , 

the mode shape with the unit step function of H1(x)  turns to be active whereas the second segment 

with H2(x) for 20 x L  is deactivated or zero, and vice versa. 
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