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Abstract

Regime-switching jump-di↵usion (RSJD) models, where a discontinuous Markov-

modulated geometric Brownian motion is used to model the price process of the

underlying asset, have attracted great attention from the research community

recently due to their ability to capture the random market movements during

both short-term and long-term periods. This research focuses on the applica-

tions of various RSJD models to two important financial problems, the mean-

variance asset-liability management (MVALM) problem and the pricing of vari-

ance (volatility) swaps, where little work has been done to our knowledge.

We first investigate the MVALM problem under a basic RSJD model in which

the investor invests in a market consisting of a riskless bond and a risky stock sub-

ject to an uncontrollable liability under a mean-variance preference. The problem

is formulated as a non-cooperate game where the investor at each time point dur-

ing the investment horizon is regarded as a di↵erent player aiming to optimize

the objective functional. The objective functional combines the multi-objective of

mean and variance via a regime-dependent risk aversion coe�cient. By employing

the stochastic dynamic programming techniques, we derive the regime-switching

jump-di↵usion version of the extended Hamilton-Jacobi-Bellman equations to-

gether with a verification theorem, based on which the Nash equilibrium control

and equilibrium value function are obtained in terms of five systems of ordinary

di↵erential equations. Moreover, numerical and sensitivity analysis are carried

out to examine the influence of the change of model parameters such as the

transition rates and jump intensities.

Then we establish a RSJD model with Heston’s stochastic volatility for the

pricing of discretely-sampled variance swaps. A variance swap is in essence a

forward contract which requires zero initial cost. Then under the risk-neutral

probability measure, the pricing problem is reduced to calculating a series of

conditional expectations. By applying the two-stage approach and the generalized

Fourier transform method, the fair strike prices are obtained by solving a partial

di↵erential equation arising from the martingale property of the discounted value

according to the Feynman-Kac theorem. The accuracy and e�ciency of our
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solution is validated by the semi-Monte-Carlo simulation. Also, a counterpart

pricing formula for a continuously-sampled variance swap is derived and compared

with our discrete price to show the improvement of our solution. Furthermore,

several numerical examples are presented where the influence of regime switching

and jump di↵usion is investigated.

Finally, we further include the Cox-Ingersoll-Ross stochastic interest rate

in our Heston-RSJD model to study the pricing of both variance and volatility

swaps with discrete sampling times. The dynamics of the underlying asset under

an equivalent T-forward probability measure is first derived. Then by apply-

ing the risk-neutral pricing and characteristic function method, we obtain the

fair delivery prices for di↵erent pre-specified calculating formulae of the realized

variance and volatility. Similarly, the e�ciency and accuracy of our solution is

validated with a semi-Monte-Carlo simulation. Then we conduct numerical and

sensitivity analysis to examine the e↵ect of each of the factors considered in our

hybrid model on the fair strike price, including regime switching, jump di↵usion,

stochastic interest rate and stochastic volatility.
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CHAPTER 1

Introduction

1.1 Background

The well-known Black-Scholes-Merton (BSM) model [1, 2], though exten-

sively adopted ever since it was established, exhibits many drawbacks due to

its unrealistic assumptions such as Gaussian-distributed asset returns, a friction-

less and complete market, and a known constant interest rate or volatility rate.

Therefore numerous research has been made on relaxing some of the assumptions

to build up more generalized and realistic financial models. Examples include He-

ston’s stochastic volatility model [3, 4] where the volatility is assumed to follow

a mean-reverting stochastic process, the jump-di↵usion models [5, 6] where the

path of the underlying asset’s price process is discontinuous with jumps, and the

stochastic interest rate models such as the Cox–Ingersoll–Ross (CIR) model [7]

where the risk-free rate is no longer deterministic but follows a non-central chi-

square process. However, the models mentioned above fail to reflect the long-term

movements of the financial market a↵ected by the structural changes of macroe-

conomic conditions, while the relationship between the financial market and the

macroeconomic environment is well-documented in the empirical finance litera-

ture [8–11].

Markov regime-switching models capture the random market movements by

including a finite-state continuous Markov chain which represents di↵erent mar-

ket states. The model coe�cients such as the appreciation rate, the risk-free rate,

and the volatility rate are all modulated by the Markov chain to reflect the e↵ect

of the varying market state on the underlying assets’ price processes. A typi-

cal and simple regime-switching market is divided into two states, the so-called

”bullish state” and ”bearish state”. In 1989, Hamilton [12] first adopted the

regime-switching model to investigate the stock return time series. The author

maximized a log-likelihood function based on the transition probabilities between

1



1.1 Background 2

regimes and proved that the Markov-modulated model parameters are more re-

alistic compared to the deterministic ones. After that, regime-switching models

have been extensively applied to solving various financial problems such as option

pricing [13–15], portfolio selection [16,17], optimal selling rules [18,19], and asset-

liability management [20, 21]. However, in the literatures mentioned above, the

price processes of the assets and liabilities are actually assumed to be continuous

under a fixed market state, which in real world are often discontinuous and have

jumps even under the given market state. Empirical studies showed that jump

di↵usion models better describe the price processes than the simple geometric

Brownian motion models [5, 6, 22–24]. As a matter of fact, the Markov regime-

switching model also describes jumps, but of a di↵erent type from the jumps

depicted in jump-di↵usion models. The general jumps may be caused by some

unexpected financial events, which may have short-term and temporal e↵ects on

the prices of the assets and liabilities. On the other hand, the Markovian-type

jump may result from the structural changes in the entire economic environment,

which may a↵ect the prices in the long run. Therefore, to formulate a suitable

model for various financial problems over a time period of any length incorporat-

ing both types of jumps, it is reasonable to focus on the hybrid regime-switching

jump-di↵usion (RSJD) model. In fact, recently RSJD models have been applied

to solve financial problems such as portfolio selection, asset-liability management

and option pricing [25–28]. Moreover, a stochastic control problem in a RSJD

market is investigated in [29] and a su�cient stochastic maximum principle has

been developed .

Asset-liability management (ALM), often under the mean-variance (MV) cri-

terion, has been one of the important topics in finance. In a typical ALM prob-

lem, the investor seeks to find the optimal investment strategy that maximizes

the expected terminal surplus wealth while keeping the variance at the lowest.

By taking into account the exogenous liability, the ALM model is actually one of

the extensions of the portfolio selection problem that is initially investigated by

Markowitz [30] and has attracted many researchers’ interest ever since.

Volatility derivative products, mainly variance swaps and volatility swaps,

have also drawn much attention from the practitioners and researchers. A vari-

ance (volatility) swap is not a swap in a traditional sense, but in essence a forward

contract whose pay-o↵ at expiry is determined by the di↵erence between the real-

ized variance (volatility) and a pre-set fixed delivery price. The realized variance

(volatility) is usually calculated according to a pre-specified formula. Numerous

research has been carried out on variance (volatility) swap pricing over the last
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decades.

1.2 Objectives of the Thesis

The main purpose of this dissertation is to establish various regime-switching

jump-di↵usion (RSJD) models and investigate the mean-variance asset-liability

management (MVALM) problem and pricing of variance (volatility) swaps un-

der the corresponding framework. Analytical solutions, either in closed-form or

semi-closed-form, will be derived for each problem. Numerical analysis will be

conducted to examine the e↵ect of incorporating di↵erent realistic factors and

the influence of the model parameters. More specifically, the objectives of this

research include the following aspects,

• Establish a RSJD model for the MVALM problem, derive the extended

Hamilton-Jacobi-Bellman (HJB) system and obtain the closed-form equi-

librium control as well as the equilibrium value function by solving five

systems of ordinary di↵erential equations. Examine the influence of the

change of model parameters such as the transition rates and the jump in-

tensities with numerical examples.

• Develop a stochastic volatility model with Markov-modulated jump-di↵usion

for the pricing of a discretely-sampled variance swap, obtain a semi-closed-

form pricing formula, derive a continuous counterpart and compare the two

formulas together with a semi-Monte-Carlo simulation to examine the accu-

racy and e�ciency of our solution. Conduct numerical analysis to examine

the e↵ect of regime switching and jump di↵usion.

• Establish a Heston-CIR model with Markov-switching jump-di↵usion for

the valuation of both variance and volatility swaps defined on di↵erent

pre-specified realized variance (volatility) calculating formulae, obtain an

analytical solution for the fair delivery price for each case, verify the ac-

curacy and e�ciency of the solution with a semi-Monte-Carlo simulation

and investigate the influence of each of the factors considered in our hybrid

model via numerical examples and sensitivity analysis.

• Look for further improvements for our model to take into account more

realistic factors, and derive more accurate and e↵ective solutions for various

financial problems.
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1.3 Outline of the Thesis

This thesis consists of six chapters organized as follows.

In Chapter 1, a brief background introduction of the regime-switching jump-

di↵usion (RSJD) models and the two financial problems is presented together

with the main objectives of this dissertation.

Chapter 2 provides necessary preliminary knowledge for the research and

presents literature reviews for both the RSJD models and the mean-variance

asset-liability management (MVALM) problem as well as the pricing of variance

(volatility) swaps, including some basic concepts and methodologies.

In Chapter 3, a basic RSJD model is developed to investigate the MVALM

problem under a game theoretic framework. The problem is considered as a non-

cooperate game where an equilibrium control is defined. The RSJD version of the

extended Hamilton-Jacobi-Bellman (HJB) system is derived together with a ver-

ification theorem, based on which the problem is reduced to solving five systems

of ordinary di↵erential equations. The equilibrium control and the equilibrium

value function are finally obtained in closed form. Then we visualize the ana-

lytical solutions with some numerical examples and examine the e↵ect of several

model coe�cients with sensitivity analysis.

In Chapter 4, we study the pricing of a discretely-sampled variance swap

in a stochastic volatility model with Markov-modulated jump-di↵usion. A semi-

closed-form pricing formula is obtained by applying the generalized Fourier trans-

form and the dimension-reducing two-stage approach. Moreover, to reduce the

complexity of the computation, we first derive the solution based on a given real-

ized path of the Markov chain, and finally obtain the fair delivery price conditional

on various paths. The price of a counterpart with continuous sampling times is

also derived and our solution is compared with the continuous counterpart as

well as the result of a semi-Monte-Carlo simulation under a range of observation

frequencies. The e↵ects of regime switching and jump di↵usion along with the

influence of the model parameters are studied in the numerical analysis section.

Chapter 5 investigates the valuation of both variance swaps and volatility

swaps with discrete sampling times under a Heston-CIR model with Markov-

modulated jump di↵usion. The model under a risk-neutral T-forward measure is

first established via a change of numéraire. Applying the characteristic function

method, we obtain the fair delivery prices for a variance (volatility) swap based on

di↵erent pre-specified realized variance (volatility) calculating formulae. A semi-

Monte-Carlo simulation is carried out to validate the solution. Finally, numerical
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examples and sensitivity analysis are conducted to examine and compare the

e↵ect of each of the factors considered in our hybrid model on the fair strike

price.

Chapter 6 presents a summary of the main work and findings of the research

and gives further research directions for improving the models established and

extending the applications.



CHAPTER 2

Literature Review and Preliminaries

2.1 General Overview

The research focuses on the applications of various regime-switching jump-

di↵usion (RSJD) models on mean-variance asset-liability management (MVALM)

and the pricing of variance (volatility) swaps. In this chapter, we first present

the preliminary knowledge required for the research, including the Markov chain

as well as the jump di↵usion processes which are the building blocks for the

RSJD models, stochastic dynamic programming technique which is an extensively

adopted technique to solve the MVALM problem, and the risk-neutral pricing

as well as the generalized Fourier transform which provide the basic logic and

technique for the pricing of variance (volatility) swaps. Then we give a brief

literature review of the RSJD models in finance and introduce four types of

RSJD that we will develop in the following chapters. Finally a review of the

research progress of MVALM and the pricing of variance (volatility) swaps is

given, including the computing algorithms.

The rest of this chapter is organized as follows. Section 2.2 presents the

mathematical and financial preliminaries, including the relevant concepts and

techniques for the research. The development of the financial RSJD models is re-

viewed in Section 2.3 with an introduction of four types of RSJD models. Section

2.4 gives a review of the research progress in MVALM, including the algorithm

for solving MVALM under a game-theoretical framework. Section 2.5 reviews the

valuation approaches for variance (volatility) swaps. Finally a concluding remark

is presented in Section 2.6.

6



2.2 Preliminaries 7

2.2 Preliminaries

In this section, we present some mathematical and financial preliminaries on

the regime-switching jump-di↵usion (RSJD) models as well as the methodologies

used to solve the mean-variance asset-liability management (MVALM) problem

and the pricing of variance (volatility) swaps.

2.2.1 Markov chain

Let (⌦,F ,P) be a fixed complete probability space where P denotes the real-

world probability measure. Consider a continuous-time financial market and a

finite time horizon [0, T ]. Under a regime-switching model, we assume that the

market regime is divided into n di↵erent states modelled by an observable finite-

state continuous-time Markov chain {↵(t), t 2 [0, T ]} whose value can be selected

from the state space S = {s1, . . . , sn}. The definition of a continuous-time Markov

chain is given as follows,

Definition 2.2.1. A stochastic process ↵(t) is called a continuous-time Markov

chain on a specific time horizon [0, T ] if it takes values in a finite or countably

infinite space S and satisfies the following

P
h
↵(tm+1) = j | ↵(tm) = i,↵(tm�1) = im�1 . . . ,↵(t0) = i0] = P[↵(tm+1) = j | ↵(tm) = i

i
,

8j, i, im�1, . . . , i0 2 S, and 8T > tm+1 > tm > tm�1 > · · · > t0 > 0.

(2.2.1)

Moreover, the Markov chain is said to be time-homogeneous if

P
h
↵(t+m) = j | ↵(t) = i

i
= P

h
↵(m) = j | ↵(0) = i

i
= pij(m), 8i, j 2 S, (2.2.2)

where pij(m) specifies the transition probability from state i to state j.

To incorporate the Markov chain into the stochastic calculus analysis, we

can derive the following semi-martingale dynamics for ↵(t) according to [31],

↵(t) = ↵(0) +

ˆ
t

0

Q(u)0↵(u)du+M(t), (2.2.3)

where M(t), t 2 [0, T ] is a Rn-valued martingale increment process , and Q(t) =

(qij)n⇥n is the transition matrix (generator) of ↵(t), where qij denotes the tran-

sition rate from state i to state j. Q
0 denotes the transpose of the generator.
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The generator Q plays an essential role in the regime-switching models with the

following properties:

• For 8i, j = 1, . . . , n, the transition rates satisfy
P

n

j=1 qij = 0. Moreover, we

have qij > 0 (j 6= i) and qii = �
P

j 6=i
qij.

• The relationship between the stationary transition probabilities and the

transition rates is given by,

8
<

:

P
h
↵(t+ h) = i | ↵(t) = i

i
= pii(t) = 1� qih+ �(h),

P
h
↵(t+ h) = j | ↵(t) = i

i
= pij(t) = qijh+ �(h),

(2.2.4)

where j 6= i and qi =
P

j 6=i
qij.

2.2.2 Jump di↵usion processes

The jump di↵usion (JD) processes refer to Brownian motions (the ”di↵usion”

part) with jumps in the paths of the processes whose dynamics generally take the

following form:

dS(t) =
h
µ(t, S(t))dt+ �(t, S(t))dW (t) + d

N(t)X

k=1

Zk

i
S(t). (2.2.5)

Here the jump part is represented by a compound Poisson process,
P

N(t)
k=1 Zk.

We first give the following definition of a Poisson process, which is a pure

jump process and the building block of the JD models.

Definition 2.2.2. Let Tm =
P

m

k=1 ⌧k, m 2 R, where {⌧i, i = 1, 2, . . . } is a

sequence of independent exponential random variables with the parameter �, the

Poisson process N(t) with parameter � is defined as follows,

N(t) =
X

m�1

1t�Tm . (2.2.6)

The Poisson process is essentially a counting process that counts the number

of jumps occuring before time t with the sizes of all jumps being equal to one

unit. The random variable ⌧i in Definition 2.2.2 denotes the units of time that

the i-th jump takes after the (i � 1)-th jump. Thus Tm =
P

m

k=1 ⌧k denotes the

arrival time of the m-th jump. 1t�Tm is a delta function that equals to 1 when

t � Tm.
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However, the assumption of one unit size for all jumps is unrealistic, therefore

the compound Poisson process with random jump sizes is more extensively used

in JD models instead.

Definition 2.2.3. Let N(t) be a Poisson process with parameter �, and {Zk}k�1

be a sequence of independent and identically distributed (i.i.d.) random variables.

Then the compound Poisson process is defined as

Y (t) =
N(t)X

k=1

Zk, t � 0. (2.2.7)

Note that the jumps in Y (t) and N(t) occur at the same time but with

di↵erent sizes.

Now we present some significant properties of the jump process.

• Martingale property Let N(t) and Y (t) be the Poisson process and the

compound Poisson process defined as Definition 2.2.2 and Definition 2.2.3

respectively. Then the compensated Poisson process Ñ(t) and the com-

pensated compound Poisson process Ỹ (t) are given as follows and are both

martingales.

Ñ(t) = N(t)� �t,

Ỹ (t) = Y (t)� E[Zk]�t,
(2.2.8)

where E[·] denotes the expectation operator. This is a very useful property

for risk-neutral pricing under the JD model.

• Characteristic function The characteristic function plays an essential

role in the analysis of jump process. Generally it is di�cult to have the

closed-form distribution function of the jump process. Alternatively, the

characteristic function is often less complicated and given, based on which

we could obtain the associated integral of expectation of the jump di↵usion

part. Usually the characteristic function of a random variable Y (t) is defined

by

�Y (w) = E[eiwY ]. (2.2.9)

The two most widely adopted characteristic functions of the jump process
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are the Merton-type one and Kou-type one given as follows,

Merton: �z(w) = e
jµw�w2

2 �
2
,

Kou: �z(w) =
p�1

�1 � jw
+

(1� p)�2

�2 + jw
.

(2.2.10)

2.2.3 Stochastic dynamic programming for MVALM

The mean-variance asset-liability management (MVALM) is usually formu-

lated as an optimal control problem which can be solved by employing the stochas-

tic dynamic programming (DP) method. Originally proposed by Richard Bell-

man [32], the basic idea of DP is to break the complicated optimal control problem

into a family of sub-problems and obtain the optimal solution recursively based

on the relationship between the sub-problems that is established via a so-called

Hamilton-Jacobi-Bellman (HJB) equation.

Now we briefly review the algorithm of deriving the optimal strategy for a

continuous-time MVALM problem by using the stochastic DP technique.

Generally the MVALM problem is formulated as follows,

(P1)

8
<

:

min
u(·)

J(u(·)) := V ar[Z(T )],

s.t. E[Z(T )] = d, u(·) 2 U,

(2.2.11)

where U denotes the set of all admissible strategies and the wealth surplus process

Z(t), in the simplest case, evolves according to the following stochastic di↵erential

equation (SDE):

dZ(t) = µ(t, Z(t), u(t))dt+ �(t, Z(t), u(t))dW (t), (2.2.12)

where µ(·) and �(·) are the appreciation rate and the volatility rate respectively.

Step 1: Transform the constrained problem to an unconstrained one.

The constraint on E[Z(T )] can be incorporated into the objective function

using the Lagrange multiplier method. For w 2 R, the constrained problem

(P1) satisfies the following dual equation:

min
u(·)

J(u(·)) := min
u(·)

V ar[Z(T )]

= max
w2R

min
u(·)

E
h
(Z(T )� d)2

i
+ 2w

⇣
E[Z(T )]� d

⌘

= max
w2R

min
u(·)

E
h
(Z(T ) + w � d)2

i
� w

2
.

(2.2.13)
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Step 2: Develop the HJB equation.

Before deriving the HJB equation, we first define the value function V (z, t)

as

V (z, t) = inf
u(·)

E
h
(Z(T ) + w � d)2 | Z(t) = z

i
. (2.2.14)

Then the HJB equation that the value function should satisfy can be derived

by using the following controlled infinitesimal operator

A
u =

@

@t
+ µ(t, Z(t), u(t))

@

@z
+

1

2
�
2(t, Z(t), u(t))

@
2

@z2
, (2.2.15)

with the boundary condition:

V (z, T ) = (z + w � d)2. (2.2.16)

Step 3: Derive the optimal strategy and the corresponding value function

Usually we would first guess the expression of the value function as follows:

V (z, t) = P (t)z2 +M(t)z +N(t). (2.2.17)

Then we substitute the Ansatz into the HJB equation and derive the op-

timal strategy û(·) in terms of the coe�cients. After some calculation

we would obtain a system of ordinary di↵erential equations (ODEs) with

boundary conditions that the coe�cients satisfy. Thus we can finally de-

rive the closed-form expression of û(·) by solving the associated ODEs and

obtain the optimal value of the unconstrained problem as V (z0, 0).

Step 4: Derive the e�cient portfolio and formulate the e�cient frontier

for the original MVALM problem

Based on the results from Step 3, we can finally obtain the e�cient strategy

for the original problem according to (2.2.13) as well as the first-order con-

dition with respect to the Lagrange multiplier w and formulate the e�cient

frontier (V ar[Z(T )], d).

2.2.4 Risk-neutral pricing

The valuation process of financial derivatives is generally carried out under

the risk-neutral probability measure which is equivalent to the real-world proba-
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bility measure, and this is what we call the risk-neutral pricing.

The basic logic of the risk-neutral pricing can be described as follows. Under

the risk-neutral probability measure eP, the discounted stock price D(t)S(t) is a

martingale, where D(t) = e
�
´ t
0 r(u)du is the discounting process with the instan-

taneous interest rate r(t). Based on the martingale property of D(t)S(t), the

value of a derivative V (t) can be calculated as the conditional expectation of the

discounted terminal pay-o↵ function at the current time point as follows,

V (t) =
1

D(t)
eE
h
D(T )V (T ) | F(t)

i

=
1

D(t)
eE
h
D(T )h[S(T )] | F(t)

i
,

(2.2.18)

where V (T ) = h(S(T )) is the terminal pay-o↵ and h(x) is a Borel-measurable

function. According to the Feynman-Kac Theorem, V (t) satisfies a partial

di↵erential equation (PDE). Thus the pricing problem is reduced to solving the

associated PDE.

Now we introduce two useful theorems for risk-neutral pricing , theGirsanov

Theorem and the Feynman-Kac Theorem.

Theorem 2.2.1. (Girsanov Theorem [33]) Let (⌦,F ,P) be a complete proba-

bility space where P denotes the real-world probability measure and F(t), t 2 [0, T ]

is a filtration generated by a Brownian motion W (t) defined on this probability

space, namely, F(t) = �{W (s) : s  t}. Let ⇠(t) be an adapted process. Define

Z(t) = e
�
´ t
0 ⇠(s)dW (s)� 1

2

´ t
0 ⇠

2(s)ds
, (2.2.19)

fW (t) = W (t) +

ˆ
t

0

⇠(s)ds, (2.2.20)

and assume that

E
ˆ

T

0

⇠
2(s)Z2(s)ds < 1. (2.2.21)

Set Z = Z(T ). Then we have E[Z] = 1 and under the probability measure eP
given by the following definition

eP(B) =

ˆ
B

Z(!)dP(!), for 8B 2 F , (2.2.22)

the process fW (t) is a Brownian motion.
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The Girsanov Theorem provides a way to construct the risk-neutral proba-

bility measure eP which can be easily proved by applying the Itô’s formula. The

proof is omitted here. Readers are referred to [33, 34] if interested.

Z = Z(T ) is called the Radon-Nikodým derivative of eP with respect to P
which is used to generate the risk-neutral probability measure and satisfies

Z =
deP
dP . (2.2.23)

Moreover, according to the definition of eP in (2.2.22), for a random variable

X, the following relationship between the expectation under two measures holds,

eE[X] =

ˆ
XdeP =

ˆ
ZXdP = E[ZX]. (2.2.24)

We present the following example for constructing the risk-neutral probabil-

ity measure by applying Theorem 2.2.1.

Example 2.2.1. For the underlying asset S(t) with the following dynamics:

dS(t) =
h
µdt+ �dW (t)

i
S(t), (2.2.25)

where µ and � are the appreciation rate and the volatility rate. Let r(t) be the

instantaneous interest rate. Then we can define Z(t) and fW (t) as

Z(t) = exp
h
�

ˆ
t

0

(µ� r(s))dW (s)�
1

2

ˆ
t

0

(µ� r(s))2ds
i
,

dfW (t) = dW (t) +
(µ� r(t))

�
dt,

We can derive the dynamics of the discounted price process as follows,

d(D(t)S(t)) = d

h
e
�
´ t
0 r(u)du

S(t)
i
= e

�
´ t
0 r(u)du

h
(µ� r(t))S(t)dt+ �S(t)dW (t)

i

= e
�
´ t
0 r(u)du

�S(t)dfW (t).

(2.2.26)

Then it is obviously that under the probability measure eP generated by the

Radon-Nikodým derivative Z = Z(T ), D(t)S(t) is a martingale.

Theorem 2.2.2. (Feynman-Kac Theorem [35]) Assume that the stochastic
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process Y (t) satisfies the following stochastic di↵erential equation (SDE):

dY (t) = µ(t, Y (t))dt+ �(t, Y (t))dW (t). (2.2.27)

For a Borel-measurable function h(z) and a fixed time horizon [0, T ]. Define the

function

l(t, y) = Et,y
h[Y (T )]. (2.2.28)

where Et,y[·] denotes the expectation conditional on the event {Y (t) = y} at the

time t. Assume that Et,y
h[Y (T )] < 1. Then l(t, y) satisfies the following partial

di↵erential equation

lt(t, y) + µ(t, y)ly(t, y) +
1

2
�
2(t, y)lyy(t, y) = 0, (2.2.29)

with the terminal condition

l(T, y) = h(y) for all y. (2.2.30)

The derivation of the PDE (2.2.29) is based on the following theorem and

the martingale property of l(t, Y (t)).

Theorem 2.2.3. (Markov property [36]) Let Y (t), t � 0 be a solution to the

SDE in (2.2.27) with initial condition given at time 0. Then for t 2 [0, T ], we

have

E
h
h(Y (T )) | F(t)

i
= l(t, Y (t)). (2.2.31)

What the above theorem specifies is that the conditional expectation of the

terminal condition h(Y (T )) given the information up to time t is a function of

time t and the state process Y (t). In this sense, we can replace Y (t) with a

dummy variable y and compute l(t, y) = Et,y
h[Y (T )] first and put the random

variable Y (t) back afterwards for further computation.

Moreover, since l(t, Y (t)) denotes the conditional expectation, it is easy to

prove that l(t, Y (t)) satisfies the martingale property. Thus for any SDE defined

as (2.2.27), we can derive the dynamics of l(t, Y (t)) according to Itô’s formula:

dl(t, Y (t)) = ltdt+ lydY +
1

2
dY dY

= [lt + µlydt+
1

2
�
2
lyy]dt+ �lydW.

(2.2.32)
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Based on the martingale property, the di↵usion part should equal to 0, leading

to the PDE in (2.2.29).

2.2.5 Generalized Fourier transform

In subsection 2.2.4, we showed that the pricing problem of a derivative is

reduced to solving the associated partial di↵erential equation (PDE) derived ac-

cording to the Feynman-Kac theorem. In this subsection, we briefly introduce one

of the essential techniques in finance, the generalized Fourier transform method,

which can be employed to solve the PDE with respect to the pricing problem.

Definition 2.2.4. (Generalized Fourier transform [37] ) Let V (x) be the

value of the derivative that satisfies the PDE derived by the Feynman-Kac theo-

rem, which is a function of the current state of the underlying asset X(t). Then

the generalized Fourier transform of V (x), denoted by F [V (x)], is given by

F [V (x)] =

ˆ +1

�1
V (x)e�j!x

dx = U(!), (2.2.33)

where j =
p
�1 and ! is the Fourier transform frequency.

Some useful properties of Fourier transform are given as follows,

(1) Inverse Fourier transform The inverse Fourier transform is defined as:

V (x) = F
�1[U(!)] =

1

2⇡

ˆ +1

�1
U(!)ej!xd!. (2.2.34)

With the inverse Fourier transform, we can obtain the solution V (x) to the

original PDE based on the solution U(!) we derived for the transformed-

PDE.

(2) Di↵erentiation With the Fourier transform, we can transform the partial

derivative in the original PDE as follows,

F

h
@
n
V (x)

@Xn

i
= (j!)nU(!). (2.2.35)

Thus we can reduce the dimension of the associated PDE as well as the

di�culty in computation.
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(3) Delta function For a delta function �x0(x) defined as

�x0(x) = �(x0 � x) =

(
1, x = x0,

0, x 6= x0,

(2.2.36)

with the integration property
´
R
�aF (t)dt = F (a), for 8a 2 R and any

integrable function F (t), we have the corresponding Fourier transform:

F [�x0(x)] = e
�jx0!. (2.2.37)

This can be useful for transforming the terminal conditions for the pricing

of variance swaps.

(4) Characteristic function The characteristic function of a random variable

X is closely related to the Fourier transform and can be given by

�X(!) = E[ej!X ] =
ˆ
R

e
j!x

p(x)dx, (2.2.38)

where �X denotes the characteristic function of X and p(x) is the proba-

bility density function of X. We can see that �X is essentially a complex

conjugate of the Fourier transform of p(x).

2.3 Various RSJD Models

2.3.1 A general overview

Abrupt changes can take place in financial markets and may persist for a long

period, a↵ecting the performance of the markets. For example, during the finan-

cial crises, the financial assets’ and derivatives’ prices, interest rates, investors’

behaviour and expectations change dramatically towards a negative direction and

the phenomenon can last for years or decades. Therefore, this regime-switching

property should be considered when we are developing models for investment

strategies, pricing of financial assets and derivatives and other financial prob-

lems.

Regime-switching (RS) models have been widely used to capture the simul-

taneously changes of the regime-dependent model dynamics. The application of

Markov RS models on financial problems can be traced back to the works by [38]

and [39] where two separate regimes are considered for linear regressions. Then
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Hamilton [12] proposed a very tractable approach to modelling regime switching

and adopted the RS model to investigate the stock return time series, motivat-

ing the extensive successive research on the applications of RS models to other

financial topics. A hidden Markov chain is used to model the switches between

market states in the pricing of American options in [13] where the regimes are

not observable. Elliott et al. [15] developed a random Esscher transform to de-

termine a risk neutral measure in a RS market, which has been widely adopted

by research on option or derivative pricing with regime switching. Most recently,

Muhammad et al. [40] compared the regime-switching GARCH model with a

single-regime counterpart in predicting the Value-at-Risk (VaR) in the precious

metals markets and proved the e�ciency and accuracy of the RSGARCH model.

Novel approaches are developed in [41] for option pricing under regime switch-

ing where the path-dependence side e↵ects are dealt with by novel and intuitive

risk-neutral measures.

As we mentioned in Chapter 1, generally the price processes in the RS models

under each given regime are still considered stochastic processes with continuity.

While in the real world, even if the business cycle has entered a somewhat stable

stage, there could still be unexpected events a↵ecting the performance of the fi-

nancial markets, motivating the applications of jump-di↵usion models in finance.

In 1976, Merton [5] pointed out that geometric Brownian motions with continuous

sample paths can only model the ”normal” vibrations of the stock prices, which

may arise from the imbalance between supply and demand. While there still ex-

ists ”abnormal” vibrations due to new information which can cause a substantial

e↵ect on the stock price. And this component of price changes is modelled by

a ”jump” process, whose prototype is a ”Poisson-driven process”. In the work

of [42], an explicit option pricing formula is obtained via Fourier transform where

the stock price is modelled by a Lévy process consisting of the continuous-time

di↵usion and a jump process. A double exponential jump di↵usion model is con-

sidered for the pricing of American options and popular path-dependent options

in [43]. In 2018, Marianito et al. [44] developed closed-form pricing formulas for

European options whose underlying stock pays dividends and is modelled by a

jump-di↵usion process.

The regime-switching jump-di↵usion (RSJD) models, or the Markov-modulated

jump-di↵usion models, which capture both the e↵ect of the changes of the macroe-

conomic environment and the abnormal events, have attracted much attention

from the researchers in recent years.

In 2012, Zhang et al. [29] established a su�cient stochastic maximum princi-
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ple for the stochastic control problem with RSJD and presented financial applica-

tions to problems such as the mean-variance portfolio selection. While Azevedo

et al. [45] developed the dynamic programming technique for the optimal control

problem under RSJD framework and established the corresponding Hamilton-

Jacobi-Bellman equation. They provided detailed proof of Bellman’s optimal-

ity principle and presented an application of their results to a consumption-

investment problem in such a RSJD market. The pricing of contingent claims

under RSJD models is investigated in [46] where explicit pricing formula and a

multinomial approach is obtained via a backward induction scheme. Bo et al. [47]

priced the variance swaps in a RSJD market and obtained a dynamic optimal in-

vestment strategy for the variance swaps in closed form via dynamic programming

methods. The optimal dividend payment strategy for an insurance company with

a RSJD surplus is studied in [48]. Mollapourasl et al. [49] investigated localized

kernel-based approximation for pricing both European and American options in

a RSJD market by formulating free or fixed boundary problems.

In the following subsection, we will briefly introduce various types of RSJD

models that we will develop in this thesis.

2.3.2 RSJD models

Consider a finite-state continuous-time observable Markov chain ↵(t) with

the corresponding state space E = {e1, . . . , en}, where ei = (0, . . . , 1, . . . , 0)0 2 Rn

is a n-dimensional canonical unit vector. Here M
0 denotes the transpose of a

vector or a matrix M . Assume that there is only one risky asset in the financial

market denoted by S(t), then the dynamics of the price process of S(t) under

various RSJD models are formulated as follows,

Basic regime-switching model with independent jump di↵usion

8
>>>>><

>>>>>:

dS(t) = S(t)
h
µ↵(t)(t)dt+ �↵(t)(t)dW (t) + d

M(t)X

m=1

Jm

i
,

t 2 [0, T ],

S(0) = S0 > 0,

(2.3.1)

where µ↵(t)(t) and �↵(t)(t) are the Markov-modulated appreciation rate and volatil-

ity rate of the risky asset S(t) respectively. Specifically, µ↵(t)(t)) =< µ(t),↵(t) >,

�↵(t)(t) =< �,↵(t) >, where µ(t) = (µ1(t), . . . , µn(t)), �(t) = (�1(t), . . . , �n(t))

and < ·, · > denotes the inner product in Rn. For i = 1, . . . , n, µi(t) denotes
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the appreciation rate under the i-th market regime, and �i(t) is defined similarly.

Thus the switching regime represented by the Markov chain is incorporated into

our model. Moreover, W (t) is a standard Brownian motion. Jm is the size of

the m-th jump. M(t) is a counting process that represents the number of jumps

up to time t, which is essentially a Poisson process with intensity �m. Thus the

compound Poisson process
P

M(t)
m=1 Jm represents the cumulative amount of jumps

in the time interval [0, T ]. S0 denotes the initial stock price.

Under this model, the jump process is assumed to be independent of the

switching regime and is not modulated by the Markov chain. This can be inter-

preted as the situation where the unexpected event is irrelevant to the structural

changes of the macroeconomic environment. Alternatively, in other cases, some

of the abnormal vibrations may be closely linked to the macroeconomic condition.

Thus we would formulate the following model,

Basic regime-switching model with Markov-modulated jump di↵u-

sion
8
>>>><

>>>>:

dS(t) = S(t)
h
µ↵(t)(t)dt+ �↵(t)(t)dW (t) +

ˆ
R

J↵(t)(t, z)Ñ↵(t)(dz, dt)
i
,

t 2 [0, T ],

S(0) = S0 > 0,

(2.3.2)

where J↵(t)(t, z) is the Markov-modulated generalized form of the jump size z.

Ñ↵(t)(dz, dt) is a compensated Poisson random measure which is also dependent

on the market regime and can be given by:

Ñ↵(t)(dz, dt) = N↵(t)(dz, dt)� �↵(t)v↵(t)(dz)⌘(dt), (2.3.3)

where v↵(t)(dz) denotes the jump size distribution and �↵(t) is the jump intensity.

N↵(t)(dz, dt) is the Markov-modulated Poisson Random measure and ⌘(dt) is a

generalized form of dt. All of the parameters are defined similarly to µ↵(t)(t) and

�↵(t)(t) as an inner product with the Markov chain. Under this model, the jump

intensity and jump size along with its distribution takes di↵erent values or forms

under di↵erent market regime.

Heston-RSJD model

Previous empirical studies reported that the volatility of a stock moves

stochastically over time rather than stays deterministic [50–52]. Thus plenty

of stochastic volatility (SV) models have been developed and applied in finance

to capture the features of the implied volatility such as the volatility smile. In
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1993, Heston [3] proposed the most famous SV model where the volatility rate

of the stock is assumed to be a stochastic mean-reverting process and derived a

closed-form pricing formula for options under this model. Heston’s model exhibits

superior performance over the Black-Scholes model and have been extensively

adopted over decades.

We take into account the SV and formulate the Heston-RSJD model as

follows,

8
><

>:

dS(t) =
h
µ↵(t)(t)dt+ �(y(t))dWs +

ˆ
R

J↵(t)(t, z)Ñ↵(t)(dz, dt)
i
S(t),

dy(t) = k(✓↵(t) � y(t))dt+ �y

p
y(t)dWy,

(2.3.4)

where �(y(t)) is a generalized form of the stochastic volatility process y(t) that

satisfies the second stochastic di↵erential equation. k is corresponding to the

speed of mean reversion adjustment, ✓↵(t) =< ✓,↵(t) >, ✓ = (✓1, . . . , ✓n)0 denotes

the long run average of the volatility rate and �v is the so-called volatility of

volatility. Ws and Wy are two standard Brownian motions, which are usually

assumed to be correlated by a constant correlation coe�cient ⇢.

Heston-CIR model with Markov-modulated jump di↵usion

In plenty of literatures [53–55], the stochastic volatility is often investigated

together with the stochastic interest rate. The consideration for the stochastic

property of the interest rate results from the fact that the maturities for many

contingent claims contracts can be as long as five years or beyond when the

interest rate cannot be taken as a constant or deterministic function. The most

well-known stochastic interest rate models are the Cox–Ingersoll–Ross (CIR), the

Hull-white and the Vasicek model. Here we formulate the following RSJD model

combining both Heston’s stochastic volatility and the stochastic interest rate that

follows a CIR process,

8
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denote the Markov-modulated compensated Poisson random measures. b and

�↵(t) indicate the speed and the mean of the reverting adjustment. ⌘ denotes the

volatility of the instantaneous interest rate process.

2.4 Mean-Variance Asset-Liability Management

The Nobel-Prize-winning work of Harry Markowitz [30] first investigated the

portfolio selection problem under the mean-variance (M-V) criterion, which was

referred to as the ”expected returns-variance of returns” rule, and undoubtedly

laid the foundation of the modern portfolio theory and even the modern math-

ematical finance theory. Markowtiz’s mean-variance portfolio selection aims to

optimize the allocation of wealth among the risky assets to best handle the trade-

o↵ between the overall return and risk of the portfolio where the risk that comes

from the uncertainty in the future return is measured by variance. In Markowitz’s

work, the optimal strategy of a single-period portfolio selection problem is de-

rived, and some significant concepts in the portfolio theory such as the e�cient

frontier and expected return are introduced.

However, the milestone work exhibits some limitations. For example, it only

considers a single-period setting and it assumes a frictionless complete market.

Therefore, e↵orts have been made by a vast number of researchers to employ and

extend the mean-variance framework. One breakthrough research was made by

Li and Ng in [56] where an embedding technique was first adopted to obtain the

optimal strategy for a multi-period M-V portfolio selection problem which had

been di�cult to solve as a result of the non-separability of the M-V objective

function. In the same year, Zhou and Li [57] investigated the continuous-time

version of the same problem by also employing the embedding technique. In the

work of Lim and Zhou [58], the model coe�cients are assumed to be random in-

stead of deterministic. The M-V portfolio selection problem is reduced to solving

a backward stochastic di↵erential equation (BSDE). Bielecki et al. [59] further

considered a bankruptcy prohibition constraint based on the M-V portfolio se-

lection model with random parameters. The investor’s wealth of the portfolio is

required to remain above zero at all times. A decomposition approach is adopted

to obtain the constrained optimal control and e�cient frontier. Most recently,

Wang and Wei [60] established a continuous-time M-V portfolio selection model

where the parameters are both random and modulated by a Markov chain. A

new system of mean-field BSDEs driven by the Markov chain are formulated to

obtain the analytical expressions of the optimal strategy. More research progress
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on the M-V portfolio selection can be found in [61–66].

As a matter of fact, the mean-variance asset-liability management (MVALM)

is among the extensions of the Markowitz’s mean-variance portfolio selection

model, taking into account the exogenous liability faced by the investors. The

major concern in a MVALM problem becomes the terminal surplus wealth, de-

fined as the wealth of the portfolio subtracted by the uncontrollable liability.

Investors seek an optimal investing strategy to minimize the variance of the ter-

minal surplus given a fixed level of expected terminal surplus wealth. The first

ALM model under the M-V criterion was investigated by Sharpe and Tint [67]

in a static setting. Sequentially, Keel and Müller [68] provided proof that the

e�cient frontier (EF) would shift due to the e↵ect of liabilities. Then a multi-

period MVALM model was first considered in the paper by Leippold et al. [69]

where the explicit expressions of the optimal control and the EF are derived by

applying the embedding technique and a geometric approach. In 2006, Chiu and

Li [70] established a continuous-time MVALM framework where geometric Brow-

nian motions are used to model the price processes and the optimal strategy are

obtained by employing the linear-quadratic method. The impact of incorporating

liability and the optimal funding ratio are also investigated in their paper.

Following Leippold and Chiu, a great deal of research has been made to

improve the MVALM models both in a multi-period and continuous-time setting

by relaxing some of the assumptions and considering more realistic constraints.

We here briefly review some of the MVALM literatures incorporating realistic

factors such as endogenous liabilities, uncertain exit time, bankruptcy control, a

constant elasticity variance process, stochastic interest rate, stochastic volatility

and transaction costs.

Though the liability is often considered uncontrollable, some of the investors

may be able to manage and optimize their liabilities, which may be the securities

they issued to raise funds. Thus Leippold et al. [71] first considered endogenous

liabilities and studied the strategy that optimizes simultaneously the assets and

liabilities in a multi-period setting. It is showed in their paper that the e�cient

frontier could be decomposed to an orthogonal set of basis returns. After that,

a continuous-time e�cient strategy for the MVALM problem with endogenous

liabilities is derived in closed form by Yao et al. [72]. Yao et al. [73] further

incorporated uncertain exit time and Markov jumps to extend their model. In real

world, the investment process can be interrupted by unexpected events, leading

to investors exiting the market before the pre-specified terminal time. In the

work of Yi et al. [74], by assuming that the uncertain exit time follows a given
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distribution, the problem is reduced to the familiar one with certain investment

horizon. Cui et al. [75] established a mean-field formulation for the uncertain-

exit-time MVALM problem where two-dimensional state variables are involved

to study the influence of an uncertain exit time. Due to the consideration of

liability, there is a higher probability that the investor may go bankruptcy and

have to borrow money for investment. In the paper of Li et al. [76], the investor

intends to control the probability of bankruptcy during the investment period.

By constructing and solving a Lagrangian problem and a corresponding auxiliary

problem through a looping algorithm that keeps running as long as the current

wealth is above zero, they obtained the optimal solution when the algorithm

stops. The real financial market is not frictionless so investors cannot trade as

often as they wish without transaction costs. Thus Zhou et al. [77] considered

the MVALM model in a financial market with quadratic transaction costs and

obtained both pre-committed and time-consistent strategies in closed form.

Apart from the constraints set on the financial markets, researchers are also

dedicated to establishing more realistic and generalized models for the price pro-

cesses of the financial assets. Zhang and Chen [78] considered a MVALM problem

under constant elasticity of variance (CEV) processes where the e�cient portfolio

are obtained via two linear backward stochastic di↵erential equations (BSDEs)

with unbounded stochastic coe�cients. They provided proof of the existence

and uniqueness of the complicated BSDEs and established solutions under spe-

cial cases. The interest rate is assumed to follow the Hull-White process in the

paper by Pan and Xiao [79] where inflation risk also exists and the investor can

invest in a zero-coupon bond and an inflation-indexed bond besides the stocks

and cash. Pan et al. [80] employed the Heston’s stochastic volatility model to

investigate a continuous-time MVALM and presented a sensitivity analysis of the

parameters with respect to the volatility process on the e�cient frontier. The

stochastic volatility model is also adopted in the work of Li et al. [81] where a

derivative is allowed to be traded besides a bond and a stock and they derived

the explicit expressions of the optimal strategies and the EF via two backward

stochastic di↵erential equations.

However, we have so far neglected a significant problem which has drawn

more and more attractions these years, the time inconsistency property of the

MVALM problem. The time inconsistency problem arises from the non-linearity

of the MV objective functional, making it di�cult to apply the dynamic program-

ming techniques since the Bellman optimality principle does not hold anymore.

Therefore the optimal strategy that maximizes the objective functional at initial
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time does not necessarily optimize the ones at latter time. Basically there are

three approaches to handle the time-inconsistency problem. Firstly, the investor

adopts di↵erent optimal strategies each day that maximizes the M-V objective

functional at that time. Secondly, as in all the literatures mentioned above, only

the optimal strategy obtained at the initial time is investigated and derived, re-

gardless of the fact that it may not be optimal for the objective functionals in the

future and it is assumed that the investor would hold on to the allocation rule

which is the so-called pre-committed strategy. The third way is to take the time

consistency more seriously and investigate the problem in a game theoretic frame-

work. The game theoretic approach that addresses general time inconsistency via

Nash equilibrium was first investigated by Scrotz [82] and Pollak [83] who con-

sidered a deterministic Ramsey problem. Following them, consecutive work is

provided in [84], [85], [86] and [87]. Especially, Björk and Murgoci [87] provided

the first study of a general Markovian framework where a general controlled

Markov process and a general objective functional are considered. The authors

generalized many previously models, presented a verification theorem and derived

an extended HJB equation which plays an essential role in the game theoretic ap-

proach to the time inconsistent problems. From then on, a vast number of papers

adopted this game theoretic framework. For example, Björk et al. [88] considered

a risk aversion coe�cient which is dependent on the current wealth condition

in the MV portfolio selection problem and derived a time-consistent equilibrium

control. Li et al. [89] derived the time-consistent reinsurance-investment strategy

for an insurer and a reinsurer under the M-V criterion under the constant elastic-

ity of variance (CEV) model. Wei and Wang [90] investigated a MVALM problem

with random coe�cients and obtained a time-consistent equilibrium strategy in a

linear feedback form of the surplus and the liability. Zhang et al. [91] derived the

extended HJB equations for a MVALM problem with state-dependent risk aver-

sion and obtained the time-consistent equilibrium control through the verification

theorem.

Now we move on to the applications of RSJD models on the MVALM prob-

lem. Regime switching (R-S) was originally considered under the M-V framework

by Zhou and Yin [?] in a continuous-time portfolio selection problem where they

showed that unexpectedly the results are similar to the non-regime-switching

counterparts when the interest rate is not regime-dependent. Chen et al. [20]

employed maximum principle to investigate a continuous-time MVALM problem

with R-S and obtained the optimal feedback control via four systems of ordi-

nary di↵erential equations. Three years later, Chen and Yang [92] established a
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multi-period R-S model and compared the results with and without liabilities.

Inspired by the game theoretic framework of [87], Wei et al. [21] derived the

equilibrium control and value function for a regime-switching MVALM via the

extended HJB equations and verification theorem. Along another line, Zeng and

Li [93] compared the benchmark and M-V criteria of the ALM problem under a

jump-di↵usion model where the price processes of the assets and the liabilities are

modelled by an exponential Lévy process and a Lévy process respectively. Zeng

and Li [94] further extended their jump di↵usion model under a time-consistent

framework and derived both investment and reinsurance strategies for a mean-

variance investor.

The regime-switching jump-di↵usion (RSJD) model was investigated by Zhang

et al. [29] where a su�cient stochastic maximum principle is established and ap-

plied to the M-V portfolio selection. Wu [25] used a Markov-modulated Lévy

process and a Brownian motion to model the price process of the stock and in-

vestors’ stochastic cash flow respectively in a M-V portfolio selection problem.

Then Yu [26] formulated a more generalized Markov-switching jump-di↵usion

framework of the MVALM problem and derived the feasibility condition as well

as the e�cient strategy by employing the stochastic linear-quadratic technique.

However, so far the literatures above regarding RSJD models only focused

on the pre-committed strategy of the M-V portfolio selection or ALM problem.

In this thesis, we aim to establish a basic RSJD model for a MVALM problem

under a game theoretic framework and derive the corresponding Nash equilibrium

control and value function, which is one of our major contributions.

In Section 2.2.3 we reviewed the algorithm of deriving the e�cient strategy

and e�cient frontier by using the stochastic dynamic programming, which is

on a pre-committed basis. Now we briefly introduce the algorithm of deriving

the time-consistent equilibrium strategy by also applying the stochastic dynamic

programming technique. For more details, the readers can refer to [86, 87]

Step 1: Formulate the objective functional.

Under the game theoretical framework, the objective functional is generally

formulated as follows,

J(t, z, ⇡(·)) = Et,z[Z
⇡(T )]�

�(·)

2
V art,z[Z

⇡(T )]

= Et,z[Z
⇡(T )]�

�(·)

2

n
Et,z[Z

⇡(T )2]� E2
t,z
[Z⇡(T )]

o

= Et,z[F (z, Z⇡(T ))] +G(z,Et,z,[Z
⇡(T )]),

(2.4.1)
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where Et,z[·] and V art,z[·] are the expectation and variance conditional on

the current surplus condition {Z(t) = z} respectively. �(·) denotes the

risk aversion coe�cient of the investor, which can be state-dependent as

�(z) or regime-dependent as �(j) with j representing the j-th market state.

F (z, x) = x�
�(·)
2 x

2, G(z, x) = �(·)
2 x

2.

Step 2: Define the equilibrium control law and the equilibrium value func-

tion

The problem is considered as a non-cooperate game where the investor at

each time point t 2 [0, T ] is treated as a di↵erent player. The equilibrium

control ⇡̂ is defined as such a strategy that if for all players k > t, ⇡̂ is the

optimal strategy they choose, then it is also the optimal strategy for player

t.

Step 3: Derive the extended HJB equations and establish the verification

theorem

The extended HJB equations are a system of PDEs that the value func-

tion satisfies. Based on the extended HJB equations and the verification

theorem, the problem is reduced to solving a number of ODEs.

Step 4: Obtain the equilibrium control and value function by solving the

associated ODEs derived from the extended HJB equations.

2.5 Variance (Volatility) Swaps Pricing

Variance (volatility) is often used as a measurement of the risk of investing in

the underlying asset. The variance (volatility) changes sarcastically over the in-

vestment period, providing practitioners opportunities to speculate on the spread

between the realized variance (volatility) and the implied variance (volatility), as

well as the motivation to hedge against the variance risk. As a consequence, vari-

ance (volatility) related derivative products such as the volatility index (VIX)

futures, the VIX options, variance swaps and volatility swaps have emerged and

are widely traded over the counter or in the exchanges in recent years.

Among all the variance (volatility) related derivative products, variance

(volatility) swaps have drawn much attention from the practitioners and re-

searchers. A variance (volatility) swap is not a swap in a traditional sense, but a

forward contract whose payo↵ at expiry is determined by the di↵erence between
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the realized variance (volatility) and a pre-set fixed strike price. The realized vari-

ance (volatility) is usually calculated according to a pre-specified formula. For

details regarding calculation of the realized variance (volatility), one can refer

to [95–97]. A long position in a variance (volatility) swap generates profit if the

realized variance exceeds the pre-set strike price.

Numerous research has been carried out on variance (volatility) swap pricing

over the last decades. The valuation approaches can be categorized into two

types: the non-parametric model-free approach and the parametric stochastic

approach.

Early studies of variance (volatility) swaps mainly focused on the model-free

approach. The main idea of the model-free pricing technique is to replicate the

variance (volatility) swap with a portfolio composed of a call option, a put option

and a forward, and follow the routine of calculating the VIX index (see [98]). It

is less complicated and easier to apply since it does not involve any assumption

of the specific form of the dynamics of the asset’s price process. The replicating

method was first proposed in [99] where a log contract is replicated with a static

position in a series of options. Then in 1994, Neuberger [100] claimed that a

variance swap with continuous sampling times could be replicated with a log

contract and a dynamically adjusted position in the underlying asset under certain

circumstances. Carr and Lee [101] developed robust replicating portfolios for

volatility derivatives that trade on vanilla options and the underlying asset and

obtained explicit pricing formulas for variance swaps and variance options under

an independence condition. Two years later, Carr and Lee [102] extended their

results to allow for a continuous semi-martingale process and obtained lower and

upper bounds on the prices of variance options.

Although this model-free method gives the prices of variance (volatility)

swaps as well as a hedging strategy, it still exhibits several drawbacks. First of

all, it relies heavily on the assumption that the price process of the underlying

asset follows a continuous path, which is empirically proved unrealistic. Secondly,

the approach assumes continuously sampled variance (volatility) swaps, which is

only an approximation for the real-world ones and in some situations might not

be a good proxy. Last but not least, the replication strategy requires continuous

exercise of the options, which is not operable.

As a consequence, to deal with more sophisticated and realistic variance

(volatility) swaps, researchers developed the parametric stochastic approach which

is based on the assumption that the underlying asset’s price process is driven by

a specific stochastic process. The stochastic approach can be further categorized
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into analytical methods and numerical methods. Analytical methods have been

adopted in order to derive closed-form expressions of the fair strike prices.

Generally, the payo↵ function of a long position in a variance swap at expiry

takes the form V (T ) = (�2
R
�Kvar)⇥G, where �2

R
denotes the annualized realized

variance, Kvar is the strike price of the variance swap, and G denotes the notional

amount of the swap in dollars per volatility point squared. One significant feature

of the variance swap useful in the valuation process is that it requires zero initial

cost since it is essentially a forward contract. Therefore, if we denote the value

of a variance swap at time t as V (t), which equals the expected present value of

the payo↵ under the risk-neutral measurement of Q, we can have the following

initial value:

V (0) = EQ
0

h
e
�
´ T
0 rtdt(�2

R
�Kvar)⇥G

i
= 0, (2.5.1)

where rt is the related interest rate and EQ
t denotes the conditional expectation

at time t. Based on the above equation, the fair strike price can be obtained as

Kvar = EQ
0 [�

2
R
]. (2.5.2)

Usually �
2
R
is calculated according to some pre-determined formula specified

in the contract. Plenty of research on the analytical methods for pricing variance

(volatility) swaps has been done based on (2.5.2).

Heston and Nandi [103] proposed analytical pricing formulae for volatility

swaps as well as other volatility derivatives based on the GARCH volatility model.

A hedging strategy that trades only on the underlying asset and a risk-free asset

is also presented, compared to the hedging strategies on a continuum of options

in previous literatures. Carr [104] developed the pricing formulae for derivatives

on future realized quadratic variation where the underlying stock’s price follows

a Lévy process and illustrated substantial di↵erences from the counterparts in a

continuous setting. Elliott et al. [105] established a Markov-modulated stochastic

volatility model for the pricing of volatility swaps and derived strike prices both

from a probabilistic perspective and a di↵erential equation perspective. Broadie

and Jain [106] investigated the pricing of variance swaps via a partial di↵erential

equation approach and presented a hedging strategy for volatility derivatives us-

ing variance swaps based on the no-arbitrage relationship. Itkin and Carr [107]

considered various stochastic time-changed Lévy models for the pricing of vari-

ance swaps and compared the pricing formulae obtained via a forward character-

istic function approach and a log-contract approach.
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However, the literatures mentioned above, mostly in early years, though

taking into account more realistic factors, still relies on the continuously-sampled

approximation for the realized variance. Even though the continuous approxima-

tion may provide reasonable estimates when the observation frequencies for the

real-world variance (volatility) swaps are high, it can diverge drastically from the

prices for variance (volatility) swaps with low sampling frequencies, leading to

large relative errors.

As a result, most of the recent literatures have shifted attention directly

to discretely sampled variance (volatility) swaps on yearly, quarterly, monthly

and daily bases. Broadie [108] investigated the fair strike prices of discretely-

sampled variance and volatility swaps under various stochastic models, including

the jump-di↵usion models as well as the stochastic volatility models, and com-

pared the obtained pricing formulae with the continuously-sampled counterpart,

concluding that the discrete price converges to the continuous price as the ob-

servation frequency approaches infinity. A variance swap with discrete sampling

times is priced in [109] based on the Heston stochastic volatility model where

an explicit solution with high e�ciency and accuracy is derived by adopting the

dimension reduction technique and using the generalized Fourier transform. A

hybrid model is established in [110] incorporating both stochastic volatility and

stochastic interest rate for the discretely-sampled variance swaps where the au-

thors examined both the e↵ect of the volatility and interest rate on the results.

Most recently, Yan and Zhao [111] proposed a tractable approach to price volatil-

ity derivative with discrete sampling times under a general stochastic volatility

model. In their work, the underlying volatility is assumed to comply with a beta

prime distribution, which is flexible and consistent with the feature of the market

data, and the jump di↵usion process is also captured by extending the model

through stochastic time changes.

However, it can be technically di�cult to obtain analytical solutions most of

the time which gives rise to various numerical methods as an alternative. In 2001,

Little and Pant [112] assumed that the local volatility varies with both time and

the stock price according to a known function, and studied the discretely-sampled

variance swap via a finite di↵erence method. They reduced the dimension of the

pricing problem by introducing a two-stage approach, which greatly improved the

e�ciency and accuracy of their pricing formula. Windcli↵ et al. [113] established

a general framework applicable for various stochastic models using the numerical

partial integral di↵erential equation (PIDE) methods and compared the e↵ects

of transaction costs, jump-di↵usion and local volatility on the discretely-sampled
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variance swaps prices. A numerical partial di↵erential equation (PDE) method

is adopted in [108] to derive the fair volatility strikes with jumps and discrete

sampling times where it is showed that discrete sampling exhibits little e↵ect

when the e↵ect of jumps is significant.

Elliott et al. [105] originally considered regime-switching (R-S) models for

pricing volatility swaps and presented a R-S Esscher transform under the Markov-

modulted stochastic volatility model to determine the risk neutral measure. How-

ever, they only considered the continuously-sampled approximation. Therefore

Elliott and Lian [114] extended their results to variance and volatility swaps with

discrete sampling times by applying the characteristic function method. They

presented a very useful idea to reduce the di�culty of calculation caused by the

incorporation of the Markov chain, which is to determine the forward charac-

teristic function based on a given realized path of the Markov chain and then

consider the e↵ect of changing paths on the conditional expectation. Shen and

Siu [115] investigated a Schöbel-Zhu-Hull-White stochastic interest rate model

modulated by a continuous-time observable Markov chain and illustrated the sig-

nificant e↵ect of regime switching as well as the instantaneous interest rate with

numerical examples. Dilloo and Tangman [116] adopted a finite di↵erence method

for pricing variance swaps under R-S models as well as other stochastic models

and validated the results with obtained analytical solutions under R-S models

and Merton’s models.

To our knowledge, little work has been done on the pricing of volatility

derivatives under regime-switching jump-di↵usion (RSJD) models, therefore we

aim to establish a Heston-RSJD model and a Heston-CIR model with Markov-

modulated jump di↵usion for the pricing of variance swaps and volatility swaps

in this thesis.

2.6 Concluding Remarks

In this chapter, we review some essential concepts for the regime-switching

jump-di↵usion (RSJD) models as well as methodologies for solving mean-variance

asset-liability management (MVALM) and the pricing of variance (volatility)

swaps. The RSJD model assumes jump di↵usion processes whose parameters

are dependent on a finite-state observable continuous-time Markov chain. Gener-

ally a jump di↵usion process refers to a geometric Brownian motion with jumps

described by a compound Poisson process. The Markov chain defined with a tran-

sition matrix whose elements stand for the transition rates between two regimes
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is used to represent the market states. The MVALM is usually formulated as a

stochastic control problem which is generally solved by utilizing the stochastic

dynamic programming technique. The optimal strategy can be obtained by de-

riving and solving the associated HJB equation or the extended Hamilton-Jacobi-

Bellman (HJB) equations. The pricing of variance (volatility) swaps is carried out

under the risk-neutral pricing framework where the value of a variance (volatil-

ity) swap is calculated as the conditional expectation of the discounted terminal

pay-o↵ function under the risk-neutral probability measure. According to the

Feynman-Kac theorem, the discounted value function satisfies a partial di↵eren-

tial equation (PDE) and can be solved by using the generalized Fourier transform

method. Thus the pricing problem is reduced to solving the associated PDE.

In the upcoming chapters, various realistic RSJD models will be established

for the MVALM as well as the pricing of variance (volatility) swaps and the

problems will be solved by utilizing the methodologies introduced in this chapter.



CHAPTER 3

Time-Consistent Mean-Variance

Asset-Liability Management in a

Regime-Switching Jump-Di↵usion

Market

3.1 General Overview

In this chapter, we investigate the mean-variance asset-liability management

(MVALM) problem under a regime-switching jump-di↵usion (RSJD) model. The

investor (a company) is faced with an exogenous liability while investing in the fi-

nancial market consisting of a risk-less bond and a risky stock whose price follows

a Markov-modulated jump di↵usion process. To handle the time-inconsistency ex-

isting in the MVALM problem, we formulate this problem as an optimal stochastic

control problem under a game theoretic framework. In this sense, our solution is

time-consistent compared to the pre-committed strategy in previous literatures.

By applying the stochastic dynamic programming techniques we introduce in

Chapter 2, we obtain the Nash equilibrium control and equilibrium value function

in closed form. The contributions of this chapter include the following aspects.

Firstly, to our knowledge, this appears to be the first attempt to establish a RSJD

model for the MVALM problem under a game-theoretic framework. Secondly, we

derive the RSJD version of the extended Hamilton-Jacobi-Bellman (HJB) equa-

tions together with the verification theorem to obtain our solution. Also, we

assume a regime-dependent risk aversion coe�cient for the investor. Moreover,

the jumps of the stock and liability are assumed to be related via a common

Poisson process N0(t), which is more realistic. Finally, we obtain the equilibrium

strategy and value function in terms of five systems of ordinary di↵erential equa-

32
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tions arising from the HJB equations and we examine the influence of regime

switching and jump di↵usion via numerical and sensitivity analysis.

The rest of this chapter is organized as follows. The basic model setup and

the game theoretic framework are formulated in Section 3.2. The extended HJB

system of equations and the verification theorem are derived and presented in

Section 3.3. Then we solve the extended HJB equations for the time-consistent

control based on a suitable Ansatz in Section 3.4. In Section 3.5, a numerical

and sensitivity analysis illustrating the e↵ect of di↵erent model parameters on

the equilibrium control and value function is conducted. Finally, we conclude

this chapter in Section 3.6.

3.2 Model Formulation

This chapter fixes a complete probability space (⌦,F , P ) with the real-

world probability measure P and the filtration {Ft}t2[0,T ] that satisfies the usual

conditions, namely, it is right continuous and contains all P -null sets. Here Ft

contains the information available up to time t based on which all the decisions

are made. [0, T ] represents the finite time horizon where T 2 (0,1). W1(t)

and W2(t) are two correlated standard Brownian motions with the correlation

coe�cient denoted by ⇢. Then Cov[W1(t),W2(t)] = ⇢t. We only consider cases

where ⇢
2
< 1 in this paper. ↵(t) is a stationary continuous-time Markov chain

process defined on the probability space taking discrete values from the state

space M = {1, 2, . . . , d} , d 2 N+, and the dynamics of the market state are

modelled by ↵(t), which means the market states are divided into d regimes.

The generator (which is also called the Q-matrix) of the Markov chain is defined

as Q = (qjk)d⇥d where qjk is the constant transition intensity from state j to

state k. Note that
P

d

j=1 qjk = 0 and qjk > 0 for j 6= k, so we have qjj =

�
P

d

j 6=k
qjk < 0. Moreover, we give three mutually independent Poisson processes

N1(t), N2(t) and N0(t) defined on the probability space, with intensities �1 >

0,�2 > 0 and �0 > 0 respectively. Furthermore, we assume that the Brownian

motions {Wi(t), i = 1, 2, t � 0}, Poisson processes {Ni(t), i = 0, 1, 2, t � 0} and

the Markov chain {↵(t), t � 0} are well defined and adapted processes that are

mutually independent.

3.2.1 Financial market

For simplicity, we consider a continuous-time financial market where one

riskless bond and one risky stock are traded continuously over the time horizon
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[0, T ] with no transaction cost. Moreover, these assets are assumed to be infinitely

divisible, which means any fractional units of assets can be traded.

The price process of the bond is supposed to be subject to the following

ordinary di↵erential equation (ODE):

(
dP0(t) = r(t)P0(t) dt,

P0(0) = p0 > 0,
(3.2.1)

where r(t) is the riskless interest rate. p0 denotes the initial price of the bond at

t = 0.

The price process of the stock is supposed to satisfy the following Markov-

modulated jump-di↵usion stochastic di↵erential equation (SDE):

8
>>>>><

>>>>>:

dP1(t) = P1(t)
h
b(t,↵(t)) dt+ �(t,↵(t)) dW1(t) + d

M1(t)X

n=1

Qn

i
,

t 2 [0, T ],

P1(0) = p1 > 0,

(3.2.2)

where b(t, j) and �(t, j) are the appreciation rate and volatility rate of the price

process respectively for every j 2 M. We assume that b(t, j) > r(t) for all

(t, j) 2 [0, T ] ⇥ M. Qn is the size of the n-th jump, where {Qn, n = 1, 2, . . . }

is a sequence of independent and identically distributed random variables. We

assume that Qn > �1 for 8n = 1, 2, . . . to ensure that the asset price always takes

positive values. Moreover, Qn has a finite mean E(Qn) = µ1 and a second moment

E[(Qn)2] = �
2
1. M1(t) = N1(t) +N0(t) is a Poisson process with intensity �1 + �0

due to the independency of N1(t) and N0(t). Thus
P

M1(t)
n=1 Qn is a compound

Poisson process representing the total amount of jumps of the stock price up to

time t 2 [0, T ].

3.2.2 Liability process

Consider a company with initial liability l0. The uncontrollable liability

process L(t) is modelled by the following stochastic di↵erential equation (SDE):

8
>>>>><

>>>>>:

dL(t) = µ(t,↵(t)) dt+ e�(t,↵(t)) dW2(t) + d
M2(t)X

n=1

Rn,

t 2 [0, T ],

L(0) = l0 > 0,

(3.2.3)
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where µ(t, j) and e�(t, j) are the appreciation rate and the volatility rate of the

liability process respectively for each j 2 M. {Rn, n = 1, 2, . . . } is a sequence

of independent and identically distributed non-negative random variables with a

common distribution. Similarly, Rn has a finite mean E(Rn) = µ2 as well as a

second moment E[(Rn)2] = �
2
2. M2(t) = N2(t) +N0(t) is a Poisson process with

intensity �2 + �0. Thus
P

M2(t)
n=1 Rn is a compound Poisson process representing

the cumulative amount of jumps of the liability process up to time t 2 [0, T ].

Note that the liability can be negative here.

3.2.3 Wealth process

Suppose that the company is allocating all of its wealth between the bond and

the stock with the initial wealth z0. Suppose that the market state at initial time

is ↵(0) = j0. Let Z(t) denote the wealth surplus of the company at time t � 0.

We assume the continuity of the operation of the company even if the wealth

surplus falls negative. Furthermore, we assume that there is no other income or

consumption during the investment process. Let ⇡(t) = ⇡(t, Z(t),↵(t)) denote

the total amount of money invested in the risky stock at time t. ⇡(t, Z(t),↵(t)) 2

[0, T ]⇥R⇥M here is a feedback control law and the investment strategy based on

the condition {Z(t) = z,↵(t) = j}. Then after deducing the liability, the amount

invested in the riskless bond, denoted by ⇡0(t), satisfies ⇡0(t) = Z(t)� ⇡(t).

Hence we can deduce the dynamics of Z(t) from (3.2.1)-(3.2.3) as follows,

8
>>>>>>>><

>>>>>>>>:

dZ(t) =
h
r(t)Z(t) + ⇡(t)(b(t,↵(t))� r(t))� µ(t,↵(t))

i
dt

+
h
⇡(t)�(t,↵(t)) dW1(t)� e�(t,↵(t)) dW2(t)

i

+ ⇡(t) d
M1(t)X

n=1

Qn � d
M2(t)X

n=1

Rn, t 2 [0, T ],

Z(0) = z0.

(3.2.4)

Compared to the existing models developed in literatures such as [88], [70],

[61], the parameters in our model, including the appreciation rates and volatil-

ity rates of the risky asset’s price and liability process, are modulated by a

continuous-time Markov chain ↵(t) which represents di↵erent market regimes by

taking corresponding values. For example, let b̃(t) = (b1(t), . . . , bd(t)) denote the

vector containing all possible appreciation rates under each market regime, then

we have b(t,↵(t)) = b↵(t)(t), for ↵(t) 2 M. Thus the parameters switches along

with the Markov chain. In this way, our model is able to capture the long-term
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e↵ect on the financial asset’s return caused by the macroeconomic environment

movements simulated by the Markov chain. This is a meaningful and attractive

feature since the relationship between the financial market and the macroeco-

nomic environment is well-documented in the empirical literature [8–11].

The regime-switching feature is similar to the model in [21]. However, we

further considered two correlated jumps in the asset’s price process and liability

process with the jump size Qn and Rn respectively. Generally in the regime-

switching model the price process of the risky asset is considered continuous

under a given market regime, while in the real world even during a period of a

somewhat stable macroeconomic environment, there can still be jumps caused

by some unexpected events. Thus combining jump di↵usion enables the regime-

switching model to capture both the longer-term e↵ect and the short-term ef-

fect on the investing activity resulting from market movements and individual

events, which makes the model more realistic and meaningful. In fact, recently

the regime-switching jump-di↵usion models have been applied to solve various

financial problems [25–28]. In some literatures, the jump di↵usion part can also

be regime-dependent via a Markov-modulated Poisson measure. In this chapter,

we want to investigate the long-term and short-term e↵ects caused by macroeco-

nomic and microeconomic events more separately, and that is the main purpose

of establishing such a hybrid model. Thus the jump di↵usion is assumed to be

independent of the Markov chain in our model.

Definition 3.2.1. (Admissible strategy) ⇡(·) 2 R is said to be an admissible

strategy if it satisfies: a) ⇡(·) is Ft-adapted satisfying
´

T

0 ||⇡(·)||2dt < 1. b) Z
⇡

corresponding to the strategy ⇡(·) is the unique solution to the SDE in (3.2.4).

We let ⇧ denote the set of all admissible strategies.

3.2.4 Problem formulation in a game theoretic framework

For any fixed (t, z, j, ⇡(·)) 2 [0, T ]⇥R⇥M⇥⇧, the mean-variance objective

(reward) functional is given as follows,

J(t, z, j, ⇡(·)) := Et,z,j[Z
⇡(T )]�

�(j)

2
V art,z,j[Z

⇡(T )]

= Et,z,j[Z
⇡(T )]�

�(j)

2

n
Et,z,j[Z

⇡(T )2]� E2
t,z,j

[Z⇡(T )]
o
,

(3.2.5)

where Et,z,j[·] and V art,z,j[·] are the conditional expectation and variance based

on the condition {Z(t) = z,↵(t) = j} respectively and �(j), j = 1, 2, . . . , d is a

pre-determined regime-dependent risk aversion coe�cient of the investor (the
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company).

For convenience, we rewrite J(t, z, j, ⇡(·)) as

J(t, z, j, ⇡(·)) = Et,z,j[F (j, Z⇡(T ))] +G(j,Et,z,j[Z
⇡(T )]), (3.2.6)

where F (j, x) = x�
�(j)
2 x

2, G(j, x) = �(j)
2 x

2.

Assumption 3.2.1. All the parameters mentioned above, such as r(t, j), b(t, j)

�(t, j) and �(j), are uniformly bounded. Among them, �(j), �(t, j), and e�(t, j)
satisfy the non-degeneracy condition, namely, there exists a C > 0 such that

h(t, j) > C for any t 2 [0, T ] and j 2 M, where h(·) = �(·), �(·), e�(·).

As we have mentioned in Chapter 2, due to the non-linearity and lack of

iterated-expectation property of the M-V objective functional, the MVALM prob-

lem is time inconsistent. Therefore, by applying the stochastic dynamic program-

ming techniques similar to those in [87], we formulate this MVALM problem as

a stochastic control problem under a game theoretic framework.

To be specific, we treat our problem as a non-cooperate game where the

investor at each time point t 2 [0, T ] is regarded as a di↵erent player that is to

optimize its objective functional J(t, z, j, ⇡(·)) at time t. Then we aim to find such

an equilibrium strategy ⇡
⇤ that if for all players k > t, ⇡⇤ is the optimal strategy

they choose, then it is also optimal for player t to choose the same strategy ⇡
⇤(·).

In this sense, we could reach a Nash equilibrium point by this time-consistent

equilibrium strategy or equilibrium control. To summarize this idea, We give the

definition of the equilibrium control (EC) as follows,

Definition 3.2.2. (Equilibrium control) For any fixed initial condition (t, z, j) 2

[0, T ]⇥R⇥M, an admissible strategy ⇡
⇤(t, z, j) 2 ⇧ is said to be an equilibrium

control if for any � > 0, one can define a new control law ⇡�(k, y, j) by

⇡�(k, y, j) =

(
⇡(k, y, j), for t  k < t+ �,

⇡
⇤(k, y, j), for t+ �  k  T,

(3.2.7)

such that

lim
�!0+

inf
J(t, z, j, ⇡⇤(·))� J(t, z, j, ⇡�(·))

�
� 0,

for 8(t, z, j) 2 [0, T ]⇥ R⇥M.

(3.2.8)

To derive the extended HJB equation in the next section, we also define the
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corresponding equilibrium value function (EVF) as follows,

V (t, z, j) = J(t, z, j, ⇡⇤(·)). (3.2.9)

3.3 The Extended HJB Equations and the Ver-

ification Theorem

In this section, we present a regime-switching jump-di↵usion (RSJD) version

of the verification theorem and derive the associated extended HJB system of

equations for the MVALM problem, based on which the equilibrium control and

value function are derived in the next section.

First, if a random variable Z(t) evolves according to (3.2.4), then for any

fixed admissible control ⇡ 2 ⇧ and any function �(t, z, j) 2 C
1,2([0, T ]⇥R⇥M)

where C1,2([0, T ]⇥R⇥M) denotes the space of the function �(t, z, j) such that

�(t, z, j) and the derivatives �t(t, z, j), �z(t, z, j), �zz(t, z, j) are continuous on

[0, T ]⇥ R⇥M, the controlled infinitesimal generator is given by

A
⇡�(t, z, j) = �t(t, z, j) + �z(t, z, j)

h
r(t)z + ⇡(t)(b(t, j)� r(t))

� µ(t, j)
i
+

1

2
�zz(t, z, j)

h
⇡
2(t)�2(t, j) + e�2(t, j)

� 2⇢�(t, j)e�(t, j)⇡(t)
i
+

dX

k=1

qjkd�(t, z, k)

+ �1E

h
�(t, z + ⇡(t)Q, j)� �(t, z, j)

i

+ �2E

h
�(t, z �R, j)� �(t, z, j)

i

+ �0E

h
�(t, z + ⇡(t)Q�R, j)� �(t, z, j)

i
.

(3.3.1)

Based on our new model with the above defined controlled infinitesimal gen-

erator, we give the following definition of the regime-switching jump-di↵usion

version of the extended HJB equations by applying similar techniques to those

in [87].

Definition 3.3.1. For a Nash equilibrium problem with its equilibrium control

and value function defined as Definition 3.2.2 and (3.2.9) respectively, and for

any fixed (t, z, j) 2 [0, T ]⇥R⇥M, the extended HJB system of equations for the

Nash equilibrium problem is defined as follows,

the extended HJB system of equations for the Nash equilibrium problem is
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defined as follows,

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

sup
⇡

n
(A⇡

V )(t, z, j)� (A⇡
f)(t, z, j, j) + (A⇡

f
j)(t, z, j)

�A
⇡(G � g)(t, z, j) + (H⇡

g)(t, z, j)
o
= 0, t 2 [0, T ],

A
⇡
⇤
f
q(t, z, j) = 0, t 2 [0, T ],

A
⇡
⇤
g(t, z, j) = 0, t 2 [0, T ],

V (T, z, j) = F (j, z) +G(j, z) = z,

f
q(T, z, j) = F (q, z),

g(T, z, j) = z,

(3.3.2)

where

⇡
⇤ = arg sup

⇡

n
(A⇡

V )(t, z, j)� (A⇡
f)(t, z, j, j)

+ (A⇡
f
j)(t, z, j)�A

⇡(G � g)(t, z, j) + (H⇡
g)(t, z, j)

o
,

(3.3.3)

A
⇡ is the infinitesimal generator defined in (3.3.1) and the definitions of f q(·),

(G � g)(·) and H
⇡
g(·) are given by

f
q(t, z, j) , f(t, z, j, q),

(G � g)(t, z, j) , G(j, g((t, z, j))) =
�(j)

2
g
2(t, z, j),

H
⇡
g(t, z, j) , Gg(j, g(t, z, j)) · A

⇡
g(t, z, j).

(3.3.4)

Furthermore, f q(·) and g(·) have the following probabilistic representations:

f(t, z, j, q) = Et,z,j[F (q, Z⇡
⇤
(T ))],

g(t, z, j) = Et,z,j[Z
⇡
⇤
(T )].

(3.3.5)

Next we present the verification theorem, based on which the MVALM prob-

lem is reduced to the process of solving the corresponding extended HJB equa-

tions.

Theorem 3.3.1. (Verification Theorem) Assume V, g : [0, T ] ⇥ R ⇥ M ! R,

f : [0, T ] ⇥ R ⇥ M ⇥ M ! R, ⇡
⇤ : [0, T ] ⇥ R ⇥ M ! R are such functions

that (V, f, g) is a solution to the extended HJB system (3.3.2) and the supremum

can be realized by the control law ⇡
⇤. Then ⇡

⇤ is an equilibrium control with

the corresponding equilibrium value function V . Moreover, f and g satisfy the

probabilistic representations in (3.3.5).
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Proof. The proof is rather similar to that of Theorem 4.1 in [87], so we omit it

here.

From (3.2.6), (3.2.9) and (3.3.5), it is obvious that the following equation

holds,

V (t, z, j) = f(t, z, j, j) +G(j, g(t, z, j)). (3.3.6)

Then due to the linearity of the infinitesimal generator (3.3.1), the first

equation in (3.3.2) can be simplified as follows,

sup
⇡

n
(A⇡

V )(t, z, j)� (A⇡
f)(t, z, j, j) + (A⇡

f
j)(t, z, j)

�A
⇡(G � g)(t, z, j) + (H⇡

g)(t, z, j)
o

= sup
⇡

n
(A⇡

f
j)(t, z, j) + (H⇡

g)(t, z, j)
o
= 0.

(3.3.7)

Therefore, substituting into the explicit expression of the infinitesimal gen-

erator (3.3.1), we can rewrite the extended HJB system of equations as follows,

sup
⇡

(
f
j

t (t, z, j) + gt(t, z, j)�(j)g(t, z, j)

+
h
f
j

z
(t, z, j) + �(j)g(t, z, j)gz(t, z, j)

ih
r(t)z

+ ⇡(t)(b(t, j)� r(t))� µ(t, j)
i
+

1

2

h
f
j

zz
(t, z, j)

+ �(j)g(t, z, j)gzz(t, z, j)
ih
�
2(t, j)⇡2(t) + e�2(t, j)

� 2⇢�(t, j)e�(t, j)⇡(t)
i
+

dX

k=1

qjk

h
f
j(t, z, k) + �(j)g(t, z, j)g(t, z, k)

i

+ �1E
h
f
j(t, z + ⇡(t)Q, j) + �(j)g(t, z, j)g(t, z + ⇡(t)Q, j)

� f
j(t, z, j)� �(j)g2(t, z, j)

i
+ �2E

h
f
j(t, z �R, j)

+ �(j)g(t, z, j)g(t, z �R, j)� f
j(t, z, j)� �(j)g2(t, z, j)

i

+ �0E
h
f
j(t, z + ⇡(t)Q�R, j) + �(j)g(t, z, j)g(t, z + ⇡(t)Q�R, j)

� f
j(t, z, j)� �(j)g2(t, z, j)

i)
= 0, j = 1, . . . , d,

(3.3.8)



3.3 The Extended HJB Equations and the Verification Theorem 41

f
q

t (t, z, j) + f
q

z
(t, z, j)

h
r(t)z + ⇡

⇤(t)(b(t, j)� r(t))� µ(t, j)
i

+
1

2
f
q

zz
(t, z, j)

h
�
2(t, j)(⇡⇤(t))2 + e�2(t, j)� 2⇢�(t, j)e�(t, j)⇡⇤(t)

i

+
dX

k=1

qjkf
q(t, z, k) + �1E

h
f
q(t, x, z + ⇡

⇤(t)Q, j)� f
q(t, z, j)

i

+ �2E
h
f
q(t, z �R, j)� f

q(t, z, j)
i
+ �0E

h
f
q(t, z + ⇡(t)Q�R, j)

� f
q(t, z, j)

i
= 0, j = 1, . . . , d,

(3.3.9)

gt(t, z, j) + gz(t, z, j)
h
r(t)z + ⇡

⇤(t)(b(t, j)� r(t))� µ(t, j)
i

+
1

2
gzz(t, z, j)

h
�
2(t, j)(⇡⇤(t))2 + e�2(t, j)� 2⇢�(t, j)e�(t, j)⇡⇤(t)

i

+
dX

k=1

qjkg(t, z, k) + �1E
h
g(t, z + ⇡

⇤(t)Q, j)� g(t, z, j)
i

+ �2E
h
g(t, z �R, j)� g(t, z, j)

i
+ �0E

h
g(t, x, z + ⇡(t)Q�R, j)

� g(t, z, j)
i
= 0, j = 1, . . . , d,

(3.3.10)

f(T, z, j, q) = z �
�(q)

2
z
2
, j = 1, . . . , d, (3.3.11)

g(T, z, j) = z, j = 1, . . . , d. (3.3.12)

Compared to the extended HJB equation derived in [87], the regime-switching

jump-di↵usion version of the extended HJB equations exhibit the following fea-

tures. First, due to the introduction of the Markov chain, after substituting the

controlled infinitesimal generator A⇡ into (3.3.7), each equation in the extended

HJB system (3.3.2) is converted to a system of j equations, where j = 1, . . . , d.

The equations are correlated via the summation term
P

qjk[·], which reflects the

e↵ect of switching regimes. Secondly, the expectation part following the summa-

tion term reflects the e↵ect of the jump possibility in the asset price and liability

processes, and also contributes to the complexity of the equations. These two fea-

tures reflect the comprehensiveness of the model yet raise the di�culty in solving

the related HJB equations. Moreover, the risk aversion coe�cient is considered

regime-dependent rather than state-dependent. The derivation process of the ex-

tended HJB equation would be rather similar. The di↵erence mainly lies in the
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derivation of the partial derivative term f
j

z
(t, z, j). In this paper we focus more

on the e↵ect of regime-switching.

3.4 Time-Consistent Solution to the MVALM

Problem

In this section, we aim to derive the explicit time-consistent solution to

the MVALM problem by solving the extended HJB system of equations (3.3.8)-

(3.3.12).

First we present the following Ansatz, for any fixed (t, z, j) 2 [0, T ]⇥R⇥M,

g(t, z, j) = m(t, j)z + n(t, j),

f(t, z, j, q) = m(t, j)z + n(t, j)�
�(q)

2

h
M(t, j)z2 + 2C(t, j)z +N(t, j)

i
.

(3.4.1)

We assume that M(t, j) > 0 for all (t, j) to ensure that the MVALM problem is

feasible.

Then we can easily have the following,

gt(t, z, j) = ṁ(t, j)z + ṅ(t, j),

gz(t, z, j) = m(t, j),

gzz(t, z, j) = 0,

f
q

t (t, z, j) = ṁ(t, j)z + ṅ(t, j)�
�(q)

2

h
Ṁ(t, j)z2 + 2Ċ(t, j)z + Ṅ(t, j)

i
,

f
q

z
(t, z, j) = m(t, j)� �(q)M(t, j)z � �(q)C(t, j),

f
q

zz
(t, z, j) = ��(q)M(t, j).

(3.4.2)

For simplicity, we denote l(t, j), l(t), and l(j) as l, and denote l(t, k), l(k) as

lk, where l(·) = m(·), n(·),M(·), C(·), N(·), b(·), µ(·), �(·), e�(·), �(·), ⇡(·), r(·).
Then substituting (3.4.2) into equation (3.3.8), we have,
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sup
⇡

(
ṁz + ṅ�

�

2
(Ṁz

2 + 2Ċz + Ṅ) + �(mz + n)(ṁz + ṅ)+

h
(m� �Mz � �C) + �(mz + n)m

ih
rz + (b� r)⇡ � µ

i
+

1

2
(��M)

⇥

h
�
2
⇡
2 + e�2

� 2⇢�e�⇡
i
+

dX

k=1

qjk

h
mkz + nk �

�

2
(Mkz

2 + 2Ckx+Nk)

+ �(mkz + nk)(mz + n)
i
+ �1

h
mµ1⇡ �

�

2
(M�

2
1⇡

2 + 2Mµ1z⇡

+ 2Cµ1⇡) + �(m2
µ1z⇡ +mnµ1⇡)

i
+ �2

h
�mµ2 �

�

2
(M�

2
2 � 2Mµ2z

� 2Cµ2) + �(�m
2
µ2z �mnµ2)

i
+ �0

h
m(µ1⇡ � µ2)

�
�

2
(M(�2

1⇡
2 + �

2
2) + 2Mz(µ1⇡ � µ2) + 2C(µ1⇡ � µ2))

+ �(m2
z(µ1⇡ � µ2) +mn(µ1⇡ � µ2))

i)
= 0.

(3.4.3)

Since the equilibrium control ⇡⇤ realizes the supremum of the LHS of (3.4.3)

which is a concave quadratic function of ⇡, by summing up the terms related to

⇡ in the LHS of (3.4.3), we have

h
(m� �z � �C) + �(mz + n)m

i
(b� r)⇡ �

�

2
M(�2

⇡
2
� 2⇢�e�⇡)

+ (�1 + �0)
h
mµ1⇡ �

�

2
(M�

2
1⇡

2 + 2Mµ1z⇡ + 2Cµ1⇡)

+ �(m2
µ1z⇡ +mnµ1⇡)

i

= �
1

2
�M

h
�
2 + (�1 + �0)�

2
1

i(
⇡ �

1

�M [�2 + (�1 + �0)�2
1]

h
(m� �Mz

� �C + �(mz + n)m)(b� r) + �M�e�⇢+ (�1 + �0)(mµ1 � �µ1(Mz

+ C �m
2
z �mn))

i)2

+
1

2�M
h
�2 + (�1 + �0)�2

1]

(h
m� �Mz � �C

+ �(mz + n)m
i
(b� r) + �M�e�⇢+ (�1 + �0)

h
mµ1

� �µ1(Mz + C �m
2
z �mn)

i)2

.

(3.4.4)

Then from some calculation we can easily have the following expression of
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the equilibrium control ⇡⇤

⇡
⇤ = 2�1(�2z +�3), (3.4.5)

where

�1 =
1

2�M⇠2
, (3.4.6)

�2 = ⇠1(m
2
�M)�, (3.4.7)

�3 =
h
(1 + �n)m� �C

i
⇠1 + ��e�⇢M, (3.4.8)

⇠1 = b� r + (�1 + �0)µ1,

⇠2 = �
2 + (�1 + �0)�

2
1.

(3.4.9)

Based on the expressions above, we can rewrite rz + ⇡
⇤(b � r) � µ and

�
2(⇡⇤)2 + e�2

� 2�e�⇢⇡⇤ as

rz + ⇡
⇤(b� r)� µ = rz + 2�1(�2z +�3)(b� r)� µ

= �4z +�5,

(3.4.10)

�
2(⇡⇤)2 + e�2

� 2�e�⇢⇡⇤

= �
24�2

1(�2z +�3)
2 + e�2

� 4�e�⇢�1(�2z +�3)

= �6z
2 +�7z +�8,

(3.4.11)

where

�4 = r + 2�1�2(b� r),

�5 = 2�1�3(b� r)� µ,

�6 = 4�2�2
1�

2
2,

�7 = 8�2�2
1�2�3 � 4�e�⇢�1�2,

�8 = 4�2�2
1�

2
3 + e�2

� 4�e�⇢�1�3.

(3.4.12)

Substituting (3.4.5), (3.4.10) and (3.4.11) into equation (3.3.9) and (3.3.10)
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yields,

A
⇡
⇤
f
q(t, z, j) =

h
�

�q

2
Ṁ � �qM�4 �

1

2
�qM�6 �

dX

k=1

qjk
�q

2
Mk

+ (�1 + �0)(�
�q

2
)(4Mµ1�1�2 + 4M�

2
1�

2
1�

2
2)
i
z
2

+

(
ṁ� �qĊ � �qM�5 + (m� �qC)�4

+
1

2
(��qM)�7 +

dX

k=1

qjk(mk � �qCk) + (�1 + �0)

⇥

h
2mµ1�1�2 �

�q

2
(4Mµ1�1�3 + 8M�

2
1�

2
1�2�3

+ 4Cµ1�1�2)
i
+ (�2 + �0)�qMµ2

)
z

+

(
ṅ�

�q

2
Ṅ + (m� �qC)�5 �

�q

2
M�8

+
dX

k=1

qjk(nk �
�q

2
Ṅk) + (�1 + �0)

h
2mµ1�1�3

�
�q

2
(4M�

2
1�

2
1�

2
3 + 4Cµ1�1�3)

i
+ (�2 + �0)

h
mµ2

�
�q

2
(M�

2
2 � 2Cµ2)

i)
= 0,

(3.4.13)

A
⇡
⇤
g(t, z, j) =

h
ṁ+m�4 +

dX

k=1

qjkmk + 2(�1 + �0)mµ1�1�2

i
z

+
h
ṅ+m�5 +

dX

k=1

qjknk + 2(�1 + �0)mµ1�1�3

� (�2 + �0)mµ2

i
= 0.

(3.4.14)

By setting A
⇡
⇤
f
q(t, z, j) and A

⇡
⇤
g(t, z, j) equal to zero, and considering the

arbitrariness of variables z and q, we can deduce the following systems of ODEs,

Ṁ + 2M�4 +M�6 +
dX

k=1

qjkMk

+ (�1 + �0)(4Mµ1�1�2 + 4M�
2
1�

2
1�

2
2) = 0,

(3.4.15)
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ṁ� �qĊ � �qM�5 + (m� �qC)�4 �
1

2
�qM�7

+
dX

k=1

qjk(mk � �qCk) + (�1 + �0)
h
2mµ1�1�2

�
�q

2
(4Mµ1�1�3 + 8M�

2
1�

2
1�2�3 + 4Cµ1�1�2)

i

+ (�2 + �0)�qMµ2 = 0,

(3.4.16)

ṅ�
�q

2
Ṅ + (m� �qC)�5 �

1

2
�qM�8 +

dX

k=1

qjk(nk �
�q

2
Nk)

+ (�1 + �0)
h
2mµ1�1�3 �

�q

2
(4M�

2
1�

2
1�

2
3 + 4Cµ1�1�3)

i

� (�2 + �0)
h
mµ2 +

�q

2
(M�

2
2 � 2Cµ2)

i
= 0,

(3.4.17)

ṁ+m�4 + 2(�1 + �0)µ1�1�2m+
dX

k=1

qjkmk = 0, (3.4.18)

ṅ+m�5 + 2(�1 + �0)µ1�1�3m

� (�2 + �0)mµ2 +
dX

k=1

qjknk = 0.
(3.4.19)

After some observation, we can easily see that (3.4.16) and (3.4.17) can be

simplified by using (3.4.18) and (3.4.19). Further by using the specific expressions

of�1 to�8 and adding the terminal conditions, we can have the following systems

of ODEs,

8
>><

>>:

Ṁ +
h
2r +

⇠
2
1

⇠2

m
4
�M

2

M2

i
M +

dX

k=1

qjkMk = 0,

M(T, j) = 1, j = 1, . . . , d,

(3.4.20)

8
>>>>>><

>>>>>>:

Ċ + (r �
⇠
2
1

⇠2
)C +

h
m

3(1 + �n)⇠21
�M2⇠2

+
⇠1�e�⇢
⇠2

� µ

� (�2 + �0)µ2

i
M +

dX

j=1

qjkCk = 0,

C(T, j) = 0, j = 1, . . . , d,

(3.4.21)
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8
>>>>>>>>>>><

>>>>>>>>>>>:

Ṅ +
h2�e�⇢⇠1

⇠2
�

⇠
2
1C

M⇠2
� 2(µ+ (�2 + �0)µ2)

i
C

+
h
⇠
2
1(1 + �n)2m2

�2M2⇠2
+ e�2 + (�2 + �0)�

2
2 �

�
2e�2

⇢
2

⇠2

i
M

+
dX

k=1

qjkNk = 0,

N(T, j) = 0, j = 1, . . . , d,

(3.4.22)

8
>><

>>:

ṁ+
h
r +

(m2
�M)⇠21
M⇠2

i
m+

dX

k=1

qjkmk = 0,

m(T, j) = 1, j = 1, . . . , d,

(3.4.23)

8
>>>>>>><

>>>>>>>:

ṅ+
m

2
⇠
2
1

M⇠2
n+

(
1

�M⇠2

h
m⇠

2
1 + ��e�⇢M⇠1

i

�

h
µ+ (�0 + �2)µ2

i)
m�

m⇠
2
1

M⇠2
C +

dX

k=1

qjknk = 0,

n(T, j) = 0, j = 1, . . . , d,

(3.4.24)

where ⇠1 and ⇠2 are defined as (3.4.9).

Remark 3.4.1. The existence of the solutions to the systems of ODEs (3.4.20)-

(3.4.24) can be guaranteed by the uniform boundedness on all the related param-

eters in Assumption 2.1.

To resolve the systems of ODEs, we follow similar steps to those in [21].

Firstly, from equations (3.4.20) and (3.4.23), we can directly establish the

associated solutions as M(t, j) = exp (2
´

T

t
r(s)ds) and m(t, j) = exp (

´
T

t
r(s)ds)

for all j 2 M since
P

d

k=1 qjk = 0.

Secondly, from equations (3.4.21) and (3.4.24), with the obtained expressions

of M and m, we can deduce that C(t, j) = exp (
´

T

t
r(s)ds)n(t, i) as follows, then

based on the relationship we can derive a new ODE system for n(t, i),

8
>>>>>>><

>>>>>>>:

ṅ+

(
1

�M⇠2

h
m⇠

2
1 + ��e�⇢M⇠1

i

�

h
µ+ (�0 + �2)µ2

i)
m+

dX

k=1

qjknk = 0,

n(T, j) = 0, j = 1, . . . , d.

(3.4.25)

The above system is well studied with the obtained expressions of M(t, j)

and m(t, j), thus C(t, j) and n(t, j) can be solved explicitly.
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Finally, since C(t, j) and n(t, j) can be solved explicitly, with the solved

expressions of M(t, j) and m(t, j), we can solve N(t, j) from equations (3.4.22).

Before we conclude the section with our main theorem, we provide the follow-

ing systems of first order linear ODEs satisfied by N(t, j) and n(t, j), substituting

into the obtained expressions of M(t, j) and m(t, j),

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Ṅ(t, j) + 2

(h
�(t, j)e�(t, j)⇢⇠1(t, j)

⇠2(t, j)
� (µ(t, j) + (�2 + �0)µ2)

i

⇥ exp (

ˆ
T

t

r(s)ds) +
⇠
2
1(t, j)

�(j)⇠2(t, j)

)
n(t, j) +

⇠
2
1(t, j)

�2(j)⇠2(t, j)

+
h
e�2(t, j) + (�2 + �0)�

2
2 �

�
2(t, j)e�2(t, j)⇢2

⇠2(t, j)

i

⇥ exp (

ˆ
T

t

2r(s)ds) +
dX

k=1

qjkN(t, k) = 0,

N(T, j) = 0, j = 1, . . . , d,

(3.4.26)

8
>>>>>>><

>>>>>>>:

ṅ(t, j) +

(
�(t, j)e�(t, j)⇢⇠1(t, j)

⇠2(t, j)
�

h
µ(t, j) + (�2 + �0)µ2

i)

⇥ exp (

ˆ
T

t

r(s)ds) +
⇠
2
1(t, j)

�(j)⇠2(t, j)
+

dX

k=1

qjkn(t, k) = 0,

n(T, j) = 0, j = 1, . . . , d,

(3.4.27)

where

⇠1(t, j) = b(t, j)� r(t) + (�1 + �0)µ1,

⇠2(t, j) = �
2(t, j) + (�1 + �0)�

2
1.

(3.4.28)

Theorem 3.4.1. The equilibrium control for the MVALM problem is given by

⇡
⇤(t, z, j) =

1

�2(t, j) + (�1 + �0)�2
1

n
b(t, j)� r(t) + (�1 + �0)µ1

�(j)

⇥ exp (�2

ˆ
T

t

r(s)ds) + �(t, j)e�(t, j)⇢
o
,

(3.4.29)

and the corresponding equilibrium value function is given by

V (t, z, j) = exp (

ˆ
T

t

r(s)ds)z + n(t, j)�
�(j)

2

h
N(t, j)� n

2(t, j)
i
. (3.4.30)

where N(t, j) and n(t, j) are solutions to the systems of linear ODEs in (3.4.26)
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and (3.4.27) respectively.

Moreover, the expectation and variance of the terminal wealth surplus condi-

tional on {Z(t) = z,↵(t) = j} are given as follows,

Et,z,j[Z
⇡
⇤
(T )] = exp (

ˆ
T

t

r(s)ds)z + n(t, j),

V art,z,j[Z
⇡
⇤
(T )] = N(t, j)� n

2(t, j).

(3.4.31)

Proof. Substituting the obtained expressions of M(t, j) and m(t, j), the relation

equation of C(t, j) and n(t, j), and all the specific expressions from (3.4.6)-(3.4.9)

into (3.4.5), we can easily deduce the final expression of the equilibrium control

as (3.4.29). As for the equilibrium value function, we can also deduce it without

di�culty from (3.3.6), (3.4.1) and (3.4.20)-(3.4.24).

3.5 Numerical Illustrations and Sensitivity Anal-

ysis

In this section, by giving several numerical examples, we illustrate the e↵ect

of the changes of the model parameters such as the transition rate qjk, the inten-

sities of the Poisson processes �1, �2, �0 and the risk aversion coe�cient �(j) on

the equilibrium control (EC) and equilibrium value function (EVF).

As in a number of literature, we assume that d = 2, namely, the market mode

is divided into two states, the so-called ”bullish” and ”bearish”, corresponding to

regime 1 and regime 2 respectively.

Before we take di↵erent values of the concerned parameters, we give the

basic parameter set as T = 10, �1 = 1, �2 = 2, �0 = 3, µ1 = 0.03, �2
1 = 0.008,

µ2 = 0.02, �2
2 = 0.006, ⇢ = 0.4, r = 0.03. The other parameters specified for

our illustrative purpose can be found in Table 3.1. Here we have q11 = �q12 and

q22 = �q21 since
P

d

k=1 qjk = 0. Furthermore, we take Zt = z = 40 here.

Table 3.1: The parameters for numerical Examples

b(·) �(·) e�(·) µ(·) �(·) Transition rate

Regime 1(bearish) 0.3 0.35 0.4 0.08 0.4 q12 = 0.5
Regime 2(bullish) 0.15 0.17 0.2 0.04 0.8 q21 = 0.5

Fig. 3.1a depicts the ECs ⇡
⇤(t, z, j), j = 1, 2 against the initial time t. As

we can see, the company would invest more in the risky asset as time goes by,

which may be contrary to the situation of the usual pre-committed strategy. It
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Figure 3.1: Basic parameter set
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is because the pre-committed strategy only considers the objective functional at

the current time but pay no attention to the utilities at later times. Therefore as

time passes, there is less time for the investor to optimize the objective function,

then the investor would invest less in the risky stock to be more certain to have

a satisfactory wealth surplus at the expiry time. While the equilibrium strategy

optimizes the objective functionals over the whole time horizon. As a result, the

time-consistent investor will sacrifice the current utility, distributing some of the

wealth in the bond as a consideration for the future investment. Besides, it is

not di�cult to understand that the investor would invest more in the risky asset

when entering the bullish market compared to the bearish market since they may

be more optimistic in the bullish market.

Fig. 3.1b shows the EVFs against the initial time. Again it is reasonable

that the EVF is higher when entering the bullish market compared to the bearish

market. Besides, we can see from the figure that the EVFs in the two market

states converge as the time expires. This is obvious from (3.3.2) since V (T, z, j) =

F (j, z) + G(j, z) = z, which means at the expiry time, the equilibrium value

function V (T, z, j), namely, the mean-variance utility of the company’s terminal

wealth surplus J(t, z, j, ⇡⇤(·)), would just equal the current wealth surplus Z(T ) =

z for j = 1, 2.

Next we examine how the variations of some of the model parameters would

a↵ect the EC and the EVF through several numerical examples.
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Example 3.5.1. We first study how the transition intensities change would a↵ect

the EC and the EVF. From the expression (3.4.29) it is obvious that the EC is

not dependent on the transition intensities, which means neither the change of

q12 nor that of q21 would a↵ect ⇡⇤(t, z, j). Keep other parameters fixed, and set

q12 = 0, 0.5, 0.7 respectively, then we can easily make comparisons of the di↵erent

EVFs through Figure 3.2.
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(b) The e↵ect of q12 on V (t, 40, 2)

Figure 3.2: The e↵ect of q12 on V (t, 40, j)

As we can see from Fig. 3.2, the change of q12 would a↵ect both V (t, z, 1) and

V (t, z, 2). We denote the EVF with respect to q12 = 0, 0.5, 0.7 by V1(t, z, j),V2(t, z, j)

and V3(t, z, j) respectively. Then we could conclude that the EVF increases
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(moves upward) in the early time period as the transition intensity from bullish

market to bearish market increases whichever market we are entering.

Example 3.5.2. Next we try to find out how the changes of the intensities of the

Poisson processes, �1, �2, �0, would a↵ect the EC and the EVF. First we take

a look at the expression of the EC in (3.4.29), we can see that �2 has no e↵ect

on the control since it is irrelevant in the expression. As for �1 and �0, we could

derive the partial derivatives as follows,

@⇡
⇤(t, z, j)

@�1
=

@⇡
⇤(t, z, j)

@�0

=
exp (�2(

´
T

t
r(s)ds))

�(i)⇠2(t, j)2

h
µ1⇠2(t, j)� ⇠1(t, j)�

2
1

i

�
�
2
1�(t, j)e�(t, j)⇢

⇠
2
2(t, j)

= �9

h
µ1�(t, j)

2
� (b(t, j)� r)�2

1

� �
2
1�(t, j)e�(t, j)⇢�(j) exp (2

ˆ
T

t

r(s)ds)
i

= �9�10,

(3.5.1)

where

�9 =
exp (�2(

´
T

t
r(s)ds))

�(j)⇠2(t, j)2
> 0,

�10 =
h
µ1�(t, j)

2
� (b(t, j)� r)�2

1

� �
2
1�(t, j)e�(t, j)⇢�(j) exp (2

ˆ
T

t

r(s)ds)
i
.

(3.5.2)

The sign of �10 is not sure, but when
µ1

�
2
1
> (<) b(t,j)�r

�(t,j)2 +
�(t,j)e�(t,i)⇢�(j) exp (2

´ T
t r(s)ds)

�(t,j)2 ,

namely, when µ1

�
2
1
is large (small) enough, we have �10 > 0, i.e., @⇡

⇤(t,z,j)
@�1

=
@⇡

⇤(t,z,j)
@�0

> 0, which means ⇡⇤(t, z, j) increases as �1 (�0) increases.

To illustrate the e↵ect of �1 and �0 through figures, we use the basic parameter

set, and take �1 = 1, 3, 5 respectively to see the e↵ect of the change of �1 on

⇡
⇤(t, z, j). Then we keep other parameters fixed, and take �0 = 1, 3, 5 respectively

to see the e↵ect of �0 change. Taking ⇡
⇤(t, z, 1) as an example, we can easily

get from some simple calculation that �10 > 0 in this case, exactly as what we

can see from Fig. 3.3, namely, ⇡⇤(t, z, 1) increases (moves upward) as �1 and �0

increases, which means when the intensity of the jumps of the stock increases, the

investor (the company) would invest more in the stock.
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Figure 3.3: The e↵ect of �1(�0) on ⇡
⇤(t, z, 1)



3.5 Numerical Illustrations and Sensitivity Analysis 55

0 1 2 3 4 5 6 7 8 9 10

t

-80

-60

-40

-20

0

20

40

60

v
(t

,4
0
,1

)

1
=1

1
=3

1
=5

(a) The e↵ect of �1

0 1 2 3 4 5 6 7 8 9 10

t

-5

0

5

10

15

20

25

30

35

40

45

v
(t

,4
0
,1

)

2
=2

2
=4

2
=6

(b) The e↵ect of �2

0 1 2 3 4 5 6 7 8 9 10

t

-30

-20

-10

0

10

20

30

40

50

V
(t

,4
0
,1

)

0
=3

0
=1

0
=5

(c) The e↵ect of �0

Figure 3.4: The e↵ect of �1(�2,�0) on V (t, 40, 1)



3.5 Numerical Illustrations and Sensitivity Analysis 56

As for the EVF, we can see from Fig. 3.4a that as �1 increases, which

means when the intensity of the jumps of the stock increases, the equilibrium

value function decreases (moves downward) in the early time period. While from

Fig. 3.4b we know that the equilibrium value function increases (moves upward)

in the early time period as �2 increases, which means when the jumps of the

liability increases. Furthermore, we can see that the change of �2 has less e↵ect

than the changes of �1, which means the change of the intensity of the jumps of

the stock a↵ect more on the equilibrium value function than that of the liability.

And this explains the fact that the equilibrium value function decreases (moves

downward) as �0 increases although �0 a↵ects both the intensity of the jumps of

the stock and the liability, which can be seen from Fig. 3.4c. From the example

we can see that the jump di↵usion, especially the jump in the price process of the

risky asset, does have a great influence on both the equilibrium control and the

equilibrium value function regardless of the sign. This verifies the necessity of

combining the jump di↵usion into the regime-switching model.

Example 3.5.3. Finally we illustrate the e↵ect of the change of the risk aversion

coe�cient �(j) on the EC and the EVF. Similarly, we could derive the partial

derivative as follows,

@⇡
⇤(t, z, j)

@�(j)
=

⇠1(t, j)

⇠2(t, j)
exp

⇣
� (

ˆ
T

t

r(s)ds)
⌘

�1

�2(j)
< 0. (3.5.3)

It is obvious that ⇡⇤(t, z, j) is decreasing with respect to �(j).
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⇤(t, z, 1)
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To illustrate this through figures, we take ⇡
⇤(t, z, 1) as an example, keep

other parameters fixed, and change �(1) from 0.2 to 0.4 to 0.6. Then we can see

from Fig. 3.5 that the EC moves downward as the risk aversion coe�cient �(1)

increases. This makes sense since that the investor (the company) surely would

invest less in the risky asset as it gets more risk averse.
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Figure 3.6: The e↵ect of �(1) on V (t, 40, 1)

As for the EVF, we also take V (t, 40, 1) as an example. Then we can see

from Fig. 3.6 that in the bullish market, the EVF V (t, 40, 1) moves upward in

the early time period as the risk aversion coe�cient �(1) increases, which means

the more risk averse the investor (the company) is, the higher EVF it will have

in the early time period.

3.6 Concluding Remarks

In this chapter, we study a continuous-time mean-variance asset-liability

management (MVALM) problem in a Markov regime-switching jump-di↵usion

(RSJD) market. The work can be seen as an extension of [21] by adding corre-

lated jumps to the price processes of both the risky stock and the uncontrollable

liability, which is more realistic since the general jumps and Markovian jumps

can be used in conjuction to capture both the short-term and long-term market

movements. Compared to the pre-committed strategy adopted in previous liter-

atures, we consider a game theoretic framework similar to that in [87] to handle

the time-inconsistency problem. Thus the MVALM problem is formulated as a

non-cooperate game where the investor at each time point in the investing hori-
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zon is regarded as a di↵erent player. We aim to find the Nash equilibrium control

along with the equilibrium value function. Applying the stochastic dynamic pro-

gramming techniques we have introduced in Chapter 2, we reduce the problem

to solving the regime-switching jump-di↵usion version of the extended Hamilton-

Jacobi-Bellman (HJB) system based on the verification theorem. The closed-form

equilibrium control and equilibrium value function are obtained in terms of five

coe�cients satisfying the associated ordinary di↵erential equations (ODEs) de-

rived from the HJB equations. Based on the solution, we present numerical and

sensitivity analysis by assuming a market with only two states, the ”bullish” mar-

ket and the ”bearish” market. It is shown that the equilibrium strategy will invest

more in the risky asset as time approaches to the expiry date and the equilibrium

value functions under two states take di↵erent values when the initial time is

far from the expiry date but converge as the time expires. The e↵ect of regime

switching and jump di↵usion are examined by studying the change of equilibrium

control and equilibrium value function caused by the changes of transition rates

and jump intensities. Moreover, the regime-dependent risk aversion coe�cient

a↵ects the equilibrium control inversely, which is reasonable since the more risk

averse the investor is, the less he would invest in the risky assets.



CHAPTER 4

Variance Swap Pricing under a

Markov-Modulated Jump-Di↵usion

Model

4.1 General Overview

In this chapter, we aim to price a discretely-sampled variance swap under

Heston’s stochastic volatility model with Markov-modulated jump di↵usion. This

will extend the work of Elliott and Lian [114] with further consideration of jump

di↵usion in the regime-switching setting. Di↵erent from the characteristic func-

tion method used in [114], we apply the generalized Fourier transform method and

the two-stage approach to obtain a semi-closed form pricing formula. To reduce

the complexity of computation caused by the Markov chain, we first calculate

the fair strike price based on a given fixed path of the Markov chain and then

obtain the final expression by allowing various paths. To illustrate the accuracy

and e�ciency of our discrete solution, we present a semi-Monte-Carlo simula-

tion and derive the pricing formula of a variance swap with continuous sampling

times and compare the prices from the three methods under a range of di↵erent

observation frequencies. Furthermore, as an application of the regime-switching

jump-di↵usion (RSJD) models, we examine the e↵ect of regime switching and

both the Merton-type and Kou-type jumps via numerical analysis.

The rest of this chapter is organized as follows. In Section 4.2, our RSJD

version of Heston’s stochastic volatility model is established, including a measure

change process. In Section 4.3, the pricing formula is derived via the generalized

Fourier transform under a two-stage framework. Section 4.4 presents several

numerical examples to demonstrate the e�ciency and accuracy of our pricing

formula. Finally a conclusion is presented in Section 4.5.

59



4.2 Model Formulation 60

4.2 Model Formulation

Before we start formulating our model, we first introduce our basic idea of

pricing a variance swap.

A variance swap is defined as a forward contract on the future realized vari-

ance of the return from the specified underlying financial asset. Generally, the

payo↵ function of a long position in a variance swap at expiry takes the form

V (T ) = (�2
R
� Kvar) ⇥ G, where �

2
R
denotes the realized variance, Kvar is the

strike price of the variance swap, and G denotes the notional amount of the swap

in dollars per volatility point squared. Usually, the values are all considered on

an annualized basis.

Furthermore, the value of a variance swap at time t, which equals the ex-

pected present value of the payo↵ under the risk-neutral measurement of Q, can

be expressed as follows:

V (t) = EQ
t

h
e
�
´ T
t rsds(�2

R
�Kvar)G

i
, (4.2.1)

where rt is the related interest rate and EQ
t denotes the conditional expectation

at time t.

The nature of a forward contract indicates that the value of a variance swap

at entry equals to zero. Thus, by setting V (0) = 0, we can easily have the

following fair strike price,

Kvar = EQ
0 [�

2
R
]. (4.2.2)

The pricing of a variance swap is then reduced to calculating the expectation

in (4.2.2).

The realized variance �
2
R

is obtained by discretely sampling over the con-

tract lifetime period [0, Te], which is also referred to as the total sampling period.

The specific calculation of the realized variance �
2
R
di↵ers from contract to con-

tract. Usually, the details of the calculation would be specified in the contract

initially. In this chapter, we use a typical formula which is also used by many

other researchers as follows:

�
2
R
=

AF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥ 1002, (4.2.3)

where Stk
denotes the underlying stock price at the k-th observation time, and N
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denotes the total number of the observations. Te is the life time of the contract,

and AF = N

Te
is the annualized factor converting this expression to an annualized

variance, which is assumed to be within a wide range from 5 to 252 according to

the sampling frequency.

Thus our pricing of a variance swap problem is reduced to the calculation of

the conditional expectation of the realized variance defined by (4.2.3) under the

risk-neutral measurement of Q at time 0. Next we start formulating our model.

4.2.1 The Heston model with Markov-modulated jump

di↵usion

In this chapter we use a complete probability space (⌦, F , P) with P being

the real-world probability measure. The market regime is divided into n di↵erent

states described by the states of a Markov chain ↵(t). Following [105], ↵(t) is a

continuous-time finite-state observable Markov chain whose value can be selected

from the state space E = {e1, e2, · · · , en}, where ei = (0, · · · , 1, · · · , 0)0 2 R
n is

a n-dimensional canonical unit vector. Moreover, the semi-martingale represen-

tation theorem for the process ↵(t) can be obtained as follows:

d↵(t) = Q(t)↵(t)dt+ dM(t), (4.2.4)

where M(t), t 2 [0,1) is a R
n-valued martingale increment process with respect

to the natural filtration generated by ↵(t), and

Q(t) =

2

664

q11 · · · q1n

... . . .
...

qn1 · · · qnn

3

775 (4.2.5)

is the generator matrix of ↵(t), where qij denotes the intensity of transition from

state i to state j satisfying
P

i
qij = 0.

Furthermore, let ws and wy be twoWiener processes. For consideration of the

skew e↵ect, we assume that ws and wy are correlated with a constant correlation

coe�cient ⇢. The stochastic process ↵(t) is assumed to be independent of ws and

wy.

For simplicity, we consider a financial market with only two assets: a risk-less

bond B(t) and a risky stock S(t). The price of the bond is driven by the following
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deterministic process

dB(t) = r↵(t)B(t)dt, (4.2.6)

where r↵(t) =< r,↵(t) > is the interest rate process which depends on the market

state. < ·, · > denotes the inner product in R
n, and r = (r1, . . . , rn)0 is a vector

representing di↵erent interest rates under di↵erent market states. To be specific,

ri is the interest rate corresponding to the state i for each i = 1, . . . , n. Note

that the subsequent parameters of the risky stock price process are defined in a

similar way.

The price of stock is assumed to be driven by the following Markov-modulated

jump di↵usion process:

dS(t) =
h
µ↵(t)dt+ �(y)dws +

ˆ
R

�↵(t)(t, z)Ñ↵(t)(dz, dt)
i
S(t), (4.2.7)

where µ↵(t) =< µ,↵(t) > , µ = (µ1, . . . , µn)0 denotes the appreciation rate of

the stock process, and �↵(t)(t, z) = �(t, z,↵(t)) =< �(t, z),↵(t) >, �(t, z) =

(�1(t, z), . . . , �n(t, z))0 is a generalized form of the jump-size z (we consider an ex-

ponential form of �(t, z) in the following sections). Ñ↵(t)(dz, dt) =< Ñ(dz, dt),↵(t) >

, Ñ(dz, dt) = (Ñ1(dz, dt), . . . , Ñn(dz, dt))0 is a compensated Poisson Random mea-

sure which is also determined by the Markov chain ↵(t) and can be rewritten as

follows:

Ñ↵(t)(dz, dt) = N↵(t)(dz, dt)� �↵(t)v↵(t)(dz)⌘(dt), (4.2.8)

where v↵(t)(dz) =< v(dz),↵(t) >, v(dz) = (v1(dz), . . . , vn(dz))0 denotes the jump

size distribution and �↵(t) =< �,↵(t) >, � = (�1, · · · ,�n)0 is the jump intensity

which describes the expected number of jumps. N↵(t)(dz, dt) =< N(dz, dt),↵(t) >,

N(dz, dt) = (N1(dz, dt), . . . , Nn(dz, dt))0 is the Markov-modulated Poisson Ran-

dom measure. ⌘(dt) is a generalized form of dt, and for simplicity we take

⌘(dt) = dt in this chapter. �(y) denotes the volatility rate of the stock process

and is assumed to be a function of y which is driven by the following stochastic

process

dy = a(b↵(t) � y)dt+ �v

p
ydwy, (4.2.9)

where a is corresponding to the speed of mean reversion adjustment, b↵(t) =<

b,↵(t) >, b = (b1, · · · , bn)0 is the mean and �v denotes the so-called volatility of
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volatility. Furthermore, we take �(y) =
p
y.

4.2.2 Change of measure

As the market is incomplete, there are infinite equivalent martingale pricing

measures. By making use of the results in [15], we apply the regime-switching

Esscher transform to determine an equivalent risk-neutral measure. Let

dw
⇤
s
= dws + ✓↵(t)dt,

dw
⇤
y
= dwy + �dt,

(4.2.10)

where ✓↵(t) =< ✓,↵(t) >, ✓ = [µ1�r1

�(y) , · · · ,
µn�rn

�(y) ]0, and � = �
⇤
�v

p
y. ⇤ is the

market price of the volatility risk (risk premium).

Substituting (4.2.8) and (4.2.10) into (4.2.7) and (4.2.9), we obtain the dy-

namics of the price process of the stock S(t) and y under the risk neutral assump-

tion as follows:

dS(t)

S(t)
=
h
r↵(t) � �↵(t)m↵(t)

i
dt+ �(y)dw⇤

s

+

ˆ
R

�↵(t)(t, z)N↵(t)(dz, dt),
(4.2.11)

where m↵(t) =
´
R
�↵(t)(t, z)v↵(t)(dz) and

dy = a
⇤(b⇤

↵(t) � y)dt+ �v

p
ydw

⇤
y
, (4.2.12)

where a
⇤ = a� ⇤, b⇤

↵(t) =
ab↵(t)

a�⇤ .

In the subsequent sections we will only use the risk-neutral probability mea-

sure.

Before we move on to the next section, we define three natural filtrations

generated by the two wiener processes w⇤
s
, w⇤

y
and the Markov chain ↵(t) up to

time t as follows:

F
s(t) = � {w

⇤
s
(u) : u  t} ,

F
y(t) = �

�
w

⇤
y
(u) : u  t

 
,

F
↵(t) = � {↵(u) : u  t} .

(4.2.13)
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4.3 Variance Swap Pricing

As we have mentioned in Section 4.2, to price a variance swap, we are con-

cerned with the calculation of the conditional expectation as follows:

Kvar = EQ
0 [�

2
R
] = EQ

0

"
AF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥ 1002
#

=
AF

N

NX

k=1

EQ
0

"✓
Stk

� Stk�1

Stk�1

◆2
#
⇥ 1002.

(4.3.1)

Our pricing problem can be further reduced to the calculation of the N

conditional expectations of the same form as:

EQ
0

"✓
Stk

� Stk�1

Stk�1

◆2
#
= EQ

"✓
Stk

� Stk�1

Stk�1

◆2

| F
s(0)_F

y(0)_F
↵(0)

#
, (4.3.2)

for some fixed equal time period �t = Te
N

= tk � tk�1, k = 1, . . . , N , which is re-

ferred to as the sampling period defined as the time span between two observation

points.

We consider the calculation under two cases: k = 1 and k > 1. When k = 1,

we have only one unknown variable St1 in the expectation to be calculated since

St0 = S0 is the current stock price which is a known constant. We will discuss

this case later.

Now we investigate the latter case where k > 1. In this case, both Stk
and

Stk�1
are unknown variables at initial time which makes the calculation of the

expectation rather complicated and di�cult to work out. Therefore, to reduce

the dimension as well as the di�culty in computation, we utilize the work of

Little and Pant (see [109,110,112]) and introduce a new variable It driven by the

underlying process

dIt = �(tk�1 � t)Stdt, (4.3.3)

where �(·) is a step function with the following definition:

�(tk�1 � t) = �tk�1
=

8
<

:
0, t 6= tk�1,

1, t = tk�1.

(4.3.4)
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and the property

ˆ
R

�aF (t)dt = F (a), for any a 2 R and any integrable function F (t). (4.3.5)

Thus It is a new process only related to the previous observation Stk�1
, which can

be written as follows:

It =

8
<

:
0, t < tk�1,

Stk�1
, t � tk�1.

(4.3.6)

With the new defined variable It, we then employ the two-stage approach

from [112] to calculate the expectation in (4.3.2).

To illustrate this approach, we first consider a contingent claim

Uk = Uk(t, St, It, yt,↵(t)), (4.3.7)

defined over the period [0, tk] with a future payo↵ function at expiry as

Uk(tk, Stk
, Itk , ytk ,↵(tk)) =

✓
Stk

Itk

� 1

◆2

. (4.3.8)

The value of this claim at time t could be written as

Uk(t, St, It, yt,↵(t)) = EQ
h
e
�r(tk�t)(

Stk

Itk

� 1)2 | F s(t)_F
y(t)_F

↵(t)
i
. (4.3.9)

Similar to that in [114], we first consider the conditional expectation given

the information about the sample path of the Markov Chain ↵(t) from time 0 to

the expiry time T , F↵(T ), where T = tk in this case. For a given realized path

of ↵(t), the parameters such as r↵(t), �↵(t), m↵(t), and b↵(t) are all deterministic

functions. Under this assumption, we denote the value of the contingent claim

as Wk(t, St, It, yt) = Uk(t, St, It, yt,↵(t) | F↵(T )) = EQ
h
e
�r(tk�t)(

Stk
Itk

�1)2 | F(t)_

F
↵(T )

i
, where F(t) = F

s(t)
_ F

y(t).

Then we can easily obtain the corresponding partial integral di↵erential equa-

tion (PIDE) for Wk in the following theorem by using the Feynman-Kac theorem

(Some subscripts have been omitted without ambiguity):

Theorem 4.1. Let Wk(t, St, It, yt) = Uk(t, S, I, y,↵(t) | F↵(T )) = EQ
h
e
�r(tk�t)(

Stk
Itk

�

1)2 | F(t)_F
↵(T )

i
, and S is driven by the dynamics of (2.11). Then Wk is gov-
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erned by the following PIDE:

@Wk

@t
+
h
r↵(t) � �↵(t)m↵(t)

i
S
@Wk

@S
+

1

2
�
2
S
2@

2
Wk

@S2

+ a
⇤(b⇤

↵(t) � y)
@Wk

@y
+

1

2
�
2
v
y
@
2
Wk

@y2
+ ⇢�vyS

@
2
Wk

@S@y

+ �(tk�1 � t)S
@Wk

@I
+ �↵(t)

ˆ
R

Wk(t, S�(t, z,↵(t)))v↵(t)(dz)

� (r↵(t) + �↵(t))Wk = 0,

subject to the terminal condition:

Wk(tk, S, I, y) =
⇣
S

I
� 1

⌘2

. (4.3.10)

Proof. Let � = Wk(t, St, It, yt), according to the Itô’s formula with jump, we first

obtain

d� =�tdt+ �SdS
c(t) + �IdI +

1

2
�SS(dS

c(t))2

+ �ydy +
1

2
�yy(dy)

2 + �SydS
c(t)dy

+ �(t, S(t), I, y)� �(t, S(t�), I, y),

(4.3.11)

where dS
c(t) =

�
[r↵(t) � �↵(t)m↵(t)]dt+ �↵(t)dw

⇤
s

 
S
c(t) denotes the continuous

part of the stock price process, and the discrete part of the Itô’ formula can be
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written as

�(t, S(t), I, y)� �(t, S(t�), I, y)

=

ˆ
R

h
�(t, S�(t, z,↵(t))� �(t, S)

i
N↵(t)(dz, dt)

=

ˆ
R

h
�(t, S�(t, z,↵(t)))� �(t, S)

i
Ñ↵(t)(dz, dt)

+

ˆ
R

h
�(t, S�(t, z,↵(t)))� �(t, S)

i
�↵(t)v↵(t)(dz)dt

=

ˆ
R

h
�(t, S�(t, z,↵(t)))� �(t, S)

i
Ñ↵(t)(dz, dt)

+ �↵(t)

ˆ
R

�(t, S�(t, z,↵(t))v↵(t)(dz)dt

� �↵(t)

ˆ
R

�(t, S)v↵(t)(dz)dt

=

ˆ
R

h
�(t, S�(t, z,↵(t)))� �(t, S)

i
Ñ↵(t)(dz, dt)

+ �↵(t)

ˆ
R

�(t, S�(t, z,↵(t))v↵(t)(dz)dt

� �↵(t)�(t, S)dt.

(4.3.12)

Substituting (4.3.12) into (4.3.11) and extracting the coe�cient of the dt term,

we can prove theorem 4.1.

Due to the definition of the function �(·), the PIDE at any time other than

tk�1 could be reduced to:
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+
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r↵(t) � �↵(t)m↵(t)

i
S
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+
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2
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2@
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@S2

+ a
⇤(b⇤

↵(t) � y)
@Wk

@y
+

1

2
�
2
v
y
@
2
Wk

@y2
+ ⇢�vyS

@
2
Wk

@S@y

+ �↵(t)

ˆ
R

Wk(t, S�(t, z,↵(t)))v↵(t)(dz)

� (r↵(t) + �↵(t))Wk = 0.

(4.3.13)

Thus, the term related to the variable It is not considered in the PIDE any-

more except at the time tk�1, which seemingly indicates the success in dimension

reduction. However, we still have to consider the time point tk�1, where the

variable I experience a jump. Furthermore, the variable I is still present in the

terminal condition. To handle this and ensure that the claim’s value remains con-

tinuous (which is required by the no-arbitrary pricing theory), we utilize Little
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& Pant’s approach and consider an additional jump condition at time tk�1:

limt"tk�1
Wk(t, S, y, I) = limt#tk�1

Wk(t, S, y, I). (4.3.14)

According to Little and Pant’s two-stage approach, we divide the time period

into two parts [0, tk�1] and [tk�1, tk], during each of which the variable I could

be treated as constant. Thus we have completed the dimension reduction for

the PIDE during each of the time spans. Then we solve the PIDE in (4.3.13)

backwards through two stages. We first derive the solution of the PIDE in the

first stage in [tk�1, tk], which provides the terminal condition for the PIDE in the

second stage in [0, tk�1] through the jump condition. Then we further solve the

PIDE in the second stage and obtain the analytical solution for the PIDE within

the whole time period.

After the analytical solution Wk(·) is obtained, we can further solve for Uk(·)

by taking into account the path change of the Markov chain ↵(t) as

Uk(t, St, It, yt,↵(t)) = EQ
h
Uk(t, St, It, yt,↵(t) | F

↵(T )) | F↵(t)
i

= EQ
h
Wk(t, St, It, yt) | F

↵(t)
i
.

(4.3.15)

Then we can eventually calculate the conditional expectation that we are

concerned with in (4.3.2) according to the Feynman-Kac theorem as follows:

EQ
0

"✓
Stk

� Stk�1

Stk�1

◆2
#
= e

rtkUk(0, S0, I0, y0,↵(0)). (4.3.16)

Thus we can obtain the fair strike price Kvar in (4.3.1).

Now we have illustrated our basic idea for solving this variance swap pricing

problem, we then start by solving the PIDE in (4.3.13) by the two-stage approach

and the generalized Fourier transform method.

4.3.1 Variance swap pricing by the two stage process

As we have stated before, we divide the time period [0, tk] into two parts.

Let T = tk = k�t, �t = Te
N

= tk � tk�1. Then the two time spans are denoted by

[0, T ��t] and [T ��t, T ]. We first solve the PIDE in the first stage.
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(A) Stage I Algorithm

Let T � �t  t  T , and x = lnS, then the equation in (4.3.13) can be

easily converted to the following PIDE:
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+
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2
v
y
@
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Wk

@y2
+ ⇢�vxy

@
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Wk

@x@y

�
�
r↵(t) + �↵(t)

�
Wk + �↵(t)

ˆ
R

Wk(t, x+ z)v↵(t)(dz) = 0,

(4.3.17)

subject to the terminal condition

Wk(T, x, I, y) =
⇣
e
x

I
� 1

⌘2

. (4.3.18)

Next we apply the generalized Fourier transform method to solve the above

equation. Let V (w) = F(Wk) =
´
R
Wk(x)e�jwx

dx, and let �z(w) denote the char-

acteristic function of the jump size distribution. Then (4.3.17) can be converted

to the following partial di↵erential equation (PDE):

@V

@t
+
h
r↵(t) � �↵(t)m↵(t) �

1

2
y

i
(jwV ) +

1

2
y(jw)2V

+ a
⇤(b⇤

↵(t) � y)
@V

@y
+

1

2
�
2
v
y
@
2
V

@y2
+ ⇢�vy

@V

@y
(jw)

�
�
r↵(t) + �↵(t)

�
V + �↵(t)�z(w)V = 0,

(4.3.19)

with the transformed terminal condition

VT = F(Wk(T )) = F

h
(
e
x

I
� 1)2)

i
. (4.3.20)

The conversion from (4.3.17) to (4.3.19) is quite simple according to the table

of Fourier transform pairs. The only process we have to specify is the conversion

of the term �↵(t)

´
R
Wk(t, x+ z)v↵(t)(dz) to �↵(t)�z(w)V .

Let v(dz) = p(z)dz in (4.3.17) (the subscript is omitted here for convenience),

and p(z) is the density function of the jump size distribution. Then we have the
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Fourier transform of the integral term arising from the jump di↵usion as follows:

F

h ˆ
R

Wk(t, x+ z)]p(z)dz
i
=

ˆ
R

ˆ
R

Wk(t, x+ z)p(z)e�jwx
dzdx

=

ˆ
R

p(z)dz

ˆ
R

Wk(x+ z)e�jwx
dx

=

ˆ
R

p(z)dz

ˆ
R

Wk(y)e
�jw(y�z)

dy

=

ˆ
R

p(z)ejwz
dz

ˆ
R

Wk(y)e
�jwy

dy

= �z(w)V.

(4.3.21)

Moreover, we specify the Fourier transform of the terminal condition as fol-

lows:

VT = F

h
Wk(T )

i

= F(
e
x

I
� 1)2

= F

h
e
2x

I2
� 2

e
x

I
+ 1

i

= 2⇡
h
��2j(w)

I2
� 2

��j(w)

I
+ �0(w)

i
,

(4.3.22)

where �a(·), for any complex number a, is the generalized delta function with the

same definition and property as in (4.3.4) and (4.3.5).

Now we are concerned with the solution of the PDE (4.3.19) with the above

terminal condition, which can be assumed to be of the following form by applying

Heston’s solution scheme [3]

V = e
L(w,t)+M(w,t)y

VT . (4.3.23)

Substituting the above expression into (4.3.19), we obtain the following or-

dinary di↵erential equations (ODEs) with the corresponding terminal conditions

respectively:

8
<

:
�Ṁ = �

1

2
(jw)(1� jw) + (⇢v(jw)� a

⇤)M +
1

2
�
2
v
M

2
,

M(w, T ) = 0,
(4.3.24)
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and

8
>><

>>:

�L̇ =
h
r↵(t) � �↵(t)m↵(t)

i
(jw)� (r↵(t) + �↵(t)) + �↵(t)�z(w)

+ a
⇤
b
⇤
↵(t)M,

L(w, T ) = 0.

(4.3.25)

The ODE (4.3.24) can be solved explicitly as follows,

8
<

:
M(w, t) = A+B

�2
v

1�e
B(T�t)

1�CeB(T�t) ,

A = ⇢�v(jw)� a
⇤
, B =

p
A2 + �2

v
(jw)(jw � 1), C = A+B

A�B
.

(4.3.26)

As for the ODE (4.3.25), let �l(w) = [r↵(t)��↵(t)m↵(t)](jw)� (r↵(t)+�↵(t))+

�↵(t)�z(w) + a
⇤
b
⇤
↵(t)M , then the equation can be solved numerically as:

L(w, t) =

ˆ
T

t

h�l(w),↵(s)ids. (4.3.27)

Finally, according to the inverse Fourier transform, we obtain the solution

to the PIDE in (4.3.17) as:

Wk(t, x, I, y) = F
�1(V )

= F
�1(eL(w,t)+M(w,t)y

VT )

=
1

2⇡

ˆ
R

VT e
L(w,t)+M(w,t)y

e
jwx

dw

=
e
2x

I2
e
L(�2j,t)+M(�2j,t)y

� 2
e
x

I
e
L(�j,t)+M(�j,t)y

+ e
L(0,t)+M(0,t)y

.

(4.3.28)

From (4.3.26), we could easily have M(�j, t) = M(0, t) = 0 for 8t 2 [T �

�t, T ], therefore we can further obtain:

Wk(t, x, I, y) =
e
2x

I2
e
L(�2j,t)+M(�2j,t)y

� 2
e
x

I
e
L(�j,t) + e

L(0,t)
. (4.3.29)

Then as we have stated before, we can obtain the terminal condition for

stage two based on the solution of Wk(t, x, I, y) in the first stage, through the

jump condition in (4.3.14):

Wk(T ��t, x, I, y) = e
L(�2j,T��t)+M(�2j,T��t)y

� 2eL(�j,T��t)

+ e
L(0,T��t)

.

(4.3.30)
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Note that here we are making use of the fact that limt#tk�1
lnSt = lnIt ac-

cording to the definition of It, and the terminal condition above only contains

one stochastic variable, y.

With the terminal condition, we can now move on to solving the PIDE

(4.3.13) in the second stage.

(B) Algorithm of stage II

Let 0  t  T � �t. In this stage, based on the terminal condition in

(4.3.30), we calculate

Wk(t, x, I, y) = EQ

(
e
�r(T��t�t)

Wk(T ��t, x, I, y) | F(t)

)

= EQ

(
e
�r(T��t�t)

h
e
L(�2j,T��t)+M(�2j,T��t)y

� 2eL(�j,T��t) + e
L(0,T��t)

i
| F(t)

)

= e
�r(T��t�t)

h
e
L(�2j,T��t)

G(t, y)� 2eL(�j,T��t)

+ e
L(0,T��t)

i
,

(4.3.31)

where G(t, y) = EQ

⇣
e
M(�2j,t)y

| F(t)
⌘
.

Since here we only have one unknown stochastic variable y which is contained

in the term G(t, y), we have to solve for G(t, y) to finally obtain the closed-form

expression of Wk.

According to the Feynman-Kac theorem, G(t, y) should satisfy the following

PDE with the corresponding terminal condition:

8
<

:
Gt +

1
2�

2
v
yGyy + (a⇤(b⇤

↵(t) � y))Gy = 0,

G(T ��t, y) = e
M(�2j,T��t)y

.

(4.3.32)

We assume the following a�ne form for G,

G(t, y) = e
R(t)+H(t)y

. (4.3.33)
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Substituting (4.3.33) into (4.3.32), we obtain the following ODEs

�
@R

@t
= a

⇤
b↵(t)H, (4.3.34)

�
@H

@t
= �a

⇤
H +

1

2
�
2
v
H

2
i
, (4.3.35)

with the terminal conditions R(T ��t) = 0 and H(T ��t) = M(�2j, T ��t).

After some simple derivation, we obtain:

H(t) =
2a⇤

�2
v

e
�a

⇤(T��t)

e�a⇤(T��t) � c0
, (4.3.36)

R(t) =

ˆ
T��t

t

ha
⇤
b↵(t)H,↵(t)idt, (4.3.37)

where c0 = 1� 2a⇤

�2
vM(�2j,T��t) .

Substituting (4.3.32) into (4.3.31), we can finally obtain the solution to the

PIDE in Theorem 4.1 through the two-stage approach as follows:

Wk(t, x, I, y) = e
�r(T��t�t)

h
e
L(�2j,T��t)+R(t)+H(t)y

� 2eL(�j,T��t) + e
L(0,T��t)

i
.

(4.3.38)

4.3.2 Variance swap pricing under regime switching Markov

chain

Now we have obtained Wk as the value of Uk based on a given realized path

of the Markov chain ↵(t), and we calculate Uk by taking into account the change

of the sample path of the Markov chain.

Combining (4.3.15) and (4.3.38), we obtain:

Uk(t, St, It, yt,↵(t)) = EQ
h
Wk(t, St, It, yt) | F

↵(t)
i

= EQ

(
e
�r(T��t�t)

h
e
L(�2j,T��t)+R(t)+H(t)y

� 2eL(�j,T��t) + e
L(0,T��t)

i
| F
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)

= e
�r(T��t�t)

h
�k1(�2j, t)�k2(t)e

H(t)y

� 2�k1(�j, t) + �k1(0, t)
i
,

(4.3.39)
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where

�k1(w, t) = EQ
⇣
e

´ T
T��th�l(w),↵(s)ids

| F
↵(t)

⌘

= EQ
⇣
e

´ tk
tk�1

h�l(w),↵(s)ids
| F

↵(t)
⌘
,

(4.3.40)

�k2(t) = EQ
⇣
e

´ T��t
t ha⇤b⇤↵(s)H,↵(s)ids

| F
↵(t)

⌘

= EQ
⇣
e

´ tk�1
t ha⇤b⇤↵(s)H,↵(s)ids

| F
↵(t)

⌘
.

(4.3.41)

�k1(w, t) and �k2(t) can be calculated by utilizing the following formula in

the Proposition 3.2 of [114]:

EQ
⇣
e

´ T
t hv,↵(t)ids

| F
↵(t)

⌘
= hexp(

ˆ
T

t

Q
0 + diag[v]ds)↵(t), Ei, (4.3.42)

where E = (1, 1, · · · , 1)T 2 R
n and Q

0 denotes the transpose of the transition

matrix Q.

According to (4.3.16), we have

EQ
0

h✓
Stk

� Stk�1

Stk�1

◆2 i
= e

rtkUk(0, S0, I0, y0,↵(0))

= e
r�t

h
�k1(�2j, 0)�k2(0)e

H(0)y0 � 2�1(�j, 0)

+ �1(0, 0)
i
.

(4.3.43)

Since we have only considered the case where k > 1 as we have stated before,

we have to further work on the case where k = 1 to obtain the summation in

(4.3.1) fully.

For k = 1, we have tk = t1 = T and tk�1 = t0 = 0 = T ��t, which indicates

that [0, T ] = [T ��t, T ]. Therefore we could derive the term EQ
0 [
⇣

St1�St0
St0

⌘2

] by
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making use of the result of the first stage in (4.3.30) as follows:

EQ
0

h✓
St1 � St0

St0

◆2 i
= e

rt1U1(0, S0, I0, y0,↵(0))

= e
rt1EQ

h
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↵(T )) | F↵(0)
i

= e
rt1EQ

h
W1(0, S0, I0, y0) | F

↵(0)
i

= e
rt1EQ

h
e
L(�2j,0)+M(�2j,0)y0 � 2eL(�j,0)

+ e
L(0,0)

| F
↵(0)

i

= e
r�t

h
�11(�2j, 0)eM(�2j,0)y0 � 2�11(�j, 0) + �11(0, 0)

i
.

(4.3.44)

Let N = AF ⇤ Te and �t = Te
N

= 1
AF

. Combining (4.3.1), (4.3.43) and

(4.3.44), we can eventually obtain our fair strike price as follows,

Kvar =
AF

N

NX

k=1

EQ
0

h✓
Stk

� Stk�1

Stk�1

◆2 i
⇥ 1002

=
e
r�t

Te

h
f1(y0) +

NX

k=2

fk(y0)
i
⇥ 1002,

(4.3.45)

where

f1(y0) = �11(�2j, 0)eM(�2j,0)y0 � 2�11(�j, 0) + �11(0, 0), (4.3.46)

fk(y0) = �k1(�2j, 0)�k2(0)e
H(0)y0 � 2�k1(�j, 0) + �k1(0, 0), (4.3.47)

for k = 2, . . . , N .

We conclude our calculation algorithm of the discretely sampled variance

swap price as follows.

For the initialization part, we simply write a class to include all the for-

mulas obtained in our derivation. The benefit of using class is that parame-

ters in di↵erent status can inherit our class method easily without re-definition.
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Algorithm 1:

Initialization;

for AF in [1, 252] do

�t = Te
AF

;

for k in [1, AF ] do (the loop here is for calculating fk)

T = k�t;

if k==1 then

Calculate f1(y0) by (4.3.46);

else

Calculate fk(y0) by (4.3.47);

end

f+ = fk;

Kvar = 10000 ⇤ er�t f

Te

end

end

4.4 Numerical Examples

In this section, we present several numerical examples for illustrating our

semi-closed pricing formula for a variance swap in a Heston model with Markov-

modulated jump di↵usion. The e↵ect of incorporating regime switching and jump

di↵usion would be investigated. We will also derive the counterpart pricing for-

mula for a continuously sampled model and compare the two di↵erent prices under

varying observation frequency, which will be helpful for readers to understand the

improvement in accuracy of our discrete sampling solution.

For simplicity, we assume that there are two market regimes: regime 1 and

regime 2, which can be interpreted as the ’bullish’ and the ’bearish’ market,

respectively. In this case, we have n = 2 and the state space of the Markov chain

is reduced to E = {e1, e2}, we assume the generator matrix Q as:

Q =

"
�0.1 0.1

0.4 �0.4

#
. (4.4.1)

A basic set of parameters adopted in this section is displayed in Table 4.1.

We would change some of the parameters while keeping others fixed to investigate

the e↵ect of the change of the particular parameter. As we can see from Table

4.1, the interest rate r and the mean reversion value b in ’bullish’ regime I (r =
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0.06,b = 0.09) are higher than those in ’bearish’ regime II (r = 0.03,b = 0.04), and

the jump in the ’bullish’ market is more oscillatory with higher jump intensity,

which is economically reasonable. Note that the same parameters except the

jump intensity are also adopted in [114] in a Heston’s stochastic volatility model

with only regime switching. In addition, we consider both the Merton-type jump

and the Kou-type jump, whose characteristic functions and density functions are

displayed in Table 4.2. The parameters corresponding to the jump process are

also adopted in [117]. The lifetime of the variance swap contract is assumed to

be Te = 1.

Table 4.1: Model Parameters

Notations Parameters Regime I Regime II

r Interest rate 0.06 0.03
µ Appreciation Rate 0.08 0.04
a Mean reversion rate 3.46 3.46
b Mean reversion value 0.009 0.004
�v Volatility of volatility 0.14 0.14
⇢ Correlation Coe�cient �0.82 �0.82
� Jump intensity 0.2 0.1

Merton Jump

µ̃ Mean of jump size 0.05 0.04
� Jump size volatility 0.086 0.078

Kou Jump

⌘1 Inverse mean one 25 20
⌘2 Inverse mean two 50 45
p Exponential occurrences 0.2 0.16

Table 4.2: Jump Model Parameters

Model �(dz) �z(w)

Merton e
�(z�µ̃)2

p
2⇡�

dz e
jµ̃w�w2

2 �
2

Kou p⌘1e
�⌘1zIz>0 + (1� p)⌘2e⌘2zIz<0dz

p⌘1

⌘1�jw
+ (1�p)⌘2

⌘2+jw
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4.4.1 Model validation

To show the improvement of accuracy of our solution, we first compare our

pricing formula with the continuously sampled counterpart and the semi-Monte-

Carlo simulation.

(A) Derivation of the pricing formula for a continuously-sampled variance swap

Our derivation of the continuous strike price is based on the results of [108],

[15, 105,114], and [13].

According to the work of [108], two terms contribute to the continuous fair

strike price, including the stochastic volatility and the jump di↵usion term.

Let

Kvar = K
vol

var
+K

jump

var
, (4.4.2)

where Kvol

var
is the part of the fair strike price calculated by taking expectation of

the cumulative volatility term:

K
vol

var
= EQ

h 1

Te

ˆ
Te

0

ytdt | F
↵(0) _ F

y(0)
i
, (4.4.3)

and K
jump

var
is the component of Kvar derived from the expectation of jump di↵u-

sion process:

K
jump

var
= E

h MX

j=1

1

Tj

(

N(Tj)X

i=1

(ln(zi))
2) | F↵(0) _ F

s(0)
i
. (4.4.4)

Let Te =
P

M

i=1 Ti, and Ti =
´

T

0 I↵(t)=ids denotes the occupation time of the

Markov chain and let M be the total occupation of Markov chain. For each Ti,

the parameters of the model stick to a specific status.

For the K
vol

var
, we can utilize the results derived in [105] and [114],

K
vol

var
=

1� e
�aT

aT
V0 +

a

T

ˆ
T

0

hexp(Q0
t)diag[

b(1� e
�at)

a
]↵(t), Ei. (4.4.5)

Here we mainly focus on the proof of K
jump

var
from jump di↵usion terms,

utilizing the work of [27], where the author investigated the start forward option

with regime-switching jump di↵usion by Fourier transform. N(Ti) is orthogonal

to N(Tj) when i 6= j, i, j = 1 · · ·M . Based on the work of [108], we obtain the

characteristic function of (4.4.4) for a given sample path of the Markov chain
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from time 0 to time Te

� =EQ
h
e
�jw

PM
j=1

1
Tj

(
PN(Tj)

i=1 (ln(Yi))2)
| F

↵(T )
i

=
MY

i=1

EQ
h
e
�jw

1
Tj

(
PN(Tj)

i=1 (ln(Yi))2)
| F

↵(T )
i

=
MY

i=1

e
�jTj(�i(w)�1)

,

(4.4.6)

where

�i(w) =

s
Tj

�2jw�2
j
+ Tj

e

µjjw

�2jw�2
j+Tj . (4.4.7)

Then, we take the path change of the Markov chain into consideration and

let ' = EQ[� | F
↵(0)], we obtain

' = EQ
h MY

i=1

e
�iTi(�i(w)�1)

i

= EQ
h
e

PM
i=1 �iTi(�i(w)�1)

i

= EQ
h
e
j
PM

i=1 �iTi#(w)
i

= e
jT#M (w)EQ

h
e
j
PM�1

i=1 Ti#̃i(w)
i

= he
Q

0+jdiag(✓(w))
↵(0), Ei,

(4.4.8)

where #̃i(w) = #i(w)�#M(w), #i(w) = �i(�i(w)�1), and ✓ = (#1(w),#2(w), · · · ,#M(w))0.

Here we assume TM = T �
P

M�1
i=1 Ti. Utilising the result from [13], we have the

following,

EQ
h
e
j
PM�1

i=1 �iTi#̃i(w)
i
= he

Q
0+jdiag(✓(w))

↵(0), Ei, (4.4.9)

where E = (1, 1, · · · , 1)0 2 R
M , and ✓̃ = (#̃1(w), #̃2(w), · · · , #̃M�1(w), 0)0.

Thus,

K
jump

var
=

@�

@w
|w=0 = he

Q
0
diag()↵(0), Ei, (4.4.10)

where  =< �j(µ̃2
j
+ �

2
j
)) >N

i=1. Consequently, we obtain the fair strike price for

a continuously sampled variance swap as
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Kvar =
1� e

�aTe

aTe

V0 +
a

Te

ˆ
Te

0

he
Q

0
t
diag[

b(1� e
�at)

a
]↵(t), Ei

+ h(eQ
0
diag(�j(µ̃

2
j
+ �

2
j
)))↵(t), Ei.

(4.4.11)

(B) Semi-Monte-Carlo simulation

Di↵erent from the traditional Monte-Carlo simulation, the semi-Monte-Carlo

simulation only requires simulation of the sample path of the Markov chain. The

simulation process is discussed in detail in [114] and [118]. We will implement

the semi-Monte-Carlo simulation through the following procedures:

(i) Simulate 10000 sample paths for the Markov chain ↵(t) through the gener-

ator matrix Q following the method of [118].

(ii) For the i-th sample path obtained, we calculate f i

k
according to the formulas

in (4.3.46) and (4.3.47).

(iii) Calculate the fair strike price Kvar
i for the i-th sample path using the

results from the previous step and the formula (4.3.45).

(iv) Obtain the final fair strike price Kvar by taking expectation of Ki

var
, i =

1, · · · , 100000.

Figure 4.1 compares the fair strike prices obtained from our discretely sam-

pled pricing formula (4.3.45), the continuously sampled counterpart (4.4.11) and

the semi-Monte-carlo simulation. As we can see from the figure, the results from

our discrete pricing formula match the results from the semi-Monte-Carlo simu-

lation, which provides verification for our solution. In fact, our pricing formula

is more e�ciently ideal with an elegant closed from. On the other hand, one

can also see from the figure that the fair strike price of the discrete model can

be extremely high and deviate drastically from the continuous counterpart when

the observation frequency is low. Therefore it would be very inappropriate to use

the continuous price as an approximation of the discrete one in this situation.

However, as the sampling period narrows, the discrete Kvar declines rapidly and

asymptotically approaches the continuous Kvar.

4.4.2 Regime switching e↵ect

Next, we examine the e↵ect of incorporating regime switching in our vari-

ance swap pricing model. We assume that the model without regime-switching
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Figure 4.1: Calculated Kvar from the discrete model, the continuous model and
the semi-Monte-Carlo simulation

coincides with the ’bullish’ case of the model with regime-switching, but with zero

probability of switching to the other regime. Moreover, to get rid of the impact of

the jump di↵usion part, we add the same jumps to both of the models with and

without regime switching. We have documented di↵erent prices of both models

under a range of observation frequencies in Table 4.3 where we could find that the

Kvar with regime-switching is smaller than that without regime switching. This

is reasonable due to the possibility of switching to the ’bearish’ regime where the

Kvar calculated from our pricing formula is smaller because of the smaller values

of the related parameters. As a matter of fact, things would be the opposite if

we assume that the model without regime switching coincides with the ’bear-

ish’ case. To be more specific, comparisons between the pricing model with and

without regime switching when entering markets with di↵erent initial regimes are

displayed in Figure 4.2 and Figure 4.3 under di↵erent jump types.

In Figure 4.2, we add the Merton-type jump to both of the models with the

parameters specified in Table 4.1. While in Figure 4.3, we consider the Kou-

type jump with parameters specified in Table 4.1. We can conclude from Figure

4.2a and Figure 4.3a that with the consideration of regime-switching possibility,

the Kvar under ’bullish’ market will be dragged down by the ’bearish’ market.

Inversely, from Figure 4.2b and Figure 4.3b we can see that the Kvar under

the ’bearish’ economy will be pulled up by the e↵ect of the ’bullish’ market.

Moreover, the di↵erence between the two models seems wider in Figure 4.2b and

Figure 4.3b than that in Figure 4.2a and Figure 4.3a. This can be explained by
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Table 4.3: Prices of Variance Swap with Regime Switching and Without Regime
Switching

Observation Frequency N Kvar (Regime-switching) Kvar (Non-Regime-switching)

Quarterly 4 210.20 211.83
Monthly 12 127.32 128.22
Fortnightly 26 107.68 108.48
Weekly 52 99.54 100.30
Daily 252 93.17 93.92
Continuously 1 90.62 89.25

(a) State 1 (b) State 2

Figure 4.2: Comparison of Kvar with and without regime switching: Merton-type
jump

(a) Regime 1 (b) Regime 2

Figure 4.3: Comparison of Kvar with and without regime switching: Kou-type
jump

the di↵erent transition rates defined in the generator matrix Q. The transition

rate from regime 1 (bullish) to regime 2 (bearish) is four times of the rate from
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regime 2 (bearish) to regime 1 (bullish). Consequently, the di↵erence between

the Kvar of the model with and without regime-switching in Figure 4.2b and 4.3b

is approximately four times bigger than that in Figure 4.2a and 4.3a.

To verify the influence of the transition rates on the fair strike price, we

apply another set of generator matrix:

Q2 =

"
�0.4 0.4

0.1 �0.1

#
, (4.4.12)

where the transition rate from regime 1 to regime 2 is now bigger than that

from regime 2 to regime 1. The numerical result is displayed in Figure 4.4 where

we can see that the di↵erence of the price between the model with and without

regime switching is wider when entering the ’bullish’ market (regime 1) than the

’bearish’ market (regime 2), which implies that the transition rates do have a

great influence on the Kvar in our model.

(a) Regime 1 (b) Regime 2

Figure 4.4: Comparison ofKvar with and without regime switching with generator
Q2

4.4.3 Jump-di↵usion e↵ect

Finally, we investigate the impact of the jump di↵usion. Here we also con-

sider Merton-type jump and Kou-type jump in Figure 4.5 and Figure 4.6 respec-

tively. Note that we only focus on the case of a ’bullish’ market since the regime

switching is not the major concern now.

In Figure 4.5, we assume that the jump size is driven by a normal distri-

bution. The influence of the jump intensity is investigated in Figure 4.5a by

changing the value of � while keeping other parameters fixed. Note that by set-

ting � = 0, we consider the pricing model without a jump. As the figure depicts,
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the Kvar is positively correlated to the jump intensity and the jump di↵usion

does have a great influence on the price. Figure 4.5b displays the di↵erent prices

with a varying mean of the jump size, from which we can also conclude that the

Kvar increases with the mean. These results are in line with [108] where a similar

conclusion about the e↵ect of jumps is drawn.

(a) Comparison of Kvar with varying jump
intensity

(b) Comparison ofKvar with di↵erent mean

Figure 4.5: Comparison of Kvar with the Merton type jump

Figure 4.6 depicts the jump e↵ects under Kou’s Model with the jump size

being driven by a double exponential distribution. Similar result is obtained

from Figure 4.6a about the positive correlation between the jump intensity and

the Kvar. Also, Figure 4.6b shows the positive e↵ect of the weight we assign on

each exponential distribution.

(a) Comparison of Kvar with varying jump
intensity

(b) Comparison ofKvar with di↵erent prob-
ability

Figure 4.6: Comparison of Kvar with the Kou type jump

Three main conclusions drawn from the numerical analysis are summarized

as follows:
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• The discretely sampled variance swap price converges to that of the continu-

ously sampled counterpart as the observation frequency approaches infinity.

• Interactions of di↵erent market states resulting from the regime switching

probability are evident. For instance, the fair strike price under the ’bullish’

market will be smaller compared to the non-regime-switching market with

same model parameters due to the possible transition to the ’bearish’ mar-

ket.

• Jumps have a significant e↵ect on the variance swap price. More specifically,

the fair strike price will increase as the jump intensity increases.

4.5 Concluding Remarks

In this chapter, we investigate the pricing of a discretely-sampled variance

swap under the framework of Heston’s stochastic volatility model with Markov

regime switching jump di↵usion (RSJD). The model parameters, including those

related to the jump di↵usion, are modulated by a Markov chain which is used to

represent di↵erent market states. The pricing problem is reduced to the calcula-

tion of a series of conditional expectations based on the fact that a variance swap

is essentially a forward contract that requires zero initial cost. By utilizing the

two-stage approach and the generalized Fourier transform method, we obtain a

semi-closed pricing formula for the fair strike price Kvar. To show the improve-

ment of the accuracy of our solution, we also derive the price of a continuously

sampled variance swap and compare the results from the two pricing formulas with

a semi-Monte-Carlo simulation. We find that the discrete price asymptotically

approaches the continuous price as the observation frequency increases, though

the di↵erences between the two prices could be drastic when the frequency is low.

We conduct numerical analysis where a market with two regimes is assumed. We

conclude that the possibility of regime switching has a significant e↵ect on the

price, which is primarily related to the value of the transition rates. Moreover,

we examine the e↵ect of incorporating the jump di↵usion into the pricing model

by considering both the Merton-type and the Kou-type jump. By changing the

value of related jump parameters, we find that either jump has a significant e↵ect

on the price, which is positively correlated to the jump intensity.



CHAPTER 5

Pricing of Volatility Derivatives in a

Heston-CIR Model with

Markov-Modulated Jump-Di↵usion

5.1 General Overview

In this chapter, we combine the regime-switching jump-di↵usion (RSJD)

model with a hybrid model of Heston’s stochastic volatility and the Cox-Ingersoll-

Ross (CIR) stochastic interest rate to investigate the pricing of both volatility

swaps and variance swaps with discrete sampling times. To our knowledge, this

is the first attempt to establish such a RSJD Heston-CIR model for the pricing of

volatility derivatives. The consideration of a stochastic interest rate instead of a

deterministic one is more realistic and appropriate for volatility derivatives with

a long term maturity. The CIR stochastic interest rate follows an ergodic pro-

cess with a non-central chi-square distribution. A change of numéraire from the

money market account to the zero-coupon bond is conducted due to the presence

of stochastic interest rate. Then under the risk-neutral T-forward probability

measure, we obtain the fair delivery prices based on di↵erent pre-specified cal-

culating formulae for the realized variance and volatility. This process involves

calculating the characteristic function for a random variable ↵(·) which is defined

on the log return of the underlying stock. Similarly, we first fix a path for the

Markov chain and then obtain the results conditional on the changing paths. Nu-

merical and sensitivity analysis is presented to examine the e↵ect of each factor

considered in our model on the fair strike price.

The rest of this chapter is organized as follows. The Heston-CIR model with

Markov-modulated jump di↵usion is formulated in Section 5.2, including a change

of numéraire. In Section 5.3, we derive the characteristic function, and utilize the

86
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results to obtain various pricing formulae for variance swaps and volatility swaps.

Section 5.4 presents the numerical and sensitivity analysis where the influence

of each factor and each model parameter is examined and analysed, including a

semi-Monte-Carlo simulation. Finally Section 5.5 concludes this chapter.

5.2 Model Setup

In this section, we develop the Heston-CIR model in a Markov regime-

switching jump-di↵usion (RSJD) market and present a numéraire change to

convert the dynamics of the underlying asset under the real-world probability

measure to those under the risk-neutral T-forward measure.

5.2.1 The Heston-CIR model with Markov-modulated jump

di↵usion

(A) Markov chain

We first consider a continuous-time finite-state observable Markov chainX(t)

defined on a complete probability space (⌦,F ,P) where P denotes the real-world

probability measure. The finite state space S = {s1, . . . , sn} of the Markov chain

represents n di↵erent regimes of the financial markets. In the simplest case, for

example, n = 2, the states s1 and s2 could be interpreted as representatives for

’bullish’ and ’bearish’ market respectively. Without loss of generality, we assume

the state space as S = E = {e1, . . . , en} where ei = (0, . . . , 1, . . . , 0)0 2 R
n is a

canonical unit vector. Following [31], the semi-martingale representation of the

Markov chain X(t) can be obtained as follows,

dX(t) = Q(t)X(t)dt+ dM(t), (5.2.1)

where M(t), t 2 [0,1] is a R
n-valued martingale with respect to the natural

filtration generated by X(t) under P . Q(t) denotes the generator matrix of X(t)

and is defined as:

Q(t) =

2

664

q11 · · · q1n

... . . .
...

qn1 · · · qnn

3

775 , (5.2.2)

where qij, i, j = 1, . . . , n, denotes the transition rate from state ei to state ej

satisfying
P

n

j=1 qij = 0. Moreover, qij > 0 (j 6= i) and qii = �
P

j 6=i
qij.
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(B) Financial market

Let S(t) be the price process of the underlying risky asset in the financial

market. Under the Heston-CIR model with Markov-modulated jump di↵usion,

S(t) is driven by the following system of stochastic di↵erential equations (SDEs):

8
>>>>><

>>>>>:

dS(t) =
h
µX(t)dt+ �(y(t))dWs(t) +

ˆ
R
J
s(Zs

X(t))Ñ
s(dt, dZs

X(t))
i
S(t),

dy(t) = k(✓X(t) � y(t))dt+ v

p
y(t)dWy(t) +

ˆ
R
J
y(Zy

X(t))Ñ
y(dt, dZy

X(t)),

dr(t) = b(aX(t) � r(t))dt+ ⌘

p
r(t)dWr(t),

(5.2.3)

where y(t) is the stochastic instantaneous volatility process and r(t) is the stochas-

tic instantaneous interest rate process.

In the first equation, µX(t) =< µ,X(t) > is the appreciation rate of the

underlying asset S(t) which is dependent on the market’s current state. Here <

· > denotes the inner product inR
n, and µ = (µ1, . . . , µn)0 is a vector representing

di↵erent appreciation rates corresponding to each possible market state, i.e., µi

is the appreciation rate under state ei, and �(y(t)) is a function of y(t) which we

take as �(y(t)) =
p

y(t) in this chapter. Ws(t) is a standard Brownian motion

under P . J
s(Zs

X(t)) is a generalized form of the jump size Z
s

X(t) =< Z
s
, X(t) >

,Z
s = (Zs

1 , . . . , Z
s

n
)0 and is assumed to be in an exponential form in the subsequent

sections. N
s(dt, dZs

X(t)) is the Markov-modulated Poisson random measure and

we define Ñ
s(dt, dZs

X(t)) = N
s(dt, dZs

X(t)) � �
s

X(t)�
s(dZs

X(t))dt as a compensated

Poisson random measure. Here �
s(dZs

X(t)) denotes the jump size distribution

satisfying �
s(dZs

X(t)) = f
s(Zs

X(t))dZ
s

X(t), where f
s(Zs

X(t)) is the density function

of Zs

X(t). �
s

X(t) =< �
s
, X(t) >,�

s = (�s

1, . . . ,�
s

n
)0 is the jump intensity which

describes the expected jump numbers. Here for a matrix or vector M , M 0 denotes

the transpose of M .

In the second equation, k is corresponding to the mean-reverting speed of

y(t), and ✓X(t) =< ✓, X(t) >, ✓ = (✓1, . . . , ✓n)0 is the long-term mean mod-

ulated by the Markov chain similarly as µX(t). v is the so-called volatility of

volatility. Wy(t) is another Brownian motion under P . Ny(dt, dZy

X(t)) is another

Markov-modulated Poisson random measure. Jy(Zy

X(t)) is a generalized function

of the jump size Z
y

X(t) =< Z
y
, X(t) >,Z

y = (Zy

1 , . . . , Z
y

n
)0. In this paper, we

take J
y(Zy

X(t)) = Z
y

X(t) and assume that Z
y

X(t) complies with a standard nor-

mal distribution so that E[Zy

X(t)] = 0. Define Ñ
y(dt, dZy

X(t)) = N
y(dt, dZy

X(t)) �

�
y

X(t)�
y(dZy

X(t))dt as another compensated Poisson process related to the volatil-
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ity process. Similarly, �s(dZy

X(t)) = f
y(Zs

X(t))dZ
y

X(t) is the jump size distribution,

where f
y(Zy

X(t)) is the density function of Z
y

X(t). �
y

X(t) =< �
y
, X(t) >,�

y =

(�y

1, . . . ,�
y

n
)0 denotes the jump intensity.

As for the third equation, b is the speed of mean-reverting adjustment of

r(t). aX(t) =< a,X(t) >, a = (a1, . . . , an)0 denotes the regime-switching long-

term mean. ⌘ is the volatility of the interest rate process.

To ensure the positivity of both the square root processes, we assume that

2k✓X(t) � v
2 and 2baX(t) � ⌘

2 (see [3]). We also assume that the Markov chain

X(t) is independent ofWs(t),Wy(t) as well asWr(t), and the correlations between

the Brownian motions are given as: dWs(t)dWy(t) = ⇢dt, dWs(t)dWr(t) = 0, and

dWy(t)dWr(t) = 0.

5.2.2 Change of numéraire

(A) Risk-neutral measure Q for the money market account numéraire

Under a Heston-CIR model with regime switching, there is no way to hedge

against the risks rising from the randomness of the stochastic volatility, stochas-

tic interest rate or Markov chain. In this sense, the market is incomplete, and

therefore there exist infinitely many risk-neutral probability measures. Follow-

ing [105], we can determine one risk-neutral probability measure Q for the money

account numéraire using the Esscher transform. Let

8
>>>>>><

>>>>>>:

dW
⇤
s
(t) = dWs(t) +

µX(t) � r(t)p
y(t)

dt,

dW
⇤
y
(t) = dWy(t) +

⇤y

v

p
y(t)dt,

dW
⇤
r
(t) = dWr(t) +

⇤r

⌘

p
r(t)dt,

(5.2.4)

where ⇤y and ⇤r denote the market price of the volatility risk and interest rate

risk respectively.

Then the dynamics of the S(t), y(t) and r(t) under the risk-neutral proba-

bility measure Q are as follows,

8
>>>>><

>>>>>:

dS(t) =
h
r(t)dt+

p
y(t)dW ⇤

s
(t) +

ˆ
R
J
s(Zs

X(t))Ñ
s(dt, dZs

X(t))
i
S(t),

dy(t) = k
⇤(✓⇤

X(t) � y(t))dt+ v

p
y(t)dW ⇤

y
(t) +

ˆ
R
Z

y

X(t)Ñ
y(dt, dZy

X(t)),

dr(t) = b
⇤(a⇤

X(t) � r(t))dt+ ⌘

p
r(t)dW ⇤

r
(t),

(5.2.5)
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where k
⇤ = k + ⇤y, b⇤ = b+ ⇤r, ✓⇤X(t) =< ✓

⇤
, X(t) >, ✓

⇤ = (✓⇤1, . . . , ✓
⇤
n
)0, a⇤

X(t) =<

a
⇤
, X(t) >, a

⇤ = (a⇤1, . . . , a
⇤
n
)0 and ✓⇤

i
= k

k+⇤y
✓i, a⇤i =

b

b+⇤r
ai, for i = 1, . . . , n.

Furthermore, let W̃s(t), W̃y(t) and W̃r(t) be mutually independent Brownian

motions under Q satisfying

0

B@
dW

⇤
s
(t)

dW
⇤
y
(t)

dW
⇤
r
(t)

1

CA = C ⇥

0

B@
dW̃s(t)

dW̃y(t)

dW̃r(t)

1

CA , (5.2.6)

where

C =

0

B@
1 0 0

⇢

p
1� ⇢2 0

0 0 1

1

CA such that CC
0 =

0

B@
1 ⇢ 0

⇢ 1 0

0 0 1

1

CA . (5.2.7)

Then applying the Cholesky decomposition, we can re-write (5.2.5) as:

0

B@
dS(t)

dy(t)

dr(t)

1

CA =

0

B@
r(t)S(t)

k
⇤(✓⇤

X(t) � y(t))

b
⇤(a⇤

X(t) � r(t))

1

CA dt+

0

B@

´
R J

s(Zs

X(t))Ñ
s(dt, dZs

X(t))´
R Z

y

X(t)Ñ
y(dt, dZy

X(t))

0

1

CA

+ ⌃⇥ C ⇥

0

B@
dW̃s(t)

dW̃y(t)

dW̃r(t)

1

CA

= µ
Q
dt+ ⌃⇥ C ⇥

0

B@
dW̃s(t)

dW̃y(t)

dW̃r(t)

1

CA+

0

B@

´
R J

s(Zs

X(t))N
s(dt, dZs

X(t))´
R Z

y

X(t)N
y(dt, dZy

X(t))

0

1

CA ,

(5.2.8)

where

µ
Q =

0

B@
(r(t)� �

s

X(t)m)S(t)

k
⇤(✓⇤

X(t) � y(t))

b
⇤(a⇤

X(t) � r(t))

1

CA ,m =

ˆ
R
J
s(Zs

X(t))�
s(dZs

X(t)), (5.2.9)

⌃ =

0

B@

p
y(t)S(t) 0 0

0 v

p
y(t) 0

0 0 ⌘

p
r(t)

1

CA . (5.2.10)

Before moving on to the next subsection, we define four natural filtrations

generated by the Brownian motions W̃s(t), W̃y(t), W̃r(t) and the Markov chain
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X(t) as follows,

Fs(t) = �{W̃s(u) : u  t},

Fy(t) = �{W̃y(u) : u  t},

Fr(t) = �{W̃r(u) : u  t},

FX(t) = �{X(u) : u  t}.

(5.2.11)

(B) Risk-neutral T-forward measure QT for the zero-coupon bond numéraire

In this subsection, we present a numéraire change from the money market

account to the zero-coupon bond and derive the dynamics under the risk-neutral

T-forward measure QT .

Now consider a zero-coupon bond defined on [0, T ] with a payo↵ of 1 dol-

lar whose value at time t under the Heston-CIR model regime-switching jump-

di↵usion model is denoted by B(t, r(t), X(t)). We define the discounting process

as

D(t) = e
�
´ t
0 r(u)du

. (5.2.12)

Then we have the value of the bond as:

B(t, r(t), X(t)) =
1

D(t)
EQ[D(T )|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)]. (5.2.13)

According to the risk-neutral pricing theory, the discounted price process

D(t)B(t, T, r(t), X(t)) should be a martingale under the risk-neutral probability

measure Q.

Applying the Feynman-Kac theorem to D(t)B(t, r(t), X(t)), we have the

following partial di↵erential equation (PDE) with the corresponding terminal

condition:

8
>>><

>>>:

@B

@t
+ b

⇤(a⇤
X(t) � r)

@B

@r
+

1

2
⌘
2
r
@
2
B

@r2
� rB+ < B, QX(t) >= 0,

B(T, r(T ), X(T )) = 1,

(5.2.14)

where B = (B1, . . . , Bn) ,Bi = B(t, r(t), ei), i = 1, . . . , n is a vector with each

element representing the bond price process under the specific market state ei.
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We solve (5.2.14) by utilizing the following Ansatz :

B(t, r(t), X(t)) = e
A(t,X(t))+P (t)r(t)

, (5.2.15)

where A(t,X(t)) =< A, X(t) >, A = (A1(t), . . . , An(t)), Ai(t) = A(t, ei) for

i = 1, . . . , n.

Furthermore, for each specific market state ei, we have X(t) = ei, and

Bi = B(t, r(t), ei) = e
A(t,ei)+P (t)r(t) = e

Ai(t)+P (t)r(t)
. (5.2.16)

Then under state ei, (5.2.14) becomes

8
>>><

>>>:

@Bi

@t
+ b

⇤(a⇤
i
� r)

@Bi

@r
+

1

2
⌘
2
r
@
2
Bi

@r2
� rBi+ < B, Q

0
ei >= 0, i = 1, . . . , n,

B(T, r(T ), ei) = 1.

(5.2.17)

Substituting (5.2.16) into (5.2.17) results in the following ODEs:

8
<

:

dP (t)

dt
� b

⇤
P (t) +

1

2
⌘
2
P (t)2 � 1 = 0,

P (T ) = 0,
(5.2.18)

and

8
<

:

dAi(t)

dt
+ a

⇤
i
b
⇤
P (t) + e

�Ai(t) < M, Qei >= 0, , i = 1, . . . , n,

Ai(T ) = 0,
(5.2.19)

where M = (M1, . . . ,Mn)0,Mi = e
Ai , for i = 1, . . . , n.

(5.2.19) can be solved numerically and (5.2.18) belongs to the type 1 ODE

that we will describe in the next subsection whose solution can be easily obtained

using the results in (5.3.36) as follows:

P (t) =
�2 sinh(

(T�t)
p

(b⇤)2+2⌘2

2 )

sinh(
(T�t)

p
(b⇤)2+2⌘2

2 )b⇤ + cosh(
(T�t)

p
(b⇤)2+2⌘2

2 )
p

(b⇤)2 + 2⌘2
. (5.2.20)

Next we implement the numéraire change for the dynamics under the T

forward measure QT .
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First we denote the two numéraires as N1(t) =
1

D(t) = e

´ t
0 r(u)du and N2(t) =

B(t, r(t), X(t)). Then we can obtain

d lnN1(t) = r(t)dt, (5.2.21)

and

d lnN2(t) = d(A(t,X(t) + P (t)r(t))

=<
dA

dt
,X(t) > dt+ < A, Q(t)X(t) > dt+ < A, dM(t) >

+ P (t)
h
b
⇤(a⇤

X(t) � r)dt+ ⌘

p
r(t)dWr(t)

i

+ (b⇤P (t)�
1

2
⌘
2
P

2(t) + 1)r(t)dt,

(5.2.22)

where dA/dt = (dA1(t)/dt, . . . , dAn(t)/dt)0.

Note thatM(t) andWr(t) are independent, so the volatilities for the numéraires

N1(t) and N2(t) are ⌃Q = (0, 0, 0)0 and ⌃QT
= (0, 0, P (t)⌘

p
r(t))0 respectively.

To derive the dynamics under the T-forward measure QT , we only have to

derive the di↵erent drift part for (5.2.24). Applying the fundamental formula

(see [119]), and using the results above, we can obtain the drift part under QT as

follows,

µ
QT

= µ
Q
�

⇣
⌃⇥ C ⇥ C

T
⇥ (⌃Q

� ⌃QT
)
⌘

=

0

B@
(r(t)� �

s

X(t)m)S(t)

k
⇤(✓⇤

X(t) � y)

b
⇤(a⇤

X(t) � r(t)) + P (t)⌘2r(t)

1

CA .

(5.2.23)

Finally, we can derive the dynamics of (5.2.24) under QT as:

0

B@
dS(t)

dy(t)

dr(t)

1

CA = µ
QT

dt+⌃⇥C⇥

0

B@
dW̃s(t)

dW̃y(t)

dW̃r(t)

1

CA+

0

B@

´
R J

s(Zs

X(t))N
s(dt, dZs

X(t))´
R Z

y

X(t)N
y(dt, dZy

X(t))

0

1

CA

(5.2.24)

or
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8
>>>>><

>>>>>:

dS(t) =
h
(r(t)� �

s

X(t)m)dt+
p
y(t)dW ⇤

s
(t) +

ˆ
R
J
s(Zs

X(t))N
s(dt, dZs

X(t))
i
S(t),

dy(t) = k
⇤(✓⇤

X(t) � y(t))dt+ v

p
y(t)dW ⇤

y
(t) +

ˆ
R
Z

y

X(t)N
y(dt, dZy

X(t))),

dr(t) =
h
b
⇤(a⇤

X(t) � r(t)) + P (t)⌘2r(t)
i
dt+ ⌘

p
r(t)dW ⇤

r
(t).

(5.2.25)

One more important thing that we need to specify is that under QT , we have

the new semi-martingale representation of the Markov chain X(t) as

dX(t) = Q
T
X(t)dt+ dM

T (t), (5.2.26)

where M
T is a martingale under QT and Q

T = (qT
ij
(t))n⇥n, i, j = 1, . . . , n is the

new generator matrix under QT defined by (according to [120])

8
><

>:

q
T

ij
(t) = qije

Aj(t)�Ai(t), j 6= i,

q
T

ii
(t) = �

X

j 6=i

q
T

ij
(t), j = i.

(5.2.27)

Now we have completed the basic model setup, and we will then describe

our basic idea and process of pricing the volatility swaps and variance swaps in

this paper.

5.2.3 Volatility swaps and variance swaps

Volatility is often used as a measurement of the uncertainty of the intrinsic

value of the underlying asset or derivative, indicating the potential risk of invest-

ing in the specific financial instrument. A volatility swap is a forward contract

trading on the future realized volatility of the return from the specified underlying

asset whose payo↵ is determined by the di↵erence of the pre-specified strike price

and the realized volatility over the contract period. A variance swap is defined

similarly on the future realized variance.

To be specific, the payo↵ function at expiry for a volatility swap can be

expressed as: Vvol(Tl) = (�vol � Kvol) ⇥ G. Here �vol denotes the annualized

realized volatility over the time period [0, Tl], Tl denotes the expiry time for the

contract. Kvol is the fair delivery price for the contract, and G stands for the

notional amount of the swap in dollars per volatility point. Similarly, the payo↵
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function for a variance swap takes the form: Vvar(Tl) = (�2
var

�Kvar)⇥L, where

�
2
var

denotes the annualized realized variance over the contract life period [0, Tl]

and L denotes the notional amount of the swap in dollars per volatility point

squared.

Based on the future payo↵, the value of a volatility swap at time t can be

calculated as:

Vvol(t) = EQT

t

h
e
�
´ Tl
t r(s)ds

Vvol(Tl)
i
= EQT

t

h
e
�
´ Tl
t r(s)ds(�vol�Kvol)⇥G

i
, (5.2.28)

and the current value of the variance swap can be calculated as:

Vvar(t) = EQT

t

h
e
�
´ Tl
t r(s)ds

Vvar(Tl)
i
= EQT

t

h
e
�
´ Tl
t r(s)ds(�2

var
�Kvar)⇥L

i
, (5.2.29)

where EQT

t [·] denotes the conditional expectation up to time t under the risk-

neutral T-forward measure QT , and r(t) denotes the interest rate process. Since

the risk-neutral pricing of a forward contract requires the initial value to equal

to zero, the fair delivery price can be calculated as: Kvol = EQ
T

0 [�vol]. Similarly,

for a variance swap the price should be: Kvar = EQ
T

0 [�2
var

]. Thus the valua-

tion problem is reduced to calculating the conditional expectation of the future

volatility or variance.

Normally, the realized volatility or variance is obtained by discretely sam-

pling over the contract life period, or the so-called total sampling period, [0, Tl].

When entering a new contract, the factors that a↵ect the calculation of the real-

ized volatility or variance would be specified in advance, including the underlying

asset, the sampling period or the observation frequency for the price, the annual-

ized factor, the contract expiry time, and the specific formula of calculating the

realized volatility or variance.

We consider the following typical formulae in this chapter, which have been

adopted in plenty of literatures,

actual-return realized volatility: �vol =

vuutAF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥100, (5.2.30)

log-return realized volatility: �vol =

r
⇡

2NTl

NX

k=1

|
Stk

� Stk�1

Stk�1

|⇥ 100, (5.2.31)
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actual-return realized variance: �2
var

=
AF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥1002, (5.2.32)

log-return realized variance: �2
var

=
AF

N

NX

k=1

ln
2

✓
Stk

Stk�1

◆
⇥ 1002, (5.2.33)

where Stk
, k = 0, . . . , N , denotes the k-th observation of the price of the underly-

ing asset at time tk. tk 2 [0, Tl], and [tk�1, tk] is called a sampling period between

two observation sampling points. N denotes the total number of the observations.

AF is an annualized factor converting the value to an annualized basis, which

is determined by the observation frequency. We assume equally spaced discrete

observations in this paper, i.e., N�t = Tl, �t = tk � tk�1 for k = 0, . . . , N .

Therefore we have AF = 1
�t

= N

Tl
, which is within the range from 5 to 252.

5.3 Derivation of Pricing Formulae for Volatil-

ity Swaps and Variance Swaps

In this section we aim at calculating the conditional expectation E
QT

0 [�vol] or

E
QT

0 [�2
var

] where the realized volatility or variance is defined as in (5.2.30)-(5.2.33)

by employing the characteristic function method, and finally derive the pricing

formulae for the volatility swaps and variances swaps.

5.3.1 Characteristic function

Let ↵(T��t) = lnS(T )�lnS(T ��t). We define the characteristic function

of ↵(T ��t) as

f(�; t, T ��t,�t, y(t), r(t)) = EQT
h
e
�↵(T��t)

|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)
i

= EQT
h
e
�(lnS(T )�lnS(T��t))

|Fs(t) _ Fy(t)

_ Fr(t) _ FX(t)
i
.

(5.3.1)

Based on the similar idea to that in [105], we first consider the conditional

characteristic function based on the given information about the sample path of

the Markov Chain X(t) from time 0 to time T , denoted by FX(T ). For a fixed

realized path of X(t), the state dependent parameters such as ✓⇤
X(t) and a

⇤
X(t) are

all deterministic functions. After obtaining the characteristic function, we derive
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the unconditional characteristic function, taking into account di↵erent realized

paths of the Markov chain. Namely, we calculate the characteristic function

(5.3.1) as:

f(�; t, T ��t,�t, y(t), r(t)) = EQT
n
f(�; t, T ��t,�t, y(t), r(t)|FX(T ))|FX(t)

o

= EQT

(
EQT

h
e
�↵(T��t)

|Fs(t) _ Fy(t) _ Fr(t)

_ FX(T )
i
|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)

)
.

(5.3.2)

(A) Conditional characteristic function given FX(T )

Proposition 5.1. Given the information FX(T ), if the dynamics of the asset S(t)

evolve as (5.2.24), we can obtain the conditional characteristic function

corresponding to ↵(T ��t) = lnS(T )� lnS(T ��t) as follows,

f(�; t, T ��t,�t, y(t), r(t)|FX(T ))

= e
F (�,T��t)

g(C(�, T ��t); t, T ��t, y(t))h(D(�, T ��t); t, T ��t, r(t)),

(5.3.3)

where C(�, t), g(�; t, T ��t, y(t)) and h(�; t, T ��t, r(t)) are given by

C(�, t) =
d� b

v2

e
(T�t)d

� 1

le(T�t)d � 1
,

d =
p

(⇢v�� k⇤)2 � �(�� 1)v2, b = ⇢v�� k
⇤
, l =

b� d

b+ d
,

(5.3.4)

g(�; t, T ��t, y(t)) = e
M(�,t)+N(�,t)y(t)

,

M(�, t) =

ˆ
T��t

t

< �[k⇤
✓
⇤
X(u)N(�, u) + J

3
X(u)], X(u) > du,

J
3
X(t) = �

y

X(t)

ˆ
R
(eN(�,t)Zy

X(t) � 1)f y(Zy

X(t))dZ
y

X(t),

N(�, t) =
2k⇤

v2

e
(T�t)k⇤

1� ne(T�t)k⇤
, n = 1�

2k⇤

v2�
,

(5.3.5)

h(�; t, T ��t, r(t)) = e
R(�,t)+Q(�,t)r(t)

, (5.3.6)
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and F (�, t), D(�, t), R(�, t) and Q(�, t) are determined by the following ODEs

along with the corresponding terminal conditions,

8
>>>>>>>><

>>>>>>>>:

Ḟ = �

h
� �

s

X(t)m�+ b
⇤
a
⇤
X(t)D + k

⇤
✓
⇤
X(t)C + J

1
X(t) + J

2
X(t)

i
, F (�, T ) = 0,

Ḋ = �

h
�+ (P (t)⌘2 � b

⇤)D +
1

2
⌘
2
D

2
i
, D(�, T ) = 0,

Ṙ = �b
⇤
a
⇤
X(t)Q, R(�, T ��t) = 0,

Q̇ = �

h
(P (t)⌘2 � b

⇤)Q+
1

2
⌘
2
Q

2
i
, Q(�, T ��t) = �,

(5.3.7)

where

J
1
X(t) = �

s

X(t)

ˆ
R
(e�Z

s
X(t) � 1)f s(Zs

X(t))dZ
s

X(t),

J
2
X(t) = �

y

X(t)

ˆ
R
(eC(�,t)Zy

X(t) � 1)f y(Zy

X(t))dZ
y

X(t).

(5.3.8)

Proof. Given the filtration FX(T ), we can temporarily ignore the e↵ect of the

Markov chain and rewrite the conditional characteristic function as (according to

the tower rule of expectation)

f(�; t, T ��t,�t, y(t), r(t)|FX(T )))

= EQT
h
e
�↵(T��t)

|Fs(t) _ Fy(t) _ Fr(t) _ FX(T )
i

= EQT

(
EQT

h
e
�↵(T��t)

|Fs(T ��t) _ Fy(T ��t)

_ Fr(T ��t) _ FX(T )
i
|Fs(t) _ Fy(t) _ Fr(t) _ FX(T )

)

= EQT

(
EQT

h
e
�↵(T��t)

|Fs(T ��t) _ Fy(T ��t) _ Fr(T ��t)
i

|Fs(t) _ Fy(t) _ Fr(t)

)
.

(5.3.9)

Then we can obtain the conditional characteristic function by solving the inner

expectation and outer expectation successively via two partial di↵erential equa-

tions (PDEs).

We first focus on the inner expectation EQT
h
e
�↵(T��t)

|Fs(T ��t)_Fy(T �

�t) _ Fr(T ��t)
i
.
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Define a function

U(�; t,W (t), y(t), r(t)) = EQT
h
e
�↵(T��t)

|Fs(t)_Fy(t)_Fr(t)
i
, t 2 [T��t, T ],

(5.3.10)

where W (t) = lnS(t)� lnS(T ��t).

According to the Feynman-Kac theorem, U(·) satisfies the following PDE

(subscripts related to X(t) are omitted here for convenience),

AU + �
s

ˆ
R

h
U(�; t,W + Z

s
, y, r)� U(�; t,W, y, r)

i
f
s(Zs)dZs

+ �
y

ˆ
R

h
U(�; t,W, y + Z

y
, r)� U(�; t,W, y, r)

i
f
y(Zy)dZy = 0,

U(�; t = T,W, y, r) = e
�↵(T��t)

,

(5.3.11)

where

A =
@

@t
+ (r � �

s
m�

1

2
y)

@

@W
+
h
b
⇤(a⇤ � r) + P⌘

2
r

i
@

@r
+ k

⇤(✓⇤ � y)
@

@y

+
1

2
y
@
2

@W 2
+

1

2
v
2
y
@
2

@y2
+

1

2
⌘
2
r
@
2

@r2
+ ⇢yv

@
2

@W@y
.

(5.3.12)

The solution to (5.3.11) is assumed to be in the following form (see [3] and

[121]):

U(�; t,W, y, r) = e
F (�,t)+C(�,t)y+D(�,t)r+W�

. (5.3.13)

Substituting (5.3.13) into (5.3.11), the PDE can be reduced to the following

ODEs,

(
Ḟ � �

s
m�+ b

⇤
a
⇤
D + k

⇤
✓
⇤
C + J

1 + J
2 = 0,

F (�, T ) = 0,
(5.3.14)

where

J
1 = �

s

ˆ
R
(e�Z

s
� 1)f s(Zs)dZs

,

J
2 = �

y

ˆ
R
(eCZ

y
� 1)f y(Zy)dZy

,

(5.3.15)
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and

8
<

:
Ċ +

1

2
�(�� 1) + (⇢v�� k

⇤)C +
1

2
v
2
C

2 = 0,

C(�, T ) = 0,
(5.3.16)

8
<

:
Ḋ + �+ (P (t)⌘2 � b

⇤)D +
1

2
⌘
2
D

2 = 0,

D(�, T ) = 0,
(5.3.17)

(5.3.14) and (5.3.17) could only be solved numerically while (5.3.16) belongs

to the type 1 ODE and the solution can be easily obtained based on (5.3.36) as

follows

C(�, t) =
d� b

v2

e
(T�t)d

� 1

le(T�t)d � 1
,

d =
p

(⇢v�� k⇤)2 � �(�� 1)v2, b = ⇢v�� k
⇤
, l =

b� d

b+ d
.

(5.3.18)

Thus the inner expectation is given by

EQT
h
e
�↵(T��t)

|Fs(T ��t) _ Fy(T ��t) _ Fr(T ��t)
i

= U(�; t = T ��t,W, y, r)

= e
F (�,T��t)+C(�,T��t)y(T��t)+D(�,T��t)r(T��t)

.

(5.3.19)

Then the outer expectation is calculated as

EQT
h
e
F (�,T��t)+C(�,T��t)y(T��t)+D(�,T��t)r(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i

= e
F (�,T��t)EQT

h
e
C(�,T��t)y(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i

⇥ EQT
h
e
D(�,T��t)r(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i
, t 2 [0, T ��t].

(5.3.20)

To solve this expectation we first define the characteristic functions of y(t)

and r(t) as

g(�; t, T ��t, y(t)) = EQT
h
e
�y(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i
,

h(�; t, T ��t, r(t)) = EQT
h
e
�r(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i
.

Similarly, we can obtain the following PDEs corresponding to g(·) and h(·)
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by utilizing the Feynman-Kac theorem,

8
><

>:

gt + k
⇤(✓⇤ � y)gy +

1

2
v
2
ygyy + �

y

ˆ
R

h
g(�; t, y + Z

y)� g(�; t, y)
i
fy(Z

y)dZy = 0,

g(�; t = T ��t, T ��t, y(t)) = e
�y(T��t)

,

(5.3.21)

and

8
<

:
ht +

h
b
⇤(a⇤ � r) + P (t)⌘2r

i
hr +

1

2
⌘
2
rhrr = 0,

h(�; t = T ��t, T ��t, r(t)) = e
�r(T��t)

.

(5.3.22)

We also solve (5.3.21) and (5.3.22) by utilizing the following Ansatz

g(�; t, T ��t, y(t)) = e
M(�,t)+N(�,t)y(t)

,

h(�; t, T ��t, r(t)) = e
R(�,t)+Q(�,t)r(t)

.

Substituting the above equations into (5.3.21) and (5.3.22) respectively, we

obtain the following ODEs,

8
<

:
Ṅ +

1

2
v
2
N

2
� k

⇤
N = 0,

N(�, T ��t) = �,

(5.3.23)

(
Ṁ + k

⇤
✓
⇤
N + J

3 = 0,

M(�, T ��t) = 0,
, where J

3 = �
y

ˆ
R
(eNZ

y
� 1)f y(Zy)dZy

, (5.3.24)

and

(
Ṙ + b

⇤
a
⇤
Q = 0,

R(�, T ��t) = 0,
(5.3.25)

8
<

:
Q̇+ (P (t)⌘2 � b

⇤)Q+
1

2
⌘
2
Q

2 = 0,

Q(�, T ��t) = �.

(5.3.26)

(5.3.23) can be solved according to (5.3.36) as follows,

N(�, t) =
2k⇤

v2

e
k
⇤(T�t)

1� ek
⇤(T�t)n

, n = 1�
2k⇤

v2�
. (5.3.27)
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While (5.3.24), (5.3.25) and (5.3.26) can only be solved numerically.

Finally the outer expectation (5.3.20) could be given by

EQT
h
e
F (�,T��t)+C(�,T��t)y(T��t)+D(�,T��t)r(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i
,

= e
F (�,T��t)EQT

h
e
C(�,T��t)y(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i

⇥ EQT
h
e
D(�,T��t)r(T��t)

|Fs(t) _ Fy(t) _ Fr(t)
i
,

= e
F (�,T��t)

g(C(�, T ��t); t, T ��t, y(t))h(D(�;T ��); t, T ��t, r(t)),

t 2 [0, T ��t].

(5.3.28)

Thus we have completed the proof of the proposition.

(B) Characteristic function given FX(t)

We now move on to derive the semi-closed form unconditional characteristic

function by letting the Markov chain X(t) change.

Combining (5.3.9) and (5.3.3), we can obtain

f(�; t, T ��t,�t, y(t), r(t))

= EQT
n
f(�; t, T ��t,�t, y(t), r(t)|FX(T ))|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)

o

= EQT
n
exp (F (�, T ��t))g(C(�, T ��t); t, T ��t, y(t))

h(D(�, T ��t); t, T ��t, r(t))|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)
o

= EQT
n
exp[F (�, T ��t) +M(C(�, T ��t), t) +N(C(�, T ��t), t)y(t)

+R(D(�, T ��t), t) +Q(D(�, T ��t), t)r(t)]|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)
o

= EQT
n
exp[

ˆ
T

T��t

< ��
s

X(t)m�+ b
⇤
a
⇤
X(t)D(�, t) + k

⇤
✓
⇤
X(t)C(�, t)

+ J
1
X(t) + J

2
X(t), X(t) > dt+

ˆ
T��t

t

(< k
⇤
✓
⇤
X(s)N(C(�, T ��t), s) + J

3
X(s), X(s) >

+ < b
⇤
a
⇤
X(s)Q(D(�, T ��t), s), X(s) >)ds+N(C(�, T ��t), t)y(t)

+Q(D(�, T ��t), t)r(t)]|Fs(t) _ Fy(t) _ Fr(t) _ FX(t)
o

= exp
h
N(C(�, T ��t), t)y(t)

i
exp

h
Q(D(�, T ��t), t)r(t)

i

EQT
n
exp [

ˆ
T

t

< ⇠(s), X(s) > ds]|FX(t)
o
,

(5.3.29)
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where

⇠(t) =

(h
� �

s

X(t)m�+ b
⇤
a
⇤
X(t)D(�, t) + k

⇤
✓
⇤
X(t)C(�, t) + J

1
X(t) + J

2
X(t)

i
 (t)

+
h
k
⇤
✓
⇤
X(t)N(C(�, T ��t), t) + J

3
X(t) + b

⇤
a
⇤
X(t)Q(D(�, T ��t), t)

i
(1�  (t))

)
,

 (t) =

8
<

:
1, T ��t  t  T,

0, 0  t < T ��t.

Based on the Proposition 3.2 in [114], the expectation in (5.3.29) is given by

EQT
n
exp [

ˆ
T

t

< ⇠(s), X(s) > ds]|FX(t)
o
=< �(t, T ; ⇠(t))X(t),1 >, (5.3.30)

where

�(t, T ; ⇠(t)) = exp
⇣ ˆ T

t

((QT (s))0 + diag(⇠(s)))ds
⌘
,

1 = (1, . . . , 1)0 2 R
n
.

Thus we can eventually obtain the unconditional characteristic function as

presented in the following proposition

Proposition 5.2. If the dynamics of the underlying asset evolves as (5.2.24),

the characteristic function of the stochastic variable ↵(T � �t) = lnS(T ) �

lnS(T ��t) is given by

f(�; t, T ��t,�t, y(t), r(t))

= exp
h
N(C(�, T ��t), t)y(t)

i
exp

h
Q(D(�, T ��t), t)r(t)

i
< �(t, T ; ⇠(t))X(t),1 >,

(5.3.31)
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where

�(t, T ; ⇠(t)) = exp
⇣ ˆ T

t

((QT (s))0 + diag(⇠(s)))ds
⌘
, 1 = (1, . . . , 1)0 2 R

n
,

⇠(t) =

(h
� �

s

X(t)m�+ b
⇤
a
⇤
X(t)D(�, t) + k

⇤
✓
⇤
X(t)C(�, t) + J

1
X(t) + J

2
X(t)

i
 (t)

+
h
k
⇤
✓
⇤
X(t)N(C(�, T ��t), t) + J

3
X(t)

+ b
⇤
a
⇤
X(t)Q(D(�, T ��t), t)

i
(1�  (t))

)
,

J
1
X(t) = �

s

X(t)

ˆ
R
(e�Z

s
X(t) � 1)f s(Zs

X(t))dZ
s

X(t),

J
2
X(t) = �

y

X(t)

ˆ
R
(eC(�,t)Zy

X(t) � 1)f y(Zy

X(t))dZ
y

X(t),

J
3
X(t) = �

y

X(t)

ˆ
R
(eN(C(�,T��t),t)Zy

X(t) � 1)fy(Z
y

X(t))dZ
y

X(t),

 (t) =

8
<

:
1, T ��t  t  T,

0, 0  t < T ��t,

and C(�, t) along with N(�, t) are given by

C(�, t) =
d� b

v2

e
(T�t)d

� 1

le(T�t)d � 1
,

d =
p

(⇢v�� k⇤)2 � �(�� 1)v2, b = ⇢v�� k
⇤
, l =

b� d

b+ d
,

N(�, t) =
2k⇤

v2

e
k
⇤(T�t)

1� ek
⇤(T�t)n

, n = 1�
2k⇤

v2�
,

(5.3.32)

D(�, t) and Q(�, t) are determined by the following ODEs with the corre-

sponding terminal conditions,

8
><

>:

Ḋ + �+ (P (t)⌘2 � b
⇤)D +

1

2
⌘
2
D

2 = 0, D(�, T ) = 0,

Q̇+ (P (t)⌘2 � b
⇤)Q+

1

2
⌘
2
Q

2 = 0, Q(�, T ��t) = �.

(5.3.33)

5.3.2 Solution to the type 1 ODEs

In this subsection, we illustrate the algorithm of solving the type 1 ODE that

appears in this chapter defined as equations taking the following form:

ẋ+ Ax
2 +Bx+ C = 0, x(T ) = xT . (5.3.34)
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We rewrite the equation and derive the solution as follows,

ẋ+ A

⇣
x
2 +

B

A
x

⌘
+ C = 0

) ẋ+ A

"⇣
x+

B

2A

⌘2

�
B

2

4A2

#
+ C = 0,

) ẋ+ A

⇣
x+

B

2A

⌘2

�
(B2

� 4AC)A

4A2
= 0,

) �
ẋ

(x+ B

2A)
2 �

B2�4AC

4A2

= A,

) �ẋ

⇣ 1

x+ B

2A �

p
B2�4AC

2A

�
1

x+ B

2A +
p
B2�4AC

2A

⌘
=

p

B2 � 4AC,

)
x+ B

2A �

p
B2�4AC

2A

x+ B

2A +
p
B2�4AC

2A

= C̃e
�t

p
B2�4AC(C denotes some constant here),

)
2Ax+B �

p
B2 � 4AC

2Ax+B +
p
B2 � 4AC

= C̃e
�t

p
B2�4AC

.

(5.3.35)

Then using the terminal condition, we have

2AxT +B �
p
B2 � 4AC

2AxT +B +
p
B2 � 4AC

= C̃e
�T

p
B2�4AC

,

) C̃ = e
T
p
B2�4AC

2AxT +B �
p
B2 � 4AC

2AxT +B +
p
B2 � 4AC

.

Substituting the above back to (5.3.35), we have

2Ax+B �
p
B2 � 4AC

2Ax+B +
p
B2 � 4AC

= e

p
B2�4AC(T�t)2AxT +B �

p
B2 � 4AC

2AxT +B +
p
B2 � 4AC

.

Let

D =
p

B2 � 4AC,

� = e
D(T�t)2AxT +B �

p
B2 � 4AC

2AxT +B +
p
B2 � 4AC

.

We can finally obtain the solution to (5.3.34) as follows,

x(t) =
�(B +D)� (B �D)

2A(1��)
. (5.3.36)

Note that equations (5.2.18), (5.3.16) and (5.3.23) could be solved easily

using the results in (5.3.36).
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5.3.3 Pricing formulae

In this subsection, we derive the pricing formulae of the variance swaps and

volatility swaps by making use of the characteristic function we have obtained.

For a variance swap, denote the fair strike prices based on the realized vari-

ance formulae (5.2.32) and (5.2.33) by Kvar
act and Kvar

log respectively, then we

can obtain the pricing formulae as follows

Kvar
act = EQT

0 [�2
var

]

= EQT

0

h
AF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥ 1002
i

= EQT
h
AF

N

NX

k=1

✓
Stk

� Stk�1

Stk�1

◆2

⇥ 1002|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)
i

=
AF

N

NX

k=1

EQT
h✓

Stk
� Stk�1

Stk�1

◆2

|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)
i
⇥ 1002.

(5.3.37)

The expectation in (5.3.37) can be easily obtained by using the characteristic

function

EQT
h✓

Stk
� Stk�1

Stk�1

◆2

|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)
i

= EQT
h
(e↵(tk�1) � 1)2|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

= EQT
h
e
2↵(tk�1) � 2e↵(tk�1) + 1|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

= f(2; 0, tk�1,�t, y(0), r(0))� 2f(1; 0, tk�1,�t, y(0), r(0)) + 1,

(5.3.38)

where ↵(tk�1) = lnStk
� lnStk�1

, �t = tk � tk�1 and f(�; t, T ��t,�t, y(t), r(t))

is given in Proposition 5.2.

Therefore we have

Kvar
act =

AF

N

NX

k=1

EQT
h✓

Stk
� Stk�1

Stk�1

◆2

|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)
i
⇥ 1002

=
AF

N

NX

k=1

h
f(2; 0, tk�1,�t, y(0), r(0))� 2f(1; 0, tk�1,�t, y(0), r(0)) + 1

i

⇥ 1002.

(5.3.39)
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As for Kvar
log, we have

Kvar
log = EQT

0 [�2
var

]

= EQT

0

h
AF

N

NX

k=1

ln
2

✓
Stk

Stk�1

◆
⇥ 1002

i

= EQT
h
AF

N

NX

k=1

ln
2

✓
Stk

Stk�1

◆
⇥ 1002|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

=
AF

N

NX

k=1

EQT
h
ln

2

✓
Stk

Stk�1

◆
|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i
⇥ 1002.

(5.3.40)

Similarly, we calculate the expectation as follows,

EQT
h
ln

2

✓
Stk

Stk�1

◆
|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

= EQT
h
(↵(tk�1))

2
|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

= f
(2)(0; 0, tk�1,�t, y(0), r(0)),

(5.3.41)

where f
(2)(0; 0, tk�1,�t, y(0), r(0)) = @

2
f(�; 0, tk�1,�t, y(0), r(0))/@�2

|�=0 and

this is the second-order derivative of the characteristic function given in Propo-

sition 5.2 with respect to � = 0.

Therefore we obtain the fair strike price as,

Kvar
log =

AF

N

NX

k=1

EQT
h
ln

2

✓
Stk

Stk�1

◆
|Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i
⇥ 1002

=
AF

N

NX

k=1

h
f
(2)(0; 0, tk�1,�t, y(0), r(0))

i
⇥ 1002.

(5.3.42)

Next we discuss our pricing formulae for a volatility swap based on (5.2.30)

and (5.2.31). Similarly, we denote the fair strike prices as Kvol
act and Kvol

log

respectively. Since Kvol
act can be easily obtained from (5.3.39), we only focus on

the derivation of Kvol
log.

Based on (5.2.31), Kvol
log can be calculated as follows,
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Kvol
log = EQT

0 [�vol]

= EQT

0

hr
⇡

2NTl

NX

k=1

|
Stk

� Stk�1

Stk�1

|⇥ 100
i

=

r
⇡

2NTl

NX

k=1

EQT
h
|
Stk

� Stk�1

Stk�1

| | Fs(0) _ Fy(0) _ Fr(0) _ FX(0)
i
⇥ 100.

(5.3.43)

Again, we only need to solve for the expectation in (5.3.43).

Before we proceed to calculate the expectation, we define the density function

of ↵(tk�1) as p[↵(tk�1)]. Then the cumulative distribution function (CDF) related

to p[↵(tk�1)] is given by

F
p(0) =

ˆ 0

�1
p[↵(tk�1)]d↵(tk�1) =

1

2
�
1

⇡

ˆ 1

0

R

h
f(i�; 0, tk�1,�t, y(0), r(0))

i�

i
d�,

(5.3.44)

where R denotes the real part of the complex number.

Thus we have

ˆ 1

0

p[↵(tk�1)]d↵(tk�1) = 1�F
p(0) =

1

2
+
1

⇡

ˆ 1

0

R

h
f(i�; 0, tk�1,�t, y(0), r(0))

i�

i
d�.

(5.3.45)

In addition, we define a new function q[↵(tk�1)] as

q[↵(tk�1)] =
e
↵(tk�1)p[↵(tk�1]

f(1; 0, tk�1,�t, y(0), r(0))
. (5.3.46)

It can be easily verified that q[↵(tk�1)] is also a density function satisfying the

two basic properties: a) q[↵(tk�1)] > 0 and b)
´ +1
�1 q[↵(tk�1)]d↵(tk�1) = 1. The

corresponding characteristic function, denoted by f
q(�; 0, tk�1,�t, y(0), r(0)), can

be obtained by applying the Fourier transform with a sign reversal as follows
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(see [114,122]),

f
q(�; 0, tk�1,�t, y(0), r(0)) = F

h
e
↵(tk�1)p[↵(tk�1)]

f(1; 0, tk�1,�t, y(0), r(0))

i

=
1

f(1; 0, tk�1,�t, y(0), r(0))

⇥

ˆ 1

�1
e
i�↵(tk�1)e

↵(tk�1)p(↵(tk�1))d↵(tk�1)

=
f(i�+ 1; 0, tk�1,�t, y(0), r(0))

f(1; 0, tk�1,�t, y(0), r(0))
.

(5.3.47)

Using the characteristic function f
q(·), we can obtain the following CDF

corresponding to q[↵(tk�1)],

F
q(0) =

ˆ 0

�1
q[↵(tk�1)]d↵(tk�1) =

1

2
�
1

⇡

ˆ 1

0

R

h
f(i�+ 1; 0, tk�1,�t, y(0), r(0))

i�f(1; 0, tk�1,�t, y(0), r(0))

i
d�.

(5.3.48)

Similarly, we have

ˆ 1

0

q[↵(tk�1)]d↵(tk�1) = 1�F
q(0) =

1

2
+
1

⇡

ˆ 1

0

R

h
f(i�+ 1; 0, tk�1,�t, y(0), r(0))

i�f(1; 0, tk�1,�t, y(0), r(0))

i
d�.

(5.3.49)

Now we can calculate the expectation in (5.3.43) using the results in (5.3.45)
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and (5.3.49) as follows,

EQT


|
Stk

� Stk�1

Stk�1

|

����Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

�

= EQT
h
|e

↵(tk�1) � 1|
��Fs(0) _ Fy(0) _ Fr(0) _ FX(0)

i

=

ˆ 1

�1
|e

↵(tk�1) � 1|p[↵(tk�1)]d↵(tk�1)

=

ˆ 1

0

(e↵(tk�1) � 1)p[↵(tk�1)]d↵(tk�1) +

ˆ 0

�1
(1� e

↵(tk�1))p[↵(tk�1)]d↵(tk�1)

=

ˆ 1

0

e
↵(tk�1)p[↵(tk�1)]d↵(tk�1)�

ˆ 1

0

p[↵(tk�1)]d↵(tk�1)

+

ˆ 0

�1
p[↵(tk�1)]d↵(tk�1)�

ˆ 0

�1
e
↵(tk�1)p[↵(tk�1)]d↵(tk�1)

= 1� 2

ˆ 1

0

p[↵(tk�1)]d↵(tk�1) +

ˆ 1

0

e
↵(tk�1)p[↵(tk�1)]d↵(tk�1)

�

ˆ 0

�1
e
↵(tk�1)p[↵(tk�1)]d↵(tk�1)

= 1� 2

ˆ 1

0

p[↵(tk�1)]d↵(tk�1) + f(1; 0, tk�1,�t, y(0), r(0))
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Finally we can obtain the fair delivery price Kvol
log as follows,
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where

f(i�+ 1) = f(i�+ 1; 0, tk�1,�t, y(0), r(0)),

f(i�) = f(i�; 0, tk�1,�t, y(0), r(0)).
(5.3.52)

Thus we have obtained the closed-form pricing formulae for a variance swap and

a volatility swap with the variance or volatility defined as (5.2.30) to (5.2.33)

using the characteristic function method.

5.4 Numerical and Sensitivity Analysis

In this section, we conduct numerical analysis to verify the accuracy and

e�ciency of our explicit solution and examine the e↵ect of incorporating di↵erent

factors in our hybrid model based on the pricing formula (5.3.39) for a discretely-

sampled variance swap. We assume a typical two-regime market that switches

between the so-called ”bullish” (good economy) and ”bearish” (bad economy)

regime, denoted by regime 1 and regime 2 respectively. Thus we have the state

space as S = {e1, e2}. The transition matrix Q is given as

Q =

"
�0.1 0.1

0.4 �0.4

#
. (5.4.1)

Other model parameters for the two regimes are given in Table 5.1. More-

over, the contract expiry time is given as Tl = 1. Note that we consider both

Merton-type jump and Kou-type jump for the stock price process S(t) and the

corresponding density functions and characteristic functions are given in Table

5.2. The parameters we use are adapted from [53] and [114] for our RSJD model.

The values of the regime-dependent variables in the bullish state are considered

higher than those in the bearish state, resulting in a higher strike price in the

bullish market, which is economically reasonable. Based on the set of parameters,

we will present a sensitivity analysis investigating the e↵ect of a 1% change of

each model parameter on the fair delivery price Kvar.

5.4.1 Semi-Monte-Carlo simulation

First we examine the accuracy of our analytical solution by comparing dif-

ferent fair delivery prices calculated from our semi-closed-form pricing formula

(5.3.39) with the results obtained from the semi-Monte-Carlo simulation. This

could be meaningful for market practitioners who may prefer numerical results
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Table 5.1: Model Parameters

Notations Parameters Regime I Regime II

a
⇤ Long-term interest rate mean 0.08 0.06

b
⇤ Interest rate mean reversion speed 1.2 1.2
k
⇤ Volatility mean reversion speed 2 2
✓
⇤ Long-term volatility mean 0.075 0.04
v Volatility of volatility 0.1 0.1
⌘ Volatility of interest rate 0.01 0.01
⇢ Correlation Coe�cient �0.4 �0.4
�s Jump intensity of stock price S(t) 0.3 0.2
�y Jump intensity of volatility y(t) 0.5 0.4

Merton Jump

µ̃ Mean of jump size 0.03 0.025
� Jump size volatility 0.086 0.078

Kou Jump

⌘1 Inverse mean one 25 20
⌘2 Inverse mean two 50 45
p Exponential occurrences 0.2 0.15

Table 5.2: Two typical jump models

Jump model Density function Characteristic function

Merton e
�(z�µ̃)2

p
2⇡�

e
�µ̃+�2

2 �
2

Kou p⌘1e
�⌘1zIz>0 + (1� p)⌘2e⌘2zIz<0

p⌘1

⌘1��
+ (1�p)⌘2

⌘2+�

over analytical solutions.

The semi-Monte-Carlo simulation scheme has been used as an improvement

for the traditional Monte-Carlo simulation for the regime-switching models in

terms of e�ciency. The basic idea is to simulate a large number of sample paths

for the Markov chain, calculate the fair strike price Kvar given each of the sample

path and obtain the final Kvar as the mean of the di↵erent prices. For more

details, the readers are referred to [114, 118, 123]. Specifically, we implement our

simulation procedure as follows,

(1) Simulate 20000 sample paths for X(t) following the method of [118].

(2) For the i-th sample path, i = 1, . . . , 20000, obtain the associated conditional

forward characteristic function fi(·|FX(T )) according to (5.3.3).

(3) Using the obtained characteristic function fi(·|FX(T )), calculate the fair
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strike price Kvari associated with the i-th sample path following similar

steps in section 5.3.3.

(4) Calculate the final fair strike price Kvar as the mean of all the obtained

prices Kvari, for i = 1, . . . , 20000.

Figure 5.1: Comparison of Kvar obtained from semi-Monte-Carlo simulation and
our explicit solution

Figure 5.1 compares the prices obtained from our solution and semi-Monte-

Carlo simulation under di↵erent observations frequencies ranging from 5 to 255.

As the figure depicts, our solution matches the simulation result very well, which

provides verification of the accuracy of our pricing formula. Moreover, as an

analytical solution, our pricing formula provides higher computation e�ciency

over the semi-Monte-Carlo simulation method.
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5.4.2 Regime switching e↵ect

We then examine the regime switching e↵ect on the fair delivery price under

two initial market regimes. As a comparison with our pricing formula, the Kvar

without regime switching e↵ect is derived by equating the two sets of parame-

ters. For example, for the bullish market that we are entering, we equates the

parameters for regime 2 to those for regime 1. Thus the two regimes are reduced

to one. Note that we do not eliminate the e↵ect of stochastic interest rate or

jump di↵usions. Moreover, we only consider Merton-type jump in this section.

The results under two cases are shown in Figure 5.2 where di↵erent fair delivery

prices against observation frequency are displayed.

(a) Regime 1 (b) Regime 2

Figure 5.2: Comparison of Kvar with and without regime switching

As we can see from Figure 5.2a, the possibility of switching to the bearish

market drags down the prices for an initial bullish market under a range of obser-

vation frequencies. Contrarily, for a bearish market at initial time, the prices are

pulled up due to regime switching as shown in Figure 5.2b. This is economically

reasonable since the prices without regime switching in a bullish market is higher

than those in a bearish market. As the model parameters vary with the changing

regimes, the prices moves upwards or downwards. Table 5.3 keeps track of the

two prices sampled from quarterly to continuously.

Additionally, we can find that the regime switching e↵ect is more prominent

for the bearish market than that for the bullish market. This is due to the higher

transition rate we assume from regime 2 to regime 1. If we reverse the value of

q12 and q21 and define a new generator matrix as

Q̃ =

"
�0.4 0.4

0.1 �0.1

#
, (5.4.2)
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Table 5.3: Kvar with regime switching and without regime switching (bullish)

Observation Frequency N Kvar (regime-switching) Kvar (Non-regime-switching)
Quarterly 4 793.20 800.72
Monthly 12 707.91 714.27

Fortnightly 26 682.81 688.80
Weekly 52 671.71 677.55
Daily 252 662.75 668.46

Continuously 1 662.39 668.10

we will have an opposite result as displayed in Figure 5.3.

(a) Regime 1 (b) Regime 2

Figure 5.3: Comparison of Kvar with and without regime switching with gener-
ator Q̃

5.4.3 Jump di↵usion e↵ect

Next we investigate the e↵ect of the Markov-modulated jump di↵usion by

observing the strike price with various jump intensities under a range of obser-

vation frequencies while keeping other parameters fixed. Moreover, we consider

Merton-type jump for the volatility process where the jump size follows a normal

distribution. As for the stock price process, we additionally consider a Kou-type

jump where the jump size follows a double exponential distribution. Also, we

focus on the bullish regime in this case since regime switching is not our major

concern now.

Figure 5.4 displays Kvar under di↵erent observation frequencies when the

jump intensity �s varies from 0 to 0.4. When �s = 0, the jump e↵ect is eliminated

from the stock price process. As the figure shows, the incorporation of jump

in S(t) leads to higher prices under each observation frequency and the price
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further goes up as the jump intensity �s increases. An explanation for this is

that the jump di↵usion contributes to the variation of the underlying asset’s

price, resulting in a higher realized variance and a higher fair delivery price.

Figure 5.4: Comparison of Kvar with various jump intensities �s (Merton-type)

Similarly, we can see from Figure 5.5 that the increasing jump intensity

�y for the volatility process also increases Kvar. However, the e↵ect is much

smaller than �s. This may be resulting from the di↵erent forms we assumed for

J
s(Zs) = e

Z
s
� 1 and J

y(Zy) = Z
y. Figure 5.6 depicts the case with a Kou-type

jump where a positive e↵ect of the jump di↵usion can also be concluded. The

results are consistent with those in [108] where the jump e↵ect on the variance

swap prices are also investigated in detail.
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Figure 5.5: Comparison of Kvar with various jump intensities �y

Figure 5.6: Comparison of Kvar with various jump intensities �s (Kou-type)

5.4.4 Stochastic interest rate e↵ect

Finally we study the e↵ect of stochastic interest rate. We focus on the

movements ofKvar in the bullish market caused by the change of long-term mean

a
⇤ within the range [0, 0.10]. As Figure 5.7 shows, the prices can vary positively

a lot along with a
⇤ when the observation frequency is low. While as the sampling

period narrows, the di↵erence of Kvar with various a⇤ almost disappears. This

leads to the conclusion that the e↵ect of stochastic interest rate is insignificant

for a short contract lifetime. Since the need for the incorporation of stochastic

interest rate comes from a longer contract period, we document di↵erent values
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of Kvar for a range of a⇤ when the expiry time Tl extends to 10 instead of 1

in Table 5.4. Note that we here consider a daily-sampled variance swap. In

this case, the percentage change of Kvar is much larger than the counterpart

for Tl = 1. For example, when the long-term interest rate mean changes from

0.06 to 0.08, the change of Kvar for Tl = 10 is 0.27%, compared to the 0.012%

for Tl = 1. Therefore for a long-term contract lifetime, the positive e↵ect of

stochastic interest rate cannot be neglected.

Figure 5.7: Comparison of Kvar with di↵erent a⇤

Table 5.4: E↵ect of stochastic interest rate for di↵erent contract lifetimes

a
⇤

Kvar(Tl = 10) Kvar(Tl = 1)
0.00 762.28 666.29
0.02 763.60 666.35
0.04 765.19 666.43
0.06 767.05 666.51
0.08 769.20 666.59
0.10 771.62 666.69

To conclude this section and summarize the e↵ect of the major model pa-

rameters on our pricing formula, we conduct a sensitivity analysis based on our

parameter set in the bullish regime. Specifically, we calculate the percentage

change in Kvar caused by 1% change of each parameter from its base value we

assume and record the results in Table 5.5. It is obvious that the price is most

sensible to the three parameters related to the stochastic volatility, i.e., ✓⇤, k⇤ and

y(0), which is economically reasonable and in line with the previous literatures.

The drastic positive e↵ect of ✓⇤ is depicted in Figure 5.8.



5.4 Numerical and Sensitivity Analysis 119

Table 5.5: Sensitivity analysis

Parameters Value Percentage change in Kvar

a
⇤ 0.08 0.00053713%
b
⇤ 1.2 0.00014265%

r(0) 0.05 0.00043367%
k
⇤ 2 0.10863865%
✓
⇤ 0.075 0.63736395%

y(0) 0.05 0.32356315%
�s 0.3 0.03618091%
�y 0.5 0.00279182%
q12 0.1 �0.00842272%
q21 0.4 0.00076640%

Figure 5.8: Comparison of Kvar with di↵erent ✓⇤

The transition rate q12 a↵ects the bullish Kvar negatively. While in the

bearish market, the result can be opposite. Kvar seems little sensible to the

interest rate parameters, but things could be di↵erent as the contract lifetime

gets longer. Therefore all the factors in our Heston-CIR model with regime-

switching jump-di↵usion have significant e↵ect on the variance swap prices and

should be taken into account in the valuation process.
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5.5 Concluding Remarks

This chapter investigates the fair strike prices for both variance swaps and

volatility swaps under the Heston-CIR model with Markov-modulated jump-

di↵usion. Under the risk-neutral pricing framework, the problem is reduced to

calculating a series of conditional expectations of the realized variance or realized

volatility under a risk-neutral T-forward probability measure. The calculation

of realized variance or volatility is pre-specified in the contract, and we consider

four typical formulae in this chapter. Based on the characteristic function that

we derive for a random variable ↵(·) defined as the log-return of the underlying

stock during a sampling period [T��t, T ], we obtain the corresponding fair strike

price for a variance swap and a volatility swap for each calculating formula. Then

we conduct numerical analysis under a typical two-regime market for a range of

observation frequencies where the e↵ect of the realistic factors considered in our

model are examined, including regime-switching, jump-di↵usion, stochastic inter-

est rate and volatility. The switching possibility to another regime either drags

down the price for the good economy or pulls up that for the bad economy. The

intensity depends on the specific transition rate. The jump di↵usion contributes

to the variation of the stock price, resulting in higher delivery price. The stochas-

tic interest rate seems not significant when the contract lifetime is short, but the

influence can increase significantly and cannot be neglected when the expiry time

gets longer. Additionally, we carry out a semi-Monte-Carlo simulation whose re-

sults perfectly match our analytical solution, which validates the accuracy and

e�ciency of our pricing formula. Finally, we conclude our results by a sensitivity

analysis where the percentage change in the fair strike price caused by 1% change

of each parameter is recorded, according to which the price is most sensible to

the stochastic volatility.



CHAPTER 6

Summary and Future Research

6.1 Summary

In this thesis, we establish and apply various regime-switching jump-di↵usion

(RSJD) models to study two important financial problems, the mean-variance

asset-liability management (MVALM) and the pricing of variance (volatility)

swaps. To our knowledge, little work has been done to investigate the applications

of RSJD models to these two financial problems. By utilizing the stochastic dy-

namic programming techniques and the risk-neutral pricing methods, we obtain

closed-form solutions to each problem and investigate the validity and e�ciency

of our solutions with numerical examples. The major findings and results are

summarized as follows.

(i) A basic RSJD model is established to investigate the MVALM problem un-

der a game theoretic framework. By applying the stochastic programming

techniques, we obtain the Nash equilibrium strategy along with the equilib-

rium value function in terms of five systems of ordinary di↵erential equations

(ODEs) arising from the extended Hamilton-Jacobi-Bellman (HJB) equa-

tions and the verification theorem. Compared to the general pre-committed

strategy, the equilibrium strategy puts more weight on the risky assets as

time goes since it considers the future investment while making the current

decision. The equilibrium value functions under di↵erent regimes converge

to the current wealth surplus value as the time expires. Numerical and

sensitivity analysis on the e↵ect of regime switching and jump di↵usion is

also presented. The equilibrium value function increases as the transition

rate goes up. The e↵ect of jump intensities on the equilibrium strategy is

not sure due to the sign of the partial derivatives. And the e↵ect of the

jumps in the stock is larger than that in the liability process. Moreover,

the risk aversion coe�cient has a negative e↵ect on the investment strategy,

121
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which is economically reasonable and verified by the corresponding partial

derivative.

(ii) A Heston’s stochastic volatility model with regime-switching jump di↵usion

is established for the pricing of discretely-sampled variance swaps. Due to

the forward contract nature of a variance swap and the risk-neutral pricing,

the pricing problem is reduced to solving a series of conditional expecta-

tions. The fair strike price is obtained in semi-closed-form by solving the

partial di↵erential equation satisfied by the value function via the two-stage

approach and the generalized Fourier transform method. The accuracy and

e�ciency is validated by comparison of our solution with a semi-Monte-

Carlo simulation result. A continuous counterpart is also derived and com-

pared with our solution, based on which we prove that the continuous ap-

proximation can lead to large errors when the observation frequency is low,

even though the discretely-sampled variance swap price converges to the

continuous counterpart as the observation frequency approaches infinity.

Numerical analysis is conducted under a two-regime market to examine the

e↵ect of regime switching and jump di↵usion by changing the values of cor-

responding model parameters. The possibility of regime switching a↵ects

the fair delivery prices by pulling up the price in an initial bearish market

and dragging down that in an initial bullish market. The jump processes

contribute to the variation in the underlying asset’s return, resulting in a

positive e↵ect on the fair strike prices.

(iii) A hybrid model combining Heston’s stochastic volatility and CIR stochas-

tic interest rate with regime-switching jump di↵usion is established to price

both variance swaps and volatility swaps with discrete sampling times. A

change of numéraire is presented to determine the dynamics under the

T-forward risk-neutral probability measure. Under the risk-neutral pricing

framework, the semi-closed-form fair delivery prices based on di↵erent real-

ized variance (volatility) calculating formulae are obtained in terms of the

characteristic functions of a newly defined random variable corresponding

to the log-return of the underlying stock during a sampling period. The

process of deriving the associated characteristic functions starts with as-

suming a given fixed path of the Markov chain and ends with allowing

various paths to determine the conditional expectation. Similarly, the solu-

tion is validated with a semi-Monte-Carlo simulation. Numerical examples

are presented under a typical two-regime market to examine the e↵ect of
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each factor considered in our hybrid model. The incorporation of regime

switching may cause positive or negative e↵ect on the strike price depend-

ing on whether the alternative economy is better or worse than the current

state. Both jumps in the stock price and volatility process lead to increase

of the realized variance, resulting in a higher delivery price. Compared to

other factors, the stochastic interest rate exhibits little influence when the

contract lifetime is short. However, the e↵ect can increase rapidly and can-

not be neglected as the contract extends to a longer period. A sensitivity

analysis is conducted regarding the percentage change of the fair strike price

due to 1% change of each model parameter, where the long-term mean of

the volatility process is shown to have the most significant e↵ect on our

pricing formula.

6.2 Future Research Directions

The main objective of this research is to investigate the mean-variance asset-

liability management (MVALM) problem and the pricing of variance (volatility)

swaps under various regime-switching jump-di↵usion (RSJD) models. The RSJD

models are more realistic and e↵ective due to the ability to capture the short-

term and long-term market movements caused by some single unexpected event or

the structural changes of the macroeconomic environment respectively. Though

we establish models that incorporate more complex factors such as stochastic

interest rate, and apply new techniques such as the game-theoretic time-consistent

approach, the following improvements can still be made in the future.

(i) Besides the MVALM and pricing of variance swaps, more applications of the

RSJD models to other financial problems such as option pricing, optimal

investment and reinsurance strategy, the prediction of Value-at-Risk, and

optimal selling rules can be investigated.

(ii) The market regimes in our RSJD models are assumed to be fully observable

by the investors and researchers. However, this may not be the case in the

real world. Thus a hidden Markov chain can be considered instead of an

observable Markov chain in further RSJD models.

(iii) For the MVALM problem under RSJDmodels, we assume a regime-dependent

risk aversion coe�cient �(i). To be more realistic, we could consider a risk

aversion �(x, i) that also depends on the current wealth state x. Further-
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more, we could introduce skewness preference to the objective functional

besides the mean and variance.

(iv) Calibration of the model parameters could be considered since the value of

the parameter plays an essential role in the model.
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