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Abstract6

Lake Victoria’s surface area has recently been shown to have shrunk by 0.3% compared to its7

1984 value, a decline that has been associated with climatic as well as anthropogenic factors.8

Climatic factors include, e.g., reduced rainfall, which impacts not only on the lake’s water level9

but also on the basin’s vegetation that forms the lake’s catchment. Understanding the loca-10

tions of vegetation changes and the driving forces of such changes, therefore, is of most critical11

importance to major stakeholders regarding environmental management, policies and planning.12

For Lake Victoria Basin (LVB; Kenya, Uganda, Tanzania, Rwanda and Burundi), human devel-13

opment and climatic variability/change have subjected the region to significant changes in its14

vegetation characteristics whose spatio-temporal patterns are, however, not well understood.15

To understand this variability in vegetation for the period 2003-2018, this study employs the16

use of remotely sensed MODIS (Moderate Resolution Imaging Spectroradiometer), CHIRPS17

(Climate Hazards Group InfraRed Precipitation with station data) precipitation data, Google18

Earth Pro imagery, Gravity Recovery and Climate Experiment (GRACE)-based Mascon’s to-19

tal water storage (TWS) products and the statistical PCA (Principal Component Analysis).20

The study aims at determining (i) “significant hotspots”, i.e. vegetation areas within the LVB21

largely impacted, and (ii), the extent of which anthropogenic and climatic variability have con-22

tributed to the “hotspots” formation. The results indicate a total of 8 hotspots; 5 in Uganda23

and 1 each in Kenya, Tanzania and Rwanda. Google Earth Pro imagery of all the hotspots24

show the changes in anthropogenic processes as the primary driver for the long-term changes in25

vegetation characteristics. Conversely, the analysis of PCA and Mascon’s TWS concluded that26

only the Tanzanian hotspot may have been driven somewhat by climate variability. Climate27

variability is understood to be the driver in short-term vegetation changes while the long-term28

effects are driven primarily by human influence.29
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1. Introduction32

Studies have shown that alterations to the hydrological characteristics of freshwater areas33

correlate with changes in shoreline vegetation (e.g., (Hudon , 1997; Nilsson and Berggren , 2000;34

Baldwin et al., 2001; New and Xie , 2008)). Decreases in water-levels can allow vegetation types35

and other plant species the freedom to regenerate (Hill et al., 1998; Zhang et al., 2017). Con-36

versely, anthropogenic processes that act to clear vegetation for urbanisation and development37

can indirectly lead to decreased water-levels of freshwater bodies that lie in proximity to where38

such stressors occur (Sand-Jensen et al., 2000; Zhang et al., 2017). Such water bodies provide39

important socio-economic services for the regions in which they are located, hence why they are40

sourced for extraction. For example, Jeppesen et al. (2012); Zhang et al. (2017); Sand-Jensen et41

al. (2000) investigate the extent of decline of flora species macrophyte around streams that are42

in close proximity to cultivated and urbanised regions and conclude that there are significant43

overall decrease of species richness for each of the streams they surveyed. Yet the converse44

is also true; anthropogenic activities such as use of fertilizers and industrial wastes also indi-45

rectly fuel increase in microphytes as demonstrated by Coladello et al., (2020) who studied46

macrophytes’ abundance changes in eutrophicated tropical reservoir of Salto Grande in Brazil.47

For the Lake Victoria Basin (LVB; 31◦39’ - 34◦53’ E and 0◦20’ - 3◦ N) that houses the48

second largest freshwater lake in the world (Mati et al., 2008), Awange et al. (2019a) employed49

medium-resolution remotely sensed data of Landsat (5, 7 & 8) and Sentinel-2 images for the50

period 1984-2018 and indicated that the surface area of the lake had shrunk significantly in51

recent decades at a rate of 5.97 km2/year (from manual digitisation) and 5.27 km2/year (from52

Modification of Normalized Difference Water Index (MNDWI)). Four areas that were identified53

as “hotspots”, which had major influences in the overall reduction of Lake Victoria’s surface54

area, i.e., Birinzi, Uganda - 33.9 km2; Mwanza Gulf, Tanzania - 21.5 km2; Emin Pasha Gulf,55

Tanzania - 14.6 km2; and Winam Gulf, Kenya - 12.8 km2 (Awange et al., 2019a).56

To understand this decline, monitoring of its vegetational changes is vital and this predis-57

poses it to remote sensing techniques due to its sheer size. This is because in-situ recordings58

over such a large area is impractical and extremely susceptible to inaccuracy, whilst photogram-59
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metric processes would prove to be far too expensive when conducted yearly (Awange et al.,60

2019a). Even with this realization, there is little information pertaining to the changes in areal61

extent of LVB’s vegetation coverage and their triggers. Studies that have been conducted have62

focussed largely on variance of NDVI values in the region (e.g., (Omute et al., 2012)) but have63

not equated the extent of which this contributes to changes in vegetation coverage. For in-64

stance, a 2014 study conducted in the Winam Gulf (Kenyan section of LVB) utilised coarse65

resolution 300 m MERIS (Medium Resolution Imaging Spectrometer) and fine resolution 30 m66

Landsat-7 imagery to analyse the NDVI of aquatic vegetation in the area, and performed accu-67

racy assessments for each Normalised Difference Vegetation Index (NDVI) extraction method68

(Cheruiyot et al., 2014). With the gradual decrease in the surface area of Lake Victoria (Awange69

et al., 2019a), there is reason to suggest that this would be a driving force for changes in the70

characteristics of the surrounding vegetation within the catchment.71

Factors that have been known to influence vegetation variability include both climatic and72

anthropogenic. For example, an NDVI variability study in the USA from 1982 - 1992 confirmed73

with a 99% confidence that El Ñino Southern Oscillation (ENSO) was the primary driver for74

influencing NDVI interannual variability (Li & Kafatos, 2000). A South African study (Richard75

& Poccard, 1998) found that seasonal rainfall changes were primary NDVI drivers in areas where76

the annual rainfall was between 300 and 900 mm, or if the total rainfall between the rainy and77

dry seasons were profound. Within LVB, Nicholson et al. (1990) and Omute et al. (2012)78

showed the influence of climate on vegetation by looking at the relationship between vegetation79

and rainfall in the region. Furthermore, climate variability through global teleconnections such80

as ENSO and Indian Ocean Dipole (IOD) on the one hand, and seasonal trends on the other81

hand, are also known influencers of short-term variability of vegetation in the LVB region (see82

e.g., Park et al., 2020; Zhao et al., 2020; Detsch et al., 2016; Williams & Hanan, 2011; Plisnier83

et al., 2000(@; Agutu et al., 2020; Omute et al., 2012; Awange et al., 2019a).84

This study extends the work of Awange et al. (2019a), which analysed the physical dynam-85

ics of Lake Victoria by studying vegetation changes in its entire basin (i.e., LVB), which forms86

its catchment. The difference between the two studies is that Awange et al. (2019a) aimed87

at looking at changes on the physical surface of the lake and the triggers therein from 198488

to 2018. The current study employs high temporal-resolution MODIS (Moderate Resolution89

Imaging Spectroradiometer), CHIRPS (Climate Hazards Group InfraRed Precipitation with90
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Station) precipitation, Google Earth Pro imagery and Gravity Recovery and Climate Experi-91

ment (GRACE)-based Mascon’s total water storage products for the 2003-2018 period, and the92

statistical PCA (principal component analysis), to determine (i) significant “hotspots”, i.e., the93

main differences vegetation areas, which negatively impacted within LVB, and (ii), the extent94

of which anthropogenic and climatic variability have contributed to the “hotspots” formation.95

In undertaking this study, we seek to understand vegetational changes within LVB, which as96

catchment, is associated with the Lake’s physical surface changes. Investigating the actual97

causality however, is out of the scope of the current work.98

The remainder of the study is organised as follows: In Section 2, study area, the data and99

methods are presented. Section 3 covers results and discussion before concluding in Section 4.100

2. Data and methods101

2.1. Lake Victoria Basin: Background102

Lake Victoria, the world’s largest tropical lake and second-largest freshwater lake is located103

in Eastern Africa (31◦39’ - 34◦53’ E and 0◦20’ - 3◦ N), with its shoreline covering three countries,104

Kenya (6%), Uganda (45%) and Tanzania (49%) (Awange and Ong’ang’a , 2005; Mati et al.,105

2008). Its basin area (Figure 1) is almost three times the size of the lake and extends over106

the three East African countries together with Rwanda and Burundi. The basin refers to the107

network of rivers and streams that transport water and nutrients into the lake and is about108

193000 km2 (Awange and Ong’ang’a , 2005; Awange et al., 2008; Mati et al., 2008). It therefore109

facilitates the livelihood and wellbeing of over 40 million people across 5 countries at a density of110

over 300 people per km2, with this population expecting to triple by the year 2050 (Awange et111

al., 2019a,b; Okotto-Okotto et al., 2018). Water levels for Lake Victoria are primarily dependent112

on rainfall (approx. 80% of total recharge) (Awange and Ong’ang’a , 2005; Awange et al., 2019a;113

Kizza et al., 2009). The remaining 20% is the result of discharge from within the catchment114

area (Awange and Ong’ang’a , 2005; Awange et al., 2008).115
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Figure 1: Lake Victoria Basin (LVB), the study area.
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2.2. Data116

Atmospherically corrected satellite images and hydroclimate data are employed to analyse117

the degree of which climate variability and anthropogenic activities has impacted on vegetation118

changes in the LVB. The data used for the investigation is elaborated upon in Sections 2.2.1–119

2.2.4 and summarized in Table 1.120

2.2.1. MODIS121

MODIS NDVI data products (eMODIS NDVI V6) are available for direct download from the122

United State Geological Survey (USGS) Earth Explorer database (https://earthexplorer.123

usgs.gov/). The eMODIS products includes either 7- or 10-day composite datasets with it’s124

native highest spatial resolution of 250 × 250m pixels size. The eMODIS NDVI V6 products125

provide NDVI datasets over entire world. For this study, the 10-day intervals products are126

download from the USGS website for the period 2003 - 2018 at three years interval, i.e., 2003,127

2006, 2009, 2012, 2015, and 2018. The month of December is selected as it comes after the128

short-rainy season of September - November, therefore potentially making it more suitable for129

identifying NDVI changes (Awange et al., 2019a). A total of 18 images are downloaded for130

December, i.e., 3 images for each year, with the temporal duration of the images being 10 or 11131

days, i.e., 1st-10th, 11th-20th and 21st-31st for the evaluated month (December). The imagery132

itself have coarse spatial resolution that encompasses the entire area of the African continent.133

These products are regarded as high temporal resolution, therefore, might be a suitable products134

for identifying areas of spatio-temporal changes in vegetation coverage (Chen et al., 2016). The135

focus of this study is on the vegetation of the catchment area for the entire LVB, therefore,136

the areal extent of the study is the lakes’s surrounding areas (land area with vegetation cover)137

resulting in output masking the lake’s surface. A subset image created for 2018 MODIS NDVI138

data using the shapefile of the LVB. All the rest of MODIS imagery are clipped using 2018139

subset image. During the sub-setting of the images, a snap to pixel technique is used to make140

sure every pixel for all year represent the same geographical location for capturing genuine141

changes in NDVI values for the evaluated years.142

2.2.2. Google Earth Pro143

Google Earth Pro (GEP) is one of the online platform that uses base images with the option144

that provides time series image analysis through image slider tool (Saleem & Awange, 2019).145
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This platform provides high to medium resolution satellite images, for instance IKONOS and146

Landsat, respectively, over the world with variations from one region to another. For this study,147

the freely available historical Landsat images from GEP are used to visually analyse further148

(Section 3.4 and Figure 7) the identified NDVI hotspots where vegetation changes occur (see149

Figure 6). The triggers for these changes could be factors that include anthropogenic activities,150

e.g., urbanisation, forest and agriculture areas clearing. Furthermore, such visual analysis aid151

in showing the extent of anthropogenic contributions to vegetation changes.152

2.2.3. GSFC Mascons153

Mass-concentration (mascon) grids are monitored by the Gravity Recovery and Climate154

Experiment (GRACE) dual-satellite. The GSFC mascon estimation is processed by a general155

approach that it models the best-fit trend and annual time-variable gravity signals (Sabaka et156

al., 2008; Luthcke et al., 2013). It is worth mentioning that although the GSFC solution is157

comprised of 41,168, 1 arc-degree mascon cells, the original spatial resolution within a region is158

still 300 km. This means the time series of GSFC for each mascon within the same constraint159

region (e.g., basins) is highly correlated to the near mascons. In this study, GSFC mascon is160

used to monitor the equivalent water changes for every month, and compared to rainfall and161

vegetation changes.162

2.2.4. CHIRPS Rainfall163

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a rainfall164

product that was developed to support the United States Agency for International Development165

Famine Early Warning Systems Network (FEWS NET) (Funk et al., 2015a). It merges satellite166

and in-situ observations to perform high spatial (0.05◦ × 0.05◦) resolution and monthly temporal167

results , e.g., National Oceanic and Atmospheric Administration’s (NOAA’s) Rainfall Estimate168

(REF2) (Love et al. , 2004), African Rainfall Climatology (Novella and Thiaw , 2013), CHPclim169

dataset (Funk et al., 2015b) and gauge products (Funk et al., 2015a). Generally, climate change170

is inferred from climatology data that spans more than 30 years. Given that CHIRPS data are171

available for 34 years, undertaking a PCA analysis on it can indicate the impacts of climate172

change through the analysis of its time series. When this is compared with the epochs of173

vegetation, one can infer on the impacts of climate change/variability on vegetation. The data174

is available on https://earlywarning.usgs.gov/fews/datadownloads/Global/CHIRPS.175
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Table 1: A summary of data employed in this study.

Description Sensor Time-line Purpose Data Source

NDVI MODIS Dec. 2003-2018 Vegetation changes https://earthexplorer.usgs.gov/

Google Earth Pro Landsat Dec. 2003-2016 Anthropogenic impacts Application-based

GSFC Mascons GRACE January 2003 – July 2016 Water altimetry changes https://ccar.colorado.edu/grace/gsfc.html

Infrared rainfall data CHIRPS 1984-2018 Impacts of climate change http://chg.geog.ucsb.edu/data/chirps/

2.3. Methods176

NDVI change maps are created for inter-annual and intra-annual variations for the 2003,177

2006, 2009, 2012, 2015, and 2018 MODIS imagery datasets to identify zones of the catch-178

ment area that have undergone extensive decline in vegetation coverage. Principal Component179

Analysis (PCA) is computed on rainfall data to determine if any reduction in vegetation is180

climate-driven with help of the change maps generated from NDVI data. Google Earth Pro181

(GEP) imagery from the time of vegetation decrease for each hotspot is obtained to visualise182

if the decline is anthropogenically-driven. There are large amount of variance in NDVI val-183

ues among the evaluated years, what can be partly attributed to the low spatial resolution184

(250 × 250m pixels size) of MODIS imagery. However, high temporal resolution of the data185

permit a valid comparison over time for the NDVI value changes. An NDVI threshold of >186

0.2 is used to determine whether a pixel is considered vegetation or non-vegetation (e.g., Pu187

et al., 2008; Duarte et al., 2018), and the total area of vegetation and non-vegetation for each188

year then determined by generating binary dataset for each year using ArcGIS environment.189

This section elaborates on the image-processing procedures used, including; fishnet creation,190

binary outputs, standardised anomaly, image difference. A structure chart of the methodology191

is presented in Figure 2.192

2.3.1. Pre-processing193

All 18 of the MODIS images are clipped to the extent of the basin outside of the lake prior194

to further processing. NDVI values > 0.2 are extracted to create binary outputs depicting195

vegetation and non-vegetation pixels. The same threshold value was used in Pu et al. (2008);196

Duarte et al. (2018) as a means of representing shrubs and meadows. The NDVI statistics of197

the images are further normalised to provide the exact NDVI values of all vegetation pixels198

determined from the binary output, as well as categorising all non-vegetation pixels ≥ 0.2 as a199

‘0’ value.200
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A fishnet of points is then created for each pixel in the study area (over 2.6 million; 250 m x201

250 m pixels). Within the fishnet dataset, the NDVI values for each pixel is extracted from all202

images and added to their respective points. The pixel mean NDVI value (i.e., the mean was203

used for original products for 7 or 10 days interval) for each year (2003, 2006, 2009, 2012, 2015,204

and 2018) is calculated from the three NDVI values of the original datasets of each year. The205

overall mean NDVI value of those years is then obtained from these outputs, i.e., the pixel mean206

for all years is then calculated using the pixel mean values for each year, which in turn allows207

the overall mean NDVI values to be extracted. Using the pixel mean value of each year, new208

rasters are derived depicting vegetation and non-vegetation areas using the NDVI threshold of209

> 0.2.210

2.3.2. Anomaly calculations211

Annual anomalies are computed with respect to the mean change of each pixel. These values212

are utilised to demonstrate the extent of changes in NDVI of the basin. Two approaches are213

used to present this; (i) the inter-annual, which highlight short-term 3-year annual trends for214

NDVI differences, i.e., 2003-2006, 2006-2009 etc., and (ii), the intra-annual maps that present215

short and long-term trends demonstrating the degree of NDVI difference for each of the years216

in relation to 2003 (which is set as the base year).217

2.3.3. Hotspot significance maps218

The significance of the mean annual changes of NDVI P -value for each pixel is the deter-219

mining factor in the identification of a “hotspot” signifying reduction in vegetation coverage.220

Vegetation decreases are indicated for Z-values < 0, with the significance of the trends of veg-221

etation changes indicated by P -values < 0.05. P and Z values are calculated for all pixels in222

the study area where any pixel that fulfils both criteria is interpreted as decreasing at 95%223

confidence.224

2.3.4. Principal Component Analysis (PCA)225

Principal component analysis (PCA) is a technique for reducing the dimensionality of datasets,226

increasing interpretability but at the same time minimizing information loss(Awange et al.,227

2020). It is useful for identifying variance in hydrometeorological parameters Dyer (1975);228

Awange et al. (2011, 2014, 2016, 2019a). In this study, it is employed to analyse gridded229
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CHIRPS rainfall variation throughout the catchment area for the 1984-2018 period in order to230

infer the impacts of climate change on vegetation. As NDVI values are a measure of vegetation231

greenness, higher NDVI values are dependent on higher water content (Foody , 2003), eutroph-232

ication (especially around the lake perimeter, e.g., Coladello et al., (2020)), the vegetation233

type (e.g., (Omute et al., 2012)), density and height which translated in high NDVI values.234

Also, in such spatial resolution (250 m) mixed pixels significantly affect the NDVI values on235

the one hand while on the other hand, the meteorological conditions in the previous days of the236

selected MODIS images can affect the NDVI values. The patterns determined from the PCA237

analysis can determine whether the reduction in NDVI values from the ‘hotspots’ derived from238

the MODIS imagery processing are climate-driven through the analysis of rainfall variability239

(e.g., Awange et al., 2016, 2019a) and comparing with changes in NDVI (e.g., Omute et al.,240

2012).241

Figure 2: Workflow for the investigation.
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3. Results and discussion242

3.1. Vegetation analysis within LVB243

The lower mean NDVI values for December 2006 and 2018 (Figure 3a) can be largely at-244

tributed to the lower than average rainfalls in Eastern Africa, which were caused by the oc-245

currence of La Ñina events in 2006 and 2016-2017 respectively (Hoell et al., 2017; Setimela246

et al., 2018). Conversely, the higher mean NDVI value for December 2015 (Figure 3a) can be247

attributed to higher than average rainfalls from the occurrence of an El Ñino event in 2015-2016248

(Setimela et al., 2018).249

Figure 3: (a) Mean NDVI, and (b), Area of vegetation/non-vegetation using NDVI > 0.2 threshold.
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3.1.1. Epoch and base-year trend change maps250

As stated earlier (see Section 2.3.2), epoch and long-term trends of NDVI changes indicate251

the potential whereabouts of significant hotspots in the basin. The primary purpose of these252

maps is to identify areas in the LVB have undergone drastic transformations in overall vegetation253

greenness within its respective recorded period.254

As the epoch maps highlight the short-term 3-year annual trends, it therefore can highlight255

the extent in the variation of NDVI values caused by extreme weather events. The 2003-2006256

and 2015-2018 maps (Figure 4a) display the magnitude of environmental impact caused by257

lower than average rainfall from their respective La Ñina events that were highlighted in Hoell258

et al. (2017); Setimela et al. (2018). Figure 4a demonstrates the capacity in which rainfall259

variations can have on the environment in the short-term. However, vegetation that has yet260

to be subjected to significant human interference has the capacity to replenish when annual261

rainfall levels increase. This is displayed in the 2006-2009 (Figure 4a), which occurred after the262

La Ñina event of 2006 as well as the 2012-2015 period (Figure 4a, which occurred during the263

El Ñino event of 2015-2016. The decreases of NDVI values are more widespread and of greater264

magnitude. In 2003-2006 the impact is generally more profound west of the lake. Significant265

clusters of reduced NDVI values have been identified in the south-west of the catchment area266

(Burundi), central to the western side of the lake (Tanzania), north-west of the catchment area267

(Uganda) and Central Rwanda. East of LVB, there is a large general decrease of NDVI spread268

across Kenya, which sprawls across into the Tanzanian border and continues nearby to the269

southern border of the lake.270

In the 2015-2018 period, the impact is even more extreme. There are additional areas that271

have undergone significant NDVI decreases; namely along the northern boundary of the lake as272

well as more extensively east of the lake across Kenya and Tanzania. However, it must be stated273

that the extremity of the reduction is harnessed from the contrasting extreme weather events274

that occurred in 2015 and 2018. As stated in Section 3.1, higher than average rainfall occurred275

in the Lake Victoria region due to an El Ñino event in 2015-2016, whereas lower than average276

rainfall occurred due to a La Ñina event in 2016-2017 (Setimela et al., 2018). These extreme277

weather events would be the primary contributor as to why NDVI is higher than normal for278

2015, and lower than normal for 2018. This means that when computing the difference in279

the pixel anomalies inter-annually for 2015-2018, the result would indicate widespread NDVI280
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decrease.281

The base-year map (Figure 4b) highlights the long-term trends for NDVI changes for all282

years from 2003. In a similar vein to the outputs for the epoch maps (Figure 4a), the western283

side of the basin is substantially more impacted. Within the 15-year time-span; south-western284

Uganda, north-western Tanzania, central and eastern Rwanda as well as northern Burundi285

have all been inflicted in this negative trend. East of the lake has also undergone some impact,286

particularly in an area in south-western Kenya. However, the long-term trend indicates that287

most of the primary hotspots occur west of the lake, see more details in Section 3.1.2.288

3.1.2. Identification of significant hotspots289

The next step is to determine the whereabouts of statistically significant hotspots that in-290

dicate a long-term trend in vegetation decline. The criteria for identifying pixels that would291

formulate the hotspots are Z ≤ -2 and P < 0.05, indicating significant decrease at 95% confi-292

dence. All pixels meeting this criteria are extracted from their respective datasets. All pixels293

that represent both criteria could potentially be located within clusters of similar pixels. There294

are such pixels located widespread in the study area, however, the purpose is to identify more295

aggregations, i.e., areas, in which the separation of neighbouring pixels is no greater than 30296

km. Due to the large size of the study area, it is understood that using a larger distance297

threshold could provide a more sustainable output in terms of the number of clusters that will298

result.299

That resultant output when utilising the 30-km separation threshold are 8 significant hotspots300

(Figure 4c); 5 of which were in Uganda, and 1 each for Kenya, Tanzania and Rwanda respec-301

tively. With Uganda containing the most hotspots, those findings correlate with the long-term302

trends analysed in Section 3.1.1, in which vegetation located north-west of Lake Victoria was303

found to have undergone the largest areal decrease in NDVI from 2003-2018. Evidently, parts of304

the study area that were subjected to short-term vegetation changes were not deemed significant305

enough in the P and Z outputs in Figure (4c) to be deemed a hotspot.306

The results show that there is some correlation between the NDVI hotspots deduced in307

this investigation and the hotspots discovered in Awange et al. (2019a) that demonstrated308

a significant decrease in the surface area of Lake Victoria itself. That study concluded that309

Winam gulf (Kisii, Kenya), Emin Pasha gulf (Katoro, Tanzania), Mwanza gulf and Birinzi310
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(Kampala & Masaka, Uganda) were the hotspots. Each of these places has expanded their311

urban environments to various extents since 2003, whilst also showing signs of deforestation and312

clearing to enable the provision of agriculture and other rural industry. The assumption can be313

made that this outwards urban expansion has not only reduced all vegetation characteristics314

but has also necessitated the extraction of nearby freshwater that Lake Victoria provides for315

these areas.316

Figure 4: (a) Short-term three-year epoch differences in NDVI, (b) long-term NDVI trends from 2003, (c),

significance of anomaly changes using maps depicting P values, and (d), significance of anomaly changes using

maps depicting Z values.
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3.2. Rainfall variability within LVB317

For the 1984-2018 period, a PCA analysis is performed on the rainfall parameters within318

LVB. Figure 5 shows the principal components (PC; time series) and the empirical orthogonal319

functions (EOF; spatial maps) both of which have to be interpreted together to understand320

rainfall variability within the LVB. Both PCs and EOFs account for the total variation in the321

rainfall (Dyer , 1975). The results of the PCA, where PC1 (accounting for 75.2% of the overall322

variance in rainfall) depicts the dominant seasonal rainfall superpositioned with the annual323

signal, PC2 (19.1%) shows annual rainfall variation, while PC3 (5.6% ) shows extreme rainfall324

events (i.e., those associated with El Ñino and La Ñina)), are consistent, e.g., with the results325

of Awange et al. (2013) who found four modes over the basin for the period 2003-2013. For326

instance, Awange et al. (2013)’s PC1 (representing 63% of total variance of the rainfall) showed327

a superposition of the annual and seasonal variabilities while PC2 (13%) related to the annual328

variation and PC3 showed a summation of interannual changes and a linear trend over the329

basin. The first three EOF modes in the present study are identical to those of Awange et al.330

(2013). Other similar findings are presented, e.g., in (e.g., Khaki & Awange , 2019; Awange et331

al., 2019a).332

Identifying if there are climatic drivers in the formation of NDVI hotspots is accomplished333

through analysing the variation trends derived from the PCA output. In general, overall rainfall334

decreased throughout the Lake Victoria basin, in some places by as high as 250 millimetres,335

such as along the western boundary of the lake and along the south-western boundary of336

the study area within Burundi. Seasonality caused its most profound rainfall decrease along337

the southern extremities of the study area. The decrease became gradually less profound338

progressively north from the southern extent. The north-eastern corner overlapping Kenya and339

Uganda recorded increased rainfall due to seasonal variations. Extreme weather events result in340

horizontal contrast with increased rainfall recorded over most of the western half of the study341

area and decreased rainfall over most of the eastern half.342

For the NDVI hotspot identified in Kisii, Kenya the only rainfall variable that could have had343

any effect in the long-term reduction in NDVI is the La Ñina extreme weather events. However,344

as that only accounts for 5.6% of rainfall variation, it is safe to assume that the hotspot is345

the result of a non-climatic driver. For all the Ugandan hotspots, PCA does not provide any346

meaningful indicator for climate contributing to its formation. Conversely, the total rainfall and347
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seasonality PCs indicate some possibility that they contribute to the formation of the Kigali348

(Rwanda) and Katoro (Tanzania) hotspots. These PCs account for approximately 94.3% of349

rainfall variance, which is reason enough to suggest that climatic impact could be meaningful.350

Figure 5: PCA analysis (a) Timeseries of PCA components, and (b), spatial pattern of components.
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3.3. Total Water Storage changes within the hotspots351

Annual total water storage (TWS; surface, groundwater, soil moisture and vegetation)352

changes have been obtained for all Gravity Recovery and Climate Experiment (GRACE) Mass353

Concentration (mascon) grids where hotspots lie (see Figure 6). The La Ñina event in 2006354

presents a decrease in TWS by approximately 2 gigatons for all mascons. In contrast, the El355

Ñino event in 2015-2016 presented an annual increase of approximately 3-4 gigatons for all356

mascons.357

However, a short-coming in these assessments is their time-span. Analysis of NDVI changes358

occurred every three years from 2003-2018 while the mascon analysis occurs from January 2003359

– July 2016. The major detriment for that is that a La Ñina event occurred in 2016-2017,360

resulting in lower rainfall for Eastern Africa. The effects that this had on TWS changes is not361

recorded. As December 2018 is the final period for NDVI analysis, the short-term and long-term362

effects of the La Ñina event is displayed in Section 3.1.1. With the missing TWS change data,363

it makes it difficult to determine if rainfall variables are a major driver in the formation of the364

NDVI hotspots.365

Figure 6: Gravity Recovery and Climate Experiment (GRACE) Mass Concentration mascon analysis of the total

water storage changes within the NDVI hotspots.
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3.4. Google Earth Pro imagery366

The identified NDVI hotspots from MODIS data is assessed further using the satellite im-367

agery from GEP at different time-scales to provide insight into the extent of the anthropogenic368

impacts. From the analysis it is evident that for the Ugandan hotspots of Jinja, Kampala,369

Masaka and Mbarara, that outward urban expansion is the primary contributor for the long-370

term NDVI decline. The same conclusion can be drawn for the Rwandan and Kenyan hotspots371

also. The Katoro (Tanzania) hotspot can also be seen to have undergone urban expansion,372

but to a lesser extent. The Ugandan hotspot of Butundu is not necessarily derived from ur-373

banisation, but it was still caused by anthropogenic activities, as it appears that large-scale374

deforestation and clearing occurred in the region for widespread agricultural practices to begin.375

Figure 7: Google Earth Pro imagery with Landsat images as base map (a) Butundu, Uganda 2004 and (a1)

Butundu, Uganda 2017; (b) Jinja, Uganda 2003 and (b1) Jinja, Uganda 2016; (c) Kampala, Uganda 2003 and

(c1) Kampala, Uganda 2016; (d) Masaka, Uganda 2003 and (d1) Masaka, Uganda 2016; (e) Mbarara, Uganda

2003 and (e1) Mbarara, Uganda 2016; (f) Katoro, Tanzania 2003 and (f1) Katoro, Tanzania 2016; (g) Kigali,

Rwanda 2003 and (g1) Kigali, Rwanda 2016; (h) Kisii, Kenya 2003 and (h1) Kisii, Kenya 2018.

18



4. Conclusion376

Following a recent study that indicated reduction of Lake Victoria’s surface over the period377

1984-2018, this contribution aimed at investigating changes in vegetation cover over the Lake378

Vectorial Basin (LVB) over the period 2003-2018. To achieve this, the study employed MODIS379

(Moderate Resolution Imaging Spectroradiometer), Google Earth Pro, CHIRPS (Climate Haz-380

ards Group InfraRed Precipitation with station data) precipitation data, Google Earth Pro381

imagery, Gravity Recovery and Climate Experiment (GRACE)-based Mascon’s water storage382

products, and the statistical method of Principal Component Analysis (PCA). The assumption,383

here, is that changes in vegetation within LVB is related to the lake’s physical dynamics and384

as such, understanding vegetation changes within the basin and identifying the hotspots where385

they occur could be essential to the overall management of the lake. The results show that386

the vegetation within the LVB experienced temporal variations throughout the study period387

(2003-2018). Specifically, the study found that:388

1. Long-term vegetational changes within LVB over the period 2003-2018 were primarily389

anthropologically driven, with urbanization expanding at the expense of vegetation as390

seen from the Google Earth Pro imagery.391

2. Eight “hotspots” (i.e., areas with significant vegetational changes) in total were identified392

over LVB: 5 in Uganda, and one each in Kenya (Kisii), Kigali (Rwanda) and Tanzania.393

Other than the Rwandan and Tanzanian hotspots where climate variability impacts were394

visible, there is no meaningful evidence presented from the rainfall and Mascon’s TWS395

analysis to suggest that anything other than human processes is causing long-term changes396

in vegetation characteristics over the other hotspots.397

3. Out of all the countries within the LVB, it can be said that Uganda has undergone the398

most profound urbanisation processes since 2003, largely due to the expansion of its major399

cities such as Kampala, Masaka and Jinja that were identified as hotspots. Small-scale400

urban expansion also occurred in the Butundu, Mbarara and Katoro cities that do not401

serve as major urban hubs, but instead service agricultural and industrial practices. The402

expansion of these regional practices can be attributed to why they have been identified403

as vegetation hotspots, as clearing of land is required to facilitate these practices.404

Understanding the locations of vegetational changes is most profound, as well as the driving405

forces associated with such changes, in that it provides critical information to major stakehold-406
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ers regarding future environmental management, policies and planning. Management of Lake407

Victoria and its basin, therefore, would benefit from such analysis presented in this work.408
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