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Abstract

In this thesis, we study the dynamic properties of solutions for various types of

nonlinear partial differential equations, including a generalized Benjamin-Bona-

Mahony-Burgers equation, three integrable non-evolutionary equations with quadrat-

ic nonlinearities, cubic nonlinearities and quartic nonlinearities, respectively, and

a generalized Degasperis-Procesi equation for the motion of shallow water waves.

For the generalized Benjamin-Bona-Mahony-Burgers (GBBMB) equation, ap-

plying approximation approaches and several estimates derived from the equation,

we obtain a space-time higher integrability estimate and a one-sided super bound

estimate on the first order spatial derivative of the solution. By making some

assumptions on initial data in the space H1(R), it is derived that the GBBM-

B equation has at least one global weak solution in the space C([0,∞) × R) ∩

L∞([0,∞);H1(R)). Using Kruzkov’s technique of doubling the space variable, if

the GBBMB equation has local or global strong solutions in L1(R)∩H1(R), it is

demonstrated that its strong solution has the property of L1(R) local stability.

For the integrable non-evolutionary equation with quadratic nonlinearities

and quasi-local higher symmetries, we prove that its local strong solutions are

well-posedness in the space C([0, T );Hs(R))∩C1([0, T );Hs−1(R)) if the Sobolev

index s > 3
2
. A condition for blow-up solutions is established under suitable

assumptions. For the case of the Sobolev index 1 ≤ s ≤ 3
2
, we show that the

equation has local weak solutions in Hs(R).

For the non-evolutionary equation with cubic nonlinearities and quasi-local

higher symmetries, we find the H1(R) conservation law. By using Aubin’s com-
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pactness theorem and several estimates, we prove that the equation possesses

local weak solutions in L2([0, T ], Hs(R))(1 ≤ s ≤ 3
2
). If the Sobolev index s > 3

2
,

by using approximation techniques and constructing a Cauchy sequence of the

solutions in the space C([0, T );Hs(R))∩C1([0, T );Hs−1(R)), we derive that there

exists a unique local strong solution to the equation.

For the nonlinear Camassa-Holm type equation possessing quartic nonlinear-

ities, by supposing that its initial value u0(x) ∈ H1(R) and ‖ ∂u0(x)
∂x
‖L∞(R)< ∞,

we prove that the equation has at least one global weak solution in the space

C([0,∞)×R)∩L∞([0,∞);H1(R)). Our assumptions about the initial value u0(x)

are different from the sign condition which is often required to establish the well-

posedness of global strong solutions and the existence of global weak solutions for

the Camassa-Holm type equations. Our key contributions include establishing a

space-time higher integrability estimate and a super bound estimate on the first

order spatial derivative of the solution.

For the nonlinear shallow water wave equation, including the famous Degasperis-

Procesi equation, several estimates are established to discuss the wave breaking

of the solution. The sufficient and necessary conditions for the wave breaking are

obtained.
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CHAPTER 1

Introduction

1.1 Aims and outcomes of the thesis

The aim of this thesis is to investigate the dynamical properties of five nonlinear

partial differential equations, including a generalized Benjamin-Bona-Mahony-

Burgers model, a generalized Degasperis-Procesi equation and three integrable

non-evolutionary equations, which are regarded as the generalizations of the

Camassa-Holm type equations [87]. The three non-evolutionary equations possess

quasi-local higher symmetries, and have quadratic, cubic and quartic nonlineari-

ties, respectively.

The specific objectives of this study and the main outcomes achieved are as

follows.

(1). We study a nonlinear generalized Benjamin-Bona-Mahony-Burgers (GBBM-

B) equation, which takes the form

ut − utxx − auxx + bux + upux + kuxxx = 0, (1.1)

where p ≥ 1 is an integer, a ≥ 0, b and k are constants. Eq.(1.1) becomes

the nonlinear Benjamin-Bona-Mahony-Burgers equation (BBMB) if k = 0. By

1



1.1 Aims and outcomes of the thesis 2

letting a = 0, b = 1, p = 1, k = 0, Eq.(1.1) is turned into the Benjamin-Bona-

Mahony model (see [5, 90, 92]). For Eq.(1.1) with the coefficient k = 0, many

scholars have investigated the existence of global weak solutions and strong solu-

tions (see [1, 2, 8, 56]). For Eq.(1.1) with the coefficient k 6= 0, imposing certain

restrictions on the initial value, we derive that there exists at least one global

weak solution to the GBBMB equation (1.1). Applying the technique of dou-

bling the space variables presented in Kruzkov’s work [53], a few prior estimates

are derived from Eq.(1.1). Assuming that the equation has strong solutions in

L1(R) ∩ H1(R), we prove that these strong solutions are local stable in L1(R).

The acquired results for Eq.(1.1) are different from those in previous works.

(2). Novikov classified and generalized the Camassa-Holm-type models in [87].

The generalized equations possess integrability and quasi-local higher symmetries.

One of the equations is in the form

ut − α2utxx + 4uux − 2αu2x − 2αuuxx = 6α2uxuxx + 2α2uuxxx, (1.2)

where α 6= 0 is a constant. Eq.(1.2) is one of the equations of Theorem 3 in

Novikov [87] under the scaling that x transforms −x (see [87]). Eq.(1.2) is an

integrable scalar evolution equation with quadratic nonlinearities.

Motivated by the works presented in [58, 59, 66] and the desire to probe and

find the dynamical properties for Eq.(1.2), we investigate Eq.(1.2). Using the

Kato theorem, it is proved that Eq.(1.2) possesses a unique local strong solution

in the space C([0, T );Hs(R))∩C1([0, T );Hs−1(R)) if the Sobolev index s > 3
2
. A

sufficient and necessary condition for blow-up solutions is found. For the case of

the Sobolev index 1 ≤ s ≤ 3
2
, it is shown that Eq.(1.2) has local weak solutions

in Hs(R). As far as we know, these dynamical properties of Eq.(1.2) have not
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been found in the previous literature.

(3). Novikov [87] derived many equations which are called the generalizations of

the Camassa-Holm type models. Several models of the generalizations possess

quasi-local higher symmetries. One of the equations with cubic nonlinearities

takes the form

ut − α2utxx = (1 + α
∂

∂x
)(αu2uxx + αuu2x − 2u2ux), (1.3)

where the constant α 6= 0 (see Theorem 5 in [87]).

Motivated by the works made in Li and Olver [66] in which the existence of

local weak solutions and the well-posedness of local strong solutions for an inte-

grable non-linear dispersive wave equation including the standard Camassa-Holm

equation, have been considered, we study Eq.(1.3). Imposing certain restrictions

on its initial value and the coefficient α, several dynamical properties including

the existence of local weak solutions, the existence and uniqueness of local strong

solutions have been found. The results for Eq.(1.3) in this thesis have not been

obtained in the previous literature.

(4). For the following nonlinear Camassa-Holm type equation with quartic non-

linearities (see [40,41,76])

ut − utxx + 5u3ux = 4u2uxuxx + u3uxxx, (1.4)

we investigate its existence of global weak solutions. Assuming the initial value

u0(x) ∈ H1(R) and ‖ ∂u0(x)
∂x
‖L∞(R)< ∞, we prove that Eq.(1.4) has at least one

global weak solution in the space C([0,∞) × R) ∩ L∞([0,∞);H1(R)). Here we
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mention that we do not need to assume that the u0(x) satisfies the sign condition.

Our assumption is weaker than the sign condition. In fact, many researchers apply

the sign condition to establish and derive the existence of global weak solutions of

the Camassa-Holm type equations such as the Degasperis-Procesi equation and

many other generalized Camassa-Holm equations(see [25, 26, 28, 35–39, 77]). The

key contributions in our study of Eq.(1.4) include deriving a space-time higher

integrability estimate and a super bound estimate about ∂u(t,x)
∂x

, which play a key

role in demonstrating the existence of global weak solutions.

(5). A nonlinear shallow water wave equation, including the standard Degasperis-

Procesi shallow water wave equation, is investigated. Several estimates, which

are derived from the shallow water model itself, are established to discuss the

wave breaking of the solutions. A necessary and sufficient condition is obtained

when the wave breaking occurs.

1.2 Outline of the thesis

Eight chapters constitute the contents of this thesis.

In Chapter 1, the objectives and outcomes of this thesis are briefly illustrated.

In Chapter 2, we give a literature review of the previous works relating to

the nonlinear Benjamin-Bona-Mahony-Burgers equations and the Camassa-Holm

type equations.

In Chapter 3, by using the approaches in Xin and Zhang [101] (also see [9]), we

prove that the generalized Benjamin-Bona-Mahony-Burgers equation Eq.(1.1) has

at least one global weak solution in the space C([0,∞)×R)∩L∞([0,∞);H1(R))

under certain assumptions. Applying the technique of doubling the space vari-

ables provided in Kruzkov’s work [53] and assuming that Eq.(1.1) has strong
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solutions, we prove that the strong solution is local stable in L1(R) by imposing

restrictions on the initial value.

In Chapter 4, for the integrable non-evolutionary Eq.(1.2), which possesses

quadratic nonlinearities, the existence of local weak solutions, the existence and

uniqueness of local strong solution and blow-up criteria are investigated.

In Chapter 5, for the integrable non-evolutionary Eq.(1.3) with cubic non-

linearities, the existence of local weak solutions and the well-posedness of local

strong solution are discussed.

In Chapter 6, for the nonlinear Camassa-Holm type Eq.(1.4) possessing quar-

tic nonlinearities, supposing that the initial value u0(x) satisfies u0(x) ∈ H1(R)

and ‖ ∂u0(x)
∂x
‖L∞(R)< ∞, we establish the existence of global weak solutions in

the space C([0,∞)× R) ∩ L∞([0,∞);H1(R)).

In Chapter 7, for a nonlinear shallow water wave model including the stan-

dard Degasperis-Procesi equation, we obtain the conditions to guarantee the wave

breaking of the solutions.

In Chapter 8, we summarize the main results obtained in this thesis and

discuss several problems to be considered in the future.



CHAPTER 2

Literature Review

In recent decades, many investigations have been carried out worldwide to s-

tudy the Benjamin-Bona-Mahony model, the Benjamin-Bona-Mahony-Burgers

equation, the Cammassa-Holm (CH) equation, the Degasperis-Procesi (DP) e-

quation and the Novikov equation [3, 4, 17, 29–32]. Various approaches to probe

the dynamical properties of these nonlinear partial differential equations and their

generalizations have been established [11–16]. Based on the recent development

in this field, our research focuses on the study of a generalized Benjamin-Bona-

Mahony-Burgers model, a generalized Degasperis-Procesi model and three inte-

grable non-evolutionary equations, which are related to the CH equation, the

DP equation and the Novikov equation, because these equations have similar

dynamical properties [20,21,43–45,48–50,52].

2.1 Background of the Benjamin-Bona-Mahony-

Burgers type equations

The Benjamin-Bona-Mahony-Burgers equation takes the form

ut − utxx − auxx + bux + upux = 0, (2.1)

6



2.1 Background of the Benjamin-Bona-Mahony-Burgers type equations 7

where a ≥ 0 is a constant, b is an arbitrary constant, and integer p ≥ 1. Setting

a = 0, b = 1 and p = 1, Eq.(2.1) is turned into the Benjamin-Bona-Mahony model

(see [5, 7, 89]).

Many researchers have investigated the Benjamin-Bona-Mahony-Burgers e-

quation and its various generalizations. Benjamin et al. [5] discover the nonlinear

stability of nonlinear periodic solutions of the regularized Benjamin-one equation

and the BBM equation associated with perturbations of the wavelength. The long

time existence result for the Cauchy problem related to the BBM-Boussinesq sys-

tems has been studied in [6]. Chen and Wang [8] give a stability criteria for the

solitary wave solutions of the Benjamin-Bona-Mahony-Burgers equation which

contains coupled nonlinear terms. The periodic initial value problem which con-

tains the generalized Benjamin-Bona-Mahony equation with generalized damp-

ing on one dimensional torus is considered in Kang et al. [56]. It is pointed

out in Mei [84] that the good predictive power in Eq.(2.1) is meaningful in the

physical sense. Equation (2.1) and the Benjamin-Bony-Mahony equation possess

the same dispersive effects [84]. The tanh technique with the aid of symbolic

computational system is employed to find the exact solutions of BBMB-type e-

quations [89]. The homogeneous balance method and symbolic computations are

employed in [1, 89] to find the exact expressions of traveling wave solutions for

the Benjamin-Bona-Mahoney equation. Other dynamical properties relating to

Eq.(2.1) are discovered in [51,92,93].
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2.2 Background of the related nonlinear equa-

tions

The standard Camassa-Holm(CH) equation takes the form

ut − utxx + αux + 3uux = 2uxuxx + uuxxx, α = constant, (2.2)

which is first discovered by Fuchssteiner and Fokas [30]. Camassa and Holm later

derived it as a water wave model [19]. Its alternative derivations are conducted

in Constantin and Lannes [13], and Johnson [52]. Several conservation laws are

found for Eq.(2.2) (see [24, 65, 78]). Eq.(2.2) has solitary wave solutions if α > 0

or peaked solution if α = 0 (see [14–16]). The geodesic flow properties of Eq.(2.2)

are discussed in [18,57,74].

Degasperis et al. [22] investigate the integrability of the peaked Degasperis-

Procesi (DP) equation

ut − utxx + 4uux = 3uxuxx + uuxxx, (2.3)

which is derived in [23].

In fact, many scientists have been devoted to the investigations of various

dynamical properties of the CH and DP equations. The global conservative so-

lutions and dissipative solutions to Eq.(2.2) are discovered in Bressan and Con-

stantin [3, 4]. The global strong and weak solutions, and blow-up phenomena

for CH equation are studied in [12,26,27]. Sufficient conditions to guarantee the

wave breaking for nonlinear nonlocal equations including the CH model are given

in Constantin and Escher [14] in which several meaningful conclusions are drawn.

Nonlinear dispersive wave equations relating to (2.2) and (2.3) are discussed in
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Escher and Yin [26] while the global weak solutions and blow-up structures are

considered in [25,27,69,70] by imposing certain restrictions on the initial bound-

ary data. The asymptotic stability and controllability for the CH equation are

studied in Glass [42]. It is shown in Xin and Zhang [101] that Eq.(2.2) has global

weak solutions in H1(R) without the assumption of sign condition (also see [9]).

The existence of local weak solutions and the well-posedness of local strong solu-

tions for Eq.(2.2) in the Sobolev space are established in Li and Olver [66] where

a sufficient condition for blow-up solutions is found. The long time properties

of low regularity solutions for Eq.(2.2) is given in Li [67]. The traveling wave

solutions to the CH and DP models are classified in Lenells [63, 64]. Employing

an appropriate Kodama transformation, Dullin et al. [24] derive Eq.(2.3) from

the shallow water elevation model. Vakhnenko and Parkes [96] find many travel-

ing wave solutions for Eq.(2.3). An inverse scattering technique to find n-peakon

solutions to the DP model is employed in Lundmark and Szmigielski [71]. If

the sign condition of the initial data holds, the stability of peakons for the DP

equation is considered in Lin and Liu [68]. Matsuno [72] discusses multisoliton

solutions and peakon limits for Eq.(2.3). The infinite speed of propagation for the

smooth solutions to Eq.(2.3) is studied in Henry [46]. Coclite and Karlsen [11]

obtain existence of entropy solutions for Eq.(2.3).

Novikov [87] derives the integrable equation with cubic nonlinearities

ut − utxx + 4u2ux = 3uuxuxx + u2uxxx. (2.4)

Grayshan [41] investigates the peaked solutions of the Novikov model (2.4). The

CH, DP and Novikov equations have similar peaked properties (see [75, 79, 95,

97–100]). The well-posedness for Eq.(2.4) in the Sobolev space are studied in Hi-

monas and Holliman [47]. If the sign condition about the initial data holds, Lai

and Wu [58] discuss global strong solutions to Eq.(2.4) in C1([0,∞);Hs(R)) ∩
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C([0,∞);Hs−1(R)) if s > 3
2
. Applying the Kato theorem, Ni and Zhou [86]

demonstrate the well-posedness of local strong solution of Eq.(2.4) in Hs(R) if

the index s > 3
2
. The persistence properties of the smooth solution to Eq.(2.4) are

also found in [86]. Mi and Mu [85] consider the Cauchy for a modified Novikov

equations and find its weak solution. A weakly dissipative Novikov equation is

studied in Yan et al. [107].

In fact, establishing integrable equations is one of the important duties for

mathematical experts in the field of partial differential equations [33, 34, 39, 73,

88,102–106,108]. Novikov [87] studies the problem of integrability to the following

Camassa-Holm type equation

ut − utxx = F (u, ux, uxx, uxxx, · · ·), (2.5)

where F is a polynomial about u, ux, uxx, uxxx ···. Using the existence of an infinite

hierarchy of (quasi−) local higher symmetries as a definition of integrability,

Novikov [87] derives and finds many integrable equations with quadratic, cubic

and quartic nonlinearities which include Eqs.(2.2),(2.3), (2.4) and the equations

which we will investigate in chapters 4, 5 and 6.

For other investigations on the Camassa-Holm equation, the Degasperis-Procesi

model, the Novikov equation and several other related partial differential equa-

tions, we refer the readers to the literature [60–62, 80–83, 91] and the references

therein.



CHAPTER 3

Global weak solutions and L1 local

stability to a generalized

Benjamin-Bona-Mahony-Burgers

equation

In this chapter, we discuss the Cauchy problem for a generalized Benjamin-

Bona-Mahony-Burgers (GBBMB) equation. If the initial value is in H1(R), it

is shown that the GBBMB model has at least one global weak solution in the

space C([0,∞)× R) ∩ L∞([0,∞);H1(R)). The key elements in our proof of the

existence of global weak solutions include establishing a space-time higher inte-

grability estimate and a super bound estimate on the first order spatial derivatives

of the solution. Subsequently, we investigate the local stability for the GBBMB

equation. If the initial value belongs to the space L1(R) ∩H1(R), assuming that

the GBBMB equation has strong solutions, and employing the tool of doubling

the space variables provided in Kruzkov’s work [53], we prove that the strong

solution possesses L1(R) local stability.

11
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3.1 General

Firstly, we introduce some notations used in this chapter.

Let L∞ = L∞(R) represent all the functions g(t, x) satisfying

‖ g ‖L∞= inf
m(e)=0

sup
x∈R\e

|g(t, x)| <∞,

where m denotes the measure.

Let R = (−∞,∞). We write notation C∞0 to represent all functions g(t, x) ∈

C∞ which have compact support in the domain [0,+∞)× R.

Assume that Lp = Lp(R) (1 ≤ p <∞) contains all functions g with the norm

‖ g ‖Lp=
(∫

R

|g(t, x)|pdx
) 1
p
<∞.

We let Hs = Hs(R) represent the Sobolev space with norm satisfying

‖ g ‖Hs=

(∫
R
(1 + |η|2)s|ĝ(t, η)|2dη

) 1
2

<∞,

where s is an arbitrary real number, ĝ(t, η) =
∫∞
−∞ e

−ixηg(t, x)dx. Namely, ĝ(t, η)

denotes the Fourier transformation of function g(t, x) about variable x.

For T > 0 and s > 0, let C([0, T );Hs(R)) represent the Frechet space of all

continuous Hs-valued functions on the interval [0, T ) (see [54,55]).

Set Λ = (1− ∂2x)
1
2 . For simplicity, let c represent any positive constant which

does not rely on the parameter ε.

In this chapter, we consider the Cauchy problem of the following generalized

Benjamin-Bona-Mahony-Burgers equation

ut − utxx − auxx + bux + upux + kuxxx = 0, (3.1)
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where a ≥ 0, b, k are constants, and the integer p ≥ 1.

As illustrated in section 2.1 of this thesis, the existence of global weak solutions

and strong solutions for Eq.(3.1) with k = 0 has been investigated by many

scholars. One task of this chapter is to establish the existence of global weak

solutions for (3.1) with the term kuxxx (k 6= 0) under the assumption that its

initial value belongs to the space H1(R). The other is to consider the local

stability of its strong solutions.

Here we address that the approaches in [101] will be used to prove our main

result (also see [9]). After we obtain the higher integrability estimate (3.27)

and the one-sided super bound estimate (3.33) in section 3.3, considering the

derivative qε = ∂uε(t,x)
∂x

(see (3.19)), which is only weakly compact, we will show

that the derivative converges strongly. Namely, we will prove that this weak

convergence is equivalent to strong convergence.

The structure of this chapter is as follows. We provide the main conclusions

in section 3.2, and various lemmas about the viscous approximation problem are

given in section 3.3. We prove strong compactness of the spatial derivative of

solutions for the approximation problem and give the proof of existence of global

weak solutions in section 3.4. The L1(R) local stability is investigated in section

3.5.

3.2 Main results

We write the Cauchy problem for equation (3.1) in the form

 ut − utxx − auxx + bux + upux + kuxxx = 0,

u(0, x) = u0(x).
(3.2)
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Applying the operator Λ−2 = (1− ∂2

∂x2
)−1 on the first equation of problem (3.2),

we have ut − kux + au− aΛ−2u+ Λ−2∂x
[
(b+ k)u+ 1

p+1
up+1

]
= 0,

u(0, x) = u0(x).
(3.3)

In fact, for function g(t, x) ∈ Lp(R), (1 ≤ p < ∞) or ‖ g(t, ·) ‖L∞(R)< ∞, we

have

Λ−2g(t, x) =
1

2

∫ ∞
∞

e−|x−y|g(t, y)dy. (3.4)

Using integration by parts and Eq.(3.1), we derive that

∫ ∞
−∞

(u2 + u2x)dx+ 2a

∫ t

0

∫ ∞
−∞

u2xdxdt =

∫ ∞
−∞

(u20 + u20x)dx, (3.5)

where u0x = ∂u(0,x)
∂x

. From (3.5) and condition a ≥ 0, we obtain

‖ u ‖L∞(R)≤ c ‖ u0 ‖H1(R), (3.6)

where the constant c > 0.

We now introduce the definition of global weak solutions (see [101]) below.

Definition 3.1. A function u : [0,∞) × R → R is called to be a global weak

solution to the Cauchy problem (3.2) or (3.3) if

(i) u ∈ C([0,∞)× R) ∩ L∞([0,∞);H1(R));

(ii) ‖ u(t, .) ‖H1(R)≤‖ u0 ‖H1(R);

(iii) u(t, x) is the solution of (3.3) in the sense of distributions.

Now we state the main results in this chapter.

Theorem 3.2. Let constant a ≥ 0, u0(x) ∈ H1(R) and |∂u0(x)
∂x
| < ∞. Then

there exists at least one global weak solution u(t, x) to problem (3.2) or (3.3)
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in the sense of the Definition 3.1. In addition, the global weak solution has the

following properties.

(a). There exists a positive constant c0, which relies only on ‖ u0 ‖H1(R) and the

coefficients of Eq.(3.1) such that the one-sided estimate on the first order spatial

derivative

∂u(t, x)

∂x
≤ c0(1 + e−at), for (t, x) ∈ [0,∞)× R (3.7)

holds.

(b). For any T ∈ (0,∞), there exists a positive constant c1, which relies only on

‖ u0 ‖H1(R) and the coefficients of Eq.(3.1) such that the space higher integrability

estimate

∫ t

0

∫ ∞
−∞

∣∣∣∂u(t, x)

∂x

∣∣∣4dxdt ≤ c1Te
c1T t ∈ [0, T ] (3.8)

is valid.

Theorem 3.3. Assume that Eq.(3.1) has two strong solutions u1(t, x) and

u2(t, x) associated with ui(0, x) = ui,0 ∈ L1(R) ∩ H1(R), i = 1, 2. Suppose that

both u1(t, x) and u2(t, x) have a maximum existence time T0. Then, for every

t ∈ [0, T0),

‖ u1(t, ·)− u2(t, ·) ‖L1(R)≤ cect ‖ u1,0 − u2,0 ‖L1(R), (3.9)

where constant c > 0 depends on ‖ u1,0 ‖H1(R) and ‖ u2,0 ‖H1(R).

Theorem 3.4. Suppose that u(t, x) is a strong solution of problem (3.2) asso-

ciated with initial value u(0, x) belonging to the space L1(R) ∩H1(R). Then the

strong solution is unique.

Theorem 3.3 directly yields Theorem 3.4.
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3.3 Viscous approximations

Set

ψ(x) =

 e
1

x2−1 , |x| < 1,

0, |x| ≥ 1
(3.10)

and ψε(x) = ε−
1
4ψ(ε−

1
4x) where 0 < ε < 1

4
.

Define the convolution

uε,0 = ψε ? u0 =

∫ ∞
−∞

ψ(x− y)u0(y)dy. (3.11)

We know that uε,0 ∈ C∞ for any u0 ∈ Hs(R)(s > 0) (see Lai and Wu [58, 59])

and

‖ uε,0 ‖H1(R)≤‖ u0 ‖H1(R) and uε,0 → u0 in H1(R). (3.12)

We aim to show that system (3.3) has global weak solution. Firstly, we handle

the viscous approximation problem


∂uε
∂t
− k ∂uε

∂x
+ auε − aΛ−2uε + Λ−2∂x

(
(b+ k)uε + 1

p+1
up+1
ε

)
= ε∂

2uε
∂x2

,

uε(0, x) = uε,0(x).
(3.13)

The convergence of smooth solution {uε} and ∂uε(t,x)
∂x

will be analyzed.

Now we give the well-posedness conclusion for system (3.13).

Lemma 3.5. Let u0 ∈ H1(R). Then, there exists a unique solution uε ∈
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C([0,∞);Hσ(R)) (σ ≥ 2) to problem (3.13) with uε satisfying

∫
R

(
u2ε + (

∂uε
∂x

)2
)
dx+ 2a

∫ t

0

∫ ∞
−∞

(
∂uε
∂x

)2dxds

+2ε

∫ t

0

∫
R

[
(
∂uε
∂x

)2 + (
∂2uε
∂x2

)2
]
dxds =‖ uε,0 ‖2H1(R), (3.14)

or

‖ uε(t, .) ‖2H1(R) +2ε

∫ t

0

‖ ∂uε
∂x

(s, .) ‖2H1(R) ds

+2a

∫ t

0

∫ ∞
−∞

(
∂uε
∂x

)2dxds =‖ uε,0 ‖2H1(R) . (3.15)

Proof. For u0 ∈ H1(R) and every σ ≥ 2, we know that function uε,0 belongs

to the space C([0,∞);Hσ(R)). Using theorem 2.3 in [10], we derive that there

exists a unique solution uε(t, x) ∈ C([0,∞);Hσ(R)) for system (3.13).

From system (3.13), we get

∂uε
∂t
− ∂3uε
∂tx2

− a∂
2uε
∂x2

+ b
∂uε
∂x

+ upε
∂uε
∂x

+ k
∂3uε
∂x3

= ε
(∂2uε
∂x2

− ∂4uε
∂x4

)
. (3.16)

Multiplying (3.16) by uε and then employing integration by parts, we have the

following indentity

1

2

d

dt

∫
R

(
u2ε + (

∂uε
∂x

)2
)
dx+ a

∫ ∞
−∞

(
∂uε
∂x

)2dx

+ε

∫
R

(
(
∂uε
∂x

)2 + (
∂2uε
∂x2

)2
)

(t, x)dx = 0. (3.17)

Integrating (3.17) over [0, t] gives rise to (3.14) or (3.15). The proof is completed.

�
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Using the definition of uε,0 and Lemma 3.5 results in

‖ uε ‖L∞(R)≤‖ uε ‖H1(R)≤‖ uε,0 ‖H1(R)≤‖ u0 ‖H1(R) . (3.18)

Writing ∂uε
∂x

= qε, we obtain

∂qε
∂t
− k∂qε

∂x
− ε∂

2qε
∂x2

+ aqε = aΛ−2qε + (b+ k)uε +
1

p+ 1
up+1
ε

−Λ−2
(

(b+ k)uε +
1

p+ 1
up+1
ε

)
= Kε(t, x). (3.19)

Lemma 3.6. For Kε(t, x), if u0 ∈ H1(R), then

‖ Kε(t, ·) ‖L∞(R)≤ c, (3.20)

‖ Kε(t, ·) ‖L2(R)≤ c, (3.21)

‖ ∂Kε(t, ·)
∂x

‖L2(R)≤ c, (3.22)

where c depends only on the coefficients of Eq.(3.1) and ‖ u0 ‖H1(R).

Proof. Applying the property of operator Λ−2, we obtain

Λ−2
(

(b+ k)uε +
1

k + 1
up+1
ε

)
=

1

2

∫ ∞
−∞

e−|x−y|
(

(b+ k)uε +
1

k + 1
up+1
ε

)
dy (3.23)
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and

|Λ−2qε| = |
1

2

∫ ∞
−∞

e−|x−y|
∂uε
∂y

dy|

= |1
2
e−x

∫ x

−∞
ey
∂uε
∂y

dy +
1

2
ex
∫ ∞
x

e−y
∂uε
∂y

dy|

= | − 1

2
e−x

∫ x

−∞
eyuεdy +

1

2
ex
∫ ∞
x

e−yuεdy|

≤ 1

2

∫ ∞
−∞

e−|x−y||uε(t, y)|dy

≤ c. (3.24)

From (3.18), (3.23) and (3.24), we get that (3.20) holds.

Since

‖ Λ−2qε ‖L2(R)≤ c ‖ qε ‖L2(R)≤ c (3.25)

and

‖ (b+ k)uε +
1

p+ 1
up+1
ε − Λ−2

(
(b+ k)uε +

1

p+ 1
up+1
ε

)
‖L2(R)

≤ c, (3.26)

using (3.25)-(3.26), we conclude that (3.21) is valid.

Applying the similar proof for (3.23)-(3.26), we derive (3.22). The proof is

completed. �

Lemma 3.7. Let t ∈ [0, T ] and u0 ∈ H1(R). Then, it holds that

∫ t

0

∫ ∞
−∞

(∂uε(t, x)

∂x

)4
dxdt ≤ c1Te

c1T , (3.27)

where c1 > 0 depends only on the coefficients of Eq.(3.1) and ‖ u0 ‖H1(R).
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Proof. Multiplying (3.19) by q3ε gives rise to

1

4

d

dt

(∫ ∞
−∞

q4εdx
)
− k

∫ ∞
−∞

q3ε
∂qε
∂x

dx− ε
∫ ∞
−∞

q3ε
∂2qε
∂x2

dx+ a

∫ ∞
−∞

q4εdx

=

∫ ∞
−∞

q3εKε(t, x)dx. (3.28)

Using integration by parts, we derive that

∫ ∞
−∞

q3ε
∂qε
∂x

dx = 0, (3.29)

−
∫ ∞
−∞

q3ε
∂2qε
∂x2

dx = 3

∫ ∞
−∞

q2ε(
∂qε
∂x

)2 ≥ 0 (3.30)

and

∣∣∣ ∫ ∞
−∞

q3εKε(t, x)dx
∣∣∣ ≤ (∫ ∞

−∞
|q4ε |dx

) 3
4
(∫ ∞
−∞

Kε(t, x)4dx
) 1

4

≤ c
(∫ ∞
−∞
|q4ε |dx

) 3
4

≤ c
(

1 +

∫ ∞
−∞
|q4ε |dx

)
. (3.31)

From (3.28)-(3.31), we get

d

dt

(∫ ∞
−∞

q4εdx
)
≤ c
(

1 +

∫ ∞
−∞
|q4ε |dx

)
. (3.32)

Integrating (3.32) on the interval [0, t] and using the Gronwall inequality, we get

that (3.27) holds. �

Lemma 3.8. Assume a ≥ 0, u0(x) ∈ H1(R) and |∂u0(x)
∂x
| <∞. Let uε = uε(t, x)

be the solution of (3.13). Then, the following one-sided L∞ norm estimate on the
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first order spatial derivative holds

∂uε(t, x)

∂x
≤ c(1 + e−at) ≤ 2c, if (t, x) ∈ [0,∞)× R, (3.33)

where the constant c > 0 depends only on the coefficients of Eq.(3.1) and ‖

u0 ‖H1(R).

Proof. From Lemma 3.6 and (3.19), we have

∂qε
∂t
− k∂qε

∂x
− ε∂

2qε
∂x2

+ aqε = Kε(t, x) ≤ c, (3.34)

where c > 0 is defined in Lemma 3.6 and a ≥ 0 is assumed in (3.1).

Let f = f(t) satisfy the problem

df

dt
+ ag = c, f(0) =‖ ∂uε,0

∂x
‖L∞(R), (3.35)

where sup
x∈R

qε(t, x) = f(t). Using the comparison principle to parabolic equation-

s(see [101]), we conclude that

qε(t, x) ≤ f(t). (3.36)

Solving the ordinary differential equation (3.35), we have

f = e−at(g(0) +

∫ t

0

cee
−aτ
dτ) ≤ c(1 + e−at) ≤ 2c.

The proof is completed. �

Lemma 3.9. Let u0(x) ∈ H1(R) and |∂u0(x)
∂x
| < ∞. There exists a sequence
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{εj}j∈N tending to zero and a function K ∈ L∞([0,∞)× R) such that

Kεj → K strongly in C([0,∞)× R), (3.37)

where

K(t, x) = aΛ−2q + (b+ k)u+
1

p+ 1
up+1

−Λ−2
(

(b+ k)u+
1

p+ 1
up+1

)
.

Proof. For simplicity, we use notations u = uε and q = qε. By calculation, we

obtain

dKε

dt
= aΛ−2qt + (b+ k)ut + uput − Λ−2

[
(b+ k)ut + uput

]
= aΛ−2[kqx + εqxx − aq +Kε(t, x)] + (b+ k + up)

×
(
kux − au+ aΛ−2u− Λ−2∂x[(b+ k)u+

1

p+ 1
up+1] + εuxx

)
−Λ−2

{
(b+ k + up)(kux − au+ aΛ−2u

−Λ−2∂x

(
(b+ k)u+

1

p+ 1
up+1

)
+ εuxx

}
= aΛ−2[kqx + εqxx − aq +Kε(t, x)] + I1. (3.38)

We derive that

‖ Λ−2q ‖L2(R)≤‖ q ‖L2(R)≤ c,

‖ Λ−2qx ‖L2(R)≤‖ q ‖L2(R)≤ c (3.39)
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and

‖ Λ−2qxx ‖L2(R)≤‖ q − Λ−2q ‖L2(R)

≤ c ‖ q ‖L2(R) + ‖ Λ−2q ‖L2(R)

≤ c. (3.40)

From Lemmas 3.6 and 3.7, we obtain

‖ Λ−2Kε ‖L2(R)≤‖ Kε ‖L2(R)≤ c. (3.41)

Similar to the proof of (3.39)-(3.41), we have

‖ I1 ‖L2(R)≤ c. (3.42)

It follows from (3.38)-(3.42) that

‖ dKε

dt
‖L2(R)<∞. (3.43)

Since every term of Kε(t, x) possesses the same property as the function

Kε(t, x) does, making use of Corollary 4 on page 85 in Simon [94], we can find a

subsequence of εj → 0, still represented by εj, such that

Kεj = aΛ−2qεj + (b+ k)uεj +
1

p+ 1
up+1
εj
− Λ−2

(
(b+ k)uεj +

1

p+ 1
up+1
εj

)
→ K strongly in C([0,∞)× R).

It completes the proof. �

Lemma 3.10. If u0(x) ∈ H1(R), there exist a function u ∈ L∞([0,∞);H1(R))∩
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H1([0, T ]× R) and a sequence {εj}j∈N , εj → 0, such that

uεj ⇀ u in H1([0, T ]× R), for each T > 0, (3.44)

uεj → u in L∞loc([0,∞)× R). (3.45)

We notice that the proof of Lemma 3.10 is similar to that of Lemma 5.2 in [9].

We thus omit the proof.

We employ overbars to represent weak limits which are taken in the space

Lrloc([0,∞)× R) with 1 < r < 2.

Lemma 3.11. Let u0(x) ∈ H1(R). There exist two functions q ∈ Lploc([0,∞) ×

R), 1 < p < 4, q2 ∈ Lrloc([0,∞)× R), 1 < r < 2 and a sequence {εj}j∈N , εj → 0,

such that  qεj ⇀ q in Lploc([0,∞)× R),

qεj
?
⇀ q in L∞loc([0,∞);L2(R)),

(3.46)

q2εj ⇀ q2 in Lrloc([0,∞)× R), (3.47)

q2(t, x) ≤ q2(t, x) for almost every (t, x) ∈ [0,∞)× R (3.48)

and

∂u

∂x
= q in the sense of distributions on the domain [0,∞)× R. (3.49)

Proof. Using Lemmas 3.5 and 3.7, we obtain (3.46) and (3.47). Using weak con-
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vergence in (3.47) results in inequality (3.48). From the definition of qε, Lemma

3.10 and (3.46), we get that (3.49) holds. �

Choosing an arbitrary convex function φ ∈ C1(R) satisfying that φ′ is bounded

and Lipschitz continuous on R, and making use of (3.46), we acquire that

φ(qε) ⇀ φ(q) in Lploc([0,∞)× R), 1 < p < 4, (3.50)

φ(qε)
?
⇀ φ(q) in L∞loc([0,∞);L2(R)). (3.51)

Multiplying Eq.(3.34) by φ′(qε) yields

∂

∂t
φ(qε)− k

∂φ(qε)

∂x
− ε∂

2φ(qε)

∂x2
+ εφ

′′
(qε)
(∂qε
∂x

)2
= −aqεφ′(qε) +Kε(t, x)φ′(qε). (3.52)

Lemma 3.12. Let a ≥ 0, u0(x) ∈ H1(R) and |∂u0(x)
∂x
| < ∞. For an arbitrary

convex function φ ∈ C1(R) with φ′ being bounded and Lipschitz continuous on R,

it holds that

∂φ(q)

∂t
− k ∂

∂x
φ(q) ≤ −aqφ′(q) +K(t, x)φ′(q),

(3.53)

where (3.53) holds in the sense of distributions on [0,∞)×R and qφ′(q) represents

the weak limits of qεφ
′(qε) in Lrloc([0,∞)× R), 1 < r < 2.

Proof. In (3.52), applying Lemmas 3.9, 3.10, 3.11 and the convexity of function

φ, letting ε→ 0, we completes the proof. �
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From (3.46) and (3.47), we have


q = q− + q+ = q− + q+,

q2 = (q−)2 + (q+)2,

q2 = (q−)2 + (q+)2,

(3.54)

where (3.54) holds almost everywhere in [0,∞) × R and the notations η+ :=

ηχ[0,+∞)(η), η− := ηχ(−∞,0](η) for η ∈ (−∞,∞) (Here χE denotes the characteris-

tic function of the set E, namely, χE(x) = 1 if x ∈ E; χE(x) = 0 if x∈E).

Using (3.46) and Lemma 3.8, we obtain

qε(t, x), q(t, x) ≤ c(1 + e−at), t > 0, x ∈ R. (3.55)

Lemma 3.13. In the sense of distributions on the domain [0,∞)×R, if u0(x) ∈

H1(R), then

∂q

∂t
− k ∂q

∂x
= −aq +K(t, x). (3.56)

Proof. Using Lemmas 3.9-3.11 and (3.19), by letting ε → 0 in (3.19), we get

that (3.56) holds. �

For a generalized formulation of (3.56), we have the following conclusion.

Lemma 3.14. For each φ ∈ C1(R) with φ ∈ L∞(R), in the sense of distributions

on the domain [0,∞)× R, if u0(x) ∈ H1(R), it holds that

∂φ(q)

∂t
− k∂φ(q)

∂x
= −aqφ′(q) +K(t, x)φ′(q). (3.57)
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Proof. We choose {ψδ} such that it is a family of mollifiers on R. Denote the

convolution about variable x as qδ(t, x) := (q(t, ·) ? ψδ)(x). Multiplying (3.56) by

φ′(qδ), we obtain

∂φ(qδ)

∂t
= φ′(qδ)

∂qδ
∂t

= φ′(qδ)
[
− aqδ +K(t, x) ? ψδ + k

∂q

∂x
? ψδ

]
. (3.58)

Making use of the boundedness for φ, φ′ and taking δ → 0 in (3.58), we

conclude that (3.57) holds. �

3.4 Strong convergence and proof of existence

of global weak solutions

In this section, we will show that the weak convergence qε in (3.47) converges

strongly and then prove our main results. Several lemmas will be established to

handle
(
q2 − q2

)
= 0 almost everywhere in [0,∞)× (−∞,∞).

Lemma 3.15. [101] Assume u0 ∈ H1(R). Then

lim
t→0

∫ ∞
−∞

q2(t, x)dx = lim
t→0

∫ ∞
−∞

q2(t, x)dx =

∫ ∞
−∞

(∂u0
∂x

)2
dx. (3.59)

Lemma 3.16. [101] If u0 ∈ H1(R), for any constant B > 0, then

lim
t→0

∫ ∞
−∞

(
φ±B(q(t, x))− φ±B(q(t, x))

)
dx = 0, (3.60)
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in which

φB(η) :=


1
2
η2, if |η| ≤ B,

Bη − 1
2
B2, if |η| > B,

(3.61)

and φ−B(η) := φB(η)χ(−∞,0](η), φ+
B(η) := φB(η)χ[0,+∞)(η), η ∈ R.

Lemma 3.17. [101] For any constant B > 0 and each η ∈ R, we have



φB(η) = 1
2
η2 − 1

2
(B − |η|)2χ(−∞,−B)∩(B,∞)(η),

φ′B(η)η = η + (B − |η|)sign(η)χ(−∞,−B)∩(B,∞)(η),

φ+
B(η) = 1

2
(η+)2 − 1

2
(B − η)2χ(B,∞)(η),

(φ+
B)′(η) = η+ + (B − η)χ(B,∞)(η),

φ−B(η) = 1
2
(η−)2 − 1

2
(B + η)2χ(−∞,−B)(η),

(φ−B)′(η) = η− − (B + η)χ(−∞,−B)(η).

(3.62)

Lemmas 3.15-3.17 can also be found in [9].

Lemma 3.18. For almost all t > 0, if a ≥ 0, u0(x) ∈ H1(R) and |∂u0(x)
∂x
| < ∞,

then

1

2

∫ ∞
−∞

(
(q+)2 − q2+

)
(t, x)dx ≤

∫ t

0

∫ ∞
−∞

K(s, x)[q+(s, x)− q+(s, x)]dsdx. (3.63)

Proof. For any T > 0 (0 < t < T ), from Lemmas 3.8 and 3.16, we choose

the constant B sufficiently large. Subtracting (3.53) from (3.57), and using the
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definition φ+
B, we get

∂

∂t

(
φ+
B(q)− φ+

B(q)
)
− k ∂

∂x

[
φ+
B(q)− φ+

B(q)
]

≤ −a
[
q(φ+

B)′(q)− q(φ+
B)′(q)

]
+K(t, x)

(
(φ+

B)′(q)− (φ+
B)′(q)

)
. (3.64)

Note that

−a
(
q(φ+

B)′(q)− q(φ+
B)′(q)

)
≤ 0.

Let B be sufficiently large and ΩB =
(

1
B−2c ,∞

)
× R. In ΩB, we have

 φ+
B = 1

2
(q+)2, (φ+

B)′(q) = q+,

φ+
B(q) = 1

2
(q+)2, (φ+

B)′(q) = q+.
(3.65)

Integrating inequality (3.64) over
(

1
B−2c , t

)
×R, for almost all t > 1

B−2c , yields

1

2

∫ ∞
−∞

(
(q+)2 − q2+(t, x)

)
dx

≤ lim
B→∞

∫ ∞
−∞

[
φ+
B(q)(

1

B − 2c
, x)− φ+

B(q)(
1

B − 2c
, x)
]
dx

+

∫ t

1
α(B−2c)

∫ ∞
−∞

K(s, x)[q+(s, x)− q+(s, x)]dsdx. (3.66)

Using Lemma 3.16 and letting B →∞, we complete the proof. �

Lemma 3.19. If a ≥ 0, t > 0, u0(x) ∈ H1(R) and |∂u0(x)
∂x
| <∞, then

∫ ∞
−∞

(
φ−B(q)− φ−B(q)

)
(t, x)dx ≤

∫ t

0

∫ ∞
−∞

K(t, x)
(

(φ−B)′(q)− (φ−B)′(q)
)
dsdx,

(3.67)

where B is sufficiently large.
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Proof. Subtracting (3.53) from (3.57) and making use of the entropy φ−B, we

derive that

∂

∂t

(
φ−B(q)− φ−B(q)

)
− k ∂

∂x

[
φ−B(q)− φ−B(q)

]
≤ −a

[
q(φ−B)′(q)− q(φ−B)′(q)

]
+K(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
. (3.68)

Similar to the proof of Lemma 3.18, integrating inequality (3.68) directly com-

pletes the proof. �

Lemma 3.20. Let the assumptions in Theorem 3.2 hold. Then

q2 = q2 almost everywhere in [0,∞)× (−∞,∞). (3.69)

Proof. Employing Lemmas 3.18 and 3.19 leads to

∫ ∞
−∞

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dx

≤
∫ t

0

∫ ∞
−∞

K(s, x)

([
q+ − q+

]
+ [(φ−B)′(q)− (φ−B)′(q)

])
dsdx. (3.70)

Using Lemma 3.17, we have

φ−B(q)− φ−B(q) =
1

2

(
(q−)2 − (q−)2

)
+

1

2
(B + q)2χ(−∞,−B)(q)

−1

2
(B + q)2χ(−∞,−B)(q). (3.71)

Applying Lemma 3.9, we can choose a constant C > 0 depending only on

‖ u0 ‖H1(R) to satisfy

‖ K(t, x) ‖L∞([0,∞)×R)≤ C. (3.72)
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Making use of Lemma 3.17 and (3.54) yields

 q+ + (φ−B)′(q) = q − (B + q)χ(−∞,−B)(q),

q+ + (φ−B)′(q) = q − (B + q)χ(−∞,−B).
(3.73)

Employing the convexity of the map η → η+ + (φ−B)′(η), we obtain that

0 ≤ [q+ − q+] + [(φ−B)′(q)− (φ−B)′(q)]

= (B + q)χ(−∞,−B) − (B + q)χ(−∞,−B)(q). (3.74)

Then, from (3.70), (3.71) and (3.74), we have

0 ≤
∫ ∞
−∞

[
1

2

(
(q+)2 − (q+)2

)
+
(
φ−B − φ

−
B

)]
(t, x)dx

→ 0 as B →∞. (3.75)

Letting B →∞, for any t > 0, we obtain

0 ≤
∫ ∞
−∞

(
q2 − q2

)
(t, x)dx = 0. (3.76)

We conclude from (3.76) that (3.69) holds. The proof is completed. �

Proof of Theorem 3.2. Applying Lemma 3.9, (3.12) and (3.15), we conclude

that (i) and (ii) in Definition 3.1 hold.

To complete the proof of (iii) in Definition 3.1, we utilize Lemma 3.20 to

obtain

qε → q in L2
loc([0,∞)× R). (3.77)

From (3.37), (3.77) and Lemma 3.10, we conclude that u(t, x) is a global weak so-
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lution to problem (3.3). From Lemmas 3.7 and 3.8, we derive that the inequalities

(3.7) and (3.8) are valid. The proof is finished.

3.5 L1 local stability

Firstly, we state some notations which will be used in this section.

Set WT = [0, T ]× R for every T > 0. We use notation C∞0 (WT ) to represent

all C∞ functions which have compact support in the domain WT . Assume that

the function φ0(ς) belongs to C∞0 (R) such that


φ0(ς) ≥ 0,

φ0(ς) = 0, if |ς| ≥ 1,∫∞
−∞ φ0(ς)dς = 1.

For any real number h > 0, setting φh(ς) = φ0(h−1ς)
h

, we know φh(ς) ∈ C∞0 (R) and



φh(ς) ≥ 0,

φh(ς) = 0 if |ς| ≥ h,

|φh(ς)| ≤ c
h
,∫∞

−∞ φh(ς)dς = 1,

(3.78)

where c > 0 represents a constant.

For locally integrable function λ(x), x ∈ (−∞,∞), its approximation function

is defined by

λh(x) =
1

h

∫ ∞
−∞

φ(
x− y
h

)λ(y)dy, h > 0.
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If x0 is a Lebesgue point of λ(x), we have

lim
h→0

1

h

∫ x0+h

x0−h
|λ(x)− λ(x0)|dx = 0

and

lim
h→0

λh(x0) = λ(x0).

Therefore, we have that if h→ 0, then λh(x)→ λ(x) almost everywhere.

If ‖ u ‖L∞(R)<∞, we choose N0 > sup
t∈[0,∞)

‖ u ‖L∞(R) and M > N0. We define

the cone ג as

ג =
{

(t, x)
∣∣∣ |x| ≤M −N0t, 0 < t < T0 = min(T,MN−10 )

}
.

Suppose that Sτ denotes the cross section of ג when t = τ, τ ∈ [0, T0]. For a real

number r > 0, we set Gr =
{
x :
∣∣∣|x| ≤ r

}
.

Lemma 3.21.( [53]). If ε ∈ (0,min[r, T ]), h ∈ (0, ε) and g(t, x) is measurable

and bounded in the domain [0, T ]×Gr, for the function

Vh =
1

h2

∫∫∫∫
D

|g(t, x)− g(τ, y)|dxdtdydτ, (3.79)

where

D =
{

(t, x, τ, y) :

∣∣∣∣∣ |t− τ2
| ≤ h, ε ≤ t+ τ

2
≤ T − ε, |x− y

2
| ≤ h, |x+ y

2
| ≤ r − ε

}
,

then lim
h→0

Vh = 0.

Lemma 3.22.( [53]). Assume that |∂E(u)
∂u
| is bounded for −∞ < u <∞. Then

|sign(u1 − u2)(E(u1)− E(u2))| ≤ L|u1 − u2|, (3.80)
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where L > 0 is the Lipschitz constant.

Applying operator Λ−2 = (1− ∂2

∂x2
)−1 on Eq.(3.1), we have

ut − kux + au− aΛ−2u+ Λ−2
(

(b+ k)u+
1

p+ 1
up+1

)
x

= 0. (3.81)

From (3.5) and (3.6), we derive that ‖ u ‖L∞<∞ if u0 ∈ H1(R). For concise-

ness, we write

Fu(t, x) = au− aΛ−2u+ Λ−2
(

(b+ k)u+
1

p+ 1
up+1

)
x

.

Lemma 3.23. If u0(x) ∈ H1(R), then

‖ Fu ‖L∞(R)< C, (3.82)

where the constant C > 0 depends on the coefficients of Eq.(3.1) and the norm

‖ u0 ‖H1(R).

Proof: By calculation, we have

∫ ∞
−∞

e−|x−y|dy = 2.

Using u0(x) ∈ H1(R), (3.5) and (3.6), we obtain that ‖ u ‖L∞< ∞ and ‖

Λ−2u ‖L∞<∞.
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If the function G(t, x) ∈ L∞(R) or G(t, x) ∈ Lp0(R) (1 ≤ p0 <∞), we have

∣∣∣Λ−2∂xG(t, x)
∣∣∣ =

∣∣∣1
2

∫ ∞
−∞

e−|x−y|
∂G(t, y)

∂y
dy
∣∣∣

=
∣∣∣1
2
ex
∫ ∞
x

e−yG(t, y)dy − 1

2
e−x

∫ x

−∞
eyG(t, y)dy

∣∣∣
≤ 1

2

∫ ∞
−∞

e−|x−y||G(t, y)|dy

≤‖ G ‖L∞ , (3.83)

which derives that

∣∣∣Λ−2((k + b)u+
1

p+ 1
up+1

)
x

∣∣∣ ≤ C.

The proof is completed. �

Lemma 3.24. Suppose that u(t, x) is a strong solution of Eq.(3.1). For an

arbitrary constant γ, if µ(t, x) ∈ C∞0 (WT ), then

∫∫
WT

{
|u− γ|µt − k|u− γ|µx − sign(u− γ)Fu(t, x)µ

}
dxdt = 0. (3.84)

Proof: Assume that L(u) is a smooth function if u ∈ (−∞,∞). We employ

L′(u)µ(t, x) to multiply Eq.(3.81) and integrate by parts, for any constant γ, we

then obtain

∫ ∞
−∞

[

∫ u

γ

L′(z)dz]µxdx = −
∫ ∞
−∞

µL′(u)uxdx

and

∫∫
WT

[
L(u)µt − [

∫ u

γ

kL′(z)dz]µx − L′(u)Fu(t, x)µ

]
dxdt = 0. (3.85)



3.5 L1 local stability 36

Let Lh(u) be an approximation of |u− γ|. Replacing L(u) by Lh(u) in (3.85)

and letting h→ 0 produce the desired result. The proof is completed. �

We should address here that the approach to prove Lemma 3.24 can be found

in [53].

Lemma 3.25. Suppose that Eq.(3.1) has two strong solutions u1(t, x) and u2(t, x)

associated with ui,0 = ui(0, x) ∈ L1(R) ∩H1(R), i = 1, 2. If µ ∈ C∞0 (WT ), then

∣∣ ∫ ∞
−∞

sign(u1 − u2)
[
Fu1(t, x)− Fu2(t, x)

]
µdx

∣∣
≤ C

∫ ∞
−∞
|u1 − u2|dx, (3.86)

where C > 0 depends on ‖ u1,0 ‖H1(R), ‖ u2,0 ‖H1(R) and µ(t, x).

Proof: Applying the property of Λ−2 and using inequality (3.83) produce

∣∣∣Λ−2[u1(t, x)− u2(t, x)]x

∣∣∣
≤ 1

2

∫ ∞
−∞

e−|x−y|
∣∣∣u1(t, y)− u2(t, y)

∣∣∣dy
≤‖ u1 − u2 ‖L1(R) . (3.87)

Using ‖ u1 ‖L∞≤‖ u1,0 ‖H1(R), ‖ u2 ‖L∞≤‖ u2,0 ‖H1(R) (see (3.6)) and inequality

(3.83) gives rise to

∣∣∣Λ−2[up+1
1 (t, x)− up+1

2 (t, x)]x

∣∣∣
≤ 1

2

∫ ∞
−∞

e−|x−y|
∣∣∣up+1

1 (t, y)− up+1
2 (t, y)

∣∣∣dy
≤ c ‖ u1 − u2 ‖L1(R), (3.88)

where c relies on ‖ ui,0 ‖H1(R), i = 1, 2. The proof is completed by using (3.87)

and (3.88). �

Proof of the L1 local stability

Using the methods in [53], we will prove Theorem 3.3.
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For T > 0, we write WT = [0, T ] × R. We choose µ(t, x) ∈ C∞0 (WT ) and

µ(t, x) = 0 outside the region

Ω0 = {(t, x)} = [ε, T − 2ε]×Gr−2ε, 0 < 2ε ≤ min(T, r). (3.89)

Let

J = µ(
t+ τ

2
,
x+ y

2
)φh(

t− τ
2

)φh(
x− y

2
) = µ(· · ·)ρh(∗), (3.90)

where (∗) = ( t−τ
2
, x−y

2
), (· · ·) = ( t+τ

2
, x+y

2
) and φh is defined in (3.78).

By calculation, we get

 Jt + Jτ = µt(· · ·)ρh(∗),

Jx + Jy = µx(· · ·)ρh(∗).
(3.91)

Choosing u1 = u1(t, x) and γ = u2(τ, y) for a fixed point (τ, y), and using the

definition of µ(t, x) and Lemma 3.24, we obtain

∫∫∫∫
WT×WT

{
|u1(t, x)− u2(τ, y)|Jt − k|u1(t, x)− u2(τ, y)|Jx

−sign(u1(t, x)− u2(τ, y))Fu1(t, x)J
}
dxdtdydτ = 0. (3.92)

In exactly the same way, we have

∫∫∫∫
WT×WT

{
|u2(τ, y)− u1(t, x)|Jτ − k|u2(τ, y)− u1(t, x)|Jy

−sign(u2(τ, y)− u1(t, x))Fu2(τ, y)J
}
dxdtdydτ = 0. (3.93)
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Adding (3.92) and (3.93) together yields

0 ≤
∫∫∫∫
WT×WT

{
|u1(t, x)− u2(τ, y)|(Jt + Jτ )

−k|u1(t, x)− u2(τ, y)|(Jx + Jy)
}
dxdtdydτ

+
∣∣∣ ∫∫∫∫
WT×WT

sign(u1(t, x)− u2(τ, y))(Fu1(t, x)− Fu2(τ, y))Jdxdtdydτ
∣∣∣

=

∫∫∫∫
WT×WT

K1dxdtdydτ + |
∫∫∫∫
WT×WT

K2dxdtdydτ |

= X1 +X2. (3.94)

We shall prove that the inequality

0 ≤
∫∫
WT

{
|u1(t, x)− u2(t, x)|µt − k|u1(t, x)− u2(t, x)|µx

}
dxdt

+
∣∣∣ ∫∫
WT

sign(u1(t, x)− u2(t, x))[Fu1(t, x)− Fu2(t, x)]µdxdt
∣∣∣ (3.95)

holds.

In fact, the integrand of X1 in (3.94)(namely K1) can be expressed by the

form

Ih = I(t, x, τ, y, u1(t, x), u2(τ, y))ρh(∗). (3.96)

Noticing the choice of J , we obtain Ih = 0 outside the region

{(t, x; τ, y)}

=
{
ε ≤ t+ τ

2
≤ T − 2ε,

|t− τ |
2
≤ h,

|x+ y|
2

≤ r − 2ε,
|x− y|

2
≤ h

}
.

(3.97)
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Thus, we have

∫∫∫∫
WT×WT

Ihdxdtdydτ =

∫∫∫∫
WT×WT

[
I(t, x, τ, y, u1(t, x), u2(τ, y))

−I(t, x, t, x, u1(t, x), u2(t, x))
]
ρh(∗)dxdtdydτ

+

∫∫∫∫
WT×WT

I(t, x, t, x, u1(t, x), u2(t, x))ρh(∗)dxdtdydτ

= I11(h) + I12. (3.98)

Using |ρ(∗)| ≤ c
h2

, we have

|I11(h)| ≤ c

[
h+

1

h2

∫∫∫∫
D

|u1(t, x)− u2(τ, y)|dxdtdydτ

]
,

(3.99)

where D is defined in Lemma 3.21, c > 0 does not depend on the parameter h.

From Lemma 3.21, we know that I11(h)→ 0 if h→ 0.

Letting t = α1,
t−τ
2

= α2, x = β1,
x−y
2

= β2, we obtain

∫ h

−h

∫ ∞
−∞

ρh(α2, β2)dα2dβ2 = 1 (3.100)

and

I12 = 4

∫∫
WT

[
Ih(α1, β1, α1, β1, u1(α1, β1), u2(α1, β1))

×
{∫ h

−h

∫ ∞
−∞

ρh(α2, β2)dα2dβ2

}]
dβ1dα1

= 4

∫∫
WT

I(t, x, t, x, u1(t, x), u2(t, x))dxdt. (3.101)
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From (3.98) to (3.101), we have

lim
h→0

∫∫∫∫
WT×WT

Ihdxdtdydτ = 4

∫∫
WT

I(t, x, t, x, u1(t, x), u2(t, x))dxdt. (3.102)

Since

K2 = sign(u1(t, x)− u2(τ, y))(Fu1(t, x)− Fu2(τ, y))µ(· · ·)ρh(∗) (3.103)

and

∫∫∫∫
WT×WT

K2dxdtdydτ

=

∫∫∫∫
WT×WT

(
K2(t, x, τ, y)−K2(t, x, t, x)

)
dxdtdydτ

+

∫∫∫∫
WT×WT

K2(t, x, t, x)dxdtdydτ

= I21(h) + I22, (3.104)

we derive that

|I21(h)| ≤ c

(
h+

1

h2

∫∫∫∫
D

|Fu1(t, x)− Fu2(τ, y)|dxdtdydτ

)
,

(3.105)

where D is defined in Lemma 3.21.

Applying Lemmas 3.21 and 3.22, we acquire I21(h) → 0 when h → 0. Using
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(3.100) gives rise to

I22 = 22

∫∫
WT

[
K2(α1, β1, α1, β1, u1(α1, β1), u2(α1, β1))

×
{∫ h

−h

∫ ∞
−∞

ρh(α2, β2)dα2dβ2

}]
dα1dβ1

= 22

∫∫
WT

K2(t, x, t, x, u1(t, x), u2(t, x))dxdt

= 4

∫∫
WT

sign(u1(t, x)− u2(t, x))(Fu1(t, x)− Fu2(t, x))µ(t, x)dxdt.

(3.106)

From (3.102) and (3.106), we have proved that (3.95) is valid.

Set

W (t) =

∫ ∞
−∞
|u1(t, x)− u2(t, x)|dx. (3.107)

We define

υh(σ) =

∫ σ

−∞
φh(ξ)dξ

(
υ′h(σ) = φh(σ) ≥ 0

)
. (3.108)

If r1 < r2, r1 ∈ (0, T0) and r2 ∈ (0, T0), we set

µ = [υh(t− r1)− υh(t− r2)]πε(t, x), h < min(r1, T0 − r2), (3.109)

where

π(t, x) = πε(t, x) = 1− υh(|x|+N0t−M + ε), ε > 0. (3.110)

Letting ε be sufficiently small, we derive that µ(t, x) = 0 outside the region
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Ω0 and π(t, x) = 0 outside the area .ג In the region (t, x) ∈ ,ג we have

0 = πt +N0|πx| ≥ πt +N0πx. (3.111)

Using the inequality (3.95), and (3.108)-(3.111), we derive that

0 ≤
∫∫
WT0

{
[φh(t− r1)− φh(t− r2)]πε|u1(t, x)− u2(t, x)|

}
dxdt

+
∣∣ ∫∫
WT0

[
υh(t− r1)− υh(t− r2)

]
Ψ(t, x)π(t, x)dxdt

∣∣∣, (3.112)

where Ψ(t, x) = [Fu1(t, x)− Fu2(t, x)]sign[u1(t, x)− u2(t, x)].

Using (3.112) results in

0 ≤
∫ T0

0

∫ ∞
−∞

{
[φh(t− r1)− φh(t− r2)]πε|u1(t, x)− u2(t, x)|

}
dxdt

+

∫ T0

0

(
υh(t− r1)− υh(t− r2)

)∣∣∣ ∫ ∞
−∞

Ψ(t, x)π(t, x)dx
∣∣∣dt,

(3.113)

which together with Lemma 3.25 produces

0 ≤
∫ T0

0

∫ ∞
−∞

{
[φh(t− r1)− φh(t− r2)]πε|u1(t, x)− u2(t, x)|

}
dxdt

+c

∫ T0

0

(
υh(t− r1)− υh(t− r2)

)∫ ∞
−∞
|u1 − u2|dxdt,

(3.114)

where c > 0 does not depend on h.
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Letting ε→ 0 in (3.114) and M →∞, we get

0 ≤
∫ T0

0

{
[φh(t− r1)− φh(t− r2)]

∫ ∞
−∞
|u1(t, x)− u2(t, x)|dx

}
dt

+c

∫ T0

0

(
υh(t− r1)− υh(t− r2)

)(∫ ∞
−∞
|u1 − u2|dx

)
dt.

(3.115)

If h ≤ min(r1, T0 − r1), using the definition of φh produces

∣∣∣ ∫ T0

0

φh(t− r1)W (t)dt−W (r1)
∣∣∣ =

∣∣∣ ∫ T0

0

φh(t− r1)
[
W (t)−W (r1)

]
dt
∣∣∣

≤ c

h

∫ r1+h

r1−h
|W (t)−W (r1)|dt→ 0 as h→ 0, (3.116)

where c > 0 does not depend on h.

We define

B(r1) =

∫ T0

0

υh(t− r1)W (t)dt =

∫ T0

0

∫ t−r1

−∞
φh(σ)dσW (t)dt. (3.117)

Following the similar proof of (3.116), we derive that

B′(r1) = −
∫ T0

0

φh(t− r1)W (t)dt→ −W (r1) as h→ 0, (3.118)

from which we derive

B(r1)→ B(0)−
∫ r1

0

W (ξ)dξ as h→ 0. (3.119)

Similarly, we get

B(r2)→ B(0)−
∫ r2

0

W (ξ)dξ as h→ 0. (3.120)



3.5 L1 local stability 44

Using (3.119) and (3.120) derives

B(r1)−B(r2)→
∫ r2

r1

W (ξ)dξ as h→ 0. (3.121)

Letting r1 → 0, r2 → t (0 ≤ t ≤ T0), and using (3.116),(3.117) and (3.121),

we obtain

W (t) ≤ W (0) + c

∫ t

0

W (τ)dτ. (3.122)

Employing (3.107), (3.122) and the Gronwall inequality, we acquire the desired

result and finish the proof of Theorem 3.3. �



CHAPTER 4

Local strong and weak solutions to an

integrable equation with quadratic

nonlinearities

An integrable non-evolutionary partial differential equation, which has quadrat-

ic nonlinearities and possesses quasi-local higher symmetries, is studied in this

chapter. We prove that there exists a unique local strong solution to the equa-

tion in the space C([0, T );Hs) ∩ C1([0, T );Hs−1(R)) in the case s > 3
2
. We give

a sufficient and necessary condition of the blow-up solutions. For the case of the

Sobolev index 1 ≤ s ≤ 3
2
, we prove that the equation has local weak solutions in

Hs(R) under suitable assumptions.

4.1 General

Novikov [87] classified and generalized the Camassa-Holm-type equations which

possess integrability and quasi-local higher symmetries. One of the models in [87]

is in the form

ut − α2utxx + 4uux − 2αu2x − 2αuuxx = 6α2uxuxx + 2α2uuxxx, (4.1)

45
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where α 6= 0 is a constant.

Motivated by the works presented in [59,66] and the desire to find the dynami-

cal properties of Eq.(4.1), which has quadratic nonlinearity, we aim to investigate

Eq.(4.1) in this chapter. We prove that Eq.(4.1) has a unique local strong solution

belonging to the space C([0, T );Hs) ∩ C1([0, T );Hs−1(R)) in the case s > 3
2

and

find a sufficient and necessary condition for the blow-up solution. For the case of

the Sobolev index 1 ≤ s ≤ 3
2
, we show that Eq.(4.1) has local weak solutions in

Hs(R). As far as we know, these dynamical properties have not been found for

Eq.(4.1) in the literature.

This chapter is structured as follows. We present the main conclusions in sec-

tion 4.2. The existence and uniqueness of the local strong solution are established

in section 4.3. In section 4.4, the results about the blow-up solution and local

weak solutions are proved.

4.2 Main results

For Eq.(4.1), its Cauchy proplem is written by the form

 ut − α2utxx + 4uux − 2αu2x − 2αuuxx = 6α2uxuxx + 2α2uuxxx,

u(0, x) = u0(x).
(4.2)

By applying the operator Λ−21 = (1 − α2 ∂2

∂x2
)−1 on both sides of (4.2) through

some derivation, problem (4.2) becomes the following problem

 ut + 2uux = Λ−21 [ 1
α
u2 − 2uux]− 1

α
u2,

u(0, x) = u0(x).
(4.3)

The main conclusions of this chapter are stated in following theorems.
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Theorem 4.1. Let s > 3
2

and u0(x) ∈ Hs. Then, problem (4.2) or (4.3) has a

unique solution in the space C([0, T );Hs(R))∩C1([0, T );Hs−1(R)), where T > 0

depends on the initial value ‖ u0 ‖Hs.

Theorem 4.2. Assume s > 3
2
, u0(x) ∈ Hs. Suppose that u(t, x) is a solution of

problem (4.2) or (4.3). Then, lim
t→T
‖ u ‖Hs=∞ if and only if ‖ ux ‖L∞(R)=∞.

For ε satisfying 0 < ε < 1
4
, using Theorem 4.1, we derive that there is a unique

solution uε(t, x) in C∞([0, Tε);H
∞(R)) for the following system

 ut − α2utxx + 4uux − 2αu2x − 2αuuxx = 6α2uxuxx + 2α2uuxxx

u(0, x) = uε,0(x).
(4.4)

Here we illustrate that Tε may be dependent on the parameter ε and uε,0(x) is

defined in (3.11). Under certain assumptions, however, we can find two posi-

tive constants c > 0 and T > 0, which do not depend on the parameter ε, to

ensure that the space derivative of the solution uε(t, x) to system (4.4) satisfies

‖ uεx ‖L∞≤ c if (t, x) ∈ [0, T ) × (−∞,∞). We employ this result to derive the

existence of local weak solutions to problem (4.2).

Theorem 4.3. Assume s ∈ [1, 3
2
], ‖ u0x ‖L∞<∞ and u0(x) ∈ Hs. Then solution

uε(t, x) of (4.4) satisfies

‖ uεx ‖L∞≤ c, for t ∈ [0, T ), x ∈ (−∞,∞),

where T > 0 and c > 0 do not depend on the parameter ε.

Theorem 4.4. Let u0(x) ∈ Hs, 1 ≤ s ≤ 3
2
, ‖ u0x ‖L∞< ∞. Then, for suitably

small T > 0, there exists at least one local weak solutions for problem (4.2) in

L2([0, T ], Hs(R)). Moreover, ux ∈ L∞([0, T ]× R).



4.3 Local strong solutions 48

4.3 Local strong solutions

We recall several statements for the following quasi-linear abstract operator e-

quation

dw

dt
+ E(w)w = J(w), t ≥ 0 and w(0) = w0, (4.5)

where E(w) is an operator. Assume that W and V are the Hilbert spaces. Let V

be densely and continuously embedded in W . Let P : V → W be a topological

isomorphism. Assume that the space L(V,W ) denotes all bounded linear opera-

tors from V to W . In the case W = V , we set L(W,W ) = L(W ). We write out

assumptions (a1), (a2) and (a3) in which the constants γ1, γ2, γ3 and γ4 depend

only on the norms max{‖ · ‖W , ‖ · ‖V }.

(a1). E(y) ∈ L(V,W ) for y ∈ W with

‖ (E(y)− E(z))v ‖W≤ γ1 ‖ v ‖V ‖ y − z ‖W , v, y, z ∈ V,

and E(y) ∈ G(W, 1, β) (namely, E(y) is quasi-m-accretive) is uniformly bounded

for bounded sets of V .

(a2). For operator P , PE(y)P−1 = E(y) + A(y), where A(y) ∈ L(W ) is

uniformly bounded on bounded sets in V , it holds that

‖ (A(y)− A(z))v ‖W≤ γ2 ‖ y − z ‖V ‖ v ‖V , v ∈ W, y, z ∈ V.

(a3). J : V → W is bounded for bounded sets of V , and

‖ J(z)− J(y) ‖V≤ γ3 ‖ z − y ‖V , z, y ∈ V,

‖ J(z)− J(y) ‖W≤ γ4 ‖ z − y ‖W , z, y ∈ W.
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Kato Theorem [54, 55] If (a1), (a2) and (a3) hold, letting w0 ∈ V , then there

exists a maximal T > 0 relying only on ‖ w0 ‖V to ensure that problem (4.5) has

a unique solution w and

w = w(·, w0) ∈ C([0, T );V ) ∩ C1([0, T );W ).

In addition, the mapping w0 → w(., v0) from V to the space C([0, T );V ) ∩

C1([0, T );W ) is continuous.

Let E(u) = 2u∂x, V = Hs(R),W = Hs−1(R), Λ1 = (1− α2∂2x)
1
2 ,

J(u) = Λ−21 [
1

α
u2 − 2uux]−

1

α
u2

and P = Λs. We know that the operator P is an isomorphism of Hs onto Hs−1(R)

(see [104]). For the aim to give the proof of Theorem 4.1, it suffices to show that

E(u) and J(u) satisfy (a1)− (a3).

Lemma 4.5 [104].The operator E(u) = 2u∂x ∈ G(Hs−1(R), 1, β) if s > 3
2
,

u ∈ Hs(R).

Lemma 4.6 [104]. Assume u ∈ Hs(R) and s > 3
2
. If E(u) = 2u∂x, for each

u ∈ Hs(R), then E(u) ∈ L(Hs(R), Hs−1(R)) and

‖ (E(z)− E(u))v ‖Hs−1(R)≤ γ1 ‖ z − u ‖Hs−1(R)‖ v ‖Hs(R), u, z, v ∈ Hs(R).(4.6)

Lemma 4.7 [104]. Let s > 3
2
, v ∈ Hs−1(R) and u, z ∈ Hs(R). Then I(u) =

[Λs, bu2∂x]Λ
−s belongs to L(Hs−1) if

‖ (I(u)− I(z))v ‖Hs−1≤ γ2 ‖ u− z ‖Hs‖ v ‖Hs−1 . (4.7)
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Lemma 4.8 [54]. Assume that λ1 and λ2 are real numbers satisfying −λ1 <

λ2 ≤ λ1. Then

‖ uv ‖Hλ2≤ c ‖ u ‖Hλ1‖ v ‖Hλ2 , if λ1 >
1

2
,

‖ uv ‖Hλ1+λ2−1/2≤ c ‖ u ‖Hλ1‖ v ‖Hλ2 , if λ1 <
1

2
.

Lemma 4.9. Let u, z ∈ Hs, s > 3
2

and J(u) = Λ−21 [ 1
α
u2 − 2uux] − 1

α
u2. Then

J(u) satisfies

‖ J(u)− J(z) ‖Hs≤ γ3 ‖ u− z ‖Hs , (4.8)

‖ J(u)− J(z) ‖Hs−1≤ γ4 ‖ u− z ‖Hs−1 . (4.9)

Proof. Noting the multiplying properties of Hs(R) (s > 1
2
) and using the equiv-

alency of operators Λ−21 and Λ−2 give rise to

‖ J(u)− J(z) ‖Hs(R)≤ c
[
‖ Λ−21 u2 − Λ−21 z2 ‖Hs(R) + ‖ (u2)x − (z2)x ‖Hs−2(R)

+ ‖ u2 − z2 ‖Hs−2(R)

]
≤ c
[
‖ u2 − z2 ‖Hs(R) + ‖ u2 − z2 ‖Hs−1(R)

]
≤ c(‖ (u− z)(u+ z) ‖Hs(R))

≤ γ3 ‖ u− z ‖Hs(R), (4.10)

from which we complete the proof of (4.8).
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Since s− 1 > 1
2
, applying Lemma 4.8, we get

‖ Λ−21 [(u2)x − (z2)x] ‖Hs−1

≤ c ‖ u2 − z2 ‖Hs−1

≤ γ4 ‖ u− z ‖Hs−1 (4.11)

and

‖ Λ−21 [u2 − z2] + u2 − z2 ‖Hs−1

≤ c ‖ u2 − z2 ‖Hs−1

≤ c ‖ u− z ‖Hs−1 . (4.12)

Applying (4.11) and (4.12) yields

‖ J(u)− J(z) ‖Hs−1(R)≤ γ4 ‖ u− z ‖Hs−1(R) .

(4.13)

Using (4.10) and (4.13) finishes the proof of Lemma 4.9. �

Proof of Theorem 4.1. Employing Lemmas 4.5, 4.6, 4.7 and 4.9 together with

the Kato Theorem, we get that there is a unique solution u(t, x) satisfying

u(t, x) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))

for problem (4.2) or system (4.3). The proof is completed. �
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4.4 Local weak solutions

Employing the decay property of the Sobolev Hs(R), s > 3
2

and the first equation

of system (4.2) yields the following identity

1

2

d

dt

∫
R
(u2 + α2u2x)dx = −α2

∫
R
u3xdx− 2

∫
R
uu2xdx,

which results in the conservation law

∫
R

(
u2 + α2u2x

)
dx+ 2α2

∫ t

0

∫
R
u3xdxdt+ 4

∫ t

0

∫
R
uu2xdxdt

=

∫
R
(u20 + α2u20x)dx. (4.14)

Lemma 4.10. ( [54]). Assume the constant γ ≥ 0. If v1, v2 ∈ Hγ ∩ L∞, then

‖ v1v2 ‖Hγ≤ c
(
‖ v1 ‖L∞‖ v2 ‖Hγ + ‖ v1 ‖Hγ‖ v2 ‖L∞

)
,

where the constant c > 0 only depends on γ.

Lemma 4.11. ( [54]). Let the constant γ > 0. If v1 ∈ Hγ ∩W 1,∞ and v2 ∈

Hγ−1 ∩ L∞, then

‖ [Λγ
0 , v1]v2 ‖L2≤ c

(
‖ ∂xv1 ‖L∞‖ Λγ−1

0 v2 ‖L2 + ‖ Λγ
0v1 ‖L2‖ v2 ‖L∞

)
,

where Λ0 = (1− ∂2x)
1
2 and the constant c > 0 only depends on γ.

Lemma 4.12. Assume that s > 1 and the initial value u0(x) belongs to Hs(R).

If uε(t, x) is a solution of (4.4), still denoted by u(t, x), then

‖ u ‖L∞(R)≤‖ u ‖H1(R)≤ c0 ‖ u0 ‖H1(R) e
c0

∫ t
0 ‖ux‖L∞(R)dτ , (4.15)
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where c0 > 0 is a constant depending only on α.

Assume r ∈ (0, s− 1]. Then there is a positive constant c, depending only on α,

such that

∫
R
(Λr+1u)2dx ≤

∫
R
[(Λr+1u0)

2]dx

+c

∫ t

0

(
1+ ‖ u ‖L∞ + ‖ ux ‖L∞

)
‖ u ‖2Hr+1 dτ. (4.16)

Let r ∈ [0, s− 1]. Then there is a constant c, depending only on α, such that

‖ ut ‖Hr≤ c
[
‖ u ‖H1 + ‖ u ‖Hr + ‖ u ‖Hr+1

]
‖ u ‖L∞ . (4.17)

Proof. Using

|2uux| ≤ (u2 + u2x),

|
∫
R
u3xdx| ≤‖ ux ‖L∞‖ u ‖2H1(R),

the Gronwall inequality and (4.14) derives (4.15).

Using the Parseval equality and ∂2x = 1− Λ2 gives rise to

∫
R

ΛruΛr∂3x(u
2)dx = −2

∫
R
(Λr+1u)Λr+1(uux)dx+ 2

∫
R
(Λru)Λr(uux)dx.

(4.18)

We know that the identity

2uuxxx = ∂3x(u
2)− 4uuxx − 2uxuxx (4.19)

holds.

For a real number r ∈ (0, s−1], we apply (Λru)Λr to multiply the first equation
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of (4.4). Subsequently, integrating the obtained equation by parts about variable

x, we obtain that

1

2

d

dt

∫
R

[
(Λru)2 + α2(Λrux)

2
]
dx

≤ c

(∣∣∣ ∫
R
(Λru)Λr(2αu2x + 2αuuxx − 4α2uuxx)dx

∣∣∣
+
∣∣∣ ∫

R
(Λr+1u)Λr+1(uux)dx

∣∣∣+
∣∣∣ ∫

R
ΛruΛr(uux)dx

∣∣∣
+
∣∣∣ ∫

R
ΛruΛr(uxuxx)dx

∣∣∣)
= K1 +K2 +K3 +K4, (4.20)

where c may depend on α.

Making use of Lemmas 4.10 and 4.11, and the Cauchy-Schwartz inequality,

we get

K2 =
∣∣∣ ∫

R
(Λr+1u)Λr+1(uux)dx

=

∫
R
(Λr+1u)

[
Λr+1(uux)− uΛr+1ux

]
dx

+

∫
R
(Λr+1u)uΛr+1uxdx

and

|K2| ≤ c ‖ u ‖Hr+1

(
‖ u ‖Hr‖ ux ‖L∞ + ‖ u ‖Hr+1‖ u ‖L∞

)
+ ‖ Λr+1u ‖L2‖ ux ‖L∞

≤ c ‖ u ‖2Hr+1

(
1+ ‖ u ‖L∞ + ‖ ux ‖L∞

)
. (4.21)
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Using Lemma 4.10 yields

|K3| ≤ c ‖ u ‖Hr‖ uux ‖Hr

≤ c ‖ u ‖Hr

(
‖ ux ‖Hr‖ u ‖L∞ + ‖ u ‖Hr‖ ux ‖L∞

)
≤ c ‖ u ‖2Hr+1

(
‖ u ‖L∞ + ‖ ux ‖L∞

)
. (4.22)

Applying Lemma 4.10 and the Cauchy-Schwartz inequality gives rise to

∣∣∣ ∫
R

(Λrux)Λ
r(u2x)dx

∣∣∣ ≤‖ Λrux ‖L2‖ Λr(u2x) ‖L2

≤ c
(
‖ ux ‖L∞‖ ux ‖Hr

)
‖ u ‖Hr+1

≤ c ‖ ux ‖L∞‖ u ‖2Hr+1 . (4.23)

Noticing identity uxuxx = 1
2
(u2x)x, we obtain

|K4| =
∣∣∣ ∫

R

(Λru)Λr(uxuxx)dx
∣∣∣

≤ 1

2
|
∫
R

ΛruxΛ
r(u2x)dx|

≤ c ‖ u ‖2Hr+1‖ ux ‖L∞ . (4.24)

For the term K1, we have

|K1| ≤ c ‖ u ‖2Hr+1 (1+ ‖ u ‖L∞ + ‖ ux ‖L∞). (4.25)

From (4.20)-(4.25), we get that inequality (4.16) holds.

Now we estimate ut. Employing (1− α2∂2x)
−1 and system (4.2), we have

ut = Λ−21 [
1

α
u2 − 2uux]−

1

α
u2 − 2uux. (4.26)

Applying (Λrut)Λ
r on Eq.(4.26) and noticing the equivalence of two operators
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(1− α2∂2x) and (1− ∂2x), for r ∈ [0, s− 1], we obtain

∫
R
(Λrut)

2dx

≤ c

(∣∣∣ ∫
R
(Λrut)Λ

r−2(
1

α
u2 − 2uux)dx

∣∣∣+
∣∣∣ 1
α

∫
R
(Λrut)(Λ

ru2)dx
∣∣∣

+
∣∣∣ ∫

R
(Λrut)(Λ

r(uux)dx
∣∣∣)

≤ c ‖ ut ‖Hr(R)
(
‖ u ‖H1(R) + ‖ u ‖Hr(R) + ‖ u ‖Hr+1(R)

)
‖ u ‖L∞(R) .

(4.27)

The proof is completed. �

Lemma 4.13. [7, 59]. If uε,0 = ψε ? u0, 0 < ε < 1
4
, u0 ∈ Hs(R) and s > 0, then

‖ uε,0
∂x
‖L∞≤ c0 ‖ u0x ‖L∞ ,

‖ uε,0 ‖Hr≤ c0, if q ≤ s,

‖ uε,0 ‖Hr≤ c0ε
s−q
4 , if q > s,

‖ uε,0 − u0 ‖Hr≤ c0ε
s−q
4 , if q ≤ s,

‖ uε,0 − u0 ‖Hs= o(1),

where ψε is defined in section 3.3 and the positive constant c0 does not depend on

ε.

Proof of Theorem 4.2. Using inequalities (4.15), (4.16) and taking q = s− 1,

we have

∫ ∞
−∞

(Λsu)2dx ≤
∫ ∞
−∞

[(Λsu0)
2]dx

+c

∫ t

0

‖ u ‖2Hs

(
1+ ‖ u ‖L∞ + ‖ ux ‖L∞

)
dτ, (4.28)
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which results in

‖ u ‖Hs(R)≤‖ u0 ‖Hs(R) e
c
∫ t
0

(
1+‖u‖L∞+‖ux‖L∞

)
dτ . (4.29)

On the other hand, for s > 3
2
, we have

‖ ux ‖L∞(R)≤ c ‖ u ‖Hs(R) . (4.30)

Employing (4.30) and Lemma 4.12, we immediately finish the proof. �

Proof of Theorem 4.3. For simplicity, we use notation u = uε. Differentiating

the first equation of (4.4) about variable x gives rise to

utx + 2u2x + 2uuxx = Λ−21 [
1

α
(u2 − 2uux)

]
x
− 1

α
(u2)x. (4.31)

Assuming that p is an integer, we have

∫
R
u(ux)

2p+1uxxdx = −
∫
R
(ux)

2p+3dx− (2p+ 1)

∫
R
u(ux)

2p+1uxxdx, (4.32)

which results in

∫
R
u(ux)

2p+1uxxdx = − 1

2p+ 2

∫
R
(ux)

2p+3dx. (4.33)

We use (ux)
2p+1 to multiply (4.31) and integrate the obtained equation about

variable x to get the identity

1

2p+ 2

d

dt

(∫
R
(ux)

2p+2dx
)

+ 2

∫
R
(ux)

2p+3dx+ 2

∫
R
u(ux)

2p+1uxxdx

=

∫
R

(
Λ−21 [

1

α
(u2 − 2uux)

]
x
− 1

α
(u2)x

)
(ux)

2p+1dx.

(4.34)
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Using (4.33) and (4.34) yields

1

2p+ 2

d

dt

∫
R
(ux)

2p+2dx+
2p+ 1

p+ 1

∫
R
(ux)

2p+3dx+ 2

∫
R
u(ux)

2p+1uxxdx

=

∫
R

(
Λ−21 [

1

α
(u2 − 2uux)

]
x
− 1

α
(u2)x

)
(ux)

2p+1dx.

(4.35)

Since 1
2p+2

+ 2p+1
2p+2

= 1, using Hölder’s inequality and (4.35) gives rise to

1

2p+ 2

d

dt

∫
R
(ux)

2p+2dx

≤
{

(

∫
R
|J1|2p+2dx)

1
2p+2 (

∫
R
|ux|2p+2dx)

2p+1
2p+2

+
2p+ 1

p+ 1
‖ ux ‖L∞

∫
R
(ux)

2p+2dx
}
, (4.36)

where

J1 = Λ−21 [
1

α
(u2 − 2uux)

]
x
− 1

α
(u2)x.

From (4.36), we have

d

dt

(∫
R
(ux)

2p+2dx
) 1

2p+2 ≤
(∫

R
|J1|2p+2dx

) 1
2p+2

+
2p+ 1

p+ 1

(
‖ ux ‖L∞

)(∫
R
(ux)

2p+2dx
) 1

2p+2
. (4.37)

In fact, ‖ G ‖Lp tends to ‖ G ‖L∞ if p → ∞ for any function G ∈ L∞ ∩ L2.

Using (4.37) and letting p→∞, we obtain

‖ ux ‖L∞≤‖ u0x ‖L∞ +

∫ t

0

(‖ J1 ‖L∞(R) + ‖ ux ‖2L∞)dτ.

(4.38)

Making use of the multiplying property of the space Hs(R), s > 1
2
, (4.16) and
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the Sobolev imbedding theorem, for sufficiently small δ > 0, we have

‖ J1 ‖L∞≤ c ‖ J ‖
H

1
2+δ

=‖ Λ−21 [
1

α
(u2 − 2uux)

]
x
− 1

α
(u2)x ‖H 1

2+δ

≤ c(‖ ux ‖L∞‖ u ‖H1(R) + ‖ u ‖2H1(R))

≤ c(1+ ‖ ux ‖L∞) exp
[
c

∫ t

0

‖ ux ‖L∞ dτ
]
, (4.39)

where constant c > 0 is independent of ε.

It follows from (4.38), (4.39) and Lemma 4.12 that

‖ ux ‖L∞≤‖ u0x ‖L∞

+c

∫ t

0

[
exp

[
c

∫ τ

0

‖ ux ‖ dξ
](

1+ ‖ ux ‖L∞
)

+ 1+ ‖ ux ‖2L∞
]
dτ. (4.40)

Making use of the contraction mapping principle, we conclude that there is

a T > 0 to ensure that the following equation has a unique continuous solution

f ∈ C[0, T ]

‖ f ‖L∞=‖ u0x ‖L∞

+c

∫ t

0

[
1+ ‖ f ‖2L∞ +(1+ ‖ f ‖L∞) exp

(
c

∫ τ

0

‖ f ‖L∞ dξ
)]
dτ. (4.41)

The conclusion at page 51 in [66] guarantees that we can find a constant T > 0,

which does not depend on ε, such that

‖ ux ‖L∞≤ f(t), if t ∈ [0, T ].

As the function f(t) is bounded, we immediately obtain the desired result. �

Proof of Theorem 4.4.

Letting r1 ∈ (0, s − 1], r ∈ (0, s], t ∈ [0, T ), using Lemmas 4.12, 4.13 and
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Theorem 4.3, and using the notation uε = u, we have the inequalities

‖ uε ‖Hr≤ c (4.42)

and

‖ uεt ‖Hr1≤‖ uε ‖L∞ (‖ uε ‖H1 + ‖ uε ‖Hr1 + ‖ uε ‖Hr1+1) ≤ c. (4.43)

Applying Aubin’s compactness theorem, (4.42) and (4.43), we can find a sub-

sequence of {uε}, denoted by {uεj}, εj → ∞ if j → ∞, to ensure that {uεj}

converges weakly to u(t, x) in L2([0, T ], Hs(R)) and {uεjt} converges weakly to

ut(t, x) in L2([0, T ], Hs−1(R)).

Furthermore, for an arbitrary constant C1 > 0, we know that {uεj} converges

strongly to u(t, x) in L2([0, T ], Hr(−C1, C1)) and {uεjt} converges strongly to

ut(t, x) in L2([0, T ], Hr1(−C1, C1)).

For every g(t, x) ∈ C∞0 ([0, T ] × R), using (4.2) and integration by parts, we

get

∫ T

0

∫
R
utgdxdt+

∫ T

0

∫
R
(utgxx)dxdt

=

∫ T

0

∫
R

(
− 4uux + 2αu2x + 2αuuxx + 6α2uxuxx + 2α2uuxxx

)
gdxdt

=

∫ T

0

∫
R

(
2u2gx + αu2gxx − α2u2gxxx

)
dxdt.

(4.44)

The proof is completed. �



CHAPTER 5

Local weak and strong solutions to a

nonlinear Camassa-Holm type equation

with cubic nonlinearities

In this chapter, we study a Camassa-Holm type model with quasi-local higher

symmetries and cubic nonlinearity. Approximation techniques are employed to

establish the well-posedness of local strong solutions for the equation in Hs(R)

associated with index s > 3
2
. For initial value u0(x) ∈ Hs0(R) (1 ≤ s0 ≤ 3

2
), we

prove that the equation has local weak solutions.

5.1 General

Novikov [87] derived many models which are called the generalizations of the

Camassa-Holm type models. One of the generalized models with cubic nonlin-

earities takes the form

ut − α2utxx = (1 + α
∂

∂x
)(αu2uxx + αuu2x − 2u2ux), (5.1)

where α 6= 0 (see Theorem 5 in [87]).

Eq.(5.1) is related to the Camassa-Holm type equations. Intensive research

61
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has been made to investigate the classical Camassa-Holm model and its general-

izations as reviewed in section 2.2.

Motivated by the work in Li and Olver [66] in which the uniqueness and

existence of local strong solutions and the existence of local weak solutions for

an integral non-linear dispersive wave equation are considered, the purpose of

this chapter is to investigate Eq.(5.1). Imposing some assumptions on the initial

data and the coefficient α in Eq.(5.1), several dynamical properties such as the

existence of local weak solutions, the uniqueness and existence of local strong

solutions have been found.

In section 5.2, we prove that Eq.(5.1) has local weak solutions if we impose

certain restrictions on the initial value. In section 5.3, local strong solution to

Eq.(5.1) is considered.

For conciseness in this chapter, we let c represent an arbitrary positive con-

stant independent of the parameter ε unless we clearly state.

5.2 Local weak solutions

By calculation, we get the Cauchy problem for Eq.(5.1) as follows


ut − α2utxx = (1 + α ∂

∂x
)(αu2uxx + αuu2x − 2u2ux)

= −2
3
(u3)x − α

3
(u3)xx − αuu2x + α2

3
(u3)xxx − α2(uu2x)x,

u(0, x) = u0(x).

(5.2)

We summarize the result about the local weak solutions for problem (5.2)

below.

Theorem 5.1. Let 1 ≤ s ≤ 3
2
, |α| >

√
2
2

, u0(x) ∈ Hs(R) and ‖ u0x ‖L∞< ∞.

There is a T > 0 guaranteeing that system (5.2) admits at least one weak solution

u(t, x) ∈ L2([0, T ], Hs(R)). Moreover, ux ∈ L∞([0, T ]× R).
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To prove Theorem 5.1, the following approximation problem needs to be han-

dled 
ut − α2utxx + εutxxxx

= −2
3
(u3)x − α

3
(u3)xx − αuu2x + α2

3
(u3)xxx − α2(uu2x)x,

u(0, x) = u0(x),

(5.3)

where | α |>
√
2
2

and 0 < ε < min(1
4
, α2− 1

2
). It is clear that the solution of system

(5.3) depends on the parameter ε. For conciseness, we write u(t, x) = uε(t, x).

Before proving Theorem 5.1, several Lemmas are required.

Lemma 5.2. Assume s > 3
2

and u0(x) ∈ Hs(R). Then problem (5.3) has a

unique solution u(t, x) = uε(t, x) ∈ C([0, T ];Hs(R)) where T > 0 depends on

‖ u0 ‖Hs(R).

Proof. Defining the inverse operator X = (1 − α2∂2x + ε∂4x)
−1, we get that the

operator X : Hs → Hs+4 is linear and bounded. Let

Pu(t, x) = −2

3
(u3)x −

α

3
(u3)xx − αuu2x +

α2

3
(u3)xxx − α2(uu2x)x.

(5.4)

We utilize the operator X to multiply the first equation of system (5.3). Sub-

sequently, integrating the obtained equation about variable t gives rise to

u(t, x) = u0(x) +

∫ t

0

XPu(τ, x)dτ, t ∈ [0, T ). (5.5)

We discuss the operator

Au(t, x) = u0(x) +

∫ t

0

XPu(τ, x)dτ.
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We let u and v be the elements in the closed ball KM0(0) where M0 is the

radius of the ball and KM0(0) ⊂ C([0, T ];Hs(R)). Employing the multiplying

property of the space Hδ(R) (δ > 1
2
), we obtain the estimate

‖
∫ t

0

XPu(t, x)dt−
∫ t

0

XPv(t, x)dt ‖Hs

≤ cT
[

sup
0≤t≤T

‖ (u3)x − (v3)x ‖Hs−4 + sup
0≤t≤T

‖ (u3)xx − (v3)xx ‖Hs−4

+ sup
0≤t≤T

‖ uu2x − vv2x ‖Hs−4 + sup
0≤t≤T

‖ (u3)xxx − (v3)xxx ‖Hs−4

+ sup
0≤t≤T

‖ (uu2x)x − (vv2x)x ‖Hs−4

]
≤ C0T

[
sup

0≤t≤T
‖ u3 − v3 ‖Hs + sup

0≤t≤T
‖ u3 − v3 ‖Hs−2

+ sup
0≤t≤T

‖ uu2x − vv2x ‖Hs−4 + sup
0≤t≤T

‖ u3 − v3 ‖Hs−1

+ sup
0≤t≤T

‖ uu2x − vv2x ‖Hs−3

]
, (5.6)

where the constant C0 > 0 may depend on the parameter ε.

Since

‖ uu2x − vv2x ‖Hs−4≤ c ‖ uu2x − vv2x ‖Hs−3

≤ c ‖ uu2x − vu2x + vu2x − vv2x ‖Hs−3

≤ cM2
0 ‖ u− v ‖Hs , (5.7)

from (5.6) and (5.7), we get

‖ Au− Av ‖Hs≤ C2M
2
0T ‖ u− v ‖Hs . (5.8)

Letting T be small enough to satisfy C2M
2
0T < 1, we conclude that the

operator A is contractive. Making use of (5.8) yields

‖ Au ‖Hs≤‖ u0 ‖Hs +C2M
2
0T ‖ u ‖Hs . (5.9)
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We choose T > 0 enough small to ensure that C2M
3
0T+ ‖ u0 ‖Hs< M0.

Then we recognize that the operator A maps KM0(0) to itself. The contractive

mapping principle guarantees that the operator A has a unique fixed point u(t, x)

in KM0(0). Thus, we obtain the desired result and finish the proof. �

For the index s > 4, we have

∫
R
u(u3)xdx = 0,

∫
R
u2uxuxxdx = −

∫
R
uu3xdx (5.10)

and

∫
R
u∂3x(u

3)dx = 3

∫
R
u2uxuxxdx,

∫
R
u(uu2x)xdx = −

∫
R
uu3xdx. (5.11)

Using the first equation of problem (5.3), we derive that

1

2

d

dt

∫
R
(u2 + α2u2x + εu2xx)dx = 0, (5.12)

which results in the following conservation law

∫
R
(u2 + α2u2x + εu2xx)dx

=

∫
R
(u20 + α2u20x + εu20xx)dx.

(5.13)

Lemma 5.3. If s ≥ 4, u0(x) ∈ Hs(R) and u(t, x) satisfies (5.3), then

‖ u ‖H1≤
∫
R
(u20 + u20x + εu20xx)dx. (5.14)
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If 0 < r ≤ s− 1, there exists a constant c > 0 such that

∫ ∞
−∞

(Λr+1u)2dx ≤
∫ ∞
−∞

[(Λr+1u0)
2 + ε(Λru0xx)

2]dx

+c

∫ t

0

(‖ u ‖2Hr + ‖ u ‖2Hr+1)
(
‖ u ‖L∞‖ ux ‖L∞ + ‖ ux ‖2L∞

)
dτ. (5.15)

If |α| >
√
2
2

and 0 ≤ r ≤ s− 1, there exists a constant c > 0 such that

(2α2 − 1− 2ε) ‖ ut ‖Hr≤ c ‖ u ‖H1‖ u ‖Hr+1‖ u ‖L∞ . (5.16)

Proof. Applying (5.13), we can easily derive (5.14)∗.

For the case r ∈ (0, s− 1], we apply (Λru)Λr to multiply the first equation of

(5.3) and subsequently use integration by parts to the obtained equation. Then,

we acquire

1

2

d

dt

∫
R

[
(Λru)2 + α2(Λrux)

2 + ε(Λruxx)
2
]
dx

= −2

3

∫
R

ΛruΛr(u3)xdx−
α

3

∫
R

ΛruΛr(u2)xxdx− α
∫
R

ΛruΛr(uu2x)dx

+
α2

3

∫
R

ΛruΛr∂3x(u
3)dx− α2

∫
R

ΛruΛr(uu2x)xdx

= I1 + I2 + I3 + I4 + I5. (5.17)

Recalling the operator ∂2x = −Λ2 + 1 and combining the Parseval equality, it

holds that

∫
R

ΛruΛr∂3x(u
3)dx = −3

∫
R
(Λr+1u)Λr+1(u2ux)dx+ 3

∫
R
(Λru)Λr(u2ux)dx

∗Lemmas 4.10 and 4.11 are still used in this chapter.
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and

∫
R

ΛruΛr∂2x(u
3)dx = −

∫
R
(Λr+1u)Λr+1(u3)dx+

∫
R
(Λru)Λr(u3)dx.

Using Lemmas 4.11, we get

∫
R

(Λru)Λr(u2ux)dx

=

∫
R
(Λru)[Λr(u2ux)− u2Λrux]dx+

∫
R
(Λru)u2Λruxdx.

Employing Lemma 4.10 and the Cauchy-Schwartz inequality yields

∣∣∣ ∫
R

(Λru)Λr(u2ux)dx
∣∣∣

≤ c ‖ u ‖Hr

(
‖ u ‖Hr−1‖ u ‖L∞‖ ux ‖L∞ + ‖ u ‖Hr‖ u ‖L∞‖ ux ‖L∞

)
+ ‖ ux ‖L∞‖ u ‖L∞‖ Λru ‖2L2

≤ c ‖ u ‖2Hr‖ ux ‖L∞‖ u ‖L∞ . (5.18)

Similar to the proof of (5.18), we derive that

|
∫
R

(Λr+1u)Λr+1(u2ux)dx| ≤ c ‖ u ‖L∞‖ ux ‖L∞‖ u ‖2Hr+1 . (5.19)

From (5.18) and (5.19), we have

|I4| ≤ c(‖ u ‖2Hr + ‖ u ‖2Hr+1) ‖ u ‖L∞‖ ux ‖L∞ . (5.20)

For I5, making use of Lemma 4.10 and the Cauchy-Schwartz inequality derives
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that

|I5| ≤
∣∣∣ ∫

R

(Λrux)Λ
r(uu2x)dx

∣∣∣
≤‖ Λrux ‖L2‖ Λr(uu2x) ‖L2

≤ c ‖ u ‖Hr+1

(
‖ ux ‖Hr‖ uux ‖L∞ + ‖ ux ‖L∞‖ uux ‖Hr

)
≤ c ‖ u ‖2Hr+1

(
‖ u ‖L∞‖ ux ‖L∞ + ‖ ux ‖2L∞

)
. (5.21)

Similarly, for terms I1, I2 and I3, we have

|I1|+ |I2|+ |I3| ≤ c(‖ u ‖2Hr + ‖ u ‖2Hr+1) ‖ u ‖L∞‖ ux ‖L∞ . (5.22)

Applying (5.20)-(5.22), we derive the inequality

1

2

d

dt

∫ ∞
−∞

[
(Λru)2 + α2(Λrux)

2 + ε(Λruxx)
2
]
dx

≤ c(‖ u ‖2Hr + ‖ u ‖2Hr+1)
(
‖ u ‖L∞‖ ux ‖L∞ + ‖ ux ‖2L∞

)
, (5.23)

where c > 0 depends on α. We complete the proof of (5.15).

Noticing ∂2x = 1−Λ2 and applying Λ−2 to multiply the first equation of system

(5.3), we have

(α2 − ε)ut − εutxx = Λ−2

[
− (1− α2 + ε)ut −

2

3
(u3)x −

α

3
(u3)xx

−αuu2x +
α2

3
(u3)xxx − α2(uu2x)x

]
. (5.24)
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Applying (Λrut)Λ
r on both sides of (5.24) gives rise to

(α2 − ε)
∫
R
(Λrut)

2dx+ ε

∫
R
(Λruxt)

2dx

=

∫
R
(Λrut)Λ

r(1− ∂2x)−1
[
− (1− α2 + ε)ut −

2

3
(u3)x −

α

3
(u3)xx

−αuu2x +
α2

3
(u3)xxx − α2(uu2x)x

]
dx. (5.25)

Now we estimate the term

∫
R
(Λrut)Λ

r−2

[
− (1− α2 + ε)ut −

2

3
(u3)x −

α

3
(u3)xx

−αuu2x +
α2

3
(u3)xxx − α2(uu2x)x

]
dx. (5.26)

In fact, it holds that

|
∫
R
(Λrut)Λ

r−2
[
− (1− α2 + ε)ut −

2

3
(u3)x −

α

3
(u3)xx − αuu2x

]
dx|

≤ |1− α2 + ε| ‖ ut ‖2Hr +c ‖ ut ‖Hr‖ u ‖Hr‖ u ‖2L∞ (5.27)

and

|
∫
R
(Λrut)(1− ∂2x)−1Λr(uu2x)xdx|

≤ c ‖ ut ‖Hr

(∫
R
(1 + ς2)r−1

[ ∫
R

[
ûux(ς − η)ûx(η)

]
dη
]2
dς

) 1
2

≤ c ‖ ut ‖Hr‖ u ‖Hr+1‖ u ‖L∞‖ u ‖H1 . (5.28)

We know the identity

∫
(Λrut)(1− ∂2x)−1Λr∂2x(u

3)xdx = −3

∫
(Λrut)Λ

r(u2ux)dx

+3

∫
(Λrut)(1− ∂2x)−1Λr(u2ux)dx. (5.29)
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From Lemmas 4.10, 4.11, ‖ u ‖L∞≤‖ u ‖H1 and

‖ u2ux ‖Hr≤ c ‖ (u3)x ‖Hr≤ c ‖ u ‖2L∞‖ u ‖Hr+1 ,

we have

|
∫

(Λrut)Λ
r(u2ux)dx|

≤ c ‖ ut ‖Hr‖ u2ux ‖Hr

≤ c ‖ ut ‖Hr‖ u ‖L∞‖ u ‖H1‖ u ‖Hr+1 . (5.30)

Furthermore, we get

|
∫

(Λrut)(1− ∂2x)−1Λr(u2ux)dx| ≤ c ‖ ut ‖Hr‖ u ‖L∞‖ u ‖H1‖ u ‖Hr+1 .

(5.31)

Noticing |α| >
√
2
2

and choosing ε > 0 sufficiently small, from (5.25)-(5.31),

we get that (5.16) holds. The proof is completed. �

Assume that φ̂1 is the Fourier transform of φ1 satisfying φ̂1 ∈ C∞0 (R), φ̂1(η) ≥

0, and φ̂1(η) = 1 for any arbitrary η ∈ (−1, 1). For s > 0, assume that u0(x) ∈

Hs(R) and uε,0 = u0 ? φε is the convolution u0 and φε(x) = ε−
1
4φ1(ε

− 1
4x). Then

uε,0(x) ∈ C∞. Applying Lemma 5.2, for the small parameter ε with 0 < ε <

min(1
4
, α2 − 1

2
), |α| >

√
2
2

, we get that the following Cauchy problem


ut − α2utxx + εutxxxx

= −2
3
(u3)x − α

3
(u3)xx − αuu2x + α2

3
(u3)xxx − α2[uu2x]x,

u(0, x) = uε,0(x)

(5.32)

possesses a unique solution uε(t, x) belonging to C∞([0,∞);Hβ(R)) in which

β ∈ [1,∞).
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Remark 5.4. If s ≥ 1, we have

‖ uε ‖L∞≤ c ‖ uε ‖H 1
2+≤ c ‖ uε ‖H1 ,

where H
1
2
+ = H

1
2
+δ, δ is sufficiently small, and

‖ uε ‖2H1≤ c

∫
R
(u2ε + u2εx)dx.

Using Lemma 4.13, we get

‖ uε ‖2L∞≤ c ‖ uε ‖2H1≤ c

∫
R

(
u2ε,0 + (

∂uε,0
∂x

)2 + ε(
∂2uε,0
∂x2

)2
)
dx

≤ c(‖ uε,0 ‖2H1 +ε ‖ uε,0 ‖2H2)

≤ c(c+ cε× ε
s−2
2 )

≤ c. (5.33)

Lemma 5.5. Assume s ∈ [1, 3
2
], u0(x) ∈ Hs(R), ‖ u0x ‖L∞<∞ and |α| >

√
2
2

. If

uε is the solution of problem (5.32), then

‖ uεx ‖L∞≤ c, t ∈ [0, T ],

where both c > 0 and T > 0 are independent of ε.

Proof. For simplicity, we use notation u = uε(t, x) and differentiate Eq.(5.24)
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about x. Then

(α2 − ε)utx − εutxxx =
α

3
(u3)x −

α2

3
(u3)xx + α2(uu2x) +

2− α2

3
u3

+Λ−2
[
− (1− α2 + ε)utx −

2− α2

3
u3 − α

3
(u3)x − α(uu2x)x − α2uu2x

]
.

(5.34)

Set

G = Λ−2
[
− (1− α2 + ε)utx −

2− α2

3
u3 − α

3
(u3)x − α(uu2x)x − α2uu2x

]
. (5.35)

Letting p be an integer, using the identity

∫
R
u2u2p+1

x uxxdx = − 1

p+ 1

∫
R
uu2p+3

x dx (5.36)

and multiplying (5.34) by (ux)
2p+1, we have

α2 − ε
2p+ 2

d

dt

∫
R
(ux)

2p+2dx− ε
∫
R
(ux)

2p+1uxxxtdx+ α2 p

p+ 1

∫
R
u(ux)

2p+3dx

=

∫
R
(ux)

2p+1
[2− α2

3
u3 +

α

3
(u3)x

]
dx+

∫
R
(ux)

2p+1 ×Gdx.

(5.37)

Making use of Hölder’s inequality produces the inequality

(α2 − ε
2p+ 2

) d
dt

∫ ∞
−∞

(ux)
2p+2dx

≤
{
ε
( ∫

R
|utxxx|2p+2dx

) 1
2p+2 +

∫
R
|2− α

2

3
u3 +

α

3
(u3)x|dx

+
( ∫

R
|G|2p+2dx

) 1
2p+2

}(∫
R
|ux|2p+2dx

)
+

p

p+ 1
α2 ‖ u ‖L∞‖ ux ‖L∞

∫
R
|ux|2p+1dx, (5.38)
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which is equivalent to

(
α2 − ε

) d
dt

( ∫ ∞
−∞

(ux)
2p+2dx

) 1
2p+2

≤ ε
( ∫

R
|utxxx|2p+2dx

) 1
2p+2 +

(∫
R
|2− α

2

3
u3 +

α

3
(u3)x|2p+2dx

) 1
2p+2

+
( ∫

R
|G|2p+2dx

) 1
2p+2 +

p

p+ 1
α2 ‖ u ‖L∞‖ ux ‖L∞

(∫
R
|ux|2p+1dx

) 1
2p+2

.

(5.39)

We know ‖ h ‖Lp→‖ h ‖L∞ (p→∞) if h ∈ L∞∩L2. From (5.39) and sending

p→∞, we derive that

(α2 − ε) ‖ ux ‖L∞≤ (α2 − ε) ‖ u0x ‖L∞

+c

∫ t

0

[
ε ‖ utxxx ‖L∞ + ‖ u ‖2L∞‖ ux ‖L∞

+ ‖ u ‖3L∞ + ‖ G ‖L∞ + ‖ u ‖L∞‖ ux ‖2L∞
]
dτ.

(5.40)

For sufficiently small ρ > 0, we have

‖ G ‖L∞≤ c ‖ G ‖
H

1
2+ρ

=‖ Λ−2
[
− (1− α2 + ε)utx −

2− α2

3
u3 − α

3
(u3)x

−α(uu2x)x − α2uu2x

]
‖
H

1
2+ρ

≤ c(‖ ut ‖L2(R) + ‖ u ‖3H1(R) + ‖ u ‖2H1(R)‖ ux ‖L∞).

(5.41)

Using (5.16), (5.33) and (5.41), we derive that

∫ t

0

‖ G ‖L∞ dτ ≤ c
[
1 +

∫ t

0

(
1+ ‖ ux ‖L∞

)
dτ
]
. (5.42)
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Besides, for any fixed r1 ∈ (1
2
, 1), using the Sobolev embedding lemma, we have

‖ utxxx ‖L∞≤ Cr1 ‖ utxxx ‖Hr1≤ Cr1 ‖ ut ‖Hr1+3 , (5.43)

where Cr1 only depends on r1. From (5.15), (5.33) and (5.43), we get

‖ utxxx ‖L∞≤ c ‖ u ‖Hr1+4

(
1+ ‖ ux ‖L∞ + ‖ ux ‖2L∞

)
. (5.44)

Letting r = r1 + 3, u = uε and utilizing the Gronwall’s inequality to (5.15), from

(5.33), we derive that

‖ u ‖2Hr1+4≤
(∫

R
(Λr1+4u0)

2 + ε(Λr1+3u0xx)
2
)

×e[c
∫ t
0 (1+‖ux‖L∞+‖ux‖2L∞ )dτ ]. (5.45)

From Lemma 5.3 and (5.45), we obtain

‖ utxxx ‖L∞≤ cε
s−r1−4

4 (1+ ‖ ux ‖L∞)

×e[c
∫ t
0 (1+‖ux‖L∞+‖ux‖2L∞ )dτ ]. (5.46)

For sufficiently small ε > 0, from (5.40),(5.42) and (5.46), we get

‖ ux ‖L∞≤‖ u0x ‖L∞

+c

∫ t

0

[
ε
s−r1

4 (1+ ‖ ux ‖L∞)e[c
∫ τ
0 (1+‖ux‖2L∞ )d%]

+1+ ‖ ux ‖2L∞
]
dτ. (5.47)

Making use of the contractive mapping principle, we get that there must exist
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T > 0 to guarantee that the following equation

‖ K ‖L∞=‖ u0x ‖L∞

+c

∫ t

0

[
ε
s−r1

4 (1+ ‖ K ‖L∞)e[c
∫ τ
0 (1+‖K‖2L∞ )d%]

+1+ ‖ K ‖2L∞
]
dτ

admits a unique solution K(t) ∈ C[0, T ]. We cite the results from [66] and derive

that there must have two constants c > 0 and T > 0, which do not depend on ε

and ‖ ux(t, x) ‖L∞≤ K(t) ≤ c for every t ∈ [0, T ]. The proof is completed. �

Proof of Theorem 5.1.

Assume that uε is the solution of problem (5.32). Making use of Lemmas 5.3

and 5.5, (5.15), (5.16), Gronwall’s inequality and the notation uε = u, we have

the conclusions

‖ uε ‖Hr≤‖ uε ‖Hr+1≤ cec
∫ t
0 (1+‖ux‖L∞+‖ux‖2L∞ )dτ ≤ c (5.48)

and

‖ uεt ‖Hr1≤ c ‖ u ‖H1‖ u ‖Hr1+1‖ ux ‖L∞≤ c, (5.49)

where t ∈ [0, T ) and r1 ∈ (0, s− 1], r ∈ (0, s].

Applying Aubin’s compactness theorem, (5.48) and (5.49), we derive that

there exists a subsequence of {uε}, represented by {uεj}, εj → 0 when j →∞,

to ensure that {uεj} converges weakly to u(t, x) in L2([0, T ], Hs(R)) and its time

derivative {uεjt} converges weakly to a function ut(t, x) in L2([0, T ], Hs−1(R)).

In addition, for every constant C1 > 0, we know that {uεj} converges strongly

to u(t, x) in L2([0, T ], Hr(−C1, C1)) and {uεjt} converges strongly to ut(t, x) in
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L2([0, T ], Hr1(−C1, C1)).

Using the conclusion in Lemma 5.5, we obtain that {uεjx}(εj → 0) is bounded

in L∞(R). For any r1 ∈ [0, s − 1), it is derived that the sequences {uεjx} and

{u2εjx} converge weakly to ux and u2x in L2[0, T ], Hr1(−C1, C1), respectively. Using

integration by parts, from problem (5.3), we have

∫ T

0

∫
R
(utg)dxdt−

∫ T

0

∫
R
utgxx)dxdt =

∫ T

0

∫
R

[
− 2

3
u3gx −

α

3
u3gx

−αuu2xg −
α2

3
u3gxxx + α2uu2xgx

]
dxdt,

where g ∈ C∞0 and u(0, x) = u0(x). Since {uεjx} is a bounded sequence in

L∞([0, T ] × R) and the Banach space L1([0, T ] × R) is separable, we conclude

that there must exist a subsequence of {uεjx}, still represented by {uεjx}, weak-

ly star converges to a function U(t, x) in L∞([0, T ] × R). Using the fact that

{uεjx} converges weakly to ux in the space L2([0, T ] × R), we obtain ux = U(x)

almost everywhere. Furthermore, we acquire ux ∈ L∞([0, T ] × R). The proof is

completed. �

5.3 Local strong solutions

Here we use the ideas presented in [66] to handle the well-posedness for Eq.(5.1).

We give the conclusion.

Theorem 5.6. Let |α| >
√
2
2

, s > 3
2

and u0(x) ∈ Hs(R). Then there exists a

T > 0, which depends on ‖ u0 ‖Hs, to guarantee that (5.2) has a unique solution

u satisfying

u(t, x) ∈ C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−1(R)).
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Lemma 5.7 ( [66]). If functions v1 and v2 are in Hr+1 ∩ {‖ ∂v1(x)
∂x
‖L∞< ∞},

then

|
∫
R

Λrv1Λ
r(v1v2)xdx |≤



cq ‖ v1 ‖2Hr‖ v2 ‖Hr+1 , r ∈ (1
2
, 1],

cq

(
‖ v1 ‖Hr‖ v1 ‖L∞‖ v2 ‖Hr+1

+ ‖ ∂v2
∂x
‖L∞‖ v1 ‖2Hr

+ ‖ v1 ‖Hr‖ ∂v1
∂x
‖L∞‖ v2 ‖Hr

)
,

r ∈ (0,∞).

(5.50)

Lemma 5.8 ( [66]). Assume s > 3
2
, u0 ∈ Hs(R) and let the solution uε(t, x)

satisfy system (5.32). Then it holds that

‖ uε ‖Hs≤Mect, (5.51)

‖ uε ‖Hs+k1≤ ε−
k1
4 Mect, k1 > 0, (5.52)

‖ uεt ‖Hs+k1≤ ε−
(k1+1)

4 Mect, k1 > −1, (5.53)

in which the constants M > 0 and c > 0 do not depend on ε, t ∈ [0, T ), and ε is

small enough.

Lemma 5.9 ( [59]). If u, v ∈ Hs(R), s > 3
2
, w = u−v, r > 1

2
, then the inequality

∣∣ ∫
R

ΛswΛs(u3 − v3)xdx
∣∣ ≤ c(‖ w ‖Hs‖ w ‖Hr‖ v ‖Hs+1 + ‖ w ‖2Hs)

holds.

Lemma 5.10 ( [59]). If s > 3
2

and 1
2
< r < min{1, s − 1}, for functions f, w,
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the two inequalities

|
∫
R

ΛrwΛr−2(wf)xdx |≤ c ‖ w ‖2Hr‖ f ‖Hr , (5.54)

|
∫
R

ΛrwΛr−2(wxfx)xdx |≤ c ‖ w ‖2Hr‖ f ‖Hs (5.55)

hold.

Now, we shall demonstrate that the solution uε of problem (5.32) is a Cauchy

sequence. Assume that uε and uδ are two solutions of problem (5.32), correspond-

ing to the initial values uε,0 and uδ,0, respectively. Let w0(x) = uε,0(x)− uδ,0(x).

We assume 0 < ε < δ < min(1
4
, α2 − 1

2
), |α| >

√
2
2

and set w = uε − uδ. Using

(5.24) and ∂2x = 1− Λ2, we have



(α2 − ε)wt − εwtxx + (δ − ε)(uδt + uδtxx)

= α
3
(u3ε − u3δ)− α2

3
[(u3ε)x − (u3δ)x]

+Λ−2
[
− (1− α2 + ε)wt + (δ − ε)uδt − 2−α2

3
(u3ε − u3δ)x − α

3
(u3ε − v3δ )

−α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
,

w(0, x) = w0(x).

(5.56)

Lemma 5.11. Let |α| >
√
2
2

, s > 3
2

and u0(x) ∈ Hs(R). Let uε(t, x) be the

solution of problem (5.32). Then, there must exist a T > 0 to guarantee that

uε(t, x) is a Cauchy sequence in the space

C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−1(R)).
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Proof. Letting r satisfy 1
2
< r < min(1, s− 1), we apply ΛrwΛr to multiply the

first equation of problem (5.56). Subsequently, for the obtained equation, using

integration by parts about variable x, we get

1

2

d

dt

∫
R
[(α2 − ε)(Λrw)2 + ε(Λrwx)

2]dx

= (ε− δ)
∫
R
(Λrw)[(Λruδt) + (Λruδxxt)]dx− (1− α2 + ε)

∫
R

ΛrwΛr−2wtdx

+(δ − ε)
∫
R

ΛrwΛr−2uδtdx

−α
2

3

∫
R
(Λrw)Λr(u3ε − u3δ)xdx+

α

3

∫
R

ΛrwΛr(u3ε − u3δ)dx

+

∫
R
(Λrw)Λr−2

[
− 2− α2

3
(u3ε − u3δ)x

−α
3

(u3ε − v3δ )− α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
dx. (5.57)

Applying the Schwarz inequality to (5.57) yields

d

dt

∫
[(α2 − ε)(Λrw)2 + ε(Λrwx)

2]dx

≤ c
{
‖ Λrw ‖L2

[
(δ − ε)

(
‖ Λruδt ‖L2 + ‖ Λruδxxt ‖L2

)
+|1− α2 + ε| ‖ Λr−2wt ‖L2 +(δ − ε) ‖ Λr−2uδt ‖L2

]
+ |

∫
R

ΛrwΛr(u3ε − u3δ)xdx | + |
∫
R

ΛrwΛr(u3ε − u3δ)dx |

+ |
∫
R

ΛrwΛr−2
[
− 2− α2

3
(u3ε − u3δ)x

−α
3

(u3ε − v3δ )− α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
dx |

}
. (5.58)

Making use of the first inequality in Lemma 5.7 gives rise to

|
∫
R

ΛrwΛr(u3ε − u3δ)xdx|

= |
∫
R

ΛrwΛr(wg)xdx|

≤ c ‖ w ‖2Hr‖ g ‖Hr+1 (5.59)
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and

|
∫
R

ΛrwΛr(u3ε − u3δ)dx|

= |
∫
R

ΛrwΛr(wg)dx|

≤ c ‖ w ‖2Hr‖ g ‖Hr , (5.60)

where g =
3∑
i=0

u3−iε uiδ. Furthermore, we have

|
∫
R

ΛrwΛr−2(u3ε − u3δ)xdx|

= |
∫
R

ΛrwΛr−2(wg)xdx|

≤ c ‖ g ‖Hr‖ w ‖2Hr (5.61)

and

|
∫
R

ΛrwΛr−2(u3ε − u3δ)dx|

= |
∫
R

ΛrwΛr−2(wg)dx|

≤ c ‖ g ‖Hr‖ w ‖2Hr . (5.62)

We know the identity

(uεu
2
εx − uδu2δx)x = [wu2εx + uδwx(uεx + uδx)]x. (5.63)

Using Lemma 5.10 and the multiplying property of Hs0(R) with s0 >
1
2
, we
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get

|
∫
R

ΛrwΛr(1− α2∂2x)
−1[uδ(uεx + uδx)∂xw]xdx |

≤ c |
∫
R

ΛrwΛr−2[uδ(uεx + uδx)∂xw]xdx |

≤ c ‖ w ‖2Hr‖ uε ‖2Hs , (5.64)

|
∫
R

ΛrwΛr(1− α2∂2x)
−1[wu2εx]xdx |

≤ c |
∫
R

ΛrwΛr−2[wu2εx]xdx |

≤ c ‖ w ‖2Hr‖ uε ‖2Hs . (5.65)

Similarly, we have

|
∫
R

ΛrwΛr−2(uεu
2
εx − uδu2δx)dx |

≤ c |
∫
R

ΛrwΛr−2(uεu
2
εx − uδu2δx)dx |

≤ c ‖ w ‖2Hr‖ uε ‖2Hs . (5.66)

We derive the inequality

|
∫
R

ΛrwΛr−2(u3ε − u3δ)xdx|

= |
∫
R

ΛrwΛr−2(wg)xdx|

≤ c ‖ g ‖Hr‖ w ‖2Hr , (5.67)

where g =
3∑
i=0

u3−iε uiδ. Making use of the multiplying property of Hr (r > 1
2
),

r + 1 < s and Lemma 5.8, we get

‖ g ‖Hr+1≤ c, if t ∈ (0, T̃ ].
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From Lemma 5.8 and (5.58)-(5.67), we get that there must exist a constant c

depending on T̃ , t ∈ [0, T̃ ), to ensure that the inequality

d

dt

∫
R
[(α2 − ε)(Λrw)2 + ε(Λrwx)

2]dx ≤ c(δγ ‖ w ‖Hr + ‖ w ‖2Hr) (5.68)

holds. In (5.68), we let γ = 1+s−r
4

if s < 3 + r; γ = 1 if s ≥ 3 + r. From (5.68),

we obtain

‖ w ‖2Hr=

∫
R
(Λrw)2dx

≤ c0

∫
R
[(α2 − ε)(Λrw)2 + ε(Λrw)2]dx

≤ c0

∫
R
[(Λrw0)

2 + ε(Λrw0x)
2]dx+ c0

∫ t

0

(δγ ‖ w ‖Hr + ‖ w ‖2Hr)dτ,

(5.69)

where c0 depends on α.

Applying the Gronswall inequality and Lemma 5.8 results in

‖ u ‖Hr≤ cδ
s−r
4 ect + δγ(ect − 1) (5.70)

for every t ∈ [0, T̃ ).

We now utilize ΛswΛs to multiply the first equation of (5.56). For the obtained

equation, we have
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1

2

d

dt

∫
R
[(α2 − ε)(Λsw)2 + ε(Λswx)

2]dx

= (ε− δ)
∫
R
(Λsw)[(Λsuδt) + (Λsuδxxt)]dx− (1− α2 + ε)

∫
R

ΛswΛs−2wtdx

+(δ − ε)
∫
R

ΛswΛs−2uδtdx

−α
2

3

∫
R
(Λsw)Λs(u3ε − u3δ)xdx+

α

3

∫
R

ΛswΛs(u3ε − u3δ)dx

+

∫
R
(Λsw)Λs−2

[
− 2− α2

3
(u3ε − u3δ)x

−α
3

(u3ε − v3δ )− α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
dx. (5.71)

Using the Schwarz inequality for (5.71) yields

d

dt

∫
[(α2 − ε)(Λsw)2 + ε(Λswx)

2]dx

≤ c
{
‖ Λsw ‖L2

[
(δ − ε)

(
‖ Λsuδt ‖L2 + ‖ Λsuδxxt ‖L2

)
+|1− α2 + ε| ‖ Λs−2wt ‖L2 +(δ − ε) ‖ Λs−2uδt ‖L2

]
+ |

∫
R

ΛswΛs(u3ε − u3δ)xdx | + |
∫
R

ΛswΛs(u3ε − u3δ)dx |

+ |
∫
R

ΛswΛs−2
[
− 2− α2

3
(u3ε − u3δ)x

−α
3

(u3ε − v3δ )− α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
dx |

}
. (5.72)

Using Lemma 5.9 gives rise to

|
∫
R

ΛswΛs−2(u3ε − u3δ)xdx |≤ c3 ‖ g ‖Hs‖ w ‖2Hs , (5.73)

where g =
3∑
i=0

uiεu
3−i
δ .
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Applying Lemma 5.9 derives that

∣∣ ∫
R

ΛswΛs(u3ε − u3δ)xdx
∣∣

≤ c(‖ w ‖Hs‖ w ‖Hr‖ uδ ‖Hs+1 + ‖ w ‖2Hs). (5.74)

For s > 3
2
, the algebra property of Hs0(R) (s0 >

1
2
) and the Cauchy-Schwartz

inequality are used to derive that

|
∫
R

ΛswΛs(1− α2∂2x)
−1[uεu

2
εx − uδu2δx]xdx|

≤ c ‖ Λsw ‖L2‖ Λs−2[uεu
2
εx − uδu2δx]x ‖L2

≤ c ‖ w ‖Hs‖ ∂x(uε)∂xw ‖Hs−1

≤ c ‖ uε ‖Hs‖ w ‖2Hs , (5.75)

|
∫
R

ΛswΛs(1− α2∂2x)
−1[uεu

2
εx − uδu2δx]dx|

≤ c ‖ Λsw ‖L2‖ Λs−2[uεu
2
εx − uδu2δx] ‖L2

≤ c ‖ w ‖Hs‖ ∂x(uε)∂xw ‖Hs−1

≤ c ‖ uε ‖Hs‖ w ‖2Hs (5.76)

and

|
∫
R

ΛswΛs(1− α2∂2x)
−1
[
− 1

3
(u3ε − u3δ)x −

1

3α
(u3ε − u3δ)

]
dx |

≤ c ‖ uε ‖Hs‖ w ‖2Hs . (5.77)

Applying the bounded property of ‖ uε ‖Hs and ‖ uδ ‖Hs (see Lemma 5.8 and
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(5.33)), it follows from (5.70)-(5.77), Lemmas 5.3 and 5.5 that

d

dt

∫
R
[(α2 − ε)(Λsw)2 + ε(Λswx)

2]dx

≤ 2δ(‖ uδt ‖Hs + ‖ uδxxt ‖Hs + ‖ Λs−2wt ‖L2 + ‖ Λs−2uδt ‖) ‖ w ‖Hs

+c(‖ w ‖2Hs + ‖ w ‖Hr‖ w ‖Hs‖ uδ ‖Hs+1)

≤ c(δγ1 ‖ w ‖Hs + ‖ w ‖2Hs), (5.78)

where γ1 = min(1
4
, s−r−1

4
) > 0 and c does not depend on δ and ε.

Integrating (5.78) with respect to t, we get

‖ w ‖2Hs≤ c

∫
R
[(α2 − ε)(Λsw)2 + ε(Λswx)

2]dx

≤ c

∫
R
[(Λsw0)

2 + ε(Λsw0x)
2]dx+ c(δγ1 ‖ w ‖Hs + ‖ w ‖2Hs). (5.79)

Using the Gronwall inequality and (5.79) gives rise to

‖ w ‖Hs≤ (c

∫
R
[(Λsw0)

2 + ε(Λsw0x)
2]dx)

1
2 ect + cδγ1(ect − 1)

≤ c1(‖ w0 ‖Hs +δ
3
4 )ect + c1δ

γ1(ect − 1), (5.80)

where the constant c1 > 0 is independent of ε and δ. Therefore, from Lemma

4.13 and (5.80), we obtain

‖ w ‖Hs→ 0, as δ → 0, ε→ 0. (5.81)

Now, we deal with the convergence of {uεt}. Applying Λs−1wtΛ
s−1 on the first
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equation of (5.56) and integrating the obtained equation about x, we get

1

2

d

dt

∫
R
[(α2 − ε)(Λs−1w)2 + ε(Λs−1wx)

2]dx

= (ε− δ)
∫
R
(Λs−1w)[(Λsuδt) + (Λs−1uδxxt)]dx

−(1− α2 + ε)

∫
R

ΛswΛs−3wtdx+ (δ − ε)
∫
R

Λs−1wΛs−3uδtdx

−α
2

3

∫
R
(Λs−1w)Λs−1(u3ε − u3δ)xdx+

α

3

∫
R

Λs−1wΛs−1(u3ε − u3δ)dx

+

∫
R
(Λs−1w)Λs−3

[
− 2− α2

3
(u3ε − u3δ)x

−α
3

(u3ε − v3δ )− α(uεu
2
εx − uδu2δx)− α2(uεu

2
εx − uδu2δx)x

]
dx. (5.82)

Using Lemma 5.8 and the Schwartz inequality, by the similar proof of (5.80),

we get that there must exist a constant c > 0, depending on T̃ and α, to ensure

that the inequality

(α2 − ε) ‖ wt ‖2Hs−1≤ c(δ
1
2 + ‖ w ‖Hs + ‖ w ‖s−1) ‖ wt ‖Hs−1

+|1− α2 + ε| ‖ wt ‖2Hs−1 (5.83)

holds.

Therefore, we have

‖ wt ‖2Hs−1≤ c ‖ wt ‖2Hs−1

≤ c(δ
1
2 + ‖ w ‖Hs + ‖ w ‖Hs−1) ‖ wt ‖Hs−1 ,

from which we obtain

‖ wt ‖Hs−1≤ c(δ
1
2 + ‖ w ‖Hs + ‖ w ‖Hs−1). (5.84)

From (5.81) and (5.84), we get that wt → 0 as both ε → 0 and δ → 0 in
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Hs−1(R). We conclude that uε is a Cauchy sequence in the space

C([0, T );Hs(R)) ∩ C([0, T );Hs−1(R)).

The proof of Lemma 5.11 is finished. �

Proof of Theorem 5.6. Now we consider the system



(α2 − ε)ut − εutxx = Λ−2

[
− (1− α2 + ε)ut − 2

3
(u3)x − α

3
(u3)xx

−αuu2x + α2

3
(u3)xxx − α2(uu2x)x

]
u(0, x) = uε,0(x).

(5.85)

Suppose that the sequence uε has the limit u(t, x). Letting ε → 0 in problem

(5.85) and using Lemma 5.11, we get that u(t, x) satisfies



α2ut = Λ−2

[
− (1− α2)ut − 2

3
(u3)x − α

3
(u3)xx

−αuu2x + α2

3
(u3)xxx − α2(uu2x)x

]
,

u(0, x) = uε,0(x),

(5.86)

which means that we have proven the existence of local strong solutions.

Suppose that v(t, x) and u(t, x), belonging to C([0, T );Hs(R)), are two solu-

tions of (5.86) which have the same initial value u0(0, x). Setting w = u− v, we

get that


wt = 1

α2 Λ−2
[
− 1

3
(u3 − v3)x − 1

3α
(u3 − v3)

−α(uu2x − vv2x)− α(uu2x − vv2x)x
]
− 1

3
∂x(u

3 − v3) + 1
3α

(u3 − v3),

w(x, 0) = 0.

(5.87)

For the case 1
2
< r < min{1, s− 1}, we apply ΛrwΛr on the first equation of
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(5.87), and then integrate the obtained equation about x to get

1

2

d

dt
‖ w ‖2Hr=

1

α2

∫
R
(Λrw)Λr(1− ∂2x)−1

[
− 1

3
(u3 − v3)x −

1

3α
(u3 − v3)

−α(uu2x − vv2x)− α(uu2x − vv2x)x
]
dx

+

∫
R

Λrw)Λr
[
− 1

3
∂x(u

3 − v3) +
1

3α
(u3 − v3)

]
dx. (5.88)

Similar to the estimates derived in Lemma 5.11, we obtain

d

dt
‖ w ‖2Hr≤ c̃ ‖ w ‖2Hr . (5.89)

Using the Gronwall inequality gives rise to

‖ w ‖Hr= 0, for t ∈ [0, T̃ ). (5.90)

The uniqueness is proved. Up to now, we obtain the desired result and finish the

proof. �



CHAPTER 6

Global weak solutions to a nonlinear

Camassa-Holm type equation with

quartic nonlinearities

In this chapter, we investigate global weak solutions to a nonlinear Camassa-Holm

type equation with quartic nonlinearities. For the initial value u0(x) ∈ H1(R)

and ‖ ∂u0
∂x
‖L∞(R)< ∞, it is shown that the nonlinear equation has at least one

global weak solution in C([0,∞)×R)∩L∞([0,∞);H1(R)). We do not assume the

initial value to satisfy the sign condition. Namely, our assumption is weaker than

the sign condition. In previous works, the sign condition about the initial data

is required to prove the existence of global weak solutions of the Camassa-Holm-

type equations such as the Degasperis-Procesi equation and many generalized

Camassa-Holm equations(see [36–38, 76–78]). The key elements for the proof in

this chapter include establishing a space-time higher integrability estimate and a

super bound estimate on the first order spatial derivative of the solution.

89
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6.1 General

The following Camassa-Holm-type equation

ut − utxx + (a+ 1)ukux = auk−1uxuxx + ukuxxx, a ∈ R, integer k ≥ 1 (6.1)

was proposed by Grayshan and Himonas [41]. If (a, k) = (2, 1), Eq.(6.1) is the

standard Camassa-Holm equation (CH) [19]. If (a, k) = (3, 1), Eq.(6.1) reduces

to the Degasperis-Procesi equation (DP) [23]. Both the CH and DP models are

integrable and possess quadratic nonlinearities and peaked solutions [13]. When

(a, k) = (3, 2), Eq.(6.1) is turned into the Novikov equation, which is integrable

with cubic nonlinearities [87]. In this chapter, we discuss global weak solutions

of (6.1) in the case (a, k) = (4, 3). Namely, we investigate the following Camassa-

Holm-type equation

ut − utxx + 5u3ux = 4u2uxuxx + u3uxxx. (6.2)

Here we mention that without the sign condition on the initial value, the

existence of global weak solutions to Eq.(6.2) in C([0,∞)×R)∩L∞([0,∞);H1(R))

has not been established yet (see recent work in [40,76]).

The approaches in [101] will be employed to prove our main result. After we

prove the higher-integrability estimate (see Lemmas 6.3) and the one-sided su-

per bound estimate (see Lemma 6.5), considering the derivative qε = ∂uε(t,x)
∂x

(see

(6.9)), which is only weakly compact, we will prove that qε converges strongly.

Namely, we will show that this weak convergence is equivalent to strong conver-

gence.

The structure of this chapter is as follows. We provide the main result in sec-

tion 6.2. Several lemmas about the viscous approximation problem are presented
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in section 6.3. In section 6.4, we prove strong compactness of the derivative of the

solutions for the approximation problem and give the proof of our main result.

6.2 Main results

We write the Cauchy problem for Eq.(6.2) in the form

 ut − utxx + 5u3ux = 4u2uxuxx + u3uxxx,

u(0, x) = u0(x).
(6.3)

Applying the operator Λ−2 = (1− ∂2

∂x2
)−1 on problem (6.3), we obtain


ut + u3ux + ∂H

∂x
= 0,

∂H
∂x

= Λ−2[4u3ux + 3∂x(u
2u2x)− u2uxuxx],

u(0, x) = u0(x).

(6.4)

In this chapter, we use the definition of global weak solutions similar to that

of Definition 3.1 in chapter 3. Namely, it is defined as the solution u(t, x) that

satisfies (6.3) or (6.4) in the sense of distribution and the conditions (i) and (ii)

in Definition 3.1 hold. Then, the main conclusion of this chapter is given below.

Theorem 6.1. Let u0(x) ∈ H1(R) and ‖ u0x ‖L∞(R)< ∞. Then, there exists at

least one global weak solution u(t, x) for problem (6.3) or (6.4) in the sense of

distribution. In addition, the following results (a) and (b) hold.

(a). For any time T > 0, there exists a positive constant C = C(‖ u0 ‖H1(R), ‖

u0x ‖L∞(R)) to ensure that the one-sided L∞ estimate

∂u(t, x)

∂x
≤ C(1 + t), for t ∈ [0, T ), x ∈ R (6.5)

holds.
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(b). For any T > 0, there must exist a positive constant C = C(‖ u0 ‖H1(R), ‖

u0x ‖L∞(R)) to guarantee that the space-time-higher integrability inequality

∫
R

∣∣∣∂u(t, x)

∂x

∣∣∣6dx ≤ C(1 + T )eCT , t ∈ [0, T ) (6.6)

holds.

6.3 Viscous approximations

Assume ψ(x) be defined in (3.10). we know that ψ ∈ C∞ has compact set 0 ≤

x ≤ 1. Set the smooth function ψε(x) = ε−
1
4ψ(ε−

1
4x) associated with 0 < ε < 1

4
.

Let

uε,0 =

∫
R
ψε(x− ς)u0(ς)dς = ψε ? u0,

which has the property uε,0 ∈ C∞ for any u0 ∈ Hs, s > 0 and

‖ uε,0 ‖H1(R)≤‖ u0 ‖H1(R), and uε,0 → u0 in H1(R), as ε→ 0. (6.7)

Consider the following viscous approximation problem


∂uε
∂t

+ u3ε
∂uε
∂x

+ ∂Hε
∂x

= ε∂
2uε
∂x2

,

uε(0, x) = uε,0(x),
(6.8)

where

∂Hε

∂x
= Λ−2

[
4u3ε

∂uε
∂x

+ 3∂x

(
u2ε(

∂uε
∂x

)2
)
− u2ε

∂uε
∂x

∂2uε
∂x2

]
.

In order to establish the existence of global weak solutions for (6.4), we

will investigate the compactness of a sequence of smooth differentiable functions

{uε}ε>0. Specifically, we will handle the factor ∂uε(t,x)
∂x

, which plays a key role in

proving the existence of global weak solutions.
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Letting qε(t, x) = ∂uε(t,x)
∂x

and differentiating the first equation of (6.8) about

variable x yield

∂qε
∂t

+ u3ε
∂qε
∂x

+
1

2
u2εq

2
ε − ε

∂2qε
∂x2

= u4ε − Λ−2

(
u4ε +

5

2
(u2εq

2
ε) + (uεq

3
ε)x

)
. (6.9)

In the following discussion of this chapter, we let

Jε(t, x) = u4ε − Λ−2

(
u4ε +

5

2
(u2εq

2
ε) + (uεq

3
ε)x

)
. (6.10)

For problem (6.8), we have the well-posedness conclusion.

Lemma 6.2. Provided that u0 ∈ H1(R) and κ ≥ 2. Then system (6.8) admits

a unique solution uε(t, x) ∈ C([0,∞);Hκ(R)). Moreover, the following identity

holds

∫
R

(
u2ε + (

∂uε
∂x

)2
)
dx

+2ε

∫ t

0

∫
R

(
(
∂uε
∂x

)2 + (
∂2uε
∂x2

)2
)

(s, x)dxds =‖ uε,0 ‖2H1(R), (6.11)

which is equivalent to

‖ uε(t, ·) ‖2H1(R) +2ε

∫ t

0

‖ ∂uε
∂x

(s, ·) ‖2H1(R) ds =‖ uε,0 ‖2H1(R) . (6.12)

Proof. For every κ ≥ 2 and u0 ∈ H1(R), we obtain uε,0 ∈ C([0,∞);H∞(R)).

Employing theorem 2.3 in [10], we get that system (6.8) has a unique solution

uε ∈ C([0,∞);Hκ(R)).

According to system (6.8), we have

∂uε
∂t
− ∂3uε
∂tx2

+ 5u3ε
∂uε
∂x

= 4u2ε
∂uε
∂x

∂2uε
∂x2

+ u3ε
∂3uε
∂x3

+ ε
(∂2uε
∂x2

− ∂4uε
∂x4

)
. (6.13)
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Taking κ = 5, we obtain

uε(t,±∞) =
∂uε(t,±∞)

∂x
=
∂2uε(t,±∞)

∂x2
=
∂3uε(t,±∞)

∂x3
= 0. (6.14)

Using (6.13) and (6.14), we obtain the identity

1

2

d

dt

∫
R

(
u2ε + (

∂uε
∂x

)2
)
dx+ ε

∫
R

(
(
∂uε
∂x

)2 + (
∂2uε
∂x2

)2
)
dx = 0. (6.15)

The proof is completed. �

Using (6.7) and Lemma 6.2 gives rise to

‖ uε ‖L∞(R)≤ c ‖ uε ‖H1(R)≤ c ‖ uε,0 ‖H1(R)≤ c ‖ u0 ‖H1(R)≤ c, (6.16)

where c does not depend on the parameter ε.

Note that

Λ−2[g(x)]x =
1

2

∫ ∞
−∞

e−|x−y|
∂g(y)

∂y
dy

=
1

2
e−x

∫ x

−∞
ey
∂g(y)

∂y
dy +

1

2
ex
∫ ∞
x

e−y
∂g(y)

∂y
dy

= −1

2
e−x

∫ x

−∞
eyg(y)dy +

1

2
ex
∫ ∞
x

e−yg(y)dy,

from which we acquire

|Λ−2[g(x)]x| ≤
1

2

∫ ∞
−∞

e−|x−y||g(y)|dy. (6.17)

Lemma 6.3. Assume ‖ ∂u0
∂x
‖L∞< ∞, 0 < ε < 1

4
, 0 < t < T , and let uε(t, x)

be a solution of (6.8). Then, there exists a positive constant c = c(‖ u0 ‖H1(R), ‖
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∂u0
∂x
‖L∞) such that

∫
R

(∂uε
∂x

)6
dxdt ≤ c(1 + T )ecT (6.18)

and

ε

∫ T

0

∫
R

(∂uε
∂x

)4(∂2uε
∂x2

)2
dxdt ≤ c(1 + T )ecT , (6.19)

where c does not depend on ε.

Proof. For conciseness, we write u = uε. Differentiating the first equation of

problem (6.8) about x, we have

utx +
1

2
u2u2x + u3uxx − εuxxx = u4 − Λ−2

[
u4 +

5

2
u2u2x + ∂x(uu

3
x)

]
. (6.20)

Applying (6.14) and the identity

∫
R
u5xu

3uxxdx =

∫
R
u5xu

3dux = −
∫
R
ux[5u

4
xuxxu

3 + 3u2u6x]dx

yields

6

∫
R
u3u5xuxxdx = −3

∫
R
u2u7xdx,

from which we have

∫
R
(
1

2
u2u2x + u3uxx)u

5
xdx = 0. (6.21)
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Multiplying (6.20) by u5x and using (6.21), we obtain

1

6

d

dt

∫
R
u6xdx+ 5ε

∫
R
u4xu

2
xxdx

=

∫
R
u4u5xdx−

∫
R
u5xΛ

−2[u4 +
5

2
u2u2x + (uu3x)x]dx. (6.22)

Applying the Hölder inequality gives rise to

∫
R
| u4u5x | dx ≤

(∫
R
u6xdx

) 5
6
(∫

R
u24dx

) 1
6

≤‖ u ‖
11
3
L∞

(∫
R
u6xdx

) 5
6
(∫

R
u2dx

) 1
6

≤ c
(

1 +

∫
R
u6xdx

)
, (6.23)

in which we have used inequality (6.16). Using (6.16) and the Hölder inequality

again, we have

∫
R
|ux|4dx ≤

(∫
R
u6xdx

) 1
2
(∫

R
u2xdx

) 1
2

≤ c(1 +

∫
R
|ux|6dx), (6.24)

∫
R
|ux|3dx ≤

(∫
R
u4xdx

) 1
2
(∫

R
u2xdx

) 1
2

≤ c

(∫
R
u6xdx

) 1
4
(∫

R
u2xdx

) 1
2
+ 1

4

≤ c

(∫
R
u6xdx

) 1
4

≤ c(1 +

∫
R
|ux|6dx) (6.25)
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and

∫
R
|ux|5dx ≤

(∫
R
u6xdx

) 1
2
(∫

R
u4xdx

) 1
2

≤ c

(∫
R
u6xdx

) 1
2
(∫

R
u6xdx

) 1
4

≤ c

(∫
R
u6xdx

) 3
4

. (6.26)

We then have

| Λ−2[u4 +
5

2
u2u2x] |=|

1

2

∫
R
e−|x−y|(u4 +

5

2
u2u2y)dy |

≤ c(1 +

∫
R
u2ydy) ≤ c. (6.27)

Using integration by parts yields

| Λ−2[uu3x]x |=|
1

2

∫
R
e−|x−y|

∂(uu3y)

∂y
dy |

=| 1

2
ex
∫ ∞
x

e−y
∂(uu3y)

∂y
dy +

1

2
e−x

∫ x

−∞
ey
∂(uu3y)

∂y
dy |

=| 1

2
ex
∫ ∞
x

e−y(uu3y)dy −
1

2
e−x

∫ x

−∞
ey(uu3y)dy |

≤ 1

2

∫ ∞
−∞

e−|x−y||uu3y|dy

≤ c

∫ ∞
−∞
|ux|3dx

≤ c

(∫
R
u6xdx

) 1
4

. (6.28)

Using (6.26) and (6.28), we have
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∫
R
|u5xΛ−2(uu3x)x|dx

≤
∫
R
|u5x||Λ−2(uu3x)x|dx

≤ c

(∫
R
u6xdx

) 3
4
(∫

R
u6xdx

) 1
4

= c

∫
R
u6xdx. (6.29)

Using (6.22)-(6.29) results in

d

dt

∫
R
u6xdx ≤ c(1 +

∫
R
u6xdx), (6.30)

from which we obtain

∫
R
u6xdx ≤

(
cT +

∫
R
u60x(x)dx

)
ecT ≤ cecT (T+ ‖ u0x ‖2L∞)

≤ c(1 + T )ecT . (6.31)

Using (6.22) and (6.31) leads to (6.19). The proof is completed. �

Lemma 6.4. Let 0 < t < T . Then there exists a constant C > 0, which does not

depend on ε but may depend on T , ‖ u0 ‖H1(R) and ‖ u0x ‖, such that

‖ Hε(t, ·) ‖L∞(R)≤ C, (6.32)

‖ ∂Hε(t, ·)
∂x

‖L∞(R)≤ C, (6.33)

‖ ∂Hε(t, ·)
∂x

‖L1(R)≤ C, (6.34)

‖ ∂Hε(t, ·)
∂x

‖L2(R)≤ C (6.35)
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and

‖ Jε(t, ·) ‖L∞(R)≤ C, (6.36)

‖ Jε(t, ·) ‖L1(R)≤ C, (6.37)

‖ Jε(t, ·) ‖L2(R)≤ C, (6.38)

where Hε(t, x) and Jε(t, x) are defined in (6.8) and (6.10).

Proof. We write u(t, x) = uε(t, x) concisely. Namely, we write

Hε(t, x) = Λ−2[u4 + 3u2u2x −
1

2

∫ x

−∞
u2(u2ξ)ξdξ], (6.39)

and

∂Hε(t, x)

∂x
= Λ−2[4u3ux + 3∂x(u

2u2x)− u2uxuxx]. (6.40)

Using (6.16) yields

| Λ−2(u4 + 3u2u2x) |=|
1

2

∫
R
e−|x−y|

(
u4 + 3u2u2y

)
dy |

≤ C
(∫

R
e−|x−y|u2dy +

∫
R
e−|x−y|u2ydy

)
, (6.41)

which leads to

∫
R
| Λ−2(u3 + 2uu2x) | dx ≤ C, |Λ−2(u3 + 2uu2x)|dx ≤ C. (6.42)

Using Lemma 6.3 and (6.16), we have

Λ−2[

∫ x

−∞
u2(u2ξ)ξdξ] =

1

2

∫
R
e−|x−y|[u2u2x −

∫ x

−∞
2uu3ξdξ]dy. (6.43)
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Applying (6.18) and the Hölder inequality gives rise to

∣∣∣Λ−2[∫ x

−∞
u2(u2ξ)ξdξ]

∣∣∣ ≤ C. (6.44)

Using (6.41) and (6.44), we prove that (6.32) holds.

From (6.17), we have

| Λ−2[(u4)x] |≤
∫
R
e−|x−y||u|4dy

≤‖ u ‖2L∞
∫
R
u2dx, (6.45)

| Λ−2[3(u2u2x)x] ≤
3

2

∫
R
e−|x−y||u2u2y|dy (6.46)

and

| Λ−2(u2uxuxx) |=|
1

4
e−x

∫ x

−∞
eyu2(u2y)ydy +

1

4
ex
∫ ∞
x

e−yu2(u2y)ydy |

=| −1

4
e−x

∫ x

−∞
u2y[e

yu2 + 2uuye
y]dy

−1

4
ex
∫ ∞
x

u2ye
−y[−u2 + 2uuy]dy |

≤ C

∫
R
e−|x−y|

(
|u2u2y|+ |uu3y|

)
dy

≤ C

∫
R
e−|x−y|

(
|u2y|+ |u3y|

)
dy. (6.47)

From (6.45) to (6.47), using (6.25) and and the Tonelli Theorem, we get that

(6.33) and (6.34) hold.

Applying (6.33) and (6.34) yields

‖ ∂Hε(t, .)

∂x
‖2L2(R)≤‖

∂Hε(t, .)

∂x
‖L∞‖

∂Hε(t, .)

∂x
‖L1(R)≤ C. (6.48)
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Now we prove (6.36)-(6.38). Using (6.16) gives rise to

‖ u4 ‖L∞≤ C,

∫
R
u4dx ≤ C (6.49)

and

| Λ−2
[
u4 +

5

2
u2q2

]
|≤| 1

2

∫
R
e−|x−y|

[
u4 +

5

2
u2q2

]
dy |≤ C, (6.50)

where C > 0 does not depend on the parameter ε.

Employing (6.16) and (6.17) yields

| Λ−2[uq3]x |≤
∫ ∞
−∞

e−|x−y||uq|3dy ≤ C

∫
R
|q|3dx. (6.51)

From (6.10), we have

∂Jε(t, x)

∂x
= 4u3q + uq3 − Λ−2

[
(u4 +

5

2
u2q2)x + uq3

]
. (6.52)

From (6.16) and (6.18), we have

∫
R
|u3q|dx ≤ (

∫
R
|u6|dx)

1
2 (

∫
R
q2dx)

1
2 ≤ C,∫

R
|uq|3dx ≤

(∫
R
u2dx

) 1
2
(∫

R
q6dx

) 1
2 ≤ C, (6.53)
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|Λ−2
[
(u4 +

5

2
u2q2)x + uq3

]
|

=
∣∣∣1
2
e−x

∫ x

−∞
ey
∂(u4 + 5

2
u2q2)

∂y
dy +

1

2
ex
∫ ∞
x

e−y
∂(u4 + 5

2
u2q2)

∂y
dy

+
1

2

∫ ∞
−∞

e−|x−y|uq3dy
∣∣∣

=
∣∣∣− 1

2
e−x

∫ x

−∞
ey(u4 +

5

2
u2q2)dy +

1

2
ex
∫ ∞
x

e−y(u4 +
5

2
u2q2)dy

+
1

2

∫ ∞
−∞

e−|x−y|uq3dy
∣∣∣

≤
∫ ∞
−∞

e−|x−y||u4 +
5

2
u2q2|dy +

C

2

∫ ∞
−∞

e−|x−y||q|3dy. (6.54)

Applying (6.16),(6.25), (6.52)-(6.54) and the Tonelli theorem, we get that (6.36)

and (6.37) hold. The inequality (6.38) is directly derived by (6.36) and (6.37).

The proof is completed. �

Lemma 6.5. Suppose u0(x) ∈ H1(R) and ‖ u0x ‖L∞(R)< ∞. For every T > 0,

then the following one-sided L∞ estimate holds

∂uε(t, x)

∂x
≤ C(1 + t), for t ∈ [0, T ), x ∈ R, (6.55)

in which the positive constant C only depends on ‖ u0 ‖H1(R), ‖ u0x ‖L∞(R) and

T .

Proof. From Lemma 6.4, we obtain |Jε| ≤ C and

∂qε
∂t

+ u3ε
∂qε
∂x

+
1

2
u2εq

2
ε − ε

∂2qε
∂x2

= Jε(t, x) ≤ C. (6.56)

Assume that h = h(t) is the solution of

dh

dt
+ (u∗ε)

2h2 = C, t > 0, h(0) =‖ ∂uε,0
∂x
‖L∞ . (6.57)
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Letting u∗ε be the value of uε(t, x) when sup
x∈R

qε(t, x) = h(t), we get that h =

h(t) is a supersolution of the parabolic equation (6.56) with uε,0(x). Using the

comparison principle for parabolic equations, we obtain

qε(t, x) ≤ h(t). (6.58)

Let K(t) = Ct. Consider that dK(t)
dt

+(u∗ε)
2K2(t)−C = (u∗ε)

2(Ct)2 > 0 for any

t > 0. Applying the comparison principle of ordinary differential equations, we

know h(t) ≤ K(t) = Ct+ ‖ ∂uε,0
∂x
‖L∞ for all t > 0. Thus, we obtain the desired

result. �

Lemma 6.6. Suppose u0(x) ∈ H1(R) and ‖ u0x ‖L∞(R)< ∞. For the solution

uε(t, x) of problem (6.8), then there exists a subsequence εi → 0 as i→∞ and a

function u ∈ L∞([0,∞);H1(R)) ∩H1([0, T ]× R), such that

uεi ⇀ u in H1([0, T ]× R), for every T ≥ 0, (6.59)

uεi → u in L∞loc([0,∞)× R). (6.60)

Proof. We have

∂uε
∂t

+ u3
∂uε
∂x

+
∂Hε

∂x
= ε

∂2uε
∂x2

.

For every fixed T > 0, Applying Lemmas 6.2 and 6.4 yields

‖ ∂uε
∂t
‖L2(R), ‖ ∂uε

∂t
‖L2([0,T ]×R)≤ C0(1 +

√
ε ‖ u0 ‖H1(R)), (6.61)

where C0 depends on ‖ u0x ‖L∞(R), ‖ u0 ‖H1(R) and T . Consequently, we get

that the solution {uε} is uniformly bounded in the space L∞([0,∞);H1(R)) ∩

H1([0, T ]× R) and (6.59) holds.
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Note that, for each 0 ≤ s, t ≤ T ,

‖ uε(t, .)− uε(s, .) ‖2L2(R)=

∫
R

(∫ t

s

∂uε
∂t

(τ, x)dτ
)2
dx

≤ |t− s|
∫
R

∫ T

0

(∂uε
∂t

(τ, x)
)2
dτdx. (6.62)

Therefore, {uε} is uniformly bounded in L∞([0, T ];H1(R)) and H1(R) ⊂

L∞loc ⊂ L2
loc(R). Applying the conclusions in [9], we get that (6.60) is valid (also

see [101]). �

Lemma 6.7. Suppose ‖ u0x ‖L∞(R)< ∞ and u0(x) ∈ H1(R). Then, the se-

quence Jε(t, x) is uniformly bounded in W 1,1
loc ([0,∞)× R). Moreover, there exists

a sequence εi → 0 if i→∞ and a function J ∈ L∞([0,∞);W 1,∞(R)) such that

Jεi → J strongly in Lploc([0, T )× R), 1 < p <∞. (6.63)

Proof. Applying notations u = uε(t, x) and q = qε for simplicity, we acquire

∂Jε
∂t

= 4u3ut − Λ−2
[
4u3ut + 5uutq

2 + 5u2qqt + ∂x(utq
3 + 3uq2qt)

]
= 4u3ut − Λ−2

[
(4u3 + 5uq2)ut

]
−Λ−2

[
5u2q(Jε − u3qx −

1

2
u2q2 + εqxx)

]
−Λ−2

(
∂x

[
utq

3 + 3uq2qt

])
= 4u3ut +Q1 +Q2 +Q3. (6.64)

Applying Lemma 6.6 and (6.16) yields

∫
R
|u3ut|dx ≤ (

∫
R
u6dx)

1
2 (

∫
R
u2tdx)

1
2

≤‖ u ‖2L∞(R) (

∫
R
u2dx)

1
2 (

∫
R
u2tdx)

1
2 ≤ C.
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Using (6.16), (6.24) and Lemma 6.6 gives rise to

∫
R
|Q1|dxdt ≤

∫ t

0

[ ∫
R
e−|x−y|

(∫
R
(4u3 + 5uq2)2dy

) 1
2
(∫

R
u2tdy

) 1
2
dx
]
dt

≤ CT. (6.65)

For Q2, we have

|Q2| ≤

(∫
R
e−|x−y|

∣∣∣5u2qJε − 5

2
u4q3

∣∣∣dy
+

∣∣∣∣∣
∫
R
e−|x−y|5u5qqydy

∣∣∣+ ε

∣∣∣∣∣
∫
R
e−|x−y|5u2qqyydy

∣∣∣)

≤ C

(∫
R
e−|x−y|

∣∣∣5u2qJε − 5

2
u4q3

∣∣∣dy
+

1

2

∣∣∣ ∫
R
e−|x−y|q2

[
25u4q + sign(x− y)u5

]
dy
∣∣∣

+ε|
∫
R
e−|x−y|qy

[
10uq2 + 5u2qy + sign(x− y)5u2q

]
dy|

)
(6.66)

Using the Schwartz inequality, (6.16), (6.25) Lemmas 6.2 and 6.3, we have

∫ t

0

∫
R
|Q2|dxdt ≤ C

(
1 + T ‖ u0 ‖H1(R) +

∫ t

0

∫
R
|q|3dydt

)
+εC

∫ t

0

∫
R

(
|qqy|+ |q2qy|+ |qy|2

)
dxdt

≤ C
(

1 + T ‖ u0 ‖H1(R) +

∫ t

0

∫
R
|q|3dydt

)
+εC

∫ t

0

∫
R

(
|q|2 + q4 + 3|qy|2

)
dxdt

≤ C(1 + T ). (6.67)
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For Q3, we have

Q3 = Λ−2
[
utq

3 + 3uq2qt

]
x

= Λ−2
[
utq

3 + 3uq2
(
Jε − u3qx −

1

2
u2q2 + εqxx

)]
x

= Λ−2
[
utq

3 + 3uq2Jε −
3

2
u3q4

]
x
− 3Λ−2

[
u4q2qx

]
x

+ 3εΛ−2
[
uq2qxx

]
x

= I1 + I2 + I3 (6.68)

Using (6.17), we get

|I1| = |
1

2

∫ ∞
−∞

e−|x−y|
[
utq

3 + 3uq2Jε −
3

2
u3q4

]
y
dy|

≤ 1

2

∫ ∞
−∞

e−|x−y|
∣∣∣utq3 + 3uq2Jε −

3

2
u3q4

∣∣∣dy, (6.69)

I2 = −3Λ−2
[
u4q2qx

]
x

= −Λ−2
[
(u4q3)x − (u4)xq

3
]
x

= −Λ−2(1− Λ2)(u4q3) + Λ−2
[
4u3q4

]
x

= −Λ−2(u4q3) + 4Λ−2
[
u3q4

]
x

+ u4q3 (6.70)

and

I3 = 3εΛ−2
[
(uq2qx)x − (uq2)xqx

]
x

= 3εΛ−2(1− Λ2)[uq2qx]− 3εΛ−2
[
(q3 + 2uqqx)qx

]
x

= −3ε(uq2qx) + 3εΛ−2[uq2qx]− 3εΛ−2
[
(q3 + 2uqqx)qx

]
x
. (6.71)
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Using (6.24), (6.25) and (6.61), we have

∫ t

0

∫
R
|I1|dxdt

≤ C

∫ t

0

(
1 +

(∫ ∞
−∞

(ut)
2dy
) 1

2
(∫ ∞
−∞

q6dy
) 1

2
+ C

(∫ ∞
−∞

q4dy
))

dt

≤ C(1 + T ). (6.72)

Applying inequalities (6.16), (6.17), (6.24), (6.25) and the Tonelli theorem

yields

∫ t

0

∫
R
|I2|dxdt ≤ C

∫ t

0

[
1 +

∫
R
|q|3dx+

∫
R
|q|4dx

]
dt ≤ C(1 + T ) (6.73)

Using Lemmas 6.2 and 6.3, we have

ε

∫ t

0

∫
R
|(uq2qx)|dxdt ≤ εC

∫ t

0

∫
R
|q2qx|dxdt

≤ Cε

∫ t

0

∫
R
(q4 + q2x)dxdt

≤ C (6.74)

Using (6.17) gives rise to

ε|Λ−2
[
(q3 + 2uqqx)qx

]
x
| ≤ ε

∫
R
e−|x−y|

∣∣∣(q3 + 2uqqy)qy

∣∣∣dy.
Note that

|qq2y| ≤ c[(qqy)
2 + q2y] ≤ c[q2y + (q2qy)

2 + q2y] ≤ c[2q2y + q4q2y].
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Using Lemmas 6.2 and 6.3, we have

ε

∫ t

0

∫
R
|Λ−2

[
(q3 + 2uqqx)qx

]
x
|dxdt

≤ εC

∫ t

0

(∫
R

∣∣∣(q3 + 2uqqy)qy

∣∣∣dy ∫
R
e−|x−y|dx

)
dt

≤ εC

∫ t

0

∫
R

∣∣∣(q3 + 2uqqy)qy

∣∣∣dydt
≤ εC

∫ t

0

∫
R

(∣∣qq2qy∣∣+
∣∣qq2y|∣∣)dydt

≤ εC

∫ t

0

∫
R

(
q6 + q2y + q4q2y

)
dydt

≤ C. (6.75)

From (6.69)-(6.75), we obtain

∫ t

0

∫
R
|Q3|dxdt ≤ C(1 + T ). (6.76)

From (6.64)-(6.68), (6.73)-(6.74) and (6.76), we derive that ∂Jε
∂t

is uniformly

bounded in L1
loc([0,∞)×R). Then we get that Jε is bounded in W 1,1

loc ([0.∞)×R)

which together with Lemma 6.4 results in (6.63) (see [94]). �

Throughout this chapter, for 1 < r < 3, the overbars denote weak limits in

the space Lr([0,∞)× R). Let Ω+ = [0,∞)× R.

Lemma 6.8. There exists a subsequence εi → 0 if i → ∞ and two functions

q ∈ Lploc(Ω+), q2 ∈ Lrloc(Ω+) such that, for every 1 < p < 6 and 1 < r < 3, the

following conclusions

qεi ⇀ q in Lploc(Ω+), qεi
?
⇀ q in L∞loc([0,∞);L2(R)), (6.77)

q2εi ⇀ q2 in Lrloc(Ω+) (6.78)
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hold. Moreover,

q2(t, x) ≤ q2(t, x) almost everywhere in (t, x) ∈ Ω+, (6.79)

and

∂u

∂x
= q in the sense of distributions on the domain Ω+. (6.80)

Proof. Using Lemmas 6.2 and 6.3 leads to (6.77) and (6.78). Applying the weak

convergence in (6.78), we have inequality (6.79). The definition of qε, Lemma 6.6

and (6.77) directly derives (6.80). The proof is completed. �

For notational convenience and simplicity, we use {uε}ε>0, {qε}ε>0 and {Jε}ε>0

to replace the sequence {uεi}i∈N , {qεi}i∈N and {Jεi}i∈N (where N denotes all the

nature numbers), respectively.

For every convex function φ ∈ C1(R) associated with φ′ bounded, Lipschitz

continuous on R, using Lemma 6.8 yields

φ(qε) ⇀ φ(q) in Lploc(Ω+), 1 < p < 6, (6.81)

φ(qε)
?
⇀ φ(q) in L∞loc([0,∞);L2(R)). (6.82)

Multiplying the equation (6.9) by φ′(qε) gives rise to

∂

∂t
φ(qε) +

1

3

∂

∂x
(u3εφ(qε))− ε

∂2φ(qε)

∂x2
+ εφ

′′
(qε)
(∂qε
∂x

)2
= u2εqεφ(qε)−

1

2
u2εφ

′(qε)q
2
ε −

2

3
u3ε
∂φ(q)

∂x
+ Jεφ

′(qε). (6.83)

Lemma 6.9. Assume that all the assumptions in Theorem 6.1 hold. Then for
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every convex φ ∈ C1(R) associated with φ′ bounded, Lipschitz continuous on R,

the following inequality

∂φ(q)

∂t
+

1

3

∂

∂x

(
u3φ(q)

)
≤ u2qφ(q)− 1

2
u2φ′(q)q2 − 2

3
u3
∂φ(q)

∂x
+ Jφ′(q) (6.84)

holds in the sense of distributions on the domain Ω+. Here qφ(q) and φ′(q)q2 rep-

resent the weak limits of qεφ(qε) and q2εφ
′(qε) in Lrloc(Ω+), 1 < r < 3, respectively.

Proof. Applying Lemmas 6.6-6.8, the convexity of φ and taking the limits for

ε→ 0 in (6.83), we obtain (6.84). �

Remark 6.10. From (6.77) and (6.78), we have

q = q+ + q− = q+ + q−, q2 = (q+)2 + (q−)2, q2 = (q+)2 + (q−)2 (6.85)

almost everywhere in Ω+, where η+ := ηχ[0,+∞)(η), η− := ηχ(−∞,0](η) for η ∈ R.

Using Lemma 6.5 leads to

qε(t, x), q(t, x) ≤ C(1 + t), 0 < t < T, x ∈ R, (6.86)

where C > 0 does not depend on the parameter ε.

Lemma 6.11. Assume that all the assumptions in Theorem 6.1 hold. In the

sense of distributions on Ω+, then

∂q

∂t
+

1

3

∂

∂x
(u3q) =

1

2
u2q2 − 2

3
u3
∂q

∂x
+ J.

(6.87)

Proof. Using (6.9), Lemmas 6.6-6.8, and taking limits for ε→ 0 in (6.9), we get

that (6.87) holds. �

A generalized formulation of (6.87) is presented in the lemma below.
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Lemma 6.12. Assume that all the assumptions in Theorem 6.1 hold. Then for

every φ ∈ C1(R) with φ′ ∈ L∞(R) and an arbitrary T > 0, the following identity

∂φ(q)

∂t
+

1

3

∂

∂x
(u3φ(q))

= u2qφ(q)− u2q2φ′(q) +
1

2
u2q2φ′(q)− 2

3
u3
∂φ(q)

∂x
+ Jφ′(q) (6.88)

holds in the sense of distributions on [0, T )× R.

Proof. Assume that {wγ}γ is a family of mollifiers defined in R. Set qγ(t, x) :=

(q(t, .)?wγ)(x), where the notation ? represents the convolution about the variable

x. Multiplying (6.87) by φ′(qγ) gives rise to

∂φ(qγ)

∂t
= φ′(qγ)

∂qγ
∂t

= φ′(qγ)

[
− 1

3

∂

∂x
(u3q) ? wγ +

1

2
u2q2 ? wγ

−2

3
u3
∂φ(q)

∂x
? wγ + J ? wγ

]
. (6.89)

Using the boundedness of φ, φ′ and letting γ → 0 in (6.89), we have

∂φ(q)

∂t
+

1

3
u3
∂φq

∂x
= −u2q2φ′(q) +

1

2
u2q2φ′(q)− 2

3
u3
∂φ(q)

∂x
+ Jφ′(q), (6.90)

which leads to

∂φ(q)

∂t
+

1

3

(∂u3φq)

∂x
= u2qφ(q)− u2q2φ′(q) +

1

2
u2q2φ′(q)− 2

3
u3
∂φ(q)

∂x
+ Jφ′(q).

The proof is completed. �

6.4 The proof of main results

Using the methods in [101] or [9] or the techniques in Chapter 3, we shall show that

the weak convergence of qε in (6.78) is equal to strong convergence. Subsequently,
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we establish the existence of global weak solutions for problem (6.3).

In this section, we will use Lemmas 3.15,3.16,3.17 in chapter 3 to prove our

results. All the notations used are the same as those in Lemmas 3.15-3.17.

Lemma 6.13. Assume u0 ∈ H1(R) and ‖ u0x ‖L∞< ∞. Then for almost all

t > 0, the inequality

1

2

∫
R

(
(q+)2 − q2+

)
(t, x)dx ≤ −3

2

∫ t

0

∫
R
u3
(∂φ+

B(q)

∂x
− ∂φ+

B(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(s, x)[q+(s, x)− q+(s, x)]dxds (6.91)

holds.

Proof. For any T > 0 t ∈ [0, T ], we choose B sufficiently large to satisfy B > C

(see Lemma 6.5). Employing Lemmas 6.9 and 6.12, and the entropy φ+
B (see

Lemma 3.17) leads to

∂

∂t

(
φ+
B(q)− φ+

B(q)
)

+
1

3

∂

∂x

(
u3
[
φ+
B(q)− φ+

B(q)
])

≤ u2
(
qφ+

B(q)− qφ+
B(q)

)
− u2

2

(
q2(φ+

B)′(q)− q2(φ+
B)′(q)

)
−1

2
u2
(
q2 − q2

)
(φ+

B)′(q)− 2

3
u3
(∂φ+

B(q)

∂x
− ∂φ+

B(q)

∂x

)
+J(t, x)

(
(φ+

B)′(q)− (φ+
B)′(q)

)
. (6.92)

Since φ+
B is increasing, from (6.79), we have

−u2(q2 − q2)(φ+
B)′(q) ≤ 0. (6.93)
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Applying Lemma 3.17 results in

qφ+
B(q)− 1

2
q2(φ+

B)′(q) = −B
2
q(B − q)χ(B,∞)(q),

qφ+
B(q)− 1

2
q2(φ+

B)′(q) = −B
2
q(B − q)χ(B,∞)(q). (6.94)

Using Remark 6.10, (6.86) and Lemma 6.5, we can choose sufficiently large B > 0

to ensure q < C(1 + t) < B. Let ΥB =
(

0, B
C
− 1
)
× R. From (6.86), we have

qφ+
B(q)− 1

2
q2(φ+

B)′(q) = qφ+
B(q)− 1

2
q2(φ+

B)′(q) = 0, in ΥB.

(6.95)

In
(

0, B
C
− 1
)
× R, it holds that

 φ+
B = 1

2
(q+)2, (φ+

B)′(q) = q+,

φ+
B(q) = 1

2
(q+)2, (φ+

B)′(q) = q+.
(6.96)

Using (6.93)-(6.96), in the domain
(

0, B
C
−1
)
×R, we have the following inequality

∂

∂t

(
φ+
B(q)− φ+

B(q)
)

+
1

3

∂

∂x

(
u3
[
φ+
B(q)− φ+

B(q)
])

≤ −2

3
u3
(∂φ+

B(q)

∂x
− ∂φ+

B(q)

∂x

)
+ J(t, x)

(
(φ+

B)′(q)− (φ+
B)′(q)

)
. (6.97)

For almost all 0 < t < B
C
− 1, integrating (6.97) over (0, t)× R produces

1

2

∫
R

(
(q+)2 − q2+(t, x)

)
dx ≤ lim

t→0

∫
R

[
φ+
B(q)(t, x)− φ+

B(q)(t, x)
]
dx

−2

3

∫ t

0

∫
R
u3
(∂φ+

B(q)

∂x
− ∂φ+

B(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(s, x)[q+(s, x)− q+(s, x)]dxds. (6.98)

Letting B →∞ and using Lemma 3.16 complete the proof. �
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Lemma 6.14. Assume u0 ∈ H1(R) and ‖ u0x ‖L∞< ∞. For almost all t > 0,

then

∫
R

(
φ−B(q)− φ−B(q)

)
(t, x)dx

≤ B2

2

∫ t

0

∫
R
u2(B + q)χ(−∞,−B)(q)dxds

−B
2

2

∫ t

0

∫
R
u2(B + q)χ(−∞,−B)(q)dxds

+B

∫ t

0

∫
R
u2
[
φ−B(q)− φ−B(q)

]
dxds

+
B

2

∫ t

0

∫
R
u2
(
q2+ − q2+

)
dxds

−2

3

∫ t

0

∫
R
u3
(∂φ−B(q)

∂x
− ∂φ−B(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
dxds, (6.99)

where B > 0 is sufficiently large.

Proof. From Lemmas 6.9 and 6.12, choosing B > 0 suitably large and using

entropy φ−B, we obtain

∂

∂t

(
φ−B(q)− φ−B(q)

)
+

1

3

∂

∂x

(
u3
[
φ−B(q)− φ−B(q)

])
≤ u2

(
qφ−B(q)− qφ−B(q)

)
− u2

2

(
q2(φ−B)′(q)− q2(φ−B)′(q)

)
−1

2
u2
(
q2 − q2

)
(φ−B)′(q)− 2

3
u3
(∂φ−B(q)

∂x
− ∂φ−B(q)

∂x

)
+J(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
. (6.100)

As −B ≤ (φ−B)′ ≤ 0 and u2 ≥ 0, we obtain

−u
2

2

(
q2 − q2

)
(φ−B)′(q) ≤ u2B

2

(
q2 − q2

)
, (6.101)
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Using Remark 6.10 and Lemma 3.17 yields

u2qφ−B(q)− u2

2
q2(φ−B)′(q) = −Bu

2

2
q(B + q)χ(−∞,−B)(q) (6.102)

u2qφ−B(q)− u2

2
q2(φ−B)′(q) = −Bu

2

2
q(B + q)χ(−∞,−B)(q). (6.103)

Applying (6.100), (6.101) and (6.103) leads to

∂

∂t

(
φ−B(q)− φ−B(q)

)
+

1

3

∂

∂x

(
u3
[
φ−B(q)− φ−B(q)

])
≤ −1

2
Bu2q(B + q)χ(−∞,−B)(q) +

1

2
Bu2q(B + q)χ(−∞,−B)(q)

+
1

2
Bu2

(
q2 − q2

)
− 2

3
u3
(∂φ−B(q)

∂x
− ∂φ−B(q)

∂x

)
+J(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
. (6.104)

Integrating (6.104) over (0, t)× R, we have

∫
R

(
φ−B(q)− φ−B(q)

)
(t, x)dx

≤ −B
2

∫ t

0

∫
R
u2q(B + q)χ(−∞,−B)(q)dxds

+
B

2

∫ t

0

∫
R
u2q(B + q)χ(−∞,−B)(q)dxds

+
B

2

∫ t

0

∫
R
u2
(
q2 − q2

)
dxds− 2

3

∫ t

0

∫
R
u3
(∂φ−B(q)

∂x
− ∂φ−B(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
dxds. (6.105)

Using Lemma 3.17 yields

φ−B(q)− φ−B(q) =
1

2

(
(q−)2 − (q−)2

)
+

1

2
(B + q)2χ(−∞,−B)(q)

−1

2
(B + q)2χ(−∞,−B)(q), (6.106)
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which results in

Bu2
[
φ−B(q)− φ−B(q)

]
=
B

2
u2
(

(q−)2 − (q−)2
)

+
B

2
u2(B + q)2χ(−∞,−B)(q)

−B
2
u2(B + q)2χ(−∞,−B)(q). (6.107)

Making use of Remark 6.10, (6.105), (6.107), we acquire

∫
R

(
φ−B(q)− φ−B(q)

)
(t, x)dx

≤ −B
2

∫ t

0

∫
R
u2q(B + q)χ(−∞,−B)(q)dxds

+
B

2

∫ t

0

∫
R
u2q(B + q)χ(−∞,−B)(q)dxds

+B

∫ t

0

∫
R
u2
[
φ−B(q)− φ−B(q)

]
dxds

+
B

2

∫ t

0

∫
R
u2(B + q)2χ(−∞,−B)(q)dxds

−B
2

∫ t

0

∫
R
u2(B + q)2χ(−∞,−B)(q)dxds+

B

2

∫ t

0

∫
R
u2
(
q2+ − q2+

)
dxds

−2

3

∫ t

0

∫
R
u3
(∂φ−B(q)

∂x
− ∂φ−B(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(t, x)

(
(φ−B)′(q)− (φ−B)′(q)

)
dxds. (6.108)

Using the identity B(B + q)2 − Bq(B + q) = B2(B + q), we obtain (6.99). The

proof is completed. �

Lemma 6.15. Suppose that all the assumptions in Theorem 6.1 hold. Then

q2 = q2 almost everywhere in [0,∞)× R. (6.109)



6.4 The proof of main results 117

Proof. From Lemmas 6.13 and 6.14, we have

∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dx

≤ B2

2

∫ t

0

∫
R
u2(B + q)χ(−∞,−B)(q)dxds

−B
2

2

∫ t

0

∫
R
u2(B + q)χ(−∞,−B)(q)dxds

+B

∫ t

0

∫
R
u2
[
φ−B(q)− φ−B(q)

]
dxds

+
B

2

∫ t

0

∫
R
u2
(
q2+ − q2+

)
dxds

−2

3

∫ t

0

∫
R
u3
(∂φB(q)

∂x
− ∂φB(q)

∂x

)
dxds

+

∫ t

0

∫
R
J(s, x)

([
q+ − q+

]
+ [(φ−B)′(q)− (φ−B)′(q)

])
dxds. (6.110)

Using Lemma 6.7, for 0 < t < T , there exists a constant K0 > 0, relying only on

‖ u0x ‖L∞ , ‖ u0 ‖H1(R), and T , such that

‖ J(t, x) ‖L∞([0,T )×R)≤ K0. (6.111)

Employing Remark 6.10 and Lemma 3.17 yields

q+ + (φ−B)′(q) = q − (B + q)χ(−∞,−B),

q+ + (φ−B)′(q) = q − (B + q)χ(−∞,−B)(q). (6.112)

Since the map η → η+ + (φ−B)′(η) is convex and concave, we obtain

0 ≤ [q+ − q+] + [(φ−B)′(q)− (φ−B)′(q)]

= (B + q)χ(−∞,−B) − (B + q)χ(−∞,−B)(q). (6.113)



6.4 The proof of main results 118

It follows from (6.110) that

∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dx

≤ B

∫ t

0

∫
R
u2
[
φ−B(q)− φ−B(q)

]
dxds+

B

2

∫ t

0

∫
R
u2
(
q2+ − q2+

)
dxds

+

∫ t

0

∫
R

2u2q
(
φB(q)− φB(q)

)
dxds. (6.114)

Using Lemma 6.5, we get that there must exist a sufficiently large B such that

u2q ≤ CB. Thus, from Lemma 3.17 and (6.114), we acquire

0 ≤
∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dx

≤ CB

∫ t

0

∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dxds. (6.115)

For each t > 0, the Gronwall inequality is used to produce

0 ≤
∫
R

(
1

2

[
(q+)2 − (q+)2

]
+
[
φ−B − φ

−
B

])
(t, x)dx = 0.

Using the Fatou lemma, (6.79) and Remark 6.10, we let B →∞ and obtain

0 ≤
∫
R

(
q2 − q2

)
(t, x)dx = 0, for t > 0, (6.116)

which completes the proof. �

Proof of Theorem 6.1. Applying (6.7), (6.11) and Lemma 6.6, we get that the

conditions (i) and (ii) in Definition 3.1 hold. Using Lemma 6.15 gives rise to

qε → q in L2
loc([0,∞)× R). (6.117)

From Lemmas 6.6 and 6.7, and (6.117), we get that u is a distributional solution

to system (6.3). Using Lemmas 6.3 and 6.5, we obtain inequalities (6.5) and (6.6).
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The proof of Theorem 6.1 is completed. �



CHAPTER 7

Wave breaking to a nonlinear shallow

water wave equation

This chapter considers a nonlinear shallow water wave model including the Degasperis-

Procesi equation. Several estimates, which are derived from the shallow water

model itself, are established to discuss the wave breaking of its solutions.

7.1 General

Constantin and Lannes [13] derived the nonlinear equation

ut + ux +
3

2
ρuux + µ(αuxxx + βutxx) = ρµ(γuxuxx + δuuxxx), (7.1)

where the constants ρ, γ, δ, α, β and µ are required to satisfy certain restrictions.

Eq.(7.1) describes the propagation and motion of shallow water waves over a flat

bed (see [13]). From [13], we know that Eq.(7.1) can be turned into the equation

ut − utxx + k0ux +muux = k1uxuxx + k2uuxxx, (7.2)

where k0, k1, k2 and m are constants. If m = 4, k1 = 3, k2 = 1, Eq.(7.2) becomes

the Degasperis-Procesi equation. For m = 3, k1 = 2, k2 = 1, Eq.(7.2) reduces to

120
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the Camassa-Holm equation (see [19]). When k0 = −1,m = 3
2
, k1 = 9

2
, k2 = 3

2
,

Eq.(7.2) is turned into the Fornberg-Whitham (FW) equation (see [43,44]). The

wave breaking of solutions and local strong solutions in Hs(R)(s > 3
2
) for the

Fornberg-Whitham equation are discussed in [43,44].

Motivated by the recent work in [44] where the wave breaking for the FW

equation is investigated, we study the wave breaking for a special case of Eq.(7.2),

which has the form

ut − utxx + kux +muux = 3uxuxx + uuxxx, (7.3)

where m > 0 and k are constants. As stated in [14], the wave breaking implies

that the solution itself is bounded, but its slope remains unbounded as the time

tends to a finite time. Assuming that the initial value u0(x) ∈ H2(R), we shall

discuss the wave breaking of Eq.(7.3).

For Eq.(7.3), Lai et al. [61] derive the conservation law

∫
R

1 + ξ2

m+ ξ2
|û(ξ)|2dξ =

∫
R

1 + ξ2

m+ ξ2
|û0(ξ)|2dξ ∼‖ u0 ‖L2(R), (7.4)

where u0 = u(0, x) ∈ H2(R).

Several Lemmas shall be given in section 7.2. The main results of this chapter

and their proofs will be presented in section 7.3.

7.2 Lemmas

We write the Cauchy problem of Eq.(7.3) as follows

 ut − utxx + kux +muux = 3uxuxx + uuxxx,

u(0, x) = u0(x).
(7.5)



7.2 Lemmas 122

Multiplying the first equation of problem (7.5) by Λ−2 = (1− ∂2

∂x2
)−1, we have

 ut + uux = −kΛ−2ux − m−1
2

Λ−2(u2)x,

u(0, x) = u0(x).
(7.6)

We shall address here that the operator Λ−2 has also been used in chapter 3. For

the classical solutions u(t, x) ∈ H2(R) ∈ C1(R), we have u(t,±∞) = 0.

Lemma 7.1 [61]. For problem (7.5), if m > 0 and u0(x) ∈ H2(R), it holds that

∫
R
yvdx =

∫
R

1 + ξ2

m+ ξ2
|û(ξ)|2dξ =

∫
R

1 + ξ2

m+ ξ2
|û0(ξ)|2dξ ∼‖ u0 ‖L2(R) (7.7)

and

c1 ‖ u0 ‖L2(R)≤ c1 ‖ u ‖L2(R)≤ c2 ‖ u0 ‖L2(R),

where c1, c2 are constants depending only on m.

Lemma 7.2 [61]. Let s ≥ 2, u0 ∈ Hs(R). Then there must exist T = T (u0) > 0

to guarantee that the problem (7.6) has a unique strong solution u(t, x) and

u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Lemma 7.3 [61]. Assume s ≥ 2, u0 ∈ Hs(R). If T is the maximal existence

time of solution to Eq.(7.3), then

‖ u(t, x) ‖L∞≤‖ u0 ‖L∞ +c0t ‖ u0 ‖2L2 , for t ∈ [0, T ], (7.8)

where c0 only depends on m.

From this Lemma, we know that for all t ∈ [0,∞), inequality (7.8) is still



7.2 Lemmas 123

valid.

Lemma 7.4. If u(t, x) ∈ H2(R), then

∫
R
uxΛ

−2udx = −
∫
R
uΛ−2uxdx = 0, 0 ≤

∫
R

Λ−2u2dx <∞. (7.9)

Proof. Letting Λ−2u = v, we have

u = v − vxx,

which results in

∫
R
uΛ−2uxdx =

∫
R
(v − vxx)vxdx =

∫
R
vdv −

∫
R
vxdvx = 0. (7.10)

Applying

0 ≤
∫
R

Λ−2u2dx

=
1

2

∫
R

∫
R
e−|x−y|u2(t, y)dydx

=
1

2

∫
R
u2(t, y)dy

∫
R
e−|x−y|dx (7.11)

and Lemma 7.1, we derive that

0 ≤
∫
R

Λ−2u2dx <∞.

The proof is completed. �
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Lemma 7.5. If u0 ∈ H2(R) and u(t, x) satisfies problem (7.5), then

|Λ−2u2| < c, (7.12)

|Λ−2∂x(u2)| < c, (7.13)

|
∫
R

Λ−2∂x(u
2)dx| < c, (7.14)

|
∫
R
uΛ−2(u2)xdx| < c, (7.15)

where constant c > 0 is independent of time t.

proof. Since

Λ−2u2dx =
1

2

∫
R
e−|x−y|u2(t, y)dy (7.16)

and

Λ−2∂x(u
2) = −e

−x

2

∫ x

−∞
eyu2(t, y)dy +

ex

2

∫ ∞
x

e−yu2(t, y)dy,

using Lemma 7.1, we get

|Λ−2∂x(u2)| = |
1

2

∫
R
e−|x−y|sign(x− y)u2(t, y)dy|

≤ 1

2

∫
R
u2(t, y)dy <∞ (7.17)

and

∫
R
|Λ−2∂x(u2)|dx =

1

2

∫
R
|
∫
R
e−|x−y|sign(x− y)u2(t, y)dy|dx

=
1

2

∫
R
u2(t, y)dy

∫ ∞
−∞
|e−|x−y|sign(x− y)|dx

≤ 1

2

∫
R
u2(t, y)dy

∫ ∞
−∞

e−|x−y|dx <∞. (7.18)
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Using (7.17) yields

|
∫
R
uΛ−2∂x(u

2)dx| ≤
(∫

R
u2dx

) 1
2
(∫

R
[Λ−2∂x(u

2)]2dx
) 1

2

≤ c
(∫

R
u2dx

) 1
2
(∫

R
|Λ−2∂x(u2)|dx

) 1
2

≤ c. (7.19)

From (7.16)-(7.19), we complete the proof. �

7.3 Blow-up criteria

If the maximal existence time T > 0 for problem (7.5) is finite and u0(x) ∈ H2(R),

from Lemmas 7.2 and 7.3, we get that

sup
(t,x)∈[0,T )×R

|u(t, x)| <∞

and

lim
t→T
‖ ux ‖H2(R)=∞.

We will prove that sup
(t,x)∈[0,T )×R

|ux(t, x)| =∞, which means that the wave breaking

of equation (7.3) occurs. For detailed discussions of wave breaking, the readers

are referred to [14].

Theorem 7.6. Let u0(x) ∈ H2(R). If the maximal existence time T is finite,

then the solution of problem (7.5) or problem (7.6) blows up if and only if

lim
t→T

inf[ux(t, x)] = −∞. (7.20)

proof. It follows from Lemma 7.2 that there exists u(t, x) ∈ C([0, T ), H2(R)) ∩

C1([0, T ), H1(R)). We shall use the classical energy estimates in our proof. We

multiply the first equation of problem (7.6) by u(t, x) and integrate the resultant
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equation on R to acquire

1

2

d

dt

∫
R
u2dx = −

∫
R
u2uxdx− k

∫
R
uΛ−2ux −

m− 1

2

∫
R
uΛ−2(u2)xdx

= −m− 1

2

∫
R
uΛ−2(u2)xdx, (7.21)

in which we have used Lemma 7.4.

We differentiate the first equation of (7.6) about x and get

utx + (uux)x = −kΛ−2uxx −
m− 1

2
Λ−2(u2)xx

= −kΛ−2(1− Λ2)u− m− 1

2
Λ−2(1− Λ2)u2

= −kΛ−2u+ ku− m− 1

2
Λ−2u2 +

m− 1

2
u2. (7.22)

Multiplying Eq.(7.22) by ux and using Lemma 7.4, we obtain

1

2

d

dt

∫
R
u2xdx = −

∫
R
ux(uux)x −

m− 1

2

∫
R
uxΛ

−2u2dx

= −1

2

∫
R
u3xdx+

m− 1

2

∫
R
uΛ−2(u2)xdx. (7.23)

Differentiating (7.22) again with respect to x, we get

utxx = −(uux)xx − kΛ−2ux + kux −
m− 1

2
Λ−2(u2)x

+
m− 1

2
(u2)x. (7.24)

Using Lemma 7.4, we have

∫
R
uxxΛ

−2uxdx = −
∫
R
uxΛ

−2uxxdx = −
∫
R
ux(Λ

−2u− u)dx = 0 (7.25)
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and

∫
R
uxxΛ

−2(u2)xdx = −
∫
R
uxΛ

−2(u2)xxdx

= −
∫
R
ux(Λ

−2u2 − u2)dx = −
∫
R
ux(Λ

−2u2)dx. (7.26)

We multiply (7.24) by uxx, integrate the obtained equation over R and get

1

2

d

dt

∫
R
u2xxdx = −

∫
R
uxx(uux)xxdx− k

∫
R
uxxΛ

−2uxdx

−m− 1

2

∫
R
uxxΛ

−2(u2)x +
m− 1

2

∫
R
uxx(u

2)xdx

= −5

2

∫
R
uxu

2
xxdx−

m− 1

2

∫
R
u3xdx+

m− 1

2

∫
R
uxΛ

−2u2dx

= −5

2

∫
R
uxu

2
xxdx−

m− 1

2

∫
R
u3xdx−

m− 1

2

∫
R
uΛ−2(u2)xdx. (7.27)

From (7.21), (7.23) and (7.27), we have

1

2

[
d

dt

∫
R
u2dx+

d

dt

∫
R
u2xdx+

d

dt

∫
R
u2xxdx

]
= −5

2

∫
R
uxu

2
xxdx−

m

2

∫
R
u3xdx−

m− 1

2

∫
R
uΛ−2(u2)xdx. (7.28)

Assume that we can choose a constant C > 0 to satisfy

ux(t, x) ≥ −C, t ∈ [0, T ), x ∈ R. (7.29)

From (7.28) and Lemma 7.5, we have

1

2

[
d

dt

∫
R
u2dx+

d

dt

∫
R
u2xdx+

d

dt

∫
R
u2xxdx

]
≤ max(

5C

2
,
mC

2
)
(∫

R
u2dx+

∫
R
u2xdx+

∫
R
u2xxdx

)
+ c. (7.30)
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Letting

E(t) =

∫
R

(
u2 + u2x + u2xx

)
dx (7.31)

and using (7.30), we get

E(t) ≤ max(5C,mC)

∫ t

0

E(τ)dτ + 2ct+ E(0), (7.32)

from which together with the Gronwall inequality, we have

E(t) ≤ (2ct+ E(0))emax(5C,mC)t, (7.33)

which derives u(t, x) ∈ H2(R). Since L∞(R) ∈ H1(R), we get ux(t, x) ∈ L∞(R).

Thus we have shown that the bound of ux(t, x) from below for (t, x) ∈ [0, T )×R,

which contradicts the assumption of the theorem. The proof is completed. �

Theorem 7.7. Assume u0(x) ∈ Hs(R) with s ≥ 2. If lim
t→T
‖ u ‖Hs(R)= ∞ and

T <∞, then

∫ T

0

‖ ux(τ, x) ‖L∞ dτ =∞. (7.34)

Proof. We write

ut − utxx + kux +muux = (uux)xx = (1− Λ2)(uux). (7.35)

Applying (Λs−1u)Λs−1 to both sides of (7.35) and using integration by parts, we
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derive the inequality

1

2

d

dt

∫
R
[(Λs−1u)2 + (Λs−1ux)

2]dx

≤ |k|
∣∣∣ ∫

R
(Λs−1u)Λs−1(ux)dx

∣∣∣+ |m− 1|
∣∣∣ ∫

R
(Λs−1u)Λs−1(uux)dx

∣∣∣
+
∣∣∣ ∫

R
Λs−1uΛs+1(uux)dx

∣∣∣
≤ c

(∣∣∣ ∫
R
(Λs−1u)Λs−1(ux)dx

∣∣∣+
∣∣∣ ∫

R
(Λs−1u)Λs−1(uux)dx

∣∣∣
+
∣∣∣ ∫

R
ΛsuΛs(uux)dx

∣∣∣)
= c(K1 +K2 +K3), (7.36)

where c depends on k and m.

Using the Cauchy-Schwartz inequality results in the inequality

|K1| ≤ c ‖ u ‖Hs−1‖ u ‖Hs . (7.37)

Applying Lemmas 4.10 and 4.11, we get

∣∣∣ ∫
R
(Λsu)Λs(uux)dx

∣∣∣ =
∣∣∣ ∫

R
(Λsu)[Λs(uux)− uΛsux]dx

+

∫
R
(Λsu)uΛsuxdx

∣∣∣
≤ c ‖ u ‖Hs

(
‖ u ‖Hs−1‖ ux ‖L∞ + ‖ u ‖Hs‖ u ‖L∞

)
+

+ ‖ ux ‖L∞‖ Λsu ‖L2

≤ c
(
‖ u ‖L∞ + ‖ ux ‖L∞

)
‖ u ‖2Hs , (7.38)

which results in

|K3| ≤ c
(
‖ u ‖L∞ + ‖ ux ‖L∞

)
‖ u ‖2Hs . (7.39)
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Similarly, we get

|K2| ≤ c ‖ u ‖2Hs−1

(
‖ u ‖L∞ + ‖ ux ‖L∞

)
. (7.40)

It follows from (7.37), (7.39) and (7.40) that

1

2

d

dt

∫ ∞
−∞

[(Λs−1u)2 + (Λs−1ux)
2]dx

≤ c(‖ u ‖2Hs−1(R) + ‖ u ‖2Hs(R))

×
(

1+ ‖ u ‖L∞(R) + ‖ ux ‖L∞(R)

)
, (7.41)

where c > 0 is a constant. From (7.41), we get

‖ u ‖Hs≤ c ‖ u0 ‖Hs e
∫ t
0 (1+‖u‖L∞+‖ux‖L∞ )dt. (7.42)

If lim
t→T
‖ u ‖Hs(R)=∞ and T <∞, using (7.42), we obtain

∫ T

0

‖ ux(τ, x) ‖L∞ dτ =∞. (7.43)

The proof is completed. �



CHAPTER 8

Summary and future research

8.1 Summary

In this paper, a generalized Benjamin-Bona-Mahony-Burgers equation(GBBMB),

a generalized Degasperis-Procesi equation, and three integrable non-evolutionary

equations with quadratic, cubic and quartic nonlinearities, respectively, have been

investigated. Various dynamical properties of the five nonlinear equations have

been derived. Specifically, we obtain the following results.

(1). For a generalized Benjamin-Bona-Mahony-Burgers equation with third

order spatial derivative, which takes the form

ut − utxx − auxx + bux + upux + kuxxx = 0, a ≥ 0,

we prove that for any T > 0, ‖ u ‖L∞(R)≤ c ‖ u0 ‖H1(R), and derive the one-

sided L∞ estimate on the first order spatial derivative ∂u(t,x)
∂x
≤ c0(1 + e−at) and

the estimate
∫ t
0

∫∞
−∞

∣∣∣∂u(t,x)∂x

∣∣∣4dxdt ≤ c1Te
c1T , t ∈ [0, T ], where c0 and c1 only

depend on the coefficients a, b, p, k and the norm ‖ u0 ‖H1(R). Making use of the

method in Xin and Zhang [101], we prove that the GBBMB model has global weak

solutions in C([0,∞)× R) ∩ L∞([0,∞);H1(R)). If the GBBMB equation exists

strong solution and its initial data satisfy certain assumptions, the L1(R) local
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stability of solutions to the GBBMB equation is established by using Kruzkov’s

techniques of doubling the space variables.

(2). For an integrable non-evolutionary partial differential equation with

quadratic nonlinearities and quasi-local higher symmetries, using the Kato the-

orem, we prove the existence and uniqueness of local strong solutions to the

equation in the space C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) where s > 3
2
. The

blow-up condition is given under certain assumptions. If 1 ≤ s ≤ 3
2
, using

Aubin’s compactness theorem and various estimates of the solutions, we prove

the existence of local weak solutions in Hs(R).

(3). For an integrable non-evolutionary partial differential equation with cubic

nonlinearities and quasi-local higher symmetries, imposing certain restrictions on

the initial value and using Aubin’s compactness theorem and various estimates

of the solutions, we prove that the equation possesses local weak solutions in

L2([0, T ], Hs(R)), 1 < s ≤ 3
2

in the sense of distribution. Constructing a Cauchy

sequence of the solutions in C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) with s > 3
2
,

we show that the equation has a unique local strong solution.

(4). The existence of global weak solutions to the Cauchy problem for a

nonlinear Camassa-Holm type equation with quartic nonlinearities is proved in

C([0,∞)×R)∩L∞([0,∞);H1(R)) by assuming that initial value satisfy u0(x) ∈

H1(R) and ‖ ∂u0(x)
∂x
‖L∞(R)<∞. We do not assume that the initial value satisfies

the sign condition. Namely, our assumption is weaker than the sign condition.

The key contributions in this chapter include establishing a space-time high-

er integrability estimate and a super bound estimate on the first order spatial

derivative of the solution.

(5). For a generalized Degasperis-Procesi equation(GDP), we derive condi-

tions for which the local strong solutions of the GDP equation blow up in finite

time. The wave breaking of solutions to the equation is investigated.
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8.2 Future research

For the GBBMB equation discussed in chapter 3, we only prove the existence of

global weak solutions and the L1 local stability if the initial data satisfy certain

conditions. However, we do not prove the uniqueness of global weak solutions

and the uniformly Lp(R) (1 ≤ p <∞) stability of the solution. These problems

remain to be investigated in our future works.

For the two integrable nonlinear partial differential equations we investigated

in Chapters 4 and 5, we only establish the well-posedness of local strong solutions

in C([0, T );Hs(R))∩C1([0, T );Hs−1(R)) (s > 3
2
). Establishing conditions on the

initial data to ensure the existence of global strong solution for the two equations

in C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))(s > 3
2
) is a challenging problem. We

shall consider this problem by adding certain assumptions on the initial value in

future studies.

For the nonlinear Camassa-Holm-type equation with quartic nonlinearities in

Chapter 6, we only prove the existence of global weak solutions in C([0,∞) ×

R) ∩ L∞([0,∞);H1(R)). The uniqueness of the global weak solutions remains

unexplored. Establishing conditions to ensure the uniqueness of the global weak

solutions could be considered in further studies.

For the generalized Degasperis-Procesi equation discussed in Chapter 7, other

blow-up criteria need to be found to further study the equation. Establishing

suitable conditions to ensure the existence of the global solution in the Sobolev

space also constitutes our future research.
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