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S U M M A R Y
Estimating the effects of pore filling material on the elastic moduli or velocities of porous
and fractured rocks attracts widespread attention. This effect can be modelled by a recently
proposed triple-porosity scheme, which quantifies this effect from parameters of the pressure
dependency of the elastic properties of the dry rock. This scheme divides total porosity
into three parts: compliant, intermediate and stiff. Each type of pores is assumed to be
spheroidal and characterized by a single aspect ratio. However, the implementation of this
model requires the asymptotic values of the elastic moduli at much higher pressures where only
non-closable pores remain open. Those pressures are beyond the capacity of most rock physics
laboratories and can even crush typical sandstone samples. Experimental data at such pressures
are usually unavailable. To address this issue, we introduce pore-scale numerical simulations
in conjunction with effective medium theories (EMT) to compute the asymptotic values
directly from the microtomographic images. This workflow reduces the uncertainty of model
predictions on the geometric information of stiff pores and strengthens the predictive power
and usefulness of the model without any adjustable parameters. Applying this to a Bentheim
sandstone fully filled with liquid and solid octadecane gives a reasonable match between model
predictions and laboratory measurements. This success verifies the accuracy and applicability
of the model and indicates its potential in further exploitation and characterization of heavy
oil reservoirs and other similar reservoirs.
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1 I N T RO D U C T I O N

A link between the elastic moduli of rocks and the properties of
pore-filling materials is required for many geophysical applications
such as reservoir characterization from seismic data or 4-D seismic
monitoring. Establishing such a link requires an understanding of
the interactions among the rock matrix, pore space, and solid or
liquid pore fill. Pore fill can be gas (e.g. air, hydrocarbon gas, CO2

and steam), liquid (e.g. brine, oil, magma) or solid (e.g. kerogen,
bitumen, salt, ice, gas hydrates, etc.) (Saxena et al. 2016). For a fluid
pore fill (liquid or gas), the Gassmann (1951) equation gives an ex-
act relationship between the dry and saturated moduli, and has been
widely employed to predict the change in saturated elastic moduli
upon the change of fluid properties without any detailed geometrics
information (Smith et al. 2003). The Gassmann theory also stip-
ulates that the effective shear modulus is unaffected by the pore

fluid properties (Berryman 1999). However, the Gassmann theory
has an important restriction: it assumes that the pressure in the pore
fill is spatially uniform. Thus for rocks filled with solid substances
or high-viscosity or non-Newtonian fluids, the Gassmann theory is
invalid as the shear compliance of the pore fill impedes the pres-
sure communication between different pores (Makarynska et al.
2010; Saxena & Mavko 2014; Glubokovskikh et al. 2016; Sun et al.
2018).

Ciz & Shapiro (2007, referred to as C&S model) derived an
approximate extension of the Gassmann equation to a solid pore fill.
However, recent studies (Saxena & Mavko 2014; Glubokovskikh
et al. 2016; Sun et al. 2018) show that the C&S model gives a lower
bound to the elastic moduli of porous and fractured rocks saturated
with a solid or high-viscosity liquid because it also assumes that
stress throughout the pore fill is spatially uniform. This assumption
should be accurate if all pores are of approximately the same shape,
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but can be violated if the pore space contains pores with a range of
shapes and compliances.

Laboratory experiments show that the dry moduli increase with
increasing effective pressure (which is defined as the difference
between the confining pressure and pore pressure). Several authors
have ascribed the significant initial change in elastic moduli with
increasing effective pressure to the closure of crack-like compliant
pores (Walsh 1965; Zimmerman et al. 1986; Shapiro 2003). In
particular, Shapiro (2003) developed a model based on a binary
pore structure by dividing the total porosity into two parts: stiff or
equant porosity, which is the dominant portion of the pore space, and
soft or compliant porosity, whose total volume is small, but which
controls the pressure dependency of the elastic moduli. Makarynska
et al. (2010) showed that the presence of compliant pores increases
the effect of the solid pore fill on the effective moduli—an effect
similar to squirt flow in rocks saturated with a fluid at ultrasonic
frequencies (see Leurer & Dvorkin 2006).

The disproportional effect of the compliant pores on the elastic
moduli of rocks saturated with a solid is modelled by Saxena &
Mavko (2015). However, their approach assumes that the compliant
pores are isolated from the stiff pores. Therefore, the stress in the
pore fill is not uniform and hence the scheme of Saxena & Mavko
(2015) does not reduce to the Gassmann equation for a fluid pore
fill. To ensure Gassmann consistency, Glubokovskikh et al. (2016)
modelled the compliant pores as grain-to-grain contacts open into
stiff pores. Compliant pores are modelled as thin circular disks with
traction-free edges. The stiffness of the disk is calculated using the
solution of the elastic problem by Tsai & Lee (1998). Although this
model gives the general trend of the overall elastic moduli resulting
from the solid pore fill, the model predictions systematically devi-
ate from experimental data, especially for the shear modulus. This
discrepancy is similar to the one observed for liquid-filled rocks at
ultrasonic frequencies (de Paula et al. 2012) and probably occurred
because the binary structure model of the pore space is oversimpli-
fied. Indeed some studies show that in addition to compliant and
stiff pores there exist pores with intermediate compliance, which are
responsible for gradual increase of the dry bulk and shear moduli
with pressure of up to hundreds of MPa (Shapiro 2003; Wang et al.
2005; Adelinet et al. 2010).

Recently, Sun et al. (2018) generalized the model of
Glubokovskikh et al. (2016) to a triple-porosity scheme by adding,
similarly to de Paula et al. (2012), a newly defined type of pores
called intermediate pores. Intermediate pores are defined as hav-
ing an aspect ratio between that of compliant pores and of the stiff
pores. The pressure dependency of the dry moduli is governed by
the conjunction of those three pore structures. Two kinds of stress
relaxation within the pore space are modelled: (1) between com-
pliant and ‘stiff’ (plus intermediate pores) pores in a relatively low
pressure range and (2) between intermediate and stiff pores in a high
pressure range. Intermediate porosity decreases in an exponential
way at much higher pressures, which behaves similar to the com-
pliant porosity at lower pressures. However, the implementation of
this method requires the dry bulk and shear moduli Khm and μhm in
high-pressure limit where rocks are assumed to contain stiff pores
only. The pressures corresponding to this limit (200−500 MPa) are
beyond the capacity of most rock physics laboratories and can even
crush typical sandstone samples (Zhang et al. 1990; Wong et al.
1997; Fortin et al. 2007). Therefore, Khm and μhm cannot be mea-
sured directly. Sun et al. (2018) computed Khm and μhm using an
effective medium theory (EMT). This approach requires knowledge
of the aspect ratio of stiff pores. Detailed analysis of this issue gives
a plausible range of such aspect ratios, and thus the model predicts

a range of the elastic moduli of solid-filled sandstone. Sun et al.
(2018) applied this approach to a Bentheim sandstone fully satu-
rated with solid octadecane and found that the experimental data lie
well within the predicted range. Yet, the prediction uncertainty (as-
sociated with lack of knowledge of the effective aspect ratio of stiff
pores) reduces the predictive power and usefulness of the theoretical
model.

The aim of this paper is to eliminate the uncertainty of model
predictions by determining the effective aspect ratio of stiff pores
directly from microtomographic images of the pore samples. This
is done by numerically simulating Khm and μhm directly from the
3-D image of a rock fragment using finite element method (FEM)
(Roberts & Garboczi 2000; Arns et al. 2001, 2002), and inverting
these moduli for the aspect ratio using the EMT (assuming that most
of the porosity resolved in the image is stiff porosity). An alternative
would be to use simulated Khm and μhm directly in the theoretical
model. However, such moduli would likely vary from fragment
to fragment due to spatial variation of porosity. Determining the
effective aspect ratio of stiff pores is likely to be more robust.

In this work, we first reproduce the theories of the triple-porosity
model and modify the workflow by pore-scale numerical simula-
tions based on FEM. We then demonstrate the details of how numer-
ical simulations help constrain the predictions of the triple-porosity
model. In the end, we compare the modified model predictions with
other solid substitutions schemes against the laboratory measure-
ments.

2 T R I P L E - P O RO S I T Y M O D E L

In order to account for the pressure dependency of the elastic mod-
uli, Sun et al. (2018) proposed a triple-porosity model, in which the
pore space is divided into stiff, intermediate and compliant pores.
This triple-porosity structure is necessary for adequate characteri-
zation of the pore geometry, which in turn is essential for modelling
the fluid effects (de Paula et al. 2012; Sun et al. 2018). Total poros-
ity φ is divided into three parts: compliant φc, intermediate φm and
stiff φs . The three types of pores are modelled as spheroids, each
with a different aspect ratio. The main results that are used to com-
pute the ‘unrelaxed’ frame moduli Ku f and μu f , which correspond
to the moduli of a hypothetical rock in which all non-stiff pores
(including compliant and intermediate pores in this work) are fully
saturated with fluid and stiff pores remain empty, are described by
the following equations (Sun et al. 2018):
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where Khm and μhm are the high-pressure dry moduli (in this high-
pressure limit all pores except stiff pores are assumed completely
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closed), Kdr y and μdr y are the pressure-dependent dry moduli calcu-
lated directly from ultrasonic velocities and density, Kd and μ d cor-
respond to the dry moduli of a hypothetical rock in which compliant
pores are closed, φc and φm are the pressure-dependent compliant
and intermediate porosity, respectively, μ f is the shear modulus of
the pore fill, and M f c and M f m are the modified compression stiff-
ness of a typical fluid- or solid-saturated compliant and intermediate
pore respectively as given by Tsai & Lee (1998).

Once Ku f and μu f are obtained, we can compute the undrained
moduli by saturating the remaining stiff porosity using the lower
embedded bound theory (Mavko & Saxena 2013; Saxena & Mavko
2014; Glubokovskikh et al. 2016). We do not reproduce the deriva-
tion details but outline the workflow to obtain all the parameters
(Khm , μhm , φc, φm , Kd , μd , M f c and M f m) in equations (1) and (2)
(an extension of the workflow described by Sun et al. (2018).

(1) Dry moduli Kdr y and μdr y are computed from the pressure
dependency of ultrasonic P- and S-wave velocities and the measured
density.

(2) Parameters of compliant pores (φc0,θc, αc) are obtained di-
rectly from the deformation equations (3) and (4) based on the
dual-porosity model by Shapiro (2003) through the least square fit-
ting of the pressure dependency of the dry moduli calculated in step
(1).

Kdr y = Khc

[
1 + θs

(
1

Khc
− 1

Kg

)
P − θcφc0e

− θc P
Khc

]
(3)

and

μdr y = μhc

[
1 + θsμ

(
1

μhc
− 1

μg

)
P − θcμφc0e

− θc P
Khc

]
, (4)

where Khc and μhc represent the dry moduli of a hypothetical rock
in which compliant pores are closed and the porosity of stiff pores
equal to zero-pressure value, φc0 is the initial compliant porosity
at zero pressure, Kg and μg are the bulk and shear moduli of the
mineral matrix, θc and θcμ are the bulk and shear stress sensitivity
coefficients of compliant pores, and θs and θsμ are the bulk and
shear stress sensitivity coefficients of stiff pores.

(3) Similarly to compliant pores, parameters of intermediate
pores (Khm , μhm , φm0, θm , θμm) could be derived directly from
the deformation equations

Kd = Khm

[
1 − θmφm0e

− θm P
Khm

]
(5)

and

μd = μhm

[
1 − θμmφm0e

− θm P
Khm

]
, (6)

where θm and θμm are the bulk and shear stress sensitivity coeffi-
cients of intermediate pores. φm0 is the initial intermediate porosity
at zero pressure. For large pressures where compliant pores are
closed, Kd = Kdr y and μd = μdr y . Kd can be obtained from the

sum of Kdry and the exponential term Khcθcφc0e
− θc P

Khc , and μd can
be obtained in the same way. If the pressure dependencies of the
dry moduli are available at relatively high pressures (50−500 MPa),
the parameters (Khm , μhm , φm0, θm , θμm) can be obtained by the
least-square fitting directly. However, ultrasonic velocities at these
pressures are seldom available. Thus, we choose to compute the
elastic moduli Khm and μhm by pore-scale numerical simulations
using finite element method. At the voxel size of 2−5 μm these im-
ages do not contain compliant or even intermediate pores, and thus
the simulated dry moduli can be expected to correspond to the mod-
uli of the rock containing only stiff pores (so called ‘Swiss Cheese’
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Figure 1. Ultrasonic P- (open squares) and S-wave (open circles) velocities
of octadecane as a function of temperature.

rock, see Shapiro 2003). This assumption is consistent with the
results of Saenger et al. (2016), who simulated elastic properties
from digital images obtained under different confining pressures
and found that simulated P- and S-wave velocities are not sensitive
to the confining pressure. Then, other parameters (φm0, θm , θμm)
of intermediate pores can be obtained from Khm and μhm , as well
as from the slope of the linear decay of the intermediate porosity
versus pressure at relatively small effective pressures. This slope is
in turn obtained from the first-order Taylor expansion (7) and (8) of
deformation equations (5) and (6)

Kd = Khm (1 − θmφm0) + θ 2
mφm0 P (7)

and

μd = μhm

(
1 − θμmφm0 + θμmθmφm0

Khm

)
. (8)

(4) Pore-scale numerical simulations can only be performed on
a pore-scale image of a mm-size rock fragment. Since porosity can
be spatially varying, the simulation results depend on the choice of
the fragment, which in turn creates an uncertainty in Khm and μhm .
To deal with this issue, we choose to invert the effective aspect ratio
of stiff pores using the EMT based on the numerical simulation. We
then substitute the obtained aspect ratio and measured total porosity
of the entire sample into the same EMT to calculate Khm and μhm .

(5) With all the parameters obtained from previous steps, we then
calculate the unrelaxed rock frame moduli using equations (1) and
(2).

(6) Finally, we compute the fully saturated moduli through the
lower embedded bound theory by saturating the remaining open
stiff pores with a fluid or a true solid.

Previous workflow presents the procedure of using the triple-
porosity scheme to estimate the effective moduli of porous rocks
saturated with fluids or true solids. Within the workflow, pore-scale
numerical simulations are key in deriving the parameters of inter-
mediate pores and are described in next section.

3 A P P L I C AT I O N

3.1 Experimental data of a Bentheim sandstone

In order to illustrate the validity and applicability of the modified
model constrained by pore-scale numerical simulation presented
in previous sections, we apply the model to the data of Sun et al.
(2018). This ultrasonic data is measured on a Bentheim sandstone,
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Figure 2. Ultrasonic P wave (a) and S wave (b) of the dry (open circles), liquid- (open squares) and solid-octadecane-saturated (solid squares) Bentheim
sandstone as a function of confining pressures.

Table 1. Material properties for the mineral (Vernik 1998) and pore fills
used for the modeling and simulations. Kg and μg is the bulk and shear
moduli of matrix.

Kg μg K f (solid) μ f (solid) K f (fluid) φ

37.3 GPa 38.2 GPa 3.87 GPa 1.46 GPa 1.53 GPa 23.56
per cent

which has a porosity of 23.56 per cent and is very homogeneous,
predominantly comprised of 97 per cent quartz with small portion of
accessory feldspars, heavy minerals and Fe-(hydr) oxides (Dubelaar
& Nijland 2015). As shown in Fig. 1, the pore fill, octadecane,
was chosen because it has a melting/freezing point of Tm = 28
◦C, making it easy to perform laboratory experiments with this
substance in both liquid and solid states.

Figs 2(a) and (b) demonstrate the laboratory measurements of
ultrasonic P- and S-wave velocities of the sample in a dry state
(open circles) and liquid- (open diamonds) and solid-octadecane
(solid squares) saturated in the pressure range of 6–30 MPa. In
the dry state, both P- and S-wave velocities increase clearly with
the increasing confining pressure. However, under the condition of
solid-octadecane saturated, the pressure dependency of velocities
is reduced. To model this difference, we will need the physical
properties of the dry sample and octadecane in liquid and solid
forms. These properties are summarized in Table 1.

Note that the ultrasonic measurements on dry sample yield the
dry bulk and shear moduli of the rock as the dry velocities are not
dispersive (Adelinet et al. 2010; Adam & Otheim 2013). Hence, the
dry moduli can be obtained directly from those dry velocities and
measured density. In the following sections, we will present analysis
of velocities and moduli as functions of confining pressure rather
than effective pressure, because it is impossible to independently
control pore pressure in the solid pore fill.

3.2 Numerical simulations

3.2.1 Image acquisition

Digital rock images used in this study are acquired by 3-D X-
ray microscope VeraXRM-500 (ZRadia-Zeiss) at X-ray energy of
60 kV at the voxel size of 2 μm on the same Bentheim sandstone For
simulation purposes, image segmentation—which is the procedure
of attributing different ranges of grey levels to various phases—
controls the accuracy of pore-scale numerical simulations. The first
step in this procedure is using a 3-D non-local filter to supress the

noise effects. The threshold image segmentation is achieved using
combination of Avizo 9.3 software (mainly image processing) and
the ImageJ/Fiji software with the 3-D ImageJ Suite plugin (analysis,
Ollion et al. 2013). The maximum size of the original data set
obtained from the cylindrical core samples is 510 × 550 × 893
voxels. As shown in Figs 3(a)–(d), several subsets of different sizes,
are extracted for numerical simulations. All these subsets have the
same voxel size of 2 μm and are segmented to two-phase images:
mineral matrix and pore space.

3.2.2 Property prediction

Microstructures defined by the extracted digital images have been
already discretized and ready for the numerical computation of
elastic moduli. We calculate the elastic moduli of the mixture system
with FEM (Roberts & Garboczi 2000; Arns et al. 2001, 2002). The
digital image is assumed to have periodic boundary conditions.
Elastic moduli of the matrix are set to Kg = 37.3 GPa and μg =
38.3 GPa, given by Vernik (1998) (average values of the elastic
moduli of clean arenites and arenites). Elastic moduli of the pore
fill K f and μ f are set to zero in order to simulate the dry moduli.
Numerical simulation results based on the four different discretized
images (Figs 3a–d) are presented in Table 2.

Table 2 shows that all the simulations overestimate the dry elas-
tic moduli compared with the experimental data at pressure Pe

= 6 MPa. This is consistent with the previous assumption that
numerical simulations from microtomographic X-ray images only
corresponds to the effects of stiff pores. We assume that the ‘best’
simulation results are identical to the high-pressure limit moduli
Khm and μhm . This cannot be established directly. Indeed, not only
laboratory equipment is mostly limited to P < 50–100 MPa, but
even if we could measure rocks at pressures of 200–2000 MPa,
these pressures would likely be outside the elastic regime. However,
as suggested by a number of authors (Arns et al. 2007; Andrä et al.
2013; Saenger et al. 2016), we can infer this information indirectly.
A typical X-ray microtomographic has a linear size of 1000 voxels
and is about 10−50 average linear sand grain sizes. Thus, a typi-
cal grain has a length of about 20−100 voxels. The thinnest grain
contacts that can be confidently resolved have a thickness of 5 vox-
els (at least!). Hence the smallest aspect ratio that can be resolved
is a = 0.05–0.25 (or larger if we need more. These contacts will
close at pressures P = aK , where K is bulk modulus of the rock
matrix. For the Bentheim sandstone, K ∼ 10 GPa; this gives P on
the order of 500−2500 MPa. However, the simulations presented
in Table 2 show that numerical simulations depend on the choice of
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Figure 3. Pore space images of different sizes (a) 510 × 550 × 893, (b) 128 × 128 × 128, (c) 256 × 256 × 256, and (d) 256 × 256 × 256 of subsets extracted
from the original cylinder core plugs with the same voxel size of 2 μm. Images (c) and (d) are the subsets of the same size extracted from different place in the
original data set.

Table 2. Simulated dry moduli using different fragments of the digital
images.

Kdr y (GPa) μdr y (GPa) φ

128 × 128 × 128 19.06 18.49 18.65 per
cent

256 × 256 × 256 (upper) 15.98 14.17 21.73 per
cent

256 × 256 × 256 (lower) 13.76 13.20 25.84 per
cent

510 × 550 × 893 17.06 16.29 21.34 per
cent

Pe = 6 MPa 11.67 9.59

the fragment, which in turn creates an uncertainty in Khm and μhm .
To address this issue, we use the simulation results in conjunction
with EMT to determine the effective aspect ratio of stiff pores and
then substitute the aspect ratio into the same EMT to compute Khm

and μhm .

3.2.3 Computation of the aspect ratio of stiff pores

In order to compute the aspect ratio of stiff pores, in Figs 4(a)
and (b), we compare the numerical simulation results (open circles)
against the predictions given by the Self-Consistent Approximation

(SCA, Berryman 1980; Ogushwitz 1985) method, assuming the
pore geometry of spheres (red dashed line), needles (blue dotted
line), and spheroids with an aspect ratio of 0.5 (dashed line), 0.23
(solid line) and 0.1 (dotted line). We note that the predictions given
by setting the aspect ratio of stiff pores to 0.23 provide a satisfac-
tory fit to our numerical simulation results. Then, in Figs 5(a) and
(b), we compare the numerical simulation results against the pre-
dictions given by different EMT methods: the SCA, Kuster-Toksoz
(referred to as KT) model (Kuster & Toksöz 1974) and differen-
tial effective medium theory (referred to as DEM, Cleary et al.
1980; Norris 1985; Zimmerman 1991) using the same aspect ra-
tio of 0.23 for stiff pores. The SCA method gives the predictions
closest to our numerical predictions. This suggests that the SCA
method is the best option to compute the effective aspect ratio of stiff
pores.

We then compute the high-pressure limit moduli Khm =
14.74 GPa and μhm = 14.20 GPa by substituting the aspect ra-
tio of stiff pores αs = 0.23 into the SCA method. Then, following
the eqs (7) and (8) in the previous section, we obtain the parameters
of intermediate pores (θm, θμm, φm0). To this end, as shown in Ta-
ble 3, all the parameters required in the eqs (1) and (2) are obtained
from the pressure dependency of ultrasonic velocities and density.
We then compare the model predictions against the experimental
data in next section.
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Figure 4. Comparison of the pore-scale numerical simulations to the predictions for the dry bulk (a) and shear (b) moduli using the SCA method assuming
different pore shapes.

0 5 10 15 20 25 30 35
Porosity(%)

0

10

20

30

40

B
ul

k 
M

od
ul

us
(G

P
a)

Spheres
Needles
Ar=0.5
Ar=0.1
Ar=0.23
NS

(a)

0 5 10 15 20 25 30 35
Porosity(%)

0

10

20

30

40

S
he

ar
 M

od
ul

us
(G

P
a)

Spheres
Needles
Ar=0.5
Ar=0.1
Ar=0.23
NS

(b)

Figure 5. Comparison of the pore-scale numerical simulations to a range of theories used to predict the dry bulk (a) and shear (b) moduli using the same aspect
ratio of 0.23 for stiff pores.

Table 3. The parameters of compliant and intermediate porosity of the Bentheimer sandstone obtained
by applying the workflow of Section 3 to ultrasonic measurements in a dry state.

θc αc θm αm φc0 φm0

3.16 × 103 1.78 × 10−4 1.37 × 102 4.2 × 10−3 9.75 × 10−4 1.6 × 10−3
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Figure 6. Dry bulk (a) and shear (b) moduli of a Bentheim sandstone as a function of pressure up to 50 MPa. The bulk and shear moduli calculated from the
ultrasonic velocities are shown by open circles. Variations of the elastic moduli modelled for low pressures and caused by the closure of the compliant and
intermediate pores are shown by the solid line and dashed–dotted line, respectively.
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Figure 7. Dry bulk (a) and shear (b) moduli of a Bentheim sandstone as a function of pressure up to 500 MPa. The bulk and shear moduli calculated from
the ultrasonic velocities are shown by open circles. Variations of the elastic moduli modelled for low pressures and caused by the closure of the compliant and
intermediate pores are shown by the solid line and dashed–dotted line, respectively.
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Figure 8. Comparison of the experimental bulk (a) and shear (b) moduli of a Bentheim sandstone saturated with liquid- and solid-octadecane against predictions
of different models as a function of confining pressure. Open circles, diamonds and solid squares are the dry, liquid- and solid-octadecane-saturated moduli
calculated from the ultrasonic velocities and density respectively. Open triangles are the predictions of the triple-porosity scheme constrained by pore-scale
numerical simulations. Solid diamonds and triangles are the predictions of the C&S and dual-porosity models.

Alternatively, aspect ratio could be estimated by inverting the
moduli of each fragment (Arns et al. 2003; Liu et al. 2018).
Given that the moduli for all fragments closely follow the single
aspect ratio trend (Figs 4 and 5), this approach should give similar
results.

3.3 Results

Figs 6(a) and (b) show the least square fitting of the theoretical
pressure dependency of the dry moduli (solid line) to the measure-
ments (open circles) for pressures up to 50 MPa. We observe that a
combination of exponential and linear terms accounts well for the
increase of the dry moduli with the increasing effective pressure.
Note that the exponential trend attributed to the compliant cracks
closure vanishes within 10−20 MPa. On the other hand, the linear
term (dashed–dotted line) is ascribed to the gradual closure of stiff
pores (including intermediate pores). However, at pressures up to
500 MPa [see Figs 7(a) and (b), a zoom-in plot of Figs 6(a) and (b)],
the dry moduli also show an exponential increase resulting from
the closure of intermediate pores, similar to the behaviour of com-
pliant pores at low pressures (<20 MPa). This behaviour at higher
pressures has been documented by the ultrasonic measurements of
several eclogites and country rocks under confining pressure up to
800 MPa by Wang et al. (2005), which exhibit an approximately

exponential increase of the dry moduli with the increasing confining
pressures.

We then substitute the parameters from Table 3 into our model
and give the model predictions, as shown in Figs 8(a) and (b). First,
we see that the C&S model (solid diamonds) gives much lower
prediction of the solid-octadecane-saturated moduli in comparison
with the experimental data (solid squares). The dual-porosity model
(solid triangles) performs much better, but still has a clear discrep-
ancy compared against the experimental data. Compared with the
C&S model and the dual-porosity model, the present model (open
triangles) gives more accurate estimates, which agree well with the
laboratory measurements of the elastic moduli of the sandstone sat-
urated with solid octadecane. Moreover, in the case of liquid octade-
cane in the pore space (open diamonds), the present model (solid
circles) gives predictions that are consistent with the Gassmann
theory.

4 D I S C U S S I O N

One important feature of our scheme is that we assume the rock
contains three types of pores, compliant, intermediate and stiff. Each
type of pores is described to be spheroidal and has an aspect ratio.
While this is a crude simplification in regard to the realistic pore
shapes, such treatment seems to provide a good fit to the pressure
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dependency of the dry moduli. In this sense, this approximation is
reasonable and effective.

Different from the recognition of a binary pore structure, we add
a newly defined pore type, intermediate, to explain the pressure
effects on the dry moduli at much higher pressures. As defined, in-
termediate porosity decreases in an exponential law at intermediate
pressures, say 200−1000 MPa. We do not claim that this behavior
of the pores at such high pressures is realistic. Indeed, those pres-
sures are beyond the capacity of most rock physics laboratories and
can even crush typical sandstone samples (Zhang et al. 1990; Wong
et al. 1997; Fortin et al. 2007), though not mantle rocks (Wang
et al. 2005). Sandstones at such pressures probably lie outside of
the elastic regime. Yet the assumption of the behavior of veloci-
ties at such pressures is helpful for understanding of pore space
geometry.

Application of our model requires the asymptotic values of the
dry moduli in high-pressure limit that are usually unknown or hard to
obtain directly from ultrasonic measurements due to the restriction
of narrow measurement range of pressures. This work introduced
pore-scale numerical simulations based on FEM in conjunction with
the SCA to determine the effective aspect ratio of stiff pores and
then compute the values by substituting the aspect ratio into the
SCA. Such treatment implies that the numerical simulation results
only correspond to the effects of stiff pores, while soft (compliant
and intermediate) pores in the digital rock images are not resolved.
While this assumption is reasonable for digital rock images with
the voxel size of about 2−5 μm, the smallest voxel size currently
available, future developments might provide more direct ways to
characterize the pore shapes.

Another potential limitation of our approach is that the model
is only suitable for pure sandstone. For shaley sandstone or other
complex composite rocks, the pressure effects on the dry moduli are
more complicated, and not only controlled by the closure of cracks.
Moreover, the pore shapes information extracted from digital rock
images is different from those of pure sandstone. Such influence
might be studied in future work.

5 C O N C LU S I O N S

We present a simple scheme for fluid or solid substitution con-
strained by pore-scale numerical simulation based on finite element
method. This scheme relates the change of the effective elastic mod-
uli of porous and fractured rocks to the moduli of pore fill, including
fluids, high-viscosity fluids and elastic solids. Pore-scale numerical
simulations based on FEM are used to successfully determine the
aspect ratio of stiff pores directly from microtomographic images
in conjunction with the self-consistent medium theory. Then, the
asymptotic values of dry moduli in high-pressure limit where only
non-closable pores remain open are obtained using the SCA and
then substituted into the scheme to estimate the effective elastic
moduli of porous and fractured rocks saturated with various pore
fills. The workflow avoids the need to assume the specific geome-
try of stiff pores and reduces the uncertainty of model predictions
without any adjustable parameters. This strengthens the predictive
power and usefulness of the model in predicting the effective elastic
moduli of rocks resulting from the change in the moduli of pore fill.
Successful application to a liquid- and solid-octadecane-saturated
Bentheim sandstone has verified the accuracy and applicability of
this scheme and indicated its potential in further exploitation and
characterization of heavy oil and similar reservoirs.
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