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Abstract: 
Failure mode and effect analysis (FMEA) is a proactive risk assessment technique, which has 

been widely used by engineers to meet the safety and reliability requirements of processes, 

products, structures, services and systems. The major aim of the FMEA technique is to rank the 

failure modes according to their risk levels and subsequent actions are performed to 

eliminate/mitigate their consequences. In a typical FMEA, for each failure mode, three risk 

factors, namely severity (S), occurrence (O) and detection (D) are evaluated and a risk priority 

number (RPN) is estimated by multiplying these risk factors. In recent years a significant effort 

has been underway and different approaches have been proposed to improve FMEA, to overcome 

its several drawbacks. We notice that there is a significant amount of literature based on multi-

criteria decision making (MCDM) methods, which have been solely aimed to improve the risk 

estimation process in FMEA by overcoming the drawbacks of the traditional FMEA technique.  In 

this work, we propose a novel integrated MCDM approach by combining Fuzzy Analytical 

Hierarchy Process (FAHP) with the modified Fuzzy Multi-Attribute Ideal Real Comparative 

Analysis (modified FMAIRCA). At first, we calculate the fuzzy relative importance between the 

risk factors by using the FAHP method and then we use those importance values in our 

proposed modified FMAIRCA to rank the failure modes according to their risk level. Our modified 

FMAIRCA method is computationally inexpensive and is able to provide more viable decisions. We 

consider a benchmark example in FMEA domain to validate the ability of our integrated approach 

and highlight the usefulness of the same. Further, we compare the ranking result with other MCDM 

methods - FVIKOR, FCOPRAS, FMOORA, FMABAC, FTOPSIS and sensitivity analysis is also 

performed to highlight the robustness of the proposed approach.   

Index Terms – MCDM; FMEA; Risk assessment; Fuzzy AHP; Fuzzy MAIRCA. 

1. Introduction

1.1 Motivation 

Catastrophic failures of equipment, products, processes or services and their hazardous 

consequences are always a point of difficulty for every organization.  These types of incidents 

produce a significant amount of negative impact on business reputations. Over the last few 

decades, organizations and 
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research societies have been developing research methods to mitigate or eliminate these sudden events 

and if they still happen then to estimate their associated risks at the earlier stages of operation. For the 

first time, failure mode and effect analysis (FMEA) was officially considered as a potential safety and 

risk assessment tool in the 1960’s by NASA [1]. Since its appearance, it has been used in a variety of 

industries, including military [2], nuclear [3], aerospace [4], automobile [5], manufacturing [6–8], 

healthcare [9], etc.  The international standard IEC 60812 [10] defines FMEA as a systematic approach 

to analyse a system or process for identifying potential failure modes, their causes and subsequent 

effects on system/process performances. It is often considered as a proactive risk assessment tool widely 

used by quality and reliability engineers aiming to examine and eliminate the possible failures, problems 

and errors of the systems, processes, designs and services [11].  

In any FMEA process, cross-functional experts from various domains participate, then identify, 

assess, prioritize and eliminate potential failure modes according to their level of criticality [12]. 

Traditionally, risk assessment in FMEA is performed by developing a metric known as the risk priority 

number (RPN). It is computed by multiplying three risk factors, namely severity (S), probability of 

occurrence (O), and probability of detection (D) for each of the failure modes [13,14]. As given in IEC 

60812 [10], each of these risk factors are measured on a 10-point scale, where the greater the values of 

S and O the higher the severity and higher the chances of occurrence, respectively. However, D is 

ranked in a reverse order, which implies that the higher the D value, the lower the detection probability 

of a failure mode. Therefore, the higher RPNs imply more critical failure modes and more attention to 

be paid for improving system performances.  Actually, once the critical potential failure modes are 

identified, Fault Trees or Event Trees (FTA or ETA) are used to quantitatively analyse their exact 

probability/frequency of occurrence as well as their consequences. On the basis of the obtained results, 

measures can then be taken to prevent or mitigate the risks.  

While the various benefits of the traditional FMEA approach are known, it has still been criticized 

by earlier researchers for its several drawbacks. Some of them are listed below [1]:  

• Formulae for calculating RPN values are questionable.

• Duplication of RPN values and higher concentration of them at the lower end of the scale when

they are plotted in a histogram diagram.

• Risk factors are assumed to be equally important.

• Risk factors are hard to be evaluated in a precise manner.

These limitations are well handled by MCDM methods [12,15,16]. Due to different subjective and 

objective constraints, it is often difficult for the cross-functional experts to precisely evaluate the failure 

modes with respect to each risk factor. Instead, they prefer to utilize linguistic labels to provide their 

opinions. Fuzzy logic methods, proposed by Zadeh [17] have been considered as a viable option when 

dealing with linguistic terms as they are capable of eliminating the inherent vagueness or imprecision 
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within a given linguistic judgement. When fuzzy logic is integrated with MCDM approach(es) it is able 

to provide more viable decisions. In their work, Liu et al. [18,19] provided a comprehensive review on 

applications of MCDM approaches in solving FMEA problems. Asan & Soyer [20] further categorized 

MCDM approaches and elucidated their potentialities in solving FMEA problems.  

1.2 Related work 

1.2.1 Recent applications of MCDM methods in FMEA 

Some recent applications of MCDM methods in solving FMEA problems are presented in Table 1. 

Table 1. Some recent applications of MCDM methods to solve FMEA problems 

MCDM 
method 

Author(s)
/Year 

Variants of MCDM 
method 

Significant contribution(s) Application 
domain 

Technique 
for Order 
Preferences 
by Similarity 
to Ideal 
Solution 
(TOPSIS) 

Song et 
al. / 2013 
[3] 

-Entropy based weighting
method,
-Mean value method,
- Fuzzy Technique for
Order Preferences by
Similarity to Ideal
Solution (FTOPSIS).

- Both subjective and
objective criteria weights
were taken into
consideration.

- Nuclear
reheat valve
system in
nuclear
steam
turbine.

Du et al. / 
2014 [21] 

- Evidential Reasoning
(ER),
- TOPSIS.

-ER was integrated with
TOPSIS for modelling the
imprecise and uncertain
information.

- Ocean
going fishing
vehicle.

Chang, 
K.H. / 
2015 [22] 

- Soft-TOPSIS. -soft set based TOPSIS was
proposed and applied in
FMEA domain.

-Original
design
manufacture
notebook
module
development.

Bian et al. 
/ 2018 [4] 

- D-number based
TOPSIS.

- To overcome some
limitations of Dempster-
Shafer theory, D-number
based TOPSIS model was
proposed.

-Rotor blades
of an aircraft
turbine.

Carpitella 
et al. / 
2018 [23] 

- Consensual based AHP,
-FTOPSIS

- Consensus based AHP was
used to derive priorities of
criteria.

-Street
cleaning
vehicle.

Lo et al. / 
2019 [16] 

-Rough best-worst
method (RBWM),
-Rough TOPSIS
(RTOPSIS).

- Expected cost of a failure
mode was considered as
additional criteria.
- An integrated approach of
R-BWM and R-TOPSIS was
presented in FMEA.

- CNC rotary
and indexing
table.

COmplex 
PRoportional 
ASsessment 
(COPRAS) 

Das 
Adhikary 
et al. / 
2014 [24] 

-Shannon’s entropy
method,
- Grey COPRAS
(COPRAS-G)

-Incorporated human and
environmental factors as
additional criteria, which
author believed has
significant influence on
failure modes.

-Coal fired
thermal
power plant.
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Wang et 
al. / 2016 
[25] 

- Interval valued 
intuitionistic fuzzy 
analytic network process 
(IVIF-ANP), 
-IVIF-COPRAS. 

- Proposed an integrated 
MCDM approach by 
combining IVIF-ANP & 
COPRAS. 

-Hospital 
service 
diagnosis.  

VIsekriteriju
mska 
optimizacija i 
KOmpromis
no Resenje 
(VIKOR) 

Wang et 
al. / 2018 
[5] 

-House of reliability 
(HoR), 
-Rough VIKOR. 

-By applying HoR, 
dependency among different 
failure modes and the link 
between the risk factors were 
established. 
 

-
Transmission 
system of a 
vertical 
machining 
centre.  

Tian et al. 
/ 2018 [6] 

- Fuzzy BWM, 
- Fuzzy proximity and 
fuzzy similarity entropy 
weights, 
-Fuzzy VIKOR 

-To derive the risk factors, 
fuzzy BWM method was 
employed,  
-To obtain the weights of 
FMEA team members, a 
comprehensive structure was 
developed, using fuzzy 
proximity entropy weights 
and fuzzy relative entropy 
weights. 

-Grinding 
wheel system 

ELimination 
Et Choix 
Traduisant la 
REalité 
(ELECTRE) 

Liu et al. / 
2016 [26] 

-Interval two-tuple 
linguistic ELECTRE 

-Both subjective and 
objective weights were 
considered 

-Proton beam 
radiotherapy. 

Antonella 
et al. / 
2017 [12] 

- ELECTRE-TRI based 
approach 

-ELECTRE-TRI based 
approach was used to 
classify the failure modes. 

 

-Diary 
industry 

MULTIplicat
ive form of 
Multi 
Objective 
Optimization 
by Ratio 
Analysis 
(MULTIMO
ORA) 

Liu et 
al./2014 
[27] 

- Fuzzy MULTIMOORA - Application of fuzzy 
MULTIMOORA in FMEA 
domain.  

-Healthcare 
sector 

Zhao et 
al./2017 
[28]  

-IVIF-Continuous 
weighted entropy method,   
-IVIF-MULTIMOORA 

- IVIF-MULTIMOORA was 
developed and combined 
with IVIF-continuous 
weighted entropy method  

- Steel 
production 
process risk 
management. 

Fattahi & 
Khalilzad
eh / 2018 
[29] 

-Fuzzy AHP, 
-Fuzzy MULTIMOORA 

-Weights of each failure 
modes were calculated by 
using three factors – time, 
cost and profit.  

-Steel 
industry. 

Multi-
Attribute 
Border 
Approximati
on and 
Comparison 
(MABAC) 

Liu et al. / 
2019 [30] 

- IVIF MABAC - Developed a linear 
programming model for 
obtaining the optimal 
weights of risk factors when 
the prior weight information 
is incomplete. 

- Healthcare 
sector 

Election 
based on 
Relative 
Value 
Distance 
(ERVD) 

Gugaliya 
et al. / 
2019 [31] 

- AHP 
- ERVD 

- A new MCDM method 
based on Prospect Theory – 
ERVD was applied in 
FMEA. 
- A detailed FMEA of 
induction motor was carried 
out  

- Induction 
motor.  
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1.2.2 Literature related to AHP 

AHP is considered as one of the more commonly used decision making tools among most of the 

researchers and industries, first proposed by Satty [32]. It has been applied in a wide range of application 

contexts related to MCDM problems [33]. It is a weighted factor scoring model and has capability to 

incorporate inherent inconsistencies of a decision making process.  The classical AHP considers the 

crisp judgements of decision makers but is not able to include their vague thoughts [34–36]. In a 

decision-making process, it is not possible for the decision makers to exactly evaluate the conflicting 

criteria and alternatives. Thus, experts may favour intermediate judgements rather than definitive ones. 

Fuzzy logic theory proposed by Zadeh [17] is a viable alternative to cope with this kind of problem. 

Although there are some recent advancements of fuzzy logic theory (i.e., type-2 fuzzy sets, interval 

fuzzy sets, etc.), it is still now widely accepted, is mathematically simpler and can provide a solid basis 

for rational decisions for most of the complex MCDM problems. Laarhoven & Pedrycz [37] was first 

to extend the crisp AHP into the fuzzy domain. Their computation steps were the same as presented by 

Satty [32]. A Logarithmic least square method was used to derive fuzzy weights and fuzzy performance 

scores. Later, Buckley [38] presented the concept of fuzzy priorities of comparison ratios, whose 

membership functions were trapezoidal. Buckley [38] claimed that linear equations presented in [37] 

do not have unique solutions all the time and that some of the obtained solutions were not triangular 

fuzzy numbers. Thus, he used the geometric mean method to derive fuzzy weights and performance 

scores. Chang [39] developed an extent analysis method for fuzzy AHP. The main concept was the 

extent of an alternative for satisfying the decision goal. However, till now, Buckley’s fuzzy AHP has 

not received much criticism and thus we prefer to use that approach in our present work.  

1.2.3 Literature related to Multi Attribute Ideal Real Comparative Analysis (MAIRCA) 

MAIRCA is a newly developed MCDM method developed by the Centre for Logistic Research of 

Defence University of Belgrade by Pamučar et al. [40]. This method has been proven to be stable over 

other popular MCDM methods, like TOPSIS or ELECTRE. It uses a simple mathematical algorithm, 

and the possibility to combine it with other methods makes it a viable option for further investigation 

and development. In [40], it was combined with fuzzy DEMATEL (Decision Making Trial and 

Evaluation Laboratory) for railway level crossing selection. Gigovic et al. [41] combined DEMATEL 

and ANP (Analytic Network Process) with MAIRCA to select a site for an ammunition depot. In another 

work, Pamučar et al. [42] proposed the interval rough MAIRCA (IR-MAIRCA) and combined it with 

IR DEMATEL-ANP (IR’DANP). They validated their approach by considering an example of the 

bidder selection problem. Chatterjee et al. [43] elucidated the concept of rough MAIRCA (R’MAIRCA) 

and combined it with rough DEMATEL-ANP (R’AMATEL) which was validated by citing an example 

of the green supply chain selection problem. Pamucar et al. [44] proposed a framework by combining 

the fuzzy DEMATEL-MAIRCA approach for sustainable multimodal logistic centre selection. 
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Recently, Pamucar et al. [45] further extended the concept of MAIRCA into the interval valued fuzzy 

rough number domain for more improvised decision making.  

1.3 Contributions to the existing literature 

From the above discussion, the following points can be summarized which highlight the motivations 

and contributions of our present work to the existing literature of FMEA:  

• The theoretical motivations of this work support the risk analyst with a simple but reliable

decision making approach for performing the FMEA task. Calculating the relative importance of

the risk factors is considered as a necessary task in FMEA, as they are dependent on each other.

Till date, we observe several applications of the AHP method and its variants in the FMEA

domain [23,31,34]. The work carried out by Kutlu and Ekmekçioğlu [34] highlighted the

application of fuzzy AHP and the use of Chang’s extent analysis method [39]. However this

approach has received several criticisms. Wang et al. [46] in their analysis highlighted that “the

extent analysis method cannot estimate the true weights from a fuzzy comparison matrix and has

led to quite a number of misapplications in the literature”. They also pointed out that use of the

extent analysis method to fuzzy AHP problems may lead to a wrong decision. As mentioned

earlier, the fuzzy AHP proposed by Buckley [38] has not received much criticism, and so we

used this approach in our present work. Further, in [34], we observe that de-fuzzified risk factor

weights obtained from fuzzy AHP were utilized for prioritizing the failure modes according to

their level of risk. We believe that applying such de-fuzzification processes at the earlier stages

may cause a substantial amount of losses in the inherent information within a fuzzy number and

may lead to wrong decision making.

• Apart from the earlier mentioned advantages of the MAIRCA method, its relevancy and necessity

of application in FMEA domain are presented below:

a) It is most often observed that in a complex FMEA problem, it becomes necessary to deal

with a large number of failure modes. Moreover, in some industrial practices, multiple

case-specific risk factors are considered for more viable risk estimation related to each

failure mode. MAIRCA is considered as a suitable option for MCDM problems when

the number of alternatives and criteria are higher.

b) It is often necessary to include or exclude a failure mode during a FMEA process. In

such situations, we observe that most of the earlier used MCDM approaches incur rank

reversal phenomenon which creates confusion among the risk analyst. After several

experiments we observed that the MAIRCA approach does not incur any rank reversal

phenomenon in such cases.

c) While considering multiple risk factors for the risk estimation process, some of the

indices are quantitative and some are qualitative in nature. MAIRCA is able to

incorporate both types of criteria in the decision-making process.
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d) Like the TOPSIS approach, it is also based on the concept of ideal and anti-ideal

solutions. However the major advantage of this approach over the earlier ones is that

equal preferences are given to each alternative, or in the other sense, decision makers are

unbiased towards selecting an alternative.

We notice from the earlier discussion that until now no literature is present in the FMEA 

domain based on the application of the MAIRCA approach. Apart from that, in all of the 

above MAIRCA applications, the authors did not pay much attention to reduce the hard 

computational efforts or computational steps of their methods. In all of them, they used the 

linear max-min normalization technique, which is rather simpler and has robust mathematical 

foundation, but we say that when the numbers of alternatives are increased, a large number 

of comparisons are to be made among the input values to find the maximum and minimum 

one. We do agree that some advanced versions of MAIRCA aiming to incorporate the more 

imprecision or vagueness are present in the literature, but as Ribeiro [47] said, “too much 

fuzzification does not imply better modelling of reality, it can be counter-productive”, we 

only considered fuzzy MCDM in this paper. In brief, we present a modified MAIRCA 

method coupled with fuzzy AHP and validated our approach by solving the benchmark 

example of FMEA presented in [34]. We observe that solution stability of our proposed 

approach is more robust than the method used in [34].  

𝐴𝐴

𝐴𝐴

𝐴𝐴 𝐴𝐴

𝐴𝐴

1.4 Overview 

The rest of the paper is organized as follows: in Section 2 we present the basic concepts of fuzzy logic 

and fuzzy numbers. Next, in Section 3, we enumerate our proposed integrated approach for ranking the 

failure modes according to their risk levels. In Section 4, we reproduce a benchmark example of FMEA 

and solve it by our approach. Validation and discussions of the obtained results are presented in Section 

5, whereas Section 6 highlights the managerial implications of our proposed approach in FMEA 

literature along with the conclusion. 

2. Preliminaries

Fuzzy set theory was introduced by Zadeh [17] to overcome the inherent vagueness involved in various 

decision making aspects. A fuzzy set 𝐴𝐴̃ can be defined mathematically by a membership function 𝜇𝜇 �(𝑥𝑥), 

which assigns each element 𝑥𝑥 in the universe of discourse 𝑋𝑋 to a real number in the interval [0,1]. 

A fuzzy number is a fuzzy subset in the universe of discourse 𝑋𝑋, which is both convex and normal. 

A fuzzy set 𝐴𝐴̃ i n t he universe o f d iscourse 𝑋𝑋 is  convex if  an d on ly if  fo r al l 𝑥𝑥1, 𝑥𝑥2  in 𝑋𝑋,𝜇𝜇 �(𝜆𝜆𝑥𝑥1 + 

(1 − 𝜆𝜆)𝑥𝑥2) ≥ min (𝜇𝜇 �(𝑥𝑥1), 𝜇𝜇 �(𝑥𝑥2)), where 𝜆𝜆 ∈ [0,1]. The similar fuzzy set 𝐴𝐴̃ is called a normal fuzzy 

set if ∃𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, 𝜇𝜇 �(𝑥𝑥𝑖𝑖) = 1. 
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There are different types of fuzzy numbers and among them the triangular fuzzy number (TFN) has 

been mostly used for its intuitiveness and computationally efficient representation. A TFN is 

represented by a triplet 𝐴̃𝐴 = [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢], which is further depicted in Figure 1. Membership function

of a TFN is defined as:  

𝜇𝜇𝐴𝐴�(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 − 𝑎𝑎𝑙𝑙
𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑙𝑙

 ,𝑎𝑎𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑚𝑚
𝑥𝑥 − 𝑎𝑎𝑢𝑢
𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑙𝑙

 ,𝑎𝑎𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑢𝑢 

0  , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(1) 

Figure 1. Graphical representation of a TFN 

Arithmetic operations on two fuzzy numbers 𝐴𝐴� = [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢] , and 𝐵𝐵� = [𝑏𝑏𝑙𝑙 , 𝑏𝑏𝑚𝑚,𝑏𝑏𝑢𝑢] , where 𝑎𝑎𝑙𝑙 ≤

𝑎𝑎𝑚𝑚  ≤ 𝑎𝑎𝑢𝑢 and 𝑏𝑏𝑙𝑙 ≤ 𝑏𝑏𝑚𝑚 ≤ 𝑏𝑏𝑢𝑢 are elucidated below:  

Addition:  𝐴̃𝐴⨁𝐵𝐵�  =  [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢]⨁[𝑏𝑏𝑙𝑙, 𝑏𝑏𝑚𝑚,𝑏𝑏𝑢𝑢] = [𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑙𝑙 ,𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚,𝑎𝑎𝑢𝑢 + 𝑏𝑏𝑢𝑢 ] (2) 

Subtraction: 𝐴̃𝐴 ⊝ 𝐵𝐵�  =  [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢] ⊝ [𝑏𝑏𝑙𝑙 ,𝑏𝑏𝑚𝑚, 𝑏𝑏𝑢𝑢] = [𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑢𝑢,𝑎𝑎𝑚𝑚 − 𝑏𝑏𝑚𝑚,𝑎𝑎𝑢𝑢 − 𝑏𝑏𝑙𝑙  ] (3) 

Multiplication:  𝐴̃𝐴⨂𝐵𝐵�  =  [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢]⨂[𝑏𝑏𝑙𝑙 ,𝑏𝑏𝑚𝑚,𝑏𝑏𝑢𝑢] = [𝑎𝑎𝑙𝑙 × 𝑏𝑏𝑙𝑙 ,𝑎𝑎𝑚𝑚 × 𝑏𝑏𝑚𝑚,𝑎𝑎𝑢𝑢 × 𝑏𝑏𝑢𝑢 ]  , 

 if 𝑎𝑎𝑙𝑙 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑙𝑙 ≥ 0. 

(4) 

Division: 𝐴̃𝐴 ⊘ 𝐵𝐵�  =  [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢]⊘ [𝑏𝑏𝑙𝑙 ,𝑏𝑏𝑚𝑚,𝑏𝑏𝑢𝑢] = �𝑎𝑎𝑙𝑙
𝑏𝑏𝑢𝑢

, 𝑎𝑎𝑚𝑚
𝑏𝑏𝑚𝑚

, 𝑎𝑎𝑢𝑢
𝑏𝑏𝑙𝑙

 �, if 𝑎𝑎𝑙𝑙 ≥ 0 and 𝑏𝑏𝑙𝑙 > 0 (5)

Multiplication 

by a scalar, 𝒌𝒌:  
𝑘𝑘 ⊗ 𝐴̃𝐴 = �

(𝑘𝑘𝑎𝑎𝑙𝑙 ,𝑘𝑘𝑎𝑎𝑚𝑚,𝑘𝑘𝑎𝑎𝑢𝑢) , 𝑖𝑖𝑖𝑖 𝑘𝑘 > 0
(𝑘𝑘𝑎𝑎𝑢𝑢,𝑘𝑘𝑎𝑎𝑚𝑚,𝑘𝑘𝑎𝑎𝑙𝑙), 𝑖𝑖𝑖𝑖 𝑘𝑘 < 0  (6) 

Generally triangular fuzzy numbers are considered as the extended form of a trapezoidal fuzzy 

number. A trapezoidal fuzzy number 𝐴̃𝐴 is defined by a quadruplet  𝐴̃𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚1,𝑎𝑎𝑚𝑚2,𝑎𝑎𝑢𝑢). Arithmetic 

operations of two trapezoidal fuzzy numbers are almost similar to that of triangular fuzzy numbers and 

interested readers are requested to refer to the work of Krohling & de Souza [48] for detailed 

information.  
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Fuzzy numbers often need to be transformed into a crisp number for several purposes, such as 

comparison, ranking, etc. Such transformation methods are known as de-fuzzification [49].  There are 

several popular methods available for this purpose, and among them the graded mean average is the 

most popular one, due to its simple calculation step and robust mathematical foundation, which is 

represented by Eq. 7 and 8.  

𝐴𝐴 = 𝑎𝑎𝑙𝑙+4𝑎𝑎𝑚𝑚+𝑎𝑎𝑢𝑢
6

 (for triangular fuzzy number) (7) 

𝐴𝐴 = 𝑎𝑎𝑙𝑙+2𝑎𝑎𝑚𝑚1+2𝑎𝑎𝑚𝑚2+𝑎𝑎𝑢𝑢
6

 (for trapezoidal fuzzy number) 
(8) 

3. Proposed integrated approach
The complete approach is made up of the following three major steps. However, the workflow diagram

of our proposed approach is given in Fig. 2.

• Structuring of the problem

• Calculation of criteria weights

• Ranking of failure modes according to their level of criticality

In the ensuing sub-sections, we elaborate on the above steps. 

3.1 Structuring of the problem 

The following steps are carried out to structure the problem. At the very initial stage of any decision-

making process, decision makers should have a fair idea about the goal. In this study, our major aim is 

to select the most critical failure mode by means of our proposed integrated MCDM approach. After 

that, top management choose cross-functional experts who have a fair idea about the alternatives (in 

our case failure modes). Later, these experts identify the evaluating criteria for the selection process. 

They also choose/select proper linguistic scales to rate the criteria and alternatives.  

3.2 Calculation of criteria weights 

In this sub-section we reproduce the calculation steps of fuzzy AHP given in [38]. 

Step 1. With the advice of the experts, we build the pairwise comparison matrices for the criteria/sub-

criteria using linguistic terms. Suppose there are 𝑘𝑘 cross-functional experts who participate in the 

decision-making process. Each element 𝑎𝑎�𝑖𝑖𝑖𝑖𝑘𝑘  of the pairwise comparison matrix 𝐴̃𝐴𝑘𝑘 is a fuzzy number 

corresponding to the linguistic term. The pairwise comparison matrix is given by Eq. (9):  

𝐴̃𝐴1 =

⎣
⎢
⎢
⎡ 1 𝑎𝑎�121

𝑎𝑎�211 1
⋯

𝑎𝑎�1𝑛𝑛1

𝑎𝑎�2𝑛𝑛1
⋮ ⋱ ⋮

𝑎𝑎�𝑛𝑛11 𝑎𝑎�𝑛𝑛21 ⋯ 1 ⎦
⎥
⎥
⎤

, … 𝐴̃𝐴𝑘𝑘 =

⎣
⎢
⎢
⎡ 1 𝑎𝑎�12𝑘𝑘

𝑎𝑎�21𝑘𝑘 1
⋯

𝑎𝑎�1𝑛𝑛𝑘𝑘

𝑎𝑎�2𝑛𝑛𝑘𝑘
⋮ ⋱ ⋮

𝑎𝑎�𝑛𝑛1𝑘𝑘 𝑎𝑎�𝑛𝑛2𝑘𝑘 ⋯ 1 ⎦
⎥
⎥
⎤

(9)



10 

Step 2. Calculate the aggregated fuzzy pairwise comparison matrix as shown in Eq. (10). 

𝐴̃𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1
𝑎𝑎�211 ⊕ …⊕𝑎𝑎�21𝑘𝑘

𝑘𝑘

𝑎𝑎�121 ⊕ …⊕𝑎𝑎�12𝑘𝑘

𝑘𝑘
1

⋯

𝑎𝑎�1𝑛𝑛1 ⊕ …⊕𝑎𝑎�1𝑛𝑛𝑘𝑘

𝑘𝑘
𝑎𝑎�2𝑛𝑛1 ⊕ …⊕𝑎𝑎�2𝑛𝑛𝑘𝑘

𝑘𝑘
⋮ ⋱ ⋮

𝑎𝑎�𝑛𝑛11 ⊕ …⊕𝑎𝑎�𝑛𝑛1𝑘𝑘

𝑘𝑘
𝑎𝑎�𝑛𝑛21 ⊕ …⊕𝑎𝑎�𝑛𝑛2𝑘𝑘

𝑘𝑘
⋯ 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Or, 

𝐴̃𝐴 = �

1
(𝑎𝑎𝑙𝑙21,𝑎𝑎𝑚𝑚21,𝑎𝑎𝑢𝑢21)

(𝑎𝑎𝑙𝑙12,𝑎𝑎𝑚𝑚12,𝑎𝑎𝑢𝑢12)
1

⋯
𝑎𝑎𝑙𝑙1𝑛𝑛,𝑎𝑎𝑚𝑚1𝑛𝑛,𝑎𝑎𝑢𝑢1𝑛𝑛
𝑎𝑎𝑙𝑙2𝑛𝑛,𝑎𝑎𝑚𝑚2𝑛𝑛,𝑎𝑎𝑢𝑢2𝑛𝑛

⋮ ⋱ ⋮
(𝑎𝑎𝑙𝑙𝑙𝑙1,𝑎𝑎𝑚𝑚𝑚𝑚1,𝑎𝑎𝑢𝑢𝑢𝑢1) (𝑎𝑎𝑙𝑙𝑙𝑙2,𝑎𝑎𝑚𝑚𝑚𝑚2,𝑎𝑎𝑢𝑢𝑢𝑢2) ⋯ 1

� 

(10) 

Step 3. Next, we check the consistency of the fuzzy aggregated pairwise comparison matrix 𝐴̃𝐴 = �𝑎𝑎�𝑖𝑖𝑖𝑖� 

by defuzzifying the pairwise comparison values, using the graded mean integration approach (refer Eq. 

7). If  𝐴̃𝐴 = �𝑎𝑎�𝑖𝑖𝑖𝑖� is a fuzzy positive reciprocal matrix and 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� is the defuzzified positive reciprocal 

matrix, then 𝐴̃𝐴 is said to be consistent 𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 is consistent [38]. The general procedures for measuring 

the consistency ratio in AHP is given in [31]. If, in case the result is not consistent, experts need to re-

evaluate the pairwise comparisons.  

Step 4. For weighing the criteria, the fuzzy geometric mean for each row of the matrix is calculated as 

shown in Eq. (11). First, fuzzy geometric means of the first parameters of the triangular fuzzy numbers 

in each row are calculated as follows: 

𝑎𝑎𝑙𝑙1 = [1 × 𝑎𝑎𝑙𝑙12 × … × 𝑎𝑎𝑙𝑙1𝑛𝑛]
1
𝑛𝑛

𝑎𝑎𝑙𝑙2 = [𝑎𝑎𝑙𝑙21 × 1 × … × 𝑎𝑎𝑙𝑙2𝑛𝑛]
1
𝑛𝑛

𝑎𝑎𝑙𝑙𝑙𝑙 = [𝑎𝑎𝑙𝑙𝑙𝑙1 × 𝑎𝑎𝑙𝑙𝑙𝑙2 × … × 1]
1
𝑛𝑛

(11) 

Similarly, we calculate the geometric means of second and third parameters of the triangular fuzzy 

numbers in every row.  

Step 5. Let us now assume that the sums of the geometric mean values in the row are 𝑎𝑎𝑙𝑙𝑙𝑙,𝑎𝑎𝑚𝑚𝑚𝑚, and 𝑎𝑎𝑢𝑢𝑢𝑢 

respectively, then fuzzy criteria weights are calculated as Eq. (12). 
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𝑊𝑊� =

𝑤𝑤�1
𝑤𝑤�2
⋮
𝑤𝑤�𝑛𝑛

=

�
𝑎𝑎𝑙𝑙1
𝑎𝑎𝑢𝑢𝑢𝑢

,
𝑎𝑎𝑚𝑚1

𝑎𝑎𝑚𝑚𝑚𝑚
,
𝑎𝑎𝑢𝑢1
𝑎𝑎𝑙𝑙𝑙𝑙

�

�
𝑎𝑎𝑙𝑙2
𝑎𝑎𝑢𝑢𝑢𝑢

,
𝑎𝑎𝑚𝑚2

𝑎𝑎𝑚𝑚𝑚𝑚
,
𝑎𝑎𝑢𝑢2
𝑎𝑎𝑙𝑙𝑙𝑙

�

⋮
�
𝑎𝑎𝑙𝑙𝑙𝑙
𝑎𝑎𝑢𝑢𝑢𝑢

,
𝑎𝑎𝑚𝑚𝑚𝑚

𝑎𝑎𝑚𝑚𝑚𝑚
,
𝑎𝑎𝑢𝑢𝑢𝑢
𝑎𝑎𝑙𝑙𝑙𝑙

�

 (12) 

After calculating the criteria weights in the next subsection, we enumerate the steps involved in our 

proposed FMAIRCA approach. 

3.3 Fuzzy MAIRCA for ranking of alternatives  
In the following steps, we describe our proposed FMAIRCA approach.  

Step 1.  Based on the linguistic evaluation of alternatives with respect to the considered criteria, the 

initial linguistic decision matrix (D_L) is constructed. For the sake of generality, let us consider that k 

number of experts are participating in the evaluation process of 𝑚𝑚  alternatives with respect to 𝑛𝑛 number 

of criteria. The obtained decision matrix is presented by Eq. (13), 

𝐷𝐷𝐿𝐿 =  

⎝

⎜⎜
⎛
𝐿𝐿111 , … 𝐿𝐿11𝑘𝑘 𝐿𝐿121 , … 𝐿𝐿12𝑘𝑘 … 𝐿𝐿1𝑛𝑛1 , … 𝐿𝐿1𝑛𝑛𝑘𝑘

𝐿𝐿211 , … 𝐿𝐿21𝑘𝑘 𝐿𝐿221 , … 𝐿𝐿22𝑘𝑘 … 𝐿𝐿2𝑛𝑛1 , … 𝐿𝐿2𝑛𝑛𝑘𝑘

⋮
⋮

𝐿𝐿𝑚𝑚1
1 , … 𝐿𝐿𝑚𝑚1

𝑘𝑘

⋱
⋱

𝐿𝐿𝑚𝑚2
1 , … 𝐿𝐿𝑚𝑚2

𝑘𝑘 …

⋮
⋮

𝐿𝐿𝑚𝑚𝑚𝑚
1 , … 𝐿𝐿𝑚𝑚𝑚𝑚

𝑘𝑘 ⎠

⎟⎟
⎞

. (13) 

Here, 𝐿𝐿𝑚𝑚𝑚𝑚
𝑘𝑘  implies that the 𝑚𝑚 − 𝑡𝑡ℎ alternative is linguistically evaluated with respect to the 𝑛𝑛 − 𝑡𝑡ℎ 

criterion by the 𝑘𝑘 − 𝑡𝑡ℎ decision maker.  

Step 2. Following the scale for rating alternatives by means of fuzzy numbers, each of the linguistic 

decisions are replaced by respective fuzzy numbers as represented by Eq. (14), 

𝐷𝐷�(1) =

⎝

⎜
⎛
𝐴̃𝐴11

(1)

𝐴̃𝐴21
(1)

𝐴̃𝐴12
(1)

𝐴̃𝐴22
(1) ⋯

𝐴̃𝐴1𝑛𝑛
(1)

𝐴̃𝐴2𝑛𝑛
(1)

⋮ ⋱ ⋮
𝐴̃𝐴𝑚𝑚1

(1) 𝐴̃𝐴𝑚𝑚2
(1) ⋯ 𝐴̃𝐴𝑚𝑚𝑚𝑚

(1)
⎠

⎟
⎞

, ….,𝐷𝐷�(𝑘𝑘) =  

⎝

⎜
⎛
𝐴̃𝐴11

(𝑘𝑘)

𝐴̃𝐴21
(𝑘𝑘)

𝐴̃𝐴12
(𝑘𝑘)

𝐴̃𝐴22
(𝑘𝑘) ⋯

𝐴̃𝐴1𝑛𝑛
(𝑘𝑘)

𝐴̃𝐴2𝑛𝑛
(𝑘𝑘)

⋮ ⋱ ⋮
𝐴̃𝐴𝑚𝑚1

(𝑘𝑘) 𝐴̃𝐴𝑚𝑚2
(𝑘𝑘) ⋯ 𝐴̃𝐴𝑚𝑚𝑚𝑚

(𝑘𝑘)
⎠

⎟
⎞

. (14) 

Step 3. Next, by using Eq. (6), we construct the fuzzy aggregated decision matrix as represented by Eq. 

(15).   

𝐷𝐷� =

⎝

⎛
𝐴̃𝐴11
𝐴̃𝐴21

𝐴̃𝐴12
𝐴̃𝐴22

⋯ 𝐴̃𝐴13
𝐴̃𝐴2𝑛𝑛

⋮ ⋱ ⋮
𝐴̃𝐴𝑚𝑚1 𝐴̃𝐴𝑚𝑚2 ⋯ 𝐴̃𝐴𝑚𝑚𝑚𝑚⎠

⎞, (15)
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Where 𝐴𝐴�11 = 𝐴𝐴�11
(1)+𝐴𝐴�11

(2)+⋯+𝐴𝐴�11
(𝑘𝑘)

𝑘𝑘
.  

Step 4. In this step, we define the preferences according to the selection of alternatives 𝑃𝑃𝐴𝐴𝑖𝑖. This step 

implies that the decision maker is un-biased towards the selection of an alternative. Since any alternative 

can be chosen with equal probability, the preferences for each of them can be represented by Eq. (16). 

𝑃𝑃𝐴𝐴𝑖𝑖 =
1
𝑚𝑚

;  �𝑃𝑃𝐴𝐴𝑖𝑖 = 1
𝑚𝑚

𝑖𝑖=1

 (16) 

Step 5. Elements of the fuzzy theoretical evaluation matrix (𝑇𝑇�𝑃𝑃𝐴𝐴) are calculated by multiplying 

preferences according to alternatives 𝑃𝑃𝐴𝐴𝑖𝑖 and fuzzy criteria weights obtained by using FAHP, as shown 

in Eq. (17). 

𝑇𝑇�𝑃𝑃𝐴𝐴 =  

⎝

⎜
⎜
⎜
⎛

1
𝑚𝑚
𝑤𝑤�1

1
𝑚𝑚
𝑤𝑤�2

1
𝑚𝑚
𝑤𝑤�1

1
𝑚𝑚
𝑤𝑤�2

⋯

1
𝑚𝑚
𝑤𝑤�𝑛𝑛

1
𝑚𝑚
𝑤𝑤�𝑛𝑛

⋮ ⋱ ⋮
1
𝑚𝑚
𝑤𝑤�1

1
𝑚𝑚
𝑤𝑤�2 ⋯

1
𝑚𝑚
𝑤𝑤�𝑛𝑛⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎛
𝑡̃𝑡𝑝𝑝11 𝑡̃𝑡𝑝𝑝12
𝑡̃𝑡𝑝𝑝21 𝑡̃𝑡𝑝𝑝22

⋯
𝑡̃𝑡𝑝𝑝𝑝𝑝1
𝑡̃𝑡𝑝𝑝𝑝𝑝2

⋮ ⋱ ⋮
𝑡̃𝑡𝑝𝑝𝑝𝑝1 𝑡̃𝑡𝑝𝑝𝑝𝑝2 ⋯ 𝑡̃𝑡𝑝𝑝𝑝𝑝𝑝𝑝⎠

⎟
⎞

 (17) 

Step 6. In this step we normalize the fuzzy aggregated decision matrix as obtained in step 3 and generate 

the fuzzy normalized decision matrix 𝑁𝑁�. The normalization procedure of the decision matrix is carried 

out to increase its comparable capability. We use a new type of normalization technique as shown in 

Eq. (18) in FMAIRCA to reduce the complexity involved in hard computation as well as to improve 

the accuracy of numeration. Another benefit of using this procedure is that the decision-maker need not 

be concerned about the nature of the criteria (i.e., benefit or cost criteria). Generally, these types of 

situations are frequently encountered when the decision-maker is used to dealing with large numbers of 

conflicting criteria. 

𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙 =
𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙

�∑ ��𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 �
2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚�

2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 �
2�𝑚𝑚

𝑖𝑖=1

 

𝑛𝑛𝑖𝑖𝑖𝑖𝑚𝑚 =
𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚

�∑ ��𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 �
2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚�

2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 �
2�𝑚𝑚

𝑖𝑖=1

 

𝑛𝑛𝑖𝑖𝑖𝑖𝑢𝑢 =
𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢

�∑ ��𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 �
2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚�

2 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 �
2�𝑚𝑚

𝑖𝑖=1

 

(18) 

Step 7. Next, we calculate the fuzzy elements of the actual ponder matrix (𝑇𝑇�𝑟𝑟𝐴𝐴). This step is carried out 

by multiplying the elements of the normalized decision matrix to the elements of the matrix of actual 

ponder by using Eq. (19). 
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𝑇𝑇�𝑟𝑟𝐴𝐴 = �

𝑡̃𝑡𝑟𝑟11 𝑡̃𝑡𝑟𝑟12
𝑡̃𝑡𝑟𝑟21 𝑡̃𝑡𝑟𝑟22

⋯ 𝑡̃𝑡𝑟𝑟𝑟𝑟1
𝑡̃𝑡𝑟𝑟𝑟𝑟2

⋮ ⋱ ⋮
𝑡̃𝑡𝑟𝑟𝑟𝑟1 𝑡̃𝑡𝑟𝑟𝑟𝑟2 ⋯ 𝑡̃𝑡𝑟𝑟𝑟𝑟𝑟𝑟

�

=

⎝

⎜
⎛

𝑛𝑛�11 × 𝑡̃𝑡𝑝𝑝11 𝑛𝑛�12 × 𝑡̃𝑡𝑝𝑝12
𝑛𝑛�21 × 𝑡̃𝑡𝑝𝑝21 𝑛𝑛�22 × 𝑡̃𝑡𝑝𝑝22

⋯
𝑛𝑛�𝑛𝑛1 × 𝑡̃𝑡𝑝𝑝𝑝𝑝1
𝑛𝑛�𝑛𝑛2 × 𝑡̃𝑡𝑝𝑝𝑝𝑝2

⋮ ⋱ ⋮
𝑛𝑛�𝑚𝑚1 × 𝑡̃𝑡𝑝𝑝𝑝𝑝1 𝑛𝑛�𝑚𝑚2 × 𝑡̃𝑡𝑝𝑝𝑝𝑝2 ⋯ 𝑛𝑛�𝑛𝑛𝑛𝑛 × 𝑡̃𝑡𝑝𝑝𝑝𝑝𝑝𝑝⎠

⎟
⎞

(19) 

Step 8. In this step we calculate the gap between the theoretical and actual evaluation of each alternative 

with respect to each criterion. In other works [40–45], the authors suggested to subtract  𝑇𝑇�𝑃𝑃𝐴𝐴with 𝑇𝑇�𝑟𝑟𝐴𝐴  

and to obtain the total gap matrix 𝐺𝐺�. It is preferable that the best ranked alternative should have 

minimum gap value with respect to each criteria. After obtaining the gap value they are further de-

fuzzified to obtain the crisp gap value. To reduce the computational steps and to directly obtain the gap 

values we carry out those steps in the following way.  

We use the distance measurement formulae between two fuzzy numbers as given in [34]. The reason 

for using this may be supplemented as it is a well-established technique in MCDM approaches (e.g., 

FTOPSIS). Thus, elements of total gap matrix are calculated by using Eq. (20):  

𝑔𝑔𝑖𝑖𝑖𝑖 = �1
3 ��

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 − 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙�
2 + �𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚 − 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚�

2 + �𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢 − 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢�
2� (20) 

Step 9. Next, we sum the gap values for each alternative with respect to each criterion and obtain the 

final value of the criteria functions by using Eq. (21). The criteria functions are then arranged in 

ascending order and finally preferences are ranked. 

𝑄𝑄𝑖𝑖 = �𝑔𝑔𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2, … ,𝑚𝑚 (21)
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Figure 2. Flow diagram of the proposed integrated MCDM approach 
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4. Application of proposed approach for failure modes ranking of FMEA

Application of the proposed approach is supplemented by solving a well-known example presented in 

[34]. In that example, a total of eight numbers of failure modes were considered as follows – non-

conforming materials (FM1), wrong die (FM2), wrong program (FM3), excessive cycle time (FM4), 

wrong process (FM5), damaged goods (FM6), wrong part (FM7), and incorrect forms (FM8). 

Three experts (let us assume they are known as DM1, DM2 and DM3), with equal relative 

importance, were involved in the FMEA team to evaluate the relative importance among the risk 

factors – S, O and D by the FAHP process. In their work, they used the FAHP process based on 

the extent analysis method proposed by Chang [39]. As already highlighted in the previous section, 

the FAHP method based on extent analysis has received several criticisms and thus we use the 

method proposed by [38]. We have already presented the steps involved to calculate the criteria 

weights in subsection 3.2 by using Eq. (9)-(12). We use the same scale as given in [34], but for the 

readers benefit we present them in Table 2 (for criteria weight evaluation), and Table 4 (for 

prioritizing the failure modes). The fuzzy criteria weights are calculated by using the linguistic 

evaluations given in Table 3 and final fuzzy values are shown in Table 4. The consistency ratio (CR) 

of the pairwise comparison matrix is 0.050, which is less than 0.10. Thus, the calculated weights are 

consistent [31].  

Table 2. Fuzzy evaluation scores for the weight vectors Linguistic terms Fuzzy score 
Absolutely strong (AS) (2,5/2,3) 

Very strong (VS) (3/2,2,5/2) 
Fairly strong (FS) (1,3/2,2) 

Slightly strong (SS) (1,1,3/2) 
Equal (E) (1,1,1) 

Slightly weak (SW) (2/3,1,1) 
Fairly weak (FW) (1/2,2/3,1) 
Very weak (VW) (2/5,1/2,2/3) 

Absolutely weak (AW) (1/3,2/5,1/2) 

Table 3. Linguistic evaluations for obtaining criteria weights 

Severity Occurrence Detection 
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

Severity E E E FS FS VS SS SS SS 
Occurrence - - - E E E SS FW E 
Detection - - - - - - E E E 

Table 4. Fuzzy weights of the risk factors 

Criteria Fuzzy weights 
𝑤𝑤�𝑆𝑆 (0.293,0.388,0.565) 
𝑤𝑤�𝑂𝑂 (0.203,0.267,0.386) 
𝑤𝑤�𝐷𝐷 (0.234,0.345,0.420) 
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Next, we start prioritizing the failure modes by using Eqs. (13) - (21), presented in sub-section 

3.3. We obtain the fuzzy aggregated decision matrix (mathematically represented by Eq. (15)) 

as shown in Table 7, from Table 5 and 6 and by using Eq. (13)-(14).    

Table 5. Fuzzy evaluation scores to rate the failure modes 

Linguistic terms Fuzzy score 
Very poor (VP) (0,0,1) 

Poor (P) (0,1,3) 
Medium poor (MP) (1,3,5) 

Fair (F) (3,5,7) 
Medium good (MG) (5,7,9) 

Good (7,9,10) 
Very good (VG) (9,10,10) 

Table 6. Linguistic evaluations of potential failure modes with respect to criteria 

Failure Modes 
Severity Occurrence Detection 

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

Non-conforming material (FM1) F F MP F MG MG G MG G 
Wrong die (FM2) P MP MP VG G VG MP MP P 

Wrong program (FM3) MP P MP VG G G VP MP P 
Excessive cycle time (FM4) MP F MP F MG MG G MG G 

Wrong process (FM5) F F MP MG MG G G VG G 
Damaged goods (FM6) MG MG F MG G MG MP MP F 

Wrong part (FM7) P MP VP VG VG VG VP MP P 
Incorrect forms (FM8) VP VP P VP VP VP VP VP VP 

Table 7. Initial aggregated decision matrix 

Failure Modes Severity Occurrence Detection 
FM1 (2.333,4.333,6.333) (4.333,6.333,8.333) (6.333,8.333,9.667) 
FM2 (0.667,2.333,4.333) (8.333,9.667,10) (0.667,2.333,4.333) 
FM3 (0.667,2.333,4.333) (7.667,9.333,10) (0.333,1.333,3) 
FM4 (1.667,3.667,5.667) (4.333,6.333,8.333) (6.333,8.333,9.667) 
FM5 (2.333,4.333,6.333) (5.667,7.667,9.333) (7.667,9.333,10) 
FM6 (4.333,6.333,8.333) (5.667,7.667,9.333) (1.667,3.667,5.667) 
FM7 (0.333,1.333,3) (9,10,10) (0.333,1.333,3) 
FM8 (0,0.333,1.667) (0,0,1) (0,0,1) 

By using Eq. (16) we obtain the preferences of the alternatives. As in our example, the number 
of failure modes are eight in number, hence, 𝑃𝑃𝐴𝐴𝑖𝑖 = 0.125. This operation implies that each 

of the alternatives are given equal preferences. By using Eq. (17), we obtain the matrix of 

theoretical ponder as shown in Table 8. Each column of Table 8 indicates the theoretical 

assessment of alternatives for that particular criterion. Usually, in FMAIRCA, initially, 

decision makers are unbiased towards selecting any particular alternative and hence they are 

provided with equal preferences.  
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Table 8. Fuzzy matrix of theoretical ponder 

Severity Occurrence Detection 
FM1 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM2 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM3 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM4 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM5 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM6 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM7 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 
FM8 (0.037,0.049,0.071) (0.025,0.033,0.048) (0.029,0.043,0.052) 

Next, we obtain the fuzzy normalized decision matrix by using Eq. (18) which is shown in Table 

9. This step is necessary to make the aggregated/mean decision matrix dimensionless and 

comparable.   

Table 9. Fuzzy normalized decision matrix Severity Occurrence Detection 
FM1 (0.122,0.226,0.33) (0.116,0.169,0.222) (0.232,0.305,0.354) 
FM2 (0.035,0.122,0.226) (0.222,0.258,0.267) (0.024,0.085,0.158) 
FM3 (0.035,0.122,0.226) (0.205,0.249,0.267) (0.012,0.049,0.11) 
FM4 (0.087,0.191,0.295) (0.116,0.169,0.222) (0.232,0.305,0.354) 
FM5 (0.122,0.226,0.33) (0.151,0.205,0.249) (0.28,0.341,0.366) 
FM6 (0.226,0.33,0.434) (0.151,0.205,0.249) (0.061,0.134,0.207) 
FM7 (0.017,0.069,0.156) (0.24,0.267,0.267) (0.012,0.049,0.11) 
FM8 (0,0.017,0.087) (0,0,0.027) (0,0,0.037) 

Using Eq. (19), we obtain the matrix of actual ponder as shown in Table 10. This is also known 

as matrix of real evaluation, which is calculated after considering the criteria weights and making 

the ratings of alternatives dimensionless.   

Table 10. Matrix of fuzzy actual ponder 

Severity Occurrence Detection 
FM1 (0.004,0.011,0.023) (0.003,0.006,0.011) (0.007,0.013,0.019) 
FM2 (0.001,0.006,0.016) (0.006,0.009,0.013) (0.001,0.004,0.008) 
FM3 (0.001,0.006,0.016) (0.005,0.008,0.013) (0,0.002,0.006) 
FM4 (0.003,0.009,0.021) (0.003,0.006,0.011) (0.007,0.013,0.019) 
FM5 (0.004,0.011,0.023) (0.004,0.007,0.012) (0.008,0.015,0.019) 
FM6 (0.008,0.016,0.031) (0.004,0.007,0.012) (0.002,0.006,0.011) 
FM7 (0.001,0.003,0.011) (0.006,0.009,0.013) (0,0.002,0.006) 
FM8 (0,0.001,0.006) (0,0,0.001) (0,0,0.002) 

By using Eq. (20) and (21) we obtain the final value of criteria functions as shown in Table 11. 

Decision makers always try to maintain the smallest possible value between theoretical and real 

evaluation for 



18 

the best alternative and vice-versa. By using our proposed modified approach, we directly calculate 

the gap values and alternatives are ranked according the ascending order of gap values.  

Table 11. Ranking of failure modes by the proposed integrated approach 

Severity Occurrence Detection Value of 
criteria 

functions 

Ranking of 
failure 
modes 

Ranking 
obtained 
in [34] 

FM1 0.040 0.030 0.029 0.0986 2 2 
FM2 0.045 0.027 0.038 0.1103 5 5 
FM3 0.045 0.028 0.040 0.1121 6 7 
FM4 0.041 0.030 0.029 0.1004 4 4 
FM5 0.040 0.029 0.028 0.0963 1 1 
FM6 0.034 0.029 0.036 0.0986 3 3 
FM7 0.048 0.027 0.040 0.1147 7 6 
FM8 0.051 0.036 0.042 0.1291 8 8 

We observe that the ranking obtained by our approach is quite similar to the approach presented in [34]. 

All the failure modes almost have the similar ranking except for FM3 and FM7. The benefits of using 

this proposed approach and comparison of the result with other MCDM methods are presented in the 

next section. 

5. Validation and discussion on the obtained ranking result

In this section we present a threefold validation of the obtained preferences ranking. 

Validation 1.  We compare out obtained result with other popular MCDM approaches and observe the 

variations in failure modes ranking. The results are shown in Table 12. 

Table 12. Comparison of rankings obtained by different fuzzy MCDM methods 

FVIKOR 
[50] 

FCOPRAS 
[51] 

FMOORA 
[52] 

FMABAC 
[53] 

FTOPSIS 
[34] 

FMAIRCA 
[40] 

Proposed 
methodology 

FM1 2 2 2 2 2 2 2 
FM2 5 5 5 5 5 5 5 
FM3 6 6 6 6 6 6 6 
FM4 3 4 4 4 4 4 4 
FM5 1 1 1 1 1 1 1 
FM6 4 3 3 3 3 3 3 
FM7 7 7 7 7 7 7 7 
FM8 8 8 8 8 8 8 8 

It is observed from Table 12 that by all methods, FM5 is ranked as the most critical failure mode, 

followed by FM1. By using the FVIKOR approach, we notice that FM4 is ranked as the third critical 

failure mode and FM6 is ranked as the fourth critical failure mode. Otherwise, all other fuzzy MCDM 

methods rank FM6 as the third critical failure mode and FM4 as the fourth critical failure mode. 

However, when we compare the result obtained by Kutlu and Ekmekçioğlu [34] from Table 11, we 
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observe that there are rank variations between FM3 and FM7. This is probably due to the application 

of different criteria weights. In [34]  Chang’s extent analysis method [39] was adopted, whereas in our 

approach we used the FAHP method proposed by Buckley [38]. Although we don’t observe drastic rank 

variations between the original work and our proposed approach, it can be claimed that the application 

of this integrated approach is new in the FMEA domain, is mathematically easier, easy to interpret and 

requires less computational steps. 

Validation 2.  In this validation approach we performed a sensitivity analysis and observe the variation 

in preferences ranking. In real world scenarios, it is often required to change the criteria weights 

according to the application need. Hence, the method should be sensitive enough to changes in criteria 

weights. Therefore, in this sensitivity analysis we interchange the criteria weights to get combinations. 

As there are three criteria in our example, so a total of six combinations can be made. Out of six 

combinations, weight set – 1 was calculated according to the Buckley’s [38] FAHP process. In an earlier 

section, we highlighted that for weight set – 1, the result is consistent (𝐶𝐶𝐶𝐶 =  0.05 < 0.10). As other 

positive reciprocal matrices are generated by interchanging the linguistic evaluations of Table 3, so 

other criteria sets, presented in Table 13 are also consistent and have the same CR. Further, we calculate 

the spearman’s rank correlation coefficient after changing the criteria weights and compare the results 

with the original work proposed by Kutlu and Ekmekçioğlu [34] and the fuzzy version of the method 

proposed by Pamucar et al. [40].  

Table 13. Set of criteria weights for sensitivity analysis 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 Weight set -
1 

Severity 0.293 0.388 0.565 
Occurrence 0.203 0.267 0.386 
Detection 0.234 0.345 0.420 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 Weight set -
2 

Severity 0.293 0.388 0.565 
Occurrence 0.234 0.345 0.420 
Detection 0.203 0.267 0.386 

𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂 Weight set -
3 

Severity 0.203 0.267 0.386 
Occurrence 0.234 0.345 0.420 
Detection 0.293 0.388 0.565 

𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂 Weight set-
4 

Severity 0.203 0.267 0.386 
Occurrence 0.293 0.388 0.565 
Detection 0.234 0.345 0.420 

𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 Weight set -
5 

Severity 0.234 0.345 0.420 
Occurrence 0.293 0.388 0.565 
Detection 0.203 0.267 0.386 

𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 Weight set -
6 

Severity 0.234 0.345 0.420 
Occurrence 0.203 0.267 0.386 
Detection 0.293 0.388 0.565 
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The resulting preferences ranking by our proposed approach is shown in Table 14. The average of 

spearman’s rank correlation coefficient is calculated as 96.3%. Further, we observe that the average 

spearman’s rank correlation coefficient obtained by following the fuzzy version of the method proposed 

in [40] is 96.3%, whereas, the average spearman’s rank correlation coefficient of the results presented 

in [34] was 94.2%. Now at this point, we can highlight the following two things:  

• Rank correlation between our method and the fuzzy version of the method proposed in [40] is

the same. Although, the superiorities of our method are firstly, it incorporates a normalization

technique which helps in hard computation and increases calculation accuracy. When the

number of criteria increases, it becomes quite difficult for the decision maker to identify the

benefit and cost criteria. However, in this normalization technique there is no requirement of

that identification. Secondly, we reduce the step of de-fuzzification after obtaining the total gap

matrix. To do that, we simply calculate the fuzzy Euclidian distance between elements of the

matrix of theoretical and actual ponder, which no doubt is more realistic than the simple

subtraction operation.

• We can observe from Table 14 that when we vary the criteria weight, there are variations in

preferences ranking. Hence, our method is sensitive to criteria weights. FM5 is consistently

ranked as the most critical failure mode. There are changes in rank between FM1, FM4 and

FM6. However, we do not observe any changes in ranking for FM2, FM3, FM7 and FM8. In

fact, stability of the ranking results are better than the method proposed in [34]. Hence, we say

that the ranking result obtained by our proposed approach is confirmed, credible and robust.

Table 14. Variations in preferences ranking by varying the criteria weights 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂 𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 
FM1 2 3 2 2 3 2 
FM2 5 5 5 5 5 5 
FM3 6 6 6 6 6 6 
FM4 4 4 3 3 4 3 
FM5 1 1 1 1 1 1 
FM6 3 2 4 4 2 4 
FM7 7 7 7 7 7 7 
FM8 8 8 8 8 8 8 

Validation 3. In MCDM theory, it is considered as a major problem to validate the obtained preferences 

ranking as no standard methods are currently available. In some works [43], the authors devised a few 

techniques for validation, however, it is noticed that most of them are case-specific. Most of them 

validate the ranking result by comparison with other standard methods or by changing the criteria 

weights as presented earlier.  Here, we propose an indirect technique for validation of the ranking result. 

Let us assume that we want to verify the ranking result between two alternatives (𝐴𝐴1,𝐴𝐴2) which are 

already ranked by any MCDM approach, and 𝐴𝐴1 is superior than 𝐴𝐴2.  
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Let the decision matrix be expressed as shown in Eq. (22): 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

⎣
⎢
⎢
⎢
⎢
⎡
𝒘𝒘�𝟏𝟏
𝑎𝑎�11
𝑎𝑎�21

𝒘𝒘�𝟐𝟐
𝑎𝑎�12
𝑎𝑎�22

  
. . .
. . .
. . .

𝒘𝒘�𝒔𝒔
𝑎𝑎�1𝑠𝑠
𝑎𝑎�2𝑠𝑠

�������������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 [1𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑠𝑠−𝑡𝑡ℎ]

𝒘𝒘� (𝒔𝒔+𝟏𝟏)
𝑎𝑎�1(𝑠𝑠+1)
𝑎𝑎�2(𝑠𝑠+1)

𝒘𝒘� (𝒔𝒔+𝟐𝟐)
𝑎𝑎�1(𝑠𝑠+2)
𝑎𝑎�1(𝑠𝑠+2)

  
. . .
. . .
. . .

𝒘𝒘�𝒏𝒏
𝑎𝑎�1𝑛𝑛
𝑎𝑎�2𝑛𝑛

�����������������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[(𝑠𝑠+1)𝑡𝑡ℎ 𝑡𝑡𝑡𝑡 𝑛𝑛−𝑡𝑡ℎ] 

⎦
⎥
⎥
⎥
⎥
⎤

(22) 

Using Eq. (7) or (8), we defuzzify each of the elements of the decision matrix as represented in Eq. 

(23):  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

⎣
⎢
⎢
⎢
⎡𝒘𝒘𝟏𝟏
𝑎𝑎11
𝑎𝑎21

𝒘𝒘𝟐𝟐
𝑎𝑎12
𝑎𝑎22

  
. . .
. . .
. . .

𝒘𝒘𝒔𝒔
𝑎𝑎1𝑠𝑠
𝑎𝑎2𝑠𝑠

�������������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 [1𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑠𝑠−𝑡𝑡ℎ]

𝒘𝒘(𝒔𝒔+𝟏𝟏)
𝑎𝑎1(𝑠𝑠+1)
𝑎𝑎2(𝑠𝑠+1)

𝒘𝒘(𝒔𝒔+𝟐𝟐)
𝑎𝑎1(𝑠𝑠+2)
𝑎𝑎1(𝑠𝑠+2)

  
. . .
. . .
. . .

𝒘𝒘𝒏𝒏
𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛

�����������������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[(𝑠𝑠+1)𝑡𝑡ℎ 𝑡𝑡𝑡𝑡 𝑛𝑛−𝑡𝑡ℎ] 

⎦
⎥
⎥
⎥
⎤

(23) 

Then for each evaluation we compare their values. For simplicity in understanding, suppose that for 𝑠𝑠 

number of criteria (𝑠𝑠 ≤ 𝑛𝑛), 𝑎𝑎𝑖𝑖𝑖𝑖 > 𝑎𝑎(𝑖𝑖+1)𝑗𝑗 and for (𝑠𝑠 + 1)𝑡𝑡ℎ −  𝑛𝑛, the number of criteria 𝑎𝑎𝑖𝑖𝑖𝑖 < 𝑎𝑎(𝑖𝑖+1)𝑗𝑗. 

We discard those cases where 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑖𝑖+1)𝑗𝑗. Now for 𝐴𝐴1 to be a better choice than 𝐴𝐴2, it is required 

that ∑ 𝑤𝑤𝑖𝑖𝑠𝑠
𝑖𝑖=1 > ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=(𝑠𝑠+1) .  

Below, in Table 15, we present two examples in support of our proposed validation method. We now 

consider the solved example of the FMEA problem presented in Section 4.  

Table 15. Examples in support of Validation-3 

Example – 1: Comparison between FM1 and FM5 

• From Table 7 and using Eq. (7) we obtain the following decision matrix:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹5

�
𝑤𝑤𝑆𝑆 = 0.395

4.333
𝑤𝑤𝑂𝑂 = 0.272

6.333
𝑤𝑤𝐷𝐷 = 0.333

8.222
4.333  7.611 9.167

� 

• Now, for ‘severity’, defuzzified ratings are the same for both of the failure modes and hence

we discard it. For the other two risk factors, ratings of FM5 are superior to FM1. Hence, their

respective weights are considered and summed up. The output becomes 𝑤𝑤𝑂𝑂 + 𝑤𝑤𝐷𝐷 =

0.272 + 0.333 = 0.605.

• As none of the evaluation for FM1 is superior to FM5, so there is no necessity for further

calculation. Thus, FM5 is more critical rather than FM1.

Example – 2: Comparison between FM3 and FM7 
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• In this example, we examine the credibility of ranking results between FM3 and FM7. This 

is because the ranking result obtained by our approach is slightly different than the 

result presented in [34].

• From Table 7 and using Eq. (7) we obtain the following decision matrix:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝐹𝐹3
𝐹𝐹𝐹𝐹7

�
𝑤𝑤𝑆𝑆 = 0.395

2.389
𝑤𝑤𝑂𝑂 = 0.272

9.167
𝑤𝑤𝐷𝐷 = 0.333

1.444
1.444  9.833 1.444

� 

• Now, for ‘detection’, defuzzified ratings are the same for both of the failure modes and hence 

we discard it. For, ‘severity’, the rating of FM3 is superior to FM7. Whereas, for 

‘occurrence’, the ratings of FM7 are superior to FM3.

• Next, we check the value of criteria weights. FM3 is ranked as more critical than FM7, as 
𝑒𝑒𝑒𝑒𝑆𝑆  > 𝑒𝑒 𝑂𝑂 .

Now using the approach given above, it is easily inferred that FM3 is more critical than FM7, whereas 

the ranking result presented in [34] violates the above principle and thus we can say that our ranking 

result is better than their approach. This is probably due to the fact that FMAIRCA produces more stable 

results than FTOPSIS. 

6. Managerial implications and conclusion

In this work a novel integrated MCDM approach is proposed by combining FAHP and FMARICA for 

solving a complex decision-making task related to FMEA. To validate the potentiality of our approach 

we have considered a benchmark example of FMEA which was previously solved by the FAHP and 

FTOPSIS approach. In the original work, FAHP, based on the extent analysis method was used to derive 

the relative importance between the risk factors. However, that has received several criticisms till now 

and most importantly, sometimes it provides zero criteria value for some application cases, which is not 

possible at all. We have used the same pairwise comparison matrix as given in the original work and 

have utilized Buckley’s FAHP approach (geometric mean approach) to calculate the relative importance 

among the risk factors. In the next task, to rank the failure modes, we have proposed a modified 

FMAIRCA approach, where we have replaced the normalization formulae and used the Euclidian 

distance to calculate the gap between actual and theoretical ponder. We believe that our approach is 

computationally faster, more accurate and requires less computational steps than the original steps 

involved in the MAIRCA method. We have compared our ranking result with the original work of the 

FAHP-FTOPSIS approach and found out that the ranking stability of our approach is higher. Apart from 

that, when the number of risk factors and alternatives are increased, our approach is sufficient to handle 

that situation and still provides credible ranking results. Next, we have proposed a new approach to 

validate the obtained ranking result by using the MCDM approach, which is quite simpler to interpret 
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and is derived from simpler human reasoning. This integrated approach is believed to be a feasible 

choice among the risk analysts in industries to support the complex risk assessment task of FMEA.  

Further development of this approach is suggested to incorporate other distance measures and to 

compare the deviation from the mean performance score. Apart from that, other weight calculation 

approaches may be combined with FMAIRCA to improve the decision-making process.     
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