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ABSTRACT 

Groundwaters host vital resources - 97% of unfrozen freshwater worldwide - playing a key 

role in the near future of humanity. Stygofauna (subterranean obligate aquatic 

invertebrates), together with microbes, are crucial actors in shaping and maintaining the 

organic matter cycles in these environments, which are characterized by low energy and 

scarce carbon availability. However, our knowledge about how these ecosystems function is 

limited, and subterranean environments are increasingly exposed to anthropogenic impacts 

and climate change-related processes. In order to dig into groundwater ecological 

dynamics, we investigated arid zone calcrete stygofaunal and microbial patterns linked with 

contrasting rainfall periods (low rainfall (LR), dry season; high rainfall (HR), wet season), 

through an interdisciplinary design composed of multivariate analyses, hydrology, isotopic 

ecology and genetics. Our results from multivariate investigations indicate that stygofaunal 

niches are closely linked to the hydrodynamic conditions influenced by different rainfall 

regimes (LR and HR). Isotopic evidence depicted stygofaunal tendencies towards 

opportunistic and omnivorous habits, typical of an ecologically tolerant community, shaped 

by bottom-up controls linked with changes in carbon flows. Biochemical data suggest that 

the inflow of rainfall under HR is responsible for increased nutrient concentrations in the 

system and dissolved organic carbon pulses. Metabarcoding data confirmed that the HR 

regime, and its subsequent terrestrial carbon incorporation, triggers a cascade effect driven 

by microbes (organic matter processors), copepods and amphipods (biofilm grazers), which 

is finally transferred to the aquatic beetles (top predators). This study provides baseline 

biochemical and ecological data for stygofaunal interactions in calcretes. Further long-term 

investigations, incorporating broader ecological perspectives, will help to understand the 

impacts associated with climate change and anthropogenic pressures on one of the most 

threatened and underrated ecosystems in the world. 
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Thesis overview 

Chapter 1 provides an introductory analysis on the research background and overall 

significance of the thesis. First, a review on the ecological mechanisms - including spatial, 

temporal and functional dynamics - shaping groundwater ecosystems is presented. Second, 

methodological and analytical challenges in groundwater functional studies are outlined. 

Finally, research gaps are pinpointed and overarching aims of the thesis are depicted. 

Chapter 2 presents a literature review focused on the current state of the art in 

groundwater ecology, combined with an integrative overview on analytical designs able to 

bring new light to subterranean environmental studies. The first section of this chapter 

gives an overview of stygofaunal studies in groundwater environments considering three 

main topics: stygofaunal diversity, ecotoxicology and biochemical pathways. Next, 

knowledge gaps are identified, and a multidisciplinary design to widen perspectives in the 

field of groundwater functional ecology is outlined. This chapter was published in the 

scientific journal Science of the Total Environment in January 2019. 

In Chapter 3, this research looks at the calcrete ecological niche dynamics of stygofauna 

under two contrasting rainfall periods corresponding to the dry and wet seasons. Here, I 

elucidate the linkages between rainfall events and subterranean community assemblages. 

Environmental gradients and community patterns are analysed through conventional 

multivariate statistical tools, allowing investigation of seasonal shifts in niche occupations 

both at community and species levels. Insights into hydrogeochemical patterns and 

associated biotic adaptations are also presented and discussed in detail. This study provides 

baseline information - filling some of the preliminary research gaps that emerged in chapter 

2 - for the understanding of the ecological mechanisms regulating subterranean aquatic 

invertebrates in calcretes. This chapter was published in the scientific journal Ecohydrology 

in September 2019. 

Chapter 4 explores food web interactions of the stygofaunal community at the calcrete 

through some of the isotopic techniques outlined in the chapter 2. This chapter involves the 

deciphering of stygofaunal trophic dynamics under contrasting rainfall regimes. Here, the 

information gathered in the chapter 3 is expanded by the application of a combination of 

conventional (bulk tissue stable isotope analysis) and novel (compound specific stable 
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isotope analysis) isotopic analyses to unravel energy flows, trophic level characterizations 

and dietary proportions within stygofauna. Analysis of shifts in organic matter 

incorporations and feeding preferences related to the different rainfall periods is then 

coupled with abundance data to infer broad ecological functioning of the system. This 

chapter was published in the scientific journal PLOS ONE in October 2019. 

Chapter 5 and 6 focus on the study of the biogeochemical flows from a ‘bottom-up’ 

perspective and bring to practice the multidisciplinary approach advanced in the chapter 2. 

These chapters elucidate the biogeochemical functioning of the ecosystem by tracking the 

path of carbon across the biotic communities of the calcrete. The ‘top-down’ ecological 

insights provided by the findings of chapter 3 are complemented with further analysis of 

organic flows in the calcrete. Chapter 5 centers on the analysis of carbon inputs with an 

interdisciplinary design combining carbon isotope investigations (carbon stable isotopes 

and radiocarbon analyses) and fluorescence tests in water, and metabarcoding analyses on 

the microbial community from the calcrete. Insights into the linkages between rainfall-

driven carbon inputs and metabolic responses from the microbial community are provided. 

Chapter 6 expands this research approach to the stygofaunal community to unravel a 

complex web of interactions between primary and secondary consumers, and predators. 

Overall, both studies provide novel untangling of the ecological mechanisms sustaining 

biota in arid zone subterranean environments, and final diagrams depicting the main 

biogeochemical pathways are presented at the end of the sections.  

Chapter 7 presents the main conclusions of the thesis and, finally, Chapter 8 provides final 

reflections on the work, suggests future research avenues and concludes the thesis with a 

poetic license from the author. 
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Chapter 1| Background and significance 

1.1 Ecological dynamics in groundwaters 

1.1.1 Groundwater habitats 

Groundwater constitutes the largest reservoir of liquid freshwater in the world (Griebler et 

al., 2009). Within the continental earth, 97% of all unfrozen freshwater is subsurface, 

whereas lakes and rivers represent less than 2% (Gibert et al., 1994). Groundwater provides 

a life-sustaining source that plays a central role in many aspects: it supplies water to billions 

of people, plays a central part in irrigated agriculture and influences the health of many 

ecosystems (Gleeson et al., 2012). However, both the growing demand, the declining 

availability and quality are generating threatened systems (Millennium Ecosystem 

Assessment, 2005). In contrast to their value, subsurface environments are one of the least 

explored on earth (Griebler et al., 2014).  

From a purely ecological perspective, groundwaters are considered as ‘extreme habitats’ 

(Danielopol et al., 2000). The intrinsic aphotic nature of subterranean habitats triggers a 

substantial lack of primary production responsible for truncated trophic webs characterized 

by the dominance of primary and secondary consumers (Hancock et al., 2005). As a result, 

groundwaters are typically low in sources of energy (Huppop, 2000), and biota principally 

rely on energy from allochthonous organic matter which is transported to groundwater 

habitats by water flow, percolation, gravity or animals, in the form of coarse and fine 

particles (Deharveng & Bedos, 2000).  

Groundwaters contain vertical stratifications which are unique to each aquifer (Ingebritsen 

& Sanford, 1999) and highly dependent on local hydrogeological patterns (Kresic, 2006). 

However, the environmental conditions within different zones can be very stable, especially 

if compared to their surface counterparts (Humphreys, 2009). The border areas between 

surface, unsaturated zones, aquatic sediments, and the saturated sub-superficial 

environments harbour a great biodiversity, responsible for the transfer of nutrients, 

particles, organisms and energy between zones (Danielopol & Griebler, 2008; Gibert et al., 

2009). Chemoautotrophic production has also been found to regulate biological diversity in 
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aquifers (e.g. Hutchins et al., 2016) and caves (e.g. Engel et al., 2007). As a result, a 

composite range of chemical and physical factors play a key role in shaping the biotic 

communities (microbes, stygofauna and troglofauna) from both pristine (e.g. Culver & Sket, 

2000; Humphreys, 2001) and contaminated (e.g. Hartland et al., 2011; Korbel et al., 2014) 

aquifers. Understanding the inter-relationship of these dynamics and their interactions with 

groundwater biota is essential to better understand these ecosystems. 

1.1.2 Temporal and spatial patterns in groundwater ecosystems  

Precipitation patterns play a key role in shaping essential inputs of nutrients and organic 

matter to groundwater ecosystems (Reiss et al., 2019). Rainfall-driven recharge processes 

have been found to trigger changes in community assemblages that reflect the response to 

newly available resources such as increased dissolved oxygen levels (Dole‐Olivier et al., 

2009) and dissolved organic matter (DOM) (Datry et al., 2005; Brankovits et al., 2017). 

Microbially-processed DOM is then transferred to higher trophic levels of subterranean 

biota by higher primary consumers (Simon et al., 2003; Hancock et al., 2005). Overall, these 

ecological dynamics shape fundamental energy flows sustaining biota in groundwater 

environments (Foulquier et al., 2011; Stegen et al., 2016). 

Distributions of subterranean communities usually have low temporal variability (Culver, 

1982), a commonly accepted assumption in groundwater ecology (i.e. Crouau-Roy et al., 

1992: Poulson et al., 1995; Lunghi et al., 2017). In a long-term study on terrestrial cave 

communities, Di Russo et al. (1997) found that the species composition of resident cave 

invertebrate community was stable over time, and similarly, Farnleitner et al. (2005) 

reported little to no temporal variability in microbial structure from karst springs, 

suggesting stable ecological patterns across seasons. In line with these findings, Venarsky et 

al. (2012) found no effect of seasonality on the macroinvertebrate community structure 

and litter breakdown rates from cave streams.  

However, the vast majority of current investigations focus on changes in community 

assemblages rather than shifts in ecological function, such as food web interactions. 

Moreover, the few functional studies available present short-term approaches (i.e. Francois 

et al., 2015; Hartland et al., 2011; Hutchins & Schwartz, 2013). Incorporation of medium to 
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long-term plans (e.g. Olivier et al., 2019) is needed to allow monitoring of how groundwater 

food webs change over time and to model whole system ecosystem functioning.  

The direct influence of spatial factors on subterranean food web dynamics is largely 

unexplored. Investigations focusing on changes in diversity patterns suggest that spatial 

trends are linked to shifts in food web assemblages (e.g. Hahn & Fuchs, 2009; Tobin et al., 

2013). Local geological features such as porosity and permeability influence ecohydrological 

dynamics, faunal movement through aquifers, and affect evolutionary and biodiversity 

patterns in groundwaters (e.g. Dole-Olivier et al., 2009), but there is only limited 

understanding of their relationship to functional ecology. Malard et al. (2009) reported that 

European porous aquifers host more diverse stygofaunal communities when compared to 

karst systems, suggesting that greater hydrological connectivity might trigger higher 

colonisation rates by competitively superior species. Voids and interstices also provide 

potential refugia for the subterranean communities, easing dispersion of key consumers 

(i.e. copepods and amphipods, Hutchins et al., 2016; Hyde et al., 2018), triggering 

differential ecological niche occupations (Kozel et al., 2019) and driving changes in food 

web assemblages (Hose et al., 2017). 

Among surficial spatial drivers influencing groundwater biotic communities, vegetation, 

land cover and land use are thought to play a key role in shaping the variability of 

community assemblages in groundwaters (e.g. Baker et al., 2000; Boulton et al., 2008; 

Español et al., 2017). Site-specific organic pollution episodes have also been found to 

trigger shifts of groundwater functional community assemblages in several subterranean 

ecosystems (Venarsky et al., 2014 and references therein).  

Given the subterranean lightless environment limits autochthonous carbon production 

(Humphreys, 2006), the incorporation of nutrients and organic matter (e.g. surface plants, 

carbon from the surface sediment, organic matter stored in the hyporheic zone) is 

frequently dependent on the characteristics of the hyporheic and surface frameworks 

(Aldous et al., 2014). As a result, subterranean invertebrate trophic web dynamics are 

influenced by the biogeochemical interactions between surface and subsurface 

environments at a site-specific level (Foulquier et al., 2011). Concurrently, top-down effects 

exerted from spatially subsidised consumers can affect availability of in situ resources and 

occasionally trigger trophic cascades (Polis et al., 1993).   
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At a larger scale, the categorisation of groundwater ecoregions (‘stygoregions’, as defined 

by Stein et al., 2012) indicates that region-specific patterns can drive different functional 

community structures. Nonetheless, to date the role played by space in shaping 

groundwater food web interactions follows a rather descriptive approach, with very few 

studies focusing on the functional changes at a local scale (e.g. Simon et al., 2003; 

Brankovitz et al., 2016; Francois et al., 2016;). Improved understanding of the effect of 

spatial dynamics over time on subterranean food web interactions will provide vital 

guidance for management and conservation plans in groundwaters (Maurice & Bloomfield, 

2012). 

1.1.3 Subterranean biotic communities  

The discovery of the first subterranean species, the salamander Proteus anguinus (Laurenti, 

1768), dates to the late 18th century in the Dinaric Alps of Slovenia and northeast Italy. 

Almost three centuries after, technological advances have allowed remote aquatic sampling 

processes at cave outflows as well as in springs and wells, leading to a rapidly expanding 

groundwater taxonomy (Delamare Deboutteville, 1960), increasing the importance of 

ecology to the wider field of groundwater research.  

Subterranean fauna are commonly referred to as blind and transparent. All categories are 

recognised by their regressive attributes, especially a lack of eyes and pigment plus a range 

of morphological traits that may include vermiform shape, elongate appendages and 

elaborate extra-optic sensory structures (Schmidt & Hahn, 2012) (Figure 1.1).  
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Figure 1.1. Groundwater morphological traits highlighted on a specimen of Scutachiltonia 
Axfordi (King 2012). 

Groundwater fauna can be broadly separated into two categories - stygofauna and 

troglofauna - according to their life cycles and ecological niche occupation. Stygofaunal 

specimens - i.e. beetles, amphipods, copepods, etc.- belong to obligate aquatic species 

inhabiting interstices and voids in within the groundwater matrix. Troglofauna - i.e. snails, 

spiders and scorpions - live in caves, cavities and fractured rock between the water table 

and the superficial soil layer. Both groups play a key role in regulating the nutrient cycles 

and energy flows shaping groundwater ecosystems (e.g. Simon et al., 2003; Vernarsky et al., 

2014). However, occurrence of subterranean species was recognised well before their 

ecological importance. Subterranean systems are now accepted as comparable in 

complexity to surface ecosystems (Rouch, 1977; Gibert et al., 1994), but globally it is only in 

the last decades that the magnitude of biodiversity present in subterranean waters has 

been accepted and given prominence (e.g. Rouch & Danielopol, 1997; Sket, 1999; Culver & 

Sket, 2000; Danielopol et al., 2000; Wilkens et al., 2000). 

Resources in groundwater habitats are patchily distributed and often scarce (Poulson, 

2012). Subterranean species show a range of evolutionary adaptations to these oligotrophic 

environments such as low metabolic rates and generalist feeding habits (Gibert & 

Deharveng, 2002). Concurrently, high resistance to starvation (Hervant & Renault, 2002) 

and omnivorous strategies (Huppop, 2000) allow maximum use of varied and unpredictable 

resources (Levinton, 1972).  
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As mentioned earlier, subterranean communities are considered as basally truncated by the 

lack in situ photosynthesizers (Hancock et al., 2005), and this functional deficiency is a vital 

co-driver in shaping less diverse biotic assemblages when compared to their surface 

counterparts (Boulton et al., 2008). Simultaneously, the scarcity of predators at the top of 

the food web triggers redundancies in feeding strategies linked with frequent overlaps 

between niche occupations of consumers and predators (e.g. Mammola et al., 2016). As a 

result, the predominant paradigm of groundwater trophic ecology studies refers to short 

and simplified food chains (e.g. Culver, 1994; Tobler, 2008).  

However, this assumption has been rarely empirically tested, mainly due to several 

methodological challenges (e.g. Hervant et al., 1999; Korbel et al., 2017), and recent studies 

based on novel analytical approaches advocate for a substantial review of this classic 

archetype. Francois et al. (2016) described high degrees of trophic specialization on 

sedimentary biofilms in two species of detritivorous cave isopods. In contrast with the idea 

of high degrees of trophic plasticity within low-productivity cave environments, the authors 

suggest that evolutionary forces trigger targeted feeding preferences on the most abundant 

resources available. Hutchins et al. (2014) provided evidence of horizontal stygobiotic 

trophic diversity and overall increased food chain length, fostered by 

chemolithoautotrophic processes in a karst aquifer. Bradford et al. (2014) reported species-

specific trophic behaviours among three top predator subterranean diving beetles of an 

arid zone calcrete.  However, limited evidence of trophic niche partitioning was provided, 

with beetles observed to be both scavengers and predators. 

Overall, these results suggest that there are composite pathways for the incorporation and 

transfer of organic matter in groundwaters. Besides the tendency towards simple trophic 

assemblages, subterranean trophic interactions seem to be shaped by a combination of 

opportunistic behaviours and evolutionary driving forces (Venarsky et al., 2014). 

Investigation is required into the role of different factors in regulating groundwater energy 

flows, food web interactions, and the connection to the maintenance of groundwater 

assemblages. 
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1.2 Methodological challenges and novel approaches  

Trophic ecology research in groundwater systems faces obstacles in terms of the cryptic 

nature and lack of accessibility of subterranean environments. Our current knowledge of 

subterranean food web interactions is a composite of conventional studies using 

morphological trait-based analyses (e.g. Fryer, 1964; Schram & Lewis, 1989), gut content 

studies (e.g. Humphreys & Feinberg, 1995; Weitowitz et al., 2019) and isotopic/genetic 

approaches (Simon et al., 2003; Bradford et al., 2014). The former technique makes use of 

the morpho-behavioural concept of functional feeding groups (FFGs) (Cummins & Klug, 

1979), an approach widely employed in surface freshwater ecology studies (e.g. Brodersen 

et al., 1998; Tomanova et al., 2006). However, this categorization in groundwater 

investigations is frequently challenging due to the plastic and opportunistic trophic habits 

that stygofauna experience (Stoch, 1995). Gut content analyses, while useful for 

preliminary investigations on trophic habits, are based on a qualitative approach, providing 

a rather descriptive and simplified interpretation of the groundwater energy flows and food 

web interactions.      

Regarding isotopic and genetic designs, recent advances in investigations from other 

research fields such as marine biology (Close, 2019 and references therein), archaeology 

(e.g. Jarman et al., 2017; Jaouen et al., 2019;) freshwater (e.g. Liew et al., 2019; Holtvoeth 

et al., 2019) and terrestrial (e.g. Gómez et al., 2018; McMahon et al., 2015) ecology are 

creating new perspectives into the study of food web interactions, and this thesis argues for 

and demonstrates the transfer of these to subterranean environments. During the last 50 

years, investigations of trophic dynamics from a functional perspective have mainly focused 

on the use of isotopes (Boecklen et al., 2011 and references therein). To date, the limited 

set of isotope ecology studies in groundwaters focuses on bulk carbon (δ13C) and nitrogen 

(δ15N) stable isotope analysis (SIA). However, these proxies are complicated by biochemical 

signal mixing from different compound groups (i.e. amino acids, lipids) and fractionation 

pathways, which can distort interpretations of dietary proportions (Steffan et al., 2013). 

Application of δ13C and δ15N compound specific stable isotope analysis (CSIA) of amino acids 

can help to refine trophic analyses and overcome some of the above issues (Ishikawa, 

2018), but has not previously been applied in groundwater ecosystems. 
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δ13C CSIA pinpoints potential carbon sources down to the bottom of the trophic chain 

(Larsen et al., 2013). δ15N CSIA distinguishes between compounds reflecting the source 

isotopic signal, and that enriched with each trophic step, thus providing crucial information 

on prey-predator interactions (Chikaraishi et al., 2007; Takano et al., 2017). A combination 

of both techniques in a dual CSIA (δ13C and δ15N CSIA) analysis provides a powerful tool to 

unravel energy fluxes and trophic relationships within food webs (Pomerlau et al., 2017; 

Thorp & Bowes, 2017; Pollierer et al., 2019). However, issues can arise with respect to 

sample size, and the cost of the technique, with rates quoted between $150 and $3000 

AUD per sample (Blyth pers. comm). 

Additional to stable isotopes, radiocarbon data (14C) can provide useful information on 

carbon flows and organic matter incorporation within biotic communities (e.g. Briones et 

al., 2005; Fernandes et al., 2013; Keaveney et al., 2015). While now employed in freshwater 

ecology (Larsen et al., 2018 and references therein), and used in groundwater to 

characterize the age of water bodies (Cartwright et al., 2020), the implementation of this 

proxy is almost unexplored in groundwater ecology. Given the low energy balances 

characterising groundwater environments, 14C has the potential to form a key tracer in 

untangling carbon incorporation and trophic pathways, allowing vital improvement of the 

understanding of biogeochemical forces sustaining groundwater biota (McMahon et al., 

2019). 

Integration of geochemical approaches with semi-quantitative genetic techniques would 

provide further refining of groundwater food web dynamics. Highly reliable molecular 

techniques such as DNA metabarcoding on faeces (e.g. Guillerault et al., 2017), gut content 

(e.g. Krehenwinkel et al., 2017) or whole organisms (e.g. Deagle et al., 2017) have the 

potential to bring light to processes like cannibalism or trophic niche partitioning, which are 

otherwise hard to detect in groundwater through just one method. Nonetheless, the lack of 

a robust datasets, together with the usually low metabolic rates that stygofauna and 

troglofauna experience (Malard & Hervant, 1999), provide major challenges to the field.  
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1.3 Research gaps and thesis question  

1.3.1 Research gaps in groundwater ecology 

Subterranean ecosystems are vital components of the global water cycle and play a key role 

in the maintenance of the ecological balance between aquatic and terrestrial environments 

(Griebler et al., 2014). However, groundwaters are increasingly subjected to 

(over)exploitation and anthropogenic contamination, triggering high levels of stress and 

affecting both groundwater abundance and quality (Richey et al., 2015). Increased rates of 

habitat fragmentation and desertification (e.g. Mace et al., 2018; Mantyka-Pringle et al., 

2015; Huang et al., 2016) coupled with global modelling predictions of sea level rise 

(Neumann et al., 2015), snow cover contraction (Mudryk et al., 2017) and more frequent 

heat waves coupled with cyclonic precipitations even in temperate climate regimes (Mann 

et al., 2017), represent serious threats to the future of biota worldwide (Ripple et al., 2017). 

In groundwaters, artificial warming has found to be linked to increased subterranean 

biodiversity loss rates (Brielmann et al., 2009), and increased rainfall variability is likely to 

affect recharge patterns (Rosenberg al., 1999). 

Despite the environmental importance of subterranean ecosystems and the advances that 

the discipline has experienced during the last 20 years, the field groundwater trophic 

ecology is still in its infancy. As a result, as underlined in the previous sections, a number of 

research gaps emerge. For instance, substantial lack of knowledge still exists on the role 

played by seasonality shaping stygofaunal trophic interactions. In fact, while a number of 

studies have focused on the geochemical mechanisms shaping the input of nutrients and 

subterranean habitats (i.e. Bryan et al., 2016), our knowledge on the linkage between the 

abiotic framework and the biotic community (microbes and styfofauna/troglofauna) is still 

sparse. Moreover, the majority of the limited studies available in the literature focus on 

shifts in community assemblages and do not explore functional patterns. To unravel the 

convoluted dynamics shaping groundwater environments, interdisciplinary approaches are 

required to link together usually disconnected disciplines such as isotope ecology, genetics 

and hydrology, amongst others. This multi-proxy approach has the potential to lead a vital 

transition from purely descriptive to functionally-based investigations in groundwaters, 

providing wider, and urgently needed, perspectives to the field. 
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1.3.2 Groundwater ecology in Australia 

Groundwater ecology studies in Australia gained prominence after the discovery of a vast 

number of highly diverse species during the early 90’s (Guzik et al., 2011). Almost 30 years 

later, we now know that Australia hosts a plethora of subsurface habitats and associated 

faunas both in karst and non-karst environments (Eberhar & Humphreys, 2003). These 

studies, in parallel with the research carried out in Europe and the US, highlighted the 

importance of stygofauna in maintaining the energy flows and environmental conditions in 

groundwaters (Boulton et al., 2008; Neville et al., 2010). To date, several bioecological and 

ecotoxicological investigations have been carried out across the Australian continent (e.g. 

Humphreys, 2008; Korbel & Hose, 2011; Bradford et al., 2014), with the western half being 

the focus of the majority of them due to its high taxonomic diversity (e.g. Humphreys, 

2001; Hancock & Boulton, 2008). Specifically, the Western Australian regions of the Yilgarn 

and the Pilbara have some of the highest subterranean faunal diversity worldwide, with 

research aided by the environmental impact requirements of mining explorations in the 

area (Eberhard et al., 2005; Hyde et al., 2018)  

However, over 80% of the Western Australian groundwater fauna remain undescribed, a 

figure that is not surprising considering the size of the region, and the extent of suitable 

habitats (Guzik et al., 2011). Considering the high level of endemism in subterranean 

ecosystems and recent advances in molecular techniques such as eDNA or DNA 

metabarcoding (i.e. White et al., 2020), the number of described taxa is likely to increase in 

the near future. 

In Australia, high rates of biodiversity loss and habitat fragmentation are predicted through 

global warming due to the strong influence of El Nino‐ Southern Oscillation (ENSO) and 

Indian Ocean Dipole (IOD) (Horwitz et al., 2008). These impacts, once linked with increased 

anthropogenic pressures such as over-extraction and contamination, put at risk the 

preservation of the delicate ecological balance sustaining groundwater biota (Spangler & 

Hahn, 2018). As a result, the understanding of the ecological dynamics sustaining Australian 

subterranean ecosystems is not only imperative for obvious conservational reasons, but can 

also provide crucial guidelines for a more sustainable management of one of the biggest 

diversity hotspots worldwide. 
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1.3.3 Thesis question: Functional ecology of calcrete aquifers in arid zone Western 

Australia 

The Sturt Meadows calcrete in Western Australia (located in the Yilgarn region) is one of 

the most studied subterranean ecosystems in the world, with 15 years of genetic 

investigations (e.g. Cooper et al., 2008; Guzik et al., 2009; Bradford et al., 2010; Bradford et 

al., 2014). This makes it an ideal site for research addressing some of the knowledge gaps 

identified above. 

This thesis addresses the question of how biogeochemical factors influence the ecological 

functioning of groundwater ecosystems in a shallow calcrete environment. In doing so it 

also provides proof of concept data for the implementation of interdisciplinary research 

designs integrating geology, hydrology, conventional ecology, isotopic ecology and genetics 

within groundwater environments and including the application of the novel techniques 

highlighted in the section 1.2.  

The thesis has five overarching aims: 

I. refine groundwater functional ecology studies through the application of novel 

techniques widely employed in other research fields 

II. understand the role played by rainfall conditions in shaping ecological niche 

occupations amongst the stygofaunal community from an arid zone aquifer 

III. elucidate calcrete energy flows and stygofaunal food web interactions under 

contrasting rainfall periods 

IV. unravel the biogeochemical mechanisms shaping changes in local organic source 

inputs and microbial metabolic shifts 

V. investigate the rainfall-driven ecological dynamics characterizing potential trophic 

cascades across the subterranean biota of the calcrete       

The significance of aim I is the urgent need to integrate new techniques in the field of 

groundwater ecology to better understand not just the composition, but the functioning of 

these ecosystems, a crucial step in understanding the environmental, social and economic 

role played by subterranean ecosystems. Aim II relates to the need for comprehension of 

the hydrological mechanisms shaping subterranean biotic communities. The baseline 

information generated will be useful for ecological modelling and the understanding of the 

impact of global change on aquifer recharge processes. Aims III, IV and V expand the extent 

of the previous objective by incorporating functional aspects, a keystone step to elucidating 

the ecosystem functioning of the Sturt Meadows calcrete. Overall, this study provides a 

thorough ecological investigation on the biogeochemical flows regulating subterranean 
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biota from a Western Australian aquifer. Insights into stygofaunal seasonal shifts, food web 

interactions, microbial dynamics and nutrient cycles are gained by the application of a 

multidisciplinary research design. This knowledge will then be able to shape future 

investigations in a wider range of groundwater and surface water environments.  
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Abstract 

Groundwaters provide the vast majority of unfrozen freshwater resources on the planet, 

but our knowledge of subsurface ecosystems is surprisingly limited. Stygofauna provide 

vital ecosystem services, but we know little about how their ecosystems function. The 

cryptic nature of groundwaters, local endemism and site-specific adaptations, represent 

major obstacles for the field. To overcome these challenges, requires a holistic design 

drawing on classical ecology, taxonomy, molecular ecology and geochemistry. This study 

presents an approach based on the integration of existing concepts in groundwater ecology 

with three more novel scientific techniques: compound specific stable isotope analysis 

(CSIA) of amino acids, radiocarbon analysis (14C) and DNA analyses of environmental 

samples, stygofauna and gut contents. The combination of these techniques allows 

elucidation of ecosystem functions that are often obscured in small invertebrates and 

cryptic systems. δ13C and δ15N CSIA provides a linkage between biogeochemical patterns 

and ecological dynamics. It allows the identification of stygofaunal food web structures and 

energy flows based on the metabolic pathway of specific amino groups. Concurrently, 14C 

provides complementary data on the carbon recycling and incorporation within the 

stygobiotic trophic webs. Changes in groundwater environmental conditions, and 

subsequent community adaptations, can be pinpointed via the measurement of the 

radiocarbon fingerprint of water, sediment and specimens. DNA analyses are a rapidly 

expanding approach in ecology. eDNA is a biomonitoring tool, while metabarcoding of 

individuals and/or gut contents provides insight into diet regimes. In all cases, the 

application of the approaches in combination provides more powerful data than any one 

alone. By combining these quantitative and qualitative approaches via Bayesian Mixing 

Models, linkages can be made between community composition, energy and nutrient 

sources in the system, and trophic function. This suggested multidisciplinary design will 

contribute to a more thorough comprehension of the biogeochemical and ecological 

patterns within these undervalued but essential ecosystems. 

Key-words: groundwater, stygofauna, trophic ecology, CSIA, 14C, eDNA, DNA 

metabarcoding, Bayesian mixing models.  
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2.1 Introduction 

Groundwater – water stored underground in the fissures and spaces in soil, sediment and 

rocks - constitutes 97% of all unfrozen freshwater (Danielopol et al., 2003; Gibert, 

Danielopol & Stanford, 1994). This subsurface freshwater contributes to the base flow of 

rivers and provides water to ecosystems, communities, and crops (Gleeson et al., 2012) and 

supports a wide variety of groundwater dependent ecosystems (Hancock, Hunt, & Boulton, 

2009; Mackay, 2006; Merz, Evans & Clifton, 2001). In themselves, groundwaters form 

unique ecosystems (Gibert et al., 1994b) varying from small, sometimes isolated 

environments (e.g. a water body in a cave) to extensive, more connected aquifers (e.g. 

alluvial or karstic systems) (Danielopol et al., 2003; Gibert, Danielopol & Stanford, 1994; 

Gibert & Deharveng, 2002). Many subterranean ecosystems are connected hydrologically 

as well as to surface waters through springs, parafluvial and hyporheic systems, and 

therefore can be conceived as a continuum of ecosystems (Freckman et al., 1997).  

Several studies (e.g. Brown et al., 2011; Eamus & Froend, 2006; Griebler & Avramov, 2014; 

Kløve et al., 2011) have emphasised the value of ecosystem services provided by 

groundwater environments. However, it is only recently that the socio-environmental 

values of these ecosystems have been recognised by countries around the world (Maurice 

& Bloomfield, 2012). In the USA, law (US Fish and Wildlife Service, 2002) protects some 

endangered groundwater species. Released in December 2006, the European Union 

Groundwater Directive states the importance of protective measures for groundwater 

ecosystems and notes the urgent need for further research (EU-GWD, 2006). The Western 

Australian Environmental Protection Authority (EPA, 2003) includes limited obligations to 

investigate the distribution of subterranean species for environmental assessment in case 

of any subterranean exploitation.  

Following these legal frameworks, several research groups have developed integrative 

approaches for groundwater ecological assessments (Griebler et al., 2010; Griebler et al., 

2018; Hahn, 2006; Korbel & Hose, 2017; Stein et al., 2010; Steube, Richter & Griebler, 

2009). Stein et al. (2012) developed the concept of stygoregions - a biogeographical 

classification based on stygofaunal pattern distributions for Central Europe - and their study 

represents the first wide-scale integrative approach for groundwater studies. Cornu, Eme 

and Malard (2013) followed with a groundwater habitat map of Europe. Heading in the 
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same direction, a first classification system of groundwater habitats for the UK was recently 

introduced by Weitowitz et al. (2017) . 

In spite of the growing awareness of the complexity of groundwater ecosystems, increasing 

demands for water extraction and the concomitant declining availability and quality 

continue to generate threats (Millenium Ecosystem Assessment, 2005). Aquifer 

overexploitation through intense urbanisation and industrial/agricultural developments 

results in ground water level decline, contamination, sea water intrusion, and subsidence 

(e.g. Gleeson et al., 2012; Wada et al., 2010); issues that worldwide are leading to the loss 

of entire aquatic ecosystems, both surface and subsurface (Griebler, Avramov & Hose, 

2018; Zektser & Lorne, 2004). Wada and Heinrich (2013) reported that 8% of transboundary 

aquifers - TBAs; defined as “an aquifer or aquifer system, parts of which are situated in 

different States” (Article 2c in Stephan, 2009) - globally were under stress, and many TBAs 

over Africa, Asia and Europe have been under an increasing stress rate for fifty years. 

Recently, Richey et al. (2015) employed remote sensing observations from NASA’s Gravity 

Reco and Climate Experiment (GRACE) to provide the first global observation-based 

quantification of groundwater resilience and buffer capacity. They concluded that of the 

world’s 37 largest aquifers, 21 had exceeded their sustainable tipping point (aquifer’s 

recharge via natural processes like rainfall, snowmelt, etc.), with 13 of them seriously 

depleted due to little to no recharge (Richey et al., 2015). Many studies at regional and 

local scales also show declining water tables (Amos et al., 2014; Castle et al., 2014; Love et 

al., 1993; Scanlon et al., 2012; Shah, 2007; Van der Gun & Lipponen, 2010), indicating that 

groundwaters are amongst the most vulnerable ecosystems in the world.  

During the last decade, groundwater environmental assessment has become crucial in 

elucidating the ecological quality of subsurface environments, and the development of 

management plans (e.g. Griebler et al., 2010; Hancock, Boulton & Humphreys, 2005; Korbel 

& Hose, 2017; Stein et al., 2010; Steube, Richter & Griebler, 2009). Stygobiotic fauna, or 

stygofauna, inhabiting the interstices and voids in which groundwater is found, are  reliable 

bioindicators for detecting ecological patterns and hydrogeological processes (Dumas, Bou 

& Gibert, 2001; Malard, Plenet & Gibert, 1996; Maurice & Bloomfield, 2012; Schmidt et al., 

2007; Stein et al., 2010). Due to their sensitivity to environmental changes, this biocenosis 

is the object of many studies (Galassi et al., 2014; Galassi et al., 2009; Griebler et al., 2010; 
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Hancock, Boulton & Humphreys, 2005; Marmonier et al., 2013; Steube, Richter & Griebler, 

2009).  

Groundwater environments host relatively simple community assemblages (Poulson & 

White, 1969) compared with terrestrial and aquatic surface ecosystems, providing useful 

models for the study of ecological principles (Gibert et al., 2009). The mandatory need to 

intergrate geology, biology and hydrochemistry in groundwater investigations has been 

stressed by several researchers (e.g. Gibert et al., 2009; Hancock, Boulton & Humphreys, 

2005; Humphreys, 2009; Larned, 2012; Steube, Richter & Griebler, 2009; Wicks & 

Humphreys, 2011), as has the need to place this interdisciplinary integration within a much 

broader ecological design (Maurice & Bloomfield, 2012). “The time is ripe for ecologists and 

biogeographers of subterranean environments to participate in the larger debate toward 

advancing general community ecology” (Gibert et al., 2009).  

This paper provides: (i) an integrative examination of the existing knowledge about 

stygofaunal diversity, ecological patterns and trophic web interactions in groundwater 

environments; (ii) a novel approach to stygofaunal groundwater ecology based on the 

integration of trophic ecology via isotopic indicators and genetics; and (iii) a statistical 

linkage, based on Bayesian mixing models, integrating cross-disciplinary techniques. This 

proposed combined approach will help shed light to the fundamental key factors that 

govern groundwater biodiversity, and help understand the ecological functioning of one of 

the most distinct and fragile ecosystems on Earth. 

2.2 Stygofauna vs Environment: diving into groundwater dynamics 

Several factors control the occurrence of biota in groundwater ecosystems. Geological and 

physical conditions (occurrence of interstitial spaces, voids, etc.) determine the abiotic 

structure (Danielopol et al., 2003); concurrently, hydrological and chemical processes 

establish the conditions of the environmental network shaping the subsurface community 

(Galassi et al., 2017). As a result, the biological framework is strongly linked to 

hydrogeochemical dynamics via a complex network of interactions (Madsen & Ghiorse, 

1993). 
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Two aspects make groundwater unique compared with edaphic and surface aquatic 

environments (Gibert et al., 1994a): the water residence time can vary from several weeks 

to millions of years, and the lack of photosynthesis limits the organic carbon available for 

secondary production. Danielopol, Pospisil and Rouch (2000) described these environments 

as ‘extreme’ habitats, due to the lack of light and the shortage of organic nutrients. 

However, although environmental conditions are harsh, they are in most cases stable and 

predictable. Also, in light of a pronounced structural heterogeneity, i.e. geological and 

physicochemical stratification, conditions within different zones are likely to be highly 

constant. The border areas between surface, unsaturated zones, aquatic sediments, and 

the saturated sub-superficial environments harbour highly adapted communities that serve 

to transfer nutrients, particles, organisms and energy between compartments (Gibert et al., 

1994b; Griebler & Lueders, 2009).  

Energy flows are one of the most important factors in the regulation of groundwater 

environments (Humphreys, 2006), with the dynamics shaped by chemical and physical 

patterns (Huppop, 2000). Allochthonous organic matter (transferred by water flow, 

infiltration or gravity) provides one input, especially in shallow subsurface communities 

(Pabich, Valiela & Hemond, 2001; Shen et al., 2015). Bacterial communities either rely on 

transported organic material, or feed from the rocks via chemoautotrophy (Kinkle & Kane, 

2000). Organic matter is partly assimilated by microorganisms, and the resulting biomass is 

thought to constitute the basal food source for stygofauna (Boulton, 2001; Hofmann & 

Griebler, 2018). Microbes constitute an essential biological component in groundwater 

ecosystems (Griebler & Lueders, 2009) - in particular with respect to the organic carbon 

stock, biogeochemical processes and the cycling of elements such as C, N, as well as 

biodiversity - but due to the size of the research field, are outside the scope of this review. 

Stygofauna play a key role in the maintenance of subsurface environmental conditions. 

They contribute to microbially driven water purification via stimulation of microbial 

processes and consumption of microbial biomass (Murray et al., 2006), while their 

consumption and excretion of organic matter controls and cultivates the biofilm (Boulton et 

al., 2008; Mermillod-Blondin & Rosenberg, 2006). Stygofaunal biological activities (grazing, 

burrowing, bioturbating, etc.) help to maintain the hydraulic connectivity between aquifers 

and surface environments (Murray et al., 2006; Stumpp & Hose, 2017) (Figure 2.1).  
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Figure 2.1. Groundwater impacts and stygofaunal functions in terms of maintenance of the 
environmental quality: a) preservation of groundwater hydraulic connectivity through 
grazing, burrowing and bioturbation; b) water purification from the excess of nutrients and 
organic matter; c) biofilm proliferation through the trophic regime and d) water depuration 
from contaminants. 

As a result, groundwater functional integrity is dependent on the health of its stygofaunal 

community assemblage (Boulton et al., 2008). Overuse or pollution of groundwaters risks 

altering this delicate ecological balance (Nevill et al., 2010). The consequent loss of 

individual food web components – followed by ecological cascade effects – is likely to have 

a considerable negative impact on both biodiversity and the vital ecosystem services 

provided by groundwater systems (Boulton et al., 2008; Chapelle, 2001; Griebler & 

Avramov, 2014; Miller & Boulton, 2005). 

2.3 Beyond the (subterranean) big picture 

Only latterly has the complexity of groundwater ecosystems been considered as 

comparable to surface ecosystems (Gibert et al., 2009; Humphreys, 2008), although with a 

characteristic lack of primary producers resulting in a truncated trophic structure (Gibert & 

Deharveng, 2002). The existing literature mostly addresses the general dynamics of 

subterranean ecosystems and their interaction with the surface environments (e.g. 

Camacho, 1992; Detty & McGuire, 2010; Gibert et al., 1994b; Maxwell & Kollet, 2008). 

Moreover, our knowledge related to biodiversity, endemism and phylogenetic patterns is, 
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although steadily growing, far from complete (Humphreys, 2006). There is limited research 

on groundwater faunal communities with respect to biotic/abiotic interactions, trophic 

studies, and energy and nutrient flows, especially that applying a biogeochemical 

multidisciplinary approach (Boulton et al., 2008; Griebler & Lueders, 2009; Hancock, 

Boulton & Humphreys, 2005). In the following sections, we review the most relevant works 

focusing on each of these three priority areas.  

2.3.1 Stygofaunal diversity 

Stygofauna comprise a diverse array of lineages derived from various geological periods 

(Culver & White, 2005), and groundwater ecosystems can be seen as ‘living museums’ 

(Griebler, Malard & Lefebure, 2014). Stygofaunal diversity is dominated by crustaceans, 

accounting for about 40% of all freshwater crustacean species (Danielopol, Pospisil & 

Rouch, 2000). The groundwater fauna also includes nematodes, molluscs, mites, anellids 

and a few groups of insects (e.g. Deharveng et al., 2009; Des Châtelliers et al., 2009; Galassi, 

Huys & Reid, 2009; Gibert & Deharveng, 2002; Spangler & Botosaneanu, 1986) (Figure 2.2).  

 

Figure 2.2. Examples of stygofaunal (including meiofauna) specimens from the community 
at Sturt Meadows calcrete aquifer (Leonora, Western Australia): a) Paroster 
macrosturtensis (Watts & Humphreys, 2014), b) Scutachiltonia axfordi (King, 2012), c) 
Tubificidae (Vejdovský, 1884)  and d) Cyclopoida (Burmeister, 1834). 

Stygofaunal biodiversity hotspots are mainly distributed within karst and pseudokarst 

settings along temperate gradients in the northern temperate hemisphere and the 

Australian continent (Culver & Sket, 2000; Guzik et al., 2011) (Table 2.1). There have been a 

number of attempts to estimate global or regional stygofaunal diversity (Culver & 

Holsinger, 1992; Gibert et al., 2009; Guzik et al., 2011), despite the lack of reliable data 
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from Africa, Asia or South America and only sparse taxonomy from Australia. Culver and 

Holsinger (1992) proposed 50,000 to 100,000 species around the globe. Culver and White 

(2005) cited 7700 known stygofaunal species, of which 2000 were found in Europe.  

Gibert et al. (2009) analysed the results from surveys carried out in six European regions 

(Wallonia (Belgium), Roussillon (France), French Jura (France), Cantabria (Spain), Lessinia 

(Italy) and Krim (Slovenia)) within the PASCALIS project, the biggest large-scale coordinated 

project on groundwater biodiversity. A total of 112 new species to science were reported, 

and 515 species were registered in the six areas, with Krim (151 species known after the 

survey) hosting the highest diversity. 

Guzik et al. (2011) estimated 4140 species for subterranean systems in the western half of 

Australia, suggesting the Pilbara and Yilgarn regions are global diversity hotspots. Halse et 

al. (2014) collected 350 species in the Pilbara, citing similar approximations for the Yilgarn 

(Humphreys et al., 2009). These areas harbour the highest stygofaunal diversity in the 

world, along with the Balkan Peninsula (330 species, excluding a large portion of Slovenia) 

(Sket, Paragamian & Trontelj, 2004).  

However, most stygofaunal diversity is undescribed (Gibert & Deharveng, 2002; 

Humphreys, 2009; Maurice & Bloomfield, 2012), including 80% of the Western Australian 

stygofauna (Guzik et al., 2011). Taking into account the high level of endemism and cryptic 

species, together with recent genetic technological progress, the number of recognised 

taxa is expected to considerably increase in the near future. Here, molecular methods are 

key in identifying species (Bickford et al., 2007; Eme et al., 2018), due to the lack of 

taxonomists and the morphological convergence typically associated with subterranean 

lineages. 
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Table 2.1. Major stygofaunal diversity hotspots around the world. 

COUNTRY OR STATE REGION NO. OF STYGOBIONTS KEY TAXA REFERENCES

Italy Lessinia 98 Copepoda, Amphipoda Galassi et al., 2009 

Slovenia Krim 151 Oligochaeta, Mollusca Sket, 1999; Sket et al., 2004 

Spain Cantabria 83 Oligochaeta, Amphipoda Achurra et al., 2015; Gibert et al., 2009 

France Jura 62 Copepoda, Gastropoda Dole-Olivier et al., 2009

Belgium Wallonia 32 Oligochaeta, Ostracoda Martin et al., 2009

Texas Edwards/Balcones 27 Amphipoda, Mollusca Gibert et al., 2009; Longley, 1981  

Tennessee Appalachians 24 Isopoda, Amphipoda Niemiller & Zigler, 2013

Kentucky Interior low plateu 14 Copepoda, Amphipoda Gibert et al., 2009; Lewis & Reid, 2007

Western Australia Kimberley, Pilbara, Yilgarn, Nullarbor 219 Coleoptera, Ostracoda Guzik et al., 2011

New South Wales Peel valley 63 Syncarida, Acarina Hancock & Boulton, 2008

Queensland Pioneer valley 19 Copepoda, Syncarida  Hancock & Boulton, 2008

China Yunnan, Guizhou, Guangxi 17 Decapoda Pan et al., 2010

C, L, B, T, V, M* Southest Asia 122 Decapoda, Isopoda Brancelj et al., 2013 

* refers to Cambodia, Laos, Burma, Thailand, Vietnam and Malaysia  
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2.3.2 Pressures on groundwater ecosystems 

In spite of being one of the most valuable natural resources, groundwaters are subjected to 

increasing overexploitation pressures worldwide (e.g. Kapoor & Maheshwari: Reddy, 2005; 

Scheihing & Tröger, 2018). Although there is a controversy about the definition and 

quantification of aquifer overexploitation (Custodio, 2002), it is undeniable that the 

growing water demand from urban and agricultural developments is generating major 

threats to the conservation of biodiversity and environmental quality in subsurface 

ecosystems (e.g. Changming, Jingjie & Kendy, 2001; Humphreys, 2009; Liu et al., 2018; 

Menció & Boix, 2018). Groundwater over-extraction is often linked with environmental 

processes like seawater intrusion and increased pollution vulnerability, amongst others, 

whose effect on the biota is likely to be enhanced under a global warming scenario (e.g. 

Esteller & Diaz-Delgado, 2002; Gejl et al., 2018; Guermazi et al., 2018;) 

Nonetheless, it has been demonstrated only recently that artificial warming of groundwater 

- on a local to regional scale - coincides with a decrease in biodiversity (Brielmann et 

al., 2009; Spengler & Hahn, 2018). As a result, a number of studies have started 

incorporating global warming into species distribution models (Kløve et al., 2014; Mammola 

& Leroy, 2018; Mammola, 2018 and references therein). However, our understanding of 

climate change effects on subterranean habitats is still incomplete with the field under-

researched. 

Besides overexploitation and climate change, anthropogenic impacts on groundwater 

ecosystems include increasing contamination with chemicals and nutrients that respectively 

pose ecotoxicological risks and modulation of community composition and functioning (e.g. 

Appelo & Postma, 2004; Marmonier et al., 2018; Mösslacher, 2000). Growing 

industrialization and agricultural production, waste deposition, and the exponentially 

increasing production and use of synthetic chemicals (currently over 80 million registered) 

have led to poor groundwater quality in many areas of the world (Griebler, Avramov & 

Hose, 2018). Prominent classes of pollutants involve organic chemicals such as petroleum 

hydrocarbons and halogenated solvents that typically distribute from point sources. From 

diffuse (non-point) sources, nutrients from fertilization (e.g. nitrate and ammonia), 

pesticides (e.g. triazines), as well as a multitude of ECCs (Emerging Contaminants of 



 
 

34 

 

Concern) such as pharmaceuticals, personal care products, artificial sweeteners, and 

nanoparticles, to name a few, are increasingly detected in aquifers (Lapworth et al., 2012). 

This level of pollution implies a real or a potential consequence on the health of the 

´ecological´ receptor, i.e. the communities in groundwater ecosystems.  

However, the direct and indirect effects of these chemicals on groundwater biota and 

ecosystem services provision is hardly known. There is evidence that some groundwater 

species are more sensitive to individual pollutants than their close epigean relatives 

(Caschetto et al., 2017; Di Lorenzo et al., 2014; Di Lorenzo et al., 2015a), likely due to their 

lower metabolic rates (Di Lorenzo et al., 2015b). However, other studies have obtained 

different results indicating that sensitivity is pollutant specific (Avramov, Schmidt & 

Griebler, 2013; Reboleira et al., 2013). Ecotoxicity data for groundwater taxa are almost 

exclusively derived from acute tests, and although chronic tests are more appropriate for 

stygobionts and groundwater ecosystems, such tests are rare (Di Marzio et al., 2013). 

Currently, new concepts in ecotoxicology and biological risk assessment are being 

developed and tested (Cifoni et al., 2017; Di Lorenzo  et al., 2018).   

Although aquifers have the intrinsic capacity to purify incoming water to a high quality 

(Meckenstock et al., 2015), this is based on a sensitive balance between the low microbial 

biomass and activity in aquifers and the flux of organic carbon and nutrients to the aquifer 

(Griebler et al., 2018). Pollutant overload, however, soon overtaxes the ecosystem’s 

capacity for “natural attenuation” (Rivett et al., 2008).  In this context, micropollutants are 

of particular importance. Since they occur at very low concentrations, generally they cannot 

be degraded efficiently by microbes, and hence persist in the environment for long periods 

(Wick & Chatzinotas, 2019). As a consequence, chronic toxic effects are an overseen threat 

for the higher organisms (i.e., invertebrates) and micropollutants have already initiated 

modulation of groundwater food webs (e.g. Arslan et al., 2017; Ding et al., 2015; Yan et al., 

2016).  

2.3.3 Biogeochemical patterns 

2.3.3.1 Biotic/abiotic transitions 

To understand ecological dynamics in groundwater we need to characterise the processes 

shaping these ecosystems. Several reviews of groundwater ecosystems (e.g. Danielopol & 
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Griebler, 2008; Griebler et al., 2010; Hancock, Boulton & Humphreys, 2005; Tomlinson & 

Boulton, 2010) are based on the analysis of the structural and functional relationships 

between abiotic (e.g. trace elements, physicochemical and environmental parameters) and 

biotic (community assemblage) components. Within groundwaters, the main controls on 

stygofaunal diversity are thought to be the depth of the water column (Datry, Malard & 

Gibert, 2005; Mauclaire & Gibert, 2001), pH (Galassi et al., 2009; Hancock, Boulton & 

Humphreys, 2005) and dissolved oxygen levels (Dole‐Olivier et al., 2009; Tomlinson & 

Boulton, 2010).  

These variables, and any variation in water chemistry leading to fluctuations in carbon and 

nutrient levels, are thought to influence biotic distribution patterns (Maurice & Bloomfield, 

2012). Galassi et al. (2017) investigated the effect of geochemical conditions on the 

invertebrate community (mainly copepods) of sulfidic caves in central Italy (Frasassi). They 

showed that, while pH and oxygen shaped the non-sulfidic pool invertebrate assemblages 

(showing a positive correlation), sulfide concentration is the major variable controlling the 

community composition in sulfidic karst environments. Dumnicka, Galas and Krodkiewska 

(2017) compared stygofaunal distributions associated with two bedrocks (limestone and 

flysch) and found that neither geology nor water chemistry were major controls. This is in 

line with the lack of explanatory interactions between abiotic and biotic frameworks found 

in several other studies (Dumas, Bou & Gibert, 2001; Galassi et al., 2009; Hahn & Fuchs, 

2009; Halse et al., 2014).  

Besides inaccessibility, the difficulty in assessing ecological processes in groundwater 

resides in the complexity of integrating factors operating on different spatial and temporal 

scales (Hancock, Boulton & Humphreys, 2005). As a result, our understanding of the linkage 

between stygofauna, microbial communities and groundwater physical-chemical dynamics 

is still unclear (Griebler, Malard & Lefebure, 2014). However, the incorporation of 

biochemical approaches based on organic matter (OM) flows is providing new insights (e.g. 

Hutchins et al., 2016). Carbon sources in freshwater environments are major drivers of 

biogeochemical processes, influencing the availability of nutrients and shaping food webs 

(Hancock, Boulton & Humphreys, 2005). These patterns have been the subject of several 

studies during the last decade (e.g. Datry, Malard & Gibert, 2005; Hancock & Boulton, 2008; 

Menció, Korbel & Hose, 2014). Griebler et al. (2010) found statistically significant positive 

correlations between stygofaunal α-diversity and abundance, and the dissolved organic 
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carbon (DOC) content in aquifers. This correlation must be mediated via microbial activity, 

as stygofauna do not live directly on DOC (Datry, Malard & Gibert, 2005). However, while 

many studies (e.g. Chapelle, 2001; Hofmann & Griebler, 2018; Mermillod-Blondin et al., 

2015; Pabich, Valiela & Hemond, 2001) show a positive correlation between microbial 

biomass and DOC, none also looked at fauna.  

Brankovits et al. (2017) focused on the investigation of DOC and methane paths – derived 

from degraded terrestrial OM – as carbon sources for the microbiota in a Yucatan peninsula 

coastal karst aquifer. Their results underlined the importance of heterotrophy, 

methanotrophy and chemoautotrophy as basal, microbial trophic pillars of the food web. 

Other systems characterized by different biogechemical frame conditions are likely to be 

organized differently. However, our knowledge about how the flow of OM – and 

biochemical flows in general – influence stygofaunal communities remains incomplete. 

Here, advanced analytical and statistical techniques, leading to the study of groundwater 

processes through integrative and novel perspectives offer the opportunity to advance the 

field (Bradford et al., 2014).  

2.3.3.2 Trophic dynamics 

During the past three decades, trophic studies have focused on marine (e.g. Bizzarro et al., 

2017; Edgar & Shaw, 1995; Hoekstra et al., 2002) and terrestrial (e.g. Dorresteijn et al., 

2015; Elmhagen & Rushton, 2007; Schmitz, Hambäck & Beckerman, 2000) ecosystems. The 

field of trophic ecology is still in its infancy within groundwater research, with little known 

about ecosystem functioning in terms of food webs and energy sources (Humphreys, 2009). 

The current trophic ecology paradigm in groundwater is simplified trophic dynamics 

dominated by generalists and opportunistic consumers (Sherry, 1990). However, this 

archetype has hardly been tested (Francois et al., 2016).  

Trophic studies on stygofauna – often small in size with poor access to gut or faecal 

contents – are subject to substantial technical and methodological challenges. As a 

consequence, the field of groundwater trophic ecology requires a multidisciplinary 

approach. Bishop, Humphreys and Longley (2014) investigated the metabolism and energy 

sources of epigean and hypogean Palaemonetes sp. (Decapoda, Palaemonidae) from the 

Edward aquifer (Texas USA) by applying stable C (δ13C), N (δ15N) and S (δ34S) isotope 
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analyses (SIA) to individual stygofauna. They revealed a composite geochemical system 

with organic and inorganic energy sources from methane and sulfates respectively, 

suggesting metabolic adaptation to the environmental conditions shaping the community. 

Hutchins et al. (2016) combined isotopic and biological approaches to assess the current 

subterranean ecology paradigm of subsurface obligate invertebrate communities 

characterized by simplified food web assemblages dominated by generalist feeding 

behaviours (e.g. Gibert & Deharveng, 2002; Poulson & White, 1969). They linked the 

microbial community with the stygofaunal one, depicting a complex food web based on 

chemolithoautotrophic production. Francois et al. (2016) used C and N SIA to delineate the 

degree of trophic specialization in two species of isopods - Proasellus valdensis (Chappius, 

1948) and P. cavaticus (Leydig, 1871). In agreement with Hutchins et al. (2016), their 

findings oppose the classic archetype of simplified generalist feeding niches.  

2.4 Filling (groundwater) voids: CSIA, 14C and DNA analysis 

Compared to surface systems there is a paucity of research into subterranean ecosystems, 

particularly with respect to functioning and response to environmental perturbation. To 

resolve this research gap, further studies linking ecology and the geochemical component 

are needed (Maurice & Bloomfield, 2012). To accomplish this, we propose complementing 

classic groundwater ecology research with three technical approaches (Figure 2.3): (1) 

Compound Specific Stable Isotope Analysis (CSIA), (2) Radiocarbon analysis (14C), and (3) 

molecular analysis including DNA metabarcoding and eDNA analysis.  

 

Figure 2.3. Diagram representing the integrative groundwater ecology design as a 
combination between the classic and the proposed approaches. 
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2.4.1 CSIA: deciphering food webs 

Carbon and nitrogen are the most important elements in biomass besides water (hydrogen 

and oxygen) (Eswaran, Van Den Berg & Reich, 1993; Hecky, Campbell & Hendzel, 1993; 

Meybeck, 1982). In pristine groundwater systems, the lack of photosynthesis leads to low 

abundances of organic carbon (Gibert et al., 1994b) - the concentration of DOC is in the 

range of a few mg/L with the fraction readily available to microbes being 10-100 times 

lower (Aiken, 2002; Gooddy & Hinsby, 2008; Shen et al., 2015). Concurrently, nitrogen 

content in groundwater varies in concentration and forms (Kreitler, 1974). While nitrate is 

the most abundant species and is usually transported through the groundwater flow 

(Spalding & Exner, 1993), dissolved organic nitrogen (DON) and ammonia are less 

concentrated and less mobile. The biological and geochemical processes involving these 

two essential elements play a key role in shaping the aquatic biota found in groundwater 

environments (Hancock, Boulton & Humphreys, 2005). Figure 2.4 illustrates a simplified 

model for the biological carbon and nitrogen paths in groundwaters. 

 

Figure 2.4. Combined biochemical cycles for carbon and nitrogen in aquifers. Carbon and 
nitrogen share similar first phases within their biological cycles in groundwaters. They both 
enter in the subsurface biological cycle either via the atmosphere (N2 and CO2 biological 
fixation carried out by bacteria, pathway 2n and 3n, and 2c and 3c, respectively) or via 
bores, subterranean streams to the hyporheic zone and soil percolation (pathway 1n, 1ns 

(seepage of nitrate)) and once subsurface (1c), both the particulate (PON and POC, both in 
minor concentrations) and dissolved organic phases (DON and DOC) are present. As per the 
carbon cycle, nitrogen can be either directly assimilated by microorganisms in its dissolved 
status (DON, pathway 4n; DOC, pathway 4c) or consumed/decomposed by bacteria or 
higher trophic levels (meiofauna and stygofauna) if particulate (PON, pathway 5n; POC, 
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pathway 5c). Nitrogen and carbon are then transferred along the trophic pathways in the 
food chain (from bacteria to meiofauna, pathways 9n and 6c), up to the top consumers 
(stygofauna, pathway 10n and 7c). Both bacterial and faunal respiration generate carbon 
dioxide (CO2, pathway 8c), which is fixed by the former or released to the atmosphere 
where groundwater exfiltrates, closing the cycle. The death of these organisms triggers the 
mineralization process, where microbes decompose organic N from the organic phase to 
NH4

+ (pathway 6n). Ammonium can then follow a double path: nitrification (microorganism 
convert ammonium to nitrate to obtain energy, pathway 7n.1) or N assimilation (pathway 
7n.2). The further chemical pathway can either lead to denitrification (N2 is released to the 
atmosphere, pathway 8n) or, once again, N assimilation (pathway 3n). POC: Particulate 
Organic Carbon; DOC: Dissolved Organic Carbon; PON: Particulate Organic Nitrogen; DON: 
Dissolved Organic Nitrogen. Dashed lines illustrate respiration (for carbon) or denitrification 
(for nitrogen). Information composed from Hancock, Boulton and Humphreys (2005) and 
Beaumont and Robert (1999). 

Only three carbon isotopes occur naturally: 12C, 13C and 14C. While 12C and 13C are stable, 14C 

exhibits radioactive decay. Nitrogen has two stable (14N and 15N) and several radioactive 

isotopes. Slight differences arise in the chemical and physical properties of stable isotopes 

from a quantum mechanical effect depending on dissimilar zero-point energies of the heavy 

and light isotopes. The higher zero-point energy of the lighter isotope means that a 

chemical bond formed by a lighter isotope is weaker than one by the heavier isotope 

(Bigeleisen et al., 1959). This principle controls the reactivity of the individual stable 

isotopes in biochemical reactions that may be accompanied by isotope fractionation 

(Bigeleisen & Wolfsberg, 1957), and thus isotope ratios in natural compounds and biomass 

vary due to kinetic effects during their production and consumption (transformation, 

mineralization). Commonly denoted by δ, isotope fractionation refers to the stable isotopic 

ratio between the heavy and the light isotopes, relative to a standard. Data are reported as 

per mil (‰):  

δ = [(Rsample/Rstandard) -1)] × 1,000 ‰ 

Rsample: the isotopic ratio of a sample (e.g., 13C Rsample = 13Csample/12Csample)  
Rstandard: the isotopic ratio of a standard or reference material  

The analysis of biochemical patterns of isotopic fractionation allows trophic pathways to be 

tracked through food webs (Du et al., 2015; Finlay & Kendall, 2007; Herman et al., 2000; 

Hondula et al., 2014; Middelburg, 2014). Isotope ratios measured per each individual/group 

of individuals can provide detailed isotopic fingerprints of the feeding interactions within 

specific trophic levels. This refined approach, once integrated within an ecological design 
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(isotopic ecology), allows tracking of biochemical energy flows and specific trophic 

assemblages to be deciphered.  

The δ13C signature of a heterotrophic organism is derived from the carbon signature of the 

primary food source, i.e. primary producers, at the base of the food web, and can for 

example be used to distinguish between consumers of C3 and C4 plants, heterotrophic 

microbial biomass and chemoautotrophs (Layman et al., 2007). The δ15N signature of 

biomass varies with both primary producers and specific food web positions, because 

animals preferentially incorporate 15N from their diet (Post, 2002). As a result, combined 

δ13C and δ15N analyses allow a detailed elucidation of system food sources and trophic 

dynamics (Arcagni et al., 2013; Finlay & Kendall, 2007; Huang et al., 2007; Middelburg, 

2014).  

Ecological SIA has mostly focused on ‘bulk’ analysis of whole tissues or organisms (Fry, 

2006). In groundwaters, trophic SIA has been focused on stygofaunal web interactions and 

biogeochemical processes (see section ‘2.3.3.2 Trophic dynamics’). However, this approach 

has also several shortcomings (Boecklen et al., 2011), including the conflation of separate 

biochemical pathways and signals, leading to difficult and sometimes conflicting data 

interpretation (Steffan et al., 2013). A more sophisticated approach involves the tracking of 

isotopes through detailed empirical fractionation rules for individual compounds known as 

compound specific SIA (CSIA – see Hayes (2001)). It targets major biochemical constituents 

of OM such as amino acids (e.g. Popp et al., 2007), sterols (e.g. Grice et al., 1998) and fatty 

acids (e.g. Collister et al., 1994), and serves to identify pathways of carbon and nitrogen 

flow through food webs. 

13C fractionation effects in herbivory experiments have been performed in a series of 

mesocosm experiments with copepods (common components of stygofaunal assemblages) 

and flagellates as food sources (Breteler et al., 2002). Faecal pellets were depleted in 13C by 

up to 11.3‰, but in mass balance with the 13C enrichment of both the copepod biomass 

and the carbon dioxide through respiration. The δ13C of faecal pellets adds a variable to the 

δ13C of particulate organic carbon (POC) in the environment, and DIC can be influenced by 

seasonal changes and availability of food. As a result, when food is scarce, proteins can be 

fractionated by copepods and lead to 13C-depleted POC (Breteler et al., 2002). δ13C CSIA 

studies of sterols in feeding experiments show that the dominant sterol in copepods retains 
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the δ13C “signature” of its dietary algal precursor. Thus, δ13C of sterols prove conservative 

tracers for herbivory regimes; δ13C of cholesterol in the faecal material released from 

copepods was the same as the δ13C of the sterols in their diet (Grice et al., 1998). 

Individual amino acids are typically divided into two categories: essential and non-essential. 

While plants, algae, and bacteria can synthesise essential amino acids de novo from a bulk 

carbon pool, animals have lost the enzymatic capability to do so at a rate sufficient for 

growth. As such, animals must acquire essential amino acids directly from their diet, 

resulting in little to no trophic fractionation (Du et al., 2015). Consequently, essential amino 

acid carbon isotope patterns provide an isotopic fingerprint of the food sources down to 

the bottom of the trophic pyramid (Fantle et al., 1999).  

With respect to nitrogen, two amino acids have been shown to discriminate between the 

source signal and trophic enrichment (Steffan et al., 2013). These are phenylalanine, an 

essential amino acid which experiences little enrichment with each trophic transfer, and 

glutamic acid, a non-essential amino acid (i.e. one which is synthesised by the animals, 

rather than being obtained directly from the food source), which experiences substantial 

enrichment because the carbon-nitrogen bonds are commonly cleaved during the 

metabolic processes (Macko et al., 1987). Based on these attributes, Chikaraishi et al. 

(2007) provided a concept for the characterization of the specific trophic position (TP) of an 

organism in a food web. The TP is calculated according to the following equation: 

TPGlu/Phe = [(δ15NGlu - δ15NPhe + β)/TDF] + 1 

β: Isotopic difference between glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe) in primary 
producers; TDF: Trophic Discrimination Factor (7.6 ± 1.2‰ = δ15NGlu - δ15NPhe) at each shift 
of trophic level.  

CSIA in consequence permits a more refined analysis than the bulk approach alone 

(Ishikawa et al., 2014) (Table 2.2). By confining the isotopic analysis to selected amino acid 

molecules, it is further possible to define the food web structure based on the metabolic 

pathway of specific amino groups, removing complicating influences from other 

biochemical fractionation (Chikaraishi et al., 2007; Chikaraishi et al., 2011; Steffan et al., 

2013). To date, the δ13C and δ15N CSIA approach has been used to unravel the trophic 

position of consumer species in aquatic (marine and freshwater) and terrestrial ecosystems 

(e.g. Chikaraishi et al., 2007; Chikaraishi et al., 2011; Lorrain et al., 2009; Popp et al., 2007; 
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Steffan et al., 2013). However, the study of trophic patterns via δ13C and δ15N CSIA is still in 

its infancy when it comes to groundwater research (Steffan et al., 2013). The majority of 

CSIA studies for aquifers have focused on contaminants and biomarkers (e.g. Amaral et al., 

2011; Bashir et al., 2015; Segal, Kuder & Kolhatkar, 2018). To the best of our knowledge all 

the SIA trophic studies in groundwater ecosystems so far employed bulk analysis (e.g. 

Bradford et al., 2014; Francois et al., 2016; Humphreys, 1999; Hutchins et al., 2016). Isotope 

ecology based on δ13C and δ15N CSIA therefore represents a further step towards a 

comprehensive understanding of groundwater ecosystems food web interactions. 

Table 2.2. Comparison of the main features of CSIA and bulk (SIA) analysis for the study of 
trophic relationships. Advantages (+) and disadvantages (-). [1] Takizawa et al., 2017; [2] 
Steffan et al., 2013; [3] Sauheitl, Glaser & Weigelt, 2009; [4] Chikaraishi et al., 2007; [5] 
Chikaraishi et al., 2011; [6] Fry et al., 2008; [7] Thorp & Bowes, 2017; [8] Hannides et al., 
2009; [9] Fry, 2006. 

Novel  approach 
[1,4,5] - Long used 

[6,9] +

δ15NGlu/Phe: centred 15N‐ enrichment va lues  (+7.6‰) [2,5] + δ15Nbulk: broad 15N ‐ enrich. va lues  (‐2.1 to +9.2 ‰) [4,1] -

δ13CCSIA: not affected by the uptake of tracer C-fragm. [3,7] + δ13Cbulk: overestimation of direct amino acid uptake [3] -

Detai led trophic discrimination [4,5,8] + Imprecise/Inaccurate trophic discrimination [3,4] -

CSIA BULK ANALYSIS

 

2.4.2 Radiocarbon dating (14C): digging into the path of carbon 

Radiocarbon (or 14C), a radioactive isotope of carbon, is produced continuously in the upper 

atmosphere by the interaction of neutrons generated from cosmic radiation with 

atmospheric 14N (Gäggeler, 1995). The resulting 14C reacts with atmospheric oxygen to form 

14CO2. In this form 14C is quickly distributed throughout the Earth’s atmosphere, transferred 

to other carbon reservoirs and included in the global carbon cycle. Radiocarbon enters the 

biosphere and living organisms via fixation in autotrophic production (e.g. photosynthesis). 

Once an organism dies, the 14C uptake ceases and the 14C content of the organism starts to 

decrease at a rate governed by its half-life of 5730 years (Godwin, 1962). Since its discovery 

(Libby, 1946), radiocarbon has been a reliable dating tool for the past 50,000 years in 

archaeological, geochemical and climate change research (e.g. Taylor, 1978; Walker & 

Walker, 2005). Radiocarbon is also produced artificially. Aboveground nuclear testing in the 

late 1950s and early 1960s produced high fluxes of thermal neutrons, which reacted with 

atmospheric nitrogen to form 14C. This caused a dramatic increase in the 14C content of the 

atmosphere, known as “Bomb-pulse radiocarbon” (Hua & Barbetti, 2004; Levin & 
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Hesshaimer, 2000). The excess atmospheric 14C level peaked in the mid-1960s and has since 

been decreasing due to rapid exchange between the atmosphere and other carbon 

reservoirs and injections of 14C-free fossil fuel into the atmosphere. Currently, the 

atmospheric 14C level is only slightly higher than its pre-bomb value (Graven et al., 2017; 

Hua, Barbetti & Rakowski, 2013). 

Conventionally, the atmospheric 14C level in 1950 (or year zero before present [BP]) is 

defined as 0‰  in Δ14C unit, which is the per mil deviation from the absolute radiocarbon 

standard (Stuiver & Polach, 1977). Natural carbon-bearing materials have a large range of 

Δ14C, spanning from -1000‰ for geological materials such as limestone and carbonates 

containing no 14C, to ~1000‰ for terrestrial plants growing in the Northern Hemisphere 

during the bomb peak period. This enables 14C to be employed as a powerful tracer for 

ecological research not only to distinguish between contributions of recent and old carbon 

sources to an ecosystem but also to provide the time frame of its carbon cycling (Ishikawa, 

Hyodo & Tayasu, 2013; Larsen, Yokoyama & Fernandes, 2018). For example, a high negative 

Δ14C value of samples indicates that they contain subfossil or aged carbon, while a small 

negative value suggests that their carbon is formed before 1950. A positive Δ14C value 

reveals that they contain modern carbon produced during the bomb period after 1955 

(Ishikawa, Hyodo & Tayasu, 2013; Keaveney, Reimer & Foy, 2015a). 

For groundwater, 14C mainly enters the system through water recharge. The main forms of 

carbon in groundwater are dissolved inorganic carbon (DIC) and dissolved organic carbon 

(DOC). Groundwater DIC mainly consists of CO2 and bicarbonate, which are generated from 

different steps of chemical reactions in unsaturated and saturated zones (Geyh, 2000; Han 

& Plummer, 2016). In the unsaturated zone, soil CO2 gas is dissolved in infiltrating water. 

The resulting dissolved CO2 reacts with possible soil carbonate minerals to form 

bicarbonate, and the DIC is then in exchange with soil CO2. When the infiltrating water 

reaches the saturated zone, the DIC reacts with aquifer carbonate minerals. The initial Δ14C 

value of groundwater DIC is usually lower than the Δ14C value of contemporaneous 

atmospheric (or terrestrial organic) samples, due to groundwater DIC comprising a mixture 

of modern carbon (soil CO2 partly derived from root respiration), aged carbon (contributed 

to soil CO2 from biological decomposition of dead OM) and 14C-free carbon (derived from 

carbonate minerals in soil and aquifer matrix). Radiocarbon in groundwater DIC has been 

long used to estimate the groundwater residence time for hydrogeological studies (Geyh, 
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2000; Han & Plummer, 2016 and references therein). Groundwater DOC consists of a 

diverse mixture of organic compounds, i.e. lipids, hydrocarbons, methane and humic 

components (Geyh, 2000). It is produced in soil, unsaturated and saturated zones by 

microbial degradation of organic detritus and via the oxidation of lignite or kerogen (Bryan 

et al., 2017; Geyh, 2000). Similar to groundwater DIC, groundwater DOC contains a mixture 

of young and old carbon derived from various pedogenic and/or geogenic sources 

(Wassenaar et al., 1990), and the initial Δ14C value of groundwater DOC is, therefore, 

usually lower than that of contemporaneous terrestrial organic samples. According to Geyh 

(2000) and references therein, organic compounds of fulvic acids rather than abundant 

humic substances are more suitable for radiocarbon dating of groundwater DOC. Although 

there is not much research on 14C in groundwater DOC (e.g. Aravena & Wassenaar, 1993), 

the combined use of DIC and DOC and their isotopes can improve our understanding of the 

evolution of groundwater, and better age determination based on 14C dating of 

groundwater DIC (Bryan et al., 2017). 

Atmospheric CO2, dissolved CO2 (a portion of groundwater DIC), particulate organic carbon 

(POC) and groundwater DOC are assimilated by microorganisms (archaea, bacteria and 

fungi), as indicated in the hypothetical groundwater food web shown in Figure 2.4. The 

resulting biofilms and POC (in minor concentration) are the basal food source for 

meiofauna and stygofauna. There is a large range of Δ14C values in the food web 

components, spanning from aged carbon (for POC), aged-to-recent carbon (for DIC and 

DOC), to modern carbon (atmospheric CO2).  

Similar approaches based on the large range of Δ14C of different carbon sources in 

ecosystems have been applied for ecological studies in freshwater, marine and terrestrial 

environments. Fernandes et al. (2013) investigated the trophic ecology of Lake Schwerin, a 

freshwater lake in Germany, by analysing 14C in flora and fauna collected from the lake as 

well as in DIC, POC and DOC. The results showed similar 14C content for an aquatic plant 

(primary producers), a zebra mussel (filter feeders), fishes (including a bream, a pike and a 

large eel; higher trophic species), and water DIC, indicating one important grazing food 

chain in the lake. Similarly, 14C content of a smaller eel and that of water POC were similar, 

but were much lower than water DIC, suggesting the smaller eel was a part of a detritus 

food chain. The 14C content of DOC was substantially lower than DIC and POC, suggesting 

DOC might not constitute a major nutrient contributor to Lake Schwerin’s food web. A 
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similar study was carried out in Lower Lough Erne, a humic, alkaline lake in northwest 

Ireland (Keaveney, Reimer & Foy, 2015a; Keaveney, Reimer & Foy, 2015b). The authors 

analysed zooplankton (calanoid copepod and Daphnia spp.), phytoplankton (algae), fishes 

(roach, perch and pollan), and water DIC, DOC and POC for 14C. They reported similarly 

depleted Δ14C values for Daphnia and water POC of ca. -100‰, indicating that Daphnia 

consumed some detrital fossil carbon. In contrast, much higher values for calanoid Δ14C 

were observed, suggesting modern carbon inputs within the food chain. These values 

varied between seasons with higher values in winter (similar to DOC Δ14C of ~0‰) and 

lower values in summer (within the range of algae Δ14C of ca. -50 ‰), suggesting a seasonal 

shift between allochthonous (terrestrial) and autochthonous carbon sources for calanoid 

copepods. For most of the cases, measured fish Δ14C values were found in the range 

between winter and summer calanoid Δ14C values. These results indicated that terrestrial 

organic carbon was evident in all trophic levels of Lower Lough Erne.  

In marine environments, 14C has been used for distinguishing the food sources between 

surface and bottom waters given that fresh algae usually have Δ14C higher than that of 

detritus (Larsen, Yokoyama & Fernandes, 2018 and references therein). Radiocarbon has 

also been applied in migration ecology (e.g. Eisenmann et al., 2017; Levin & Hesshaimer, 

2000). 

In terrestrial ecology, Briones, Garnett and Piearce (2005) employed radiocarbon to 

estimate the diet ages for earthworms. 14C ages of epigeic earthworms were younger than 

those of anecic or endogeic earthworms, indicating that the former species assimilated 

more recently fixed carbon, while older mineralised organic carbon formed a portion of the 

diet of the latter earthworms. A similar investigation on termites (primary consumers in a 

detrital food web) and bees (primary consumers in a grazing food web) was reported by 

Hyodo, Tayasu and Wada (2006). 14C has also been used to trace the fate of newly fixed 

carbon and to improve our knowledge on the turnover times of terrestrial ecosystem 

carbon pools (Pataki et al., 2003 and references therein). This becomes important under 

the current global change scenario as elevated atmospheric CO2 levels can result in 

increased rate of fixation of carbon in photosynthesis, which may change ecosystem 

function, affecting populations at different trophic levels.  
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The application of 14C analyses in groundwater ecosystems (as opposed to the waters 

themselves) is largely unexplored, but offers a powerful tool to decipher vital ecological 

dynamics. By analysing 14C in stygofauna and comparing them with Δ14C values of 

groundwater DIC, DOC and POC, the feeding ecology of subsurface faunal communities can 

be characterised. With recent technical advances in accelerator mass spectrometry (AMS), 

14C measurement of sub-milligram/microgram carbon (e.g. Hua et al., 2004; Santos et al., 

2007; Smith et al., 2010) and therefore analysis of small sample sizes of stygofauna and 

meiofauna can be achieved.  

2.4.3 eDNA and DNA metabarcoding: the new biomonitoring frontiers 

During the last 30 years, metagenomics (DNA sequencing of multiple genomes) and 

metabarcoding (DNA sequencing for genetic identification) have gained relevance within 

molecular ecology (Reusch & Wood, 2007). Originally mainly focused on microorganisms 

(Bass & Cavalier-Smith, 2004; Henne et al., 1999), these techniques involve the extraction 

and identification of genetic material directly from environmental samples (Bohmann et al., 

2014). As predicted by Shokralla et al. (2012), the latest advances in sequencing technology 

are providing new perspectives in ecological and environmental research. In this context, 

also analysis of free, environmental DNA (eDNA) is gaining prominence as a powerful tool 

for biological surveys and species monitoring. 

eDNA is total genomic DNA (nuclear or mitochondrial) that is shed or deposited from a 

biological organism (e.g. faeces, hair, saliva, chitin, mucus, etc.) into their environment. 

Sources of eDNA include soil, water and air. Once shed, DNA is subject to decay and 

degradation as a result of physical (e.g. UV light), chemical and/or biological processes (e. g. 

enzymatic digestions, microrganisms, etc.). eDNA can be detected in cellular or extracellular 

forms and allow a researcher to obtain a biological sample that is non-invasive to the target 

organism(s). As a result, individual species from a wide range of environments can be 

determined without the need for capture or trapping. This has the potential to avoid the 

often difficult sampling that is applied during traditional biological surveys, specifically in 

groundwater environments. 

Due to its typically low environmental concentration, eDNA is usually amplified via PCR and 

longer sequences able to specifically depict species diversities are characterized. Recent 2nd 
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generation sequencing techniques allow the generation of thousands of sequences at once, 

improving the reliability and repeatability of this analytical approach (Bohmann et al., 

2014). One of the most common techniques consists of targeting specific short fragments 

of mitochondrial DNA (mtDNA) and coupling them with other analyses such as DNA 

metabarcoding. 

eDNA offers a wide variety of applications, ranging from the detection and monitoring of 

common, invasive and endangered species to the study of intra- and interspecific 

evolutionary processes in ecosystems. As per Bohmann et al. (2014) three main eDNA 

application areas can be identified: 1) conservation biology/policy making decisions, 2) 

ecology, and 3) the understanding of ecosystems processes. The majority of eDNA to date 

studies focus on marine (e.g. Minamoto et al., 2012; Stoeck et al., 2010; Thomsen et al., 

2012) and surface freshwater (e.g. Ficetola et al., 2008; Goldberg et al., 2013; Pilliod et al., 

2013) environments. However, this new approach still suffers from methodological 

uncertainties such as the quantitative relationship and time frame behind the continuous 

eDNA production and degradation in the environment. False positives can occur as a result 

of false eDNA detection from external sources (e.g. water discharge, excrements, etc.). 

Given the hydraulic continuum between groundwater habitats and freshwater 

environments, both quality and reliability of the eDNA analyses can be affected by external 

factors such as sewage or waste water runoff. Nonetheless, as suggested by Bohmann et al. 

(2014), quality controls and optimized protocols can be implemented at each stage (e.g. 

samples collection, primer amplifications, sequence comparing) to improve the reliability of 

the analyses.  

Despite the aforementioned constraints, eDNA constitutes a powerful tool for the study of 

biological dynamics in aquatic ecosystems (Thomsen et al., 2012). Individuals from specific 

species can be detected anywhere - in free water or sediments - and not just at their 

source, providing reliable insights into the study of cryptic and vast environments such as 

rivers, lakes and oceans. As a result, the biological monitoring of endangered, cryptic and 

invasive species – usually difficult to detect with the classic sampling protocols – can be 

optimized.  

However, published eDNA studies from groundwater environments are sparse. The work of 

Gorički et al. (2017) focused on the detection of the rare cave-dwelling amphibian Proteus 
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anguinus (Laurenti, 1768). Their findings confirmed that a combination of eDNA and qPCR 

can be used as a species-specific monitoring tool in ecology, evolutionary history and 

taxonomy. Niemiller et al. (2018) collected and extracted eDNA directly from groundwater 

water samples to monitor the rare, autochthonous and endangered amphipod 

Stygobromus hayi (Hubricht and Mackin, 1940) and the widespread congener Stygobromus 

tenuis potomacus (Holsinger, 1967). They were able to detect the presence of the former 

species in springs where traditional sampling methodologies were not successful.  

The eDNA approach is often coupled with DNA metabarcoding, a technique based on the 

extensive parallel sequencing of entire communities (Cristescu, 2014). This latter approach 

refers to sequencing of individuals from different groups of species and ecological functions 

within a system. Metabarcoding is gaining prominence in the field of trophic ecology due to 

its accuracy and reliability (De Barba et al., 2014; Nilsson et al., 2006), and application to 

faecal analysis (Deagle, Kirkwood & Jarman, 2009; Zeale et al., 2011), gut content extraction 

(Krehenwinkel et al., 2017; Valdez-Moreno et al., 2012) or whole organisms (e.g. Deagle et 

al., 2017; Fonseca et al., 2017). While most of the studies targeted marine (e.g. Lakra et al., 

2011; Leray & Knowlton, 2015; Wangensteen et al., 2018) and surface freshwater 

environments (e.g. Civade et al., 2016; Evans et al., 2016), a few studies have focused on 

subsurface ecosystems (e.g. Asmyhr et al., 2014; Bradford et al., 2010; Meleg et al., 2013). 

Stygofaunal crypticism and complexity of site-specific adaptations are the major obstacles 

in groundwater trophic ecology (Bradford et al., 2010; Hancock, Boulton & Humphreys, 

2005). The barcode analysis of faecal contents (e.g. amphipods) or entire individuals (e.g. 

copepods) has the potential to unravel stygofaunal trophic patterns with a species-specific 

design (Taberlet et al., 2012; Yoccoz, 2012). As a result, once coupled with eDNA, 

metabarcoding studies can provide extraordinary powerful biomonitoring tools in 

groundwater studies. The integration of this qualitative design (eDNA and metabarcoding, 

diet digested) with biogeochemical approaches (CSIA and 14C, diet assimilated) will lead to a 

broader perspective in groundwater ecology investigations. 

2.5 The statistical linkage: Bayesian mixing models 

One of the biggest challenges in ecology, and scientific quantitative multidisciplinary studies 

in general, involves establishing statistical analyses able to generate robust results to 
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support or invalidate hypotheses. The wider the scope of a specific investigation, the more 

complex are the statistical approaches needed to unravel those trends. Therefore, the 

analytical design ideally aims to include all factors potentially shaping the specific patterns. 

Diverse spatial and temporal scales can make all analytical processes more difficult. 

Bayesian Mixing Models (BMM) represent a powerful tool able to overcome this intrinsic 

complexity. Based on the principle of Bayes’ theorem, these models express statistical 

evidences in terms of ‘degrees of belief’ known as Bayesian probabilities. The study of 

trophic ecology has been boosted by the incorporation of BMM applied to the study of food 

webs via analysis of stable isotopes (Phillips et al., 2014). Isotopic BMM aims to address 

fundamental questions such as how trophic habits (and therefore food web assemblages 

and energy flows) link to population dynamics in a much broader ecological focus. As a 

result, since its first incorporation (Haines, 1976), isotopic BMM have gained prominence 

and applicability in a wide range of research fields having been incorporated into a number 

of analytical packages (e.g. SIAR (Parnell et al., 2010), MixSIAR (Stock & Semmens, 2013) 

and FRUITS (Fernandes et al., 2014)). 

Recently, as BMM have improved in sophistication and accuracy (Phillips et al., 2014), many 

studies have focused on their application beyond SIA, including radiocarbon dating (for a 

thorough review see Bronk Ramsey, 2009) and genetic studies (e.g. MrBayes (Ronquist et 

al., 2012), BAMBE  (Simon & Larget, 1998) or PHASE (Jow et al., 2002)). When compared to 

geometric approaches and linear mixing models, BMM allow incorporation of  uncertainty 

and variation in input parameters and the inclusion of prior information into the model 

(Layman et al., 2011). To take full advantage of the Bayesian approach any useful prior 

information can be provided to the modelling process. As a result, BMM provide a crucial 

statistical framework for the integration of data coming from different scientific disciplines. 

To date, few examples in the literature apply such an approach and all involve fish dietary 

investigations. However, given the crucial insights provided by the application of these 

designs, we believe that the field of groundwater ecology can deeply benefit from the 

advances brought by other research areas. 

Chiaradia et al. (2014) showed how the inclusion of prior information gathered from DNA 

analysis can improve the estimates of stable isotope BMM. They performed a captive 

feeding experiment with the aim of reconstructing the diet of Little Penguins (Eudyptula 
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minor) on the basis of δ15N and δ13C. To accomplish this goal, they fed animals with known 

percentages of food type (i.e. pilchard, tuna, etc.) and then measured stable isotopes 

values of both food and penguins. Concurrently, they collected scats to perform DNA 

analysis to quantify the proportion of prey eaten by penguins. Their outcomes showed how 

BMM based only on stable isotope values failed to pinpoint the real diet of penguins, while 

the inclusion of prior information gathered from DNA analysis improved the accuracy of the 

analyses. 

Radiocarbon has proved to be a powerful tool to complement the results of stable isotopes 

in food webs analysis. According to Keaveney, Reimer and Foy (2015a), the use of 

radiocarbon allows a more refined separation of individual carbon sources when compared 

with δ13C. They used 14C to determine the carbon sources in a humic lake, and 

demonstrated that carbon pools and invertebrate communities were supported by 

terrestrial carbon sources. The same authors used radiocarbon together with stable isotope 

values to infer the percentage contribution sources of fish diets in the same lake (Keaveney, 

Reimer & Foy, 2015b). They showed that the combination of stable isotopes and 

radiocarbon data gave more detailed insights into the feeding behaviours of the three 

investigated fish species. Similarly, Larsen, Yokoyama and Fernandes (2018) combined data 

from δ15N and δ13C with and without prior information derived from fish food preferences 

and radiocarbon data to reconstruct the diet of a freshwater fish (Coregonus pollan 

(Thompson)). The inclusion of this prior information in the BMM provided a more specific 

characterization of diet compared with a BMM performed on stable isotope values alone. 

These investigations highlight the usefulness of incorporating prior information to improve 

BMM estimates both in term of precision and interpretability.  

BMM have the ability to ease the complex transition from theory to practice, allowing an 

effective, novel and practical application of multidisciplinary approaches. We therefore 

consider that the combined application of ecological, geochemical and genetic data via a 

bespoke BMM is the key to successful characterisations of complex groundwater 

ecosystems. By using the food web characterization via CSIA, prior information from 

radiocarbon eDNA data can be incorporated into the modelling and unravel - together with 

carbon flows - the relationships between predators and consumers. As a result, within a 

conceptual framework defined by both quantitative (CSIA and 14C) and qualitative (eDNA 

and DNA metabarcoding) approaches, the accuracy in the interpretation of trophic 



 
 

51 

 

interactions is enhanced, providing outputs in form of true probability distribution, and not 

just a summary of all the potential solutions (Layman et al., 2011). 

2.6 Conclusions 

This review provides an innovative and multidisciplinary framework for the study of the 

stygofaunal ecological dynamics in groundwater environments. Given the intrinsic 

crypticism and scarce accessibility of subsurface environments, it is crucial to bring new 

conceptual designs and techniques to the field. The integration of CSIA, DNA and 14C 

analyses can elucidate the linkage between the biotic and abiotic frameworks, as well as 

contribute to widening the knowledge of stygofaunal trophic assemblages and genetic 

diversity. This will help to facilitate management decision processes within ecosystems 

deeply affected by the pressure of climate change and anthropogenic overexploitation. 

Improved ecologically focused studies will provide insights into the biochemical dynamics in 

groundwater fauna and open new perspectives into the subsurface environmental 

conservation. In summary, the advances generated by the incorporation of isotopic 

chemistry, radiocarbon analysis and molecular genetics into the field of groundwater 

ecology represent a crucial step towards the holistic scenario suggested by Gibert and 

collaborators (2009) almost a decade ago. 

Acknowledgements 

The authors thank all the people (colleagues, friends, partners and family members) 

involved in the vital and continuous brainstorming process that allowed the development 

of this literary review.  

References 

ACHURRA, A., RODRIGUEZ, P. & REYNOLDSON, T. B. (2015). Is the Cantabrian region of northern 
Spain a biodiversity hotspot for obligate groundwater fauna? The case of 
oligochaetes (Annelida, Clitellata). Hydrobiologia 745, 151-166. 

AIKEN, G. (2002). Organic matter in ground water. In US Geological Survey Artificial Recharge 
Workshop Proceedings, pp. 21-23. United States Geological Survey Sacramento, 
California. 

AMARAL, H. I., AEPPLI, C., KIPFER, R. & BERG, M. (2011). Assessing the transformation of 
chlorinated ethenes in aquifers with limited potential for natural attenuation: 



 
 

52 

 

Added values of compound-specific carbon isotope analysis and groundwater 
dating. Chemosphere 85, 774-781. 

AMOS, C. B., AUDET, P., HAMMOND, W. C., BÜRGMANN, R., JOHANSON, I. A. & BLEWITT, G. (2014). 
Uplift and seismicity driven by groundwater depletion in central California. Nature 
509, 483. 

APPELO, C. A. J. & POSTMA, D. (2004). Geochemistry, groundwater and pollution. CRC press. 
ARAVENA, R. & WASSENAAR, L. (1993). Dissolved organic carbon and methane in a regional 

confined aquifer, southern Ontario, Canada: Carbon isotope evidence for 
associated subsurface sources. Applied Geochemistry 8, 483-493. 

ARCAGNI, M., CAMPBELL, L. M., ARRIBÉRE, M. A., KYSER, K., KLASSEN, K., CASAUX, R., MISERENDINO, 
M. L. & GUEVARA, S. R. (2013). Food web structure in a double-basin ultra 
oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen 
stable isotopes. Limnologica-Ecology and Management of Inland Waters 43, 131-
142. 

ARSLAN, M., ULLAH, I., MÜLLER, J. A., SHAHID, N. & AFZAL, M. (2017). Organic micropollutants in 
the environment: ecotoxicity potential and methods for remediation. In 'Enhancing 
Cleanup of Environmental Pollutants' (pp. 65-99). Springer, Cham. 

ASMYHR, M. G., LINKE, S., HOSE, G. & NIPPERESS, D. A. (2014). Systematic conservation planning 
for groundwater ecosystems using phylogenetic diversity. PLoS One 9, e115132. 

AVRAMOV, M., SCHMIDT, S. I. & GRIEBLER, C. (2013). A new bioassay for the ecotoxicological 
testing of VOCs on groundwater invertebrates and the effects of toluene on 
Niphargus inopinatus. Aquatic toxicology 130, 1-8. 

BASHIR, S., HITZFELD, K. L., GEHRE, M., RICHNOW, H. H. & FISCHER, A. (2015). Evaluating 
degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer 
using compound-specific stable carbon isotope analysis (CSIA). water research 71, 
187-196. 

BASS, D. & CAVALIER-SMITH, T. (2004). Phylum-specific environmental DNA analysis reveals 
remarkably high global biodiversity of Cercozoa (Protozoa). International journal of 
systematic and evolutionary microbiology 54, 2393-2404. 

BEAUMONT, V. & ROBERT, F. (1999). Nitrogen isotope ratios of kerogens in Precambrian 
cherts: a record of the evolution of atmosphere chemistry? Precambrian Research 
96, 63-82. 

BICKFORD, D., LOHMAN, D. J., SODHI, N. S., NG, P. K., MEIER, R., WINKER, K., INGRAM, K. K. & DAS, I. 
(2007). Cryptic species as a window on diversity and conservation. Trends in 
ecology & evolution 22, 148-155. 

BIGELEISEN, J., KLEIN, F. S., WESTON JR, R. E. & WOLFSBERG, M. (1959). Deuterium isotope effect 
in the reaction of hydrogen molecules with chlorine atoms and the potential energy 
of the H2Cl transition complex. The Journal of Chemical Physics 30, 1340-1351. 

BIGELEISEN, J. & WOLFSBERG, M. (1957). Theoretical and experimental aspects of isotope 
effects in chemical kinetics. Advances in Chemical Physics 15-76. 

BISHOP, R., HUMPHREYS, W. F. & LONGLEY, G. (2014). Epigean and hypogean Palaemonetes 
sp.(Decapoda, Palaemonidae) from Edwards Aquifer: An examination of trophic 
structure and metabolism. Subterranean Biology 14, 79. 

BIZZARRO, J. J., CARLISLE, A. B., SMITH, W. D. & CORTÉS, E. (2017). Diet composition and trophic 
ecology of Northeast Pacific ocean sharks. In Advances in marine biology 77, 111-
148. Elsevier. 

BOECKLEN, W. J., YARNES, C. T., COOK, B. A. & JAMES, A. C. (2011). On the use of stable isotopes 
in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 42, 411-
440. 



 
 

53 

 

BOHMANN, K., EVANS, A., GILBERT, M. T. P., CARVALHO, G. R., CREER, S., KNAPP, M., YU, D. W. & DE 

BRUYN, M. (2014). Environmental DNA for wildlife biology and biodiversity 
monitoring. Trends in ecology & evolution 29, 358-367. 

BOULTON, A. (2001). Twixt two worlds: taxonomic and functional biodiversity at the surface 
water/groundwater interface. Records of the Western Australian Museum 
Supplement 64, 1-13. 

BOULTON, A. J., FENWICK, G. D., HANCOCK, P. J. & HARVEY, M. S. (2008). Biodiversity, functional 
roles and ecosystem services of groundwater invertebrates. Invertebrate 
Systematics 22, 103-116. 

BRADFORD, T., ADAMS, M., HUMPHREYS, W., AUSTIN, A. & COOPER, S. (2010). DNA barcoding of 
stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western 
Australia’s arid zone. Molecular Ecology Resources 10, 41-50. 

BRADFORD, T. M., HUMPHREYS, W. F., AUSTIN, A. D. & COOPER, S. J. (2014). Identification of 
trophic niches of subterranean diving beetles in a calcrete aquifer by DNA and 
stable isotope analyses. Marine and Freshwater Research 65, 95-104. 

BRANCELJ, A., BOONYANUSITH, C., WATIROYRAM, S. & SANOAMUANG, L. O. (2013). The 
groundwater-dwelling fauna of Southeast Asia. Journal of Limnology 72, 16. 

BRANKOVITS, D., POHLMAN, J. W., NIEMANN, H., LEIGH, M. B., LEEWIS, M.-C., BECKER, K. W., ILIFFE, T., 
ALVAREZ, F., LEHMANN, M. F. & PHILLIPS, B. (2017). Methane-and dissolved organic 
carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. 
Nature communications 8, 1835. 

BRETELER, W. C. K., GRICE, K., SCHOUTEN, S., KLOOSTERHUIS, H. T. & DAMSTÉ, J. S. S. (2002). Stable 
carbon isotope fractionation in the marine copepod Temora longicornis: 
unexpectedly low δ13C value of faecal pellets. Marine Ecology Progress Series 240, 
195-204. 

BRIONES, M. J. I., GARNETT, M. & PIEARCE, T. G. (2005). Earthworm ecological groupings based 
on 14C analysis. Soil Biology and Biochemistry 37, 2145-2149. 

BRONK RAMSEY, C. (2009). Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337-360. 
BROWN, J., BACH, L., ALDOUS, A., WYERS, A. & DEGAGNÉ, J. (2011). Groundwater‐dependent 

ecosystems in Oregon: an assessment of their distribution and associated threats. 
Frontiers in Ecology and the Environment 9, 97-102. 

BRIELMANN, H., GRIEBLER, C., SCHMIDT, S. I., MICHEL, R. & LUEDERS, T. (2009). Effects of thermal 
energy discharge on shallow groundwater ecosystems. FEMS Microbiology Ecology 
68, 273-286. 

BRYAN, E., MEREDITH, K. T., BAKER, A., ANDERSEN, M. S. & POST, V. E. (2017). Carbon dynamics in 
a Late Quaternary-age coastal limestone aquifer system undergoing saltwater 
intrusion. Science of The Total Environment 607, 771-785. 

CAMACHO, A. I. (1992). The natural history of biospeleology. Editorial CSIC-CSIC Press. 
CASCHETTO, M., GALASSI, D. M. P., PETITTA, M. & ARAVENA, R. (2017). Evaluation of the sources 

of nitrogen compounds and their influence on the biological communities in the 
hyporheic zone of the Sagittario River, Italy: an isotopic and biological approach. 
Italian Journal of Geosciences 136, 145-156. 

CASTLE, S. L., THOMAS, B. F., REAGER, J. T., RODELL, M., SWENSON, S. C. & FAMIGLIETTI, J. S. (2014). 
Groundwater depletion during drought threatens future water security of the 
Colorado River Basin. Geophysical research letters 41, 5904-5911. 

CHANGMING, L., JINGJIE, Y. & KENDY, E. (2001). Groundwater exploitation and its impact on the 
environment in the North China Plain. Water international 26, 265-272. 

CHAPELLE, F. (2001). Ground-water microbiology and geochemistry. John Wiley & Sons. 



 
 

54 

 

CHIARADIA, A., FORERO, M. G., MCINNES, J. C. & RAMÍREZ, F. (2014). Searching for the true diet of 
marine predators: incorporating Bayesian priors into stable isotope mixing models. 
PLoS One 9, e92665. 

CHIKARAISHI, Y., KASHIYAMA, Y., OGAWA, N. O., KITAZATO, H. & OHKOUCHI, N. (2007). Metabolic 
control of nitrogen isotope composition of amino acids in macroalgae and 
gastropods: implications for aquatic food web studies. Marine Ecology Progress 
Series 342, 85-90. 

CHIKARAISHI, Y., OGAWA, N. O., DOI, H. & OHKOUCHI, N. (2011). 15 N/14 N ratios of amino acids 
as a tool for studying terrestrial food webs: a case study of terrestrial insects (bees, 
wasps, and hornets). Ecological research 26, 835-844. 

CIFONI, M., GALASSI, D. M. P., FARALONI, C. & DI LORENZO, T. (2017). Test procedures for 
measuring the (sub) chronic effects of chemicals on the freshwater cyclopoid 
Eucyclops serrulatus. Chemosphere 173, 89-98. 

CIVADE, R., DEJEAN, T., VALENTINI, A., ROSET, N., RAYMOND, J.-C., BONIN, A., TABERLET, P. & PONT, D. 
(2016). Spatial representativeness of environmental DNA metabarcoding signal for 
fish biodiversity assessment in a natural freshwater system. PLoS One 11, 
e0157366. 

COLLISTER, J. W., RIELEY, G., STERN, B., EGLINTON, G. & FRY, B. (1994). Compound-specific δ 13C 
analyses of leaf lipids from plants with differing carbon dioxide metabolisms. 
Organic Geochemistry 21, 619-627. 

CORNU, J.-F., EME, D. & MALARD, F. (2013). The distribution of groundwater habitats in 
Europe. Hydrogeology Journal 21, 949-960. 

CRISTESCU, M. E. (2014). From barcoding single individuals to metabarcoding biological 
communities: towards an integrative approach to the study of global biodiversity. 
Trends in ecology & evolution 29, 566-571. 

CULVER, D. C. & HOLSINGER, J. R. (1992). How many species of troglobites are there. National 
Speleological Society Bulletin 54, 59-80. 

CULVER, D. C. & SKET, B. (2000). Hotspots of subterranean biodiversity in caves and wells. 
Journal of cave and Karst studies 62, 11-17. 

CULVER, D. C. & WHITE, W. B. (2005). Encyclopedia of caves. Elsevier San Diego^ eCalifornia 
California. 

CUSTODIO, E. (2002). Aquifer overexploitation: what does it mean?. Hydrogeology journal 10, 
254-277. 

DANIELOPOL, D. L. & GRIEBLER, C. (2008). Changing Paradigms in Groundwater Ecology - from 
the ‘Living Fossils' Tradition to the ‘New Groundwater Ecology’. International 
Review of Hydrobiology 93, 565-577. 

DANIELOPOL, D. L., GRIEBLER, C., GUNATILAKA, A. & NOTENBOOM, J. (2003). Present state and 
future prospects for groundwater ecosystems. Environmental conservation 30, 104-
130. 

DANIELOPOL, D. L., POSPISIL, P. & ROUCH, R. (2000). Biodiversity in groundwater: a large-scale 
view. Trends in ecology & evolution 15, 223-224. 

DATRY, T., MALARD, F. & GIBERT, J. (2005). Response of invertebrate assemblages to increased 
groundwater recharge rates in a phreatic aquifer. Journal of the North American 
Benthological Society 24, 461-477. 

DE BARBA, M., MIQUEL, C., BOYER, F., MERCIER, C., RIOUX, D., COISSAC, E. & TABERLET, P. (2014). 
DNA metabarcoding multiplexing and validation of data accuracy for diet 
assessment: application to omnivorous diet. Molecular Ecology Resources 14, 306-
323. 



 
 

55 

 

DEAGLE, B. E., CLARKE, L. J., KITCHENER, J. A., POLANOWSKI, A. M. & DAVIDSON, A. T. (2017). Genetic 
monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for 
processing continuous plankton recorder samples. Molecular Ecology Resources 18, 
391-406. 

DEAGLE, B. E., KIRKWOOD, R. & JARMAN, S. N. (2009). Analysis of Australian fur seal diet by 
pyrosequencing prey DNA in faeces. Molecular Ecology 18, 2022-2038. 

DEHARVENG, L., DALENS, H., DRUGMAND, D., SIMON-BENITO, J., DA GAMA, M., SOUSA, P., GERS, C. & 

BEDOS, A. (2000). Endemism mapping and biodiversity conservation in western 
Europe: an arthropod perspective. Endemism mapping and biodiversity 
conservation in western Europe: an arthropod perspective 2, 59-75. 

DEHARVENG, L., STOCH, F., GIBERT, J., BEDOS, A., GALASSI, D., ZAGMAJSTER, M., BRANCELJ, A., 
CAMACHO, A., FIERS, F. & MARTIN, P. (2009). Groundwater biodiversity in Europe. 
Freshwater Biology 54, 709-726. 

DES CHÂTELLIERS, M. C., JUGET, J., LAFONT, M. & MARTIN, P. (2009). Subterranean aquatic 
oligochaeta. Freshwater Biology 54, 678-690. 

DETTY, J. & MCGUIRE, K. (2010). Topographic controls on shallow groundwater dynamics: 
implications of hydrologic connectivity between hillslopes and riparian zones in a 
till mantled catchment. Hydrological Processes 24, 2222-2236. 

DI LORENZO, T., DI MARZIO, W. D., SÁENZ, M. E., BARATTI, M., DEDONNO, A. A., IANNUCCI, A., S. 
CANNICCI S., MESSANA G. & GALASSI, D. M. P. (2014). Sensitivity of hypogean and 
epigean freshwater copepods to agricultural pollutants. Environmental Science and 
Pollution Research 21, 4643-4655. 

DI LORENZO, T., CIFONI, M., LOMBARDO, P., FIASCA, B. & GALASSI, D. M. P. (2015a). Ammonium 
threshold values for groundwater quality in the EU may not protect groundwater 
fauna: evidence from an alluvial aquifer in Italy. Hydrobiologia 743, 139-150. 

DI LORENZO, T., DI MARZIO, W. D., SPIGOLI, D., BARATTI, M., MESSANA, G., CANNICCI, S. & GALASSI, D. 
M. (2015b). Metabolic rates of a hypogean and an epigean species of copepod in an 
alluvial aquifer. Freshwater Biology 60, 426-435. 

DI LORENZO, T., CIFONI, M., FIASCA, B., DI CIOCCIO, A. & GALASSI, D. M. P. (2018). Ecological risk 
assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward 
more realistic scenarios for risk mitigation. Science of The Total Environment 644 
161-172. 

DI MARZIO, W. D., CASTALDO, D., DI LORENZO, T., DI CIOCCIO, A., SÁENZ, M. E. & GALASSI, D. M. P. 
(2013). Developmental endpoints of chronic exposure to suspected endocrine-
disrupting chemicals on benthic and hyporheic freshwater copepods. Ecotoxicology 
and environmental safety 96, 86-92. 

DING, J., LU, G., LIU, J. & ZHANG, Z. (2015). Evaluation of the potential for trophic transfer of 
roxithromycin along an experimental food chain. Environmental Science and 
Pollution Research 22, 10592-10600. 

DOLE‐OLIVIER, M. J., MALARD, F., MARTIN, D., LEFÉBURE, T. & GIBERT, J. (2009). Relationships 
between environmental variables and groundwater biodiversity at the regional 
scale. Freshwater Biology 54, 797-813. 

DORRESTEIJN I., SCHULTNER, J., NIMMO, D. G., FISCHER, J., HANSPACH, J., KUEMMERLE, T., KEHOE, L. & 

RITCHIE, E. G. (2015). Incorporating anthropogenic effects into trophic ecology: 
predator–prey interactions in a human-dominated landscape. Proceedings of the 
Royal Society B  282, 20151602. 

DU J., CHEUNG, W. W., ZHENG, X., CHEN, B., LIAO, J. & HU, W. (2015). Comparing trophic 
structure of a subtropical bay as estimated from mass-balance food web model and 
stable isotope analysis. Ecological Modelling 312, 175-181. 



 
 

56 

 

DUMAS, P., BOU, C. & GIBERT, J. (2001). Groundwater macrocrustaceans as natural indicators 
of the Ariege alluvial aquifer. International Review of Hydrobiology: A Journal 
Covering all Aspects of Limnology and Marine Biology 86, 619-633. 

DUMNICKA, E., GALAS, J. & KRODKIEWSKA, M. (2017). Patterns of Benthic Fauna Distribution in 
Wells: The Role of Anthropogenic Impact and Geology. Vadose Zone Journal 16, 5. 

EAMUS, D. & FROEND, R. (2006). Groundwater-dependent ecosystems: the where, what and 
why of GDEs. Australian Journal of Botany 54, 91-96. 

EDGAR, G. J. & SHAW, C. (1995). The production and trophic ecology of shallow-water fish 
assemblages in southern Australia III. General relationships between sediments, 
seagrasses, invertebrates and fishes. Journal of Experimental Marine Biology and 
Ecology 194, 107-131. 

EISENMANN, P., FRY, B., MAZUMDER, D., JACOBSEN, G., HOLYOAKE, C. S., COUGHRAN, D. & NASH, S. B. 
(2017). Radiocarbon as a novel tracer of extra-Antarctic feeding in Southern 
Hemisphere Humpback Whales. Scientific reports 7, 4366. 

ELMHAGEN, B. & RUSHTON, S. P. (2007). Trophic control of mesopredators in terrestrial 
ecosystems: top‐down or bottom‐up? Ecology Letters 10, 197-206. 

EME, D., ZAGMAJSTER, M., DELIĆ, T., FIŠER, C., FLOT, J. F., KONECNY‐DUPRÉ, L., PÁLSSON, S., STOCH, F., 
ZAKŠEK, V. & DOUADY, C. J. (2018). Do cryptic species matter in macroecology? 
Sequencing European groundwater crustaceans yields smaller ranges but does not 
challenge biodiversity determinants. Ecography 41, 424-436. 

EPA, (2003). Consideration of subterranean fauna in groundwater and caves during 
environmental impact assessment in Western Australia. Guidance for the 
assessment of environmental factors (in accordance with the Environmental 
Protection Act 1986). No. 54, pp. 1–12. Perth. 

ESTELLER, M. V. & DIAZ-DELGADO, C. (2002). Environmental effects of aquifer overexploitation: 
a case study in the Highlands of Mexico. Environmental Management 29, 266-278. 

ESWARAN, H., VAN DEN BERG, E. & REICH, P. (1993). Organic carbon in soils of the world. Soil 
science society of America journal 57, 192-194. 

EU-GWD, (2006). Directive 2006/118 of the European Parliament and of the Council of 12 
December 2006. Official Journal of the European Union 372, 1–19.  

EVANS, N. T., OLDS, B. P., RENSHAW, M. A., TURNER, C. R., LI, Y., JERDE, C. L., MAHON, A. R., 
PFRENDER, M. E., LAMBERTI, G. A. & LODGE, D. M. (2016). Quantification of mesocosm 
fish and amphibian species diversity via environmental DNA metabarcoding. 
Molecular Ecology Resources 16, 29-41. 

FANTLE, M. S., DITTEL, A. I., SCHWALM, S. M., EPIFANIO, C. E. & FOGEL, M. L. (1999). A food web 
analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole 
animals and individual amino acids. Oecologia 120, 416-426. 

FERNANDES, R., DREVES, A., NADEAU, M.-J. & GROOTES, P. M. (2013). A freshwater lake saga: 
carbon routing within the aquatic food web of Lake Schwerin. Radiocarbon 55, 
1102-1113. 

FERNANDES R., MILLARD, A. R., BRABEC, M., NADEAU, M.-J. & GROOTES, P. (2014). Food 
reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet 
reconstruction. PLoS One 9, e87436. 

FICETOLA, G. F., MIAUD, C., POMPANON, F. & TABERLET, P. (2008). Species detection using 
environmental DNA from water samples. Biology Letters 4, 423. 

FINLAY, J. C. & KENDALL, C. (2007). Stable isotope tracing of temporal and spatial variability in 
organic matter sources to freshwater ecosystems. Stable isotopes in ecology and 
environmental science 2, 283-333. 



 
 

57 

 

FONSECA, V., SINNIGER, F., GASPAR, J., QUINCE, C., CREER, S., POWER, D. M., PECK, L. S. & CLARK, M. 
S. (2017). Revealing higher than expected meiofaunal diversity in Antarctic 
sediments: a metabarcoding approach. Scientific reports 7, 6094. 

FRANCOIS, C. M., MERMILLOD‐BLONDIN, F., MALARD, F., FOUREL, F., LÉCUYER, C., DOUADY, C. J. & 

SIMON, L. (2016). Trophic ecology of groundwater species reveals specialization in a 
low‐productivity environment. Functional ecology 30, 262-273. 

FRECKMAN, D. W., BLACKBURN, T. H., BRUSSAARD, L., HUTCHINGS, P., PALMER, M. A. & SNELGROVE, P. 
V. (1997). Linking biodiversity and ecosystem functioning of soils and sediments. 
Ambio 1, 556-562. 

FRY, B. (2006). Stable isotope ecology. Springer. 
FRY, B., CIERI, M., HUGHES, J., TOBIAS, C., DEEGAN, L. A. & PETERSON, B. (2008). Stable isotope 

monitoring of benthic–planktonic coupling using salt marsh fish. Marine Ecology 
Progress Series 369, 193-204. 

GÄGGELER, H. (1995). Radioactivity in the atmosphere. Radiochimica Acta 70, 345-354. 
GALASSI, D. M., FIASCA, B., DI LORENZO, T., MONTANARI, A., PORFIRIO, S. & FATTORINI, S. (2017). 

Groundwater biodiversity in a chemoautotrophic cave ecosystem: how 
geochemistry regulates microcrustacean community structure. Aquatic ecology 51, 
75-90. 

GALASSI, D. M., HUYS, R. & REID, J. W. (2009). Diversity, ecology and evolution of groundwater 
copepods. Freshwater Biology 54, 691-708. 

GALASSI, D. M., LOMBARDO, P., FIASCA, B., DI CIOCCIO, A., DI LORENZO, T., PETITTA, M. & DI CARLO, P. 
(2014). Earthquakes trigger the loss of groundwater biodiversity. Scientific reports 
4, 6273. 

GALASSI, D. M., STOCH, F., FIASCA, B., DI LORENZO, T. & GATTONE, E. (2009). Groundwater 
biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology 
54, 830-847. 

GEJL, R. N., BJERG, P. L., HENRIKSEN, H. J., HAUSCHILD, M. Z., RASMUSSEN, J. & RYGAARD, M. (2018). 
Integrating groundwater stress in life-cycle assessments–An evaluation of water 
abstraction. Journal of environmental management 222, 112-121. 

GEYH, M. A. (2000). An overview of 14 C analysis in the study of groundwater. Radiocarbon 
42, 99-114. 

GIBERT, J., CULVER, D. C., DOLE‐OLIVIER, M. J., MALARD, F., CHRISTMAN, M. C. & DEHARVENG, L. 
(2009). Assessing and conserving groundwater biodiversity: synthesis and 
perspectives. Freshwater Biology 54, 930-941. 

GIBERT, J., DANIELOPOL, D. & STANFORD, J. A. (1994). Groundwater ecology. Academic Press. 
GIBERT, J. & DEHARVENG, L. (2002). Subterranean Ecosystems: A Truncated Functional 

Biodiversity: This article emphasizes the truncated nature of subterranean 
biodiversity at both the bottom (no primary producers) and the top (very few strict 
predators) of food webs and discusses the implications of this truncation both from 
functional and evolutionary perspectives. AIBS Bulletin 52, 473-481. 

GIBERT, J., STANFORD, J. A., DOLE-OLIVIER, M. J. & WARD, J. V. (1994a). 1 - Basic Attributes of 
Groundwater Ecosystems and Prospects for Research. In Groundwater Ecology (ed. 
J. Gibert, D. L. Danielopol and J. A. Stanford), pp. 7-40. Academic Press, San Diego. 

GIBERT, J., VERVIER, P., MALARD, F., LAURENT, R. & REYGROBELLET, J. (1994b). Dynamics of 
communities and ecology of karst ecosystems: example of three karsts in Eastern 
and Southern France. Groundwater Ecology 1, 425. 

GLEESON, T., WADA, Y., BIERKENS, M. F. & VAN BEEK, L. P. (2012a). Water balance of global 
aquifers revealed by groundwater footprint. Nature 488, 197-200. 

GODWIN, H. (1962). Half-life of radiocarbon. Nature 195, 984-984. 



 
 

58 

 

GOLDBERG, C. S., SEPULVEDA, A., RAY, A., BAUMGARDT, J. & WAITS, L. P. (2013). Environmental 
DNA as a new method for early detection of New Zealand mudsnails 
(Potamopyrgus antipodarum). Freshwater Science 32, 792-800. 

GOODDY, D. & HINSBY, K. (2008). Organic quality of groundwaters. Natural groundwater 
quality 59-70. 

GRAVEN, H., ALLISON, C. E., ETHERIDGE, D. M., HAMMER, S., KEELING, R. F., LEVIN, I., MEIJER, H. A., 
RUBINO, M., TANS, P. P. & TRUDINGER, C. M. (2017). Compiled records of carbon 
isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific 
Model Development 10, 4405-4417. 

GRICE, K., KLEIN BRETELER, W. C., SCHOUTEN, S., GROSSI, V., DE LEEUW, J. W. & DAMSTÉ, J. S. S. 
(1998). Effects of zooplankton herbivory on biomarker proxy records. 
Paleoceanography 13, 686-693. 

GRIEBLER, C. & AVRAMOV, M. (2014). Groundwater ecosystem services: a review. Freshwater 
Science 34, 355-367. 

GRIEBLER, C. & LUEDERS, T. (2009). Microbial biodiversity in groundwater ecosystems. 
Freshwater Biology 54, 649-677. 

GRIEBLER, C., MALARD, F. & LEFEBURE, T. (2014). Current developments in groundwater 
ecology--from biodiversity to ecosystem function and services. Current  Opinion in  
Biotechnology 27, 159-67. 

GRIEBLER, C., STEIN, H., KELLERMANN, C., BERKHOFF, S., BRIELMANN, H., SCHMIDT, S., SELESI, D., 
STEUBE, C., FUCHS, A. & HAHN, H. J. (2010). Ecological assessment of groundwater 
ecosystems–vision or illusion? Ecological Engineering 36, 1174-1190. 

GRIEBLER, C., AVRAMOV, M. & HOSE, G. (2018). Groundwater ecosystems and their services - 
current status and potential risks. In: ’Atlas of Ecosystem Services: Drivers, Risks, 
and Societal Responses’ (Schröter, M., Bonn, A., Klotz, S., Seppelt, R. & Baessler, C., 
eds.), Springer, in press. 

GRIEBLER, C., HUG, K., FILLINGER, L., MEYER, A. & AVRAMOV, M. (2018). Der B-A-E Index – Ein 
mikrobiologisch-ökologisches Konzept zur Bewertung und Überwachung von 
Grundwasser (The B-A-E Index – a microbiological-ecological concept for the 
assessment and monitoring of groundwater), Hydrologie & Wasserwirtschaft, DOI: 
10.5675/HyWa_2018,6_1, in press 

GUERMAZI, E., MILANO, M., REYNARD, E. & ZAIRI, M. (2018). Impact of climate change and 
anthropogenic pressure on the groundwater resources in arid environment. 
Mitigation and Adaptation Strategies for Global Change 1-20. 

GUZIK, M. T., AUSTIN, A. D., COOPER, S. J., HARVEY, M. S., HUMPHREYS, W. F., BRADFORD, T., 
EBERHARD, S. M., KING, R. A., LEYS, R. & MUIRHEAD, K. A. (2011). Is the Australian 
subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407-418. 

HAHN, H. J. (2006). The GW-Fauna-Index: A first approach to a quantitative ecological 
assessment of groundwater habitats. Limnologica-Ecology and Management of 
Inland Waters 36, 119-137. 

HAHN, H. J. & FUCHS, A. (2009). Distribution patterns of groundwater communities across 
aquifer types in south-western Germany. Freshwater Biology 54, 848-860. 

HAINES, E. B. (1976). Relation between the stable carbon isotope composition of fiddler 
crabs, plants, and soils in a salt marsh1. Limnology and oceanography 21, 880-883. 

HALSE, S., SCANLON, M., COCKING, J., BARRON, H., RICHARDSON, J. & EBERHARD, S. (2014). Pilbara 
stygofauna: deep groundwater of an arid landscape contains globally significant 
radiation of biodiversity. Records of the Western Australian Museum 78, 443-483. 



 
 

59 

 

HAN, L. & PLUMMER, L. (2016). A review of single-sample-based models and other approaches 
for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Science 
Reviews 152, 119-142. 

HANCOCK, P. & BOULTON, A. (2008). Stygofauna biodiversity and endemism in four alluvial 
aquifers in eastern Australia. Invertebrate Systematics 22, 117-126. 

HANCOCK, P. J., BOULTON, A. J. & HUMPHREYS, W. F. (2005). Aquifers and hyporheic zones: 
towards an ecological understanding of groundwater. Hydrogeology Journal 13, 98-
111. 

HANCOCK, P. J., HUNT, R. J. & BOULTON, A. J. (2009). Preface: hydrogeoecology, the 
interdisciplinary study of groundwater dependent ecosystems. Hydrogeology 
Journal 17, 1-3. 

HANNIDES, C. C., POPP, B. N., LANDRY, M. R. & GRAHAM, B. S. (2009). Quantification of 
zooplankton trophic position in the North Pacific Subtropical Gyre using stable 
nitrogen isotopes. Limnology and oceanography 54, 50-61. 

HAYES, J. M. (2001). Fractionation of carbon and hydrogen isotopes in biosynthetic 
processes. Reviews in mineralogy and geochemistry 43, 225-277. 

HECKY, R., CAMPBELL, P. & HENDZEL, L. (1993). The stoichiometry of carbon, nitrogen, and 
phosphorus in particulate matter of lakes and oceans. Limnology and oceanography 
38, 709-724. 

HENNE, A., DANIEL, R., SCHMITZ, R. A. & GOTTSCHALK, G. (1999). Construction of Environmental 
DNA Libraries inEscherichia coli and Screening for the Presence of Genes Conferring 
Utilization of 4-Hydroxybutyrate. Applied and Environmental Microbiology 65, 
3901-3907. 

HERMAN, P. M., MIDDELBURG, J. J., WIDDOWS, J., LUCAS, C. H. & HEIP, C. H. (2000). Stable isotopes 
as trophic tracers: combining field sampling and manipulative labelling of food 
resources for macrobenthos. Marine Ecology Progress Series 204, 79-92. 

HOEKSTRA, P., DEHN, L., GEORGE, J., SOLOMON, K., MUIR, D. C. & O'HARA, T. (2002). Trophic 
ecology of bowhead whales (Balaena mysticetus) compared with that of other 
arctic marine biota as interpreted from carbon-, nitrogen-, and sulfur-isotope 
signatures. Canadian Journal of Zoology 80, 223-231. 

HOFMANN, R. & GRIEBLER, C. (2018). DOM and bacterial growth efficiency in oligotrophic 
groundwater: absence of priming and co-limitation by organic carbon and 
phosphorus. Aquatic Microbial Ecology 81, 55-71. 

HONDULA, K., PACE, M., COLE, J. & BATT, R. (2014). Hydrogen isotope discrimination in aquatic 
primary producers: implications for aquatic food web studies. Aquatic sciences 76, 
217-229.HUA, Q. & BARBETTI, M. (2004). Review of tropospheric bomb 14C data for 
carbon cycle modeling and age calibration purposes. Radiocarbon 46, 1273-1298. 

HUA, Q., ZOPPI, U., WILLIAMS, A. A. & SMITH, A. M. (2004). Small-mass radiocarbon analysis at 
ANTARES. Nuclear Instruments and Methods in Physics Research B: Beam 
Interactions with Materials and Atoms 223-224, 284-292. 

HUA, Q., BARBETTI, M. & RAKOWSKI, A. Z. (2013). Atmospheric radiocarbon for the period 
1950–2010. Radiocarbon 55, 2059-2072. 

HUANG, I.-Y., LIN, Y.-S., CHEN, C.-P. & HSIEH, H.-L. (2007). Food web structure of a subtropical 
headwater stream. Marine and Freshwater Research 58, 596-607. 

HUMPHREYS, W. (1999). Physico-chemical profile and energy fixation in Bundera Sinkhole, an 
anchialine remiped habitat in north-western Australia. Journal of the Royal Society 
of Western Australia 82, 89. 

HUMPHREYS, W. (2009). Hydrogeology and groundwater ecology: Does each inform the 
other? Hydrogeology Journal 17, 5-21. 



 
 

60 

 

HUMPHREYS, W., WATTS, C., COOPER, S. & LEIJS, R. (2009). Groundwater estuaries of salt lakes: 
buried pools of endemic biodiversity on the western plateau, Australia. 
Hydrobiologia 626, 79-95. 

HUMPHREYS, W. F. (2006). Aquifers: the ultimate groundwater-dependent ecosystems. 
Australian Journal of Botany 54, 115-132. 

HUMPHREYS, W. F. (2008). Hydrogeology and groundwater ecology: Does each inform the 
other? Hydrogeology Journal 17, 5-21. 

HUPPOP, K. (2000). How do cave animals cope with the food scarcity in caves? Ecosystems of 
the World, 159-188. 

HUTCHINS, B. T., ENGEL, A. S., NOWLIN, W. H. & SCHWARTZ, B. F. (2016). Chemolithoautotrophy 
supports macroinvertebrate food webs and affects diversity and stability in 
groundwater communities. Ecology 97, 1530-1542. 

HYODO, F., TAYASU, I. & WADA, E. (2006). Estimation of the longevity of C in terrestrial detrital 
food webs using radiocarbon (14C): how old are diets in termites? Functional 
ecology 20, 385-393. 

ISHIKAWA, N. F., HYODO, F. & TAYASU, I. (2013). Use of carbon-13 and carbon-14 natural 
abundances for stream food web studies. Ecological research 28, 759-769. 

ISHIKAWA, N. F., KATO, Y., TOGASHI, H., YOSHIMURA, M., YOSHIMIZU, C., OKUDA, N. & TAYASU, I. 
(2014). Stable nitrogen isotopic composition of amino acids reveals food web 
structure in stream ecosystems. Oecologia 175, 911-922. 

JOW, H., HUDELOT, C., RATTRAY, M. & HIGGS, P. (2002). Bayesian phylogenetics using an RNA 
substitution model applied to early mammalian evolution. Molecular Biology and 
Evolution 19, 1591-1601. 

Kapoor, H. M. & Maheshwari, H. K. (2002). Why neglect groundwater biology?. Current 
Science 83, 931. 

KEAVENEY, E. M., REIMER, P. J. & FOY, R. H. (2015a). Young, old, and weathered carbon-part 1: 
using radiocarbon and stable isotopes to identify carbon sources in an alkaline, 
humic lake. Radiocarbon  57, 407-423. 

KEAVENEY, E. M., REIMER, P. J. & FOY, R. H. (2015b). Young, old, and weathered carbon—Part 2: 
using radiocarbon and stable isotopes to identify terrestrial carbon support of the 
food web in an alkaline, humic lake. Radiocarbon 57, 425-438. 

KING, R. A., BRADFORD, T., AUSTIN, A. D., COOPER, S. J. B. & HUMPHREYS, W. F. (2012). Divergent 
molecular lineages and not-so-cryptic species: the first descriptions of stygobitic 
chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of 
Crustacean Biology 32, 465-488. 

KINKLE, B. K. & KANE, T. (2000). Chemolithoautotrophic microorganisms and their potential 
role in subsurface environments. Ecosystems of the World, 309-318. 

KLØVE, B., ALA-AHO, P., BERTRAND, G., BOUKALOVA, Z., ERTÜRK, A., GOLDSCHEIDER, N., ILMONEN, J., 
KARAKAYA, N., KUPFERSBERGER, H. & KVŒRNER, J. (2011). Groundwater dependent 
ecosystems. Part I: Hydroecological status and trends. Environmental Science & 
Policy 14, 770-781. 

KLØVE, B., ALA-AHO, P., BERTRAND, G., GURDAK, J. J., KUPFERSBERGER, H., KVÆRNER, J., MUOTKA, T., 
MYKRÄ, H., PREDA, E., ROSSI, P. & UVO, C. B. (2014). Climate change impacts on 
groundwater and dependent ecosystems. Journal of Hydrology 518, 250-266. 

KORBEL, K. L. & HOSE, G. C. (2017). The weighted groundwater health index: Improving the 
monitoring and management of groundwater resources. Ecological indicators 75, 
164-181. 

KREHENWINKEL, H., KENNEDY, S., PEKÁR, S. & GILLESPIE, R. G. (2017). A cost‐efficient and simple 
protocol to enrich prey DNA from extractions of predatory arthropods for 



 
 

61 

 

large‐scale gut content analysis by Illumina sequencing. Methods in Ecology and 
Evolution 8, 126-134. 

KREITLER, C. W. (1974). Determining the source of nitrate in groundwater by nitrogen isotope 
studies. 

LAKRA, W., VERMA, M., GOSWAMI, M., LAL, K. K., MOHINDRA, V., PUNIA, P., GOPALAKRISHNAN, A., 
SINGH, K., WARD, R. D. & HEBERT, P. (2011). DNA barcoding Indian marine fishes. 
Molecular Ecology Resources 11, 60-71. 

LAPWORTH, D. J., BARAN, N., STUART, M. E. & WARD, R. S. (2012). Emerging organic 
contaminants in groundwater: a review of sources, fate and occurrence. 
Environmental pollution 163, 287-303. 

LARNED, S. T. (2012). Phreatic groundwater ecosystems: research frontiers for freshwater 
ecology. Freshwater Biology 57, 885-906. 

LARSEN, T., YOKOYAMA, Y. & FERNANDES, R. (2018). Radiocarbon in ecology: Insights and 
perspectives from aquatic and terrestrial studies. Methods in Ecology and Evolution 
9, 181-190. 

LAYMAN, C. A., ARAUJO, M. S., BOUCEK, R., HAMMERSCHLAG-PEYER, C. M., HARRISON, E., JUD, Z. R., 
MATICH, P., ROSENBLATT, A. E., VAUDO, J. J., YEAGER, L. A., POST, D. M. & BEARHOP, S. 
(2011). Applying stable isotopes to examine food-web structure: an overview of 
analytical tools. Biological Reviews 87, 545-562. 

LAYMAN, C. A., ARRINGTON, D. A., MONTAÑA, C. G. & POST, D. M. (2007). Can stable isotope 
ratios provide for community‐wide measures of trophic structure? Ecology 88, 42-
48. 

LERAY, M. & KNOWLTON, N. (2015). DNA barcoding and metabarcoding of standardized 
samples reveal patterns of marine benthic diversity. Proceedings of the National 
Academy of Sciences 112, 2076-2081. 

LEVIN, I. & HESSHAIMER, V. (2000). Radiocarbon–a unique tracer of global carbon cycle 
dynamics. Radiocarbon 42, 69-80. 

LEWIS, J. J. & REID, J. W. (2007). Patterns and processes of groundwater invasion by copepods 
in the interior low plateaus of the United States. Acta carsologica, 36. 

LIBBY, W. F. (1946). Atmospheric helium three and radiocarbon from cosmic radiation. 
Physical Review 69, 671. 

LIU, F., SONG, X., YANG, L., HAN, D., ZHANG, Y., MA, Y. & BU, H. (2018). Predicting the impact of 
heavy groundwater pumping on groundwater and ecological environment in the 
Subei Lake basin, Ordos energy base, Northwestern China. Hydrology Research 49 
1156-1171. 

LONGLEY, G. (1981). The Edwards Aquifer: Earth's most diverse groundwater ecosystem?. 
International Journal of Speleology 11, 123-128. 

LORRAIN, A., GRAHAM, B., MÉNARD, F., POPP, B., BOUILLON, S., VAN BREUGEL, P. & CHEREL, Y. (2009). 
Nitrogen and carbon isotope values of individual amino acids: a tool to study 
foraging ecology of penguins in the Southern Ocean. Marine Ecology Progress 
Series 391, 293-306. 

LOVE, A., HERCZEG, A., ARMSTRONG, D., STADTER, F. & MAZOR, E. (1993). Groundwater flow 
regime within the Gambier Embayment of the Otway Basin, Australia: evidence 
from hydraulics and hydrochemistry. Journal of hydrology 143, 297-338. 

MACKAY, H. (2006). Protection and management of groundwater-dependent ecosystems: 
emerging challenges and potential approaches for policy and management. 
Australian Journal of Botany 54, 231-237. 



 
 

62 

 

MACKO, S. A., FOGEL, M. L., HARE, P. E. & HOERING, T. (1987). Isotopic fractionation of nitrogen 
and carbon in the synthesis of amino acids by microorganisms. Chemical Geology: 
Isotope Geoscience section 65, 79-92. 

MADSEN, E. & GHIORSE, W. (1993). Groundwater microbiology: subsurface ecosystem 
processes. Aquatic microbiology: An ecological approach, 167-213. 

MALARD, F., PLENET, S. & GIBERT, J. (1996). The use of invertebrates in ground water 
monitoring: a rising research field. Groundwater Monitoring & Remediation 16, 
103-113. 

MAMMOLA, S. (2018). Finding answers in the dark: caves as models in ecology fifty years 
after Poulson and White. Ecography.  

MAMMOLA, S. & LEROY, B. (2018). Applying species distribution models to caves and other 
subterranean habitats. Ecography 41, 1194-1208. 

MARMONIER, P., MAAZOUZI, C., FOULQUIER, A., NAVEL, S., FRANÇOIS, C., HERVANT, F., MERMILLOD-
BLONDIN, F., VIENEY, A., BARRAUD, S. & TOGOLA, A. (2013). The use of crustaceans as 
sentinel organisms to evaluate groundwater ecological quality. Ecological 
Engineering 57, 118-132. 

MARMONIER, P., MAAZOUZI, C., BARAN, N., BLANCHET, S., RITTER, A., SAPLAIROLES, M., DOLE-OLIVIER, 
M.J., GALASSI, D.M., EME, D., DOLÉDEC, S & PISCART, C. (2018). Ecology-based 
evaluation of groundwater ecosystems under intensive agriculture: A combination 
of community analysis and sentinel exposure. Science of The Total Environment 
613, 1353-1366. 

MARTIN, P., DE BROYER, C., FIERS, F., MICHEL, G., SABLON, R. & WOUTERS, K. (2009). Biodiversity of 
Belgian groundwater fauna in relation to environmental conditions. Freshwater 
Biology 54, 814-829. 

MAUCLAIRE, L. & GIBERT, J. (2001). Environmental determinants of bacterial activity and 
faunal assemblages in alluvial riverbank aquifers. Archiv für Hydrobiologie, 469-487. 

MAURICE, L. & BLOOMFIELD, J. (2012). Stygobitic invertebrates in groundwater—a review from 
a hydrogeological perspective. Freshwater Reviews 5, 51-71. 

MAXWELL, R. M. & KOLLET, S. J. (2008). Interdependence of groundwater dynamics and land-
energy feedbacks under climate change. Nature Geoscience 1, 665. 

MECKENSTOCK, R. U., ELSNER, M., GRIEBLER, C., LUEDERS, T., STUMPP, C., AAMAND, J., AGATHOS, S. N., 
ALBRECHTSEN, H. J., BASTIAENS, L., BJERG, P. L. & BOON, N. (2015). Biodegradation: 
updating the concepts of control for microbial cleanup in contaminated aquifers. 
Environmental Science & Technology 49, 7073–7081. 

MELEG, I. N., ZAKŠEK, V., FIŠER, C., KELEMEN, B. S. & MOLDOVAN, O. T. (2013). Can environment 
predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian 
groundwater. PLoS One 8, e76760. 

MENCIÓ, A. & BOIX, D. (2018). Response of macroinvertebrate communities to hydrological 
and hydrochemical alterations in Mediterranean streams. Journal of Hydrology 566, 
566-580. 

MENCIÓ, A., KORBEL, K. & HOSE, G. (2014). River–aquifer interactions and their relationship to 
stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New 
South Wales, Australia). Science of The Total Environment 479, 292-305. 

MERMILLOD-BLONDIN, F. & ROSENBERG, R. (2006). Ecosystem engineering: the impact of 
bioturbation on biogeochemical processes in marine and freshwater benthic 
habitats. Aquatic sciences 68, 434-442. 

MERMILLOD-BLONDIN, F., SIMON, L., MAAZOUZI, C., FOULQUIER, A., DELOLME, C. & MARMONIER, P. 
(2015). Dynamics of dissolved organic carbon (DOC) through stormwater basins 



 
 

63 

 

designed for groundwater recharge in urban area: Assessment of retention 
efficiency. water research 81, 27-37. 

MERZ, S. K., EVANS, R. & CLIFTON, C. A. (2001). Environmental water requirements to maintain 
groundwater dependent ecosystems. Environment Australia. 

MEYBECK, M. (1982). Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci 
282, 401-450. 

MIDDELBURG, J. (2014). Stable isotopes dissect aquatic food webs from the top to the 
bottom. Biogeosciences 11, 2357-2371. 

MILLER, W. & BOULTON, A. J. (2005). Managing and rehabilitating ecosystem processes in 
regional urban streams in Australia. Hydrobiologia 552, 121-133. 

MILLENNIUM ECOSYSTEM ASSESSMENT, (2005). Millennium ecosystem assessment synthesis 
report. Washington, DC: Island Press. 

MINAMOTO, T., YAMANAKA, H., TAKAHARA, T., HONJO, M. N. & KAWABATA, Z. I. (2012). Surveillance 
of fish species composition using environmental DNA. Limnology 13, 193-197. 

MÖSSLACHER, F. (2000). Sensitivity of groundwater and surface water crustaceans to 
chemical pollutants and hypoxia: implications for pollution management. Archiv für 
Hydrobiologie 51-66. 

MURRAY, B. R., HOSE, G. C., EAMUS, D. & LICARI, D. (2006). Valuation of groundwater-
dependent ecosystems: a functional methodology incorporating ecosystem 
services. Australian Journal of Botany 54, 221-229. 

NEVILL, J. C., HANCOCK, P. J., MURRAY, B. R., PONDER, W. F., HUMPHREYS, W. F., PHILLIPS, M. L. & 

GROOM, P. K. (2010). Groundwater-dependent ecosystems and the dangers of 
groundwater overdraft: a review and an Australian perspective. Pacific 
Conservation Biology 16, 187-208. 

NIEMILLER, M. L., & ZIGLER, K. S. (2013). Patterns of cave biodiversity and endemism in the 
Appalachians and Interior Plateau of Tennessee, USA. PLoS One 8, e64177. 

NIEMILLER, M. L., PORTER, M. L., KEANY, J., GILBERT, H., FONG, D. W., CULVER, D. C., HOBSON, C. S., 
KENDALL, K. D., DAVIS, M. A. & TAYLOR, S. J. (2018). Evaluation of eDNA for 
groundwater invertebrate detection and monitoring: a case study with endangered 
Stygobromus (Amphipoda: Crangonyctidae). Conservation Genetics Resources 10, 
247-257. 

NILSSON, R. H., RYBERG, M., KRISTIANSSON, E., ABARENKOV, K., LARSSON, K.-H. & KÕLJALG, U. (2006). 
Taxonomic reliability of DNA sequences in public sequence databases: a fungal 
perspective. PLoS One 1, e59. 

PABICH, W. J., VALIELA, I. & HEMOND, H. F. (2001). Relationship between DOC concentration 
and vadose zone thickness and depth below water table in groundwater of Cape 
Cod, USA. Biogeochemistry 55, 247-268. 

PAN, Y. I. T. A. O., HOU, Z. & LI, S. (2010). Description of a new Macrobrachium species 
(Crustacea: Decapoda: Caridea: Palaemonidae) from a cave in Guangxi, with a 
synopsis of the stygobiotic Decapoda in China. Journal of Cave and Karst Studies 72, 
86-93. 

PARNELL, A. C., INGER, R., BEARHOP, S. & JACKSON, A. L. (2010). Source partitioning using stable 
isotopes: coping with too much variation. PLoS One 5, e9672. 

PATAKI, D. E., ELLSWORTH, D. S., EVANS, R. D., GONZALEZ-MELER, M., KING, J., LEAVITT, S. W., LIN, G., 
MATAMALA, R., PENDALL, E. & SIEGWOLF, R. (2003). Tracing changes in ecosystem 
function under elevated carbon dioxide conditions. AIBS Bulletin 53, 805-818. 

PHILLIPS, D. L., INGER, R., BEARHOP, S., JACKSON, A. L., MOORE, J. W., PARNELL, A. C., SEMMENS, B. X. 
& WARD, E. J. (2014). Best practices for use of stable isotope mixing models in food-
web studies. Canadian Journal of Zoology 92, 823-835. 



 
 

64 

 

PILLIOD, D. S., GOLDBERG, C. S., ARKLE, R. S. & WAITS, L. P. (2013). Estimating occupancy and 
abundance of stream amphibians using environmental DNA from filtered water 
samples. Canadian Journal of Fisheries and Aquatic Sciences 70, 1123-1130. 

POPP, B. N., GRAHAM, B. S., OLSON, R. J., HANNIDES, C. C., LOTT, M. J., LÓPEZ‐IBARRA, G. A., 
GALVÁN‐MAGAÑA, F. & FRY, B. (2007). Insight into the trophic ecology of yellowfin 
tuna, Thunnus albacares, from compound‐specific nitrogen isotope analysis of 
proteinaceous amino acids. Terrestrial Ecology 1, 173-190. 

POST, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, 
and assumptions. Ecology 83, 703-718. 

POULSON, T. L. & WHITE, W. B. (1969). The cave environment. Science 165, 971-981. 
REBOLEIRA, A. S. P., ABRANTES, N., OROMÍ, P. & GONÇALVES, F. (2013). Acute toxicity of copper 

sulfate and potassium dichromate on stygobiont Proasellus: general aspects of 
groundwater ecotoxicology and future perspectives. Water, Air, & Soil Pollution 
224, 1550. 

REDDY, V. R. (2005). Costs of resource depletion externalities: a study of groundwater 
overexploitation in Andhra Pradesh, India. Environment and Development 
Economics 10, 533-556. 

REUSCH, T. B. H. & WOOD, T. E. (2007). Molecular ecology of global change. Molecular Ecology 
16, 3973-3992. 

RICHEY, A. S., THOMAS, B. F., LO, M. H., REAGER, J. T., FAMIGLIETTI, J. S., VOSS, K., SWENSON, S. & 

RODELL, M. (2015). Quantifying renewable groundwater stress with GRACE. Water 
Resources Research 51, 5217-5238. 

RIVETT, M. O., BUSS, S. R., MORGAN, P., SMITH, J. W. & BEMMENT, C. D. (2008). Nitrate 
attenuation in groundwater: a review of biogeochemical controlling processes. 
Water research 42, 4215-4232. 

RONQUIST, F., TESLENKO, M., VAN DER MARK, P., AYRES, D. L., DARLING, A., HÖHNA, S., LARGET, B., 
LIU, L., SUCHARD, M. A. & HUELSENBECK, J. P. (2012). MrBayes 3.2: efficient Bayesian 
phylogenetic inference and model choice across a large model space. Systematic 
biology 61, 539-542. 

SANTOS, G. M., SOUTHON, J. R., GRIFFIN, S., BEAUPRE, S. R. & DRUFFEL, E. R. (2007). Ultra small-
mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear 
Instruments and Methods in Physics Research Section B: Beam Interactions with 
Materials and Atoms 259, 293-302. 

SAUHEITL, L., GLASER, B. & WEIGELT, A. (2009). Advantages of compound-specific stable isotope 
measurements over bulk measurements in studies on plant uptake of intact amino 
acids. Rapid Communications in Mass Spectrometry 23, 3333-3342. 

SCANLON, B. R., FAUNT, C. C., LONGUEVERGNE, L., REEDY, R. C., ALLEY, W. M., MCGUIRE, V. L. & 

MCMAHON, P. B. (2012). Groundwater depletion and sustainability of irrigation in 
the US High Plains and Central Valley. Proceedings of the National Academy of 
Sciences 109, 9320-9325. 

SCHEIHING, K. & TRÖGER, U. (2018). Local climate change induced by groundwater 
overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, 
northern Chile. Hydrogeology Journal 26, 705-719. 

SCHMIDT, S. I., HAHN, H. J., HATTON, T. J. & HUMPHREYS, W. F. (2007). Do faunal assemblages 
reflect the exchange intensity in groundwater zones? Hydrobiologia 583, 1-19. 

SCHMITZ, O. J., HAMBÄCK, P. A. & BECKERMAN, A. P. (2000). Trophic cascades in terrestrial 
systems: a review of the effects of carnivore removals on plants. The American 
Naturalist 155, 141-153. 



 
 

65 

 

SEGAL, D. C., KUDER, T. & KOLHATKAR, R. (2018). Assessment of anaerobic biodegradation of bis 
(2-chloroethyl) ether in groundwater using carbon and chlorine compound-specific 
isotope analysis. Science of The Total Environment 625, 696-705. 

SHAH, T. (2007). The groundwater economy of South Asia: an assessment of size, 
significance and socio-ecological impacts. The agricultural groundwater revolution: 
Opportunities and threats to development, 7-36. 

SHEN, Y., CHAPELLE, F. H., STROM, E. W. & BENNER, R. (2015). Origins and bioavailability of 
dissolved organic matter in groundwater. Biogeochemistry 122, 61-78. 

SHERRY, T. W. (1990). When are birds dietarily specialized? Distinguishing ecological from 
evolutionary approaches. Cuándo son las aves especializadas en la dieta? 
Distinguiendo enfoques ecológicos de los evolutivos. Studies in Avian Biology, 337-
352. 

SHOKRALLA, S., SPALL, J. L., GIBSON, J. F. & HAJIBABAEI, M. (2012). Next-generation sequencing 
technologies for environmental DNA research. Molecular Ecology 21, 1794-1805. 

SKET, B. (1999). High biodiversity in hypogean waters and its endangerment–the situation in 
Slovenia, the Dinaric karst, and Europe. Crustaceana 72, 767-779. 

SKET, B., PARAGAMIAN, K. & TRONTELJ, P. (2004). A census of the obligate subterranean fauna 
of the Balkan Peninsula. In Balkan biodiversity, pp. 309-322. Springer. 

SMITH, A. M., HUA, Q., WILLIAMS, A., LEVCHENKO, V. & YANG, B. (2010). Developments in micro-
sample 14C AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in 
Physics Research Section B: Beam Interactions with Materials and Atoms  268, 919-
923. 

SPALDING, R. F. & EXNER, M. E. (1993). Occurrence of nitrate in groundwater—a review. 
Journal of environmental quality 22, 392-402. 

SPANGLER, P. & BOTOSANEANU, L. (1986). Stygofauna Mundi: A Faunistic, Distributional, and 
Ecological Synthesis of the World Fauna inhabiting Subterranean Waters (including 
the Marine Interstitial). 

SPENGLER, C. & HAHN, H. J. (2018) Thermostress: Ökologisch gegründete, thermische 
Schwellenwerte und Bewertungsansätze für das Grundwasser (Ecological based 
temperature thresholds and ecosystem assessment schemes for groundwater). 
Korrespondenz Wasserwirtschaft 9, 521-525 

STEFFAN, S. A., CHIKARAISHI, Y., HORTON, D. R., OHKOUCHI, N., SINGLETON, M. E., MILICZKY, E., HOGG, 
D. B. & JONES, V. P. (2013). Trophic hierarchies illuminated via amino acid isotopic 
analysis. PLoS One 8, e76152. 

STEIN, H., GRIEBLER, C., BERKHOFF, S., MATZKE, D., FUCHS, A. & HAHN, H. J. (2012). Stygoregions–a 
promising approach to a bioregional classification of groundwater systems. 
Scientific reports 2, 673. 

STEIN, H., KELLERMANN, C., SCHMIDT, S. I., BRIELMANN, H., STEUBE, C., BERKHOFF, S. E., FUCHS, A., 
HAHN, H. J., THULIN, B. & GRIEBLER, C. (2010). The potential use of fauna and bacteria 
as ecological indicators for the assessment of groundwater quality. Journal of 
Environmental Monitoring 12, 242-254. 

STEPHAN, R. M. (2009). Transboundary aquifers: Managing a vital resource: The UNILC draft 
articles on the law of transboundary aquifers. UNESCO. 

STEUBE, C., RICHTER, S. & GRIEBLER, C. (2009). First attempts towards an integrative concept for 
the ecological assessment of groundwater ecosystems. Hydrogeology Journal 17, 
23-35. 

STOCK, B. C. & SEMMENS, B. X. (2013). MixSIAR GUI user manual, version 1.0. Accessible online 
at: http://conserver. iugo-cafe. org/user/brice. semmens/MixSIAR. 

http://conserver/


 
 

66 

 

STOECK, T., BASS, D., NEBEL, M., CHRISTEN, R., JONES, M. D., BREINER, H. W. & RICHARDS, T. A. 
(2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly 
complex eukaryotic community in marine anoxic water. Molecular Ecology 19, 21-
31. 

STUIVER, M. & POLACH, H. A. (1977). Discussion reporting of 14 C data. Radiocarbon 19, 355-
363. 

STUMPP, C. & HOSE, G. C. (2017). Groundwater amphipods alter aquifer sediment structure. 
Hydrological Processes 31, 3452-3454. 

TABERLET, P., COISSAC, E., POMPANON, F., BROCHMANN, C. & WILLERSLEV, E. (2012). Towards 
next‐generation biodiversity assessment using DNA metabarcoding. Molecular 
Ecology 21, 2045-2050. 

TAKIZAWA, Y., DHARAMPAL, P. S., STEFFAN, S. A., TAKANO, Y., OHKOUCHI, N. & CHIKARAISHI, Y. (2017). 
Intra‐trophic isotopic discrimination of 15N/14N for amino acids in autotrophs: 
Implications for nitrogen dynamics in ecological studies. Ecology and evolution 7, 
2916-2924. 

TAYLOR, R. E. (1978). Radiocarbon Dating: An Archaeological Perspective. In Archaeological 
Chemistry—II, vol. 171. Advances in Chemistry, pp. 33-69. AMERICAN CHEMICAL 
SOCIETY. 

THOMSEN, P. F., KIELGAST, J., IVERSEN, L. L., MØLLER, P. R., RASMUSSEN, M. & WILLERSLEV, E. (2012). 
Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater 
Samples. PLoS One 7, e41732. 

THORP, J. H. & BOWES, R. E. (2017). Carbon sources in riverine food webs: new evidence from 
amino acid isotope techniques. Ecosystems 20, 1029-1041. 

TOMLINSON, M. & BOULTON, A. J. (2010). Ecology and management of subsurface groundwater 
dependent ecosystems in Australia a review. Marine and Freshwater Research 61, 
936-949. 

US FISH AND WILDLIFE SERVICE (2002). Notice of availability of the approved recovery plan for 
the Illinois Cave Amphipod (Gammarus acherondytes). US Fish and Wildlife Service, 
Washington, DC.  

VALDEZ-MORENO, M., QUINTAL-LIZAMA, C., GÓMEZ-LOZANO, R. & DEL CARMEN GARCÍA-RIVAS, M. 
(2012). Monitoring an alien invasion: DNA barcoding and the identification of 
lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One 7, 
e36636. 

VAN DER GUN, J. & LIPPONEN, A. (2010). Reconciling groundwater storage depletion due to 
pumping with sustainability. Sustainability 2, 3418-3435. 

WADA, Y. & HEINRICH, L. (2013). Assessment of transboundary aquifers of the world—
vulnerability arising from human water use. Environmental Research Letters 8, 
024003. 

WADA, Y., VAN BEEK, L. P., VAN KEMPEN, C. M., RECKMAN, J. W., VASAK, S. & BIERKENS, M. F. (2010). 
Global depletion of groundwater resources. Geophysical research letters 37, 20 

WALKER, M. & WALKER, M. J. C. (2005). Quaternary dating methods. John Wiley and Sons. 
WANGENSTEEN, O. S., PALACÍN, C., GUARDIOLA, M. & TURON, X. (2018). DNA metabarcoding of 

littoral hard-bottom communities: high diversity and database gaps revealed by 
two molecular markers. PeerJ 6, e4705. 

WASSENAAR, L., ARAVENA, R., FRITZ, P. & BARKER, J. (1990). Isotopic composition (13C, 14C, 2H) 
and geochemistry of aquatic humic substances from groundwater. Organic 
Geochemistry 15, 383-396. 

WATTS, C. H. S. & HUMPHREYS, W. F. (2014). Fourteen New Dytiscidae (Coleoptera) of the 
GeneraLimbodessusGuignot,ParosterSharp, andExocelinaBroun from Underground 



 
 

67 

 

Waters in Australia. Transactions of the Royal Society of South Australia 133, 62-
107. 

WEITOWITZ, D. C., MAURICE, L., LEWIS, M., BLOOMFIELD, J. P., REISS, J. & ROBERTSON, A. L. (2017). 
Defining geo-habitats for groundwater ecosystem assessments: an example from 
England and Wales (UK). Hydrogeology Journal 25, 2453-2466. 

WICK, L.Y. & CHATZINOTAS A. (2019) Capacity of ecosystems to degrade anthropogenic 
chemicals. In: ’Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses’ 
(Schröter, M., Bonn, A., Klotz, S., Seppelt, R. & Baessler, C., eds.), Springer, in press. 

WICKS, C. & HUMPHREYS, W. F. (2011). Preface. Hydrobiologia 677, 1-2. 
YAN, Y., MA, W., ZHANG, Y., NIE, C., GUO, H. & LUN, X. (2016). Competitive sorption and 

desorption between BDE-47 and BDE-99 by different river-and farmland-based 
aquifer media. Desalination and Water Treatment 57, 29328-29339. 

YOCCOZ, N. G. (2012). The future of environmental DNA in ecology. Molecular Ecology 21, 
2031-2038. 

ZEALE, M. R., BUTLIN, R. K., BARKER, G. L., LEES, D. C. & JONES, G. (2011). Taxon‐specific PCR for 
DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources 11, 236-
244. 

ZEKTSER, I. S. & LORNE, E. (2004). Groundwater resources of the world: and their use. In IhP 
Series on groundwater. Unesco. 

 



 
 

68 

 

Chapter 3 | Stygofaunal community trends along 

varied rainfall conditions: deciphering ecological niche 

dynamics of a shallow calcrete in Western Australia 

Published as a research article in Ecohydrology 13(1), e2150 (2019). 

 

Mattia Saccò, Alison J. Blyth, William F. Humphreys, Stéphane Karasiewicz, Karina Meredith, 

Alex Laini, Steven J. B. Cooper, Philip W. Bateman, Kliti Grice 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

69 

 

Abstract 

Groundwaters host highly adapted fauna, known as stygofauna, which play a key role in 

maintaining the functional integrity of subterranean ecosystems. Stygofaunal niche studies 

provide insights into the ecological dynamics shaping the delicate balance between the 

hydrological conditions and community diversity patterns. This work aims to unravel the 

ecological trends of a calcrete stygofaunal community, with special focus on niche dynamics 

through the Outlying Mean Index analysis (OMI) and additional calculation of Within 

Outlying Mean Indexes (WitOMI), under three rainfall regimes. Temperature and pH 

changed significantly among different rainfall conditions (P < 0.001), and together with 

salinity were the most influential drivers in shaping stygofaunal assemblages. These 

environmental conditions, linked with nutrient fluctuations in the groundwater, 

constrained changes in niche occupation for water mites, two species of beetles and 

juvenile amphipods (OMI analysis, P < 0.05). The WitOMI analysis revealed differential 

subniche breadths linked with taxa-specific adaptations after different rainfall conditions. 

Our results indicate that stygofaunal niches are closely linked to the hydrodynamic 

conditions influenced by different rainfall regimes. Further long-term investigations, 

incorporating broader ecological perspectives, will help to understand the impacts 

associated with climate change and anthropogenic pressures on one of the most 

threatened ecosystems in the world. 

Key-words: stygofauna, ecological niche, groundwater, calcrete, rainfall, WitOMI. 
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3.1 Introduction 

The study of ecological dynamics in groundwaters is notoriously complex (Gibert, Stanford, 

Dole-Olivier, & Ward, 1994; Dole-Olivier, Malard, Martin, Lefébure, & Gibert, 2009; Steube, 

Richter, & Griebler, 2009). This is primarily because the geological and physical conditions 

(occurrence of interstitial spaces, voids) of an aquifer, where the groundwater resides, 

create a complex abiotic structure (Danielopol, Griebler, Gunatilaka, & Notenboom, & 

2003). Additionally, hydrological processes, together with chemical mechanisms, can have 

significant impacts on the environmental conditions shaping the subsurface faunal 

community (Galassi et al., 2017). 

Aquifer recharge, or replenishment, plays a key role in maintaining ecological balance in 

groundwaters (Humphreys, 2008). As the absence of light limits autochthonous carbon 

production (Humphreys, 2006), groundwater recharge provides an essential input of 

resources needed to support the stygofaunal community (Meyer, Meyer, & Meyer, 2003; 

Konrad, Brasher, & May, 2008). Recharge-related changes in water quality, such as 

increased oxygen levels (e.g. Hakenkamp & Palmer, 2000) and nutrient availability (Datry, 

Malard & Gibert, 2005) constitute vital drivers in shaping biotic assemblages in 

groundwaters (Hahn, 2006; Reiss et al., 2019).  

Generally, rainfall patterns and aquifer characteristics such as permeability and porosity 

control groundwater recharge processes (Berkowitz & Balberg, 1993). Recharge dynamics 

are particularly influenced by climate variability (Scanlon, Healy, & Cook, 2002), land 

use/land cover (e.g. Niemiller & Taylor, 2019) and thickness of the vadose zone (e.g. Manna 

et al., 2019). These factors, together with the position of the groundwater in the landscape, 

influence the hydrogeochemical mechanisms defining the interactions with the aquifer (e.g. 

Arnold, Allen, & Bernhardt, 1993; Rau et al., 2017).  

Worldwide, climate change is predicted to result in profound shifts in weather patterns 

(Stocker & Raible, 2005), and several studies over the last two decades have predicted 

negative impacts on groundwater (e.g. Eckhardt & Ulbrich, 2003; Holman, 2006; Green et 

al., 2011). In Australia, where climate is strongly influenced by the El Niño-Southern 

Oscillation (ENSO) and Indian Ocean Dipole (IOD), global warming is predicted to trigger 

high rates of biodiversity loss and habitat fragmentation (Hughes, 2003; Horwitz et al., 
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2008). The vast array of Australian groundwater habitats host vulnerable aquatic fauna, 

termed stygofauna (Humphreys, 2006; Humphreys, 2019), which  are expected to face 

major threats in response to rapidly changing regional climates (Davis, Pavlova, Thompson, 

& Sunnucks, 2013). Recent investigations have linked artificial warming to increased 

biodiversity loss rates (e.g. Brielmann, Griebler, Schmidt, Michel, & Lueders, 2009), while 

increased rainfall variability will affect recharge patterns (e.g. Rosenberger al., 1999; 

Hendrickx & Walker, 2017). A comprehensive understanding of the functional ecology and 

ecosystem dynamics in groundwater systems is therefore urgently needed in order to 

understand the threat posed by climatic change (Mammola et al., 2019).      

Over the past two decades, the incorporation of multidisciplinary approaches, such as 

biogeochemistry, microbiology and genetics, into groundwater ecology has helped define 

the vital role played by stygofauna in the conservation of subsurface environmental 

conditions (Hancock, Boulton, & Humphreys, 2005). Stygofaunal activities such as grazing, 

burrowing or bioturbating help maintain the hydraulic connectivity between aquifers and 

surface environments (Murray, Zeppel, Hose, & Eamus, 2008). Stygobionts also interact 

with microbes, vital actors in shaping groundwater biogeochemical cycling of nutrients 

(Griebler & Lueders, 2009), and their consumption and excretion of organic matter 

regulates the proliferation of microbial biofilms (Mermillod-Blondin & Rosenberg 2006; 

Schmidt, Cuthbert, & Schwientek, 2017). As a result, groundwater functional integrity is 

dependent on the health of its stygofaunal community assemblages (Boulton, Fenwick, 

Hancock, & Harvey, 2008). 

The ecological niche of a species reflects the set of required resources, encountered abiotic 

conditions and biotic interactions that enable its persistence through time and space (Chase 

& Leibold, 2003). During the last century, many definitions of this central concept in ecology 

have been proposed, with the Hutchinsonian niche (Hutchinson, 1957) being one of the 

most widely employed. A Hutchinsonian niche is a multi-dimensional volume (Levin et al., 

2009) where habitat conditions and resources influence population dynamics, namely birth 

and death rates (Holt, 2009). This definition led to the formulation of vital concepts such as 

niche breadth (the conceptual inverse of niche specialization) and niche partitioning 

(coexisting species occupying different ecological niches) (Colwell & Futuyma, 1971). Due to 

the urgent need to predict ecological patterns under rapidly changing environmental 

conditions such as climate change (Soberón, 2007), re-evaluation of Hutchinson’s approach 
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has led to recent upsurges in ecological niche research (e.g. Chase & Leibold, 2003; Holt, 

2009; Pironon et al., 2017).  

The measurement of ecological niches faces two major challenges (Peterson, Papeş, & 

Soberón, 2008). On one side, the characterization of the abiotic conditions is strictly 

dependent on the accuracy of sampling procedures (Karasiewicz, Dolédec, & Lefebvre, 

2017). On the other, the understanding of the role of biotic interactions still remains poor 

in many ecosystems (Soberón & Nakamura, 2009). These obstacles grow exponentially 

when groundwater environments are considered, due to the poor accessibility of these 

systems (Halse et al., 2014), and the sparse knowledge of stygofaunal population dynamics 

(Guzik et al., 2011) and biotic interactions between stygofauna and microbial communities 

(Schmidt et a., 2017). As a result, studies of ecological niches in groundwater environments 

are scant, with the majority being surveys at a regional scale carried out in Europe 

(Dole‐Olivier et al., 2009; Galassi, Stoch, Fiasca, Di Lorenzo, & Gattone, 2009; Martin et al., 

2009).  

In Australia, the calcrete aquifers of the Yilgarn region (WA) harbour a myriad of short-

range endemic invertebrate species (Humphreys, 2001). This area, together with the 

Pilbara, is a global diversity hotspot that hosts one of the highest stygofaunal densities in 

the world (Humphreys, Watts, Cooper, & Leijs, 2009; Guzik et al., 2011). However, this 

diversity is largely undescribed (80% Western Australia stygofauna are unidentified taxa, 

see Guzik et al., 2011), which creates a major obstacle for the investigation of the biological 

dynamics shaping stygofaunal communities. Consequently, despite the urgent need for a 

detailed understanding of the ecological patterns in the region (Humphreys, 2006), 

research is still in its infancy. 

The Sturt Meadows calcrete aquifer in Western Australia provides a unique opportunity to 

investigate the linkage between hydrogeochemical conditions and taxa-specific ecological 

niche dynamics. The fauna of this relatively pristine shallow groundwater has been the 

subject of genetic and taxonomic studies during the last 15 years (e.g. Leys, Watts, Cooper, 

& Humphreys, 2003; Allford, Cooper, Humphreys, & Austin, 2008; Cooper, Saint, Taiti, 

Austin, & Humphreys, 2008; Guzik, Cooper, Humphreys, & Austin, 2009; Bradford, Adams, 

Humphreys, Austin, & Cooper, 2010; Bradford et al., 2013). It therefore provides a well-

defined stygofaunal community on which to base studies linking the fauna to broader biotic 
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and abiotic dynamics.  Hyde, Cooper, Humphreys, Austin, and Munguia (2018) investigated 

diversity patterns within the invertebrate assemblages using data from a six years collection 

period. Here we extend this research by comparing the environmental parameters and the 

stygofaunal distributions from three sampling campaigns undertaken during two 

contrasting rainfall periods (defined as low rainfall and high rainfall, see Hyde et al., 2018). 

We aim to: 1) test the importance of physicochemical and environmental parameters as 

species distributions’ descriptors in calcrete aquifers, 2) determine the linkage between the 

changes in potential aquifer recharge events and stygofaunal assemblages and 3) identify 

potential shifts in ecological niche occupation within the invertebrate community in the 

calcrete aquifer. 

3.2 Methods 

3.2.1 Study site 

The field work was carried out at the Sturt Meadows calcrete aquifer (28˚41‘S 120˚ 58‘E) 

located on Sturt Meadows pastoral station, Western Australia, ~42 km from the settlement 

of Leonora (833 km northeast of Perth, Figure 3.1a). The surface vegetation is dominated 

by open Acacia woodlands, primarily Acacia aneura (F. Muell. ex Benth.). The understorey is 

herbaceous mixed with saltbush shrubs and grasses. The area experiences combined 

grazing pressure from domestic stock, feral animals and macropods. The average monthly 

rainfall of the area ranges from 6.9 mm in September to 30.6 mm in March (data from the 

Australian Bureau of Meteorology (BoM)), and the daily average temperature varies 

between 37°C (January) and 18.4°C (July). The average pan evaporation of 2400 mm per 

year exceeds the average rainfall (200 mm per annum, BoM).  
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Figure 3.1. Sturt Meadow calcrete: a) location within the Yilgarn craton region, b) elevation 
map showing the surficial sediments and the calcretes nearby the borehole grid and c) grid 
map showing the location of the boreholes sampled, the weather station at bore E7 and the 
five geological zones (A1, A2, A3, A4 and CD). 

The Sturt Meadows aquifer occurs in a calcrete deposit formed in a palaeodrainage channel 

located in the northeast Yilgarn, the largest Archean craton in Australia (Figure 3.1a). The 

surrounding area is dominated by Quaternary surficial unconsolidated deposits (Figure 

3.1b). The calcrete systems of this region formed as secondary sedimentary deposits via 

precipitation of calcium carbonate in the groundwater flowpath of palaeodrainage channels 

during the Late Eocene to Early Oligocene (37–30 Mya) (Morgan, 1993). The groundwater 

within the Sturt Meadows calcrete has a strong northeast to southwest biogeochemical 

gradient that is comparable to estuarine habitats (Humphreys et al., 2009). 

Groundwater was accessed through a grid of shallow bores, initially drilled for mineral 

exploration, which comprises 115 bore holes of between 5-11 m in depth forming a 1.4 km 

X 2.5 km (3.5 km2) area (Figure 3.1c). These bores are unlined, except within about 0.5 m 

from the surface, where they are lined with PVC pipe, to stabilise the surface, and capped 

(Allford et al., 2008). Two sub-grids can be identified: the northern area (bores separated by 

100 m in each direction) and the southern portion (bores separated by 100 m EW and 200 

m NS). According to previous investigations of the depth and lithography of the calcrete 
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(Bradford et al., 2013), the study area can be divided into two major geological zones (A1 

and A2, the deepest calcrete intersected with clayey material), a clay bar (CD) and two 

minor zones (A3 and A4 (together with A5), the shallowest calcretes overlying clay) (Figure 

3.1c). Previous studies at the Sturt Meadows aquifer have found a multitude of endemic 

invertebrate species, including both stygobitic (e.g. Bradford et al., 2010) and troglobitic 

(e.g. Barranco & Harvey 2008; Javidkar, Cooper, King, Humphreys, & Austin, 2015) taxa.  

3.2.2 Samples and data collection 

Preliminary analysis of historical data (eleven sampling campaigns, see Hyde et al., 2018) 

was undertaken on the hydrological (i.e water level fluctuations, water physicochemical 

parameters) and stygofaunal distribution patterns throughout the bore grid. Thirty 

boreholes (six samples from A1, seven from A2, seven from CD, five from A3 and five from 

A4, Figure 3.1c) were then selected by simple random sampling among the most reliable 

(i.e. lowest risk of drying, broadest ranges of stygofaunal abundances) and most 

representative (i.e. widest ranges of stygofaunal diversity and water level changes) bores. 

The in situ sampling campaign involved collecting stygofauna and water physicochemical 

parameters from each bore, while samples for nutrient analysis were collected from bores 

J7 (zone A1), W4 (zone A2) and D13 (ZONE CD).  

A weather station with rain gauge was installed near bore E7 (Figure 3.1c, in blue) to 

monitor rainfall events and changes in the groundwater water level via a differential 

pressure water level sensor. Daily data of both parameters were recorded for the period 

ranging from 18/06/2017 to 17/06/2018 (Figure 3.2a). By following the Sturt Meadows’ 

rainfall periods categorization proposed by Hyde et al. (2018), three sampling campaigns 

were carried out. Two were associated with low rainfall periods (LR: <10 mm of rain during 

the 30 days prior to sampling, Figure 3.2b and c): LR1 on the 26/07/2017 (4.4 mm of 

cumulative rainfall) and LR2 on the 7/11/2017 (0.8 mm of cumulative rainfall). A final 

sampling trip associated with a higher rainfall event (HR: >30 mm of rain in the previous 30 

days, Figure 3.2d) was carried out on the 17/03/2018 (37.8 mm of cumulative rainfall).  
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Figure 3.2. Weather station data from Sturt Meadows aquifer (bore E7) water level (in mm, in light blue) and the rainfall events (in mm, in red): a) 
annual evolution (1 year: from 18/06/2017 to 17/06/2018), b) cumulative rainfall and water depth trend for the 30 days before sampling campaign 
LR1 ( sampling date: 26th of July 2017), c) cumulative rainfall and water depth trend for the 30 days before sampling campaign LR2 (sampling date: 
7th of November 2017) and d) cumulative rainfall and water depth trend for the 30 days before sampling campaign HR (sampling date 17th of 
March 2018). Red numbers in b), c) and d) refer to the category thresholds established by Hyde et al. (2018).  
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Temperature, pH, ORP, salinity, DO, and depth were measured in situ, using portable field 

measurement equipment (Hydrolab Quanta Multi-Probe Meter®), for all the bores sampled 

in this study. Water samples for nutrient analysis from the bores J7 (zone A1), W4 (zone A2) 

and D13 (ZONE CD) were collected by using a 2 L bailer during the sampling campaigns 

corresponding to LR2 and HR. Bailers were washed with bleach and rinsed with distilled 

water. Standard pre-purging of the bores was not conducted to preserve in-site specific 

hydrogeological dynamics and avoid increased sample turbidity, as recommended by Gray 

et al. (2016) for shallow aquifers in this arid region. 

Groundwater samples were stored in 1 L high density polyethylene (HDPE) bottles, 

immediately frozen and kept at –20°C until further analyses. In the laboratory, nitrites 

(HACH kit, Method 10207), nitrates (HACH kit, Method 10020), ammonia (HACH kit, 

Method 8038), phosphates (HACH kit, Method 8048), sulphates (HACH kit, Method 8051) 

and total alkalinity (CaCO3 mg/L, titration method) were analysed. These parameters were 

measured to test nutrient concentrations in the system, and detect fluctuations linked with 

potential recharge processes.  

Adult and larval stygofaunal specimens were collected by haul netting, with five hauls of a 

weighted plankton net with a mesh size of 100 µm (Allford et al., 2008) through the water 

column in each of the thirty bores sampled. All biological samples were kept frozen (–20°C) 

in darkness until further processing in the laboratory where individual organisms were 

counted and identified to the lowest taxonomic level via optical microscopy and reference 

to specific taxonomic keys (e.g. Alarie, Michat, & Watts, 2009; Watts & Humphreys, 2006; 

King, Bradford, Austin, Cooper, & Humphreys, 2012). 

3.2.3 Statistical analysis 

Physicochemical water parameters - 90 samples in total - were compared across the three 

rainfall events and the geological zones using a factorial ANOVA (outliers were identified 

using box plot methods (package ‘rstatix’ in R software version 3.5.1), homogeneity of 

variances was tested through the Levene’s test (function leveneTest() in R 3.5.1) and 

normality was tested through the Shapiro-Wilk test (function shapiro.test() in R 3.5.1)). 

Tukey’s post hoc comparisons were used to test pairwise interactions. Nutrients (nitrites, 

nitrates, ammonia, phosphate and sulphates) and alkalinity trends between LR2 and HR 
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were tested via ANOVAs. Kruskal-Wallis with Dunn’s post hoc analyses were run to test the 

same patterns for the number of individuals, α-diversity, Shannon diversity index (H) and 

Buzas and Gibson's evenness (E). 

To investigate niche overlap and co-occurrence, we calculated Pianka’s index of niche 

overlap and the species segregation (co-occurrence) by mean of the Stone and Robert’s C-

scores (package ‘EcoSimR’ in R software version 3.5.1). Pianka’s index (Levins, 1968) 

calculates the mean overlap of all possible species pairs. It ranges from 0 (no overlap) to 1 

(complete overlap) and allows detection of niche overlaps at basic community-levels in 

groundwaters (Fattorini et al., 2017). C-scores enable comparison of randomness across 

sampling events, with lower average index values indicating higher probability that the 

presence of one species might be affected by the distribution of the others (Ulrich & 

Gotelli, 2007). While abundance data is employed for the analysis of niche overlapping (via 

Pianka’s index), C-scores (randomness of the species assemblages) are calculated by using a 

presence/absence data matrix.  Overall, we employed both indices as descriptive tools to 

compare potential changes in the community niche occupations across the rainfall regimes 

(LR1, LR2 and HR). 

We investigated the ecological niches by means of Outlying Mean Index (OMI) analysis 

(Dolédec, Chessel, & Gimaret-Carpentier, 2000), package ’ade4’ in R software version 3.5.1. 

The OMI analysis required the stygofaunal abundance table and the environmental matrix 

containing the values of the hydrological parameters. Details about the mathematical 

insights associated with the analysis can be found in Dolédec et al. (2000). 

OMI analyses provide the position of each taxonomic group in a two-dimensional Euclidean 

space by decomposing species distribution patterns into marginality, tolerance and residual 

tolerance. The marginality of a species (G) is defined as the squared Euclidean distance 

between the mean conditions used by the species and the average environmental 

conditions (Dolédec et al., 2000). Species are positioned according to their respective 

deviation to a theoretical ubiquitous species. Species with high marginality values indicate 

that they occur in less common habitats compared to the rest of the community. Contrarily, 

low marginality values express a common occurrence of the species within the environment 

studied. The tolerance, or niche breadth, represents the variance of the environmental 

condition used by the species. A species can be considered generalist or specialist to the 
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environment studied by having a high or low tolerance value respectively. The residual 

tolerance is the quantification of the species niche variability not incorporated in the 

marginality axes. The niche statistical significance is tested using Monte Carlo permutations 

by comparing the observed marginality with 1000 simulated marginalities. 

Specific seasonal shifts linked with the rainfall patterns were detected by calculating Within 

Outlying Mean Indexes (WitOMI, ‘subniche’ package in R version 3.5.1, Karasiewicz et al., 

2017). The WitOMI indexes use the environmental space created by the OMI analysis and 

integrates the characteristics of the K-select analysis (Calenge, Dufour, & Maillard, 2005), 

enabling niche breakdown into subniches linked with temporal subsets. As a result, 

interactions such as competition or predation are deciphered at both population and 

individual scales, and can be further linked with community responses to changes in 

environmental conditions (Karasiewicz et al., 2017). The subniche parameters are similar to 

the niche equivalents calculated in the OMI analysis, with the difference that they consider 

one subset at a time. The environmental subsets of this study were defined by the three 

rainfall conditions LR1, LR2 and HR. Similar to the OMI analysis, subniche parameters for 

each species (compared to G) were calculated (WitOMIG), and additionally compared to 

the mean environmental condition within a specific subset (GK) (WitOMIGK). OMI and 

WitOMI analytical details for the present study are illustrated in Figure 3.3.  
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Figure 3.3. Data sets, statistical procedures and graphical displays of the OMI and WitOMI 
analyses carried out in this study. Taxa: table containing stygofaunal abundance data; 
Hydro: table containing data from environmental parameters.   

3.3 Results 

3.3.1 Environmental gradients 

Figure 3.2 illustrates the annual water level and rainfall trends at Sturt Meadows. Over one 

year, the water table dropped from 4.4 to 3.6 m. A previous survey in 2006 from the same 

bore (Hyde et al., 2018) indicated initial and final water levels of 5.26 m and 5.12 m, 

respectively. Rainfall during our study (171.8 mm) was below the mean annual rainfall for 

Sturt Meadows (222.7 mm; 100 years of data, Australian Bureau of Metereology). Together, 

this suggests that Sturt Meadows calcrete groundwater level is in a recessional state (Figure 

3.2a). 

Table 3.1 summarises the mean values of the hydrochemical parameters across the three 

rainfall events. Temperature of the groundwater was significantly higher during the HR 

period (pairwise comparisons: LR1 vs HR: P < 0.001, LR2 vs HR: P < 0.001). pH was 
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significantly higher during LR2 when compared with LR1 and HR (P < 0.001), and this 

pattern is linked with interactions between space (geological zones) and time (rainfall 

regimes) (P < 0.001, Table 3.2). 

Salinity (P < 0.05), DO (P < 0.005) and depth (P < 0.05) changed significantly between 

geological zones. Salinity (Tukey’s test, A2 vs A4, P < 0.05) was significantly higher 

downstream (zone A2) than upstream (zone A4), and deeper calcretes (zone A1) had higher 

oxygen concentrations when compared with the clay bar area (zone CD) (Tukey’s test, A1 vs 

CD, P < 0.05) (Table 3.2). These patterns are in accordance with Humphreys et al. (2009) 

and confirm the influence of a northeast to southwest biogeochemical gradient along the 

borehole grid. Total alkalinity increased in groundwater after rainfall (LR2 vs HR, P < 0.001), 

ammonia increased (P < 0.001) and phosphates decreased (P < 0.001). All the other 

nutrients (sulphates, nitrites and nitrates) revealed steady, non-significant trends in time 

and space (geological zones) (Table 3.1).  
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Table 3.1. Mean values of the hydrochemical parameters. PSS, Practical Salinity Scale; DO, Dissolved Oxygen; ORP, oxidation reduction potential; *, 
parameters showing significant trends within rainfall periods (LR1/LR2 and HR; results of the physicochemical pairwise comparisons are illustrated 
as ‘a’ and ‘b’). 

Temperature* Salinity DO Depth NO2
- NO3-

NH3* PO4
3-* SO4

2- Alkalinity*

(°C) (PSS) (mg L-1) (m) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg CaCO3 L-1 )

LR1 22.9 ± 1.7a 7.3 ± 0.3a
14.4 ± 4.9 3.7 ± 2.2 85.1 ± 126.6 3.6 ± 2.2 n/a n/a n/a n/a n/a n/a

LR2 23.3 ± 0.7a 7.7 ± 0.5b
15.9 ± 3.2 3.7 ± 1.8 74.2 ± 91.6 3.5 ± 2.3 0.01 ± 0 0.81 ± 0.17 1.74 ± 1.10 0.14 ± 0.05 102.56 ± 4.56 205.11 ± 36.61

HR 26.2 ± 0.5b 6.7 ± 0.2a
16.6 ± 2 4.1 ± 1.5 88.3 ± 33.3 3.3 ± 2.3 0.01 ± 0 0.78 ± 0.11 3.44 ± 0.83 0.05 ± 0.02 103.33 ± 6.48 291.33 ± 28.93

Rainfall 

period
pH* ORP

 
 
Table 3.2. Results of ANOVA using rainfall periods (LR1, LR2 and HR), geological zone (A1, A2, A3, A4, CD) and their interaction as factors. 
Significant results are highlighted in bold. d.f. degrees of freedom; PSS, Practical Salinity Scale; DO, Dissolved Oxygen.  

d.f. F P d.f. F P d.f. F P

Temperature (°C) 2 82.94 < 0.001 4 2.19 0.08 8 1.19 0.32

pH 2 89.24 < 0.001 4 1.72 0.16 8 3.06 < 0.005

Salinity (PSS) 2 2.94 0.06 4 2.73 < 0.05 8 0.27 0.97

DO (mg L-1) 2 0.64 0.53 4 4.94 < 0.005 8 0.63 0.75

ORP (mV) 2 0.18 0.83 4 1.08 0.37 8 0.40 0.92

Depth (m) 2 0.12 0.88 4 3.20 < 0.05 8 0.06 1.00

RAINFALL PERIOD ZONE ZONE*RAINFALL PERIOD
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3.3.2 Stygofaunal trends 

The collected stygofauna comprised 7424 individuals from 11 taxa belonging to five 

different Classes: Oligochaeta (Family Tubificidae (Vejdovský 1884)), Subcohort 

Hydrachnidia, Maxillopoda (Order Harpacticoida (G. O. Sars, 1903) and Cyclopoida 

(Burmeister, 1834)), Malacostraca (Family Chiltoniidae (Barnard, 1972) (juveniles) and 

species Scutachiltonia axfordi (King, 2012), Yilgarniella sturtensis (King, 2012) and 

Stygochiltonia bradfordae (King, 2012)) and Insecta (species Paroster macrosturtensis 

(Watts & Humphreys, 2006), Paroster mesosturtensis (Watts & Humphreys, 2006) and 

Paroster microsturtensis (Watts & Humphreys, 2006) and respective larvae). Table 3.3 

illustrates taxa codes and abundances for each bore and geological zone within the three 

sampling campaigns. 
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Table 3.3. Species matrix of Sturt Meadows stygofaunal taxa. Abbreviations: ID: Taxonomic Code, LR1: 1st low rainfall period, LR2: 2nd low rainfall 
period, HR: high rainfall period. Results from 30 bores are displayed (A8 to F13).  

RAINFALL PERIOD

GEOLOGICAL ZONES

TAXON  ID A8 C5 F4 H5 J7 N4 L4 S2 U2 W2 Q2 W3 W4 C1 D1 E1 G1 H2 A11 D13 E10 E11 Q3 Q4 S8 B13 C13 E12 E13 F13

Tubificidae TU 2

Oribatida OR 2 2 1 1 1 1 3 1 1 2

Harpacticoida H 1 3 9 17 18 5 7 13 17 12 8 27 5 15 12 3 72 21 8 19 2 8 27 7 1 6 11

Cyclopoida C 18 6 1 11 16 36 8 9 14 2 5 3 3 2 6 1 5 131 92 1 33 11 19 14 55 2 269 3 26 1

Chiltoniidae (juveniles) AMJ 15 1 3 15 4 5 1 4 3 6 11

Scutachiltonia axfordi AM1 19 1 14 13 1 7 1 1 1 1 9 4 5 2 6 7

Yilgarniella sturtensis AM2 1 1 23 13 21 2 2 2 3 2 2 7 2 2 3

Stygochiltonia bradfordae AM3 1 3 6 3 1 1 4 2 2

Paroster macrosturtensis B 1 1 1 1 1 2 1 11 1 6

Paroster mesosturtensis M 3 1 3 9 1 1 1 1 4 1 4 1 3 9 1 1 1 9

Paroster microsturtensis S 1 2 1 6 3 2 1 1 6 1 1 5 1

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1 1 1

Paroster mesosturtensis larvae Mlv 1 1

Paroster microsturtensis larvae Slv 1 1 1 1 3 1 1 1 1 2 2 1 1 1 2

Tubificidae TU 1

Oribatida OR 1 2 1 1 8 123 3 1 1 1 2 2 1 1 1

Harpacticoida H 82 26 5 12 2 18 2 8 2 17 7 4 29 259 7 22 11 6 1 2 3 34 3 3 12 1 2 1

Cyclopoida C 86 29 22 24 4 16 2 16 129 7 97 87 19 68 16 31 4 22 35 31 9 29 66 1 6 33 7 81 38

Chiltoniidae (juvelines) AMJ 32 6 1 1 6 1 1 2 5

Scutachiltonia axfordi AM1 3 1 3 1 1 1 6 1 12 4 2 2 2 1 8 1 9 1 1

Yilgarniella sturtensis AM2 28 11 1 2 6 2 11 2 2 6 4 6 1 5 1 1 4 6 4 2

Stygochiltonia bradfordae AM3 2 2 1 1 3 1 1 1 1 2 2 1 5 2 1 2 2 1

Paroster macrosturtensis B 1 2 2 1 2 7 3 3 1 4 7 3 9

Paroster mesosturtensis M 3 1 1 7 3 6 2 2 3 5 22 1 2

Paroster microsturtensis S 1 1 3 1 1 7 1 1 1 17 7 2 3

Paroster macrosturtensis larvae Blv 1 1 3 6 1

Paroster mesosturtensis larvae Mlv 2

Paroster microsturtensis larvae Slv 1 2 3 2 1 2 1 5 6 4 2 1

Tubificidae TU 14 1 1 3 1 1

Oribatida OR 29 2 3 3

Harpacticoida H 64 44 13 1 32 17 8 4 83 6 5 4 3 7 154 11 19 13 12 2 26 9 2 13 8 3 7 14 4

Cyclopoida C 54 91 23 17 22 12 4 8 19 4 2 23 13 15 2 87 1 29 148 77 66 76 15 11 16 137 41 39 36 47

Chiltoniidae (juveniles) AMJ 7 8 14 2 3 1 1 8 2 6 2 1 3 2 2 7 4

Scutachiltonia axfordi AM1 2 4 13 2 2 2 1 1 1 1 4 2 8 4

Yilgarniella sturtensis AM2 2 3 9 4 2 12 7 1 13 2 4 3 4 2 8 5 7

Stygochiltonia bradfordae AM3 1 1 1 8 7 1

Paroster macrosturtensis B 4 3 3 9 28 3 6 1 3 1 2 5 8

Paroster mesosturtensis M 7 2 6 1 3 1 1 1 6 4 2 1 1 1 11 1 6 1 1 4 1 11

Paroster microsturtensis S 22 3 3 6 1 3 14 1 3 9 7 1 8 2 7 2 6 5

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1

Paroster mesosturtensis larvae Mlv 2 1 1

Paroster microsturtensis larvae Slv 1 2 1 2 4

LR2

HR

LR1

A1 A2 A3 CD A4
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Overall, the most abundant taxa were cyclopoids (C) and harpacticoids (H), accounting for 

49.99% and 28.27% of the total respectively, followed by the amphipod Y. sturtensis (AM2, 

4.36%), water mites (OR, 2.95%), the amphipod S. axfordi (AM1, 2.8%), juvenile amphipods 

Chiltoniidae (AMJ, 2.76%) and the beetles P. mesosturtensis (M, 2.61%), P. microsturtensis 

(S, 2.42%) and P. macrosturtensis (B, 2.22%). The remaining taxa (AM3, Slv, Blv, Tu and Mlv) 

accounted for 2.6% of the total. The abundance of copepods (H and C), tubificids (TU), 

juvenile amphipods (AMJ) and beetles (B, M and S) was higher during HR compared with 

LR1 and LR2, whilst adult amphipods (AM1, AM2 and AM3) were more abundant during LRs 

(LR1 and LR2) compared to HR. None of these differences were statistically significant. 

Statistical analysis confirmed that abundances of tubificids (TU, Kruskal-Wallis test, χ²= 

6.7698, P < 0.05), water mites (OR, Kruskal-Wallis test, χ²= 7.8973, P < 0.05) and S. 

bradfordae amphipods (AM3, Kruskal-Wallis test, χ²= 9.2196, P < 0.05) changed significantly 

among rainfall regimes. However, pairwise comparisons between rainfall events showed 

significant (decreasing) patterns only for the latter two (OR: Dunn’s test, LR2 vs HR, Z = -

2.802977, P < 0.05; AM3: Dunn’s test, LR2 vs HR, Z = -2.974035, P < 0.05).  

The number of individuals was higher, but not statistically significant, during the HR period 

(2875) when compared with LR1 (2152) and LR2 (2397), while the average number of taxa 

per bore was similar, ranging from 6.17 ± 2.35 (LR1) to 6.53 ± 2.71 (LR2). The Shannon 

diversity index calculated per each bore was higher on average within low rainfall 

campaigns (SLR1 = 1.20 ± 0.48 and SLR2= 1.22 ± 0.48 vs SHR = 1.13 ± 0.33) and average 

evenness remained steady – with a slight but not statistically significant decrease from LR1 

to HR – across the three sampling events (ELR1 = 0.61 ± 0.15; ELR2 = 0.60 ± 0.18; EHR = 0.57 ± 

0.19). None of the diversity patterns commented above revealed significant results. The 

community was not distributed differently across the five geological areas and the number 

of individuals, taxa, Shannon and Evenness indexes did not change significantly according to 

the geological zones across the different rainfall periods.3.3.3 Ecological niche analysis 

3.3.3.1 Overlap, co-occurrence and realized niches 

Overall observed niche overlap was 28% for LR1, 27% for LR2 and 32% for HR. This increase 

was paralleled by a decrease in co-occurrence (C-scores): from C= 22.74 for LR1, to C= 16.71 

for LR2 and C= 15.36 under HR conditions (Table S3.5).  
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The first two OMI axes accounted for 76.30% of the explained variability, with OMI axis one 

representing 56.55% and OMI axis two 19.74% of the variance. The average marginality of 

the theoretical ubiquitous species was significant (P < 0.05; 1000 Monte Carlo 

permutations), suggesting an influence of the environmental conditions on the stygofaunal 

community assemblages (Table 3.4). Temperature (P < 0.001) and pH (P < 0.001) for LR2 

and HR, and temperature (P < 0.001) and salinity (P < 0.05) for LR1 were the most 

influential environmental parameters on the taxa’s realized niches (Figure 3.4).  

 

Figure 3.4. Results of the canonical weights of six environmental variables extracted by OMI 
analysis (axis 1 and axis 2, 76.30% of the variability in the data set). The significant 
environmental variables are in red. Temp, Temperature; DO, Dissolved Oxygen; Sal, Salinity; 
ORP, Oxidation Reduction Potential.  
 

Table 3.4. Result of OMI and WitOMI analyses. OMI, Outlying Mean Index; WitOMIG, 
marginalities from the average habitat condition G, Tol, tolerance; Rtol, residual tolerance; 
x̅, average marginality.   

Rainfall period 

ID OMI Tol Rtol P WitOMIG Tol Rtol WitOMIG Tol Rtol WitOMIG Tol Rtol

TU 2.00 0.86 7.12 0.16

OR 1.09 3.06 5.07 < 0.05 2.00 3.73 5.81 2.69 1.61 5.37 3.42 0.20 1.46

H 0.04 2.25 5.35 0.13

C 0.02 1.92 6.07 0.12

AMJ 0.51 1.13 3.79 < 0.05 0.70 0.43 6.04 0.85 0.76 1.82 2.77 0.13 2.38

AM1 0.13 1.03 4.89 0.34

AM2 0.16 0.92 4.95 0.12

AM3 0.24 1.47 5.01 0.27

B 0.46 1.20 3.49 < 0.05 1.32 1.70 2.35 1.15 0.63 2.94 3.11 0.38 1.88

M 0.11 1.18 6.94 0.32

S 0.34 1.10 5.06 < 0.05 1.85 1.41 6.62 1.54 0.75 3.31 2.60 0.18 2.59

Blv 0.30 0.58 4.84 0.55

Mlv 1.96 0.77 5.19 0.17

Slv 0.20 1.14 5.68 0.37
x ̅(P) < 0.05 < 0.001 < 0.001 < 0.001

All LR1 LR2 HR
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The subsets of the environmental conditions associated with each rainfall regime were 

statistically different from the origin (the realized environmental space) (LR1: P < 0.001; 

LR2: P < 0.001; HR: P < 0.001; 1000 Monte Carlo permutations, Table 3.4), confirming that 

the three regimes are associated with differential habitat settings. Overall, stygofauna 

showed less scattered distributions along the environmental gradients during HR conditions 

(Figure 3.5). All the taxa showed low OMI values indicating a common use of the habitat 

(OMI<2). Four taxa (28.5%) out of 14 had a significant niche (OMI, P < 0.05, Table 3.4): 

water mites (OR), juvenile amphipods (AMJ), P. macrosturtensis (B) and P. microsturtensis 

(S). Water mites had the highest marginality, (OMI=1.09), and tolerance (TOL= 3.06), while 

AMJ and B had similar marginality (OMI=0.51 and OMI=0.46) and tolerance (TOL=1.13 and 

TOL=1.20) values. S had very low marginality (OMI=0.34), indicating a use of the available 

habitat which is ubiquitous to the community object of study. Overall, during low rainfall 

conditions (LR1 and LR2) the sub-environmental conditions revealed fewer constraints on 

the species realized niches than for HR (Figure 3.5).  
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Figure 3.5. Rainfall periods (LR1, LR2 and HR) subset’s constraints of habitat conditions 
(green, red and yellow polygons respectively), found within the overall available habitat 
conditions (light blue polygons). Bore distribution is depicted with the respective number of 
taxa (α-diversity) and species subniche positions per each sampling event are also 
displayed. Red dots represent the suborigins. E, realized environmental space; K, subset 
realized environmental space. Refer to Table 3.3 for the stygofaunal codes and to 
Karasiewicz et al. (2017) for further details about the indexes. 
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3.3.3.2 Subniche trends 

All the WitOMI were significant (Table S3.6) and the observed changes in realized subniche 

occupations are linked with the differences between rainfall regimes’ subset average 

environmental conditions (red dots in Figure 3.5). The significant taxa (B, AMJ, OR and S) 

occupied smaller ecological niches during HR relative to the other rainfall regimes (see 

Table 3.4 for taxa tolerance (Tol) values).  

Apart from water mites (Figure 3.6a), realized subniches were wider for HR than during LR2, 

and showed the biggest departures from the average conditions (Figure 3.6b, c and d). 

Water mites (OR) and P. microsturtensis (S) occupied wider realized subniches than P. 

macrosturtensis (B) and juvenile amphipods (AMJ), and during the HR regime the latter 

three species occupied more similar niches than that used by the stygofaunal assemblage if 

compared with the two low rainfall periods (Figure 3.5 and Figure 3.6). Aside from water 

mites, the other taxa occupied common environments (OMI values below one, Table 3.4) 

and they used more marginal habitats (higher WitOMIG values) under HR conditions than 

during LR regimes (lower WitOMIG values, Table 3.4). Concurrently, all the significant taxa 

decreased their tolerance under HR conditions (Table 3.4).  

In contrast, the average positions of the two most widely distributed taxa, the cyclopoid 

and harpacticoid copepods, along the first two axes of OMI analysis (Figure S3.7) were 

closest to the origin of the axis, indicating wide ecological tolerance to environmental 

variation. Considering each rainfall category separately, water mites were the only taxon 

group that revealed higher marginality under HR (WitOMIGK=2.36) when compared with 

LR1 (WitOMIGK=0.59) and LR2 (WitOMIGK=0.67). In contrast, marginalities of amphipod 

juveniles (AMJ) and P. microsturtensis (S) plummeted under HR conditions, and marginality 

values for P. macrosturtensis (B) were 1.05 (LR1), 0.23 (LR2) and 0.54 (HR) (Supplementary 

Table 3.2). 
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Figure 3.6. Species realized subniches positions of the statistically significant taxa for the 
OMI and WitOMI analyses: a) water mites (OR), b) amphipods juveniles (AMJ), c) P. 
microsturtensis (S) and d) P. macrosturtensis (B). The arrows represent the marginality 
vectors from the average habitat conditions. E, Environmental space; NR realized niche; SR, 
realized subniche. Refer to Karasiewicz et al. (2017) for further details about the ecological 
niche indexes.  

3.4 Discussion 

3.4.1 Environmental dynamics 

Water level monitoring of the groundwater at Sturt Meadows was conducted under dry 

conditions when compared with previous years (see Hyde et al., 2018). Such conditions are 

not unexpected, given that the Australian climate regimes, the driest inhabited continent 

on earth, have erratic and largely unpredictable patterns (Buys, Miller, & van Megen, 2012). 

Groundwater recharge is controlled by climatic conditions such as rainfall intensity and 

frequency, together with water exchange between aquifers and catchments (Datry et al., 

2005). With this in mind, the sampling design for the present study not only focused on 

specific rainfall periods that maybe linked to groundwater recharge into the aquifer, but 

also incorporated a broad approach involving the yearly long term cyclic alternation 

between the wettest (January (26.3), February (29.2) and March (30.6), average monthly 
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rainfall (mm) within parentheses; from BoM) and driest period (from July (17) to December 

(15.6)) (Figure 3.2a).  

Soil conditions such as temperature and moisture are strongly linked with rainfall events 

(Maxwell, Chow & Kollet, 2007), and play a key role in aquifer recharge (e.g. Edmunds & 

Wright, 1979; Wooding, Tyler, & White, 1997; Nasta, Adane, Lock, Houston, & Gates, 2018). 

Although water levels did not respond to the low rainfall amounts, we did see a change in 

groundwater chemistry. While pH significantly decreased, temperature increased after 

rainfall (i.e. under HR conditions). A possible explanation for these trends is that at Sturt 

Meadows the surface soil layers can reach temperatures of up to 70 °C (Saccò’s 

unpublished data). Therefore, when the limited rainfall does occur at the site, it infiltrates 

the soil zone and the water becomes warmer and more acidic suggesting a recharge pulse 

has indeed migrated to the water table through either diffuse or point sources. 

Rainfall inputs also linked with changes in nutrient concentrations. The significant increase 

in ammonia is most likely derived from the dissolution and overland transport of animal 

waste (Bradford et al., 2013; over 1000 bovines feed on the surficial saltbush) across the 

study site after increased rainfall, and subsequent migration to the groundwater (Kendall, 

1998; Mallin & Cahoon, 2003). However, nitrate concentration showed no significant 

change, suggesting that microbial processing may play an important role in the 

biogeochemical patterns of the system. Further investigations involving isotopic 

fingerprinting would allow more refined elucidation of nutrients flows at Sturt Meadows.  

Concurrently, the inflow of acidic water under HR conditions (pH = 6.7) has the potential to 

access phosphorus from its insoluble forms (Cook & Heizer, 1965) and as a result, 

phosphates significantly decrease in concentration relative to LR2. The groundwater level 

remained steady across all rainfall periods, and together with ORP, was not a significant 

driver in determining the stygobiotic dynamics at Sturt Meadows. The DO concentration 

was higher under HR conditions, suggesting that dissolved oxygen is transported through 

the aquifer, most likely via advection (Malard & Hervant, 1999). Overall, these shifts in 

water chemistry and nutrient availability might be responsible for driving ecological 

changes in the stygofaunal community (Humphreys, 2008; Datry et al., 2005).    

Local geology (denoted as the five different geological zones) was not a significant driver 

shaping the stygofaunal assemblages and it was finally discarded for our OMI analysis. This 
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does not rule out geology being significant in notably different contexts (e.g. karst vs 

alluvial sediments, or areas with hydrocarbons). It is important to emphasise that our study 

focused on a considerably smaller scale compared with those more extensive investigations 

of marginality at regional scales (Dole-Olivier et al., 2009; Galassi et al., 2009). 

3.4.2 Stygofaunal patterns 

Although stygofaunal diversity did not change significantly after the three rainfall periods, 

some interesting distribution patterns can be unveiled. Copepods (C and H) were the most 

abundant taxa, and increased their number under HR. Hyde et al. (2018) showed similar 

patterns for the same system, suggesting that HR events might increase the hydrological 

connectivity, together with increased nutrient availability, throughout the calcrete at Sturt 

Meadows and trigger an overall increase in copepods’ population sizes. Galassi et al. (2009) 

reported colonization processes by free-swimming cyclopoids in low water velocity karst 

systems coupled with harpacticoid dominance in interstitial voids within the sediment (also 

in Galassi & Laurentiis, 2004; Di Lorenzo et al., 2005). However, our results indicated that 

among the copepods, cyclopoid populations increased more markedly with increasing 

rainfall than the harpacticoids, although the differences within these two groups were not 

significant. This suggests that species-specific and scale-specific patterns may play a role in 

the observed patterns. 

Copepods, together with amphipods, graze biofilms and assimilate microbially-derived DOC 

and POM, fuelling carbon transfers along the trophic chain and maintaining the biochemical 

flows in groundwater (Humphreys, 2006; Tomlinson & Boulton, 2010; Galassi et al., 2017). 

Subterranean amphipods display opportunistic trophic habits characterized by a wide range 

of feeding modes (filter feeders, scrapers, scavengers, predators) (Hutchins, Schwartz, & 

Nowlin, 2014). Hartland, Fenwick, and Bury (2011) suggest that switches of feeding modes 

according to environmental conditions could explain the dominance of amphipods in 

oligotrophic groundwaters. At Sturt Meadows, abundances of adult amphipods (AM1, AM2 

and AM3) decreased through the three rainfall regimes (from LR1 to HR).  

The changes in distribution patterns we observed are likely to be linked with differential 

resource availability after rainfall periods, together with predatory pressures from higher 

trophic levels. Previous DNA analyses on beetles (B, M and S) at Sturt Meadows provided 
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evidence of amphipods and copepods as prey items (Bradford, 2010). Our results show that 

adult beetles increased their abundances through the rainfall regimes (from LR1 to HR), 

indicating similar potential predator-prey interactions. Abundances of beetle larvae (Blv, 

Mlv and Slv) were very low, indicating they may occupy different trophic niches to the 

adults, as suggested by Bradford et al. (2013).  

Water mites (OR) did not follow a specific trend, and were most widely distributed (15 

bores out of 30) and abundant (149 in total) in the LR2 rainfall period, suggesting that 

limited rainfall, or stable groundwater conditions, provide the most favourable 

environmental conditions for this taxonomic group (Irmler, 2004). In contrast, oligochaete 

tubificids (TU) were most abundant after rainfall, i.e. under the HR regime. As reported by 

Learner, Lochhead, and Hughes (1978), high water temperatures stimulate rates of growth 

and asexual reproductions in oligochaetes, and these conditions are likely to be responsible 

for the population increases observed at Sturt Meadows. 

3.4.3 Ecological niche interactions 

The environmental settings resulting from different rainfall events revealed diverse 

ecological niche patterns, suggesting specific biotic adaptations to the changes in 

hydrogeochemistry in the aquifer. Overall, species increased their niche overlaps under HR 

conditions. Increased rainfall recharge over the site was linked with more suitable 

environmental conditions and increased overlaps in the use of resources. Concurrently, 

lower species segregations (C-scores) also indicated that existing interspecific interactions 

were strengthened under HR conditions. In line with the dynamic reported by Fattorini et 

al. (2017) in a different context, this result indicates species ‘displacements’ linked with 

differential subsurface conditions. Further, WitOMI analysis confirmed a shift in ecological 

niche occupation (between low rainfall (LR1 and LR2) compared to higher rainfall conditions 

(HR)) for OR, AMJ, B, and S. Overall, the patterns revealed by AMJ, B and S seem to be 

driven by dissolved oxygen flux after rainfall (from LR1 and LR2, to HR).  

Several studies (e.g. Hakenkamp & Palmer 2000; Dumas, Bou, & Gibert, 2001; Hahn, 2006) 

have shown the importance of oxygen gradients in shaping stygofaunal assemblages. Dole-

Olivier et al. (2009) concluded that the main drivers shaping stygofaunal biodiversity 

patterns in the French Jura region were salinity and high dissolved oxygen in waters. This is 



 
 

94 

 

consistent with our results, where oxygenated conditions and higher resource availability 

(higher marginality values, Table 3.4) were key factors in shaping shifts in niche occupation. 

Simultaneously, the four taxa reduced their niche breadths (tolerance) under HR conditions 

and this, associated with increased levels of specialization (Karasiewicz et al., 2017), seems 

to indicate biotic strategies driven by higher levels of adaptations to the environmental 

conditions.  

Amphipod juveniles (AMJ) revealed coupled ecological patterns with P. macrosturtensis (B) 

and P. microsturtensis (S) (Figure 3.6b, d and c). Our results suggest that the beetles’ 

predatory pressures, reported at Sturt Meadows by Bradford et al. (2013), are 

predominantly exerted on adult amphipods. In line with this axiom, Sudo and Azeta (1992) 

suggest that amphipod juveniles in benthic and pelagic environments might be protected 

from predation because of their small size. In groundwaters, where interstitial voids shape 

stygofaunal distributions within the aquifer matrix (Hose & Stumpp, 2019), small bodies 

might represent a practical advantage in avoiding predation. Concurrently, adults usually 

display greater activity than juveniles, including mate searching behaviour, and this may 

expose them to more frequent interception by active predators like P. microsturtensis or P. 

macrosturtensis (Strong, 1972; Peer, Linkletter, & Hicklin, 1986; Conlan, 1994). However, 

while reported for surface freshwater environments (e.g. McGrath, Peeters, Beijer, & 

Scheffer, 2007), there is a lack of evidence for these patterns in groundwaters and they 

need to be empirically tested.    

In another study, Bradford (2010) found discordant diversity patterns among the two 

sympatric sister species P. microsturtensis and P. macrosturtensis, and suggested an 

ecological niche partitioning process occurs within the calcrete environment. Our results 

illustrate a substantial overlap between P. macrosturtensis (B) and P. microsturtensis (S) in 

ecological niche occupation through the three rainfall periods (Figure 3.6d and c). These 

patterns suggest that the shifts in environmental conditions, and therefore resource 

availability, provided by rainfall (HR) do not shape differential inter-specific competition. As 

suggested by Allford et al. (2008), vertical partitioning down the water column, as a result 

of contrasting oxygen requirements (Jones, Cooper, & Seymour, 2019), is likely to play an 

important role in beetles’ interactions at Sturt Meadows, and further investigations will 

help unravel these ecological dynamics.  
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Unlike the other significant taxa, water mites showed contrasting ecological shifts within LR 

regimes (LR1 and L2), and depth was an influential environmental factor for their biotic 

assemblages during LR2 (Figure 3.6a). In shallow aquifers, deeper and more oxygenated 

water columns can provide mites with more accessible and heterogeneous habitats (i.e. 

voids) that might contain adult beetles to parasitize. Dystiscids host suitable sites such as 

thorax or abdomen or wings for acari larval attachments (e.g. Smith & Oliver, 1986; 

Mortazavi, Hajiqanbar, & Lindquist, 2018). However, given the low and scattered 

abundances of this group, conclusions about specific population dynamics at Sturt 

Meadows are at risk of bias. Moreover, despite their morphological and physiological 

adaptations to the aquatic environment (Schatz & Behan-Pelletier, 2008) and their 

occurrence in the hyporheic zone (Williams, 1993; Irmler, 2004), oribatid mites are 

unstudied in the region and their adscription to stygofauna is still uncertain. Further 

species-specific investigations involving different habitats and locations from expanded 

research areas will allow a better comprehension of the ecological dynamics of this group in 

calcrete systems (i.e. Sabatino, Cicolani, & Gerecke, 2003).  

Overall, residual tolerance values for all the taxa (Table 3.4) indicate that there are 

environmental drivers present that are not being captured in our data. These results are in 

line with those presented by other groundwater ‘OMI analysis’ investigations in Europe 

(PASCALIS project, Dole-Olivier et al., 2009; Galassi et al., 2009; Martin et al., 2009). Indeed, 

the quantification of the ecological niches represents one of the major keystones in ecology 

(Miklos, 1959; Larson, Holden, & Usio, 2010). Several models have attempted to unravel 

ecological niche determinations via different approaches, namely, experimental (e.g. 

Moore, 2009), mechanistic (e.g. Kearney et al., 2008) and statistical (e.g. Peterson, 2001), 

and all of them require the definition of ‘environmental’ conditions (Holt, 2009).  

In groundwaters, the habitat characterisation usually includes hydrological and geological 

parameters coupled with water chemistry parameters (e.g. Datry et al., 2005; Martin et al., 

2009; Galassi et al., 2017). Dole-Olivier et al. (2009) suggest that the incorporation of 

factors like food availability, habitat fragmentation and biotic interactions would 

considerably improve the analysis of niche dynamics. However, the reduced accessibility of 

the majority of subsurface ecosystems is a crucial limiting factor for the integration of 

broader sampling techniques (Allford et al., 2008). Therefore, additional perspectives, such 

as the integration of genetic and geochemical information, need to be brought to the field. 
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Metagenomics (branded environmental DNA, eDNA) is an emerging and extremely 

powerful biomonitoring tool able to unravel stygofaunal functions and biotic community 

structures (Niemiller et al., 2018). Providing the crucial linkage between the stygofaunal 

and microbial communities, this technique has the potential to unravel crucial biochemical 

mechanisms that will provide novel insights into groundwater ecology investigations. Given 

the recent advances towards a multidisciplinary focus  (e.g. Hancock et al., 2005; Danielopol 

& Griebler, 2008; Humphreys, 2008; Murray et al., 2008; Steube et al., 2009; Fleckenstein, 

Krause, Hannah, & Boano, 2010), the field of groundwater ecology can benefit from the 

incorporation of designs from different disciplines such as hydrology, isotope geochemistry 

and genetics (Saccò et al., 2019).  

Overall, the stygofaunal community at Sturt Meadows aquifer displayed broad ecological 

tolerances, tendencies in line with several other investigations (e.g. Martin et al., 2009; 

Schulz, Steward & Prior, 2013). Our results show that ecological shifts are driven by the 

influx of dissolved oxygen from rainfall. However, climate change, linked with 

anthropogenic pressures such as overexploitation and contamination, puts at risk the 

maintenance of the delicate ecological balance sustaining these communities (Spengler & 

Hahn, 2018). Further investigations involving whole-system approaches, considering 

spatiotemporal ecological dynamics of the aquatic fauna and their linkage to microbial 

assemblages (e.g. Žutinić et al., 2018), are  needed (Datry et al., 2005) to address how our 

indisputably changing climate will affect the aquatic biota in groundwaters, one of the most 

distinct and understudied ecosystems on Earth. 
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Supplementary material 

Table S3.5. Overlap (Pianka’ index) and co-occurrence (Stone and Robert’s C-scores) 
observed and expected overlap for null assemblages. RA2 (relaxed niche breadth) and RA3 
(retained niche breadth) for the overlap and sim9 for the co-occurrence are the algorithms 
used for the null assemblages. 

RA2 RA3 sim9

Expected overlap Expected overlap Expected co-occurrence

LR1 0.284 0.319 0.214 22.736 22.560±0.065

LR2 0.269 0.354 0.191 16.714 16.629±0.058

HR 0.317 0.350 0.212 15.363 15.014±0.094

Rainfall period Observed overlap Observed co-occurrence

 

Table S3.6. Environmental preferences parameters of the 14 invertebrate taxa sampled 
during LR1, LR2 and HR. P and SubniP number of 1000 Monte-Carlo random permutations 
that yielded a higher value than the observed marginality (OMI, WitOMIG or WitOMIGK) (in 
bold significant values). OMI, Outlying Mean Index (marginality); WitOMIG, marginalities 
from the average habitat condition G; WitOMIGK, subset marginality; Tol = tolerance, Rtol = 
residual tolerance; x,̅ average marginality.   

OMI WitOMIG WitOMIG K

ID P SubniP SubniP WitOMIG K Tol Rtol WitOMIG K Tol Rtol WitOMIG K Tol Rtol

TU 0.16 < 0.001 < 0.001

OR < 0.05 < 0.001 < 0.001 0.59 3.00 6.54 0.67 3.46 3.51 2.36 0.76 0.90

H 0.13 < 0.001 < 0.001

C 0.12 < 0.001 < 0.001

AMJ < 0.05 < 0.001 < 0.001 1.05 1.40 5.07 1.54 0.97 1.61 0.04 0.19 2.32

AM1 0.34 < 0.001 < 0.001

AM2 0.12 < 0.001 < 0.001

AM3 0.27 < 0.001 < 0.001

B < 0.05 < 0.001 < 0.001 1.05 0.46 3.59 0.23 0.47 3.11 0.54 0.73 1.53

M 0.32 < 0.001 < 0.001

S < 0.05 < 0.001 < 0.001 0.70 0.55 7.48 0.65 0.66 3.39 0.02 0.49 2.29

Blv 0.55 < 0.001 < 0.001

Mlv 0.17 < 0.001 < 0.001

Slv 0.37 < 0.001 < 0.001

x̅ < 0.05 < 0.001 < 0.001

Rainfall 

period 

All
LR1 LR2 HR
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Figure S3.7. First (a)) and second (b)) axes extracted by the OMI analysis, which respectively 
explain 56.55% and 19.74% of the variability in the stygofaunal dataset: (a) Environmental 
gradients (8 variables) along the first axis; (b) taxa distribution along the environmental 
gradient. Small coloured circles represent bores where species occurred (separated by 
geological areas), while large grey circles illustrate the occurrence of a given taxa 
(proportional to the size of the circle) at its centroid (mean position) along the 
environmental gradient. Species with a statistically significant marginality are shown in red. 
Horizontal lines shows the standard deviation; (c) ordination of the 14 stygofaunal taxa 
along the first axis using their factorial scores. 
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Abstract 

Subterranean ecosystems host highly adapted aquatic invertebrate biota which play a key 

role in sustaining groundwater ecological functioning and hydrological dynamics. However, 

functional biodiversity studies in groundwater environments, the main source of unfrozen 

freshwater on Earth, are scarce, probably due to the cryptic nature of the systems. To 

address this, we investigate groundwater trophic ecology via stable isotope analysis, 

employing δ13C and δ15N in bulk tissues, and amino acids. Specimens were collected from a 

shallow calcrete aquifer in the arid Yilgarn region of Western Australia: a well-known hot-

spot for stygofaunal biodiversity. Sampling campaigns were carried out during dry (low 

rainfall: LR) and the wet (high rainfall: HR) periods. δ13C values indicate that most of the 

stygofauna shifted towards more 13C-depleted carbon sources under HR, suggesting a 

preference for fresher organic matter. Conversion of δ15N values in glutamic acid and 

phenylalanine to a trophic index showed broadly stable trophic levels with organisms 

clustering as low-level secondary consumers. However, mixing models indicate that HR 

conditions trigger changes in dietary preferences, with increasing predation of amphipods 

by beetle larvae. Overall, stygofauna showed a tendency towards opportunistic and 

omnivorous habits - typical of an ecologically tolerant community - shaped by bottom-up 

controls linked with changes in carbon flows. This study provides baseline biochemical and 

ecological data for stygofaunal trophic interactions in calcretes. Further studies on the 

carbon inputs and taxa-specific physiology will help refine the interpretation of the energy 

flows shaping biodiversity in groundwaters. This will aid understanding of groundwater 

ecosystem functioning and allow modelling of the impact of future climate change factors 

such as aridification. 

Key-words: stygofauna, δ13C and δ15N CSIA, SIA, food web, rainfall, groundwater, calcrete 

aquifer. 
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4.1 Introduction 

During recent decades, investigations of trophic webs have become a cornerstone for the 

interpretation of functional biodiversity in freshwater ecosystems. Within both lentic and 

lotic environments, macroinvertebrate food web dynamics play a key role in shaping 

process-level aquatic ecosystem attributes [1]. Aquatic faunal trophic characterization is 

usually conducted by employing the morpho-behavioural based concept of functional 

feeding groups (FFGs) [2]. Since its inception, FFGs have been extensively used in ecological 

assessments and biomonitoring studies, and have allowed detailed assessment of 

ecological patterns in both natural and disturbed environments [3,4,5].  

However, despite the hydraulic and ecological continuum in groundwater dependent 

ecosystems, the subsurface ecosystem and the study of its food chain interactions have 

suffered from a conceptual disconnection from surficial aquatic habitats. The main reasons 

are attributable to methodological limitations [6,7], scarce aquifer accessibility [8] and the 

lack of interdisciplinary approaches [9]. Moreover, compared to surface freshwater 

ecosystems, groundwaters are subjected to relatively extreme environmental conditions: 

sparse organic inputs, lack of light and primary production, and truncated trophic webs 

[10,11,12,13]. Altogether, these unique conditions shape obligate subterranean aquatic 

communities (stygofauna) dominated by plastic and opportunistic trophic behaviours 

[14,15], whose categorization via feeding modes such as FFGs is constantly at risk of 

misinterpretation. As a result, our knowledge about how food web interactions shape 

groundwater ecological functioning and community patterns is fragmented [16]. 

Stygofauna - when present - play a key role in regulating both ecological and hydrological 

dynamics in aquifers [17,18]: they actively bioturbate the sediment, facilitate nutrient 

recycling and, in combination with microbial communities, degrade/retain contaminants. In 

groundwaters, carbon inputs (allochthonous dissolved organic carbon (DOC) and 

chemoautotrophic production) are mediated by microbes which are then grazed by 

stygofauna at the base of the food chain [19]. Organic matter (OM) is transferred along the 

trophic chain via prey-predator interactions. Therefore, OM inputs, microbial communities, 

and the stygofaunal trophic web, all shape the energy flows sustaining the subterranean 

biodiversity [20].  
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The incorporation of biogeochemical approaches (i.e. stable isotopes composition, fatty 

acids content, radiocarbon analysis) has recently led to re-evaluation of the archetype of 

poorly structured – and generalist-dominated – trophic dynamics in groundwaters [21]. 

These designs are leading a vital transition from purely descriptive to functionally-based 

investigations, providing wider perspectives to the field [22].  

Carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) is a well-established 

approach enabling quantitative investigation of food webs [23,24]. Since its initial 

application in groundwater trophic ecology, several studies have benefited from the 

insights provided by the study of naturally-occurring stable isotopes [25,26]. However, δ13C 

and δ15N SIA investigations on bulk material are limited by the mixing of tissues and 

different biochemical pathways [27]. These limitations can be addressed by the 

complementary or alternative use of compound-specific approaches. 

δ13C and δ15N Compound Specific Isotope Analysis (CSIA) on amino acids (AAs) allows 

detailed characterization of food web interactions [28], by focusing on compounds created 

by definable biosynthetic pathways. Single amino acids can be divided into essential (EAA) 

and non-essential (NEAA). Whilst primary producers (plants, algae and bacteria) 

biosynthetise  de novo EAA from a bulk carbon pool, animals lack these enzymatic pathways 

and acquire EAA from their diet [29]. As a result, tracking of EAA allows carbon 

fingerprinting of food sources down to the base of food webs [30]. Concurrently, δ15N CSIA 

can distinguish between compounds reflecting the source isotopic signal, and that enriched 

with each trophic step, thus providing crucial information on prey-predator interactions 

[31]. The application of CSIA in amino acids has allowed a much more thorough 

understanding of food web dynamics in freshwater [32], marine [33] and terrestrial 

environments [34], but despite the greater potential than bulk analysis [35], this technique 

has yet to be applied to food web studies of groundwater environments.  

This study is, to our best knowledge, the first based on the combination of carbon and 

nitrogen CSIA in groundwaters, and focuses on a calcrete stygofaunal community under 

two contrasting environmental conditions: low rainfall (LR, dry season) and high rainfall 

(HR, wet season). We hypothesise that different environmental conditions trigger species-

specific adaptations that are ultimately responsible for distinct food web interactions. The 

specific objectives of this work are: 1) unravel OM incorporation trends across the 
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stygofaunal community, 2) decipher the trophic habits of the species and elucidate prey-

predator interactions and 3) provide biochemically-based knowledge about trophic web 

interactions in arid zone calcrete aquifers.   

4.2 Methodology 

4.2.1 Study area and field work 

The field work was carried out at a calcrete aquifer (28˚41‘S 120˚ 58‘E) located on Sturt 

Meadows pastoral station, Western Australia, ~42 km from the settlement of Leonora (833 

km northeast of Perth, Figure 4.1a).  

 

Figure 4.1. a) Borehole grid and its location in the Yilgarn region, Western Australia. b) 
Photos of some specimens from the bore samples (from left to right Paroster 
macrosurtensis adult, Paroster microsturtensis larvae, Scutachiltoni axfordi, Oligochaeta sp. 
and Oribatida sp.). 
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The Sturt Meadows calcrete hosts a very shallow aquifer, located two to four metres below 

the surface, and accessible through bores characterised by water depths ranging from a few 

centimetres to ten metres. The bore grid was initially drilled for mineral exploration and 

comprises 115 bore holes of between 5-11 m in depth forming a 1.4 km by 2.5 km (3.5 km2) 

area (Figure 4.1a). The bores are unlined, except for about the upper 0.5 m which are lined 

with 10 cm diameter PVC pipe for stability, and capped [36]. Three sampling campaigns – 

two of them corresponding to low rainfall periods (LR) and one during the wet season (high 

rainfall, HR) [37] – were carried out in July and November 2017, and March 2018. More 

details about the sampling design, monitoring of water depth and hydrogeological 

background at Sturt Meadows can be found in Saccò et al. [38]. 

The high morphologically (Figure 4.1b) and taxonomically diverse stygofaunal community at 

Sturt Meadows comprises three sister species of subterranean beetles (Paroster 

macrosturtensis (Watts & Humphreys 2006), Paroster mesosturtensis (Watts & Humphreys 

2006) and Paroster microsturtensis (Watts & Humphreys 2006) and respective larvae)), 

three species of amphipods (Scutachiltonia axfordi (King, 2012), Yilgarniella sturtensis  

(King, 2012) and Stygochiltonia bradfordae (King, 2012)), aquatic worms (family Tubificidae 

(Vejdovský, 1884)) and water mites (order Oribatida; Dugès, 1834). Within the stygobiotic 

meiofaunal community, two species of harpacticoids (Novanitocrella cf. aboriginesi 

(Karanovic, 2004), Schizopera cf. austindownsi (Karanovic, 2004) and four species of 

cyclopoids (Halicyclops kieferi (Karanovic, 2004), Halicyclops cf. ambiguous (Kiefer, 1967), 

Schizopera slenderfurca (Karanovic & Cooper, 2012) and Fierscyclops fiersi (De Laurentiis et 

al., 2001)) can be found. 

Adult and larval stygofaunal specimens were collected by hauling a small weighted plankton 

net (mesh 100 µm, [36]) five times from the bottom through the water column of 30 

boreholes (Figure 4.1a) selected by simple random sampling [38]. Stygofaunal abundance 

data across the boreholes are reported in Table S4.4. 

All biological samples were kept frozen (–20°C) in darkness until further processing in the 

laboratory where individual organisms were counted and identified (and consequently 

separated) to the lowest taxonomic level via optical microscopy and reference to specific 

taxonomic keys. Roots and sediment samples from the bottom of the aquifer were 

obtained through the stygofaunal haul netting procedure, and were separated by using 
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sterile glass pipettes during the sorting in the laboratory according to the sampling 

campaign (LR or HR). Sediment samples were soaked in acid (0.1 N HCl) to remove inorganic 

carbon and dried at 60 °C for 24 hours.  

Given the delicacy of the hydrological dynamics in shallow calcretes [39], extensive water 

extractions spread along the bores were avoided and preliminary tests were carried out to 

quantify the potential risk of dewatering the calcrete. Bores D13 and W4 host groundwater 

systems which are representative of the geological conformations of the area - phreatic and 

vadose calcretes interspersed with clay material - and were finally selected because of their 

hydrological and biotic stability (lowest risk of drying and representative ranges of Sturt 

Meadows stygofaunal diversity) [38]. Water samples for POC (particulate organic carbon) 

analysis were collected using a submersible centrifugal pump (GEOSub 12V Purging Pump) 

after wells were purged of three well-volumes and stabilisation of in-field parameters was 

observed. POC samples were obtained by filtering water from the bores D13 and W4 

through GF/F filters (pre-combusted for 12 hours at 450 °C), washed with 1.2 N HCl to 

remove any inorganic carbon, and subsequently dried at 60 °C for 24 hours. The field site 

was accessed and samples were collected with permit approval (permit number 08-003150-

1) from the Department of Parks and Wildlife of Western Australia.  

4.2.2 Sample preparation and study design 

Prior to sample preparation for analytical tests, images of adults and larvae of beetles P. 

macrosturtensis, P. mesosturtensis and P. microsturtensis were prepared at the Western 

Australian Museum (Perth) using the Leica Application Suite version 4.6 utilizing multiple 

images taken with a Leica DFC 500 digital camera, attached to the Leica MZ16A microscope. 

All individuals from a single taxon were then pooled for each sampling campaign (LR1, LR2 

or HR) and subsequently washed with MilliQ water to remove external contaminants. 

Subsequently, samples were oven dried at 60 °C overnight and crushed to a fine powder 

which was stored at –20 °C until further analysis (Figure 4.2).  
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Figure 4.2. Methodological scheme of the study for stygofaunal samples (including 
copepods for bulk SIA). EAA: essential amino acids; NEAA: non-essential amino acids; TP: 
trophic position; TDF: trophic discrimination Factor; β = ratio between δ15NGlu and δ15NPhe 
values in primary producers; SIMM: stable isotopes mixing models; LC-iRMS: Liquid 
Chromatography-isotope Ratio Mass Spectrometry; GC-iRMS: Gas Chromatography-isotope 
Ratio Mass Spectrometry; EA-CF-iRMS: Elemental Analyser-Continuous Flow-isotope Ratio 
Mass Spectrometry. 

Due to sample size constraints, the samples for each taxon from the two low rainfall 

periods were further combined. Previous metagenomics investigations, together with 

mesocosm experiments and field observations at Sturt Meadows provided some 

information about the trophic habits of beetles and amphipods [40]. Adult subterranean 

beetles had active predatory feeding on epigean amphipods and copepods (including group 

feeder behaviours) together with scavenger habits (and potential active predatory 

pressures) on sister species. Beetle larvae (third and last instar) showed opportunistic 

predatory habits with a range of prey from copepods and amphipods to adult beetles from 

the three species (inter and intraspecific cannibalism), while amphipods displayed 

predation of copepods, epilithic biofilm grazing, root shredding and sediment filter feeding.  
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4.2.3 Bulk stable isotope analysis 

δ13C and δ15N SIA on bulk homogenised samples of sediment, roots and stygofauna 

(respectively 1.28 mg, 0.08-0.14 mg and 0.63-2.79 mg per samples, Table S4.5) were 

performed at the Australian Nuclear Science and Technology Organisation (ANSTO, 

Sydney). Samples were loaded into tin capsules and analysed with a continuous flow 

isotope ratio mass spectrometer (CF-IRMS, Delta V Plus, Thermo Scientific Corporation, 

U.S.A.), interfaced with an elemental analyser (Thermo Fisher Flash 2000 HT EA, Thermo 

Electron Corporation, U.S.A.) following the procedure of Mazumder et al. [41]. δ13C values 

are reported in per mil (‰) relative to the Vienna Peedee Belemnite (VPDB), while δ15N 

values are reported relative to reference N2 of known nitrogen isotopic composition (in ‰), 

previously calibrated against the AIR international isotope standard. δ13C POC (0.6 mg, 

Table S4.5) was analysed at the Western Australian Biogeochemistry Centre at The 

University of Western Australia using a GasBench II coupled with a Delta XL Mass 

Spectrometer (Thermo-Fisher Scientific). Results have a precision of ± 0.10 ‰, and are 

reported relative to the NBS19 and NSB18 international carbonate standard [42]. 

4.2.4 Single amino acid carbon and nitrogen isotope analysis 

4.2.4.1 δ13C CSIA 

Stygofaunal samples (0.16-2.89 mg per sample, Table S4.5) were hydrolysed under vacuum 

with 0.5 to 1 mL of amino acid-free 6 M HCl (Sigma-Aldrich) at 110 ˚C for 24 h. The protein 

hydrolysates were dried overnight in a rotary vacuum concentrator and stored in a freezer. 

Prior to analysis, the samples were resolved in Milli-Q water and 10 µL of 1-mmol solution 

of 2-aminoisobutyric acid (Sigma-Aldrich) was added as internal standard. The sample stock 

had a concentration of approximately 8 to 10 mg/mL, which was further diluted as needed. 

Single amino acid carbon isotope analysis was carried out at the La Trobe Institute for 

Molecular Sciences (LIMS, La Trobe University, Melbourne, Australia) using an Accela 600 

pump connected to a Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific 

LC Isolink (Thermo Scientific). 

The amino acids were separated using a mixed mode (reverse phase/ion exchange) 

Primesep A column (2.1 x 250 mm, 100 °C, 5 µm, SIELC Technologies) following the 

chromatographic method described in Mora et al. [43], after Smith et al.  [44]. Mobile 
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phases are those described in Mora et al. [45]. Percentage of Phases B and C in the 

conditioning run, as well as flow rate of the analytical run and timing of onset of 100% 

Phase C were adjusted as needed. Samples were injected onto the column in the 15 µL - 

partial loop or no waste - injection mode, and measured in duplicate or triplicate.  

4.2.4.2 δ15N CSIA 

CSIA nitrogen analyses were undertaken at the Organic Geochemistry Unit of the University 

of Bristol, UK. To extract the AAs, crushed samples (2.47-5.19 mg per sample, Table S4.5) 

were hydrolysed in culture tubes (6 M HCl, 2 mL, 100 °C, 24 h). A known quantity of 

norleucine (1 mg mL–1 in 0.1 M HCl) was added to each sample as an internal standard prior 

to hydrolysis. After heating, the tubes were allowed to cool then after centrifugation (3000 

rpm, 5 min) the supernatant containing the hydrolysate from each tube was transferred to 

a clean culture tube and dried under N2 whilst being heated to 70°C. Once dry, each sample 

was re-dissolved in 0.1 M HCl and stored in the dark at -18°C until required for analysis. 

The derivatisation procedure followed Styring et al. [46] and included isopropylation, with a 

4:1 mixture of 2-propanol and acetyl chloride heating to 100 °C for 1 hour, the reaction was 

quenched by rapidly cooling in a freezer. After removing the residual solvents under N2, 

acetylation of the amino group was achieved by adding a 5:2:1 mixture of acetone, 

triethylamine and acetic anhydride then heating to 60°C for 10 minutes before being 

allowed to cool.  The derivatised AAs were isolated via liquid-liquid separation, residual 

solvent being removed by evaporating under N2. Samples were again stored at -18°C until 

required for analysis. 

A Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Scientific, 

Bremen, Germany) was used to determine the δ15N values of derivatised AAs. The mass 

spectrometer (EI, 100 eV, three Faraday cup collectors for m/z 28, 29 and 30) was 

interfaced to a Trace 2000 gas chromatograph via a Combustion III interface (CuO/NiO/Pt 

oxidation reactor maintained at 980°C and reduction reactor of Cu wire maintained at 

650°C), both from Thermo Scientific.  

Samples were dissolved in ethyl acetate and 1 µL of solution was injected via a PTV injector. 

Helium at a flow of 1.4 mL min–1 was used as the carrier gas and the mass spectrometer 

source pressure was maintained at 9 X 10–4 Pa. The separation of the AAs was accomplished 
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using a DB-35 capillary column (30 m X 0.32 mm i.d., 0.5 mm film thickness; Agilent 

Technologies, Winnersh, UK). The oven temperature of the GC started at 40°C where it was 

held for 5 min before heating at 15 °C min–1 to 120 °C, at 3 °C min–1 to 180 °C, at 1.5 °C min–

1 to 210 °C and finally at 5 °C min–1 to 270 °C and held for 1 min. A Nafion dryer removed 

water and a cryogenic trap was employed to remove CO2 from the oxidised and reduced 

analyte.  

All the δ15N values are reported relative to reference N2 of known nitrogen isotopic 

composition, previously calibrated against the AIR international isotope standard, 

introduced directly into the ion source in four pulses at the beginning and end of each run. 

Each reported value is a mean of duplicate δ15N determinations. A standard mixture of 

derivatised AAs of known δ15N values was analysed every three runs in order to monitor 

instrument performance. 

4.2.5 Data treatment and statistical analysis 

Only AAs that returned results for each taxon were considered. EAA and NEAA were 

separated according to the classification provided by Boudko [47]. EAAs were used in the 

interpretation of carbon flows - and potential shifts in OM incorporations - because they 

persist through the trophic chain [48] due to the little fractionation they undergo when 

incorporated into consumer’s tissue [49]. NEAA, which are subjected to much greater 

fractionation because of their de novo biosynthesis mainly from intermediates of the Krebs 

cycle (serine (Ser), glycine (Gly) and alanine (Ala)) and glycolysis (glutamic acid (Glx), 

aspartic acid (Asx) and proline (Pro)) [50], were compared to EAA to investigate taxa-

specific carbon isotopic trends (biosynthesis vs assimilation through diet) across the two 

rainfall periods (LR and HR).  

All the statistical analyses were performed in R software version 3.6.0 (Development-Core-

Team, 2016). Analysis of variance (ANOVA; outliers were identified using box plot methods 

(package ‘rstatix’), homogeneity of variances was tested through the Levene’s test (function 

leveneTest()) and normality was tested through the Shapiro-Wilk test (function 

shapiro.test())) coupled with Tukey’s HSD pairwise comparisons (R-package ‘stats’) was 

employed to inspect significant differences between δ13CEAA (Val, Phe and Arg) and δ13CNEAA 

(Krebs (Ser, Gly and Ala) and glycolysis (Asx, Glx and Pro) cycles) within the different rainfall 

conditions (LR and HR). Principal component analyses (PCA, R-package ‘vegan’) and Linear 
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Discriminant Analysis (LDA, R-package ‘vegan’) among EAA were performed to explore 

sample distribution in the multi-dimensional space. Determination of EAA driving sample 

variability in the PCA was carried out via function fviz_contrib (R-package ‘factoextra’).  

Trophic positions (TP) were calculated using the methodology reported by Chikaraishi et al. 

[33]:  

TP= [(δ15NGlu − δ15NPhe + β)/TDF] +1 

where δ15NGlu = δ15N of glutamic acid, δ15NPhe = δ15N of phenylalanine, β = ratio between 
δ15NGlu and δ15NPhe values in primary producers, and TDF = the trophic discrimination factor 
at each shift of trophic position. 

Incorporation of source carbon from terrestrial vegetation has previously been reported at 

Sturt Meadows, with roots from surficial saltbush vegetation (C3 metabolism) frequently 

found in the groundwater [40]. β was accordingly assigned the value of +8.4 ± 1.6 ‰, which 

is the established value for aquatic food webs involving C3 plants [31]. Although other 

carbon sources are possible in groundwaters, as they are not established in this system, a 

conservative approach has been taken in using the value of an evidenced source. TDF was 

assigned the value of 7.6 ± 1.2‰, based on Steffan et al. [51] who showed it did not vary 

across trophic levels one to four in multiple controlled-feeding experiments, and for trophic 

levels one to five in a natural food chain, using terrestrial arthropod species [28]. 

Pairwise comparisons for δ15N were carried out with the same approach as for the carbon 

CSIA data. Robustness and consistency between CSIA and SIA data from beetles and 

amphipods were inspected using Pearson correlations (function rcorr in R-package ‘Hmisc’). 

SIMM (Stable Isotope Mixing Models, R-package ‘simmr’) were then applied to establish 

dietary proportions of the key ecological taxa (Figure 4.2). Since a specific trophic 

discrimination factor has not been calculated for stygofauna, we used the widely accepted 

values of 3.4 ± 2 ‰ for nitrogen and 0.5 ± 1 ‰ for carbon [52]. Markov chain Monte Carlo 

(MCMC) algorithms were used for simulating posterior distributions in SIMM, and MCMC 

convergence was evaluated using the Gelman-Rubin diagnostic by using 1.1 as a threshold 

value for analysis validation.  
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4.3 Results 

4.3.1 Stygofaunal carbon fluxes 

During LR, δ13C average values of AAs (δ13CNEAA[LR] and δ13CEAA[LR]) spanned from -31.52 ‰ 

(Phe) to -5.72 ‰ (Gly). Similar values were found under HR conditions (δ13CNEAA[HR] and 

δ13CEAA[HR]), ranging from -31.55 ‰ (Phe) to -4.92 ‰ (Ser) (Table 4.1). 

Table 4.1. Low (LR) and high rainfall (HR) carbon amino acids spectrum (δ13C values) for 
stygofaunal specimens separated by non-essentials (NEAA: aspartic acid (Asx), serine (Ser), 
glutamic acid (Glx), glycine (Gly), alanine (ala), and proline (Pro)), and essentials (EAA: valine 
(Val), phenylalanine (Phe), and arginine (Arg)). Average values (and standard deviation) for 
the analytical replicates are shown. P values for ANOVA Tukey’s HSD pairwise comparisons 
between NEAA and EAA are also illustrated.  
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Asx Ser Glx Gly Ala Pro Val Phe Arg

LR

Paroster macrosturtensis B -17.64±0.59 -10.43±0.1 -18.74±0.53 -10.01±0.12 -20.01±0.12 -17.85±0.53 -24.39±0.55 -24.44±0.13 -19.56±0.55 P < 0.05

Paroster mesosturtensis M -18.85±0.6 -11.32±0.16 -20.31 -12.22±0.6 -21.23±0.52 -15.10±0.63 -24.55±0.27 -26.24±0.23 -20.42±0.07 P < 0.05

Paroster microsturtensis S -22.42±0.18 -12.39±0.62 -22.421 -14.84±0.64 -24.24±0.35 -18.67±0.62 -27.73±0.64 -28.98±0.07 -23.19±0.54 P < 0.05

Paroster macrosturtensis  larvae Blv -20.56±0.11 -9.22±0.18 -20.201 -14.17±0.6 -22.01±0.58 -19.31±0.6 -25.97±0.17 -26.48±0.12 -20.59±0.24 P < 0.05

Paroster mesosturtensis  larvae Mlv -19.09±0.04 -6.70±0.18 -20.05±0.43 -16.12±0.65 -21.12±0.37 -16.38±0.3 -24.92±0.09 -27.08±0.1 -19.59±0.3 P < 0.05

Paroster microsturtensis  larvae Slv -19.1±0.5 -8.41±0.05 -17.75±0.03 -14.20±0.63 -21.57±0.15 -20.38±0.2 -25.34±0.07 -27.02±0.38 -18.59±0.21 P < 0.05

Scutachiltonia axfordi AM1 -16.1±1.3 -5.87±0.8 -14.09±1.4 -5.72±1.01 -20.42±2.88 -16.68±0.2 -24.55±2.01 -21.94±0.28 -15.31±0.74 P < 0.05

Yilgarniella sturtensis AM2 -19.09±0.08 -8.31±0.41 -21.35±3.77 -6.81±0.42 -20.29±0.09 -16.63±0.12 -25.48±0.17 -25.6±1.29 -19.56±1.39 P < 0.05

Stygochiltonia bradfordae AM3 -21.7±0.1 -9.15±0.64 -24.65±4.38 -9.00±0.33 -24.08±0.19 -22.76±0.64 -28.84±0.25 -28.27±0.1 -23.54±0.38 P < 0.05

Tubificidae sp. OL -21.7±0.24 -16.01±0.44 -24.33±0.31 -20.931 -26.36±0.1 -25.78±0.36 -31.46±0.1 -31.52±0.23 -27.58±0.04 P < 0.05

Oribatida sp. OR -20.44±0.63 -11.99±0.23 -17.771 -14.12±0.47 -21.18±0.07 -19.31±0.61 -26.36±0.03 -24.33±0.55 -18.85±0.2 0.0955

HR

Paroster macrosturtensis B -18.67±0.45 -11.62±0.29 -18.19±0.59 -11.31±0.11 -19.648±0.45 -16.83±0.56 -25.44±0.64 -26.3±0.61 -20.40±0.6 P < 0.05

Paroster mesosturtensis M -23.881 -18.061 -23.561 -16.641 -25.961 -21.991 -29.7681 -31.081 -26.051 P < 0.05

Paroster microsturtensis S -20.871 -11.461 -20.81 -13.941 -22.621 -17.821 -26.7731 -29.041 -22.631 P < 0.05

Paroster macrosturtensis  larvae Blv -21.64±0.55 -12.581 -20.631 -13.561 -24.222±0.1 -19.431 -28.12±0.51 -28.22±0.57 -22.35±0.58 P < 0.05

Paroster mesosturtensis  larvae Mlv -23.881 -18.061 -23.561 -16.94±0.42 -25.971 -21.991 -29.38±0.55 -31.081 -26.051 P < 0.05

Paroster microsturtensis  larvae Slv -24.15±0.35 -18.03±0.59 -24.24±0.01 -18.741 -26.1115±0.11 -22.191 -30.0741 -31.551 -26.59±0.2 P < 0.05

Scutachiltonia axfordi AM1 -23.73±0.6 -12.36±0.21 -23.55±0.35 -12.89±0.26 -24.128±0.47 -21.68±0.46 -29.52±0.52 -29.56±0.43 -23.80±0.54 P < 0.05

Yilgarniella sturtensis AM2 -23±0.01 -13.67±0.25 -23.60±0.42 -14.92±0.32 -26.2775±0.65 -24.03±0.45 -30.87±0.13 -30.31±0.63 -24.99±0.58 P < 0.05

Stygochiltonia bradfordae AM3 -23.39±0.2 -12.37±0.62 -22.68±0.01 -13.19±0.01 -23.8365±0.14 -21.41±0.51 -28.7±0.22 -28.28±0.52 -22.94±0.11 P < 0.05

Tubificidae sp. OL -20.251 -14.111 -20.251 -15.61 -23.941 -20.471 -27.931 -28.791 -21.621 P < 0.05

Oribatida sp. OR -20.42±0.64 -4.921 -22.11±0.61 -5.9±0.11 -22.191±0.09 -19.69±0.01 -27.52±0.11 -27.41 -21.02±0.39 P < 0.005

1 Unique run

2 Calculated as average value of Ser, Gly and Ala

3 Calculated as average value of Val, Phe and Arg

Taxon ID
NEAA EAA

NEAA2 vs EAA3



 
 

123 

 

δ13CNEAA[LR] average values varied from -26.36 ‰ (Ala) to -5.72 ‰ (Gly), similar values to 

δ13CNEAA[HR] spanning from -26.28 ‰ (Ala) to -4.92 ‰ (Ser). Overall, δ13CEAA showed trends 

towards more negative values than δ13CNEAA, which is involved in both Krebs and glycolytic 

cycles (ANOVA, P < 0.005). This is consistent with the enrichment of NEAA during 

biosynthesis in the organism. With the exception of water mites (OR), P. macrosturtensis 

larvae (Blv), Y. sturtensis (AM2), S. bradfordae (AM3) under LR, and oligochaetes (OL) under 

HR, pairwise comparisons between δ13CEAA and δ13CNEAA confirmed a shift towards more 

negative values across the stygofaunal community (Table 4.1).  

Neither PCAs nor LDAs on EAA distinguished different clusters within taxa or main groups 

(adult and larval beetles, and amphipods) nor among different rainfall periods (LR and HR). 

All three EAA correlated positively and significantly (P < 0.005), with phenylalanine and 

valine being the most informative AAs explaining the isotopic variability across stygofauna 

(∼70%). δ13C values of valine (δ13CVal) and phenylalanine (δ13CPhe) show that, with the 

exception of P. microsturtensis (S) and S. bradfordae (AM3), the entire stygofaunal 

community experienced a significant shift towards more 13C-depleted values under HR 

(ANOVA, P < 0.005) (Figure 4.3, Table 4.2). Within the significant trends, P. macrosturtensis 

adults and larvae (B and Blv) showed the smallest change in carbon values (B: δ13CVal+Phe= -

2.91; Blv: δ13CVal+Phe = -3.89) between rainfall regimes, while amphipods S. axfordi and Y. 

sturtensis (AM1 and AM2) showed the largest depletion (AM1: δ13CVal+Phe= -12.59 ‰; AM2: 

δ13CVal+Phe= -10.10 ‰), suggesting differential carbon incorporations under HR conditions.  
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Figure 4.3. Biplot of δ13CPhe values vs. δ13CVal values for a) beetles (B, M, S, Blv, Mlv and Slv) 
and b) amphipods (AM1, AM2 and AM3), water mites (OR) and aquatic worms (OL). Red 
arrows indicate significant decreasing trends between LR and HR, while green arrows 
indicate increasing trends within rainfall periods. Refer to Table 4.1 for taxa IDs.  
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Table 4.2. Tuckey’s post hoc pairwise comparisons between phenylalanine and valine 
values under low (LR) and high (HR) rainfall conditions. In bold significant results.  

d.f. T-ratio P d.f. T-ratio P

Paroster macrosturtensis B 28 -4.497 <.0005 28 -2.163 <.005

Paroster mesosturtensis M 28 -4.846 <.0001 28 -3.297 <.005

Paroster microsturtensis S 28 -0.149 0.8829 28 1.967 0.0592

Paroster macrosturtensis  larvae Blv 28 -4.218 <.0005 28 -4.42 <.0005

Paroster mesosturtensis  larvae Mlv 28 -9.657 <.0001 28 -9.16 <.0001

Paroster microsturtensis  larvae Slv 28 -10.933 <0.001 28 -9.73 <.0001

Scutachiltonia axfordi AM1 28 -18.4 <.0001 28 -10.2 <.0001

Yilgarniella sturtensis AM2 28 -11.383 <.0001 28 -11.067 <.0001

Stygochiltonia bradfordae AM3 28 -0.037 0.9704 28 0.282 0.7797

Tubificidae sp. OL 28 -7.418 <.0001 28 -2.389 <0.05

Oribatida sp. OR 28 6.594 <.0001 28 7.252 <.0001

Phe Val

 

4.3.2 δ15N and trophic levels 

δ15NGlu average values varied between 15.40±0.40‰ (AM3[HR]) and 22.31±0.29‰ (M[HR]), 

while δ15NPhe values ranged from 10.67±0.45‰ (AM3[HR]) to 14.53±0.06‰ (M[HR]). When 

converted to trophic positions, the stygofaunal community at Sturt Meadows shows a 

truncated trophic chain, clustering around the secondary consumer level (Figure 4.4). 

 

Figure 4.4. Calculated trophic positions (TP) of the stygofaunal specimens studied under LR 
(a) and HR (b) conditions. 

Under LR conditions, P. macrosturtensis larvae (Blv) show the highest trophic position 

(TP=3.33±0.02), while water mites (OR) sit at the lowest (2.78±0.09). Under HR conditions, 

P. microsturtensis adults (S) have the highest trophic position (3.27±0.01), whilst S. 

bradfordae (AM3) show the lowest value (TP=2.73±0.01). Due to the low abundances it was 

not possible to analyse biochemical fingerprints from water mites (OR[HR]: 37 individuals) 

and P. microsturtensis larvae (Slv[HR]: 10 individuals) during the wet season (HR) (Table S4.4). 
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Overall, adult beetles (B, M and S) revealed higher trophic levels (TP>3) than amphipods 

(AM1, AM2 and AM3, TP<3). However, B, M and S did not show statistically higher values 

than AM1 under LR, the same pattern seen in P. mesosturtensis (M) under HR. S. 

bradfordae (AM3) and P. macrosturtensis larvae (Blv) are the only organisms to show a 

statistically significant change in their TP values between LR and HR (Table 4.3), both with 

decreasing trends.  

Table 4.3. δ15NGlu, δ15NPhe and TP values (±SD) during LR and HR regimes. Pairwise comparisons 
within taxa from the same rainfall conditions and between rainfall periods (in bold significant 
patterns) for the same taxa are also illustrated. Taxa sharing the same letter do not differ 
significantly (Tukey’s HSD test, P < 0.05).  

LR HR LR HR LR HR LR HR LRvsHR

B 20.99±0.79 20.93±0.23 12.23±0.34 12.16±0.30 3.26±0.06 3.26±0.01 de e 0.9712

M 22.29±0.89 22.31±0.29 14.25±0.26 14.53±0.06 3.17±0.08 3.13±0.03 bcde cde 0.5415

S 22.12±0.23 20.69±0.08 13.47±0.13 11.87±0.03 3.25±0.01 3.27±0.01 de e 0.6698

Blv 20.61±0.5 20.77±0.14 11.35±0.68 13.79±0.80 3.33±0.02 3.03±0.09 e bcd <.0001 

Slv 21.99±0.55 Na 13.98±1.06 Na 3.16±0.21 Na bcde Na Na

AM1 20.84±0.62 18.19±0.1 14.44±0.83 11.57±0.13 2.95±0.03 2.98±0.01 abcd bc 0.6193

AM2 19.38±0.01 20.45±0.08 13.85±0.7 14.31±0.52 2.84±0.09 2.92±0.08 abc b 0.135

AM3 20.04±0.7 15.4±0.4 14.24±0.13 10.67±0.45 2.87±0.07 2.73±0.01 ab a <.05

OR 16.11±0.85 Na 11.05±0.19 Na 2.78±0.09 Na a Na Na

δ15N Glu(‰) δ15N Phe(‰) TP TP pairwise comparison

 

4.3.3 Food web dynamics 

CSIA-based TP correlated significantly with SIA δ15N and δ13C values both under LR (P < 0.05 

in both cases) and HR conditions (P < 0.01 and P < 0.05 respectively). Under the latter 

conditions, δ13CVal values correlated significantly with CSIA-based TP (P < 0.05). Copepods 

are generally thought to sit at the base of the food web [53,54]. However, these were 

analysed only via bulk SIA due to organism and sample size constraints, and so could not be 

included in the TP analysis. They showed more 13C-depleted δ13C (cyclopoids: δ13CLR = -

20.5‰, δ13CHR= -21.9‰; harpacticoids: δ13CLR= -20.6‰, δ13CHR= -23.5‰) and enriched δ15N 

(cyclopoids: δ15NLR = 13.9‰, δ15NHR = 14.5‰; harpacticoids: δ15NLR = 11.9‰, δ15NHR = 

15.8‰) values under HR (Figure 4.5a and b), indicating that the change in rainfall regimes 

could play a role in stygobiotic meiofaunal biochemical incorporations. 
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Figure 4.5. SIA biplots of adults P. macrosturtensis (B), P. mesosturtensis (M), P. 
microsturtensis (S), P. macrosturtensis larvae (Blv), S. axfordi (AM1), Y. sturtensis (AM2), 
Cyclopoida sp. (C) and Harpacticoida sp. (H) under low rainfall (a) and high rainfall (b). AM1a 
and AM2a (in red): taxa showing the biggest depletion in δ13C values for essential amino 
acids (phenylalanine and valine) across rainfall conditions; Blvb (in green): taxon showing 
the biggest drop in trophic position value (TP) between LR and HR. Refer to Table S4.6 for 
δ13C and δ15N values of the taxa. 

Amphipods AM1 and AM2 sat at the base of the trophic web under both rainfall conditions 

(TPs always below three, Table 4.3), and SIA carbon values (δ13C) confirmed a shift – already 

pinpointed via CSIA - towards more 13C-depleted carbon sources under HR. AM3, the 

smallest and rarest amphipod species in the calcrete, did not allow bulk SIA analyses due to 

the low abundances detected (LR (average value between LR1 and LR2): 27; HR: 19, Table 

S4.4).  

With respect to dietary preferences, for the amphipod S. axfordi (AM1), mixing models 

suggest that roots (and hosted microbial flora) contributed the greatest proportion (50%) 

during low rainfall conditions (LR) (Figure 4.6). The remaining diet was composed of POC 

(16.1%, derived from allochthonous carbon incorporations, a potential organic source for 

microbes), copepods (harpacticoids (13.9%) and cyclopoids (11.9%)) and sediment (8.1%) 

(i.e. OM laying at the bottom of the aquifer or epilithic biofilms).  
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Figure 4.6. Modelled contributions to the diet of amphipod S. axfordi (AM1) under a) LR 
and b) HR conditions. POC: particulate organic carbon, C: Cyclopoida sp.; H: Harpacticoida 
sp. Medians and quartiles of each prey category are represented in the boxplot, see Table 
S4.6 for SIA δ13C and δ15N data. AM2 illustrated the same dietary preferences as AM1 under 
both rainfall conditions. 

Under HR conditions, the POC dietary contribution reached 66.1%, while roots plummeted 

to 3.3% (Figure 4.6). Overall, amphipod Y. sturtensis (AM2) showed the same dietary 

patterns as AM1. 

Adult beetles P. macrosturtensis (B) and P. mesosturtensis (M) show only slight depletions 

in their isotopic values during HR in bulk δ13C and δ15N SIA, in contrast to the larger changes 

seen in the CSIA data. P. microsturtensis (S), which showed an isotopic enrichment in CSIA, 

counter to the rest of the community, shows similar behaviour to P. macrosturtensis (B) and 

P. mesosturtensis (M) in the SIA (Table S4.6). All the three species show similar dietary 

preferences in mixing models across the rainfall periods (Table S4.7). While diets were 

dominated by amphipods AM1 and AM2 during the LR period (B: 39.9%, M: 49.3% and S: 

47.9 % (Figure 4.7)), predation/scavenging of sister beetle species accounted for the biggest 

dietary proportions during the wet season (B: 52.9%; M: 49.4%; S: 41.9% (Figure 4.7)). 
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Figure 4.7. Contributions of P. microsturtensis adults’ diet for a) LR and b) HR. Diet sources: 
P. macrosturtensis (B), P. mesosturtensis (M), S. axfordi (AM1), Y. sturtensis (AM2), 
Cyclopoida sp. (C) and Harpacticoida sp. (H). Medians and quartiles of each prey category 
are represented in the boxplot, see Table S4.6 for δ13C and δ15N bulk data. P. 
macrosturtensis (B) and P. mesosturtensis (M) illustrated same trends of dietary 
contributions across rainfall periods (Table S4.7). In these analyses, sister species P. 
mesosturtensis (M) and P. microsturtensis (S) were considered as Paroster prey items for 
diet reconstruction of P. macrosturtensis (B), while   contributions from Paroster diet 
sources P. macrosturtensis (B) and P. microsturtensis (S) were used for P. mesosturtensis 
(M). 

Mixing models indicate that P. macrosturtensis larvae (Blv), which showed the biggest shift 

in trophic position, has a preference for amphipods S. axfordi (AM1) and Y. sturtensis (AM2) 

under LR conditions (accounting for 52% of the diet contributions), but also consumes a 

range of other organisms (Figure 4.8). During HR, Blv’s diet is dominated by the two 

amphipod species, accounting for 79.6% of food sources (Figure 4.8). Overall, these results 

indicate changes in amphipods (AM1 and AM2) diet preferences linked with different OM 

inputs, coupled with enhanced species-specific predatory pressures from Blv under HR 

conditions.  
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Figure 4.8. Stygofaunal contributions to the diet of P. macrosturtensis larvae for a) LR and 
b) HR. Diet sources: P. macrosturtensis (B), P. mesosturtensis (M), P. microsturtensis (S) S. 
axfordi (AM1), Y. sturtensis (AM2), Cyclopoida sp. (C) and Harpacticoida sp. (H). During HR, 
diet source P. macrosturtensis (B) was discarded as the Gelman-Rubin diagnostic reported 
values exceeding the corresponding upper confidence limits at the 95% confidence level. 
Medians and quartiles of each prey category are represented in the boxplot, see Table S4.6 
for δ13C and δ15N bulk data.  

4.4 Discussion 

4.4.1 Shifts in basal OM assimilation 

δ13CEAA
 data suggest that the stygofaunal community at Sturt Meadows experienced a 

seasonal shift in carbon flows during the wet season (HR). The overall tendency towards 

more 13C-depleted δ13CVal and δ13CPhe values indicate general stygofaunal discrimination 

against 13C sources in that season.  

Three groups (OL, AM3 and S) showed a counter trend of 13C enrichment in the EAAs during 

HR. Of these, the easiest to account for are the oligochaetes (OL) which also showed 

increased abundances (χ²= 6.7698, P < 0.05) of individuals ranging from 2 (LR1) and 1 (LR2) 

to 21(HR) (Table S4.4), indicating ideal conditions for the taxon during the wet season. As 

detritovores, oligocheates may be expected to preferentially consume more degraded, and 

so 13C-enriched, OM. The enrichment in S. bradfordae (AM3) and P. microsturtensis (S) is 

harder to explain at this stage. The low abundance of S. bradfordae (AM3) means that, like 

the oligochaetes, it was not included in the SIA analysis and less data are available. This 

taxon, together with P. macrosturtensis larvae (Blv), Y. sturtensis (AM2) and water mites 

(OR), lacked statistically significant differences when δ13C values of EAA during LR are 

compared with those of NEAA involved in the glycolytic cycle. Newsome et al. [50] indicated 
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that δ13C values of NEAA from diets of omnivorous animals reflect de novo synthesis but 

also dietary incorporations. Differential routing of macromolecules by consumers [55] are 

one possible contributor to our results. However, to date isotopic routing hypotheses have 

been tested only in vertebrates [30,56], with the study of metabolic pathways in aquatic 

invertebrates largely unexplored. Further CSIA investigations involving species-specific bio-

assimilation processes within the stygofaunal community are needed to provide a more 

accurate understanding of the biochemical dynamics regulating this system. 

In line with our general data trends, Hartland et al. [15], who reported consistent depletion 

in δ13C stygofaunal values within OM-enriched groundwaters via sewage contamination, 

concluded that stress-subsidy gradients in groundwaters trigger profound changes in 

stygofaunal assemblages and have the potential to trigger shifts in feeding habits. Rainfall 

events trigger OM inflows which constitute high quality carbon sources for aquatic biota in 

groundwaters [16, 57]. 

Reiss et al. [26] demonstrated a strong link between nutrient inputs (mainly DOC) and 

groundwater microbe functional and metabolic richness after a major flooding event. 

Unfortunately, their methodology did not allow for corresponding macrofaunal trends to be 

identified. Nonetheless, microbially-derived OM incorporation by stygofauna has been 

reported in a number of groundwater ecology studies [16,21,58], and the biochemical 

importance of this linkage is widely accepted.  

A key role in the observed trends at Sturt Meadows is played by amphipods which, together 

with copepods, are recognised as crucial actors in transferring OM to the upper stygofaunal 

trophic levels [16]. Specialized trophic habits in amphipods include epigean predation [10], 

detritivory [59], parasitism [60], biofilm grazing [61] and necrophagy [62]. Several studies 

have reported high degrees of trophic opportunism [54] and plasticity [63], allowing 

amphipods crucial shifts in feeding modes. Concurrently, niche partitioning has been 

addressed as a key mechanism to reduce intraspecific competition in ecosystems shaped by 

scarce nutrient availability [64]. However, our results do not show any conclusive evidence 

of epigean amphipod niche partitioning, with amphipods S. axfordi (AM1) and Y. sturtensis 

(AM2) showing the same dietary patterns. Overall, the isotopic data support the concept of 

opportunistic behaviours linked with changes in resource availability as a result of different 

rainfall regimes. 
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The HR event triggered substantial changes in the dietary proportions of S. axfordi (AM1) 

and Y. sturtensis (AM2), with notable decreases in root input and increases in POC. The 

extent of direct plant matter consumption by stygobionts reported in the literature – 

particularly by amphipods, which are facultative shredders – is both site and species-

specific. Jasinska et al. [65] found that aquatic root mats were a key food source for a 

biodiverse cave fauna hosted by a shallow groundwater stream in Western Australia. 

Conversely, Navel et al. [66], reported the widely distributed amphipod species Niphargus 

rhenorhodanensis having preferential OM collector/gatherer feeding habits. In another 

study, Simon et al. [67] suggested that wood inputs played a role as indirect source of OM 

consumed by the ephilitic microbial mats which were ultimately targeted by common 

Gammarus amphipods.  

At Sturt Meadows, a plausible explanation for the patterns observed is that during the dry 

season epigean amphipods rely on a more omnivorous diets where roots falling from the 

surface, and associated microbial and fungal biota, provide a substantial food source. 

Conversely, the wet season triggers inflows of replenished carbon (13C-depleted POC) that 

might fuel biological turnovers in microbiological activity, and POC-attached microflora may 

be ultimately targeted by epigean amphipods. These assumptions are in line with the 

finding reported by Brankvotis et al. [16], and support the concept that grazers play a 

crucial role in sustaining the functional diversity in groundwaters. The importance of plant 

matter input during at least part of the year is supported by a previous bulk SIA 

investigation at Sturt Meadows [40], which also suggested that terrestrial sources of 

carbon, mainly DOC, reached the aquifer via percolation and play a crucial role in energy 

flows within the system. It is worth noting that our δ13C values of decarbonated 

sedimentary fractions (referred above as ‘sediment’) were less 13C-depleted than those in 

other groundwater investigations [68,69,70], and had ranges close those for dissolved 

organic carbon (DIC) in the region [71,72,73]. Portillo et al. [74] reported karst microbial 

growth induced by both carbonate precipitation and dissolution, suggesting the inclusion of 

inorganic carbon within the estimation of global carbon budgets in groundwaters. In line 

with this work, Chapelle [75] reported in situ DIC production as a result of microbial 

metabolism involved in the dissolution of carbonate material in the black Creek aquifer 

(California, USA). Our results suggest that carbonate assimilation and/or dissolution 

processes are likely to occur in the sedimentary deposits of the aquifer, transferring an 

inorganic carbon isotopic fingerprint into the decarbonated and organic fractions. This can 
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be tested in future by further functional studies on the microbial community [76] at the 

site. 

Copepods (C and H) showed high δ15N values compared to the rest of the stygofaunal 

community (Table S4.6), suggesting alternative nitrogen sources linked to different 

microbial baselines. Copepods act as energy drivers in recycling nitrogen via ingestion of 

sediment and attached bacteria [12], with ammonia (NH3), together with nitrates (NO3
-), 

being an essential nutrient and energy source for subterranean microorganisms [77]. At 

Sturt Meadows aquifer, where ammonia levels are considerably higher than the natural 

concentrations [38], proliferation of selectively grazed ammonia-oxidising bacteria (AOB) 

might have played a key role in triggering the enriched δ15N values in copepods. 

The present study is constrained by its focus on stygofauna and therefore cannot provide 

direct evidence of microbially-derived ecological shifts. Future research needs to combine 

stygofaunal and microbial investigations to create a complete picture of the ecosystem. 

CSIA and functional genetic studies on microbes and copepods would also help define 

transitions from microflora to stygofauna, a process that has been understudied so far. 

Recent promising investigations in surface terrestrial [34] and aquatic [78] environments 

suggest a design - carbon fingerprinting - based on the incorporation of isotopic data into 

multifactorial mixing models that allow specific elucidation of bacterial sources in diets. 

Overall, despite the methodological challenges posed by groundwaters, isotopic data on 

stygofaunal carbon fluxes provides baseline knowledge that help untangle the intricate 

biochemical dynamics regulating subsurface environments. 

4.4.2 Trophic interactions 

Our data on nitrogen CSIA pinpointed two main trophic levels marked by a small but clear 

separation between the top predators - adult beetles (B, M and S) - and primary consumer 

amphipods (AM1, AM2 and AM3) under both rainfall conditions. Compared to other 

ecosystems [29], the Sturt Meadows aquifer shows a very simple and truncated trophic 

web dominated by omnivorous habits. This is consistent with previous assumptions [67] 

due to the lack of primary producers [9] and scarce nutrient availability [79]. 

Within subterranean beetles, the smallest species P. microsturtensis (S), together with P. 

macrosturtensis (B), sit at the top of the trophic chain during HR (Table 4.3). Under those 
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conditions, increased oxygen levels [38] may play a role in shaping changes in stygofaunal 

niche occupation. Subterranean beetles’ body size has been found to drive differential 

physiological responses to increased exoskeleton respiration rates (inversely proportional 

to the body size) which ultimately affect the ability to allocate energy for breeding and 

foraging [80]. As the smallest species P. microsturtensis (S) can adapt their metabolism 

more quickly than direct competitor sister species P. mesosturtensis (M) under favourable 

conditions - such as HR regimes – they are more likely to show shifts in ecological niche 

occupation [38]. This trend, combined with the group feeding tendency of P. 

microsturtensis (S) beetles [40], indicates higher efficiency in activating more intensified 

predatory strategies when compared to P. mesosturtensis (M).  

Dytiscidae beetle larval stages - commonly referred as ‘water tigers’ - are ferocious 

carnivores [81] with extremely opportunistic feeding behaviours involving scavenging and 

cannibalism [82]. At Sturt meadows, the third instar of blind P. macrosturtensis larvae (Blv) 

has a considerably bigger head capsule - paired with elongated mouthparts - than adult 

stages (Figure 4.9). These morphological features are likely to provide ethological 

advantages for non-visual predacious habits within light-less environments such as 

groundwaters [83]. This is consistent with stable isotope data from LR conditions 

positioning Blv at the top of the trophic web (Table 4.3).  

 

Figure 4.9. Comparisons between adult and larvae (whole body and head capsule) of P. 
macrosturtensis (a and b), P. mesosturtensis (c and d) and P. microsturtensis (e and f). All 
the scale bars in the photos refer to a length of 1 mm. Values of the lengths of the head 
capsules estimated through photographic calculation: P. macrosturtensis adult: 0.65 mm, P. 
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macrosturtensis larvae: 1.87 mm, P. mesosturtensis adult: 0.38 mm; P. mesosturtensis 
larvae: 0.71 mm, P. microsturtensis adult: 0.24  mm, P. microsturtensis larvae:  0.70 mm.   

Overall, modelled dietary contributions of P. macrosturtensis larvae (Blv) indicated a 

preference for amphipods (AM1 and AM2) coupled with residual cannibalism/scavenging 

(B, M and S) and predation of copepods (C and H) (Figure 4.8). Under HR, P. macrosturtensis 

larvae (Blv) showed the biggest drop in TP compared to LR (TPLR-HR = - 0.3), which can be 

explained by an increased predatory focus on amphipods, and reduced feeding on 

secondary consumer sister species.  

Previous work on surficial dytiscids larval stages published by Inoda et al. [84] stressed the 

importance of prey recognition through smell. According to their results, prey density was a 

key factor in shaping feeding behaviours, and self-other recognition played a role in group 

feeding. Overall, these findings indicated prevention of cannibalism through scent 

recognition. In groundwater, with total darkness and high influence of OM inputs on 

population dynamics [85,86], these patterns are likely to be strengthened. We suggest that 

the shifts in Blv predation seen in our results are dictated by a combination of chemical 

recognition and increased likelihood of encountering prey (amphipods) driven by enhanced 

resource availability (OM) during HR periods.   

The role of bottom-up vs top-down forces in natural communities has been a cornerstone 

issue in the field of trophic ecology since the first empirical investigations [87]. Despite the 

controversy generated by the debate, there is now consensus that both forces act 

simultaneously on populations. This reinforces the need for whole system studies 

considering the interaction between heterogeneous (biotic and abiotic) forces and their 

effect on communities [88,89,90]. 

Our study, in line with a number of other investigations in the field [26,91] confirms that 

rainfall events via water advection are key drivers in defining energy flows and ecological 

patterns within resource-limited environments. We suggest that OM-driven bottom-up 

regulations, increasingly accepted as driving factors shaping population dynamics in 

aquifers [92], shaped the shifts in feeding behaviours among amphipod taxa in the calcrete. 

However, despite the beneficial conditions for primary consumers triggered by increased 

nutrient availability (i.e. microbial biofilms) and better environmental settings (i.e. 
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increased oxygen, [38]), a decrease in amphipod populations under HR indicates the 

existence of additional ecological factors.  

Top-down forces (i.e. natural predators), widely studied in surface aquatic ecosystems 

[93,94], have hardly been addressed in groundwater. Previous genetic investigations at 

Sturt Meadows pinpointed predatory pressures from beetles on amphipods and copepods 

[95] and reported a lack of trophic niche partitioning among the Paroster species. In 

another study, Hyde [96] reported evidence from metagenomics data suggesting that 

subterranean blind beetles at Sturt Meadows feed on both prey invertebrates and their 

sister species. Our isotope results support these hypotheses, indicating opportunistic 

predaceous habits in the calcrete, mixed with scavenging/cannibalism. However, 

substantial uncertainty remains about the magnitude of interspecific predatory pressures 

among Paroster sister species, and further species-specific lab experiments are needed to 

investigate these ethological aspects. 

Biochemical functional role interpretation coupled with abundance data suggests that 

bottom-up population dynamics are counterbalanced in the system by top-down forces. 

Increased numbers of top predators (adult beetles B, M and especially S) were paired with a 

decrease of key prey items (amphipods AM1, AM2 and AM3) when HR is compared with 

the dry season (LR1 and LR2) (Figure 4.10).  

 

Figure 4.10. Bar chart graphs comparing dry season abundances (as the average value of 
LR1 and LR2) with HR conditions for top predators (beetles B, M and S) and key prey items 
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(amphipods AM1, AM2 and AM3). See Table S4.4 for detailed abundance data. None of the 
abundances of these taxa changed significantly between LR and HR. See Saccò et al. [38] for 
detailed statistical analyses across LR1, LR2 and HR. 

In light of the dynamics shown by our isotope data, we suggest that the reported shift in 

amphipods (AM1 and AM2) carbon incorporation during HR might have triggered changes 

in their ecological behaviour, exposing them to increased predatory pressures from the top 

predator Paroster beetles (B, M and S). However, given the high degree of opportunistic 

behaviour reported by stygofauna [14], further investigations on species-specific 

ethological dynamics would be helpful to infer community dynamics. 

The number of third instar dytiscidae larvae ‘Blv’ did not vary across sampling campaigns, 

suggesting differential ecological niche occupations. Previous investigations on Paroster 

larvae detected three instars before pupating, with the first two occupying a reduced 

proportion of their lifetime [83]. Future investigation of early stages of larval developments 

are needed to establish if potential population blooms (i.e. mass reproduction) are linked 

with contrasting recharge periods. 

4.5 Conclusions  

The application of CSIA and SIA allows elucidation of the trophic dynamics shaping 

stygofaunal communities in an arid zone calcrete aquifer. Rainfall acts as a driver in 

regulating both top down and bottom up changes in dietary habits. Subterranean 

invertebrate population dynamics are notoriously hard to investigate due to sampling 

obstacles and a current lack of knowledge around stygofaunal biological cycles [7,36]. 

However, our isotopic results allow a greater insight into the food web dynamics and the 

biogeochemical forces that shape them than has previously been possible. Further 

investigations involving higher numbers of samples from more biodiverse systems or 

complex trophic assemblages (i.e. alluvial aquifers) will help refine the approach. The 

incorporation of qualitative analyses such as DNA metabarcoding would also complement 

quantitative isotopic methods to provide crucial insights into processes (i.e. cannibalism) 

and key driving forces (i.e. niche partitioning) that are hard to detect via one method alone. 

Lastly, investigation of nitrogen sources and their isotopic changes would open up the 

nitrogen data collected to interpretation beyond trophic position. 
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Groundwater environments are fundamentally important to ecosystems, communities and 

industry, and a robust understanding of their ecosystem dynamics is essential to accurately 

assess environmental impacts, whether anthropogenic, or climatic. Isotopic data, especially 

if combined in multidisciplinary studies with other parameters [22] has a key role to play in 

elucidating previously hard to investigate function within these cryptic systems. 
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Supplementary material 

Table S4.4. Abundance data of the different stygofaunal taxa at Sturt Meadows detected during the sampling campaigns LR1, LR2 and HR. 

RAINFALL PERIOD

GEOLOGICAL ZONE

TAXON  ID A8 C5 F4 H5 J7 N4 L4 S2 U2 W2 Q2 W3 W4 C1 D1 E1 G1 H2 A11 D13 E10 E11 Q3 Q4 S8 B13 C13 E12 E13 F13

Tubificidae sp. TU 2

Oribatida sp. OR 2 2 1 1 1 1 3 1 1 2

Harpacticoida sp. H 1 3 9 17 18 5 7 13 17 12 8 27 5 15 12 3 72 21 8 19 2 8 27 7 1 6 11

Cyclopoida sp. C 18 6 1 11 16 36 8 9 14 2 5 3 3 2 6 1 5 131 92 1 33 11 19 14 55 2 269 3 26 1

Scutachiltonia axfordi AM1 19 1 14 13 1 7 1 1 1 1 9 4 5 2 6 7

Yilgarniella sturtensis AM2 1 1 23 13 21 2 2 2 3 2 2 7 2 2 3

Stygochiltonia bradfordae AM3 1 3 6 3 1 1 4 2 2

Paroster macrosturtensis B 1 1 1 1 1 2 1 11 1 6

Paroster mesosturtensis M 3 1 3 9 1 1 1 1 4 1 4 1 3 9 1 1 1 9

Paroster microsturtensis S 1 2 1 6 3 2 1 1 6 1 1 5 1

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1 1 1

Paroster mesosturtensis larvae Mlv 1 1

Paroster microsturtensis larvae Slv 1 1 1 1 3 1 1 1 1 2 2 1 1 1 2

Tubificidae sp. TU 1

Oribatida sp. OR 1 2 1 1 8 123 3 1 1 1 2 2 1 1 1

Harpacticoida sp. H 82 26 5 12 2 18 2 8 2 17 7 4 29 259 7 22 11 6 1 2 3 34 3 3 12 1 2 1

Cyclopoida sp. C 86 29 22 24 4 16 2 16 129 7 97 87 19 68 16 31 4 22 35 31 9 29 66 1 6 33 7 81 38

Scutachiltonia axfordi AM1 3 1 3 1 1 1 6 1 12 4 2 2 2 1 8 1 9 1 1

Yilgarniella sturtensis AM2 28 11 1 2 6 2 11 2 2 6 4 6 1 5 1 1 4 6 4 2

Stygochiltonia bradfordae AM3 2 2 1 1 3 1 1 1 1 2 2 1 5 2 1 2 2 1

Paroster macrosturtensis B 1 2 2 1 2 7 3 3 1 4 7 3 9

Paroster mesosturtensis M 3 1 1 7 3 6 2 2 3 5 22 1 2

Paroster microsturtensis S 1 1 3 1 1 7 1 1 1 17 7 2 3

Paroster macrosturtensis larvae Blv 1 1 3 6 1

Paroster mesosturtensis larvae Mlv 2

Paroster microsturtensis larvae Slv 1 2 3 2 1 2 1 5 6 4 2 1

Tubificidae sp. TU 14 1 1 3 1 1

Oribatida sp. OR 29 2 3 3

Harpacticoida sp. H 64 44 13 1 32 17 8 4 83 6 5 4 3 7 154 11 19 13 12 2 26 9 2 13 8 3 7 14 4

Cyclopoida sp. C 54 91 23 17 22 12 4 8 19 4 2 23 13 15 2 87 1 29 148 77 66 76 15 11 16 137 41 39 36 47

Scutachiltonia axfordi AM1 2 4 13 2 2 2 1 1 1 1 4 2 8 4

Yilgarniella sturtensis AM2 2 3 9 4 2 12 7 1 13 2 4 3 4 2 8 5 7

Stygochiltonia bradfordae AM3 1 1 1 8 7 1

Paroster macrosturtensis B 4 3 3 9 28 3 6 1 3 1 2 5 8

Paroster mesosturtensis M 7 2 6 1 3 1 1 1 6 4 2 1 1 1 11 1 6 1 1 4 1 11

Paroster microsturtensis S 22 3 3 6 1 3 14 1 3 9 7 1 8 2 7 2 6 5

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1

Paroster mesosturtensis larvae Mlv 2 1 1

Paroster microsturtensis larvae Slv 1 2 1 2 4

LR2

HR

LR1

A1 A2 A3 CD A4
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Table S4.5. Sample weights (mg) for SIA and CSIA analyses. n/a: not available. 

LR HR LR HR LR HR

B 0.65 0.82 1.21 1.27 5.12 5.02

M 0.67 0.68 1.31 1.42 5.15 5.01

S 0.63 0.75 1.27 1.22 5.11 5.05

Blv 0.81 0.69 1.46 1.34 5.19 5.09

Mlv n/a n/a 0.32 1.11 n/a n/a

Slv n/a n/a 1.24 0.86 3.97 n/a

AM1 1.19 1.25 1.18 1.37 5.03 5.02

AM2 0.69 1,27 1.23 2.89 4.55 2.58

AM3 n/a n/a 1.15 2.61 4.38 2.52

OL n/a n/a 0.16 0.52 n/a n/a

OR n/a n/a 1.03 0.53 2.47 n/a

C 2.42 2.45 n/a n/a n/a n/a

H 2.79 2.77 n/a n/a n/a n/a

Roots 0.14 0.08 n/a n/a n/a n/a

Sediment 1.28 1.28 n/a n/a n/a n/a

POC 0.6 0.6 n/a n/a n/a n/a

ID

SIA CSIA

δ13C and δ15N δ13C δ15N
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Table S4.6. δ13C and δ15N values of stygofauna, roots, sediment and POC during LR and HR. 

LR HR LR HR

B -23±0.22 -23.51±0.81 14.66±0.04 14.62±0.49

M -23.37±0.19 -23.72±0.14 15.43±0.53 14.01±0.05

S -23.6±0.3 -24±0.43 14.4±0.3 13.07±0.42

Blv -23.46±0.12 -24.8±0.06 13.74±0.08 10.03±0.32

AM1 -24.14±0.3 -26.88±0.05 10.71±0.3 8.81±0.09

AM2 -24.55±0.3 -27.1±0.3 9.99±0.3 8.5±0.3

C -20.45±0.3 -21.91±0.3 13.9±0.3 14.5±0.3

H -20.60±0.3 -23.50±0.3 11.9±0.8 15.8±0.8

Roots -20.57±0.3 -20.90±0.3 5.1±2.0 12.1±0.3

Sediment -10.33±0.3 -9.65±0.31 11.0±1.2 11.4±1.2

POC -21.58±0.1 -26.47±0.1 10.73±0.1 8.35±0.1

ID
δ13C δ15N

 

 
Table S4.7. Dietary proportions of P. macrosturtensis (B), P. mesosturtensis (M) and P. microsturtensis (S) under LR and HR conditions. 

P. macrosturtensis (B) P. mesosturtensis (M) P. microsturtensis (S) S.axfordi (AM1) Y. sturtensis (AM2) Cyclopoida sp. (C) Harpacticoida sp. (H)

P. macrosturtensis B LR / 11.7±11.9 14.8±14.2 25±18.7 14.6±13 15.1±13.4 18.8±17.1

P. mesosturtensis M LR 10.4±10.8 / 11.1±11.3 27.4±20 21.8±17.2 13±11.7 16.3±15.3

P. microsturtensis S LR 11.2±10.8 9.6±9.4 / 25.4±18.8 22.5±16.4 14.5±12.4 16.8±15.3

P. macrosturtensis B HR / 26.3±19.8 26.6±19.9 9.9±8.9 9.1±7.8 14.1±12 14±11.9

P. mesosturtensis M HR 21.1±17.7 / 28.3±20.4 12.7±11.4 12.1±10.8 13.4±12 12.4±10.3

P. microsturtensis S HR 18.2±16.4 23.7±19.3 / 17.6±15.9 16.1±14.2 12.8±11.1 11.6±9.6

Taxon ID Rainfall
Dietary proportions (%)
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Abstract 

Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining 

the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often 

interconnected with groundwater, forming a physical continuum, and their interaction has 

been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. 

However, despite the growing concerns related to increasing anthropogenic pressure and 

effects of global change to groundwater environments, our understanding of the dynamics 

regulating subterranean carbon flows is still sparse. We traced carbon composition and 

transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach 

that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon 

(DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC), with fluorescence spectroscopy (Chromophoric 

Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and 

functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential 

aquifer recharge processes, water samples were collected from two boreholes under 

contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our 

isotopic results indicated limited changes and dominance of modern terrestrial carbon in 

the upper part of the bore field, but correlation between HR and increased old and 13C-

enriched DOC in the lower area. CDOM results showed a shift from terrestrially to 

microbially derived compounds after rainfall in the same lower field bore, which was also 

sampled for microbial genetics. Functional genomic results showed increased genes coding 

for degradative pathways - dominated by those related to aromatic compound 

metabolisms - during HR. Our results indicate that rainfall leads to different responses in 

different parts of the bore field, with an increase in old carbon sources and microbial 

processing in the lower part of the field. We hypothesise that this may be due to increasing 

salinity, either due to mobilisation of chloride from the soil, or infiltration from the 

downstream salt lake during HR. This study is the first to use a multi-technique assessment 

using stable and radioactive isotopes together with functional genomics to probe the 

principal organic biogeochemical pathways regulating an arid zone calcrete system. Further 

investigations involving extensive sampling from diverse groundwater ecosystems will allow 

better understanding of the microbiological pathways sustaining the ecological functioning 

of subterranean biota. 
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5.1 Introduction 

The global carbon cycle fuels the processes that are responsible for maintaining the 

ecological functioning of ecosystems (e.g. Battin et al., 2009; Poulter et al., 2014). 

Terrestrial environments, together with oceans, play a key role in sequestering atmospheric 

carbon pools and allow fundamental recycling of biomass (Schimel, 1995). However, on-

going global warming, mainly caused by increased greenhouse gases linked with 

anthropogenic activities, is putting at risk the maintenance of this ecological balance (Cox et 

al., 2000; Stassen, 2016). 

During the last decade, carbon storage and fluxes in freshwater environments have gained 

prominence as key actors in the global cycling of organic matter (e.g. Catalán et al., 2016; 

Chambers et al., 2011; Kolmakova et al., 2019). Drake et al. (2017) estimated up to 5.1 Pg y-

1 of carbon delivered from land to surficial inland aquatic systems (lakes, rivers, reservoirs). 

Kayranli et al. (2010) reported that soil and sediment from wetlands are amongst the 

world’s most extensive carbon sinks, with peatlands accounting for a third of the organic 

soil worldwide (Weishampel et al., 2009). These observations are in concordance with 

Keiluweit, et al., (2017), who indicated that surficial soil and unsaturated zones provide the 

biggest carbon source within the terrestrial framework. However, while widely investigated 

in surficial ecosystems, carbon flows are understudied in groundwater environments 

(Dragoni and Sukhija, 2008; Monger et al., 2015). 

Groundwater systems are often hydrologically interconnected with each other and/or to 

surface terrestrial environments and water bodies (Viaroli et al., 2018). Especially in arid 

environments, near-surface groundwaters (e.g. groundwater dependent ecosystems 

(GDEs)), provide a vital conceptual and physical continuum (Glanville et al., 2016). Surface 

water-groundwater exchanges (SW/GW) shape biogeochemical dynamics, including carbon 

cycling and nutrient circulation, which regulate the functioning of both surface and 

subterranean ecosystems (Stegen et al., 2016). However, dissolved carbon concentrations 

within aquatic subterranean environments are typically orders of magnitude lower than 

lakes and rivers (Chapelle and Lovley 1990; Downing and Striegl, 2018; Hofmann and 
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Griebler, 2018), where concentrations of dissolved organic matter usually range between 2 

and 10 mg L-1 (Kalbitz et al., 2000). McDonough et al. (2019) reported average subterranean 

global dissolved organic (DOC) concentrations of ~ 1 mg L-1 f, while the global flux of 

inorganic carbon (DIC) into groundwater is estimated to be 0.2 GtC y-1 (Kessler and Harvey, 

2001). 

Subterranean DOC replenishment can occur either via SW/GW and/or via rainfall recharge 

through soils containing high organic matter (OM) content (e.g. Meredith et al., 2016; 

Meredith et al., 2018). Baker et al. (2000) suggested that seasonal saturation of sediments 

overlying unconfined groundwater plays a key role in regulating organic carbon dynamics 

underground. Similar site-specific models have been suggested over the last two decades 

(e.g. Neilson et al., 2018; Vesper and White, 2004), emphasising the importance of the 

vadose zone as a source of carbon for groundwater biological communities and 

biogeochemical cycling (Manna et al., 2019). 

Groundwater communities are thought to be bottom-up regulated by the availability of OM 

which drives ecological functioning (i.e. energy flows, trophic cascade effects) in 

groundwater ecosystems (Foulquier et al., 2011). Microbial diversity and productivity are 

considered to be limited by the concentration and bioavailability of organic matter in 

groundwater (Portillo et al., 2009). While heterotrophic metabolism is commonly 

considered a major process for sustaining food web interactions in a typically low-energy 

system (Simon et al., 2003), chemolithoautotrophic strategies have also been extensively 

reported (e.g. Hutchins et al., 2016 and references therein; Wegner et al., 2019). 

Microbially-processed OM, together with detrital fractions (Hancock et al., 2005), are 

transferred to higher trophic levels of subterranean biota (Brankovits et al., 2017) by higher 

primary consumers (i.e. terrestrial (troglofauna) and obligate aquatic (stygofauna)). As a 

result, subterranean carbon turnovers, often linked with recharge regimes (Reiss et al., 

2019), are ultimately responsible for cascading effects on energy flows and food web 

interactions (Datry et al., 2005).  

The Sturt Meadows (SM) calcrete in Western Australia hosts a stygofaunal community 

composed of 18 macroinvertebrate species including blind dytiscid beetles and chiltoniid 

amphipods, and is a hotspot for subterranean aquatic invertebrate diversity (Guzik et al., 

2011; Humphreys et al., 2009). Recent investigations into the ecological functioning of the 
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calcrete stygofaunal assemblages (Saccò et al., 2019b, Saccò et al., 2019c) have indicated 

that rainfall input dynamics play a vital role in shaping cascade effects. Here, we extend this 

research by investigating carbon input dynamics and microbial processing under 

contrasting rainfall periods via hydrochemistry, stable and radiocarbon isotope ecology and 

DNA metabarcoding analyses. Through this multidisciplinary approach, we aim to 1) 

elucidate the nature of the carbon inputs under differential rainfall regimes, 2) provide 

isotope-based tracking of the organic and inorganic carbon sources in the groundwater, and 

3) identify metabolic and functional microbial patterns coupled with organic inflows linked 

to rainfall percolation. The study of carbon inputs and their microbial incorporation has the 

potential to expand our understanding of the ecological dynamics sustaining biodiversity in 

this taxonomic hotspot. 

5.2 Material and methods 

5.2.1 Study area 

Field work was carried out at the Sturt Meadows calcrete (SM calcrete), located within the 

Sturt Meadows pastoral station in the northeast side of the Yilgarn region (28°41′S 

120°58′E), Western Australia (Figure 5.1a). The Yilgarn craton is one of the most important 

Late Archaean metallogenic provinces in the world (Czarnota et al., 2010), and constitutes 

the bulk of this West Australian land mass. The area hosts calcretes formed by the 

precipitation of calcium carbonate along palaeodrainage channels (Morgan, 1993), which 

have been the focus of research for more than a century (e.g. Lamplugh, 1902; Lintern, 

2001; Mabbutt, 1969). The SM aquifer is located upstream of Lake Raeside, covering an 

area of ~43 km2, and has a strong biogeochemical gradient comparable to estuarine 

systems (Humphreys et al., 2009). Previous studies of the depth and lithography of the 

calcrete (Bradford, 2010; Bradford et al., 2013) identified two main geological sectors: 

calcretes and clayey formations (Figure 5.1b).  
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Figure 5.1. Borehole grid showing its location within the Yilgarn region (a), the geological 
sectors (b) and the bores sampled (D13 and W4, in red), together with the lithological 
profiles ((c) and (d)). CAL: soft calcrete, CZKS: siliceous calcrete, FZ: ferruginous zone, CLY: 
clay, GRA: granite, NL: no geology log, SLC: silcrete, GDR: granodiorite, ASB: asbestos, CA: 
cavity. 
 

The mean permeability of the SM calcrete is similar to that of sand (1.9–4.6 × 10−4 m s–1 

(Anaconda, 2001)), suggesting an average porosity of ~25% (Allford et al., 2008). The 

average yearly rainfall of the area is low, at around 200 mm and pan evaporation is 2400 

mm year-1 (BoM). The aquifer is very shallow, located two to four metres below the surface, 

and is accessible through boreholes, initially drilled for mineral exploration, along a grid 

that can be divided into two sections. The northern grid is 0.9 × 1.4 km with bore spacing at 

100 m in north-south and east-west directions, while the southern section is 1.2 × 0.9 km, 

containing bores separated from each other 100 m east–west and 200 m north–south 
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(Figure 5.1b). These bores are capped but unlined, except within about 0.5 m from the 

surface, where they are lined with PVC pipe, to stabilise the surface (Allford et al., 2008).  

5.2.2 Field work procedures and sample preparation 

Groundwater samples were collected from the unlined bores at D13 (zone CD) and W4 

(zone A2) using a submersible centrifugal pump (GEOSub 12V Purging Pump) after three 

well-volumes were purged and stabilisation of in-field parameters was observed. The 

selected bores are representative of the two main geological units of the area, W4 being in 

calcrete and D13 in clayey formations (Fig 1b,c,d). Preliminary investigations on the 

hydrology of the SM aquifer indicated that these two bores are the most reliable (i.e. 

lowest risk of drying) to test biogeochemical and ecological patterns across time (Saccò et 

al., 2019b). 

Rainfall and groundwater level fluctuations were monitored for one year (from 18/06/2017 

to 17/06/2018) through a weather station installed near bore E7 (Figure 5.1b) and indicated 

very patchy rainfall events and unpredictable recharge dynamics (Figure 3.2). However, 

monitoring of groundwater chemistry at SM calcrete revealed infiltration of rainfall from 

the surface together with increased inputs of ammonia after rain precipitation (Saccò et al., 

2019b). For this study, two sampling campaigns, corresponding to contrasting rainfall 

periods as categorised by Hyde et al. (2018), were carried out on the 7/11/2017 (low 

rainfall, LR; <10 mm of rain during the 30 days prior to sampling) and on the 17/03/2018 

(high rainfall, HR; >30 mm of rain during the 30 days prior to sampling). 

Changes in carbon content in water after different levels of rainfall were investigated using 

dissolved organic (DOC) and inorganic (DIC) carbon and their isotopes (δ13CDOC and δ13CDIC) 

coupled with radiocarbon analysis (14CDOC and 14CDIC). These techniques were complemented 

by measuring the DOC fluorescence. Samples for δ13CDOC were filtered through 0.2 μm glass 

fiber filters, collected in 60 mL HDPE bottles and frozen after sampling. The 14CDOC samples 

were filtered through 0.2 μm filters, collected in 1 L HDPE bottles and frozen after sampling. 

The δ13CDIC samples were filtered through 0.2 μm filters, collected in 12 mL glass vials 

(Exetainers) and refrigerated after sampling. Samples for 14CDIC
 analysis were filtered 

through 0.45 μm filters and collected in 1 L HDPE, with no further treatment. The DOC 

fluorescence samples were collected in 1 L HDPE bottles and kept refrigerated in darkness 
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until further tests. Other hydrochemistry parameters such as water isotopes (3H, δ18O and 

δ2H) and chloride concentration (Cl-) were measured in water samples collected in 1 L HDPE 

bottles that were immediately frozen until further analyses. All samples were sealed with 

sealing tape after collection to limit atmospheric exchange, and kept in the dark. 

Water samples for functional genomic investigations on the microbial community were 

collected from the bore W4 and stored in 1 L HDPE bottles and frozen immediately after 

collection. Samples were then filtered through 0.4 μm nitrocellulose membrane filter 

(Millipore, Sigma, Burlington, MA, USA) using a vacuum system, and the filtered content 

was kept frozen (-20°C) until further analyses. Temperature, pH, ORP, salinity, DO, and 

depth were measured in situ (bores D13 and W4) using portable field measurement 

equipment (Hydrolab Quanta Multi-Probe Meter®).   

5.2.3 Instrument methods and data analysis 

5.2.3.1 Biogeochemical measurements 

DOC was determined by the non-purgeable organic carbon (NPOC) method using a 

Shimadzu high temperature combustion TOC-L/TNM-L analyser. DIC was obtained through 

a total organic carbon (TOC) configuration which measured the total carbon, followed by 

inorganic carbon. The TOC analysis was based on a standard method 5310-B (APHA, 2012) 

with detection by NDIR detector. Both DOC and DIC analyses were run in duplicates and the 

combustion temperature was 720 °C. 

δ13CDOC isotopic ratios of waters were calculated by a Liquid Chromatography Isotope Ratio 

Mass Spectrometer (LC-IRMS) at the La Trobe Institute for Molecular Sciences (LIMS, La 

Trobe University, Melbourne, Australia) composed by a Accela 600 pump connected to a 

Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC Isolink (Thermo 

Scientific). δ13CDIC isotopic ratios in water were analysed by Isotope Ratio Mass 

Spectrometer - Western Australia Biogeochemistry Centre at The University of Western 

Australia using a GasBench II coupled with a Delta XL Mass Spectrometer (Thermo-Fisher 

Scientific) - and results, with a precision of ± 0.10 per mil (‰), were reported as ‰ 

deviation from the NBS19 and NSB18 international carbonate standard (Dogramaci and 

Skrzypek, 2015). δ13CDOC and δ13CDIC values were reported ‰ relative to the Vienna Peedee 

Belemnite (VPDB). 
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For radiocarbon analyses of both the DOC and DIC (14CDOC and 14CDIC), pre-treated samples 

were subjected to CO2 extraction and graphitization following the methodology published 

by Hua et al. (2001) and Bryan et al. (2017). 14C content of samples was determined by 

means of the Accelerator Mass Spectrometry (AMS) at ANSTO (Australian Nuclear Science 

and Technology Organization) in Sydney, Australia (Fink et al., 2004). Radiocarbon results 

were reported in conventional age before present (BP, with BP being 1950), percent of 

modern carbon (pMC) and Δ14C value in per mil (‰) relative to the absolute radiocarbon 

standard activity in 1950 (Stuiver and Polach, 1977). 

Absorbance scans and excitation emission matrices (EEMs) were recorded simultaneously 

using an Aqualog® (Horiba Scientific). Fluorescence intensities were measured at excitation 

wavelengths 250-500 nm (1 nm increments) and emission wavelengths 250-575 nm (3 nm 

increments). The composition of DOM was characterised by a range of indices (BIX, HIXEM, 

and A254, Table S5.2) and by identifying individual fluorescent components using parallel 

factor analysis (PARAFAC) (Stedmon and Markager, 2005). 

5.2.3.2 Genetic analyses 

Three 1 litre water sample replicates collected from the bore W4 (zone A2) during both 

rainfall periods (LR and HR) were used for bacterial 16S metabarcoding and microbial 

functional analysis. Water samples were filtered using two Sentino peristaltic microbiology 

pumps (Pall Life 126 Sciences, New York, USA), through 0.45 μm sterile membrane filters 

(Pall Life Sciences, New York, USA). All water filtering equipment was soaked for a minimum 

of 10 minutes in 10% sodium hypochlorite solution and treated with UV light prior to use 

and between samples. Immediately post-filtering, half of the filter membrane was used for 

DNA extraction, while the remaining half was frozen at -20°C.  

Water membranes, inclusive of laboratory controls, were extracted using DNeasy Blood and 

Tissue Kit (Qiagen; Venlo, Netherlands), with the following modifications to the 

manufacturer’s protocol. For the DNA digest, both the ATL buffer (360 μL) and Proteinase K 

(40 μL) solutions were doubled to ensure that the membranes were adequately exposed to 

the lysis solution to optimise DNA yield. The DNA digests were incubated (56°C) overnight 

in a rotating hybridisation oven. The digest was transferred into a clean tube and loaded 

into a QIAcube (Qiagen; Venlo, Netherlands) automated DNA extraction system for the 
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remainder of the extraction process. The DNA was eluted off the silica column in 100 μL AE 

buffer.  

The quality and quantity of DNA extracted from each water membrane was measured using 

quantitative PCR (qPCR), targeting the bacterial 16S gene. PCR amplifications to assess the 

quality and quantity of the DNA target of interest via qPCR (Applied Biosystems [ABI], USA) 

were in 25 µL reaction volumes consisting of 2 mM MgCl2 (Fisher Biotec, Australia), 1 x PCR 

Gold Buffer (Fisher Biotec, Australia), 0.4 µM dNTPs (Astral Scientific, Australia), 0.1 mg 

bovine serum albumin (Fisher Biotec, Australia), 0.4 µM of each primer (Bact16S_515F and 

Bact16S_806R; Caporaso et al., 2011; Turner et al., 1999), and 0.2 µL of AmpliTaq Gold 

(AmpliTaq Gold, ABI, USA), and 2 µL of template DNA (Neat, 1/10, 1/100 dilutions). The 

cycling conditions were: initial denaturation at 95°C for 5 minutes, followed by 40 cycles of 

95°C for 30 seconds, 52°C for 30 seconds, 72°C for 30 seconds, and a final extension at 72°C 

for 10 minutes.  

Extracts that successfully yielded DNA of sufficient quality, free of inhibition, as determined 

by the initial qPCR screen (detailed above), were assigned a unique 6-8bp multiplex 

identifier tag (MID-tag) with the bacterial 16S primer set. Independent MID-tag qPCR for 

each water membrane were carried out in 25 µL reactions containing 1X PCR Gold Buffer, 

2.5 mM MgCl2, 0.4mg/mL BSA, 0.25 mM of each dNTP, 0.4 µM of each primer, 0.2 µL 

AmpliTaq Gold and 2-4 µL of DNA as determined by the initial qPCR screen. The cycling 

conditions for qPCR using the MID-tag primer sets were as described above. MID-tag PCR 

amplicons were generated in duplicate and the library was pooled in equimolar ratio post-

PCR for DNA sequencing. The final library was size selected (160-600bp) using Pippin Prep 

(Sage Sciences, USA) to remove any MID-tag primer-dimer products that may have formed 

during amplification. The final library concentration was determined using a QuBitTM 4 

Fluorometer (Thermofischer, Australia) and sequenced using a 300 cycle V2 kit on an 

Illumina MiSeq platform (Illumina, USA). 

MID-tag bacterial 16S sequence reads obtained from the MiSeq were sorted (filtered) back 

to the water sample based on the MID-tags assigned to each DNA extract using Geneious 

v10.2.5 (Drummond et al., 2011). MID-tag and primer sequences were trimmed from the 

sequence reads allowing for no mismatch in length or base composition. Filtered reads 

were input into a containerised workflow comprising USEARCH (Edgar, 2010) and BLASTN 
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(Altschul et al., 1990). The fastx-uniques, unoise3 (with minimum abundance of 8) and 

otutab commands of USEARCH were applied to generate unique sequences, ZOTUs (zero-

radius OTUs) and abundance table, respectively. The ZOTUs were compared against the 

nucleotide database using the following parameters in BLASTN: perc_identity >= 94, evalue 

<= 1e-3, best_hit_score_edge 0.05, best_hit_overhang 0.25, qcov_hsp_perc 100, 

max_target_seqs = 5. An in-house Python script was used to assign the ZOTUs to their 

lowest common anscestor (LCA). The threshold for dropping a taxonomic assignment to 

LCA was set to perc_identity >= 96 and the difference between %identity of the two hits 

when their query coverage is equal was set to 1.  

To investigate functional activity involved in carbon cycling, the 16S metabarcoding data 

were fed to the Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 2 (PICRUSt2) software package to generate predicted metagenome 

profiles (Langille et al., 2013). PICRUSt2 Python script picrust2_pipeline.py (Douglas et al., 

2019) was run with default options using Zotu fasta files and Zotu tables (i.e. number of 

reads per sample per zotu) to predict functional abundances per each taxon, which were 

clustered into Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs (KOs) (Kanehisa 

and Goto, 2000) and MetaCyc pathway abundances (Caspi, 2006) focusing on carbon 

metabolism and degradation pathways, respectively. Regarding the comparisons across 

rainfall periods (LR and HR), higher functional abundances were referred as 

overrepresented, a widely employed terminology in functional genomic studies (e.g. 

González-Mercado et al., 2020; Yurgel et al., 2019; Zeng et al., 2015). 

5.2.4 Statistical analysis 

The statistical analyses on isotope, fluorescence and absorbance data were performed in R 

software version 3.6.0 (Development-Core-Team, 2016). DOC, DIC, δ13CDOC and δ13CDIC 

values (two independent replicates per each parameter) per each bore (W4 and D13) were 

compared across the two rainfall events using ANOVAs (R-package ‘stats’; outliers were 

identified using box plot methods (package ‘rstatix’), homogeneity of variances was tested 

through the Levene’s test (function leveneTest()) and normality was tested through the 

Shapiro-Wilk test (function shapiro.test())).  Radiocarbon results were unique per bore and 

sampling campaign, therefore data were not analysed statistically. 
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The R package staRdom (version 1.1.1) (Pucher et al., 2019) was used to correct EEMs, 

calculate all fluorescence/absorbance indices and for conducting PARAFAC modelling. EEMs 

were corrected for blanks (Milli-Q water), inner filter effects, Raman normalised (Lawaetz 

and Stedmon, 2009), and scatter (Raman and Rayleigh) were removed and interpolated 

prior to PARAFAC. Our PARAFAC model was split-half validated (Murphy et al., 2013) and 

recognized five fluorescent components (Figure S5.6). These components are reported as 

maximum fluorescence intensity of each component (Fmax) in each sample. Principal 

Components Analysis (PCA) was conducted on fluorescence/absorbance indices to assess 

differences between sites and rainfall period. The R studio (version 3.6.1) ‘prcomp’ function 

was used to carry out the PCA and results are presented in two dimensions (PC1 and PC2) 

along with eigenvectors. Differences in HIXEM, BIX, FI and A254 between sites and rainfall 

periods were tested using 2-way ANOVA, where site and rainfall period (and their possible 

interaction) were treated as fixed factors. Tukey’s HSD tests were performed to determine 

which of the means were significantly different when significant main effects were found. 

Data were log transformed to achieve normality when required. 

Beta diversity patterns - the variations in species composition among rainfall periods - were 

analysed through the calculation of the Ochiai index (Ochiai, 1957) (R-package ‘adespatial’) 

and the quotient of the temporal turnover (Simpson pairwise dissimilarity) and total 

dissimilarity (measures as Sorensen pair-wise dissimilarity) (R-package ‘betapart’, function 

beta.pair). Pielou’s evenness index (J) was calculated to infer the degree of dominant 

species in abundance, with values ranging from 0 (no evenness at all) to 1 (complete 

evenness). The Phyloseq package in R (McMurdie and Holmes, 2013) was used to plot the 

ZOTU abundance at the family and genus level for low rainfall (LR) and high rainfall (HR) 

periods from the bore W4. The Statistical Analysis of Metagenomic Profiles (STAMP) 

bioinformatics software package was used to visualize and determine statistically significant 

results from the PICRUSt2 output (Parks et al., 2014).  For comparison of potential microbial 

metabolic shifts across rainfall periods, the White’s non parametric t-test (P < 0.05) was 

used for both carbon metabolism and degradation pathways with confidence intervals of 

95%, and visualized with extended error bar plots. 
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5.3 Results 

5.3.1 Organic inputs across rainfall periods 

The DOC concentrations ranged from 0.39 ± 0.21 mg/L (mean ± SD for W4 under LR) to 1.94 

± 0.75 mg/L (mean ± SD for D13 during HR), while concentrations of dissolved inorganic 

carbon (DIC) ranged from 63.5 ± 0.14 mg/L (mean ± SD for W4 under LR) to 87.44 ± 0.66 

mg/L (mean ± SD for D13 during HR). DOC concentrations for bore W4 significantly 

increased under HR compared to LR (ANOVA, P < 0.05). Concurrently, W4 had significantly 

more positive δ13CDOC values under HR conditions than under LR conditions (ANOVA, P < 

0.001) (Figure 5.2a). Groundwater from bore D13 also had higher DOC concentrations 

under HR (Figure 5.2a) than those during LR, but this was not statistically significant.  

δ13CDOC values in D13 did not change after rainfall (Table S5.1), while its 14CDOC ages also 

remained similar between LR and HR, being younger than those in W4 (Figure 5.2c). 

Compared to W4, DIC concentrations were higher in D13, and δ13CDIC values were less 

enriched, but these differences were not statistically significant (Figure 5.2b). Similar 

increasing trends were found for DIC concentration and Δ14CDIC values for the two bores 

when LR was compared to HR (Figure 5.2d). 

Increasing trends for water temperature, DO (bore D13) and chloride concentrations were 

coupled with decreasing patterns for pH, DO (bore W4), ORP and depth (Table S5.4) when 

LR was compared to HR. δ18O and δ2H values did not vary across rainfall periods within the 

two bores analysed, while Tritium values from bore D13 were slightly lower during HR (0.53 

TU) when compared to LR (0.77 TU).  
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Figure 5.2. Bar charts illustrating DOC and DIC concentrations (a and b), and respective 
percent of modern carbon (pMC, with modern defined as 1950) (c and d) from the bores 
W4 and D13 across LR (dark yellow) and HR (blue). The whiskers of the bars refer to 
standard deviation values. Combined line graphs refer to δ13C DOC (a), δ13C DIC (b), Δ14C 
DOC (c) and Δ14C DIC (d). * significant trend with P value < 0.05; ** significant trend with P 
value < 0.005; *** significant trend with P value < 0.0005. Refer to Table S5.1 for the 
specific values of the parameters. 

5.3.2 Fluorescence and absorbance characterization 

Parallel factor analysis (PARAFAC) identified five unique humic-like fluorescent components 

(Figure S5.6). Component 1 (C1) had a primary excitation peak at <250 nm and secondary 

peak at 330 nm with a broad emission peak from 370 to >575 nm (Em. max at 415 nm). 

Component 2 (C2) had an excitation peak at <250 nm and at 300 nm with a broad emission 

peak from 350 to >575 nm (Em. max at 395 nm). Component 3 (C3) had an excitation peak 

at 268 nm and at 386 nm with a broad emission peak from 400 to >575 nm (Em. max at 446 

nm). Component 4 (C4) had an excitation peak at 260 nm and at 370 nm with a broad 

emission peak from 420 to >600 nm (Em. max at 493 nm). Component 5 (C5) had an 

excitation peak at 250 nm and at 318 nm with an emission peak from 310 to >410 nm (Em. 

max at 364 nm). C1-C4 were all considered aromatic and derived from terrestrial plant 

sources while C5 represented a lower molecular weight, UVA humic-like compound 



 
 

165 

 

(Fellman et al., 2010). The rainfall affected the fluorescence intensity of all PARAFAC 

components. For site D13, the fluorescence maximum (Fmax) of all components increased 

after HR, while site W4 displayed the opposite trend, with elevated fluorescence after low 

rainfall (LR) (Figure 5.3a). During both rainfall periods, the Fmax of all components at site 

D13 was greater compared to site W4 (Figure 5.3a). Further, the relative composition of 

components changed between bores. C1 was most predominant across both bores and 

recharge periods explaining 37-50% of the CDOM signal. The contribution of C3 and C4 was 

consistent across samples and rainfall regimes ranging from 20-25% and 12-15% 

respectively. C5 had the largest change in contribution between the bores; contributing 7-

8% at bore D13 and 13-18% at bore W4. Finally, during HR there was no presence of C2 at 

bore W4 (Figure 5.3a). 

Optical indices (HIXEM, A254, BIX) varied between sites and rainfall period (Figure 5.3b). 

Overall, PCA of optical indices revealed a marked shift in CDOM composition for site W4, 

from more terrestrially derived compounds during LR to compounds with a lesser degree of 

humification during HR (i.e., microbial derived, autochthonous) (Figure 5.3b). In contrast, 

site D13 displayed negligible changes in CDOM composition, displaying slightly greater 

intensity of humic-like/terrestrial compounds during HR compared to during LR (Figure 

5.3b). The humification index (HIXEM) ranged from 0.89 to 0.99, indicating that CDOM for 

both bores and rainfall periods was largely comprised of humic compounds, as HIXEM values 

above 0.9 indicated a greater degree of humification (Hansen et al., 2016; Ohno, 2002; 

Zsolnay et al., 1999). During HR, both sites showed a marginal decrease in their HIXEM 

values, especially for site W4, however both remained close to 0.9 (Figure 5.3c). Greater 

A254 absorbance at bore D13 indicated more aromatic content than site W4 (Figure 5.3b 

and c). Interestingly, BIX was greater at site W4 (µ = 1.53 ± 0.11) during HR than during LR 

(µ = 1.07 ± 0.04) and compared to site D13 (µ = 0.87 ± 0.01) for either rainfall period (P < 

0.05, Figure 3c). The fluorescence index (FI) indicated CDOM was of terrestrial origin (FI ~ 

1.4; McKnight et al., 2001) and did not change between bores or rainfall periods (µ = 1.46 ± 

0.02; Figure 5.3c).   
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Figure 5.3. CDOM characterisation between bores and recharge periods. (a) Fluorescence 
maximum in Raman units (Fmax) and percent contribution of the five PARAFAC 
components (i.e. C1, C2, C3, C4 and C5), (b) PCoA ordination discriminating PARAFAC 
components, fluorescence indices (HIXEM, BIX) and absorbance indices (A254) where 
correlations of indices with axes are visualised as arrows, and, (c) BIX, HIXEM, and A254 
values. Significant post hoc comparisons (P < 0.05) are indicated by lowercase letters. 

5.3.3 Microbial patterns 

The 16S rRNA sequencing yielded 7503 sequences clustered into 87 ZOTUs (37 ZOTUs either 

belonged to uncultured bacteria or no reference was available). After the removal of the 

ZOTUs associated with the lab controls (N=16), 25 ZOTUs were unique to LR, 25 ZOTUs 

belonged to HR, and both rainfall periods shared the other 21 ZOTUs. During LR, the 

dominant ZOTUs belonged to the families Rhodobacteraceae (Paracoccus sp. and 

Roseivarius sp.), Pseudomonadaceae (Pseudomonas sp.), Planococcacea (Planomicrobium 

sp.) and Caulobacteraceae (Brevundimonas sp.). Under HR the dominant ZOTUs 

corresponded to the families Rhodobacteraceae (Stappia sp. and Roseibacterium sp.), 

Phyllobacteriaceae (Nitratireductor sp.) and Rhodospirillaceae (Thalassobaculum sp. and 

Tageae sp.) (Figure S5.7). All the genera experienced turnovers between LR and HR (Ochiai 

index, P < 0.05), suggesting that a shift in community assemblages across the two rainfall 

events has occurred. Specifically, 81.5% of the dissimilarity was due to genus replacement 

between rainfall periods (turnover), with the rest (18.5%) explained by the nestedness 

(species loss from rainfall period to rainfall period). Values of the Pielou’s evenness index (J) 

during LR and HR ranged from 0.71 to 0.74. 
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Predictions of the quantitative proportion of individual metabolic pathways related to 

carbon turnover revealed a dominance of carbon fixation (46%) and methane metabolism 

(40%), followed by carbohydrate (8%) and lipid metabolisms (6%) (Figure 5.4a). Despite 

being more abundant under LR for the former two, none of the four main metabolic 

categories changed significantly between LR and HR. Pairwise tests indicated that 4 out of 

the 10 carbon processing pathways (Figure 5.4b) and 10 out of the 76 degradative 

pathways examined (Figure 5.4c) were significantly (P < 0.05) overrepresented in one of the 

two rainfall periods (either LR or HR). For carbon metabolism, the dicarboxylate-

hydroxybutyrate cycle was more abundant during LR, whereas the reductive pentose 

phosphate cycle, pentose phosphate pathway and reductive acetyl-CoA pathway were 

more abundant during HR.  With the exception of the glycogen degradation pathway, all 

the degradative pathways (arginine, purine, catechol, glucose, salicylate and aromatic 

compounds) were more abundant during HR. All pathways tested can be found in Table 

S5.3. 



 
 

168 

 

 

Figure 5.4. Prediction of the microbial community metabolic status based on 16S rRNA 
amplicon sequencing and functional genomics analyses between LR and HR periods from 
the bore W4. (a) doughnut chart showing the proportion of the metabolisms considered 
compared with the total pathways detected and the specific proportions of methane 
(green), carbohydrates (red), lipid (light blue and carbon fixation (yellow) metabolisms 
(derived from KOs). (b) and (c) extended error bar plots of predictive metagenome 
pathways differentially abundant between rainfall periods (P < 0.05, White’s non 
parametric t-test). 
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5.4 Discussion  

5.4.1 Carbon replenishment in groundwater systems 

In groundwater systems, carbon is replenished either through diffuse recharge through the 

unsaturated zone and/or via direct recharge from surface waters (Meredith et al., 2019). 

These processes are linked to rainfall conditions (i.e. wet/dry periods) and the hydrology of 

the system. SW/GW interactions drive OM incorporation into the ecosystem, which is 

typically characterised by low carbon content (McDonough et al., 2019).  

Aquifer recharge indicators such as tritium, oxygen-18 and deuterium did not vary much in 

the Sturt Meadows system between rainfall periods, suggesting limited recharge during our 

study. Conversely, chloride concentrations increased under HR (Table S5.4), suggesting 

intrusion of hypersaline water from the surface during this period. These results indicate 

that carbon and nutrient inflows occur despite low recharge after rainfall, suggesting that 

soil zone processing plays a key role in regulating the biochemical flows at SM aquifer 

(Saccò et al., 2019b). 

DOC concentrations revealed increasing trends after rainfall (HR), although only statistically 

significant for W4, indicating some carbon inputs to the system. At bore W4, older (14CDOC) 

and enriched DOC (δ13CDOC) was found under HR, suggesting a sedimentary organic matter 

source, likely subject to microbial reprocessing causing stable isotope enrichment. In 

contrast, bore D13 showed stable trends characterised by more modern DOC inputs. This 

difference in biochemical patterns suggests that in situ carbon sources play a central role at 

bore W4, possibly in tandem with changes in microbial activity occurring during HR. 

Meanwhile, bore D13 is receiving steady inflows of younger (and less microbially recycled) 

OM.   

Patterns of DIC concentrations and δ13CDIC were steady across rainfall regimes. Inorganic 

dissolution was higher in D13, and input from younger carbonates (inorganic fraction of 

carbon in calcretes) was detected. Overall, our isotopic data from organic and inorganic 

carbon indicated different responses in the upper (D13) and lower (W4) catchments, with 

D13 showing more modern carbon but less response to the rainfall event. 
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Groundwater CDOM quality depended on the bore and rainfall period. Humification (HIXEM) 

and fluorescence index (FI) values indicated that CDOM from both bores, regardless of 

rainfall period, were dominated by high molecular weight molecules (humic-like 

fluorophores) associated with the presence of terrestrially derived organic matter (i.e. FI ~ 

1.4, HIXEM>0.9; McKnight et al., 2001; Ohno, 2002). Furthermore, most CDOM components 

(C1-C4) were identified as large molecular weight humic-like compounds derived from 

terrestrial plant material, with the exception of C5 which was identified as UVA humic-like, 

a lower molecular weight component that is associated with autochthonous production 

and microbial processing (Fellman et al., 2010). The intensity of all components (C1-C4) was 

greater in the upper catchment (i.e. bore D13), which is consistent with the presence of the 

more modern and less 13C enriched terrestrial carbon at this site shown by the isotopic data 

(i.e. >DOC). Fellman et al. (2011) also showed an overall decrease in fluorescence 

characteristics from the upper to lower catchment in pools of the semiarid Pilbara (Western 

Australia). The fluorescence results indicate that the dominant source of groundwater 

carbon at Sturt Meadows aquifer is the terrestrial soil. However, during HR, bore W4 shows 

elevated BIX (>1.5) values indicated the presence of CDOM with an autochthonous origin 

(i.e. microbially derived; Helms et al., 2008), along with an increased relative contributions 

of a lower molecular weight component (i.e. C5) at this bore. This is again consistent with 

the isotopic results, and suggests that the HR event stimulated specific microbial activity at 

this site, leading to changes in the recycling of older organic matter, and stable isotopic 

enrichment.  

One potential explanation for this is the infiltration of ions from hypersaline surficial soils 

into the groundwater during HR, as well as potential mixing with the adjacent lake Raeside 

(i.e. >-Cl, Table S5.4), forming a groundwater estuary (Humphreys et al., 2009). 

Autochthonous CDOM is more common in estuarine and marine environments compared 

to freshwater bodies (Santos et al., 2016) and has been reported across microtidal 

subterranean estuaries (Couturier et al., 2016). The occurence of this at W4 but not D13 

may relate to either its geology (W4 is in calcrete, while D13 has a higher proportion of 

clays), or its position in the lower half of the bore field which is hydrologically nearer the 

neighbouring saline systems. 

One alternative explanation for the CDOM results would be an influx of photochemically 

altered older carbon from the overlying soils, as the non-mineralized fraction of 
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photobleached CDOM has optical properties that are similar to estuarine and marine CDOM 

(Hansen et al., 2016; Helms et al., 2008). However, there is no obvious explanation as to 

why this should occur only around bore W4. 

Overall, our results suggest that rainfall events play a role in regulating carbon stocks at the 

SM calcrete, but that the resultant changes are not straightforward. The rainfall events 

measured were not substantial enough to trigger a full hydrological recharge of the system 

- something that will become more common with the declining rainfall in the Yilgarn region 

- but nonetheless sufficiently affected the lower part of the bore field to drive changes in 

the OM type. To understand the details of this change, a better understanding of the 

microbiome of the system and its interaction with changes in water chemistry is required. 

Several investigations have stressed the importance of rainfall events as ecological drivers 

leading to shifts in biotic community assemblages in groundwater environments (e.g. Reiss 

et al., 2019; Wu et al., 2018). The current climate change scenario predicts reduced rainfall 

events linked to increased droughts, events that are likely to affect the biochemical balance 

sustaining biota in groundwater (Green et al., 2011; Mammola et al., 2019a). Modelling of 

current ecological dynamics will allow prediction of future effects to the vital (and too often 

taken for granted) ecosystem services provided by groundwater environments. 

5.4.2 Microbial trends and carbon pathways 

The studied rainfall events triggered shifts in the microbial community assemblages in bore 

W4. Under both rainfall conditions, the microbial community was typical of saline and 

hypersaline environments (Stepanov et al., 2014; Unno et al., 2015). Rhodobacteracea, the 

most widely distributed bacteria in marine environments (Pujalte et al., 2014), was the 

most dominant family on site. Interestingly, families that were highly abundant under HR 

(i.e. Phyllobacteriaceae and Rhodospirillaceae) were scarce under the LR period, indicating 

that rainfall provides conditions for their proliferation. Conversely, the vast majority of 

other families - especially Pseudomonadacea, Planococcaceae and Caulobacteraceae - were 

only present during LR. Genus level analysis indicated a more abundant and diverse 

community under LR than during HR. Decline in biodiversity during recharge events has 

been ascribed to dilution processes caused by water inflows linked to storm events 

decreasing the density of micro-organisms and thus their detectability (Pronk et al., 2009), 
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and low recharge regimes have been suggested hosting the autochthonous microbial 

community (Farnleitner et al., 2005). While dilution of bacterial density processes may play 

a role at Sturt Meadows, a more comprehensive understanding of the microbial ecological 

dynamics and their variation over time is needed, requiring further long-term investigation.  

The putative assessment of pathways related to cells’ carbon metabolisms provided 

evidence for inorganic carbon fixation and methane pathways (i.e. methane oxydation), 

two of the most common biochemical routes reported in groundwater systems (e.g. 

Brankovitz et al., 2017; Rightmire and Hanshaw, 1973; Ullman et al., 2003). No significant 

changes in the proportions of each of the main pathways were detected between LR and 

HR. In a recent study, Hofmann and Griebler (2018) tested the ‘priming effect’ - the 

activation of microbial growth and OM transformation under increased OM availability - in 

groundwater. After a series of laboratory experiments under increasing nutrient 

concentrations, no evidence of priming could be observed. While in overall agreement with 

these findings, our investigation of specific metabolic pathways revealed a substantial 

increase in degradative pathways under HR in W4, which is again consistent with our 

fluorescence and isotopic results. Volatile organic compounds, such as toluene, catechol 

and phenyl acetate, can be very abundant in contaminated aquifers (e.g. Abbai et al., 2012; 

Langwaldt et al., 2006; Shinoda et al., 2004) and may also occur naturally in the hypersaline 

lakes of Western Australia (Ruecker et al., 2014). Aromatic compounds have been found 

leaching into groundwater after rainfall and shifting the character of DOM in sandy aquifers 

(McDonough et al., 2019), confirming their importance as biochemical drivers in typically 

low energy systems (e.g. Filip and Smed-Hildmann, 1992). After rainfall, the microbial 

community in W4 seemed to profit from these new inflows of OM, as indicated by the high 

abundances of taxa potentially involved in aromatic compound degradation such as Stappia 

sp., Roseibacterium sp., Tageae sp. and Thalassobaculum sp. (e.g. Dutton and Evans, 1978; 

Pujalte et al., 2014 and references therein). Taxa with a high affinity to denitrification 

processes such as Paracoccus sp., Roseovarius sp., Brevundimonas sp. and Planomicrobium 

sp. (e.g. Chen et al., 2015; Pujalte et al., 2014 and references therein; Tsubouchi et al., 

2014), dominated under LR. However, denitrifying Nitratireductur sp. was also present 

under HR, suggesting that nitrogen (nitrates, nitrites and ammonia) provides basal energy 

sources under both rainfall conditions. However, additional investigations on specific 

nitrogen pathways of SM calcrete bacteria will be necessary to elucidate this further. 



 
 

173 

 

Degradation of glucose also increased under HR, suggesting adaptations to the increased 

OM availability. During these conditions, abundances of Pseudomonas sp. - one of the most 

opportunistic and versatile bacteria on earth - plummeted, probably due to the repressing 

effect of glucose on the expression of several genes (Rojo, 2010). The other three 

degradative metabolic pathways which were more abundant after rainfall - arginine, 

ornithine and purine - constitute catabolic pathways whose main product is ammonia (e.g. 

Schneider et al., 1998). High ammonia concentrations were detected under HR (Saccò et al., 

2019b), and might represent a compendium of nutrient inputs and metabolic production. 

The only degradative pathway that was significantly overrepresented during LR was the 

degradation of glycogen, the primary carbon and energy storage compound of many 

bacteria (Park et al., 2011). Our results are in line with Yamamotoya et al. (2012), 

suggesting that this polysaccharide of glucose is key to long-term bacterial survival and is 

utilised when carbon sources become limiting, as per the case of LR period. Another 

pathway that followed this decreasing trend after rainfall was the dicarboxylate-

hydroxybutyrate cycle. Characteristic for microaerophiles and anaerobes (Berg, 2011), this 

cycle is considered ‘energetically efficient’ in contrast to other autotrophic carbon fixation 

pathways (Lannes et al., 2019). A plausible explanation is that the dicarboxylate-

hydroxybutyrate pathway is activated when OM is scarce (such as LR), and uncommon 

under HR when OM is more available. In addition to pathways involving OM processing, 

those involving inorganic carbon fixations, namely the reductive acetyl-CoA pathway and 

reductive pentose phosphate cycle, also increased after rainfall. Inorganic incorporation 

might play a role in natural carbon fixation and cycling in groundwater microbes (i.e. Nowak 

et al., 2017), an assumption that has rarely been tested. 

5.5 Conclusions 

A combination of biochemical and genetic data allowed preliminary untangling of the 

biochemical function regulating microbial communities at the SM calcrete (Figure 5.5). 

Given their importance in allowing the transition between abiotic to biotic frameworks, 

bacteria are vital in shaping the biochemical flows regulating subterranean biodiversity 

(Griebler and Lueders, 2009). However, despite their importance, many questions about 

subterranean microbial processes remain unresolved. Indeed, the fields of groundwater 

ecology and subterranean microbiology would mutually benefit from the integration of 
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respective insights. Due to increased natural and anthropic pressures, subterranean biotic 

communities are currently being exposed to increased losses of taxonomical and functional 

diversity, leading to poorer and more fragile groundwater ecosystems (Mammola et al., 

2019b). Further medium to long term interdisciplinary studies monitoring the changes in 

groundwater ecological dynamics will allow to assess the impact of the climate changes on 

one of the most essential ecosystems in the world. 

 

Figure 5.5. Scheme of the main degradative pathways and biochemical patterns under HR. 
(a) Glucose degradation, (b) aromatic degradation, (c) arginine and ornithine degradation, 
(d) purine degradation, (e) DOC replenishment inferred from isotopic data, (f) terrestrially 
derived CDOM inflows (fluorescence analysis) and (g) increase in ammonia concentrations 
as a result of nutrients inputs from the surface and microbial metabolic activities (purine 
and amino acid degradation). 

Akcnowledgements  

We wish to acknowledge the traditional custodians of the land, the Wongai people, and 

their elders, past, present and emerging. We acknowledge and respect their continuing 

culture and the contribution they make to the life of Yilgarn region. The authors thank 

Flora, Peter and Paul Axford of the Meadows Station for their kindness and generosity in 

providing both accommodation and access to their property.  



 
 

175 

 

References 

ABBAI, N. S., GOVENDER, A., SHAIK, R. & PILLAY, B. (2012). Pyrosequence analysis of unamplified 
and whole genome amplified DNA from hydrocarbon-contaminated 
groundwater. Molecular biotechnology 50, 39-48. 

ALLFORD, A., COOPER, S. J., HUMPHREYS, W. F. & AUSTIN, A. D. (2008). Diversity and distribution 
of groundwater fauna in a calcrete aquifer: does sampling method influence the 
story? Invertebrate Systematics 22, 127-138. 

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. (1990). Basic local alignment 
search tool. Journal of Molecular Biology 215, 403-410. DOI 10.1016/S0022-
2836(05)80360-2. 

ANACONDA. (2001). Mt Margaret Nickel Cobalt Project: Public Environment Review and 
Public Environmental Report for Anaconda Nickel Limited, Perth, Australia. 

APHA. (2012) Standard methods for the examination of water and wastewater, 20th edn. 
American Public Health Association, Washington DC 

AUSTRALIAN GOVERNMENT BUREAU OF METEOROLOGY. (2018). Daily rainfall at Sturt Meadows 
available on 
line:http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=136&p
_display_type=dailyDataFile&p_startYear=&p_c=&p_stn_num=012176, Accessed 
date: December 2018 

BAKER, M. A., VALETT, H. M. & DAHM, C. N. (2000). Organic carbon supply and metabolism in a 
shallow groundwater ecosystem. Ecology 81, 3133-3148. 

BATTIN, T. J., LUYSSAERT, S., KAPLAN, L. A., AUFDENKAMPE, A. K., RICHTER, A. & TRANVIK, L. J. (2009). 
The boundless carbon cycle. Nature Geoscience 2, 598. 

BERG, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation 
pathways. Applied Environmetal Microbiology 77, 1925-1936. 

BRADFORD, T. M. (2010). Modes of speciation in subterranean diving beetles from a single 
calcrete aquifer in Central Western Australia (Doctoral dissertation). 

BRADFORD, T. M., ADAMS, M., GUZIK, M. T., HUMPHREYS, W. F., AUSTIN, A. D. & COOPER, S. J. 
(2013). Patterns of population genetic variation in sympatric chiltoniid amphipods 
within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111, 
77. 

BRANKOVITS, D., POHLMAN, J. W., NIEMANN, H., LEIGH, M. B., LEEWIS, M.-C., BECKER, K. W., ILIFFE, T., 
ALVAREZ, F., LEHMANN, M. F. & PHILLIPS, B. (2017). Methane-and dissolved organic 
carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. 
Nature communications 8, 1835. 

BRYAN, E., MEREDITH, K. T., BAKER, A., ANDERSEN, M. S. & POST, V. E. (2017). Carbon dynamics in 
a Late Quaternary-age coastal limestone aquifer system undergoing saltwater 
intrusion. Science of the Total Environment 607, 771-785. 

CAPORASO, J. G., LAUBER, C. L., WALTERS, W. A., BERG-LYONS, D., LOZUPONE, C. A., TURNBAUGH, P. J., 
FIERER, N. & KNIGHT, R. (2011). Global patterns of 16S rRNA diversity at a depth of 
millions of sequences per sample. Proceedings of the national academy of sciences 
U.S.A. 108, 4516–4522. 

CASPI, R., (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. 
Nucleic Acids Research 34, 511–516. 

CATALÁN, N., MARCÉ, R., KOTHAWALA, D. N. & TRANVIK, L. J. (2016). Organic carbon 
decomposition rates controlled by water retention time across inland 
waters. Nature Geoscience 9, 501. 



 
 

176 

 

CHAMBERS, L. G., REDDY, K. R. & OSBORNE, T. Z. (2011). Short-term response of carbon cycling 
to salinity pulses in a freshwater wetland. Soil Science Society of America 
Journal 75, 2000-2007. 

CHAPELLE, F. H. & LOVLEY, D. R. (1990). Rates of microbial metabolism in deep coastal plain 
aquifers. Applied and Environmental Microbiology 56, 1865-1874. 

CHEN, D., WANG, H., J. I., B., YANG, K., WEI, L. & JIANG, Y. (2015). A high-throughput sequencing 
study of bacterial communities in an autohydrogenotrophic denitrifying bio-
ceramsite reactor. Process Biochemistry 50, 1904-1910. 

COBLE, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using 
excitation-emission matrix spectroscopy. Marine Chemistry 51, 325–346. 

COBLE, P. G., LEAD, J., BAKER, A., REYNOLDS, D. M. & SPENCER, R. G. M. (2014). Aquatic organic 
matter fluorescence, New York, USA: Cambridge University Press. 

COX, P. M., BETTS, R. A., JONES, C. D., SPALL, S. A. & TOTTERDELL, I. J. (2000). Acceleration of 
global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 
408, 184. 

COUTURIER, M., NOZAIS, C. & CHAILLOU, G. (2016). Microtidal subterranean estuaries as a 
source of fresh terrestrial dissolved organic matter to the coastal ocean. Marine 
Chemistry 186, 46–57.  

CZARNOTA, K., CHAMPION, D. C., GOSCOMBE, B., BLEWETT, R. S., CASSIDY, K. F., HENSON, P. A. & 

GROENEWALD, P. B. (2010). Geodynamics of the eastern Yilgarn Craton. Precambrian 
Research 183, 175-202. 

DATRY, T., MALARD, F. & GIBERT, J. (2005). Response of invertebrate assemblages to increased 
groundwater recharge rates in a phreatic aquifer. Journal of the North American 
Benthological Society 24, 461-477. 

DOWNING, J. A. & STRIEGL, R. G. (2018). Size, age, renewal, and discharge of groundwater 
carbon. Inland Waters 8, 122-127. 

DOUGLAS, G. M., MAFFEI, V. J., ZANEVELD, J., YURGEL, S. N., BROWN, J. R., TAYLOR, C. M., 
HUTTENHOWER, C. & LANGILLE, M. G. (2019). PICRUSt2: An improved and extensible 
approach for metagenome inference. BioRxiv, 672295. 

DRAGONI, W. & SUKHIJA, B. S. (2008). Climate change and groundwater: a short review. 
Geological Society, London, Special Publications 288, 1-12. 

DRAKE, T. W., RAYMOND, P. A. & SPENCER, R. G. (2018). Terrestrial carbon inputs to inland 
waters: A current synthesis of estimates and uncertainty. Limnology and 
Oceanography Letters 3, 132-142. 

DRUMMOND, A. J., ASHTON, B., BUXTON, S., CHEUNG, M., COOPER, A., DURAN, C., FIELD, M., HELED, 
J., KEARSE, M., MARKOWITZ, S., MOIR, R., STONES-HAVAS, S., STURROCK, S., THIERER, T. & 

WILSON, A. (2011). Geneious v5.4. Available at http://www.geneious.com. 
DUTTON, P. L. & EVANS, W. C. (1978). Metabolism of aromatic compounds by 

Rhodospirillaceae. The photosynthetic bacteria, 719-726. 
EDGAR, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 

sequencing. bioRxiv. Available at http:// biorxiv.org/ content/ early/ 2016/10/15/ 
081257 abstract . 

FARNLEITNER, A. H., WILHARTITZ, I., RYZINSKA, G., KIRSCHNER, A. K., STADLER, H., BURTSCHER, M. M., 
HORNEK, R., SZEWZYK, U., HERNDL, G. & MACH, R. L. (2005) Bacterial dynamics in spring 
water of alpine karst aquifers indicates the presence of stable autochthonous 
microbial endokarst communities. Environmental Microbiology 7, 1248-1259. 

FELLMAN, J. B., HOOD, E. & SPENCER, R. G. M. (2010) Fluorescence spectroscopy opens new 
windows into dissolved organic matter dynamics in freshwater ecosystems: A 
review. Limnology and Oceanography 55, 2452–2462. 

http://www.geneious.com/


 
 

177 

 

FELLMAN, J.B., DOGRAMACI, S., SKRZYPEK, G., DODSON, W. & GRIERSON, P.F. (2011) Hydrologic 
control of dissolved organic matter biogeochemistry in pools of a subtropical 
dryland river. Water Resources Research 47, 1–13. 

FILIP, Z. & SMED-HILDMANN, R. (1992). Does fossil plant material release humic substances 
into groundwater?. Science of the total environment 117, 313-324. 

FINK, D., HOTCHKIS, M., HUA, Q., JACOBSEN, G., SMITH, A. M., ZOPPI, U., CHILD, D., MIFSUD, C., VAN 

DER GAAST, H., WILLIAMS, A. & WILLIAMS, M. (2004) The ANTARES AMS Facility at 
ANSTO. Nuclear Instruments and Methods in Physics Research 223, 109-115. 

FOULQUIER, A., MALARD, F., MERMILLOD-BLONDIN, F., MONTUELLE, B., DOLÉDEC, S., VOLAT, B. & 

GIBERT, J. (2011). Surface water linkages regulate trophic interactions in a 
groundwater food web. Ecosystems 14, 1339-1353. 

GLANVILLE, K., RYAN, T., TOMLINSON, M., MURIUKI, G., RONAN, M. & POLLETT, A. (2016). A method 
for catchment scale mapping of groundwater-dependent ecosystems to support 
natural resource management (Queensland, Australia). Environmental 
management 57, 432-449. 

GONZÁLEZ-MERCADO, V. J., LIM, J., BERK, L., ESELE, M., RODRÍGUEZ, C. S. & COLÓN-OTERO, G. (2020). 
Gut microbiota differences in Island Hispanic Puerto Ricans and mainland non-
Hispanic whites during chemoradiation for rectal cancer: A pilot study. Current 
Problems in Cancer, 100551. 

GREEN, T. R., TANIGUCHI, M., KOOI, H., GURDAK, J. J., ALLEN, D. M., HISCOCK, K. M., TREIDEL, H. & 

AURELI, A. (2011). Beneath the surface of global change: Impacts of climate change 
on groundwater. Journal of Hydrology 405, 532-560. 

GRIEBLER, C. & LUEDERS, T. (2009). Microbial biodiversity in groundwater ecosystems. 
Freshwater Biology, 54, 649-677. 

GUZIK, M. T., AUSTIN, A. D., COOPER, S. J., HARVEY, M. S., HUMPHREYS, W. F., BRADFORD, T., 
EBERHARD, S. M., KING, R. A., LEYS, R. & MUIRHEAD, K. A. (2011). Is the Australian 
subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407-418. 

HANCOCK, P. J., BOULTON, A. J. & HUMPHREYS, W. F. (2005). Aquifers and hyporheic zones: 
towards an ecological understanding of groundwater. Hydrogeology Journal 13, 98-
111. 

HANSEN, A. M., KRAUS, T. E. C., PELLERIN, B. A., FLECK, J. A., DOWNING, B. D. & BERGAMASCHI, B.A. 
(2016). Optical properties of dissolved organic matter (DOM): Effects of biological 
and photolytic degradation. Limnology and Oceanography 61, 1015–1032. 

HELMS, J. R., STUBBINS, A., RITCHIE, J. D., MINOR, E. C., KIEBER, D. J. & MOPPER, K. (2008). 
Absorption spectral slopes and slope ratios as indicators of molecular weight, 
source, and photobleaching of chromophoric dissolved organic matter. Limnology 
and Oceanography 53, 955–969. 

HELMS, J. R., STUBBINS, A., PERDUE, E. M., GREEN, N. W., CHEN, H. & MOPPER, K. (2013). 
Photochemical bleaching of oceanic dissolved organic matter and its effect on 
absorption spectral slope and fluorescence. Marine Chemistry 155, 81– 91. 

HOFMANN, R. & GRIEBLER, C. (2018). DOM and bacterial growth efficiency in oligotrophic 
groundwater: absence of priming and co-limitation by organic carbon and 
phosphorus. Aquatic Microbial Ecology 81, 55-71. 

HUA, Q., JACOBSEN, G. E., ZOPPI, U., LAWSON, E. M., WILLIAMS, A. A., SMITH, A. M. & MCGANN, M. J. 
(2001). Progress in radiocarbon target preparation at the ANTARES AMS Centre. 
Radiocarbon 43, 275-282. 

HUGUET, A., VACHER, L., RELEXANS, S., SAUBUSSE, S., FROIDEFOND, J.M. & PARLANTI, E. (2009). 
Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic 
Geochemistry 40, 706–19. 



 
 

178 

 

HUMPHREYS, W., WATTS, C., COOPER, S. & LEIJS, R. (2009). Groundwater estuaries of salt lakes: 
buried pools of endemic biodiversity on the western plateau, Australia. 
Hydrobiologia 626, 79-95. 

HUTCHINS, B. T., ENGEL, A. S., NOWLIN, W. H. & SCHWARTZ, B. F. (2016). Chemolithoautotrophy 
supports macroinvertebrate food webs and affects diversity and stability in 
groundwater communities. Ecology 97, 1530-1542. 

HYDE, J., COOPER S. J., HUMPHREYS, W. F., AUSTIN, A. D. & MUNGUIA, P. (2018). Diversity patterns 
of subterranean invertebrate fauna in calcretes of the Yilgarn Region, Western 
Australia. Marine and Freshwater Research 69, 114-121. 

KALBITZ, K., SOLINGER, S., PARK, J. H., MICHALZIK, B. & MATZNER, E. (2000). Controls on the 
dynamics of dissolved organic matter in soils: a review. Soil science 165, 277-304. 

KANEHISA, M. & GOTO, S. (2000). KEGG: kyoto encyclopedia of genes and genomes - Release 
72.1, December 1, 2014. Nucleic Acids Research 28, 27–30. 

KAYRANLI, B., SCHOLZ, M., MUSTAFA, A. & HEDMARK, Å. (2010). Carbon storage and fluxes within 
freshwater wetlands: a critical review. Wetlands 30, 111-124. 

KEILUWEIT, M., WANZEK, T., KLEBER, M., NICO, P. & FENDORF, S. (2017). Anaerobic microsites 
have an unaccounted role in soil carbon stabilization. Nature communications 8, 
1771. 

KESSLER, T. J. & HARVEY, C. F. (2001). The global flux of carbon dioxide into groundwater. 
Geophysical research letters 28, 279-282. 

KOLMAKOVA, O. V., GLADYSHEV, M. I., FONVIELLE, J. A., GANZERT, L., HORNICK, T. & GROSSART, H. P. 
(2019). Effects of zooplankton carcasses degradation on freshwater bacterial 
community composition and implications for carbon cycling. Environmental 
microbiology 21, 34-49. 

LAMPLUGH, G. W. (1902). Calcrete. Geological Magazine 9, 575-575. 
LANGILLE, M. G. I., ZANEVELD, J., CAPORASO, J. G., MCDONALD, D., KNIGHTS, D., REYES, J. A., 

CLEMENTE, J. C., BURKEPILE, D. E., VEGA THURBER, R. L., KNIGHT, R., BEIKO, R. G. & 

HUTTENHOWER, C. (2013). Predictive functional profiling of microbial communities 
using 16S rRNA marker gene sequences. Nature Biotechnology 31, 814–821. 

LANNES, R., OLSSON-FRANCIS, K., LOPEZ, P. & BAPTESTE, E. (2019). Carbon Fixation by Marine 
Ultrasmall Prokaryotes. Genome biology and evolution 11, 1166-1177. 

LANGWALDT, J. H., MÜNSTER, U. & PUHAKKA, J. A. (2005). Characterization and microbial 
utilization of dissolved organic carbon in groundwater contaminated with 
chlorophenols. Chemosphere 59, 983-996. 

LAWAETZ, A. J. & STEDMON C. A. (2009). “Fluorescence Intensity Calibration Using the Raman 
Scatter Peak of Water.” Applied Spectroscopy 63 (8). SAGE Publications 936–40. 
https://doi.org/10.1366/000370209788964548. 

LEYS, R., WATTS, C. H., COOPER, S. J. & HUMPHREYS, W. F. (2003). Evolution of subterranean 
diving beetles (Coleoptera: Dytiscidae Hydroporini, Bidessini) in the arid zone of 
Australia. Evolution 57, 2819-2834. 

LINTERN, M. J. (2001). Exploration for gold using calcrete–lessons from the Yilgarn Craton, 
Western Australia. Geochemistry: Exploration, Environment, Analysis 1, 237-252. 

MABBUTT, J. A. (1969). Landforms of arid Australia. Arid lands of Australia. Australian 
National University Press, Canberra, 11-32. 

MAMMOLA, S., PEDRO, C., CULVER, D.C., LOUIS, D., FERREIRA, R.L., CENE, F., GALASSI, D.M., 
CHRISTIAN, G., STUART, H., HUMPHREYS, W.F. & ISAIA, M. (2019a). Scientists’ warning on 
the conservation of subterranean ecosystems. Bioscience 1-10. 



 
 

179 

 

MAMMOLA, S., PIANO, E., CARDOSO, P., VERNON, P., DOMÍNGUEZ-VILLAR, D., CULVER, D. C., PIPAN, T. 
& ISAIA, M. (2019b). Climate change going deep: the effects of global climatic 
alterations on cave ecosystems. The Anthropocene Review 6, 98-116. 

MANNA, F., MURRAY, S., ABBEY, D., MARTIN, P., CHERRY, J. & PARKER, B. (2019). Spatial and 
temporal variability of groundwater recharge in a sandstone aquifer in a semiarid 
region. Hydrology and Earth System Sciences 23, 2187-2205. 

MCDONOUGH, L. K., O'CARROLL, D. M., MEREDITH, K., ANDERSEN, M. S., BRÜGGER, C., HUANG, H., 
RUTLIDGE, H., BEHNKE, M. I., SPENCER, R. G., MCKENNA, A. & MARJO, C. E. (2019). Changes 
in groundwater dissolved organic matter character in a coastal sand aquifer due to 
rainfall recharge. Water Research, 115201. 

MCKNIGHT, D. M., BOYER, E.W., WESTERHOFF, P. K., DORAN, P.T., KULBE, T. & ANDERSEN, D.T. 
(2001). Spectrofluorometric characterization of dissolved organic matter for 
indication of precursor organic material and aromaticity. Limnology and 
Oceanography 46, 38–48. 

MCMURDIE, P. J. & HOLMES S. (2013). phyloseq: An R Package for Reproducible Interactive 
Analysis and Graphics of Microbiome Census Data. PLoS ONE 8, e61217 

MEREDITH, K. T., HAN, L. F., HOLLINS, S. E., CENDÓN, D. I., JACOBSEN, G. E. & BAKER, A. (2016). 
Evolution of chemical and isotopic composition of inorganic carbon in a complex 
semi-arid zone environment: Consequences for groundwater dating using 
radiocarbon. Geochimica et Cosmochimica Acta 188, 352-367. 

MEREDITH, K. T., HAN, L. F., CENDÓN, D. I., CRAWFORD, J., HANKIN, S., PETERSON, M. & HOLLINS, S. E. 
(2018). Evolution of dissolved inorganic carbon in groundwater recharged by 
cyclones and groundwater age estimations using the 14C statistical 
approach. Geochimica et Cosmochimica Acta 220, 483-498. 

MEREDITH, K. T., BAKER, A., ANDERSEN, M. S., O'CARROLL, D. M., RUTLIDGE, H., MCDONOUGH, L. K., 
OUDONE, P., BRYAN, E. & ZAINUDDIN, N. S. (2019). Isotopic and chromatographic 
fingerprinting of the sources of dissolved organic carbon in a shallow coastal 
aquifer, Hydrology and Earth System Science Discussion, 
https://doi.org/10.5194/hess-2018-627, in review, 2019. 

MONGER, H. C., KRAIMER, R. A., KHRESAT, S. E., COLE, D. R., WANG, X. & WANG, J. (2015). 
Sequestration of inorganic carbon in soil and groundwater. Geology 43, 375-378. 

MORGAN, K. H. (1993). Development, sedimentation and economic potential of palaeoriver 
systems of the Yilgarn Craton of Western Australia. Sedimentary Geology 85, 637-
656. 

MURPHY, K. R., STEDMON, C. A., GRAEBER, D. & BRO, R. (2013). Fluorescence spectroscopy and 
multi-way techniques. PARAFAC. Analytical Methods 5, 6557–6566. 

NEILSON, B. T., CARDENAS, M. B., O'CONNOR, M. T., RASMUSSEN, M. T., KING, T. V. & KLING, G. W. 
(2018). Groundwater flow and exchange across the land surface explain carbon 
export patterns in continuous permafrost watersheds. Geophysical Research 
Letters 45, 7596-7605. 

NOWAK, M., SCHWAB, V. F., LAZAR, C. S., BEHRENDT, T., KOHLHEPP, B., TOTSCHE, K. U., KÜSEL, K. & 

TRUMBORE, S. E. (2017). Carbon isotopes of dissolved inorganic carbon reflect 
utilization of different carbon sources by microbial communities in two limestone 
aquifer assemblages. Hydrology and Earth System Sciences 21, 4283-4300. 

OCHIAI, A. (1957). Zoogeographical studies on the soleoid fishes found in Japan and its 
neigbouring regions. Bulletin of the Japanese Society of Scientific Fisheries 22, 526-
530. 

http://dx.plos.org/10.1371/journal.pone.0061217
http://dx.plos.org/10.1371/journal.pone.0061217


 
 

180 

 

OHNO, T. (2002). Fluorescence inner-filtering correction for determining the humification 
index of dissolved organic matter. Environmental Science and Technology 36, 742–
746. 

PARK, J. T., SHIM, J. H., TRAN, P. L., HONG, I. H., YONG, H. U., OKTAVINA, E. F., NGUYEN, H. D., KIM, J. 
W., LEE, T. S., PARK, S. H. & BOOS, W. (2011). Role of maltose enzymes in glycogen 
synthesis by Escherichia coli. Journal of bacteriology 193, 2517-2526. 

PARKS, D. H., TYSON, G. W., HUGENHOLTZ, P. & BEIKO, R. G. (2014). STAMP: statistical analysis of 
taxonomic and functional profiles. Bioinformatics 30, 3123–3124. doi: 
10.1093/bioinformatics/btu494 

PORTILLO, M. C., PORCA, E., CUEZVA, S., CANAVERAS, J. C., SANCHEZ-MORAL, S. & GONZALEZ, J. M. 
(2009). Is the availability of different nutrients a critical factor for the impact of 
bacteria on subterraneous carbon budgets?. Naturwissenschaften 96, 1035-1042. 

POULTER, B., FRANK, D., CIAIS, P., MYNENI, R. B., ANDELA, N., BI, J., BROQUET, G., CANADELL, J. G., 
CHEVALLIER, F., LIU, Y. Y. & RUNNING, S. W. (2014). Contribution of semi-arid 
ecosystems to interannual variability of the global carbon cycle. Nature 509, 600. 

PRONK, M., GOLDSCHEIDER, N. & ZOPFI, J. (2009). Microbial communities in karst groundwater 
and their potential use for biomonitoring. Hydrogeology Journal 17, 37-48. 

PUCHER, M., WÜNSCH, U., WEIGELHOFER, G., MURPHY, K., HEIN, T., & GRAEBER, D. (2019) 
staRdom : Versatile Software for Analyzing Spectroscopic Data of Dissolved Organic 
Matter in R. Water 11, 1–19. 

PUJALTE, M. J., LUCENA, T., RUVIRA, M. A., ARAHAL, D. R. & MACIÁN, M. C. (2014). The family 
rhodobacteraceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 
439-512. 

REISS, J., PERKINS, D. M., FUSSMANN, K. E., KRAUSE, S., CANHOTO, C., ROMEIJN, P. & ROBERTSON, A. L. 
(2019). Groundwater flooding: Ecosystem structure following an extreme recharge 
event. Science of The Total Environment 652, 1252-1260. 

RIGHTMIRE, C. T. & HANSHAW, B. B. (1973). Relationship between the carbon isotope 
composition of soil CO2 and dissolved carbonate species in groundwater. Water 
Resources Research 9, 958-967. 

ROJO, F. (2010). Carbon catabolite repression in Pseudomonas: optimizing metabolic 
versatility and interactions with the environment. FEMS microbiology reviews 34, 
658-684. 

RUECKER, A., WEIGOLD, P., BEHRENS, S., JOCHMANN, M., LAAKS, J. & KAPPLER, A. (2014). 
Predominance of biotic over abiotic formation of halogenated hydrocarbons in 
hypersaline sediments in Western Australia. Environmental science & 
technology 48, 9170-9178. 

SACCÒ, M., BLYTH, A., BATEMAN, P. W., HUA, Q., MAZUMDER, D., WHITE, N., HUMPHREYS, W. F., 
LAINI, A., GRIEBLER, C. & GRICE, K. (2019a). New light in the dark-a proposed 
multidisciplinary framework for studying functional ecology of groundwater fauna. 
Science of the Total Environment 662, 963-977. 

SACCÒ, M., BLYTH, A., HUMPHREYS, W. F., KARASIEWICZ, S., MEREDITH, K., LAINI, A., COOPER, S. J., 
BATEMAN, P. W. & GRICE, K. (2019b). Stygofaunal community trends along varied 
rainfall conditions: deciphering ecological niche dynamics of a shallow calcrete in 
Western Australia. Ecohydrology e2150. 

SACCÒ, M., BLYTH, A. J., HUMPHREYS, W. F., KUHL, A., MAZUMDER, D., SMITH, C. & GRICE, K. (2019c). 
Elucidating stygofaunal trophic web interactions via isotopic ecology. PloS one 14, 
e0223982. 



 
 

181 

 

SANTOS, L., PINTO, A., FILIPE, O., CUNHA, Â., SANTOS, E.B.H., AND ALMEIDA, A. (2016). Insights on 
the optical properties of estuarine DOM - Hydrological and biological influences. 
PLoS One 11, 1–26. 

SCHIMEL, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global change biology 1, 
77-91. 

SCHNEIDER, B. L., KIUPAKIS, A. K., & REITZER, L. J. (1998). Arginine catabolism and the arginine 
succinyltransferase pathway in Escherichia coli. Journal of bacteriology 180, 4278-
4286. 

SHINODA, Y., SAKAI, Y., UENISHI, H., UCHIHASHI, Y., HIRAISHI, A., YUKAWA, H., YURIMOTO, H. & KATO, 
N. (2004). Aerobic and anaerobic toluene degradation by a newly isolated 
denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental 
Microbiology 70, 1385-1392. 

SIMON, K. S., E. F. BENFIELD, & S. A. MACKO. (2003). Food web structure and the role of epilithic 
biofilms in cave streams. Ecology 84, 2395–2406. 

STASSEN, P. (2016). Carbon cycle: Global warming then and now. Nature Geoscience 9, 268. 
STEDMON, C. A. & MARKAGER, S. (2005). Resolving the Variability in Dissolved Organic Matter 

Fluorescence in a Temperate Estuary and Its Catchment Using PARAFAC Analysis. 
Limnology and Oceanography 50, 686–697. 

STEGEN, J. C., FREDRICKSON, J. K., WILKINS, M. J., KONOPKA, A. E., NELSON, W. C., ARNTZEN, E. V., 
CHRISLER, W. B., CHU, R. K., DANCZAK, R. E., FANSLER, S. J. & KENNEDY, D. W. (2016). 
Groundwater–surface water mixing shifts ecological assembly processes and 
stimulates organic carbon turnover. Nature Communications 7, 11237. 

STEPANOV, V. G., XIAO, Y., TRAN, Q., ROJAS, M., WILLSON, R. C., FOFANOV, Y., FOX, G. E. & ROBERTS, 
D. J. (2014). The presence of nitrate dramatically changed the predominant 
microbial community in perchlorate degrading cultures under saline conditions. 
BMC microbiology 14, 225. 

STUIVER, M. & POLACH, H. A. (1977). Discussion reporting of 14 C data. Radiocarbon, 19, 355-
363. 

TSUBOUCHI, T., KOYAMA, S., MORI, K., SHIMANE, Y., USUI, K., TOKUDA, M., TAME, A., UEMATSU, K., 
MARUYAMA, T. & HATADA, Y. (2014). Brevundimonas denitrificans sp. nov., a 
denitrifying bacterium isolated from deep subseafloor sediment. International 
journal of systematic and evolutionary microbiology 64, 3709-3716. 

TURNER, S., PRYER, K. M., MIAO, V. P. W. & PALMER, J. D. (1999). Investigating deep 
phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA 
sequence analysis. Journal Eukaryote Microbiology 46, 327-338.  

ULLMAN, W. J., CHANG, B., MILLER, D. C. & MADSEN, J. A. (2003). Groundwater mixing, nutrient 
diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware 
(USA). Estuarine, Coastal and Shelf Science 57, 539-552. 

UNNO, T., KIM, J., KIM, Y., NGUYEN, S. G., GUEVARRA, R. B., KIM, G. P., LEE, J. H. & SADOWSKY, M. J. 
(2015). Influence of seawater intrusion on microbial communities in groundwater. 
Science of the Total Environment 532, 337-343. 

VESPER, D. J. & WHITE, W. B. (2004). Storm pulse chemographs of saturation index and carbon 
dioxide pressure: implications for shifting recharge sources during storm events in 
the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA. Hydrogeology 
Journal 12, 135-143. 

VIAROLI, S., MASTRORILLO, L., LOTTI, F., PAOLUCCI, V. & MAZZA, R. (2018). The groundwater 
budget: a tool for preliminary estimation of the hydraulic connection between 
neighboring aquifers. Journal of hydrology 556, 72-86. 



 
 

182 

 

WAGENER, S. M., OSWOOD, M. W. & SCHIMEL, J. P. (1998). Rivers and soils: parallels in carbon 
and nutrient processing. BioScience 48, 104-108. 

WEGNER, C. E., GASPAR, M., GEESINK, P., HERRMANN, M., MARZ, M. & KÜSEL, K. (2019). 
Biogeochemical Regimes in Shallow Aquifers Reflect the Metabolic Coupling of the 
Elements Nitrogen, Sulfur, and Carbon. Applied Environmental Microbiology, 85, 
e02346-18. 

WEISHAAR, J. & AIKEN, G. (2001) Evaluation of specific ultra-violet absorbance as an indicator 
of the chemical content of dissolved organic carbon. Environmental Chemistry 37, 
4702–4708. 

WEISHAMPEL, P., KOLKA, R. & KING, J. Y. (2009). Carbon pools and productivity in a 1-km2 
heterogeneous forest and peatland mosaic in Minnesota, USA. Forest Ecology and 
Management 257, 747-754. 

WU, X., WU, L., LIU, Y., ZHANG, P., LI, Q., ZHOU, J., HESS, N., HAZEN, T. C., YANG, W. & CHAKRABORTY, 
R. (2018). Microbial interactions with dissolved organic matter drive carbon 
dynamics and community succession'. Frontiers in microbiology 9, 1234. 

YAMAMOTOYA, T., DOSE, H., TIAN, Z., FAURÉ, A., TOYA, Y., HONMA, M., IGARASHI, K., NAKAHIGASHI, K., 
SOGA, T., MORI, H. & MATSUNO, H. (2012). Glycogen is the primary source of glucose 
during the lag phase of E. coli proliferation. Biochimica et Biophysica Acta 1824, 
1442–8. 

YURGEL, S. N., DOUGLAS, G. M., & LANGILLE, M. G. (2019). Metagenomic functional shifts to 
plant induced environmental changes. Frontiers in microbiology 10, 1682. 

ZENG, B., HAN, S., WANG, P., WEN, B., JIAN, W., GUO, W., YU, Z., DU, D., FU, X., KONG, F. & YANG, 
M. (2015). The bacterial communities associated with fecal types and body weight 
of rex rabbits. Scientific reports 5, 9342. 

ZSOLNAY, A., BAIGAR, E., JIMENEZ, M., STEINWEG, B., & SACCOMANDI, F. (1999). Differentiating 
with fluorescence spectroscopy the sources of dissolved organic matter in soils 
subjected to drying. Chemosphere 38, 45–50. 

Supplementary material 

Table S5.1. DOC (Dissolved Organic Carbon) and DIC (Dissolved Organic Carbon) 
concentrations (mg/L), δ13C DOC, δ13C DIC, pMC DOC, Δ14C DOC, Conventional Age DOC, 
pMC DIC, Δ14C DIC, Conventional Age DIC for the bores W4 and D13. BP: before present 
with present being 1950 AD; pMC: percent of modern carbon. 

pMC Δ14C (‰) Age (BP) pMC Δ14C (‰) Age (BP)

LR HR LR HR

DOCW4 0.39±0.21 0.86±0.73 -31.91±0.5 -27.15±0.03 66.76±0.48 -337.9±4.84 3245±60 57.99±0.55 -426.1±5.5 4380±80

DOCD13 1.86±0.46 1.94±0.75 -29.25±0.36 -29.35±0.2 91.7±0.46 -90.6±4.6 695±45 92.41±0.62 -87.4±6.1 630±60 

DICW4 63.50±0.14 63.71±0.18 -8.75±0.12 -8.87±0.12 62.47±0.21 -380.5±2.1 3835±30 59.2±0.17 -412.8±1.7 4210±25 

DICD13 83.81±0.43 87.44±0.66 -9.45±0.12 -9.39±0.12 82.73±0.3 -179.5±3 1575±30 77.9±0.19 -227.4±1.9 2005±20 
1 Accuracy of the GC-iRMS 

Concentration (mg/L) δ13C

LR HR
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Table S5.2. Fluorescence/absorbance indices and their definitions. Adapted from Coble et 
al. (2014). Note: em = emission wavelengths, ex = excitation wavelengths. 
 

Fluorescence 
/absorbance index 

Parameters/description Interpretation Reference 

    
Humification Index 
(HIXEM) 

At ex 254 nm, area of peak under em 
435–480 nm divided by area under em 
300–345 nm + 435–480 nm. 

Higher numbers are indicative of 
lower H:C ratios, attributed to a 
greater degree of humification. 

(Zsolnay et al., 1999; 
Ohno, 2002) 

Freshness Index 
(BIX) 

Intensity at em 380 nm divided by 
max intensity between em 420 nm and 
em 435 nm at ex 
310 nm. 

Indicates proportion of recently 
produced DOM. 

(Huguet et al., 2009; 
Fellman et al., 2010) 

Fluorescence Index 
(FI) 

The ratio of em 450 nm and em 500 nm 
at ex 370 nm. 

Indicates if precursor material 
for DOM is of a more microbial 
(FI ~ 1.8) in nature or more 
terrestrially derived (FI ~1.2). 

(McKnight et al., 
2001) 

Spectral Slope Ratio 
(SR) 

The ratio of S275-295 to S350-400. Lower S275-295 correlated with 
higher aromatic content and 
higher molecular weight, i.e. if 
SR is above 1 then the CDOM is 
more marine-like. 

(Helms et al., 2008) 

Coble peaks 
(A, B, C, M, T) 

A: Humic-like ex = 250–260 nm, em = 
380–480 nm. B: Tyrosine-like ex = 270–
280 nm, em =  300–320 nm. C: Humic-
like ex = 330–350 nm, em =  420–480 
nm. M: Marine humic-like ex = 310–320 
nm, em = 380–420 nm. T: Tryptophan-
like ex = 270–280 nm, em = 320–350 
nm. 

Identifies the intensity of 
protein-like and/or humic-like 
peaks. 

(Coble, 1996) 

C:A The ratio of Peak C to Peak A intensity. An indication of the amount of 
humic-like vs. fulvic-like 
fluorescence in a sample. 

(Coble, 1996; Baker et 
al., 2008) 

C:M The ratio of Peak C to Peak M intensity. An indication of the amount of 
diagenetically altered (blue- 
shifted) fluorescence in a 
sample.  

(Coble, 1996; Helms 
et al., 2013) 

SUVA254 Absorption coefficient at 254 nm 
divided by DOC concentration. 

Absorbance per unit carbon. 
Typically a higher number is 
associated with greater aromatic 
content 

(Weishaar and Aiken, 
2001) 
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Table S5.3. Abundances of PICRUSt2 outputs relating to carbon metabolism (KO, level 3) 
and degradative pathways (MetaCyc). Pathways in bold indicate the significantly (P < 0.05) 
overrepresented pathways in one of the two rainfall periods. 

Carbon metabolism - Kegg 

Pathway HR_1 HR_2 HR_3 LR_1 LR_2 LR_3 

Glycolysis 7475 6729 7102 10596 12413 13758 

Pentose phosphate pathway 3345 2940 3142 4040 4867 4303 

Citrate cycle 5124 3854 4489 7233 9925 8574 

Methane metabolism 3660 3036 3348 3713 4661 6245 

Reductive pentose phosphate cycle 3285 2791 3038 3255 3983 4206 

Reductive citrate cycle 4498 4799 4649 7553 10444 10894 

Reductive acetyl-CoA pathway 1137 980 1058 1093 1556 861 

3-Hydroxypropionate bi-cycle 3259 2391 2825 3760 5563 3017 

Hydroxypropionate-hydroxybutylate cycle 1675 497 1086 1848 2738 1597 

Dicarboxylate-hydroxybutyrate cycle 3831 3092 3462 6206 8896 9555 
       

       

Degradative pathways - MetaCyc 

pathway HR_1 HR_2 HR_3 LR_1 LR_2 LR_3 

3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degradation 

0 0 76 15 50 12 

3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degradation to 2-

oxopent-4-enoate 
0 0 41 7 29 4 

3-phenylpropanoate degradation 1 28 1 0 0 0 

4-aminobutanoate degradation V 67 61 169 115 69 236 

4-deoxy-L-threo-hex-4-enopyranuronate 
degradation 

1 76 98 0 0 0 

4-hydroxyphenylacetate degradation 4 41 38 8 6 22 

4-methylcatechol degradation (ortho 
cleavage) 

55 35 87 24 1 2 

acetylene degradation 50 175 246 108 139 273 

adenosine nucleotides degradation II 414 24 315 343 509 231 

allantoin degradation IV (anaerobic) 0 0 0 28 2 0 

allantoin degradation to glyoxylate III 72 5 35 59 4 4 

aromatic biogenic amine degradation (bacteria) 0 0 82 17 55 23 

Aromatic compounds degradation via beta-
ketoadipate 

93 35 88 25 1 3 

catechol degradation I (meta-cleavage 
pathway) 

0 0 105 25 67 29 

Catechol degradation III (ortho-cleavage 
pathway) 

93 35 88 25 1 3 

Catechol degradation to beta-ketoadipate 87 32 92 24 2 15 

chlorosalicylate degradation 0 0 0 3 2 12 

cinnamate and 3-hydroxycinnamate 
degradation to 2-oxopent-4-enoate 

0 0 41 7 29 4 
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creatinine degradation I 266 2 24 12 3 0 

D-fructuronate degradation 42 111 222 50 86 156 

D-galactarate degradation I 3 32 26 4 3 19 

D-galacturonate degradation I 3 51 114 8 4 124 

D-glucarate degradation I 3 33 27 5 4 32 

fucose degradation 2 44 23 9 11 3 

galactose degradation I (Leloir pathway) 121 223 373 177 136 360 

gallate degradation I 0 0 0 5 3 12 

gallate degradation II 0 0 0 5 3 12 

Glucose and glucose-1-phosphate degradation 55 60 148 36 5 24 

glycine betaine degradation I 168 0 15 10 5 0 

Glycogen degradation I (bacterial) 89 207 249 269 390 379 

guanosine nucleotides degradation III 397 64 321 338 506 246 

L-1,2-propanediol degradation 0 2 52 145 37 149 

lactose and galactose degradation I 34 101 110 5 53 59 

L-arginine degradation II (AST pathway) 90 63 102 20 5 27 

L-histidine degradation I 112 54 242 65 19 67 

L-histidine degradation II 1 8 27 6 5 23 

L-leucine degradation I 324 3 204 154 210 163 

L-rhamnose degradation I 27 42 115 34 29 22 

L-tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde 

0 0 72 0 0 0 

L-tyrosine degradation I 108 3 181 30 10 19 

mannan degradation 0 0 175 0 0 0 

methylgallate degradation 0 0 0 6 3 15 

methylphosphonate degradation I 172 47 127 27 41 18 

myo-, chiro- and scillo-inositol degradation 10 41 89 71 42 72 

myo-inositol degradation I 4 35 65 58 38 39 

nicotinate degradation I 1 4 15 3 3 14 

phenylacetate degradation I (aerobic) 65 44 46 26 1 4 

protocatechuate degradation II (ortho-cleavage 
pathway) 

206 50 201 57 16 59 

Purine nucleobases degradation I (anaerobic) 130 50 140 12 8 0 

purine nucleotides degradation II (aerobic) 380 44 371 404 583 185 

purine ribonucleosides degradation 254 181 169 136 114 177 

starch degradation V 85 183 229 217 135 333 

sucrose degradation III (sucrose invertase) 53 182 237 57 89 309 

sucrose degradation IV (sucrose phosphorylase) 53 58 133 81 76 164 

superpathway of &beta;-D-glucuronide and D-
glucuronate degradation 

31 81 109 12 6 126 

superpathway of aerobic toluene degradation 0 0 24 15 1 4 

superpathway of D-glucarate and D-galactarate 
degradation 

3 32 26 4 3 19 

superpathway of glucose and xylose 
degradation 

125 180 308 225 101 128 
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superpathway of hexitol degradation (bacteria) 87 163 209 30 137 146 

superpathway of hexuronide and hexuronate 
degradation 

3 51 96 7 1 110 

superpathway of L-arginine and L-ornithine 
degradation 

5 54 48 9 8 36 

superpathway of L-arginine, putrescine, and 4-
aminobutanoate degradation 

5 54 48 9 8 36 

superpathway of N-acetylglucosamine, N-
acetylmannosamine and N-acetylneuraminate 

degradation 
7 75 55 10 45 138 

superpathway of N-acetylneuraminate 
degradation 

21 151 131 31 100 230 

Superpathway of ornithine degradation 72 48 65 29 18 23 

superpathway of phenylethylamine 
degradation 

62 43 30 30 1 5 

superpathway of purine deoxyribonucleosides 
degradation 

230 149 230 128 171 187 

superpathway of pyrimidine 
deoxyribonucleosides degradation 

55 120 167 73 67 195 

Superpathway of salicylate degradation 100 34 85 23 1 3 

superpathway of taurine degradation 13 0 6 0 2 0 

toluene degradation I (aerobic) (via o-cresol) 0 0 107 28 69 32 

toluene degradation II (aerobic) (via 4-
methylcatechol) 

0 0 107 28 69 32 

toluene degradation III (aerobic) (via p-cresol) 66 41 60 32 1 4 

toluene degradation IV (aerobic) (via catechol) 0 1 60 12 2 6 

urate biosynthesis/inosine 5'-phosphate 
degradation 

478 395 478 584 767 361 

vitamin B6 degradation 0 1 9 27 6 2 
 

Table S5.4. Hydrochemical values of the bores D13 and W4 under LR and HR. Na: Not 
available. Units of δ18O and 2H in per mil (‰), and units of tritium in TU (Tritium Units). 

Temperature Salinity DO Depth Cl-

(°C) (PSS) (mg L-1) (m) (mg L-1)

W4 LR 23.77 8.11 20.11 4.89 91.00 6.30 8040 -4.49 ± 0.15 -37 ± 1 Na

D13 LR 22.85 7.33 19.67 3.14 68.00 7.50 9410 -5.30 ± 0.15 -42.4 ± 1 0.77

W4 HR 26.22 6.71 19.96 4.71 80.00 6.00 11800 -4.49 ± 0.15 -38 ± 1 0.08

D13 HR 26.75 6.76 16.84 3.89 59 7.2 9850 -5.28 ± 0.15 -42.6 ± 1 0.53

TritiumBore
Rainfall 

period
pH ORP δ18O ²H
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Figure S5.6. Two-dimensional (left panel) and three-dimensional (mid panel) fluorescence 
landscapes, and the excitation (grey line) and emission (black line) spectra (right panel) for 
the five different components identified by the PARAFAC model. Intensity is scaled to a 
maximum fluorescence of 1. 
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Figure S5.7. Bar plots illustrating the abundances of genus and families under LR (a) and HR 
(b). Abundances corresponding to the 37 ZOTUs without a reference/belonging to 
uncultured bacterium were removed from the figure for clarity purposes. 
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Abstract 

Groundwaters host vital resources – 97% of unfrozen freshwater on the planet – playing a 

key role in the near future of humanity. However, our knowledge about their ecosystem 

functioning is limited, while subterranean environments are increasingly exposed to 

anthropic impacts and climate change-related processes. Novel biochemical (e.g. isotopic 

ecology) and genetic (e.g. eDNA) techniques, increasingly employed in freshwater studies, 

have the potential to unravel the complex dynamics shaping subsurface ecosystems, 

providing new insights to the small but quickly growing field of groundwater ecology. 

Stygofauna, together with microbes, are crucial in shaping and maintaining the organic 

matter (OM) cycles in environments characterized by low energy and scarce carbon 

availability. Here we investigate calcrete stygofaunal dynamics linked with contrasting 

rainfall periods (low rainfall (LR), dry season; high rainfall (HR), wet season) through an 

interdisciplinary design integrating isotope ecology and genetics. Our results indicate that 

the microbial gut community of copepods and amphipods experienced a shift in taxonomic 

diversity and predicted organic functional metabolic pathways after rainfall (HR). The HR 

regime triggers a cascade effect driven by microbes (OM processors) and exploited by 

copepods and amphipods (primary and secondary consumers), which is finally transferred 

to the aquatic beetles (top predators). Overall, and in line with related work, the inflow of 

rainfall triggered shifts towards more deterministic dynamics, revealing a complex web of 

interactions in a seemingly simple environmental setting. This study provides a novel 

approach to untangling the biochemical flows shaping the biotic community within a 

calcrete aquifer. More investigations applying multidisciplinary approaches to other 

subsurface ecosystems, i.e. alluvial aquifers, will help to understand present ecological 

patterns and predict future scenarios in groundwaters. This will help manage and preserve 

one of the most vital but underrated ecosystems in the world. 

Key-words: groundwater ecology, carbon flows, rainfall, stygofauna, microbes, stable 

isotope analysis, functional genomics. 
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6.1 Introduction 

Groundwaters, together with deep sea environments, are some of the least explored 

ecosystems in the world. Despite the recent upsurge in groundwater investigations, the 

subsurface ecological framework still suffers from a lack of knowledge, both in terms of 

biological diversity and ecological functioning, notwithstanding groundwater’s 

environmental importance (Gleeson et al., 2012; Griebler et al., 2014). During the last 

twenty years, several efforts to improve the level of groundwater protection and develop 

conservation plans have been implemented worldwide (e.g. EPA, 2003; EU-GWD, 2006; US 

Fish and Wildlife Service, 2002). However, aquifers still face increasing threats from impacts 

linked with anthropic activities, such as over-extraction and/or contamination, and climate 

change (i.e. saline intrusion, alteration of recharge and discharge regimes, invasive species) 

(Griebler et al., 2019; Mammola et al., 2019; Mazza et al., 2014).  

Groundwaters are inaccessible, cryptic, environments shaped by a complex web of biotic-

abiotic interactions in a characteristically low-energy system (Griebler and Lueders, 2009). 

Subsurface obligate aquatic fauna - namely stygofauna - display arrays of specific 

environmental adaptations (loss of eyes, transparent body colours, long antennae, etc.) 

(Humphreys, 2006). Stygofauna are perceived as adapted to a stable physical-chemical 

environment, and there is evidence of high degrees of resilience to the fluctuations of the 

environmental conditions, i.e. groundwater recharge, source of organic matter and energy 

(Martin et al. 2009).  

Rainfall events are considered major drivers in shaping hydrological dynamics in aquifers 

via processes like percolation or lateral flow (Jan et al., 2007), and stygofauna respond both 

in function and community composition to these hydraulic shifts (Datry et al., 2005; Saccò 

et al., 2019c). Several groundwater investigations indicate that inflows of terrestrial organic 

material (OM) cause ecological shifts within subsurface communities (Stegen et al., 2016). 

Reiss et al. (2019) found that temporally variable dissolved organic carbon (DOC) coming 

from the surface after an extreme recharge episode, triggered changes in groundwater 

bacterial biodiversity (DOC-derived microbial loops). In another study, Brankovits et al. 

(2017) suggested that grazers (i.e. amphipods, shrimps, etc.) fuel the transfer of organic 

compounds (DOC, methane, etc.) to the higher levels of the food web. These outcomes are 

in line with several groundwater theoretical models (e.g. Boulton et al., 2008; Hancock et 
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al., 2005; Humphreys, 2009), and indicate that terrestrial OM is a vital biodiversity driver in 

an environment characterized by low nutrient content and scarce carbon availability 

(Stegen et al., 2016). 

However, the interpretation of carbon flows and trophic web interactions within 

groundwater biota is far from straightforward (Nielsen et al., 2018). In a recent study 

Žutinić et al. (2018) reported that shifts in food web structure from the community of an 

intermittent karstic spring were linked, together with the influence of the environmental 

oscillations, to evolutionary molecular clock patterns. In another study, Francois et al. 

(2016) described high degrees of trophic specialization in two species of cave isopods, and 

subsequently proposed a substantial review of the classic archetype of generalist feeding 

strategies in low energy environments. These results suggest there are composite pathways 

for the incorporation of organic matter in groundwaters, highlighting the need for 

interdisciplinary research that allows refinement of the ecological patterns shaping the 

subsurface framework (Saccò et al., 2019a). 

Stable isotope chemistry (SIA, CSIA) and genetics (eDNA, DNA metabarcoding, etc.) are two 

disciplines providing new perspectives in the study of ecological dynamics in freshwater 

environments (Nielsen et al., 2018). The understanding of both species-specific patterns 

(e.g. Niemiller et al., 2018) and whole system modellings (e.g. Chikaraishi et al., 2014) has 

been improved by the application of approaches like δ13C and δ15N Compound Specific 

Stable Isotope Analysis (CSIA) and DNA metabarcoding. While the former enables 

elucidation of carbon/nutrient flows and detailing of trophic web interactions (Chikaraishi 

et al., 2007; Larsen et al., 2015), the latter identifies dietary input, and biological transfers 

along the food web, with a refined level of accuracy (Asmyhr et al., 2014). However, these 

techniques are still mainly employed in marine and surface terrestrial environments, and 

their application in groundwaters is in its infancy. 

During the last 30 years, principally due to the high number of still undiscovered (and/or 

undescribed) stygofaunal species and regional diversity (Humphreys, 2009; Maurice and 

Bloomfield, 2012), the field of groundwater ecology has mainly focused on taxonomic 

diversity studies based on genetics (e.g. Guzik et al., 2009; Leijs et al., 2012). The arid 

western side of Australia, with its array of calcrete environments (Humphreys 1999, 2001) 

sustaining unique stygofaunal communities (Guzik et al., 2011), has been the focus of a 
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large number of studies on taxonomy, biogeography and evolutionary patterns (e.g. Cooper 

et al., 2008; Leys et al., 2003). Particularly, the Yilgarn region, one of the most ancient 

cratons in the world, has been found to host a plethora of endemic species including the 

highest diversity of subterranean beetles worldwide (Langille et al., 2019). Numerous 

studies have focused on the Sturt Meadows calcrete (e.g. Bradford et al., 2010; Bradford et 

al., 2013), and the information gathered during the last 15 years of studies from this 

biodiversity hotspot, once combined with data from  isotope ecology and DNA barcoding, 

has the potential to elucidate for the first time the ecological functioning of one of these 

ecosystems. Previous studies on microbial and stygofaunal ecological patterns across 

different rainfall periods at Sturt Meadows indicated that - despite the lack of hydrological 

recharge sensu stricto - the inflow of nutrients after rainfall triggers shifts in microbial 

metabolisms (chapter 5), stygofaunal niche occupations (Saccò et al., 2019b) and 

invertebrate trophic interactions (Saccò et al., 2019c).  

This investigation extends prior research by focusing on the carbon end energy flows 

regulating and sustaining stygofaunal dynamics at Sturt Meadows calcrete. In order to 

accomplish this goal, we apply a research design combining isotopic (SIA, CSIA and 14C) and 

genetic investigations (DNA metabarcoding on bacteria from stygofaunal specimens) 

carried out on samples collected under contrasting rainfall periods (low rainfall, LR; high 

rainfall, HR). This investigation has three specific objectives: 1) unravel the biochemical 

paths that regulate the microbially-mediated nutrient assimilation among the stygofaunal 

community, 2) elucidate the flow of carbon and energy fluxes among primary/secondary 

consumers and predators and 3) understand the ecological functioning of the calcrete 

biotic community under two contrasting rainfall periods.  

6.2 Methodology 

6.2.1 Study area 

The field work was carried out at the Sturt Meadows calcrete aquifer (28˚41‘S 120˚ 58‘E) 

located on Sturt Meadows pastoral station, Western Australia, ~42 km from the settlement 

of Leonora (833 km northeast of Perth, see Figure 6.1a). The study area is a calcrete aquifer 

lying in the Raeside paleodrainages in the Yilgarn region of Western Australian (Figure 

6.1a). The vegetation of the area is Acacia woodlands, primarily Acacia aneura (F.Muell. ex 



 
 

195 

 

Benth.), and is subjected to combined grazing pressure from domestic stock, feral animals 

and macropods. The aquifer is accessible through a bore grid comprising 115 bore holes of 

between 5-11 m depth (Figure 6.1b). 

 

Figure 6.1. Map of the Sturt Meadow calcrete illustrating (a) the location within the Yilgarn 
craton region and detailed paleodrainages/cacretes in the area and (b) the grid map 
showing the location of the boreholes sampled for stygofaunal together with probe 
samples, water samples (in light blue) and the combination of both. 

Three sampling campaigns were carried out, two of them (LR1: 26/07/2017 and LR2: 

07/11/2017) corresponding to low rainfall periods (see Hyde et al., 2018) and one during 

the wet season (high rainfall, HR; two consecutive days of sampling collection: 17/03/2018 

and 18/03/2018) (Figure S6.7). The well-studied stygofaunal community of the area is 
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composed of 11 main stygofaunal taxa belonging to five Classes: Oligochaeta (family 

Tubificidae (Vejdovský 1884)), subcohort Hydrachnidia, Maxillopoda (two species of  

harpacticoids: Novanitocrella cf. aboriginesi (Karanovic, 2004), Schizopera cf. austindownsi 

(Karanovic, 2004) and four species of cyclopoids: Halicyclops kieferi (Karanovic, 2004), 

Halicyclops cf. ambiguous (Kiefer, 1967), Schizopera slenderfurca (Karanovic & Cooper, 

2012) and Fierscyclops fiersi (De Laurentiis et al., 2001)), Malacostraca: Amphipoda (species 

Scutachiltonia axfordi (King, 2012), Yilgarniella sturtensis  (King, 2012) and Stygochiltonia 

bradfordae (King, 2012)) and Insecta: Coleoptera: Dytiscidae (species Paroster 

macrosturtensis (Watts & Humphreys 2006), Paroster mesosturtensis (Watts & Humphreys 

2006) and Paroster microsturtensis (Watts & Humphreys 2006) and respective larvae). 

6.2.2 Field work procedures and sample preparation 

Given the delicacy of the hydrological dynamics in shallow calretes (Gray et al., 2016; Saccò 

et al., 2019b), extensive water extractions along the bores were avoided, and preliminary 

tests on the bores within the highest water depth were carried out to quantify potential risk 

of dewatering the calcrete. During the field campaigns LR2 and HR, 20 water samples in 

total (two samples for stable isotope analysis on DOC and DIC, three samples for 

radiocarbon analysis on DOC, one sample for radiocarbon analysis on DIC, and two samples 

for stable isotope and radiocarbon analyses on POC (Particulate Organic Carbon)) were 

collected from bores D13 and W4 (Figure 6.1b), which are representative of the two main 

geological conformations of the area - clacretic (W4) and clayey (D13) areas (Figure S6.8) - 

and host stable hydrological and biotic conditions (Saccò et al., 2019c). Water samples were 

collected using a submersible centrifugal pump (GEOSub 12V Purging Pump) after wells 

were purged of three well-volumes and stabilisation of in-field parameters was observed, 

according to the methodology detailed in Bryan et al. (2017). 

Samples for 14CDIC analysis were filtered through 0.45 μm filters and collected in 1 L high 

density poly-ethylene (HDPE) bottles. δ13CDIC samples were filtered through 0.2 μm filters, 

collected in 12 mL glass vials (Exetainers) and refrigerated after sampling. δ 13CDOC samples 

were filtered through 0.2 μm filters, collected in 60 mL HDPE bottles and frozen after 

sampling.14CDOC samples were filtered through 0.2 μm filters, collected in 3 L HDPE bottles 

and frozen after sampling.  
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In order to investigate 14C and δ 13C content of POC, two extra litres were collected from the 

same bores (D13, W4) and kept frozen (–20°C) until further analyses. 14CPOC δ13CPOC samples 

were then filtered through pre-combusted GF/F filters (12 hours at 450°C), washed with 1.2 

N HCl to remove any inorganic carbon, and subsequently dried at 60°C for 24 hours. All 

samples were sealed with sealing tape after collection to limit atmospheric exchange and 

kept in darkness.  

Adult and larval stygofaunal specimens were collected from the 30 bores sampled for water 

parameters investigations (for LR1, LR2 and HR), by haul netting, with 5 hauls of a weighted 

plankton net (mesh 100 µm, Allford et al., 2008) through the water column. All biological 

samples were kept frozen (–20°C) in darkness until further processing in the laboratory. 

Individual organisms were counted and identified (and consequently separated) to the 

lowest taxonomic level via optical microscopy and reference to specific taxonomic keys. 

Roots/leaves and sediment samples were also separated during the sorting in the 

laboratory. Sediment samples, roots/leaves and all the individuals pertaining to the same 

taxon were joined in the same vial according to the sampling campaign (LR1, LR2 or HR) and 

subsequently washed with Milli-Q water to remove impurities from their bodies. Sediment 

samples were soaked in acid (0.1 N HCl) to remove inorganic carbon, and together with the 

other samples were then oven dried at 60°C overnight and ground until obtaining a 

homogeneous fine powder and stored at –20°C until further analyses.  

Previous investigations on the ecological niche trends at Sturt Meadows indicated that 

stygofauna characterize similar niche occupations under low rainfall regimes (LR1 and LR2) 

(Saccò et al., 2019b). In isotopic ecology there are competing requirements between 

isotopic detection limits, analytical replicates and cost. Therefore, to enable the 

investigation of the ecosystem’s isotopic patterns between dry vs wet season, samples 

from LR1 and LR2 were combined prior to analyses so as to maintain the main taxonomic 

and biological classifications pertaining to a unique low recharge category, namely LR 

(Saccò et al., 2019c). 

6.2.3 Bulk isotope and 14C analyses 

Water δ13CDIC and δ13CPOC isotopic ratios were analysed by Isotope Ratio Mass Spectrometer 

- WABC at The University of Western Australia using a GasBench II coupled with a Delta XL 
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Mass Spectrometer (Thermo-Fisher Scientific) - and results, with a precision of ± 0.10 ‰, 

were reported as ‰ deviation from the NBS19 and NSB18 international carbonate standard 

(Dogramaci and Skrzypek, 2015). 

δ13CDOC isotopic ratios of waters were analysed via Liquid Chromatography Isotope Ratio 

Mass Spectrometer (LC-IRMS) at the La Trobe Institute for Molecular Sciences (LIMS, La 

Trobe University, Melbourne, Australia) composed by a Accela 600 pump connected to a 

Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC Isolink (Thermo 

Scientific).  

C and N bulk SIA on homogenised samples of sediment, roots, stygofauna and copepods 

(cyclopoids and harpacticoids) were performed at the Australian Nuclear Science and 

Technology Organisation (ANSTO, Sydney, Australia). Samples were loaded into tin capsules 

and analysed with a continuous flow isotope ratio mass spectrometer (CF-IRMS), model 

Delta V Plus (Thermo Scientific Corporation, U.S.A.), interfaced with an elemental analyser 

(Thermo Fisher Flash 2000 HT EA, Thermo Electron Corporation, U.S.A.) following the 

procedure published by Mazumder et al. (2017). 

For radiocarbon analyses, samples (sediment, roots, copepods, ants, stygofauna, 14CPOC, 

14CDOC and 14CDIC) were subjected to CO2 extraction and graphitization following the 

methodology published by Hua et al. (2001). 14C content of samples was determined by 

means of the Accelerator Mass Spectrometry (AMS) at ANSTO (Australia’s Nuclear Science 

and Technology Organization) in Sydney, Australia. 

6.2.4 Carbon Compound Specific Stable Isotope Analysis 

Samples from roots and stygofaunal specimens were hydrolysed under vacuum with 0.5 to 

1 mL of amino acid-free 6M HCl (Sigma-Aldrich) at 110˚C for 24 h. The protein hydrolysates 

were dried overnight in a rotary vacuum concentrator and stored in a freezer. Prior to 

analysis, the samples were resolved in Milli-Q water and 10 µL of 1-mmol solution of 2-

aminoisobutyric acid (Sigma-Aldrich) as internal standard. The sample stock had a 

concentration of approximately 8 to 10 mg/mL, which was further diluted as needed. Single 

amino acid carbon isotope analysis was carried out at the La Trobe Institute for Molecular 

Sciences (LIMS, La Trobe University, Melbourne, Australia) using an Accela 600 pump 
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connected to a Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC 

Isolink (Thermo Scientific). 

The amino acids were separated using a mixed mode (reverse phase/ion exchange) 

Primesep A column (2.1 x 250 mm, 100˚C, 5 µm, SIELC Technologies) following the 

chromatographic method described in Mora et al. (2017), after Smith et al. (2009). Mobile 

phases are those described in Mora et al. (2018). Percentage of Phases B and C in the 

conditioning run, as well as flow rate of the analytical run and timing of onset of 100% 

Phase C were adjusted as needed. Samples were injected onto the column in the 15 µL - 

partial loop or no waste - injection mode, and measured in duplicate or triplicate. 

Once obtained the amino acidic spectrum per each sample, to elucidate carbon flows along 

the stygofaunal community, we focused on essential amino acids Valine (Val), 

Phenylalanine (Phe) and Arginine (Arg), as these compounds cannot be synthetised 

internally by the fauna but must be integrated through diet (McMahon and Newsome, 2019 

and references therein; Saccò et al., 2019a). In addition, to distinguish between terrestrial 

vs aquatic carbon sources, the ratio between Val and Phe signals (δ13CVal-Phe), a widely 

employed index in archaeology and freshwater biology (e.g. Webb et al., 2018), was 

calculated for roots, water mites, aquatic worms, amphipods and beetles (larvae and 

adults). 

6.2.5 Microbial taxonomic and functional gene analyses 

Consumers amphipods (Scutachiltonia axfordi (AM1), Yilgarniella sturtensis (AM2), S. 

bradfordae (AM3)), cyclopoids and harpacticoids, together with predator stygobiotic 

beetles (Paroster macrosturtensis (B), P. mesosturtensis (M) and P. microsturtensis (S)), 

were used for gut microbiome bacterial 16S metabarcoding and microbial functional 

analysis. A total of 16 AM1, 16 AM2, 16 AM3, 20 cyclopoids and 20 harpaticoids and 20 of 

each one of the three Paroster species (B, M and S), were sorted into duplicates of 

stygobitic pools of 3-5 individuals from both LR and HR events for DNA extraction. Prior to 

DNA extraction stygobitic animals (3-5 individuals per pool; n=40) were placed in a petri 

dish containing ultrapure water and UV sterilised for 10 minutes to eliminate any potential 

bacterial species contained on the exoskeleton as this study targeted the microbiome. 

Immediately post-UV treatment, the animals were placed into tissue lysis tubes with 180 μL 
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tissue lysis buffer (ATL) and 20 μL Proteinase K and homogenised using Minilys® tissue 

homogeniser (ThermoFisher Scientific, Australia) at high speed for 30 seconds. Lysis tubes, 

inclusive of two laboratory controls, were incubated at 56°C using an agitating heat block 

(Eppendorf ThermoStat™ C, VWR, Australia) for 5 hours. Following incubation, DNA 

extraction was carried out using DNeasy Blood and Tissue Kit (Qiagen; Venlo, Netherlands 

eluted off the silica column in 30-50 μL AE buffer).  

The quality and quantity of DNA extracted from each stygobitic pool was measured using 

quantitative PCR (qPCR), targeting the bacterial 16S gene. PCR reactions to assess the 

quality and quantity of the DNA target of interest via qPCR (Applied Biosystems [ABI], USA) 

were in 25 µL reaction volumes consisting of 2 mM MgCl2 (Fisher Biotec, Australia), 1 x PCR 

Gold Buffer (Fisher Biotec, Australia), 0.4 µM dNTPs (Astral Scientific, Australia), 0.1 mg 

bovine serum albumin (Fisher Biotec, Australia), 0.4 µM of each primer (Bact16S_515F and 

Bact16S_806R; Turner et al. 1999; Caporaso et al. 2011), and 0.2 µL of AmpliTaq Gold 

(AmpliTaq Gold, ABI, USA), and 2 µL of template DNA (Neat, 1/10, 1/100 dilutions). The 

cycling conditions were: initial denaturation at 95°C for 5 minutes, followed by 40 cycles of 

95°C for 30 seconds, 52°C for 30 seconds, 72°C for 30 seconds, and a final extension at 72°C 

for 10 minutes.  

DNA extracts that successfully yielded DNA of sufficient quality, free of inhibition, as 

determined by the initial qPCR screen (detailed above), were assigned a unique 6-8 bp 

multiplex identifier tag (MID-tag) with the bacterial 16S primer set. Independent MID-tag 

qPCR for each stygobitic pool were carried out in 25 µL reactions containing 1 X PCR Gold 

Buffer, 2.5 mM MgCl2, 0.4 mg/mL BSA, 0.25 mM of each dNTP, 0.4 µM of each primer, 0.2 

µL AmpliTaq Gold and 2-4 µL of DNA as determined by the initial qPCR screen. The cycling 

conditions for qPCR using the MID-tag primer sets were as described above. MID-tag PCR 

amplicons were generated in duplicate and the library was pooled in equimolar ratio post-

PCR for DNA sequencing. The final library was size selected (160-600 bp) using Pippin Prep 

(Sage Sciences, USA) to remove any MID-tag primer-dimer products that may have formed 

during amplification. The final library concentration was determined using a QuBitTM 4 

Fluorometer (Thermofischer, Australia) and sequenced using a 300 cycle V2 kit on an 

Illumina MiSeq platform (Illumina, USA). 
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MID-tag bacterial 16S sequence reads obtained from the MiSeq were sorted (filtered) back 

to the stygobitic pool based on the MID-tags assigned to each DNA extract using Geneious 

v10.2.5 (Drummond et al. 2011). MID-tag and primer sequences were trimmed from the 

sequence reads allowing for no mismatch in length or base composition. 

Then, filtered reads were input into a containerised workflow comprising USEARCH (Edgar, 

2010) and BLASTN (Altschul et al., 1990). The fastx-uniques, unoise3 (with minimum 

abundance of 8) and otutab commands of USEARCH were applied to generate unique 

sequences, ZOTUs (zero-radious OTUs) and abundance table, respectively. The ZOTUs were 

compared against the nucleotide database using the following parameters in BLASTN: 

perc_identity >= 94, evalue <= 1e-3, best_hit_score_edge 0.05, best_hit_overhang 0.25, 

qcov_hsp_perc 100, max_target_seqs = 5. An in-house Python script was used to assign the 

ZOTUs to their lowest common anscestor (LCA). The threshold for dropping a taxonomic 

assignment to LCA was set to perc_identity >= 96 and the difference between %identity of 

the two hits when their query coverage is equal was set to 1. Results on the microbial 

taxonomic diversity detected on ground water samples from a previous study on carbon 

inputs in the aquifer (chapter 5) were incorporated in this work and allowed qualitative 

comparison with the stygofaunal gut diversity.    

To investigate functional activity involved in carbon cycling, the 16S metabarcoding data 

were fed to the Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 2 (PICRUSt2) software package to generate predicted metagenome 

profiles (Langille et al., 2013). These profiles were clustered into Kyoto Encyclopedia of 

Genes and Genomes (KEGG) Orthologs (KOs) (Kanehisa & Goto, 2000) and MetaCyc 

pathway abundances (Caspi, 2006) focusing on the relative abundances of four carbon 

metabolisms: carbon fixation in prokaryotes, carbohydrates, lipids and amino acid 

metabolisms. Relative abundance of pathways linked with methane, nitrogen and sulfur 

metabolisms were also investigated.  

6.2.6 Statistical analyses 

The Phyloseq package in R (McMurdie and Holmes, 2013) was used to plot the ZOTU 

abundance at the order level for the styfofaunal specimens under low rainfall (LR) and high 

rainfall (HR) periods. The Statistical Analysis of Metagenomic Profiles (STAMP) 
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bioinformatics software package was used to carry out Principal Components Analysis (PCA) 

to assess the differences between functional genomic fingerprints based on the KEGG 

orthologs function prediction between copepods (C and H) and amphipods (AM1, AM2 and 

AM3), and determine statistically significant results from the PICRUSt2 output (Parks et al., 

2014). Clustering patterns according to rainfall periods (LR and HR) and major consumers 

taxonomic groups (cyclopoids, harpacticoids and amphipods) were assessed through 

Permutational multivariate analysis of variance (PERMANOVA, R-package ‘vegan’) and 

pairwise post hoc pairwise multilevel comparisons (Martinez, 2019).      

For comparison of potential shifts in abundances of microbial metabolic pathways within 

groundwater samples, copepods and amphipods across rainfall periods, Analysis of variance 

(ANOVA) (R-package ‘stats’; outliers were identified using box plot methods (package 

‘rstatix’ in R software version 3.5.1), homogeneity of variances was tested through the 

Levene’s test (function leveneTest() in R 3.5.1) and normality was tested through the 

Shapiro-Wilk test (function shapiro.test() in R 3.5.1)) was performed on the abundance data 

(duplicates per each group) on the predicted pathways depicting carbon fixation, 

carbohydrate, lipid, amino acid, methane, nitrogen and sulfur metabolisms. ANOVAs 

coupled with Tukey’s HSD pairwise comparisons (R-package ‘stats’) were employed to 

inspect significant differences between bulk SIA (δ13C and δ15N) and essential amino acid 

(δ13CPhe, δ13CArg, δ13CVal and δ13CVal-Phe) data from the stygofaunal taxa within the different 

rainfall conditions (LR and HR). PERMANOVAs (R-package ‘vegan’) were also performed to 

investigate the potential clustering trends within the stygofaunal taxa across rainfall periods 

from the combination of radiocarbon (Δ14C) and carbon SIA (δ13C) isotopic fingerprints.    

SIMM (Stable Isotope Mixing Models, R-package ‘simmr’) were used to estimate dietary 

proportions of copepods and amphipods within a Bayesian framework. Due to the lack of 

species-specific trophic discrimination factors for stygofauna, we employed the widely 

accepted values of 3.4 ± 2 ‰ for nitrogen and 0.5 ± 1 ‰ for carbon (Post, 2002). Markov 

chain Monte Carlo (MCMC) algorithms were used for simulating posterior distributions in 

SIMM, and MCMC convergence was evaluate using the Gelman-Rubin diagnostic by using 

1.1 as a threshold value for analysis validation. 
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6.3 Results 

6.3.1 Stygofaunal gut microbiome patterns 

The gut microbiome of cyclopoids was dominated by betaproteobacteria under both 

rainfall regimes (accounting for 81% under LR and 71% under HR), while the microbiome 

community of harpacticoids illustrated a shift towards alphaproteobacteria (reaching 70% 

of the total) under HR. During LR, gut microbiomes of amphipods were dominated by the 

classes Actinobacteria (94% in AM1) and Bacilli (reaching 83% together with Actinobacteria 

in AM2 and 93% together with Betaproteobacteria in AM3). Contrarily, the most abundant 

classes within amphipods under HR were Alphaproteobacteria (64% in AM1 and 36% in 

AM2) and Clostridia (ranging up to 95% together with Alphaproteobacteria in AM3) (Figure 

6.2a).  

The PCA considering the KEGG orthologs function prediction showed that cyclopoids from 

both rainfall periods (C[LR] and C[HR]) clustered close to the harpacticoids (H[LR]) and 

amphipods (AM1[LR], AM2[LR] and AM3[LR]) from the LR regime (Figure 6.2b). In contrast, 

the latter two taxa grouped separately to the rest of the primary and secondary consumers 

under HR. Overall, the community clustered differently during the two rainfall periods 

(PERMANOVA, P < 0.05) and also according to the separation in major consumers 

taxonomic groups (cyclopoids, harpacticoids and amphipods) across LR and HR 

(PERMANOVA, P < 0.005). However, pairwise comparisons discarded any significant change 

across taxa and between rainfall events. 

Predictions on the quantitative proportion of individual carbon metabolic pathways showed 

that carbon fixation was the most abundant metabolism within the four main routes 

analysed, accounting on average for the 1.8% of the total, followed by carbohydrate (0.4%), 

lipid (0.3%) and amino acid (0.2%) metabolisms. Apart from AM3 (Figure 6.2c.1), all the taxa 

illustrated increasing trends in abundance of the cited carbon metabolisms activity after 

rainfall (HR). Carbohydrate, lipid and amino acids metabolic categories significantly 

increased in harpacticoids, AM1 and AM2 during HR (Figure 6.2c.2,3 and 4), whilst only 

abundances of predicted pathways associated with carbohydrate metabolism increased in 

AM3 (Figure 6.2c.2).  
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Figure 6.2. (a) Relative abundances (in %) of the classes found in copepods (cyclopoids and 
harpacticoids) and amphipods AM1, AM2 and AM3 under LR and HR. (b) PCA-based 
ordination analysis illustrating the distribution of taxa across rainfall periods (LR and HR) 
according to the KEGG orthologs metabolic functions. (c) Abundances of the major KEGG 
pathways associated with carbon metabolism (c1), carbohydrates metabolism (c2), lipids 
metabolism (c3) and amino acids metabolism (c4). *, P < 0.05; **, P < 0.005; ***, P < 
0.0005.  
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6.3.2 Biochemical flows on stygofauna 

6.3.2.1 Organic inputs 

The δ13C and δ15N bulk values of sediment (the organic fraction from LR and HR) were close 

each other (Table 6.1) and both revealed very similar δ13C values to the DIC (Figure 6.3b). 

Both groundwater sediment and DIC depicted old carbon sources within the two rainfall 

periods (Figure 6.3a)  

Compared to sediment, roots had more depleted δ13C values (LR: δ13C = -20.6 ‰; HR: δ13C= 

-20.9 ‰) and modern 14C fingerprints (Table 6.1), suggesting a recent terrestrial origin. In 

addition, a shift in δ15N content can be observed in roots between LR and HR conditions, 

varying from δ15N = 5.1±2.0 ‰ under LR to δ15N = 12.1±0.3 ‰ after rainfall (HR). During HR, 

POC had more depleted δ13C values (Figure 6.3a) than for the LR period, together with 

consistently older ages (Table 6.1). 

Copepods (Cyclopoida (C) and Harpacticoida (H)) illustrated close δ13C fingerprints to roots 

(cyclopoids: δ13C = -20.5 ‰ during LR, δ13C= -21.9 ‰ under HR; harpacticoids: δ13C = -20.6 

‰ during LR, δ13C= -23.5 ‰ under HR), while amphipods S. axfordi (AM1) and Y. sturtensis 

(AM2) showed more depleted values overall (Table 6.1). Moreover, copepods (C and H in 

one unique pool) and AM1 showed more depleted Δ14C values under HR conditions than 

during the dry season (LR). 

Within copepods, the highest proportion of carbon assimilations under LR was ascribable to 

sediment and attached bacteria (32.3% for cyclopoids and 31.9% for harpacticoids), while 

during the same rainfall regime DOC was the major organic driver (~50%) within amphipods 

S. axfordi (AM1) and Y. sturtensis (AM2). Under HR conditions, microbially-derived DOC was 

incorporated at considerably higher proportions for both groups (41.1% and 51% for 

copepods (C and H), 77.5% and 84.9% for amphipods (AM1 and AM2)) (Figure 6.3c). These 

results suggest that during HR the system gets an inflow of rainfall that triggers ‘pulses’ of 

carbon and nutrients ultimately profited by copepods (C and H) and amphipods (AM1 and 

AM2). 
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Table 6.1. Results from the δ13C, δ15N and 14C analyses on Scutachiltonia axfordi (AM1), Yilgarniella sturtensis (AM2) copepods (cyclopoids and 
harpacticoids), sediment, roots, particulate organic carbon (POC), dissolved inorganic carbon (DIC) and dissolved inorganic carbon (DOC). Mean 
values ± standard deviations are illustrated; pMC: percent of modern carbon; BP: before present (with present as 1950). 
 

pMC Δ14C (‰) Age (BP) pMC Δ14C (‰) Age (BP)

LR HR LR HR

Scutachiltonia axfordi -24.14 -26.88±0.05 10.71 8.81±0.09 102.84±0.48 19.9±4.8 modern 99.86±1.01 -9.6±9.9 modern

Yilgarniella sturtensis -24.55 -27.10 9.99 8.50 100.46±0.36 -3.7±3.6 modern 100.75±0.81 -0.9±8.1 modern

Cycopoida -20.45±0.301 -21.91±0.301 13.90±0.30 14.5±0.30

Harpacticoida -20.60±0.301 -23.50±0.301 11.90±0.80 15.8±0.80

Roots -20.57±0.301 -20.90±0.301 5.10±2.0 12.1±0.30 103.63±0.30 27.7±3.0 modern 103.34±0.47 24.9±4.7 modern

Sediment -10.33±0.301 -9.65±0.301 11.0±1.20 11.4±1.20 22.16±3.23 -780.3±32.1 12100±1170 57.68±5.21 -428.0±51.7 4420±725 

POC -21.58±0.102 -26.47±0.102 10.73±0.102 8.35±0.102 86.55±0.76 -141.7±7.6 1160±70 63.86±0.28 -366.7±2.8 3605±35 

DOCD13 -29.25±0.36 -29.35±0.20 na na 91.70±0.46 -90.6±4.6 695±45 92.41±0.62 -83.5±6.1 630±60 

DOCW4 -31.91±0.50 -27.15±0.03 na na 66.76±0.48 -337.9±4.8 3245±60 57.99±0.55 -424.9±5.5 4380±80

DICD13 -9.45±0.102 -9.39±0.102 na na 82.73±0.30 -179.5±3.0 1575±30 77.90±0.19 -227.4±1.9 2005±20 

DICW4 -8.75±0.102 -8.87±0.102 na na 62.47±0.21 -380.5±2.1 3835±30 59.20±0.17 -412.8±1.7 4210±25 
1 Accuracy of the CF-iRMS 
2 Accuracy of the GC-iRMS 
3 Calculated as overall copepods (cyclopoids mixed with harpacticoids)

modern3

δ13C δ15N

LR HR

100.27±0.563 -5.6±5.63 modern3 99.36±0.683 -14.7±6.73
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Figure 6.3. δ13CDOC and δ13CDIC from the bores W4 and D13 (during LR and HR) and their 
ranges (in light green) incorporated in graph (a), which illustrates the δ13C and δ15N for LR 
(low rainfall) and HR (high rainfall) of roots, sediment, POC (particulate organic matter), 
copepods (C and H) and amphipods (AM1 and AM2). Unless otherwise specified, standard 
deviations are calculated from analytical replicates. (c) Estimation of DOC contributions for 
the diets of copepods (C and H) and amphipods (AM1 ans AM2) during LR and HR. In red 
the old (considering present as 1950) carbon sources revealed by radiocarbon dating (refer 
to Table 6.1 for specific values). 
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6.3.2.2 Carbon transfers 

δ13CPhe, δ13CArg and δ13CVal values indicated that almost all the taxonomic groups show a 

substantial and statistically significant change in their organic fingerprint (Table 6.2). P. 

microsturtensis (S) and S. bradfordae (AM3) were the only taxa that did not change 

significantly between the rainfall periods (LR vs HR) for all three essential amino acids (Val, 

Arg and Phe), with this trend potentially ascribable to coupled feeding habits (prey-

predator interactions) or a highly conservative tendency in carbon assimilations for both 

groups. 

The pattern unveiled by the analysis of δ13CVal-Phe values under LR and HR conditions 

confirms the shift in carbon source path (Table S6.3 and S6.4 and Figure 6.4). During the dry 

season (LR), amphipods (pool of AM1, AM2 and AM3) were not significantly different to 

roots signals. In contrast, beetles larvae and adults had significantly different δ13CVal-Phe 

values, suggesting a more aquatic (stygofaunal based) preference in carbon incorporation, 

as would be expected in predators. Under the high rainfall regime (HR), δ13CVal-Phe values for 

roots were statistically different (Figure 6.4) from all the five stygofaunal groups.  

The combination of radiocarbon (Δ14C) and carbon SIA (δ13C) fingerprints indicated that 

roots, copepods, amphipods and beetles grouped differently (PERMANOVA, P < 0.05), 

suggesting tropic niche partitioning processes in OM assimilation. Roots clustered 

separately to the rest of the samples (Figure 6.5) and together with adult beetles (B, M and 

S) and AM2 were the only taxa that showed comparable δ13C fingerprints across the rainfall 

regimes (LR and HR) (Table 6.1 and Table S6.5). Conversely, both amphipod AM1 and 

copepods (cyclopoids pooled together with harpacticoids) illustrated the biggest shifts in 

organic input preferences towards more depleted Δ14C and δ13C values (Figure 6.5 and 

Table 6.1). 

Table 6.2. ANOVAs on recharges and taxonomic groups/roots with Tukey’s pairwise 
comparisons between the values of Phenylalanine (Phe), Arginine (Arg) and Valine (Val) per 
each sample. Entire amino acids spectrums - together with the essential and non-essential 
AAs typification - for all the samples under LR and HR conditions are illustrated on Tables 
S6.6 and S6.7. 
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d.f. T-ratio P d.f. T-ratio P d.f. T-ratio P

B 28 -4.497 <.0005 28 -1.687 0.1028 28 -2.163 <.005

M 28 -4.846 <.0001 28 -4.208 <.0005 28 -3.297 <.005

S 28 -0.149 0.8829 28 2.015 0.0536 28 1.967 0.0592

Blv 28 -4.218 <.0005 28 -3.534 <.005 28 -4.42 <.0005

Mlv 28 -9.657 <.0001 28 -12.938 <.0001 28 -9.16 <.0001

Slv 28 -10.933 <0.001 28 -16.018 <.0001 28 -9.73 <.0001

AM1 28 -18.4 <.0001 28 -17.01 <.0001 28 -10.2 <.0001

AM2 28 -11.383 <.0001 28 -10.88 <.0001 28 -11.067 <.0001

AM3 28 -0.037 0.9704 28 1.208 0.2372 28 0.282 0.7797

OR 28 -7.418 <.0001 28 -4.306 <.0005 28 -2.389 <0.05

OL 28 6.594 <.0001 28 11.931 <.0001 28 7.252 <.0001

HM 28 11.894 <.0001 28 13.019 <.0001 28 15.977 <.0001

Ants 28 3.832 <.0005 28 2.436 <0.05 28 3.022 <.001

Roots 28 8.273 <.0001 28 10.428 <.0001 28 7.671 <.0001

Between recharges 1 206.553* <.0001 1 141.566* <.0001 1 80.240* <.0001

Between taxa 10 126.724* <.0001 10 57.473* <.0001 10 33.585* <.0001

          * F-value instead of T-ratio

Phe Arg Val

 

 
 
Figure 6.4. δ13CPhe-Val values calculated under LR and HR conditions for roots (R), aquatic 
worms (OL), amphipods (AM1, AM2 and AM3), beetles larvae (Blv, Mlv, Slv) and adults (B, 
M, S). More negative values indicate a more terrestrial carbon source. Refer to Table S6.3 
and S6.4 for the significances of pairwise comparisons. Letters a,b and c are used for LR 
conditions, while letters A, B and C for HR.   
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Figure 6.5. Biplot illustrating δ13C and Δ14C data from roots, beetles (B, M and S), amphipods 
(AM1 and AM2) and copepods (Cop, as a compendium of cyclopoids and harpacticoids). 
Refer to Table 6.1 and Table S6.5 for the specific isotopic values of each group.  

6.4 Discussion  

6.4.1 Microbial/stygofauna transitions 

Rainfall events are responsible for carbon incorporation and nutrient inflows that play a key 

role in shaping biochemical dynamics in the Sturt Meadows calcrete aquifer (Saccò et al., 

2019b; Saccò et al., 2019c). Metabarcoding and predicted metagenome results show that 

the gut microbiomes of primary consumers copepods, harpacticoids and amphipods 

changed dramatically both in community composition and metabolic functions under HR. 

The significant increase in oligotrophic bacteria (Alphaproteobacteria and Clostridia) during 

HR suggests that these two bacterial phyla become more prevalent when greater amounts 

of dissolved organic matter and nutrients become available. This coincides with previous 

studies that show these bacterial phyla to be the most common organic compound 

degraders found  in aquifers (e.g. Alain et al., 2012; Geddes and Oresnik, 2014; Winderl et 

al., 2010).These phyla dominated the gut microbiota of the harpacticoids and all the three 

amphipods species AM1, AM2 and AM3 during HR.  
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Overall, amphipods hosted more abundant microbial communities (322 individuals on 

average between AM1, AM2, AM3 during LR, and 1182 under HR) when compared to the 

bacteria found in water (Figure S6.9) (Table S6.9). This is not surprising, in light of the 

dilution effect that water provides to the free-living bacteria (Pronk et al., 2009), and also 

considering that stygofauna act as vectors for prokaryotes (Smith et al., 2016).   

Evidence from functional genomic analyses indicates that while carbon fixation pathways 

represent a stable metabolic baseline under both rainfall conditions, the abundance of 

carbohydrate, lipid and amino acid metabolisms significantly increased under HR within 

consumers harpacticoids and amphipods. Interestingly, within the primary consumer 

copepods, while harpacticoids showed consistent increased abundances of all the 

metabolisms studied after rainfall, those of cyclopoids remained steady. Galassi et al. 

(2009) reported that within low-water velocity karst systems, cyclopoids usually have free-

swimming nektonic lifestyles, while harpacticoids prefer interstitial voids in the sediment 

(Galassi and Laurentiis, 2004). At Sturt Meadows, different ethological dynamics after 

rainfall would allow competency to be diminished in an environment with limited resource 

availability. In contrast to cyclopoids, the microbial gut microbiome community of 

harpacticoids experienced a shift towards more abundant alphaproteobacteria under HR. 

Concurrently, harpacticoids were the only taxa that illustrated increased methane, nitrogen 

and sulfur microbiome metabolisms during HR (Figure S6.10), suggesting that their feeding 

sources are markedly different form cyclopoids. However, our data from Bayesian mixing 

models showed little difference between the diets of the two groups (Table S6.8), and 

further mesocosm experiments will be necessary to confirm niche partitioning patterns.   

Compared to copepods and amphipods, subterranean dytiscid species P. mesosturtensis 

(M) and P. microsturtensis (S) showed more uniform microbial gut communities (Figure 

S6.9) and more stable isotopic trends (Figure S6.5) across rainfall periods, indicating 

mitigated trophic shifts typical of constant predatory behaviours. Conversely, microbial gut 

diversity of P. macrosturtensis experienced a substantial shift from a Bacilli dominated 

environment under LR to an Actinobacteria-based community during HR, which might be 

ascribable to species-specific predatory pressures on AM1 and AM2 under HR (Saccò et al., 

2019c).  
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Overall, our results from genetic analyses on stygofaunal gut microbiomes suggest that the 

inflow of OM at Sturt Meadows is exploited by microbes which are the potential direct 

(through biofilm grazing) and indirect (via POC assimilation) target of primary consumers, 

amphipods and copepods.  A previous investigation on carbon inputs in water indicated a 

shift in microbial taxonomic assemblages coupled with increased degradative pathways 

after rainfall (HR) (chapter 5). In line with our work, Reiss et al. (2019) reported that rainfall 

inflows coupled with increased inputs of organic matter mediate changes in microbial 

diversity, abundances and respiration rates.  

Meiofauna (copepods) and amphipods are commonly considered as filter-feeders and 

biofilm grazers (Boulton et al., 2008; Galassi et al., 2014), and have been depicted as crucial 

actors in the carbon fuelling to upper trophic levels (Hartland et al., 2011). In a recent 

study, Weitowitz et al. (2019) brought new light to the microbes-amphipods linkage, one of 

the most important associations in groundwater ecosystems, by providing empirical 

evidence of direct microbial ingestion by amphipods Niphargus fontanus (Bate, 1859) 

and Niphargus kochianus (Bate, 1859) and their resulting effects on biofilm assemblages. 

Our study widens the understanding of these dynamics by incorporating novel information 

about the rainfall-driven shifts in functional metabolic activities of stygofaunal gut 

microbiomes. However, our genetic results, while interesting, are still indirect evidence of 

the ‘DOC-microbes-stygofauna’ ecological cascade, and community mesocosm experiments 

are urgently needed. Indeed, further species-specific investigations are required to 

elucidate the mechanisms of these interactions and bring crucial comprehension of the 

dynamics sustaining groundwater biodiversity.  

6.4.2 Faunal trends: carbon paths and food web interactions 

Australian shrubs potentially constitute a driver between surface and subsurface 

biochemical frameworks, especially arid soils (Kirschbaum et al., 2008, Shimp et al., 1993). 

Mulga roots have been reported penetrating deep into the soil to reach moisture, and 

frequently fall from the unsaturated zone into aquifers (Dunkerley, 2002). At Sturt 

Meadows, barcoding analyses revealed that root fragments in the water match with 

saltbush vegetation from the surface (Hyde’s personal communication). Interestingly, while 

roots δ13C values did not change between rainfall regimes, δ15N showed more depleted 
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values under LR (Table 6.1). Termites, widely distributed in the area, are wood feeders that 

could play a key role in nitrogen fixation (Pate et al., 2012). Our results align to this 

hypothesis, with termites benefiting from the easily accessible nitrogen source from the 

nitrophilous mulga vegetation. In fact, we observed increased rates of nitrogen-depleted 

root material falling into the aquifer under environmental conditions (dry season, LR) which 

have been reported as favourable for termites’ ethology (Coventry et al., 1988; Evans et al., 

2011). Concurrently, moisturized vegetal material is highly likely to be targeted by fungi and 

microbes (e.g. Bärlocher et al., 2006) in the hyporeic zone, and enriched δ15N values under 

HR might be a reflection of coexisting microbiological metabolisms (Saccò et al., 2019c). 

δ13C bulk values for roots, close to C3 photosyntetically-derived carbon fingerprints (Cerling 

et al., 1997), were almost identical (and not significantly different) to the ones of the 

meiofaunal and stygofaunal communities (Table 6.1). These results are in line with the lack 

of potential trajectories of trophic increments (from roots to the top predators) found for 

the same system by Bradford et al. (2010), and suggest other paths of carbon assimilation. 

The inorganic carbon component (DIC) in water showed very similar isotopic fingerprints to 

the sediment in both stable and radiocarbon (sediment: 4420±725 BP (HR) and δ13C values 

ranging from -10.33 ‰ (LR) to -9.65 ‰ (HR)), suggesting that the DIC is sourced from 

calcrete bedrocks, and is only a marginal contributor to biological incorporation.  

Several groundwater studies report terrestrially derived DOC as a primary factor in shaping 

ecological shifts under differential recharge conditions (e.g. Datry et al., 2005; Reiss et al., 

2019). The δ13C DOC values detected in this study (ranging from -31.91±0.5 ‰ to -

27.15±0.03 ‰) were characteristic of surface derived carbon sources (-20‰ depleted if 

compared with atmospheric CO2 values at -8 ‰, see O’Leary, 1988), suggesting that 

allochthonous material potentially drives the biochemical flows in the system. Interestingly, 

Sturt Meadows stygofaunal community illustrated differential OM incorporations under LR 

and HR regimes. During the dry period (LR), isotopic evidence from amphipods revealed 

that microbially-derived DOC incorporations were combined with sediment (~20% 

contribution), POC (~20% contribution) and their attached microbial communities (Table 

S6). This tendency towards opportunistic strategies shifts under HR, when biochemically 

enriched aquifers via rainfall inflows triggered a dominance of DOC-derived assimilations 

(ranging from 77.5 (AM1) to 84.9 (AM2)). Compared to amphipods, meiofauna (cyclopoids 

and harpacticoids) showed increased sediment ingestion under LR (~32% contribution), 
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however the consistent increase in DOC incorporations was confirmed after rainfall (Table 

S6.8). δ15N stygofaunal signatures were consistent with a food web driven by soil-based OM 

incorporations (Simon et al., 2003) and meiofauna illustrated anomalously enriched δ15N 

fingerprints compared to amphipods under both rainfall regimes. Moreover, cyclopoids and 

harpacticoids were the only groups which experienced increased δ15N values coupled with 

rainfall under the HR regime, suggesting different nitrogen microbial baselines (Saccò et al., 

2019c; Tiselius and Fransson, 2015) coupled with potential scavenging (e.g. Boxshall et al., 

2016). 

Stygobionts illustrate high resiliency rates to a lack of resources (Huppop, 2000). As 

reported by Gibert and Deharveng (2002), evolutionary trends in groundwater biota might 

have driven maximization of trophic plasticity coupled with low metabolic rates. Our results 

indicate that while under LR regimes omnivory might play a key role in maintaining 

stygofaunal assemblages, under HR conditions, prey-predator interactions - ultimately 

driven by shifts in trophic habits carried out by specific groups such as amphipods - are 

strengthened (Saccò et al., 2019c). Amphipods display a vast array of feeding modes - from 

facultative biofilm grazers to scavengers - which is thought to be strictly linked to high rates 

of resistance to starvation (Hartland et al., 2011; Hutchins et al., 2014). From an eco-

biochemical perspective, amphipods - when present in groundwater - represent crucial 

components in microbial assimilation processes that fuel carbon transfers along the trophic 

chain (Brankovits et al., 2017). While we did not find direct isotopic evidence of biofilm 

assimilation from ephilitic microbial biofilms, amphipods did shift towards 13C-depleted 

carbon inputs, and potentially more microbially-derived OM, under HR condition (Figure 6.3 

and Figure 6.5). Aquatic worms (OL) showed a shift towards more depleted OM 

incorporations, however further isotopic and genetic analyses were constrained by the low 

abundances found in the field (Table S6.10).  

6.5 Conclusions 

The understanding of trophic flows within aquatic biota is fundamental to deciphering 

biochemical fluxes, but very few studies have attempted to fill this knowledge gap in 

subterranean environments (e.g. Simon et al. 2003). Some studies have attempted to 

model groundwater ecosystem ecological functioning (e.g. Hancock et al., 2005, Simon et 

al., 2007), but none of them has focused on wide multidisciplinary designs. Here we 
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combined information from previous food web investigation on stygofauna (Saccò et al., 

2019c) and microbial patterns (chapter 5) with the information gathered via isotopic 

(carbon and nitrogen) and genetic data on stygofaunal gut biomes from this work (Figure 

6.6). High rainfall events (see Figure S6.7 for rainfall categorisation) trigger ecological shifts 

characterized by a tendency towards more deterministic interactions. Bottom-up controlled 

microbial communities are proposed as major drivers regulating the trophic trajectories of 

stygofaunal specimens. The suggested modelling infers selective biofilm proliferation as a 

driver for increased biological activities in grazers (copepods and amphipods), which are the 

ultimate target of top predators (beetles, larvae and adults). Given the urgent need to 

widen the current knowledge of groundwater ecology trends, this investigation provides 

novel modelling that can bring further light to the processes regulating biodiversity in 

groundwater ecosystems. The understanding of these dynamics is crucial to evaluate the 

current state of conservation and investigate future trends both in pristine and 

contaminated groundwaters. 
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Figure 6.6. Conceptual model of the principal biochemical flows at Sturt Meadows aquifer 
under LR (a) and HR (b) conditions. The dark yellow arrows illustrate the main biochemical 
paths, while bigger blue arrows underline those transitions strengthen under high rainfall 
period, and are numbered as follow: 1a, old and 13C-replenished DOC leaches into the 
groundwater (Table 6.1); 1b, as a result of the rainfall infiltration, phosphates dilute, 
carbonates are released (higher alkalinity) (Saccò  et al., 2019b) and old POC gets to the 
water; 2, ammonia concentrations increase as a combined effect of animal waste leaking 
from the surface and microbial metabolisms (Saccò  et al., 2019b, chapter 5); 3, microbial 
biofilms consume the newly incorporated old DOC (partially derived from POC (route 3b)) 
(chapter 5); 4, biofilms decompose POC; 5, harpacticoids browse on biofilm and cyclopoids 
filter particulate organic matter (route 6); 7a, amphipods graze on microbial mats (and filter 
POC (route 7b)) and fuel the carbon to the upper trophic levels; 8, beetles larvae and adults 
(route 9) (top predators) exert a higher trophic pressure on amphipods after rainfall (Saccò  
et al., 2019c). Dashed lines led to the proportions of the carbohydrate, lipid and amino acid 
microbial metabolisms (diameter of the bubbles proportional to the relative abundances in 
cyclopoids, harpacticoids and AM1; inner dark yellow circles under HR (b) are illustrated for 
comparison with the significative lower relative abundances under LR (a)).  
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Supplementary material 

 

Figure S6.7. Weather station data from bore E7 extracted from Saccò et al., 2019b: water 
level (in mm, in light blue) and rainfall events (in mm, in red). Flags indicate the dates of LR1 
(26/07/2017), LR2 (07/11/2017) and HR (17/03/2018) campaigns, and the black rectangles 
illustrate the cumulative rainfall and water depth trend for the 30 days before samplings 
(for rainfall periods category thresholds refer to Hyde et al. (2018). 
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Figure S6.8. Sturt Meadows geological zones and location of the weather station (bore E7). 

 

Figure S6.9. (a) Barplot illustrating the bacterial abundances in groundwater samples under 
LR (GW.LR, in dark yellow) and HR (GW.HR, in light blue). (b) Relative abundances (in %) of 
the bacterial classes in beetles B, M and S under LR and HR.   
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Figure S6.10. Abundances of the major KEGG pathways associated with methane 
metabolism (a), nitrogen metabolism (b) and sulfur metabolism (c). *, P < 0.05; **, P < 
0.005; ***, P < 0.0005.    
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Table S6.3. Tukey’s pairwise comparisons of δ13CVal-Phe values of the groups pertaining to LR.  

Groups Roots Water mites Amphipods Aquatic worms Beetles larvae Beetles adults

Roots ns ns * *** ***

Water mites ns * *** **

Amphipods ns * ns

Aquatic worms ns ns

Beetles larvae ns

Beetles adults  
 

Table S6.4. Tukey’s pairwise comparisons of δ13CVal-Phe values of the groups pertaining to HR. 

Groups Roots Water mites Amphipods Aquatic worms Beetles larvae Beetles adults

Roots * * ** ** ***

Water mites ns ns ns ns

Amphipods ns ns ns

Aquatic worms ns ns

Beetles larvae ns

Beetles adults  

 
Table S6.5. Results from the δ13C, δ15N and 14C analyses on beetles (B, M and S) during LR 
and HR. 

Δ14C (‰) Age (BP) Δ14C (‰) Age (BP)

LR HR LR HR

P.macrosturtensis B -23±0.19 -23.51±0.81 14.66±0.27 14.62±0.49 32.9±2.3 modern 17.6±1.6 modern

P.mesosturtensis M -23.37±0.19 -23.72±0.14 15.43±0.53 14.01±0.05 37.0±2.2 modern 27.0±1.6 modern

P.microsturtensis S -23.6 -24±0.43 14.40 13.07±0.42 22.9±3.1 modern 18.3±1.6 modern

ID
δ13C δ15N

LR HR
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Table S6.6. Low rainfall (LR) amino acids spectrum for stygofauna, hemipterans, ants and roots, separated by non-essentials (NEAA: aspartic acid 
(Asx), serine (Ser), glutamine (Glx), glycine (Gly), alanine (ala), proline (Pro) and glutamic acid (Glu)), essentials (EAA: threonine (Thr), valine (Val), 
methionine (Met), isoleucine (Ile), leucine (Leu), lysine (Lys) and tyrosine (Tyr)) and conditionals (COND: histidine (His) and  tyrosine (Tyr)). 
 

Asx Ser Glx Gly Ala Pro Glu Thr Val Met Ile Leu Phe Lys Arg His Tyr

1 -18.054 -10.353 -19.108 -9.933 -20.093 -17.478 -19.021 -14.307 -24.776 -23.566 -24.302 -24.348 -19.952 -18.784 -23.712

2 -17.225 -10.501 -18.365 -10.096 -19.925 -18.224 -15.094 -23.994 -23.832 -26.019 -24.527 -21.476 -19.171 -23.237

1 -19.27 -11.204 -20.295 -12.688 -20.861 -15.548 -19.696 -15.52 -24.735 -24.602 -22.202 -26.077 -20.374 -17.924 -24.543

2 -18.422 -11.437 -11.836 -21.599 -14.66 -20.546 -24.36 -25.382 -23.044 -26.407 -20.471 -18.496 -24.59

1 -22.552 -12.827 -22.423 -14.388 -24.486 -19.105 -23.426 -17.153 -28.182 -28.025 -26.063 -29.023 -23.567 -20.753 -27.734

2 -22.297 -11.957 -15.287 -23.987 -18.229 -23.452 -27.279 -27.192 -25.234 -28.928 -22.803 -19.841 -26.828

1 -20.634 -9.09 -20.202 -14.589 -21.6 -19.735 -18.671 -19.747 -26.092 -25.414 -26.563 -20.759 -19.144 -25.165

2 -20.481 -9.343 -13.744 -22.423 -18.88 -18.26 -25.852 -24.655 -26.388 -20.413 -19.717 -24.966

1 -19.12 -6.571 -20.356 -16.576 -21.387 -16.585 -18.977 -21.515 -24.983 -27.548 -25.352 -27.154 -20.835 -19.808 -20.133 -25.892

2 -19.058 -6.822 -19.749 -15.659 -20.862 -16.165 -18.985 -21.824 -24.862 -26.775 -24.579 -27.006 -21.28 -19.378 -20.12 -25.918

1 -19.452 -8.375 -17.775 -13.756 -21.683 -20.519 -20.9 -17.21 -25.389 -26.574 -26.472 -26.752 -19.718 -18.742 -26.009

2 -18.746 -8.443 -17.732 -14.643 -21.465 -20.234 -20.157 -17.127 -25.284 -26.554 -27.31 -27.292 -20.046 -18.439 -26.053

1 -17.019 -5.299 -15.082 -6.436 -18.377 -16.816 -16.062 -25.975 -19.86 -21.449 -22.141 -17.837 -15.828 -8.917 -20.467

2 -15.175 -6.431 -13.098 -5.01 -22.456 -16.536 -13.911 -23.128 -20.18 -23.723 -21.747 -18.282 -14.787 -20.91 -9.59

1 -19.036 -8.605 -18.681 -6.513 -20.352 -16.714 -14.227 -25.359 -22.055 -24.342 -24.684 -21.813 -18.575 -18.095 -23.525

2 -19.151 -8.019 -24.013 -7.103 -20.23 -16.546 -1.516 -25.597 -22.843 -23.961 -26.508 -20.482 -20.543 -12.576 -21.951

1 -21.633 -8.7 -21.546 -8.767 -24.212 -22.308 -14.806 -28.659 -24.796 -27.248 -28.192 -21.873 -23.273 -18.847 -25.092

2 -21.774 -9.601 -27.747 -9.228 -23.948 -23.214 -3.535 -29.014 -26.567 -27.387 -28.34 -22.622 -23.816 -18.945 -24.868

1 -23.262 -15.692 -24.114 -26.425 -25.526 -27.138 -22.507 -31.532 -29.026 -31.604 -31.68 -27.568 -27.604 -26.316 -30.681

2 -23.597 -16.318 -24.551 -20.926 -26.287 -26.041 -26.225 -22.398 -31.384 -28.851 -31.694 -31.352 -28.022 -27.554 -26.367 -30.927

1 -20.885 -11.825 -14.452 -21.224 -18.871 -19.218 -26.379 -21.452 -24.721 -18.986 -20.299 -24.149

2 -19.994 -12.145 -17.773 -13.785 -21.13 -19.739 -15.068 -26.341 -24.621 -23.941 -20.019 -18.706 -24.509

Hempitera sp. HM 1 -19.604 -16.878 -21.844 -20.566 -25.866 -20.298 -13.273 -30.654 -26.008 -27.331 -29.119 -24.759 -24.294 -24.375 -26.804

1 -19.248 -16.881 -23.302 -19.598 -24.536 -19.714 -24.261 -14.622 -27.328 -26.621 -23.236 -25.56 -19.029 -22.568 -25.282

2 -19.082 -16.708 -22.76 -19.742 -23.686 -20.46 -14.889 -26.729 -27.406 -24.778 -19.518 -18.291

1 -19.397 -11.733 -22.077 -17.433 -22.445 -21.256 -18.725 -26.535 -21.651 -24.737 -23.127 -20.591 -23.249

2 -19.061 -12.572 -21.582 -17.924 -21.933 -20.748 -18.62 -26.806 -23.53 -21.814 -19.945 -19.834 -23.476
Acacia Aneura Roots

Tubificidae sp. OL

Oribatida sp. OR

Linepithema humile Ants

Scutachiltonia axfordi AM1

Yilgarniella sturtensis AM2

Stygochiltonia bradfordae AM3

Paroster macrosturtensis larvae Blv

Paroster mesosturtensisl arvae Mlv

Paroster microsturtensisl arvae Slv

Paroster macrosturtensis B

Paroster mesosturtensis M

Paroster microsturtensis S

COND
Taxon ID Replicates

NEAA EAA
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Table S6.7. High rainfall (HR) amino acids spectrum for stygofauna, hemipterans, ants and roots, separated by non essentials (NEAA: aspartic acid 
(Asx), serine (Ser), glutamine (Glx), glycine (Gly), alanine (ala), proline (Pro) and glutamic acid (Glu)), essentials (EAA: threonine (Thr), valine (Val), 
methionine (Met), isoleucine (Ile), leucine (Leu), lysine (Lys) and tyrosine (Tyr)) and conditionals (COND: histidine (His) and  tyrosine (Tyr)). 
 

Asx Ser Glx Gly Ala Pro Glu Thr Val Met Ile Leu Phe Lys Arg His Tyr

1 -18.981 -11.825 -18.609 -11.385 -19.968 -16.435 -12.624 -15.99 -25.892 -25.381 -26.035 -26.728 -21.94 -20.826

2 -18.35 -11.415 -17.774 -11.232 -19.328 -17.232 -16.725 -24.984 -25.868 -19.981 -18.349 -23.381

Paroster mesosturtensis M 1 -23.876 -18.06 -23.557 -16.643 -25.964 -21.987 -23.065 -21.67 -29.768 -32.187 -28.902 -29.865 -31.075 -24.674 -26.052

Paroster microsturtensis S 1 -20.865 -11.435 -20.798 -13.937 -22.623 -17.816 -18.898 -14.569 -26.773 -30.766 -25.661 -26.806 -29.037 -22.886 -22.632

1 -22.032 -12.583 -20.627 -13.557 -24.294 -19.428 -16.875 -18.706 -28.488 -29.773 -26.385 -27.94 -28.623 -22.888 -22.761

2 -21.253 -24.15 -27.76 -27.818 -21.939 -26.1

1 -23.876 -18.06 -23.557 -16.643 -25.964 -21.987 -23.065 -21.67 -29.768 -32.187 -28.902 -29.865 -31.075 -24.674 -26.052

2 -17.238 -20.873 -28.997 -21.78 -27.678

1 -24.391 -17.615 -24.241 -18.735 -26.035 -22.186 -23.133 -19.036 -30.074 -32.127 -28.827 -29.946 -31.545 -25.108 -26.446

2 -23.9 -18.454 -24.237 -26.188 -22.384 -26.728 -22.586 -28.808

1 -24.151 -12.209 -23.8 -13.066 -24.458 -22.004 -19.787 -19.089 -29.886 -29.858 -27.014 -29.218 -29.862 -25.057 -24.182 -21.926 -27.292

2 -23.303 -12.501 -23.308 -12.704 -23.798 -21.357 -19.729 -19.071 -29.15 -29.157 -26.118 -28.459 -29.25 -24.967 -23.416 -21.239 -26.281

1 -24.005 -13.496 -23.898 -15.148 -26.737 -23.713 -26.256 -22.018 -30.956 -27.096 -28.127 -29.494 -30.747 -24.607 -25.401 -22.119 -27.88

2 -23.987 -13.85 -23.31 -14.701 -25.818 -24.344 -25.651 -21.258 -30.777 -26.435 -27.485 -28.69 -29.863 -23.935 -24.58 -22.361 -26.988

1 -23.246 -11.931 -22.681 -13.183 -23.938 -21.778 -21.818 -21.876 -28.858 -30.87 -23.334 -24.557 -28.65 -19.548 -22.867 -20.429

2 -23.532 -12.805 -22.688 -13.2 -23.735 -21.05 -22.511 -21.906 -28.54 -24.252 -25.425 -27.913 -20.432 -23.016 -19.753 -24.501

Tubificidae sp. OL 1 -20.246 -14.108 -20.249 -15.601 -23.938 -20.468 -23.209 -17.579 -27.927 -23.131 -22.983 -26.679 -28.788 -21.984 -21.623

1 -20.9 -22.5 -6.0 -22.1 -19.7 -20.0 -27.6 -27.8 -27.4 -23.7 -20.7 -23.0 -26.4

2 -19.97 -4.92 -21.682 -5.821 -22.258 -19.678 -20.389 -27.446 -27.819 -24.338 -21.291 -22.323 -25.809

1 -17.063 -13.928 -19.642 -18.187 -18.778 -17.191 -13.276 -23.053 -25.424 -24.304 -18.207 -24.166

2 -17.355 -13.431 -19.757 -19.031 -18.044 -17.883 -19.964 -14.052 -22.696 -26.539 -24.093 -17.382 -18.92 -23.299

1 -18.638 -17.83 -21.075 -17.378 -22.405 -21.459 -14.819 -25.557 -23.848 -17.043 -15.863 -23.024

2 -22.125 -21.507 -23.319 -17.845 -16.413 -23.175

1 -17.44 -9.399 -19.053 -17.491 -20.073 -19.149 -18.868 -14.122 -23.015 -22.693 -23.716 -20.023 -18.652 -14.937 -16.923 -20.488

2 -16.762 -8.691 -18.47 -19.861 -19.035 -22.776 -22.382 -23.561 -19.789 -17.885 -15.187 -16.812 -19.435

Linepithema humile Ants

Acacia Aneura Roots

Stygochiltonia bradfordae AM3

Oribatida sp. OR

Hempitera sp. HM

Paroster microsturtensisl arvae Slv

Scutachiltonia axfordi AM1

Yilgarniella sturtensis AM2

Paroster macrosturtensis B

Paroster macrosturtensis larvae Blv

Paroster mesosturtensisl arvae Mlv

COND
Taxon ID Replicates

NEAA EAA
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Table S6.8. Dietary contributions (in %) of copepods (cyclopoida and harpacticoida) and amphipods AM1 and AM2 under LR and HR. 

DIC DOC POC Roots Sediment DIC DOC POC Roots Sediment

Cyclopoida 10±10.1 25.9±14.1 19.1±22.2 12.7±10.5 32.3±26.7 12.6±10.6 41.1±16.6 17.8±14.3 9.6±8.6 18.9±22.3

Harpacticoida 10.7±11 26.1±14.7 20.3±23.7 11±9.8 31.9±26.2 8.9±7.5 51±17.1 19.6±17 6.6±6.2 13.9±15.1

AM1 6.3±5.4 51.7±8.3 14.4±13.9 8.3±5.2 19.3±11.7 3±2.1 77.5±11 12.9±11.1 2.2±1.3 4.4±3.3

AM2 4.7±5.6 55.7±9.4 13.5±14.9 7.8±6.5 18.3±14.7 1.4±1.4 84.9±11.9 10±12.1 1.2±1.1 2.5±2.7

Contributions  (%)

LR HR

 

 

Table S6.9. Bacterial abundances in groundwater samples (GW) and samples of amphipods AM1, AM2 and AM3 during LR and HR. Information 
extracted from the abundances of ZOTUs per each class. 

GW AM1 AM2 AM3 GW AM1 AM2 AM3

Alphaproteobacteria 26.50 8.00 27.00 20.50 151.00 710.50 161.50 381.00

Betaproteobacteria 0.00 0.00 6.00 130.50 0.00 2.50 4.00 2.00

Deltaproteobacteria 0.00 0.00 0.00 0.00 0.00 0.50 19.00 0.00

Actinobacteria 2.00 207.00 47.50 12.50 0.00 261.50 147.50 19.50

Bacilli 0.00 5.00 168.00 323.00 0.00 37.00 50.00 72.50

Clostridia 0.00 0.00 11.00 0.00 0.00 103.50 60.50 1506.00

Deinococci 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00

LR HR
Class
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Table S6.10. Abundance data (from Saccò et al., 2019b) of the different stygofaunal taxa at Sturt Meadows detected during the sampling 
campaigns LR1, LR2 and HR (first day of sample collecting). 

RAINFALL PERIOD

GEOLOGICAL ZONES

TAXON  ID A8 C5 F4 H5 J7 N4 L4 S2 U2 W2 Q2 W3 W4 C1 D1 E1 G1 H2 A11 D13 E10 E11 Q3 Q4 S8 B13 C13 E12 E13 F13

Tubificidae TU 2

Oribatida OR 2 2 1 1 1 1 3 1 1 2

Harpacticoida H 1 3 9 17 18 5 7 13 17 12 8 27 5 15 12 3 72 21 8 19 2 8 27 7 1 6 11

Cyclopoida C 18 6 1 11 16 36 8 9 14 2 5 3 3 2 6 1 5 131 92 1 33 11 19 14 55 2 269 3 26 1

Chiltoniidae (juveniles) AMJ 15 1 3 15 4 5 1 4 3 6 11

Scutachiltonia axfordi AM1 19 1 14 13 1 7 1 1 1 1 9 4 5 2 6 7

Yilgarniella sturtensis AM2 1 1 23 13 21 2 2 2 3 2 2 7 2 2 3

Stygochiltonia bradfordae AM3 1 3 6 3 1 1 4 2 2

Paroster macrosturtensis B 1 1 1 1 1 2 1 11 1 6

Paroster mesosturtensis M 3 1 3 9 1 1 1 1 4 1 4 1 3 9 1 1 1 9

Paroster microsturtensis S 1 2 1 6 3 2 1 1 6 1 1 5 1

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1 1 1

Paroster mesosturtensis larvae Mlv 1 1

Paroster microsturtensis larvae Slv 1 1 1 1 3 1 1 1 1 2 2 1 1 1 2

Tubificidae TU 1

Oribatida OR 1 2 1 1 8 123 3 1 1 1 2 2 1 1 1

Harpacticoida H 82 26 5 12 2 18 2 8 2 17 7 4 29 259 7 22 11 6 1 2 3 34 3 3 12 1 2 1

Cyclopoida C 86 29 22 24 4 16 2 16 129 7 97 87 19 68 16 31 4 22 35 31 9 29 66 1 6 33 7 81 38

Chiltoniidae (juvelines) AMJ 32 6 1 1 6 1 1 2 5

Scutachiltonia axfordi AM1 3 1 3 1 1 1 6 1 12 4 2 2 2 1 8 1 9 1 1

Yilgarniella sturtensis AM2 28 11 1 2 6 2 11 2 2 6 4 6 1 5 1 1 4 6 4 2

Stygochiltonia bradfordae AM3 2 2 1 1 3 1 1 1 1 2 2 1 5 2 1 2 2 1

Paroster macrosturtensis B 1 2 2 1 2 7 3 3 1 4 7 3 9

Paroster mesosturtensis M 3 1 1 7 3 6 2 2 3 5 22 1 2

Paroster microsturtensis S 1 1 3 1 1 7 1 1 1 17 7 2 3

Paroster macrosturtensis larvae Blv 1 1 3 6 1

Paroster mesosturtensis larvae Mlv 2

Paroster microsturtensis larvae Slv 1 2 3 2 1 2 1 5 6 4 2 1

Tubificidae TU 14 1 1 3 1 1

Oribatida OR 29 2 3 3

Harpacticoida H 64 44 13 1 32 17 8 4 83 6 5 4 3 7 154 11 19 13 12 2 26 9 2 13 8 3 7 14 4

Cyclopoida C 54 91 23 17 22 12 4 8 19 4 2 23 13 15 2 87 1 29 148 77 66 76 15 11 16 137 41 39 36 47

Chiltoniidae (juveniles) AMJ 7 8 14 2 3 1 1 8 2 6 2 1 3 2 2 7 4

Scutachiltonia axfordi AM1 2 4 13 2 2 2 1 1 1 1 4 2 8 4

Yilgarniella sturtensis AM2 2 3 9 4 2 12 7 1 13 2 4 3 4 2 8 5 7

Stygochiltonia bradfordae AM3 1 1 1 8 7 1

Paroster macrosturtensis B 4 3 3 9 28 3 6 1 3 1 2 5 8

Paroster mesosturtensis M 7 2 6 1 3 1 1 1 6 4 2 1 1 1 11 1 6 1 1 4 1 11

Paroster microsturtensis S 22 3 3 6 1 3 14 1 3 9 7 1 8 2 7 2 6 5

Paroster macrosturtensis larvae Blv 1 1 1 1 2 1

Paroster mesosturtensis larvae Mlv 2 1 1

Paroster microsturtensis larvae Slv 1 2 1 2 4

LR2

HR

LR1

A1 A2 A3 CD A4
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Chapter 7 | Critical evaluation 
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The research presented here provides a comprehensive ecological analysis of the dynamics 

sustaining biota in Western Australian calcretes. However, as with any project operating 

within a limited time and budget, a number of aspects had to lie outside the scope of the 

work, and so several research gaps remain. 

• Only one natural system was studied. Given the specificity of subterranean 

environments, where each aquifer potentially forms isolated “islands” with 

endemic fauna, the conclusions about biogeochemical mechanisms cannot be 

directly extrapolated to all groundwater ecosystems, meaning that substantial 

uncertainty remains in defining the specific driving ecological forces shaping 

subterranean ecosystems globally. 

• Stygofaunal opportunism provides challenges in interpreting subterranean food 

web interactions. Despite fifteen years of taxonomic and ecological studies, Sturt 

Meadows stygofauna still lack detailed empirical data on species interactions and 

ethology at community level. Indeed, major obstacles such as limited accessibility 

to aquifers, and groundwater environments in general, provide critical challenges 

to these investigations under natural conditions. Alternatives to field experiments 

will be necessary for exhaustive interpretation of the ecological patterns in 

groundwaters.    

• In chapter 2, we proposed creating stygofaunal diet estimations through the 

integration of data from genetics and biogeochemistry into multifactorial Bayesian 

mixing models, as refining dietary analysis in this way has been proved to improve 

the accuracy of food web interpretations in other research fileds. However, 

although initial modelling attempts were made, they are not, at this stage, robust 

(see section 7.3 below). I am undertaking work to address these issues, but 

completing the modelling now sits outside the scope of this PhD thesis. Given the 

technical challenges that conventional groundwater trophic ecology studies face, 

application of these models will considerably advance our understanding of 

stygofaunal feeding patterns. 

• This thesis presents an original and significant reconstruction of ecological baseline 

information and trophic habits from a calcrete aquifer. However, to expand this to 
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groundwater management studies, monitoring of hydrological and biological 

dynamics will be required across a longer time period.  

To address these gaps, I suggest here four main research directions that will provide 

guidelines for future investigations. 

7.1 Alternative environments 

Further studies involving higher numbers of samples from more biodiverse systems or 

complex trophic assemblages (i.e. alluvial aquifers, karsts, etc.) would help test the 

applicability of my findings and ultimately refine the accuracy of my research design. This 

might involve also extending this research design to surficial groundwater fed ecosystems 

to understand the widely accepted but rarely bio-geochemically assessed linkage between 

aquatic surface and subterranean environments. Other poorly studied and hard to access 

ecosystems such as thermal springs or anchialine caves could also benefit from this 

interdisciplinary approach.  

7.2 Laboratory experiments  

Mesocosm experiments would allow detailed investigation of stygofaunal trophic behaviors 

and refinment of the interpretation of species-specific dynamics from cryptic environments 

such as groundwaters. Furthermore, application of sophisticated isotopic techniques on 

laboratory monitored communities, such as CSIA ‘carbon fingerprinting’ (an organic 

compound-based technique for identifying plant, fungal or bacterial origins of amino acids) 

would also improve our understanding of the functional linkages between microbes and 

stygofauna, helping untangle groundwater energy flows. The use of bio-tracers (together 

with artificially enriched compounds) would help pinpoint the key biochemical pathways 

and bring a better understanding on the time framework of organic matter assimilations 

within subterranean biota. 

7.3 Modeling tools 

Significant refinement of diet analysis can be achieved by incorporating further information 

beyond the conventional δ13C and δ15N proxies, such as radiocarbon data (Δ14C), a key 
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tracer in untangling carbon incorporation and trophic pathways. Concurrently, 

metagenomics data can provide crucial semi-quantitative information on dietary 

preferences that can refine statistical modelling once this data are integrated as prior 

information. 

At the start of my PhD research, I hypothesized that the application of multifactorial 

designs combined with the more accurate isotopic data provided by CSIA (i.e. carbon 

essential amino acids, nitrogen trophic amino acids) had the potential to significantly 

improve the estimation of diet proportions when compared to conventional bulk 

approaches. This assumption was tested in a manuscript, not included in this thesis that 

was recently submitted for review. Constructive comments generated through the review 

process have inspired me to revisit the assumptions around methodological aspects often 

made in these modelling processes.  

In particular, emerging from the review, it became clear that groundwater multifactorial 

modelling based on CSIA data faces a number of challenges. For instance, given the scarce 

availability of stygofaunal species-specific isotopic data, the definition of offsets (trophic 

discrimination factors) from specific amino acids (and Δ14C data) is potentially exposed to 

bias. The incorporation of all potential prey sources is key to estimate their importance 

within diets of consumers/predators, which means that modeling of representative 

stygofaunal diet proportions is often limited by the scarce accessibility and intrinsic cryptic 

nature of groundwater systems.  

However, by incorporating advances from other research fields such as oceanography or 

archaeology, I hope to overcome these obstacles. For example, remarkable progress in 

characterizing offsets of invertebrate taxa has been made recently for aquatic surface 

environments. In addition, technological advancements are quickly improving the 

detectability ranges of machines such as LC-iRMS, GC-iRMS or AMS and allowing reduced 

costs and automatisation of sample pre-treatments, reducing the sample size, and 

therefore the number of individual organisms required. Concurrently, novel biomonitoring 

tools such as eDNA provide crucial information on stygofaunal community composition, 

enabling thorough testing of the accuracy and representativeness of the conventional 

sampling techiques. 
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The question arises of to what extent we need to apply CSIA in groundwater studies. The 

isotopic data acquired is undoubtedly more detailed. Nonetheless, at present there are 

significant cost differences in bulk and compound specific studies that, depending on the 

lab, can mount to as high as hundreds or even thousands of dollars per sample. Where 

analyses are sought on large numbers of samples within a screening context (for example, 

monitoring changes in groundwater trophic ecology as part of large scale environmental 

impact assessment), a balance between cost and precision of outcome must be struck. 

In my view, studies involving extensive sampling from multiple groundwater systems, or 

those otherwise constrained by operational costs, should consider using bulk tissue SIA, at 

least in the first instance. As shown in earlier chapters, despite its averaging of biochemical 

fractionation pathways, SIA still allows elucidation of the main flows shaping their 

biochemical functioning and enables comparison between systems or environmental 

conditions. However, where studies are seeking maximum precision with respect to 

detailed taxonomic changes in feeding, a case can be made for the use of CSIA. In either 

case, robust whole-system research designs should include maximum prior data as well as 

multiple isotopic proxies. 

7.4 Developing ecological management in groundwaters 

Long-term experiments at Sturt Meadows or similar aquifers expanding the current 

research design to i.e. five years would allow development of specific conservation plans. 

This would help delineate strategic designs for the management of calcrete ecosystems, 

together with guidance for other similar groundwater environments, in Australia and 

around the world. The field of ecotoxicology could also benefit from the application of 

novel approaches such as δ13C and δ15N CSIA, since such biochemical studies would lead to 

considerable improvements in the accuracy of environmental assessments both in pristine 

and contaminated groundwaters. The characterization of the carbon and nitrogen amino 

acid spectrum would allow detection and characterization of anomalous biochemical 

patterns, e.g. fertilizer-related, within the microbial and stygofaunal communities. 

Moreover, the presented multidisciplinary approach, if linked to the study of increasingly 

abundant exotic species in groundwaters, such as the crayfish Procambarus clarkii (Girard, 

1852) (see Mazza et al. (2014) discussed in chapter 6), also has the potential to unveil the 

functional impact of invasive species in subterranean ecosystems.  



 
 

236 

 

Chapter 8 | Conclusions  
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This thesis provides original and significant insights into the ecological functioning of 

groundwater ecosystems in the shallow calcretes that characterize the subterranean 

framework of Australia’s immense Yilgarn region. Research based on conventional 

multivariate techniques allowed elucidation of the niche interactions under contrasting 

rainfall periods, enabling broader comprehension of the subterranean ecology at Sturt 

Meadows. Moreover, the innovative application of a research design combining isotopic 

chemistry, radiocarbon analysis and molecular genetics (chapter 2) improved the 

understanding of arid zone subterranean biogeochemical patterns and untangled the 

ecological mechanisms sustaining groundwater biodiversity. These outcomes allowed to 

address the aim I of the thesis, ‘refine groundwater functional ecology studies through the 

application of novel techniques widely employed in other fields’, by bringing together 

usually disconnected analytical approaches within a sophisticated holistic design.  

Groundwater environments play a crucial role within the carbon cycle and as water 

reservoirs, meaning that improved understanding of their ecosystem dynamics is crucial. 

This work contributes in providing essential baseline knowledge that, once integrated 

within long term projects, will be key in groundwater conservation and water resource 

management. Given that natural ecosystems progressively face increased climate change 

effects, tools and knowledge developed through this research will aid rapid assessment of 

rapidly changing conditions and enable modeling of future scenarios linked with natural 

and anthropogenic impacts in calcrete aquifers. Crucially, the research in this thesis links 

the “who” of ecosystem taxonomy to the “how” of functional ecology, significantly 

broadening the potential of groundwater impact assessments and monitoring. 

This research project was carried out during one of the most severe droughts ever recorded 

in the Australian continent, and this resulted in a substantial hydrological deficit of aquifer 

recharge sensu stricto. Nonetheless, the research on ecological niche occupations (chapter 

3) indicated that varied rainfall regimes triggered shifts in stygofaunal ecological niche 

occupations driven by increased nutrient availability and dissolved oxygen concentrations. 

Given the usual scattered and unpredictable rainfall events on site, our results indicated 

that stygofaunal community at Sturt Meadows calcrete presents high levels of ecological 

tolerance as a response to evolutionary and adaptative forces. These findings fulfilled the 

overarching aim II of the thesis, which involved the objective to ‘understand the role played 



 
 

238 

 

by rainfall conditions in shaping ecological niche occupations amongst the stygofaunal 

community from an arid zone aquifer’. 

However, elucidation of ecological dynamics solely via conventional multivariate 

approaches was also demonstrated to be incomplete, stressing the need to incorporate 

multidisciplinary studies for a robust whole-system understanding. Novel investigation 

based on incorporation of isotopic techniques (CSIA and SIA, chapter 4) allowed great 

insight into the food web dynamics and the key biogeochemical driving forces that forge 

them. Analysis of species-specific isotopic data enabled elucidation of rainfall-driven shifts 

in carbon flows and pinpointed two trophic levels (amphipod consumers and predatory 

beetles). In addition, stygofaunal trophic behaviours, dominated by opportunism and 

omnivory, shaped bottom-up (differential OM assimilations within consumers) and top-

down (increased pressures from predators after high rainfall) controls linked with rainfall 

regimes. The outcomes of this study, the first incorporating advanced isotopic approaches 

in subterranean environments, cast new light on trophic dynamics in groundwaters and 

comprehensively addressed the aim III of the thesis: ‘elucidate calcrete energy flows and 

stygofaunal food web interactions under contrasting rainfall periods’. 

Other aspects explored in the research are subterranean rainfall-driven carbon inputs and 

their cascade effects within the microbial (chapter 5) and stygofaunal (chapter 6) 

communities. The overarching aims of the thesis number IV (‘unravel the biogeochemical 

mechanisms shaping changes in local organic source inputs and microbial metabolic shifts’) 

and V (‘investigate the rainfall-driven ecological dynamics characterizing potential trophic 

cascades across the subterranean biota of the calcrete’) were addressed through the 

implementation of multi-technique assessment - comprising geochemistry and genetics - of 

the ecological and biogeochemical flows. Our findings illustrated that rainfall acts as a 

driver in regulating input of old carbon sources into the calcrete that is ultimately available 

and exploited by the microbial community. Concurrently, subterranean invertebrate 

population dynamics coupled with shifts in microbially-derived organic matter 

incorporations, indicated a tendency towards more deterministic driving forces under the 

high rainfall regime.  

The current thesis widens perspectives within the small but quickly growing research area 

of groundwater ecology, providing explanation of the biogeochemical dynamics sustaining 
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biota in shallow calcretes. This investigation demonstrates once again that, within an 

increasingly complex world, the present and future of science can immensely benefit from 

the integration of techniques and designs from usually disconnected areas of research. 

Indeed, given the rapidly changing global environmental scenarios we are currently 

experiencing, how we will assess and preserve our ecosystems will depend on our ability to 

share advanced knowledge and strengthen networks across disciplines. 
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May the scientist reflect 

 

Ecologists are homologous with criminologists. 

Both professions are driven by passion, curiosity and audacity. 

The two explore obscure, hidden, and prodigiously complex dynamics. 

The counterparts need to accurately characterise the background before diving in. 

They depend on the most advanced techniques to unravel patterns. 

Together, they require holistic approaches based on refined evidence. 

But most importantly, they similarly save lives: 

Criminal investigators by shedding light on the offenders’ culpability and standing 

up for justice, 

Ecologists by elucidating concealed paths for a better appreciation of nature, and a 

brighter and more sustainable tomorrow for future generations. 
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Presentations to conferences 

What’s going on down (under) there? Unravelling biochemical flows under differential 

rainfall periods in a Western Australian calcrete (oral presentation) - Mattia 

Saccò, Alison J. Blyth, Karina Meredith, Colin Smith, Quan Hua, Debashish 

Mazumder, William F. Humphreys, Nicole White, Kliti Grice - Australasian 

Groundwater Conference (AGC), 24th - 27th November 2019, Brisbane (Queensland). 

Can metabarcoding provide insights into trophic web interactions underground? (oral 

presentation) - Nicole White, Mahsa Mousavi-Mousaviderazmahalleh, Matthew 

Campbell, William Humphreys, Alison Blyth, Mattia Saccò - Australasian 

Groundwater Conference (AGC), 24th - 27th November 2019, Brisbane (Queensland). 

Stable isotope analysis in understanding functional responses of groundwater ecosystems 

to climatic and anthropogenic change (oral presentation) - Mattia Saccò, Alison J. 

Blyth, William F. Humphreys, Alison Khul, Debashish Mazumder, Karina Meredith, 

Quan Hua, Colin Smith, Kliti Grice - Stable Isotope Mass Spectrometry Users Group 

meeting (SIMSUG), 26th - 28th June 2019, Bristol (UK). 

Elucidating the food web structure of the subterranean invertebrate communities of arid 

zone Western Australia (oral presentation) - Mattia Saccò, Alison J. Blyth, William F. 

Humphreys, Alex Laini, Quan Hua, Kliti Grice - 24th International Conference on 

Subterranean Biology (ICSB), 20th - 24th August 2018, Aveiro (Portugal). 

Food-web dynamics through compound-specific isotope analysis (CSIA): a study of western 

australian (wa) stygofauna (poster presentation) - Mattia Saccò, Alison J. Blyth, 

William Humphreys, Bill Bateman, Colin Smith, Kliti Grice - 28th International 

Meeting on Organic Geochemistry (IMOG), 17th - 22nd September 2017, Florence 

(Italy). 

Geosphere-biosphere transitions in groundwaters: radiocarbon dating as a tool to unravel 

stygofaunaltrophic relationships (poster presentation) - Mattia Saccò, Alison J. 

Blyth, Quan Hua, William Humphreys, Bill Bateman, Kliti Grice - 2017 TIGeR (The 

Institute for GEoscience Research) Conference 13th - 15th September 2017, Perth 

(WA). 
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Biogeochemical trends within calcrete aquifers recharge processes: preliminary results 

based on historical data (oral presentation) - Mattia Saccò, Alison J. Blyth, William 

Humphrey, Steven Cooper, Andrew Austin, Alex Laini, Bill Bateman, Kliti Grice - 

Australasian Groundwater Conference (AGC), 11th - 13th July 2017, Sydney (NSW). 

The biogeochemical processes in groundwater environments of arid mining areas Western 

Australia: a novel isotopic based approach focused on the macroinvertebrates 

trophic relationships (poster presentation) - Mattia Saccò, Alison J. Blyth, Bill 

Humphrey, Bill Bateman, Kliti Grice - 2016 TIGeR (The Institute for GEoscience 

Research) Conference, 26th - 28th September 2016, Perth (WA). 

Unravelling the food-web structure of the subterranean invertebrate communities of arid 

zone Western Australia (poster presentation) - Mattia Saccò, Alison J. Blyth, 

William Humphrey, Steven Cooper, Andrew Austin, Alex Laini, Bill Bateman, Kliti 

Grice - 19th Australian Organic Geochemistry Conference (AOGC), 4th-7th December 

2016, Freemantle (WA). 

Seminars 

Functional ecology of calcrete aquifers in arid zone Western Australia - Mattia Saccò, 

University of Vienna (Vienna, Austria), 9th December 2019; Institute of Ecosystem 

Study (ISE) (Verbania, Italy, 17th December 2019; University of Parma (Parma, Italy), 

18th December 2019). 

Working book chapters 

‘Groundwater food webs’ in Groundwater ecology and Evolution, 2nd edition (Elsevier), 

2020 - Michael Venarsky, Kevin Simon, Clementine François, Laurent Simon, Mattia 

Saccò, Christian Griebler.  

‘Trophic interactions in groundwater environments’ in Encyclopedia of Inland Waters, 2nd 

edition (Elsevier) (2020) - Mattia Saccò, Alison J. Blyth, William F. Humphreys. 
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Other research outcomes 

Refining trophic dynamics through multi-factor Bayesian mixing models: a case study of 
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