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I 

ABSTRACT 

Ensuring the safety and reliability of civil engineering structures is an important research 

topic in society. Structural health monitoring (SHM) as an advanced interdisciplinary research 

area has attracted significant interest from civil engineering community. SHM systems consist 

of a variety of sensors for measuring and collecting real-time vibrational responses and 

environmental conditions of structures. With continuously measured data, structural 

performance and vibration behaviour can be obtained for monitoring and assessing the 

structural condition to identify the structural anomaly at an early stage. However, barriers for 

effective application of SHM techniques include inevitable noise and response loss in the huge 

amount of continuous measurement data, leading to an urgent demand for high-efficiency and 

automated data processing techniques. Clustering-based techniques are effective tools for 

automated modal information extraction. Owning to the strong capability of automated feature 

extraction, deep learning as an emerging branch of machine learning techniques, has achieved 

outstanding progress in addressing problems with a large amount of data. The development 

and application of deep learning techniques for SHM is recently a hot topic that mainly focuses 

on structural condition and performance monitoring. With many successful applications in 

other fields such as image processing and audio enhancement, deep learning techniques are 

also promising for addressing data processing and recovery issues in SHM. 

To develop the applicability of long-term SHM, an automated operational modal analysis 

(OMA) method is first proposed for extracting vibrational characteristics. Three procedures 

including hard validation criteria removal, an improved statistics‐based clustering procedure, 

and a developed cluster merging procedure are combined for automatically interpreting the 

stabilization diagram from the stochastic subspace identification (SSI) output, without a priori 

knowledge on the modal parameters and no manual tuning during interpreting. Numerical 

validation results on a frame structure demonstrate that the proposed approach has strong noise 

immunity. Experimental studies on a laboratory steel frame structure and a real footbridge are 

conducted. Accurate identification results demonstrate the robustness and applicability of 

using the proposed approach for automated OMA and modal tracking. The extracted 
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vibrational characteristics can be applied in analysing structural long-term vibration behaviour 

and used as input to deep learning models for structural damage detection. 

Recovery of randomly lost data due to inevitable transmission and environmental issues 

are investigated based on a bottlenecked convolutional neural network (CNN) featured with 

skip connection. Skip connection shuttles low-level features extracted by shallow layers 

directly to top layers, which effectively improves the information flow among networks and 

mitigate gradient vanish issue when applying gradient backpropagation. Data segmentations 

measured by the concerned sensor without any response loss are processed as training datasets 

to facilitate the proposed CNN to learn nonlinear relationships between complete and 

incomplete data. Two experimental studies for single‐channel and multiple‐channel data 

recovery are conducted using vibration data from a real bridge. In both cases, the lost data can 

be effectively recovered and modal parameters successfully identified from recovered data. 

The proposed CNN is then updated for vibration data denoising. Paired synthetic noisy 

data and the corresponding original data are used for training. Experimental studies are 

conducted with acceleration data measured from Guangzhou New Television Tower. After 

denoising, the quality of the acceleration data with varying levels and different types of noises 

are improved. Modal information of the weakly excited modes masked by noise and the 

closely spaced modes can be clearly and accurately identified from the de-noised data, which 

could not be reliably identified with the noisy data, indicating that the proposed deep learning 

model can automatically learn robust data features without any human intervention. These 

learned features can be regarded as modal parameters from an engineering point of view. 

To reconstruct continuous response loss, a densely connected network (DenseNet) is 

carefully designed. DenseNet consisting of skip and dense connections shares all the 

advantages of skip connection. Moreover, densely connected layers possessing rich 

information interaction inside dense blocks are more outstanding in feature extraction than 

successive single layers connection. Inter-channel correlation between available and desired 

unavailable channels are learned by DenseNet. Experimental studies are conducted using the 

measured acceleration response from Guangzhou New Television Tower to investigate the 
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effects of the locations of available response, the numbers of available and unavailable 

channels, and measurement noise. The reconstructed response matches well with the baseline 

response in both the time and frequency domains with strong noise immunity. The 

applicability of the proposed approach for SHM is further demonstrated by the highly 

consistent modal parameters identified from the reconstructed and true responses. 

A segment-based generative adversarial network (SegGAN) is developed based on 

DenseNet to reconstruct nonstationary response. Numerical studies with a frame structure and 

a nonlinear building model are conducted to evaluate the noise immunity and the capability of 

nonstationary response features extraction, respectively. Experimental studies with a 

laboratory frame structure under earthquake excitations, with measurement noise and varying 

environmental and operational conditions, are conducted to investigate the applicability of the 

proposed SegGAN. Results are compared with a traditional CNN and DenseNet. SegGAN 

outperforms the other two networks and produces distinguished reconstruction results in both 

time and frequency domains. Owning to the adversarial training strategy, SegGAN effectively 

and automatically extracts linear and nonlinear response features from limited training data 

with uncertainties. The advantages of less data requirement, complex environmental 

adaptability and automation in feature extraction make SegGAN very promising for 

reconstructing SHM data. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

1.1.1 Current status of SHM 

With the ageing of existing structures, development of effective means for monitoring 

the conditions to ensure the safety and reliability of civil engineering structures is now an 

important research topic of society. Instead of visual inspection, where minor damage may not 

be effectively detected, vibration-based SHM as an advanced interdisciplinary research area 

has attracted significant interest in civil engineering community. Vibration-based SHM 

systems consist of a variety of sensors for measuring and collecting real-time vibration 

responses and environmental conditions of structures. Those measured data can assist 

engineers for real-time assessing the structural condition and early warning of the anomaly to 

prevent calamity (Farrar & Worden, 2012). Owning to the significant benefits to monitor 

structural condition and ensure public safety, a rapidly growing number of long-term SHM 

systems have been deployed in large-scale civil structures (Chen et al., 2011; Cross et al., 2013; 

Nguyen et al., 2015; Peeters & De Roeck, 2001; Xia et al., 2013; Zhang et al., 2012). However, 

effectively recording and utilizing the measured data for identifying structural conditions still 

face difficulties. Barriers of applying SHM for real projects include a great amount of data 

used for analysis, inevitable noise in measurements and response loss in a huge amount of 

continuous measurement data during the service system outrage or poor transmission quality, 

leading to an urgent demand for efficient and automated data processing techniques for modal 

analysis, signal pre-processing and data recovery. 

1.1.2 Automated modal parameters identification by clustering 

In SHM, rather than directly use measured raw vibration data, modal parameters 

representing inherent structural vibration characteristics are more widely used for assessing 

structural conditions and detecting structural damages. However, modal identification 
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involving manual tuning and interpretation is time-consuming and labor-intensive for real time 

SHM with a large amount of continuously measured data. Alternatively, automated 

identification of structural modal parameters becomes important for extracting long-term 

structural vibration characteristics and determining the long-term structural vibration 

behaviours. Operational Modal Analysis (OMA) that identifies modal parameters by using 

structural vibration responses under operational and environmental excitations has been 

widely applied for civil engineering structures. Without interrupting structural operations and 

conducting vibration test for structures, OMA is economic and efficient. In the last decades, 

several automated procedures have been developed based on OMA techniques including the 

time domain parametric identification methods such as Stochastic Subspace Identification 

(SSI) (Van Overschee & De Moor, 2012) and Eigensystem Realization Algorithm (ERA) 

(Yang et al., 2018; Zhang et al., 2014), and the frequency domain non-parametric method, e.g. 

Frequency Domain Decomposition (FDD) (Rainieri & Fabbrocino, 2010). Among these 

methods, SSI has attracted a significant amount of attentions owing to its clear mathematical 

background and steady performance. Traditionally, modal analysis through SSI commonly 

involves two steps, namely, 1) Identification of mode candidates in a range of system orders; 

and 2) Interpretation of the SSI output via the empirical observation from the stabilization 

diagram and expert engineering knowledge to distinguish the physical modes and spurious 

modes. In terms of the automated modal identification procedures based on SSI, the 

automation processes mainly contribute to reducing the user intervention in modal analysis, 

especially in the interpretation of the SSI output to select the physical modes from the 

stabilization diagram using clustering techniques (Bakir, 2011; Boroschek & Bilbao, 2019; 

Cardoso et al., 2017; de Almeida Cardoso et al., 2018; Magalhaes et al., 2009; Neu et al., 2017; 

Reynders et al., 2012; Sun et al., 2017; Teng et al., 2019; Ubertini et al., 2013). However, 

those existing clustering-based methods have not realized fully automation, manually selection 

of one or few parameters is still indispensable for effective identification. Therefore, there is 

potential and need to further develop these methods for automated identification. 
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1.1.3 Vibration response reconstruction 

Structural response loss is an inevitable issue during wireless transmission that affects the 

reliability and usability of measured vibration data. It has been reported that the effect of a 0.4% 

data loss in measured data is equivalent to injecting a 5% noise into the data on the estimated 

power spectrum density (Nagayama et al., 2007). Measured vibration responses with a high 

data loss ratio, i.e., the number of lost and fully recorded data, can hardly be used for the modal 

analysis as it may lead to significant errors in the identification results, which consequently 

influences the accuracy of structural condition assessment and damage detection. The potential 

reasons for data loss in a measurement system are complex, including the radio interaction, 

ambient condition variation and signal attenuation in the long-distance transmission. 

Furthermore, during the long-term monitoring, data could be lost due to the technical issues 

such as the malfunction of cable connections, power supply interruption, signal transmission 

disturbance, sensor malfunction, or regular maintenances such as equipment check and sensor 

replacement. In practice, the locations of installed sensors on the monitored structures are 

selected carefully, and the number of sensors is much smaller compared to the total number of 

degrees of freedom (DOFs) of structures because of the limitations on the budget and available 

channels of data acquisition systems (Law et al., 2011), and the inaccessibility of some 

locations for measurement during operations (Kammer, 1997). Common condition assessment 

and damage detection techniques assume that all the sensors are functioning in perfect 

condition (Ma et al., 2018). The incomplete acquired measurements with partially or 

completely missed data of one or more channels will greatly affect the effectiveness of SHM. 

Therefore, reconstructing the lost data is of great importance. 

In the past decades, several types of methods for the reconstruction of structural responses 

have been proposed utilizing the finite element model (FEM) based techniques. 

Transmissibility concept (Ribeiro et al., 2000) based structural response reconstruction 

methods were studied in both the frequency domain (Law et al., 2011) and wavelet domain 

(Li & Law, 2011). Deriving the transformation matrix utilizing the FEM of the structure to 

obtain the response at unavailable locations through the available responses is another typical 
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method (Kammer, 1997). This research was further combined with empirical mode 

decomposition (EMD), which decomposed the measurable time domain data into several 

Intrinsic Mode Function (IMFs), and reconstructed the responses at unavailable DOFs using 

the independent transfer equation of each IMF (He et al., 2012; Wan et al., 2014). An 

alternative structural response reconstruction method was developed based on optimal multi-

type sensors placement and Kalman filter with unknown excitations (Xu et al., 2016; Zhang 

& Xu, 2016). These FEM based methods demand an accurate FEM of the target structure to 

calculate the transmissibility matrix, identify the mode shapes or determine the optimal sensor 

locations. However, developing an accurate FEM for large and complex civil engineering 

structures with a large number of elements and DOFs is time-consuming and challenging. 

Furthermore, system and geometry properties, and boundary conditions of the structures are 

changing with the variations of the environmental and operational conditions, which leads to 

the establishment of an accurate FEM representing the in-service structures much more 

difficult. On the other hand, with the rapid development and application of data analysis 

techniques, realizing the response reconstruction by the data-driven methods are attracting 

significant attention. The majority of these data-driven methods focus on reconstructing the 

strain data (Huang et al., 2011; Zhang & Luo, 2017) or the strain distribution (Chen et al., 

2018) using the inter-channel correlation. Compared to the strain data, the acceleration 

response is more sensitive to the structural vibration and accumulated damage in structures. 

However, nonlinear inter-channel relationships are more complicated. Studies on the 

reconstruction of vibration acceleration data are mainly conducted to reconstruct the randomly 

missing data or short-term continuous lost data in a specific channel. For example, Bao et al. 

(2013) recovered the randomly lost acceleration data by leveraging the compressive sensing 

and further improved the developed method with group spare optimization (Bao et al., 2018) 

and machine learning techniques (Bao et al., 2020). Yang and Nagarajaiah (2016) also 

addressed the random data missing issue with sparse representation for inter-channel data 

reconstruction of low-rank structures. Wan and Ni (2019) proposed a Bayesian multi-task 

learning method with a multi-dimensional Gaussian process to predict the short-term 

continuous lost data using the measurements from the same sensor ahead of the forecasting. 
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Those methods either need expert knowledge to select the sparse domain of the measured data 

or can only recover short-term data loss. When a long-term successive acceleration response 

loss occurs or acceleration responses at critical but inaccessible locations are desirable, these 

methods may not be capable of accurately reconstructing the required responses.  

1.1.4 Vibration response denoising 

Measured responses can also be contaminated by inevitable noise from various sources 

such as environmental noise and instrumental noise, which significantly influences the 

usability and quality of data. Strong noise may mask changes induced by minor damages in 

structural responses, leading to modal identification or damage detection inaccurate or 

virtually impossible in such cases. It has been reported that 10-20% noise injected into 

vibration data was considered as a high noise level in numerical studies (Li & Law, 2012; Li 

et al., 2012) when validating damage detection methods. Considering substantial uncertainties 

during in-field tests, measurement noise may exceed 20% level easily in situations with some 

poor testing conditions. Therefore, besides improving the noise immunity of SHM methods 

for modal analysis or damage detection, another important research topic named vibration data 

denoising, which aims to remove noise components or mitigate noise effect from 

measurements without affecting the quality of vibration data, has gained significant attention. 

Data denoising can improve the usability and quality of the measured data before any specific 

analysis. Recent researches have been conducted to perform the vibration data denoising in 

the time, frequency and time-frequency domains for different types of data (He et al., 2014). 

Conventional time domain averaging methods are more suitable for periodic signals (Braun, 

2011). The denoising effect on other kinds of signals may be limited due to the varying 

vibration frequency or amplitude. Filtering methods, such as low-pass filtering and band-pass 

filtering, etc., are typical frequency domain methods that eliminate noise outside the user-

defined frequency band of interest. The prior knowledge of structures including modal 

frequencies and the corresponding variation ranges induced by operational and environmental 

condition changes needs to be known, which limits the application of those methods. Time-

frequency domain methods, such as wavelet transform based denoising techniques have been 



 

6 

 

widely investigated (Bi et al., 2019; Lin & Qu, 2000). Those techniques consider both time 

and frequency characteristics, which are suitable for both stationary and nonstationary signals. 

However, wavelet transform based methods require manually selected and tuned optimal 

parameters such as the suitable wavelet basis regarding target signals, the proper threshold 

value for the number of wavelet transform layers and packets to discriminate and remove noise 

but avoid losing useful components (Chegini et al., 2019; He et al., 2014). Other methods 

based on singular value decomposition (Zhao & Jia, 2017), empirical mode decomposition 

(Lei et al., 2013) and global projection (Hou et al., 2011) have also been developed to conduct 

specific denoising tasks. Among all of the abovementioned methods, different parameters are 

required for optimizing, resulting in the effectiveness of vibration data denoising closely 

dependent on engineers’ empirical experiences. 

1.1.5 The potential of deep learning techniques for SHM 

Deep learning as an emerging branch of machine learning, has achieved outstanding 

progress in multiple disciplines such as image processing, medical diagnosis, autopilot and so 

on. It is capable of automatically identifying the pattern and mining the hidden highly abstract 

features from a large volume of data. Owing to the outstanding feature extraction capacity, 

deep learning is selected to realize the automated response reconstruction and denoising for 

SHM. The existing development and application of deep learning techniques in SHM mainly 

focus on the visual inspection and damage detection of structures by using the crack images 

(Cha et al., 2018; Gao & Mosalam, 2018; Xu et al., 2019), vibration responses (Abdeljaber et 

al., 2017; Lin et al., 2017; Zhang et al., 2019) and the pre-extracted vibration characteristics 

(Pathirage et al., 2018; Pathirage et al., 2019) as the input to the networks. For response 

reconstruction, Zhang et al. (2019) proposed a long-short term memory network that uses the 

measured excitation as input to predict the structural seismic response. Dozens of records 

under earthquakes must be provided for training which is inappropriate for those structures 

with short service time or located in few earthquake areas. A comprehensive review of deep 

learning-based SHM techniques is provided in Ref. (Ye et al., 2019).  
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However, the potential of using deep learning techniques for SHM is more than those 

applications. Applications in computer vision and speech enhancement have been reported, i.e. 

the pixel-to-pixel recovery of images and audio super resolution (Dong et al., 2015; Kuleshov 

et al., 2017) and image inpainting (Mao et al., 2016; Pathak et al., 2016; Yeh et al., 2017). 

Denoising Auto-Encoder (DAE) (Vincent et al., 2010) and CNN (Krizhevsky et al., 2012) 

have been extended to denoise image (Jain & Seung, 2009; Xie et al., 2012), audio (Park & 

Lee, 2016; Xia & Bao, 2013) and medical domain signals (Poungponsri & Yu, 2013). 

Considering that vibration response contains vibration features of structures, deep learning 

technique has high potential to be leveraged to conduct the response reconstruction and 

denoising.  

1.2 Research objectives 

The research aim of this thesis is to improve the applicability of SHM in civil engineering 

based on clustering and deep learning techniques. The specific research tasks in this study 

presented in the thesis include:  

1. Developing an automated modal identification method based on clustering technique, and

evaluating the effectiveness and robustness of the proposed method using measurement

data from a numerical model, an experimental structure and a real bridge;

2. Designing a convolutional neural network for recovering randomly lost vibration data,

and investigating its capability based on measured vibration data of a real bridge;

3. Improving the convolutional neural network that is specialised for denoising vibration

signal, and validating the effectiveness and robustness of the proposed network using

measured data from Guangzhou New TV Tower;

4. Developing a densely connected neural network for structural response reconstruction

based on inter-channel correlation, and validating the effectiveness and robustness of the

proposed network using measured data from Guangzhou New TV Tower; and

5. Designing a segment-based generative adversarial network for reconstructing

nonstationary structural response, and investigating the effectiveness and usability of the
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proposed network through a numerical study with a frame model under, a numerical study 

of a nonlinear building model and an experimental study of a frame structure under 

earthquake excitation. 

1.3 Research outline 

This thesis comprises seven chapters. The contents of six chapters following the 

introduction chapter are described as follows: 

Chapter 2 proposes an improved automated operational modal analysis approach based 

on data-driven Stochastic Subspace Identification (SSI) and clustering techniques with novel 

criteria. The performance of the proposed method is validated and compared with an existing 

method by numerical studies on a frame model, experimental studies on a frame structure and 

a real bridge. 

Chapter 3 proposes a novel approach based on CNN for recovering the lost vibration data 

for SHM. The effectiveness of recovering single channel, multiple channel and the effect of 

sample rate are investigated based on measured vibration data from a real bridge. Modal 

identification is conducted to validate the applicability of using recovered data. 

Chapter 4 proposes a vibration signal denoising approach for SHM based on a specialised 

Residual Convolutional Neural Networks. Dropout, skip connection and sub-pixel shuffling 

techniques are featured to improve the performance. The capability of this developed method 

on denoising various levels and different kinds of noises are validated with vibration data 

measured from Guangzhou New TV Tower. Modal identification of denoised data is 

conducted to evaluate the improvement of the usability of denoised data. 

Chapter 5 proposes a novel dynamic response reconstruction approach for structural 

health monitoring by using Densely Connected Convolutional Networks. Experimental studies 

are conducted using the measured acceleration responses from Guangzhou New TV Tower to 

investigate the effects of the locations of available responses, the numbers of available and 

unavailable channels, and measurement noise. Reconstructed responses are further used for 

modal identification to demonstrate the usability and accuracy of the reconstructed responses. 
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Chapter 6 proposes a segment-based generative adversarial network for dynamic 

response reconstruction under extreme loading conditions. The proposed network is a 

conditional generative adversarial network consisting of a bottlenecked generator and a 

segment-based discriminator. Numerical studies on a frame structure are conducted to evaluate 

the noise immunity. Another numerical study with a nonlinear building model is designed to 

validate the capability of the proposed approach on nonlinear response features extraction. 

Experimental study on a steel frame structure is conducted to investigate the effectiveness and 

robustness of the proposed method on real applications containing measurement noise and 

varying environmental and operational conditions. 
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CHAPTER 2 IMPROVED AUTOMATED 

OPERATIONAL MODAL IDENTIFICATION OF 

STRUCTURES BASED ON CLUSTERING 

 

Abstract: A robust automated method for operational modal analysis (OMA) is in a great 

demand for processing a large amount of structural health monitoring data from engineering 

structures. This chapter proposes an improved automated OMA approach based on data-driven 

Stochastic Subspace Identification (SSI) and clustering techniques with novel criteria. The 

framework of the proposed approach includes two main components, namely “Modal 

identification by SSI” and “Automated interpretation of SSI output”. Three procedures 

including hard validation criteria removal, an improved statistics-based clustering procedure 

and a developed cluster merging procedure are combined in the second component for 

automatically interpreting the stabilization diagram from the SSI output, without a priori 

knowledge on the modal parameters and no manual tuning during interpreting. Numerical 

validation results on a frame structure model demonstrate that the proposed approach is 

capable of identifying the vibration modes accurately, under a significant noise effect. No 

spurious modes are observed and the physical modes can be accurately identified. 

Experimental studies on a steel frame structure in the laboratory and a real footbridge are 

conducted to demonstrate the robustness and applicability of using the proposed approach for 

automated OMA and modal tracking. Identification results are compared with baselines and 

those from an existing reference method to demonstrate the improvement and contribution 

made in the proposed approach on the automated OMA.  

 

This chapter was published in Structural Control and Health Monitoring with the full 

bibliographic citation as follows: Fan G, Li J, Hao H. (2019). Improved automated 

operational modal identification of structures based on clustering. Structural Control and 

Health Monitoring, 26(12): e2450. https://doi.org/10.1002/stc.2450. 
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2.1 Introduction 

Long-term structural health monitoring (SHM) systems have been installed on a 

significant number of civil engineering structures, such as bridges (Peeters & De Roeck, 2001; 

Xia et al., 2013; Zhang et al., 2017) and buildings (Nayeri et al., 2008; Yuen & Kuok, 2010). 

Automated modal analysis method is of great interest for SHM applications to real engineering 

structures. 

Identification of modal parameters by using the structural vibration responses under 

operational and environmental excitations is known as Operational Modal Analysis (OMA). 

With a minimum influence on the structural operation, OMA techniques have been developed 

to extract the modal parameters from continuous vibration monitoring data of operating 

structures. In the last decades, several automated procedures have been developed based on 

OMA techniques including the time domain parametric identification methods such as 

Stochastic Subspace Identification (SSI) (Van Overschee & De Moor, 2012) and Eigensystem 

Realization Algorithm (ERA) (Yang et al., 2018; Zhang et al., 2014), and the frequency 

domain non-parametric method, i.e. Frequency Domain Decomposition (FDD) (Rainieri & 

Fabbrocino, 2010). Among these methods, SSI has attracted a significant amount of attention 

owning to its clear mathematical background and steady performance with a number of 

successful applications to real civil engineering structures. Traditionally, modal analysis 

through SSI commonly involves two steps, namely, 1) Identification of mode candidates in a 

range of system orders; and 2) Interpretation of the SSI output via the empirical observation 

from the stabilization diagram and expert engineering knowledge to distinguish the physical 

modes and spurious modes. In terms of the automated modal identification procedures based 

on SSI, the automation processes mainly contribute to reducing the user intervention in modal 

analysis, especially in the interpretation of the SSI output to select the physical modes from 

the stabilization diagram (Bakir, 2011; Boroschek & Bilbao, 2019; Cardoso et al., 2017; 

Reynders et al., 2012; Teng et al., 2019; Ubertini et al., 2013).  

The major challenge for the automated OMA procedures is to distinguish the physical 

modes and spurious modes from a number of observed modes in the stabilization diagram. To 
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address this challenge, clustering techniques including hierarchical clustering and K-means 

clustering, which can be used to group the physical modes across various system model orders 

into the same clusters, are several of the most popular methods to automatically interpret the 

SSI output and select the physical modes. Hierarchical clustering lists all the mode candidates 

from the parametric identification as single clusters, and keeps merging two closest clusters 

among all the clusters as one until the minimum distance is larger than a predefined cutoff 

threshold (de Almeida Cardoso et al., 2017; Magalhaes et al., 2009). The physical modes are 

selected from the final remaining clusters that contain more elements. K-means clustering 

collects modes with similar properties into a user-defined number of groups. Usually, K is set 

as two, which means that the mode candidates are grouped into two clusters with one for 

physical modes and another one for spurious modes (Neu et al., 2017; Sun et al., 2017). Those 

clustering methods are incorporated into the automated OMA procedures to distinguish the 

physical modes. 

This chapter proposes an improved automated structural OMA approach based on 

clustering techniques. The framework of the proposed approach includes two main 

components, namely “Modal identification by SSI” and “Automated interpretation of SSI 

output”. The data-driven SSI is used in the first component. Three procedures including hard 

validation criteria removal, an improved statistics-based clustering procedure and a developed 

cluster merging procedure are contained in the second component. This study contributes to 

defining and updating the clustering criteria based on statistical properties of grouped modal 

parameters. These self-adapting criteria automatically group the physical modes into the large 

cluster and diffuse the spurious modes as small clusters. The cluster containing elements less 

than a static threshold will be defined as a spurious-mode cluster, and therefore be eliminated 

from the SSI output. A cluster merging procedure is also developed and arranged after the 

statistics-based clustering to enhance the robustness of the proposed approach, which merges 

the physical-mode clusters as larger clusters and further remove spurious-mode clusters by a 

more critical threshold. Numerical and experimental studies are conducted to demonstrate the 

accuracy and performance of using the proposed approach for automated OMA and modal 
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tracking. The results will be compared with those reported in the literature and obtained from 

a reference method (Cabboi et al., 2017). 

The rest of this chapter is organized as follows: firstly, the proposed automated OMA 

approach will be presented and the background of the reference method will be briefly 

mentioned in Section 2.2. Numerical studies are conducted in Section 2.3 to validate the 

accuracy and robustness of the proposed approach, particularly under the significant noise 

effect. The performance of using the proposed approach to remove the false modes in the 

identification results is investigated. Section 2.4 presents the experimental studies on a 

laboratory frame structure and a real footbridge to validate the applicability and performance 

of the proposed approach. Modal identification results from the proposed approach and a 

reference method are compared to demonstrate the improvement of the proposed approach. 

Finally, the conclusions and discussions on further study topics are provided in Section 2.5. 

2.2 Methodology 

2.2.1 Background of data-driven SSI 

The data-driven SSI technique has been developed for modal identification of structures 

for more than two decades, therefore it is considered as a relatively mature OMA method with 

applications to various civil engineering structures. The theoretical derivation of data-driven 

SSI has been described in the literature (Van Overschee & De Moor, 2012) in details. For 

completeness of this chapter, it will be briefly reviewed here. SSI is developed based on the 

discrete time state-space form of motion of a linear time invariant system under ambient white 

noise excitations. The stochastic state-space model is expressed as 

{
𝑥𝑘+1 = 𝐴𝑥𝑘 +𝑤𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘

(2.1) 

where k is the sampling instant; 𝐴 ∈ ℜ𝑛×𝑛 is the discrete state matrix with n equal to two

times of the system degrees of freedom (DOFs); 𝐶 ∈ ℜ𝑙×𝑛 is the output matrix with l defined

as the number of measured output responses. 𝑥𝑘 ∈ ℜ
𝑛×1  and 𝑦𝑘 ∈ ℜ

𝑙×1 denote the discrete

state vector and the output measurements at the k-th sampling instant, respectively; 𝑤𝑘 ∈
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ℜ𝑛×1  and 𝑣𝑘 ∈ ℜ
𝑛×1  are two white noise vectors, representing the process noise due to 

disturbances and modelling inaccuracies, and the measurement noise respectively.  

Modal identification by using data-driven SSI includes the following steps: 1) Form the 

block Hankel matrix 𝐻 using the output measurements; 2) Calculate the orthogonal projection 

of the ‘past’ output measurements matrix 𝑌𝑝 to the ‘future’ output measurements matrix 𝑌𝑓 

to identify the projection matrix 𝑃 ∈ ℜ𝑙∙𝑖×𝑗; 3) Compute the observability matrix Γ using the 

projection matrix P to determine the system matrices A and C; 4) Identify the modal parameters 

from the extracted system matrices A and C by performing the eigenvalue analysis. Since the 

selection of the number of the half block rows of the block Hankel matrix i will be discussed 

in the next sections, the block Hankel matrix is given here 

H(𝑖) =

(

 
 
 
 
 
 

𝑦(0) 𝑦(1)        …   𝑦(𝑗 − 1)

𝑦(1) 𝑦(2)       …        𝑦(𝑗)   
⋮

𝑦(𝑖 − 1)
⋮
𝑦(𝑖)

          ⋱
          …

⋮
𝑦(𝑖 + 𝑗 − 2)

𝑦(𝑖) 𝑦(𝑖 + 1) … 𝑦(𝑖 + 𝑗 − 1)

𝑦(𝑖 + 1) 𝑦(𝑖 + 2) …     𝑦(𝑖 + 𝑗)   
⋮

𝑦(2𝑖 − 1)
⋮

𝑦(2𝑖)
   ⋱
  …

⋮
𝑦(2𝑖 + 𝑗 − 2))

 
 
 
 
 
 

= [
𝑌𝑝
𝑌𝑓
] (2.2) 

2.2.2 Overview of the proposed automated OMA approach   

The proposed improved automated OMA approach consists of the complete process from 

raw ambient data pre-processing to automated modal parameters identification, as shown in 

Figure 2-1. It consists of two main components, namely Component 1: Modal identification 

by SSI and Component 2: Automated interpretation of SSI output. The first component ‘Modal 

identification by SSI’ requires the user intervention  and manual tuning for the pre-processing 

of vibration response data and the selection of the model parameters in SSI, including half the 

number of block rows of the Hankel matrix i, and the range of a model order range [nmin, nmax] 

to estimate the state space system matrix. It should be highlighted that the pre-processing of 

raw data and the definition of model parameters are important for the modal parameters 

identification by using data-driven SSI. Refined data and properly selected parameters lead to 
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a qualified SSI output, i.e. the genuine physical modes are properly identified and less spurious 

modes are observed, which is the basis of effective parametric identification.  

In most of the previous studies, the interpretation of the stabilization diagram from the 

SSI output is performed manually based on the expert experience. The second component 

“Automated interpretation of the SSI output” of the proposed approach is the main 

contribution of this study. As shown in Figure 2-1, the second component in this proposed 

approach includes three procedures, that is, hard validation criteria removal, statistics-based 

clustering and cluster merging, which will be elaborated in Section 2.2.4.1, 2.2.4.2 and 2.2.4.3, 

respectively.  

Preliminary analysis of the 

dynamic data to define the 

frequency range of interest

Pre-processing the signal consist 
of down-sampling and band-

wide pass filtering

Define the model parameters 
including time lag i and the 

range of model order [nmin nmax]

Hard criteria removal of the 
certain spurious modes 

Eliminate spurious clusters and 

group physical modes by the 

statistics-based clustering  

Merge the physical clusters as 

larger clusters and remove the 

remaining spurious clusters

Modal analysis of processed data 
using SSI with model order from 

nmin to nmax

Improved automated SSI

Figure 2-1. Flowchart of the proposed approach. 

2.2.3 Model parameters selection in Component 1 

The selection of the parameter i affects the accuracy of modal parameters identification 

results significantly. It may even fail if the duration of the time history signal (𝑖 × sampling 
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interval) is less than a period of the first structural mode. On the other hand, longer signals 

provide more information about the structural vibration, but without an upper limit, a large 

value of i enlarges the size of Hankel matrix and increase the computational demand 

significantly. Besides, it is also worth noting that with the inevitably measurement noise effect, 

using a larger value of i may introduce more spurious modes in the SSI output. Therefore, the 

parameter i should be selected carefully considering the period of the first mode of interest to 

control the number of spurious modes in the results (Priori et al., 2018; Reynders & De Roeck, 

2008). In this study, the parameter i is chosen as  

𝑖 ≥ 𝑇1/∆𝑡 (2.3) 

where 𝑇1 is the period of the first structural mode and ∆𝑡 is the sampling interval.  

Modal information is identified at a large number of model orders observed from the SSI 

output, i.e. stabilization diagram which shows all the identified system poles against a pre-

defined range of model orders. The physical modes and spurious modes are then distinguished 

based on the fact that physical modes are consistent in almost all the model orders, and 

spurious modes are scattered and observed only in some model orders. It is difficult to predict 

and anticipate which model order will give the best modal identification results from SSI. The 

lower bound of the system model order range nmin should be usually chosen twice as large as 

the number of the expected modes to be identified. On the other hand, the upper bound of the 

system model order nmax is usually high to ensure that the weakly excited modes can be 

successfully identified. However, nmax should be carefully determined because of the 

increasing computation cost and spurious modes with nmax. A selection of nmax between 120 

and 160 in this study have no influence on the accuracy but the efficient. Based on the above 

selected model parameters, data-driven SSI can be conducted to produce the formed system 

modes matrix.  
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2.2.4 Procedures in Component 2 

2.2.4.1 Removal of spurious modes by hard validation criteria 

Despite the appropriate parameters being chosen following the specified rules as 

mentioned above, the system modes matrix may still exhibit considerable spurious modes, 

which increases the computational burden and affect the efficiency of the automated 

interpretation of SSI output. Certain spurious modes can be effectively removed from the 

identification results by using several hard validation criteria related to the damping ratios and 

mode shapes, which can be used to improve the identification efficiency and accuracy 

remarkably. For real civil structures, damping ratios ξ should be large than 0 and usually less 

than 10%. Identified modes with damping ratios out of this range can be deemed as spurious 

modes and removed from the system modes matrix. Further clearance is realized by evaluating 

the complexity of mode shapes measured with two well-known modal validation criteria, 

namely, Modal Phase Collinearity (MPC) and Mean Phase Deviation (MPD). MPC is an index 

to measure the spatial consistency of the identified mode that represents the mono-phase 

behaviour through computing the linear relation between the real part 𝜙𝑅and imaginary part

𝜙𝐼 of the identified mode shape vector (Pappa et al., 1993). MPC of the jth mode shape can

be calculated as 

𝛼 =
𝜙𝑗
𝐼𝑇𝜙𝑗

𝐼 −𝜙𝑗
𝑅𝑇𝜙𝑗

𝑅

2𝜙𝑗
𝑅𝑇𝜙𝑗

𝐼
, 𝛽 = 𝛼 + sign (𝜙𝑗

𝑅𝑇𝜙𝑗
𝐼)√𝛼2 + 1

(2.4) 

𝑀𝑃𝐶𝑗 =
𝜙𝑗
𝑅𝑇𝜙𝑗

𝑅 − 𝜙𝑗
𝐼𝑇𝜙𝑗

𝐼 +
1
𝛽
(𝜙𝑗

𝑅𝑇𝜙𝑗
𝐼)(2(𝛼2 + 1)sin2𝛽 − 1)

𝜙𝑗
𝑅𝑇𝜙𝑗

𝑅 + 𝜙𝑗
𝐼𝑇𝜙𝑗

𝐼

(2.5) 

MPC value ranges from 0 indicating a mode with the totally uncorrelated phase angle to 

1 for a mono-phase behaviour, which is usually related to real normal modes.  

MPD indicates the phase scatter for each identified mode shape vector. Similar to the 

principle of standard deviation, a lower value of MPD means that the phase of each element 

in the mode shape vector is close to the mean phase (MP). This may correspond to a normal 

mode. Instead of computing MP as the average of each phase angle, using the total least 
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squares method to find the angle of the linear regression model of the mode shape in the 

complex plane may provide more robust results (Reynders et al., 2012). MP of the jth mode 

shape is expressed as  

𝑀𝑃𝑗 = arg𝜃min
‖𝜙𝑗

𝐼 − tan (𝜃)𝜙𝑗
𝑅‖
2

2

1 + tan (𝜃)
 

(2.6) 

where  𝜃 is the phase angle. It can be computed as 

𝑈𝑆𝑉𝑇 = [𝜙𝑗
𝑅 𝜙𝑗

𝐼],𝑀𝑃𝑗 = arctan (
−𝑉12
𝑉22

) (2.7) 

where 𝑈𝑆𝑉𝑇 denotes the singular value decomposition.  𝑉12 and  𝑉22 are the elements of 

the matrix 𝑉 at the position (1, 2) and (2, 2), respectively. MPD is then calculated as  

𝑀𝑃𝐷𝑗 =

∑ 𝑤𝑖
𝑁𝜙
𝑖=1

arccos |
𝜙𝑗𝑖
𝑅𝑉22 − 𝜙𝑗𝑖

𝐼 𝑉12

√𝑉12
2 + 𝑉22

2 |𝜙𝑗𝑖|
|

∑ 𝑤𝑖
𝑁𝜙
𝑖=1

 

(2.8) 

where  𝑁𝜙 is the number of elements in the jth mode shape vector; 𝑤𝑖  is the weighting factor 

that is chosen as |𝜙𝑗𝑖| in this study. A threshold value λ should be selected carefully based on 

the complexity of the structural vibration behaviour. The modes with MPD values large than 

λ and MPC values less than 1- λ will be considered as false modes and eliminated.  

There are no standard threshold values for those criteria under ambient vibration testing. 

Setting a threshold value may depend on a number of factors, such as measurement noise, 

weak excitations and weakly excited modes and nonlinear behaviour of the structure. The 

selection is based on the experimental testing conditions and the expected characteristics of 

structures under investigation (Cabboi et al., 2017). Generally, for structures exhibiting clear 

linear behaviours with less weakly excited modes and measurement errors (signal 

synchronization problem), λ =0.3 is sufficient to ensure that the genuine physical modes will 

not be removed. On the other hand, setting the threshold λ as 0.7 for structures with complex 

behaviours or under complex experimental condition is conservative.  
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2.2.4.2 Statistics-based clustering  

Even though the above hard validation criteria could remove certain spurious modes, it 

is still challenging to handle the scenarios for ambient structural vibration testing with a small 

signal-to-noise ratio and weakly excited modes. To further eliminate the spurious modes from 

the output, a novel automatic statistics-based clustering is proposed. The principle of this 

clustering strategy is to group the modes at different model orders with similar modal 

parameters including frequencies, damping ratios and mode shapes, to one cluster. Instead of 

setting constant clustering validation criteria based on engineers’ experience for all tests, the 

proposed approach by the statistics-based clustering can automatically define the validation 

criteria to determine whether a new detected mode should be collected to a cluster without any 

user’s manual intervention. These validation criteria are being updated in accordance with the 

statistical characteristics of all the previously collected modes and new detected modes to 

improve the quality of those criteria that represent more integrated information of the cluster. 

As a result, mode candidates that represent one structural mode with consistent modal 

parameters across most of the model orders are grouped to one or two large clusters. On the 

contrary, the discrete spurious modes are diffused to several clusters with very limited sizes.  

With the data-driven SSI and filtering the certain spurious modes using the hard criteria, 

the system modes matrix containing the remaining mode candidates becomes the input for the 

clustering. The specific structure of the matrix is that modes of the system at the same model 

order are collected in one row, and the number of rows is equal to the total number of model 

order. One feature of the SSI output needs to be mentioned is that even the modal parameters 

of physical modes are consistent at most of the model orders (Neu et al., 2017), the 

identification of one mode in adjacent model orders tends to have particular similar modal 

parameters. This feature is widely used for validating the stability of modes and establish the 

‘stabilization diagram’, which shows the stable modes at different model orders. However, the 

high similarity leads to an issue, that is, the first several modes collected in one cluster may 

demonstrate ‘local’ statistical characteristics of the cluster. The criteria defined in terms of 

‘local’ statistical characteristics may lose the robustness, and are converged to very tiny values 
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such as 10-5 or even 10-6 because of the similarities in the selected modes. Consequently, the 

strict validation criteria may reject modes in successive model orders representing the same 

mode due to the slightly large discrepancy in one or more modal parameters. Therefore, a 

novel procedure for dealing with this limit is to randomize the model order in the system modes 

matrix before clustering so that the first several collected modes in a cluster represent more 

global statistical characteristics. 

Before one cluster is grouped with a sufficient number of modes to calculate its statistic 

properties, the initial clustering validation criteria of frequency, damping ratio and MAC are 

defined referring to the stability limits of the conventional stabilization diagram in SSI based 

techniques. The threshold values of T𝑓 and T𝑀𝐴𝐶 are set as 1% and 2%, respectively. Due to 

the large scattering damping ratios, the threshold of the criterion on the damping ratio T𝑑 is 

defined from 10% to 20% depending on the signal-to-noise ratio. MPC is found to be 

consistent at different model orders for the physical modes. Therefore, a criterion of MPC is 

added as a supplementary criterion to further filter out the spurious modes that may influence 

the statistical characteristics of the cluster. The validation criteria will be updated when the 

number of elements in this cluster is larger than 10% of the total model order used ntotal (ntotal 

= (nmax - nmin +1)). Using 5% to 10% as the initial MPC criterion value T𝑀𝑃𝐶 will have a 

limited influence on the final results. The number of modes as the sample of a cluster is chosen 

to be 10% of the total model order to stably represent the initial statistical characteristics of 

the cluster. Including the SSI parameters and hard criteria (necessary for all the OMA), all the 

parameters are predefined regarding the properties of the objective structure and test 

conditions. The interpretation of the SSI stabilization diagram is automated and no user 

intervention is involved during the interpretation. Figure 2-2 shows the flowchart of the 

proposed method with the detailed procedure of clustering and cluster merging. The 

pseudocode of the statistics-based clustering procedure is also attached in Appendix І to 

describe the procedure in detail. The steps in this clustering strategy are further explained as 

follows: 

Step 1. Randomize the cleaned system modes matrix as S. 
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Step 2. The clustering process will group all the modes in the cleaned and random ordered 

system modes matrix to clusters. All the identified modes will be scanned with a sequence 

from the first to the last mode at all the model orders. Once an ungrouped mode is found, 

a new cluster Ck is created and this ungrouped mode is recorded as the first element of 

Ck. It is noted that k starts from 1 and ends up with the total number of clusters. 

Step 3. Modes at the successive model order i are scanned, and the ungrouped mode mmin 

with the minimum distance to cluster Ck is selected. The distance between the mode and 

the cluster Ck is defined based on the variation between the mean frequency 𝑓�̅� and mode 

shape 𝜙𝑘̅̅ ̅̅  of the cluster Ck and the mode frequency 𝑓𝑖,𝑗  and mode shape 𝜙𝑖,𝑗 . The 

correlation in the mode shapes is evaluated by using Modal Assurance Criterion (MAC). 

The distance between the mode at the position S[i, j] (the ith model order and the jth 

mode)  to Ck is computed as 

𝐷𝑖,𝑗 = 𝐷𝑓𝑖,𝑗 + 𝐷𝜙𝑖,𝑗
=
|𝑓�̅� − 𝑓𝑖,𝑗|

𝑓�̅�
+ 1 −𝑀𝐴𝐶(𝜙𝑘̅̅ ̅̅ , 𝜙𝑖,𝑗) 

(2.9) 

Step 4. Modal parameters of the mode mmin are extracted, and the variations of frequency, 

damping ratio, mode shape and MPC between the mode mmin and cluster Ck are computed. 

The most meaningful frequency, mode shape and MPC values for cluster Ck are chosen 

as the average of currently collected elements. The median of damping ratio is chosen 

because the identified damping ratios are usually relatively discrete within a cluster, the 

use of median can minimize the influence of outliers. Since the statistical characteristics 

of the cluster Ck are unknown in prior, the initial validation criteria for collected modes 

are defined as 1%, 20%, 2% and 10% for frequency, damping ratio, mode shape and MPC, 

respectively. Mode mmin will be collected to cluster Ck when all the following criteria are 

satisfied 

|𝑓�̅� − 𝑓𝑚|

𝑓�̅�
≤ T𝑓; 

|median(ξ𝑘) − ξ𝑚|

ξ𝑖
≤ T𝑑; 

 

(2.10) 
1 −𝑀𝐴𝐶(𝜙𝑘̅̅ ̅̅ , 𝜙𝑚) ≤ T𝑀𝐴𝐶 ; 

|𝑀𝑃𝐶𝑘̅̅ ̅̅ ̅̅ ̅̅ − 𝑀𝑃𝐶𝑚|

𝑀𝑃𝐶𝑘̅̅ ̅̅ ̅̅ ̅̅
≤ T𝑀𝑃𝐶 ; 

Step 5. If mode m is collected to cluster Ck and the number of collected modes in cluster Ck 

is larger than 10% of ntotal threshold, update the clustering criteria in Equation (2.10) every 
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time the new mode being collected considering the statistic properties of this cluster. The 

validation criteria of the cluster Ck are updated by computing the difference of frequency, 

damping ratio, mode shape and MPC between each element and the cluster Ck to form 

four ‘difference vectors’. i.e. the difference vector for the natural frequency of modes in 

Ck is computed as:  

𝑑𝑓 =
|𝑓𝑘 − 𝑓𝑘|

𝑓𝑘
 

(2.11) 

The mean value 𝜇 and standard deviation 𝜎 of each difference vector are obtained to 

update the threshold values of validation criteria T𝑓, T𝑑, T𝑀𝐴𝐶, and T𝑀𝑃𝐶 respectively 

based on the 99.7% rule of their corresponding difference vectors. This corresponds to a 

physical explanation that 99.7% of the values lie within three standard deviations of the 

mean value, which can be expressed as  

𝑇 = 𝜇 + 3𝜎 (2.12) 

Step 6. Continue grouping modes for cluster Ck until the last row of S by repeating Steps 3 

and 4 and update the thresholds by Step 5 if necessary. If i reaches the last row of S, the 

clustering for Ck is terminated. Update k as k=k+1 and go back to Step 2 to start clustering 

for the next cluster. 

Step 7. Once all the modes are collected, the clusters containing less than 10% of the total 

model order are eliminated. 
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Figure 2-2. Flowchart of the proposed method with details of the clustering and cluster 

merging. 

After performing the statistics-based clustering, clusters containing elements less than 10% 

of the total model order used ntotal will be considered as spurious modes that rarely exist in the 

system modes matrix and will be removed. Setting 10% as the threshold is also small enough 

to conservatively keep all the clusters with genuine physical modes. Furthermore, 10% is 
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chosen as the starting point for updating the validation criteria, which implies that such clusters 

are assembled without prior knowledge on statistical characteristics of previous grouped 

modes. 

2.2.4.3 Cluster merging 

After the above statistics-based clustering procedure, all the modes are grouped into 

clusters based on their similar patterns. The number of spurious modes is significantly reduced 

after the elimination of clusters with less than 10% of ntotal. Nevertheless, there are still two 

problems remaining among the current clusters. On the one hand, setting a small elimination 

threshold, i.e. 10% described in Section 2.2.4.2, results in that a few clusters consisting of 

spurious modes may possibly pass the threshold. These relative stable spurious modes are 

identified because of the existing periodic electric spikes in signals and some weakly excited 

local structure modes. On the other hand, some physical modes are not consistent in the 

damping or MPC values due to the influence of significant noise effect, which may be grouped 

as two or three relatively small separate clusters (but each of them is still large than the 

eliminating criterion). A possible way to avoid the separation of physical-mode related clusters 

is enlarging or cancelling the threshold of damping ratio or MPC when distinguishing the 

modes. However, it is found that the damping ratios and MPC for spurious-mode related 

clusters are more scattered than that of physical-mode related clusters, which will be shown in 

the subsequent data analysis results. In this case, setting the threshold values for damping ratio 

and MPC is essential for distinguishing the relatively stable spurious-mode clusters that are 

consistent in frequency and mode shape. Instead of merging the physical modes while 

tolerating more spurious-mode clusters by using compromised thresholds, a better solution for 

overcoming these two defects is to introduce a cluster merging step following the statistics-

based clustering as described in Section 2.2.4.2. The cluster merging procedure will further 

merge the physical-mode clusters as lager clusters and eliminate the spurious-mode clusters.  

The cluster merging procedure is developed based on the 99% confidence interval of 

frequency, damping ratio and MPC of each cluster. Consider that the modes in a large cluster 

are samples of a specific structural mode identified at the model orders nmin to nmax, the 99% 



 

29 

 

confidence interval provides an estimated range of values that the population of statistical 

parameters of a specific mode identified at the model order from nmin to nmax is most likely 

included. The cluster merging procedure is realized by the following steps 

Step 1. Compare every two clusters and find out the larger cluster Clarge with more elements. 

Step 2. Estimate the 99% confidence interval for each criterion including frequency, 

damping and MPC of the larger cluster Clarge. The confidence interval of each criterion 

involves a mean interval [𝜇𝑙𝑜𝑤𝑒𝑟, 𝜇𝑢𝑝𝑝𝑒𝑟]. 

Step 3. Compute the mean value of modal parameters and MPC for the small cluster Csmall, 

if the mean frequency of the smaller cluster Csmall and one of the mean damping ratio or 

MPC are located in the 99% confidence interval of the larger cluster Clarge, these two 

clusters are highly possible presenting the same mode.  

Step 4. Evaluate the MAC between the mean mode shapes of two clusters. If the MAC 

between two clusters is large than the mean of the internal MAC of Clarge, where the 

internal MAC is the MAC between each mode shape and the mean mode shape of the 

cluster, merge these two clusters into a single cluster.  

Step 5. Continue the merging process until every pair of clusters is compared and processed. 

 

The cluster merging procedure groups the physical-mode clusters into larger clusters and 

remains the spurious-mode clusters in small sizes. A cutoff threshold at 50% of the total 

number of modes is used to distinguish the physical-mode clusters with the spurious-mode 

clusters. Cluster satisfying the threshold means that this mode is identified at more than half 

of system model orders with consistent modal parameters. This judgment is similar to the 

selection of physical modes by observing the stabilization diagram where modes with most 

consistent modal parameters are deemed as genuine physical modes. The most significant 

contribution of the proposed approach is an automated OMA approach which improves the 

traditional data-driven SSI based on clustering techniques, and does not require user 

intervention.  
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2.2.5 Reference method for comparison 

Cabboi et al. (2017) presented an automated procedure for OMA by means of a self-

adaptable clustering process, which is taken as a reference method in this study. The proposed 

approach adopts a similar idea but develops a different clustering strategy including statistics-

based clustering and cluster merging procedures in the framework. Totally different criteria 

are applied for clustering in this study, which are defined carefully. The reference method 

updated the threshold values used for clustering by considering the sum of median distances 

of natural frequency and mode shape. Using the sum of median distances may have a limited 

physical meaning. The proposed approach groups the modes and updates the clustering criteria 

based on the statistical characteristics of modal parameters. The threshold value of each 

criterion is considered separately to ensure that it has a clearer physical meaning. In terms of 

the reference method, the distances between the current cluster and modes at the successive 

model order are computed utilizing Equation (2.9). A pre-defined distance threshold dmax is 

selected as recommended in (Cabboi et al., 2017) and used for selecting modes when the 

current cluster contains less than three elements. Among the modes that are satisfied by the 

threshold dmax, the one with the minimum distance to the cluster will be clustered. It is noted 

that the initial distance threshold dmax is defined as 0.02 in this study. Once the cluster collects 

more than two elements, the threshold will be updated as 

𝑑𝑚𝑎𝑥 = √𝑚𝑒𝑑𝑖𝑎𝑛(|𝑑𝑛,𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑛,𝑖)|) 
(2.13) 

where 𝑑𝑛,𝑖 is a distance vector containing the distance of each collected mode with the mean 

frequency and mode shape in the current cluster. Finally, the clusters containing less than one 

third of the total model order will be deleted, and the remaining clusters are considered as 

physical-mode clusters that represent the genuine structural vibration modes. 

2.3 Numerical validations 

Numerical studies on a seven-storey steel frame structure model are conducted to validate 

the accuracy and robustness of the proposed approach to identify the vibration characteristics 

of structures under ambient excitations. The finite element (FE) model of the frame structure 



31 

is shown in Figure 2-3(a), which is modelled based on an experimental frame as shown in 

Figure 2-3(b) by using two-node planar beam elements. Each node in the FE model consists 

of three DOFs, which are the translational displacements in the x and y directions and the 

rotational displacement in the x-y plane. The height and width of the frame structure model are 

2.1m and 0.5m respectively, with 0.3m height in each floor. The cross sections of the column 

and beam elements are defined as 50mm × 5mm and 50mm × 9 mm, respectively. The mass 

density and elastic modulus of material are 7850kg/m3 and 210GPa, respectively. A 4 kg 

lumped mass is added on the quarter and three-quarter locations of each floor to simulate the 

mass in the building. The FE model of the frame structure includes 70 planar elements and 65 

nodes. With 3 DOFs at each node, the model has 195 DOFs in total. Two fixed supports at 

node 1 and 65 are modelled by restraining the corresponding DOFs.  

(a) (b) 

Figure 2-3. (a) The finite element model of the frame structure in the numerical 

study. (b) The reference laboratory frame. 

Ambient excitation is simulated by applying a white noise with zero mean and 0.005m/s2 

standard deviation at both supports simultaneously in the x direction. Vibration responses of 

the numerical model are computed using the Newmark-beta method. The sampling frequency 
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is set as 500Hz, and 100 seconds vibration data are obtained. Acceleration responses at nodes 

4, 7, 10, 13, 16, 19 and 22 in the x-direction are ‘measured’ for the modal analysis because 

they are the most representative nodes for the mode shape identification. The noise is added 

into the measured response ′signal𝑚′ as follows  

signal𝑛𝑜𝑖𝑠𝑒 = signal𝑚 +𝑁𝑝 ∗ 𝑁𝑜𝑖𝑠𝑒 (2.14) 

where ′signal𝑛𝑜𝑖𝑠𝑒′ is the noisy response, 𝑁𝑝 is the noise level of the measured signal, and  

𝑁𝑜𝑖𝑠𝑒 is a random vector simulating the measurement noise effect, which can be assumed as 

a normally distributed random vector with zero mean and unit standard deviation of the 

vibration signal (Li & Law, 2009). In this study, 20% noise is added into the analytical 

acceleration responses to simulate the noisy responses with a low signal-to-noise ratio. These 

noisy responses will be used for modal identification and investigating the performance of the 

proposed approach against the existing method. Figure 2-4 shows the simulated ground 

excitation in the x-direction and acceleration response of node 22 with the noise smeared into 

the calculate response history. 

 

 

Figure 2-4. Applied ambient excitation and noisy response: (a) Simulated ambient excitation; 

(b) ‘Measured’ acceleration response at Node 22. 

 

The vibration characteristics of the frame structure are calculated by performing the 

eigenvalue analysis based on the FE model, and confirmed with experimental data from 
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hammer impact vibration tests (Li et al., 2012). The first seven natural frequencies are obtained 

as 2.54Hz, 7.66Hz, 12.86Hz, 18.03Hz, 22.96Hz, 26.99Hz and 29.91Hz, respectively. It should 

be highlighted that the identified modal parameters from the previous study are not served as 

the available information for the automated OMA in this study but only as a baseline for the 

validation and comparison purposes. Fast Fourier Transform (FFT) is adopted to roughly 

understand the frequency range of excited modes in the measured responses. As shown in 

Figure 2-5, the fundamental frequency is around 2.54Hz and most excited modes are within 

30Hz. In the Fourier spectrum, the amplitude of the peak at around 29.9Hz is small and very 

close to the amplitude of the background noise. Therefore, this mode is considered as a weakly 

excited mode. The period of the first mode is calculated as 1/2.54=0.39s. As mentioned 

previously in Equation (2.1), the choice of the minimum value of i is significantly influenced 

by the sampling frequency. Since the interested frequency range is below 30Hz in this study, 

the vibration response is firstly filtered by a 50Hz low-pass filter and then down sampled to 

100Hz to better represent all the frequencies of interest and remove the high frequency noises. 

Consequently, the parameter i is chosen slightly larger than the criterion as 50, where the 

criterion is calculated as 𝑖 ≥ 𝑇1/∆𝑡 = 0.39/0.01 = 39. The system model order range is

selected from 30 to 120 to prevent the identification of the weakly excited modes from being 

disturbed and meanwhile without introducing too many spurious modes. This frame model is 

not a complicated system so that less weakly excited modes could be expected,  and its 

dynamic behaviour is linear. For numerical simulation or laboratory tests with minor 

synchronization issue, using λ =0.3 as the threshold for MPD and 0.7 (1- λ) for MPC is more 

than sufficient. 

Figure 2-5. Fourier spectrum of a simulated vibration response at node 4 in the x-direction. 
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Figure 2-6(a) shows the remaining modes after removing certain spurious modes by using 

the hard validation criteria as shown in Equation (2.10). Through observing the stabilization 

diagram, several physical modes can be clearly identified because they are consistent in all the 

model orders. While some modes are unclear which are possibly physical or spurious modes. 

The results in the stabilization diagram are compared with another widely used OMA 

technique, namely FDD (Brincker et al., 2001), with the first singular values of spectral matrix 

drawn behind the stabilization diagram. In the results from FDD, the peaks observed in the 

spectrum most likely represent the nature frequencies of the structure. Corresponding to the 

SSI output, the first singular values consist of high peaks at the frequencies of the certain 

physical modes, and also several weak peaks which may be the weakly excited modes or due 

to the introduced significant noise that confuses the identification. Analysing the system 

modes matrix by using the statistics-based clustering procedure, Figure 2-6(b) shows the 

grouped clusters containing elements more than 10% of the total model order. It should be 

noted that modes belonging to different clusters are illustrated in different colours. Most of the 

spurious modes are eliminated and the physical modes representing the same mode are 

separated as two or three clusters due to the severe criteria and noise. Compared to the results 

as shown in Figure 2-6(a), it should be highlighted that the physical modes in Figure 2-6(b) at 

different model orders are not as consecutive as those in Figure 2-6(a). This means that the 

outliers of the physical modes are rejected by the physical-mode clusters, which result in a 

more accurate identification of modal parameters. Figure 2-6(c) shows the final remaining 

clusters by implementing the cluster merging procedure based on the results from the statistics-

based clustering. Totally seven distinct clusters represented by different colours correspond to 

the first seven physical modes of the frame model, which are denoted as P1 to P7 and 

demonstrated in the final modal identification results of using the proposed approach, as shown 

in Figure 2-6(c). The mean frequencies of each cluster are listed in Table 2-1, and compared 

with the results obtained from the reference method (Cabboi et al., 2017) as shown in Figure 

2-6(d). The reference method produces the same identification results of the first seven modes 

compared with those from the proposed approach, except a spurious mode at 12.03Hz denoted 

as S1, which is not effectively removed. This spurious mode has a relative consistent frequency 



35 

across a number of model orders, as shown in Figure 2-6(d). By using the reference method, 

this may be taken as a large cluster and wrongly identified as a mode. As demonstrated in 

Table 2-1, the proposed approach accurately identifies the first seven modes of the frame 

model without any spurious modes. The maximum difference of the frequency is observed at 

the 7th mode within a 1% relative error. Considering the significant noise effect at 20%, the 

results demonstrate that the proposed approach has a robust and accurate performance in the 

modal identification of structures under ambient excitations. 

To further demonstrate how the proposed approach improves the results based on the 

clustering techniques, Figure 2-7 shows the eight grouped clusters regarding their number of 

modes and corresponding mean frequencies when implementing the cluster merging procedure. 

A red dash line lies on the 50% of the total number of orders represents the threshold for 

spurious-mode clusters removal. It can be seen that all the physical-mode clusters representing 

the same mode are merged as a larger cluster, meanwhile, two spurious-mode clusters at 

12.03Hz are also merged as a single cluster. The reason for the merging of this two clusters 

can be concluded as the discrete modes in varying model orders representing this mode are 

rejected, the collected modes in these two clusters are relatively stable. Even though, this 

merged cluster is still deleted since it contains a small number of stable modes which is far 

from the defined 50% threshold.   

In summary, the main differences in modal identification results between the proposed 

approach and the reference methods can be concluded as 

1) The proposed approach considers more physically reasonable criteria to remove the

spurious modes in a comprehensive manner; and

2) In Equation (2.13), the square root of the median difference value may increase the

threshold to a considerable value when the collected elements are discrete. For this

numerical study, the threshold of the spurious-mode related cluster (S1) has been

enlarged to a maximum value 8.1%, where for most of the physical-mode clusters the

threshold is only below 1%. In contrast, the proposed approach using Equation (2.12) can

provide more reasonable threshold values based on physical meanings.
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(c) 

 

(d) 

Figure 2-6. Comparison of modal identification results: (a) Hard validation criteria; (b) After 

statistics-based clustering; (c) After cluster merging; (d) Using Reference method. 
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Table 2-1. Comparison of the identified nature frequencies of the numerical model from the 

proposed approach and reference method.  

Mode Baseline 

(Li et al., 

2012) 

The proposed 

approach 

Relative 

error (%) 

Reference method 

(Cabboi et al., 

2017) 

Relative error 

(%) 

1st (P1) 2.54 2.55 0.39 2.55 0.39 

2nd (P2) 7.66 7.65 0.13 7.65 0.13 

(S1) - - - 12.03 - 

3rd (P3) 12.86 12.84 0.16 12.84 0.16 

4th (P4) 18.03 17.96 0.39 17.96 0.39 

5th (P5) 22.96 22.83 0.57 22.83 0.57 

6th (P6) 26.99 26.79 0.74 26.79 0.74 

7th (P7) 29.91 29.65 0.87 29.65 0.87 

Figure 2-7. The number of modes for each cluster in the numerical study. 

2.4 Experimental validations 

2.4.1 Validations on a laboratory frame structure 

Experimental validations are conducted on a laboratory steel frame structure under 

ambient excitations as shown in Figure 2-3(b) to verify the performance of using the proposed 

approach for operational modal identification. The frame structure has the same dimensions, 

material properties and boundary conditions as presented in the numerical study in Section 2.3. 

Seven accelerometers are installed on the left side of beam-column joints of each floor to 

measure the lateral vibration responses of the frame structure under ambient excitations. 

National Instruments data acquisition system is used to record the acceleration responses with 

a sampling frequency of 2000Hz for a period of 10 minutes. 
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The same model parameters associated with SSI that selected in the numerical validations 

are used for analysing the experimental data measured from this laboratory frame structure. 

The procedures as described in Sections 2.2.3 and 2.2.4 are followed to perform the clustering 

and identify the vibration characteristics. Figure 2-8(a) shows the stabilization diagram from 

SSI after the hard validation criteria removal. It can be seen that a massive number of spurious 

modes are still mixed in the system modes matrix. However, compared to the original system 

mode matrix, this step decreases in fact more than half of the total number of modes, which 

enhanced the computational efficiency of the proposed approach more than 4 (22) times. By 

conducting the statistics-based clustering process, the obvious spurious modes are grouped in 

small clusters and effectively eliminated by using the 10% threshold. It should be noted that 

the relatively stable spurious modes are either removed with the 10% threshold such as modes 

at frequencies 8.81Hz, 21.18Hz and 23.27Hz, or separately collected into bigger clusters, such 

as modes at frequencies 11.64Hz and 15.95Hz, as shown in Figure 2-8(b). On the other hand, 

some weakly excited modes or noise disturbed physical modes are also collected into two or 

three clusters such as modes at 7.65Hz and 29.65Hz. Figure 2-8(c) shows the final results after 

the cluster merging procedure. All the first seven true physical-mode related clusters are 

merged together, while the spurious-mode clusters remain their original sizes in this step. This 

means that the spurious-mode clusters representing the same mode have larger discrepancies 

in one or more modal parameters than physical-mode clusters. Comparing Figures 2-8(a) and 

(c), even some relatively stable spurious modes such as modes at frequency 8.81Hz, 11.64Hz, 

15.95Hz and 21.18Hz are effectively removed in the final identification results. Such modes 

may be stable in one or two modal parameters. When all the four validation criteria are used 

for clustering, they are separated into several small clusters and removed by the proposed 

clustering techniques. Figure 2-9 shows the corresponding number of identified mode in each 

cluster. The defined threshold can be used to successfully remove the spurious modes after the 

clustering merging.  

The results obtained from the reference method are shown in Figure 2-8(d). Comparing 

the results from the proposed approach and the reference methods as shown in Figures 2-8(c) 

and (d) respectively, both methods produce accurate identification results on the first seven 
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modes. The identified frequencies are almost the same except the 6th mode with a slightly 

better result from the proposed approach. However, when examining all the identification 

modes from the reference method, there are four spurious modes (S1 to S4) with comparatively 

consistent frequencies and mode shapes, which are not eliminated. This maybe because of the 

incomprehensive consideration of setting thresholds for validation criteria. The proposed 

approach can improve the performance by using the statistics-based clustering with reasonable 

criteria in grouping and merging the clusters based on physical meaning and statistics from the 

identified vibration properties. This will support to generate better identification results 

without spurious modes in this study as shown in Figure 2-8(c). The accuracy of these 

identification results can be further demonstrated in Figures 2-10(a) and (b), where the 

relationships between the damping ratios and MPCs with respect to frequencies of all the 

remaining modes after the statistics-based clustering procedure are shown respectively. 

Spurious-mode clusters representing the same mode have consistent frequency but discrete 

damping ratios and MPC values. For example, the damping ratios of two spurious-mode 

clusters at frequency 15.95Hz are separated with a clear gap. The physical-mode clusters are 

consistent with all the modal parameters even under noise effect. Seven large clusters are 

finally reserved in the system modes matrix after the two clustering procedures. The reserved 

seven clusters contain modes corresponding to the first seven modes of the frame structure 

respectively. The most representative natural frequency of each cluster is compared with that 

from a previous study (Li et al., 2012) and the reference method (Cabboi et al., 2017), as listed 

in Table 2-2. It should be noted that the responses measured under ambient excitations usually 

have a relatively high noise effect, which could be more challenging for operational modal 

identification compared with that using forced vibration test data. It can be observed from 

Table 2-2 that natural frequencies are identified accurately. Minor differences are observed 

since 1) Different data analysis methodologies are used; and 2) The test conditions for recorded 

data used in the previous study (Li et al., 2012) and this study are different. The discrepancies 

in frequencies may be caused by the environmental effect such as temperature and humidity 

variations. The identified seven mode shapes are shown in Figure 2-11. These modes represent 

strong linear behaviours leading to very tiny MPC values, as shown in Figure 2-10(b). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-8. Comparison of modal identification results on the laboratory steel frame: (a) 

Hard validation criteria; (b) After statistics-based clustering; (c) After cluster merging; (d) 

Using Reference method. 

P1=2.56Hz P2=7.65Hz P3=12.83Hz P4=18.01Hz P5=22.81Hz P6=26.87Hz P7=29.65Hz

S1

S2 S3

S4
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Figure 2-9. The number of modes for each cluster in the experimental study. 

(a) (b) 

Figure 2-10. Relationships among various variables: (a) Damping ratio vs frequency; (b) 

MPC vs frequency. 

Table 2-2. Comparison of the identified nature frequencies of the laboratory frame structure 

from the proposed approach and the reference method.  

Mode Baseline 

(Li et al., 

2012) 

The proposed 

approach 

Relative error 

(%) 

The reference 

method (Cabboi 

et al., 2017) 

Relative 

error (%) 

1st (P1) 2.54 2.56 0.79% 2.56 0.79% 

2nd (P2) 7.66 7.65 0.13% 7.65 0.13% 

(S1) - - 11.64 

3rd (P3) 12.86 12.83 0.23% 12.83 0.23% 

(S2) - - 15.95 

4th (P4) 18.03 18.01 0.11% 18.01 0.11% 

(S3) - - 21.15 

5th (P5) 22.96 22.81 0.65% 22.81 0.65% 

(S4) - - 23.27 

6th (P6) 26.99 26.87 0.39% 26.87 0.44% 

7th (P7) 29.91 29.65 0.87% 29.65 0.87% 

Spurious 

Spurious 
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Figure 2-11. Identified mode shapes of the first seven modes. 

2.4.2 Validations on Dowling Hall footbridge  

Dowling Hall footbridge is located on the Medford, MA, campus of Tufts University. It 

serves as the pedestrian bridge connecting the main campus and the student services offices. 

As shown in Figure 2-12(a), this bridge is a two-span continuous steel frame bridge. Dowling 

Hall footbridge is 44m long and 3.7m wide. A long-term structural health monitoring system 

has been installed to perform the continuous vibration monitoring. The sensory system layout 

on the bridge is shown in Figure 2-12(b). Vibration responses from 8 accelerometers were 

measured over 17 weeks from January 2010 to May 2010. The detailed introduction of the 

bridge and the structural health monitoring system can be found in Ref. (Moser & Moaveni, 

2013). The first six nature frequencies and mode shapes of the footbridge identified in the 

literature (Moaveni & Behmanesh, 2012; Moser & Moaveni, 2011) will be used as a reference 

for assessing the accuracy and performance of the proposed approach. 

The acceleration data in the vertical direction from the Dowling Hall footbridge under 

the ambient excitations recorded on 4th January 2010 are used for the analysis. From the 

Fourier spectrum of the acceleration data as shown in Figure 2-13, the fundamental frequency 

is around 4.6Hz and the frequency range of interest is within 30Hz. The original sampling rate 

of the acceleration data is 128Hz, which is only slightly higher than the interested frequency 

range. Consequently, no down-sampling process is conducted in order to keep the data 

integrity. The period for the first mode is 1/4.6=0.22s so that the parameter i is chosen as 40 

to satisfy Equation (2.3) where  𝑖 ≥ 𝑇1/∆𝑡 =0.22/0.008=28. The system model order range is 
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selected from 40 to 140 for the same purpose of remaining the weakly excited mode without 

compromising the number of spurious modes. Since the test is conducted on a real structure 

with long signal transmission cables, synchronization issue could be expected. Meanwhile, 

weakly excited modes may also be observed in this case because of the low level ambient 

excitations, the threshold values for MPD and MPC are chosen as 0.7 and 0.3 respectively to 

retain all the physical modes.  

 

 

(a) 

 

(b) 

Figure 2-12. (a) South view of Dowling Hall Footbridge; (b) Sensor layout. 

 

 

Figure 2-13. Fourier spectrum of a vibration signal from the footbridge. 

 

The proposed appraoch described in Section 2.2.4 is used to analyse the testing data. 

Figure 2-14(a) shows all the remaining identified modes in the system modes matrix within 

30Hz after the hard criteria removal. FDD is also applied to analyse the same testing data, and 

its spectrum is drawn behind the stabilization diagram. It is observed that FDD fails to identifiy 

the modal information effectively since the spectrum contains numerous peaks, which make 

identifying the the real modes diffiuclt. It can be observed from the stabilization diagram that 

13.28Hz and 13.46Hz are two very closely spaced modes. For OMA of civil engineering 

structures, identifying the closely spaced modes and distinguishing them with spurious modes 
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is always a serious challenge. Figures 2-14(b) and (c) show the modal identification results 

after conducting the statistics-based clustering and cluster merging procedures. It can be seen 

that the statistics-based clustering procedure greatly decreases the number of spurious modes, 

and the following cluster merging procedure groups the physical-mode clusters and cleans the 

stabilization diagram with only eight remaining stable modes. Only the first six modes within 

15Hz are reported in a previous study (Moser & Moaveni, 2011) and there is no reference for 

the rest two modes around 20Hz and 24.5Hz. Therefore in this study, the identified natural 

frequencies of the first six modes, which are marked as P1 to P6 in Figure 2-14(c), are 

compared and listed in Table 2-3. The proposed apporach performs the modal parameters 

identification slightly better than the reference method for most of those six modes. It is worth 

mentioning that modes at 13.18Hz (P5) and 13.46 Hz (P6) are closely spaced modes. The 

reason for this two modes are well seperated is that except the frequency, other vibration 

characteristics including damping ratio, MPC and mode shape are dissimilar as shown in 

Figures 2-15 and 2-16. The proposed clustering and cluster merging procedure clearly 

distiguished these two modes based on the comprehensivie comsideration of the vibration 

characteristics.  

 

Table 2-3. Comparison of the identified nature frequencies of the footbridge from the 

proposed approach and the reference method. 

 

 

 

Mode Baseline 

(Moser & 

Moaveni, 2011) 

The 

proposed 

approach 

Relative 

error (%) 

The reference  

method (Cabboi 

et al., 2017) 

Relative 

error (%) 

(S1) - -  4.44  

1st (P1) 4.66 4.62 0.76% 4.63 0.69% 

2nd (P2) 6.21 6.05 2.50% 6.04 2.72% 

3rd (P3) 7.08 7.21 1.90% 7.23 2.08% 

4th (P4) 8.88 8.95 0.81% 8.95 0.81% 

5th (P5) 13.23 13.28 0.41% 13.28 0.41% 

6th (P6) 13.62 13.46 1.17% 13.45 1.23% 
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(a) 

(b) 

(c) 

(d) 

Figure 2-14. Modal identification results of Dowling Hall footbridge: (a) Hard validation 

criteria; (b) After statistics-based clustering; (c) After cluster merging; (d) Using Reference 

method. 

P1 P2 P3 P4 P5 P6

P1 P2 P3 P4 P5 P6

S1
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(a) (b) 

Figure 2-15: (a) Damping ratio vs frequency. (b) MPC vs frequency. 

 

 

Figure 2-16. MAC value between each two of the final remained clusters. 

 

The results from the reference method are shown in Figure 2-14(d). It should be noted 

that the reference method fails to eliminate a spurious mode at 4.44Hz, which is denoted as 

S1. This may be because it is very close to the first natural frequency with a relatively high 

peak in FDD spectrum and a realtively stable and consistent apperance across a number of 

model orders in the stabilization diagram. This is a significant issue in most OMA methods to 

distiguish the genuine physical modes and spurious modes, particualry when the modes are 

closely spaced. The maximum difference between the results in the literature and identified 

frequencies is observed in the second mode with a 2.5% relative error. This discrepancy could 

be explained that these two tests were conducted in different seasons. In Ref. (Moser & 

Moaveni, 2011), the measurement data were collected in April 2009. In this study, the data 

used for modal analysis is from January 2010. Accounting for the temperature and humidity 

variations, the discrepancies in the frequencies could be expected. Overall, the proposed 
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approach can successfully identify the first six vibration modes of this footbridge, which are 

shown in Figure 2-17. The mode shapes for the second span are different in the higher order 

modes because the current study only uses four available long-term monitoring sensors on 

each side of the footbridge. While in Ref. (Moser & Moaveni, 2011), the data are measured 

from a short period test with six sensors on each side. 

To investigate whether the proposed approach can be further applied for analyzing long-

term monitoring data, also known as modal tracking, a study with measured data sets collected 

at every 12:00 pm for 7 days is conducted. Same model parameters of the SSI as the above 

experimental validations are selected for the modal identification. The tracked natural 

frequencies under 15Hz are shown in Figure 2-18. It can be observed that all these six 

physiscal modes are successfully tracked and identified without any spurious modes. The 

results demonstrate that the proposed approach is capable of analysing different data sets 

measured from structures under varying testing conditions without any manual intervention 

and tunning. This indciates that when massive vibration monitoring data are collected, the 

proposed approach is robust and suitable for the automated OMA and modal tracking. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2-17. Identified vibration mode shapes of the Dowling Hall footbridge: (a) Mode 1; 

(b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

 

  

Figure 2-18. Identified natural frequencies of the first six modes using the first week’s 

measured acceleration data. 
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2.5 Conclusions and discussions 

This chapter proposes an improved automated OMA approach based on data-driven SSI 

and clustering techniques. The framework of the proposed approach consists of two main 

components, namely Component 1: Modal identification by SSI and Component 2: Automated 

interpretation of SSI output. Data-driven SSI is used in Component 1. Three procedures 

including hard validation criteria removal, a statistics-based clustering procedure and a cluster 

merging procedure are involved in Component 2 to automatically interpret the stabilization 

diagram from the SSI output, without any previous knowledge on the modal parameters and 

user intervention during process. Original contribution is made in the improvement of the 

statistic-based clustering and the development of cluster merging to identify the weakly 

excited modes and remove the false modes effectively. Numerical validations on a frame 

structure model are conducted, and the results demonstrate that the proposed approach is 

capable of identifying the vibration modes accurately and resisting a high noise disturbance in 

the measured signals effectively. Experimental studies on a seven-storey steel frame structure 

and a real footbridge are conducted to demonstrate the robustness and performance of using 

the proposed approach for automated OMA. In both the numerical and experimental 

verifications, the physical modes across varying model orders representing the same mode are 

collected to a single large cluster. The identified nature frequencies are compared with those 

in the literature and obtained from the reference method. The results show that the proposed 

approach can accurately identify the modal parameters of physical modes, and concurrently 

eliminate all the spurious modes especially the stubborn modes with relative stable modal 

parameters at some model orders. The weakly excited mode and two closely spaced modes are 

clearly distinguished in the analysis of the frame and the footbridge.  

It should be noted that few parameters including the model orders, MPC/MPD thresholds 

and the initial criteria are manually tuned or selected based on the understanding of the 

structural vibration behaviour and the testing conditions. Properly selecting these parameters 

can improve the identification quality and the computational efficiency. In the proposed 

approach, the validation criteria threshold of each cluster is considered and updated 
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individually, which is more closely related to the characteristics of the corresponding cluster 

based on the grouped modal parameters. Compared with the reference method, the proposed 

approach provides a more comprehensive clustering strategy to select the physical modes more 

strictly. 

Taking all the numerical and experimental validation results into consideration, the 

proposed approach exhibits a good robustness and performance for modal analysis of 

engineering structures under ambient excitations. In addition, the proposed approach is 

applicable to interpret results from any parametric time domain identification techniques but 

not limited to SSI method. Identification results from the vibration monitoring data over 7 days 

demonstrate that the proposed approach can be extended for the modal tracking purpose. 
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CHAPTER 3 LOST DATA RECOVERY FOR 

STRUCTURAL HEALTH MONITORING BASED ON 

CONVOLUTIONAL NEURAL NETWORKS 

Abstract: Signal transmission loss of using wireless sensors for structural health 

monitoring (SHM) is a usual case, which undermines the reliability of the sensors for 

monitoring the structural conditions. The measured vibration data with a high data loss ratio 

can hardly be used for the analysis, i.e. modal identification, as it will lead to significant errors 

in the results. This chapter proposes a novel approach based on convolutional neural networks 

(CNN) for recovering the lost vibration data for SHM. The used network is a fully feed-

forward CNN with bottleneck architecture and skip connection, which constructs the nonlinear 

relationships between the incomplete signal with data loss measured from the sensors with the 

transmission loss and the complete true signal. The trained network extracts the robust higher 

representation features of the measured incomplete signals using the compression layers, and 

expands those features gradually throughout the reconstruction layers to recover and obtain 

the complete true signals. The long-term vibration data from Dowling Hall Footbridge are 

employed to validate the effectiveness and robustness of the proposed approach for the lost 

data recovery. Two case studies are conducted to validate the recovery accuracy for single-

channel and multiple-channel cases, respectively. The effect of sampling rate on the recovery 

accuracy is also investigated. The proposed approach exhibits the outstanding capability of 

lost data recovery, even when the signals have severe data loss ratios up to 90%. To further 

demonstrate the reliability of the recovered signals for data analysis, modal identification 

results by using the recovered signals with different data loss ratios show a very good 

agreement with those obtained from the complete true data. 

This chapter was published in Structural Control and Health Monitoring with the full 

bibliographic citation as follows: Fan G, Li J, Hao H. (2019). Lost data recovery for 

structural health monitoring based on convolutional neural networks. Structural Control 

and Health Monitoring, 26(10): e2433. https://doi.org/10.1002/stc.2433. 

https://doi.org/10.1002/stc.2433
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3.1 Introduction 

Safe and reliable operations of civil infrastructure, such as buildings and bridges, are of 

significant importance to public. Long-term structural health monitoring (SHM) has been 

rapidly developed in recent years, owing to its capability of tracking the structural health 

conditions and reporting the abnormal status of structures at an earlier stage to prevent 

structural failures and calamity. For real engineering applications, a comprehensive long-term 

SHM system demands a large number and various types of sensors, data acquisition (DAQ) 

systems, transmission (long cables or wireless) and other equipment. The conventional SHM 

systems that use wired sensors to provide a stable signal measurement and transmission have 

been widely adopted in the last several decades. However, these SHM systems are expensive 

and the installation of such systems is labour intensive and time consuming for large-scale 

civil engineering structures, such as super-tall buildings and long-span bridges (Ni et al., 2011). 

On the other hand, the research on using wireless sensors and wireless transmission technology 

in SHM has attracted significant attention. The wireless sensor based SHM systems without 

the complicated cabling system can provide a more flexible selection of sensor locations and 

is more economical to install and maintain. Furthermore, wireless sensors can provide 

additional computation capability to process the local measurement on board (Lynch & Loh, 

2006). Consequently, wireless sensing techniques have been intensively developed from 

different aspects, such as the sensor hardware, the network deployment, communication 

technique and data acquisition, to improve the performance and usability for civil engineering 

SHM (Chen & Casciati, 2014; Kane et al., 2014; Linderman et al., 2013; Lynch, 2005; Sun et 

al., 2016; Winter & Swartz, 2017). 

A remarkable number of civil infrastructures have been monitored by using the wireless 

sensor based SHM systems (Kim et al., 2007; Ni et al., 2009; Zhang et al., 2017). However, 

data loss still occurs in wireless transmission and has seriously affected the development and 

application of wireless sensors for SHM. It has been reported that a 0.4% data loss is close to 

injecting a 5% noise on the power spectrum density (Nagayama et al., 2007). The measured 

vibration data with a high data loss ratio can hardly be used for the modal analysis as it may 
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lead to significant errors in the identification results, which consequently influences the 

accuracy of structural condition assessment. The potential reasons for the signal loss are 

complex including the radio interaction, ambient condition variation, sensor fault, and signal 

attenuation in the long-distance transmission. The influence of those factors can be mitigated 

but it is impossible to totally remove from the wireless transmission process at present. 

Data recovery can be considered as a remedy when the data loss occurs. To address the 

lost data recovery issue in SHM, approaches based on the finite element model (FEM) have 

been proposed (He et al., 2012; Law et al., 2011). Other than those model-based methods 

which demand an accurate FEM, response recovery conducted directly from the measurements 

is more attractive and applicable for large-scale infrastructure with numerous uncertainties. 

Bao et al. (2013) proposed an innovative approach based on the compressive sampling 

technique for the signal loss recovery of wireless sensor networks installed on a bridge 

structure. The recovery accuracy is good but depends significantly on the selected domain that 

the time-domain signal is transferred to, and the threshold value that makes the output matrix 

sparse to overcome the ill-posed issue. Wan and Ni (2019) leveraged the Bayesian multi-task 

learning methodology to recover the blocked SHM missing data including temperature data 

and acceleration responses. It is reported that the choice of the covariance function has a great 

influence on the recovery performance.  

Deep learning is one of the emerging techniques in computer science and has been applied 

for civil SHM in recent years. The development and applications of deep learning based 

algorithms such as Convolutional Neural Network (CNN) and Auto-Encoder for SHM mainly 

focus on damage detection using the crack images (Cha et al., 2017), vibration signals 

(Abdeljaber et al., 2017; Lin et al., 2017) and vibration characteristics (Pathirage et al., 2018; 

Pathirage et al., 2019). Nevertheless, deep learning has also been proved to be effective in 

addressing the signal recovery problems such as image super-resolution (Dong et al., 2015) 

and audio super-resolution (Kuleshov et al., 2017). The trained deep learning models predict 

the high-resolution components of images or audios through the known low-resolution ones. 

Another interesting area attracting extensive attention is the damaged photo recovery (Yeh et 
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al., 2017), which is also known as in-painting. It recovers the damaged part of the photo from 

the remaining part, which is a two-dimensional case of lost signal recovery.  

In this study, the application of deep learning based techniques is extended to recover the 

lost time domain measurement data during the transmission in SHM systems. The proposed 

deep learning based algorithm to perform the lost SHM data recovery is based on a fully CNN, 

which has been reported to be efficient to implement the dense predictions for pixel to pixel 

tasks such as semantic segmentation (Long et al., 2015), image segmentation (Ronneberger et 

al., 2015) and image restoration (Mao et al., 2016). In the rest of this chapter, Section 3.2 is 

organized to present the detail configuration of the used CNN including the architecture of the 

network and the relevant parameters. The techniques including skip connection, dropout, the 

selected activation function and the sub-pixel shuffling operation used to improve the 

performance of the proposed network will also be clearly described. The preparation of the 

datasets for training the CNN will be introduced in Section 3.3. Dowling Hall Footbridge 

which has been installed with a long-term SHM system is selected as the test bed for validating 

this method. In Section 3.4, two networks are trained and tested with signals of 10% to 90% 

random loss ratios for evaluating and comparing the performance of the proposed approach 

for lost data recovery from one channel and from all eight channels of the whole SHM system. 

In Section 3.5, modal identification by using the original and recovered signals is conducted 

to investigate the usability and effectiveness of using the proposed approach to obtain the 

accurate and reliable recovered signals for condition assessment and damage detection.  

3.2 Methodology 

The proposed CNN is a fully convolutional feed-forward network consisting of a number 

of sequential convolutional layers to implement the gradually higher-level features extraction 

and signal reconstruction, by using the compression and reconstruction layers respectively. It 

has a bottleneck structure as originated from the Deep Auto-Encoders. The bottleneck 

structure is beneficial for automatically extracting the higher-level features gradually from the 

input data, meanwhile mitigating the noise effect and reducing the dimensionality of features 

before feeding to data recovery training. The proposed CNN keeps the advantage of CNN 
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while sharing the benefit of bottleneck architecture by replacing all the encoder and decoder 

layers with convolutional layers. It is noted that the convolutional layers consist of multiple 

convolutional kernels, which can extract more robust features than the encoder layer. 

Another significant merit of the proposed approach is making use of residual blocks to 

overcome the vanishing gradients, improve the training efficiency of deeper networks and 

potentially tune the number of layers during training. The compression and reconstruction 

layers are symmetrically linked with skip connections, and therefore the network training 

converges much faster and obtains high quality optimization results. The skip connections 

allow the signals to be back-propagated to bottom layers directly and tackle the problem of 

gradient vanishing, which improves the training efficiency and accuracy of deep neural 

networks. In this study, for lost vibration data recovery, the input and output data are similar 

especially when only a small proportion of data are lost. In this situation, the layer in the 

symmetric position shares a large number of features, such as the amplitude of the sampling 

points and the waveform. The skip connections between each pair of layers effectively shuttle 

the features extracted in the shallow layers to deeper layers, which enriches the features in 

deeper layers and consequently improves the information flow and efficacy of the network. 

3.2.1 The architecture of the used CNN 

The used fully CNN consists of an input layer, several convolutional layers and one 

output layer. The architecture of the CNN is illustrated in Figure 3-1, and the detailed 

parameters of each layer are shown in Table 3-1. It should be mentioned that the length of 

feature maps as shown in Figure 3-1, and the input and output shapes of each layer listed in 

Table 3-1 are defined according to the training datasets, where each sample is equally 

segmented as 1024 points. In fact, the input data length of this fully CNN can be arbitrary. 

Consequently, in the testing stage, other network parameters excluding the input and output 

dimensions, are kept as constant. The input and output layers have the same number of neurons, 

which are equal to the length of the signal to be recovered. The input and output feature map 

shapes of each hidden layer vary with the input data size. 
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Figure 3-1. The architecture of the used fully convolutional neural network. 
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Table 3-1. The detailed parameters for each layer of the used CNN 

Layer Kernel 

number 

Kernel 

size 

Stride Padding Input 

shape 

Output 

shape 

sub-pixel 

shuffling 

C1 128 64 2 Same (1,1024) (128, 512) N 

C2 256 32 2 Same (128,512) (256, 256) N 

C3 512 16 2 Same (256,256) (512, 128) N 

C4 1024 8 2 Same (512,128) (1024, 64) N 

Bottle

neck 

1024 8 1 Same (1024,64) (2048, 32) N 

R4 2048 8 1 Same (2048,32) (2048, 64) Y 

R3 1024 16 1 Same (2048,64) (1024, 128) Y 

R2 512 32 1 Same (1024,128) (512, 256) Y 

R1 256 64 1 Same (512,256) (256, 512) Y 

Final  2 8 1 Same (256,512) (1, 1024) Y 

 

The bottleneck architecture employed in this network consists of the compression layers, 

bottleneck layer and reconstruction layers. The first compression layer C1 extracts the low-

level features from the input data and the following compression layers obtain half of the 

length of their input feature maps by using convolution kernels with a stride of 2 to extract the 

higher dimensional representation of the input. Meanwhile, it doubles the number of feature 

maps using two times the number of kernels to enrich the number of higher-level features. On 

the other hand, the reconstruction layers enlarge the feature maps gradually and reduce the 

number of feature maps simultaneously until reaching the same dimension as the first 

compression layer. Skip connection is implemented between the compression layers and 

reconstruction layers in the symmetric positions to build the residual blocks, promote the 

information flow and alleviate the gradient vanishing as shown in Figure 3-1. The output of 

the reconstruction layer is concatenated with the delivered output features of the reconstruction 

layer. A layer between the compression layers and the reconstruction layers is called 

‘bottleneck layer’, which keeps the smallest dimensionality but represents the highest level of 

features of the input data. The bottleneck layer has the same operation as the compression 

layers. For the audio signal, the bottom layers (close to the input) learn the wavelet features of 

the input, and the top layer (the bottleneck layer) may learn the phonemes of the audio (Aytar 

et al., 2016). Transferring the theory to structural vibration lost data recovery, the bottom 

layers may also learn the wavelet features in the time domain, and the higher layers may extract 
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the vibration characteristics, i.e. natural frequencies of the structure (Lin et al., 2017). A final 

convolutional layer that concentrates and shuffles the features as the same dimension of the 

output layer, is proposed between the last reconstruction layer and the output layer. The 

dropout technique is implemented to prevent over-fitting which will be elaborated in section 

3.2.2. 

To sum up, the successive compression layers progressively extract the higher-level 

features of the incomplete data until the bottleneck layer. After the bottleneck layer, the 

process back-calculates where the output features at reconstruction layers are concatenated 

with the output features at compression layers and gradually reconstruct the signal to approach 

the original one. The compression layers and bottleneck layer involve two operations, that is, 

(1) The convolution of the input; and (2) Nonlinear activation of the output using a Leaky 

rectifier. The reconstruction layers involve four operation procedures, namely, (1) 

Convolution of the input features; (2) Nonlinear activation of the output using a Leaky rectifier; 

(3) Resize the activated output; and (4) Finally concatenate the activated output with the 

features from the compression layer in the mirrored position. In addition, the last layer contains, 

(1) The convolution; and (2) Resize operations. The details of the activation function, resizing 

the output features by a one-dimension subpixel shuffling operation are elaborated in the 

following sections.  

Since the incomplete and original signals that share the same dimension, the objective 

function selected to optimize the CNN parameters is the mean of the L2-norm error of each 

sample in a mini batch as  

𝐿𝑜𝑠𝑠 =
1

𝑁
∑‖𝑦𝑘 − 𝑓𝜙(𝑥𝑘)‖2

2
𝑁

𝑘=1

 (3.1) 

where N is the number of samples in each mini batch. The CNN is simply depicted as a 

nonlinear model fϕ (x) that parameterized by ϕ. Consequently, the target of the training process 

is to determine ϕ by minimizing the loss based on the entire dataset. 
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3.2.2 Dropout 

Dropout is a technique to address the overfitting issues in deep neural networks. Instead 

of dealing with the overfitting by training several neural networks to start from the different 

initial conditions and average the predictions from each neural network, dropout is a more 

efficient technique (Srivastava et al., 2014). Dropout means dropping out neurons and 

disconnects those neurons with the adjacent input and output layers. It drops out neurons 

randomly when training with a different batch of samples to break-up the co-adapted sets of 

neurons and makes those remained neurons more robust. Each neuron with an independent 

probability p to be dropped, where p is set as 0.5 (Srivastava et al., 2014). This is the optimal 

dropout probability for a variety of neural networks and tasks. It should be mentioned that 

when testing a neural network trained using dropout technique, the weight of each neuron 

should be scaled-down by multiplying p because all the neurons will participate in predicting 

the output in the testing process. 

3.2.3 Leaky rectified linear unit (ReLU) 

The activation function follows the convolution operations that transfer the 

mapping between the input to the output nonlinearly. It is essential for the recovery 

task since the relationship between the incomplete and original data cannot be simply 

presented by a linear function. Leaky ReLU (Maas et al., 2013) as an improved version 

of ReLU (Nair & Hinton, 2010) has attracted significant attention recently. Leaky 

ReLU has a nonlinear gradient over its whole domain as shown in Equation (3.2). 

Leaky ReLU prevents the gradient vanishing that potentially happens when using 

‘sigmoid’ as the activation function. Meanwhile, it allows a non-zero small gradient to 

overcome the defect of ReLU, that is, the neuron could potentially never be activated 

once a large gradient flows through it (Maas et al., 2013). 

𝑓(𝑥) = {
𝑥,  𝑖𝑓 𝑥 > 0

0.01𝑥, otherwise
(3.2) 
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3.2.4 Sub-pixel shuffling operation 

As shown in Figure 3-1, the original output feature maps from the reconstruction layers 

have half length of the feature maps at the corresponding compression layer. To keep those 

feature maps with a consistent size, the output feature maps from the reconstruction layer are 

resized by a sub-pixel shuffling operation, which doubles the length and half divide the number 

of feature maps. The shuffling operation is implemented by splitting the feature maps as two 

groups and combining two feature maps at the same position of each group as one by 

interpolating one to another as shown in Figure 3-2. It is a one-dimensional case of the sub-

pixel convolution layer (Shi et al., 2016). This is an efficient sub-pixel shuffling operation that 

takes less computation load compared to the general deconvolution. The sub-pixel shuffling 

operation has also been attested to introduce less artefact in the output (Odena et al., 2016). 

 

1-1 3-1 1-2 3-2 1-3 3-3 1-4 3-4 1-5 3-5 1-6 3-6

2-1 4-1 2-2 4-2 2-3 4-3 2-4 4-4 2-5 4-5 2-6 4-6

Split as two 

groups
Shuffling1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

 
Figure 3-2. An example of one-dimensional sub-pixel shuffling with 4 feature maps and 6 

elements in each map. 

3.2.5 Metrics 

Given the original signal as y and the recovered signal y', the recovery error is evaluated 

by comparing the difference between two signals using L2-norm, and is calculated as 

ξ =
‖𝑦 − 𝑦′‖

‖𝑦‖
=
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
1

∑ 𝑦𝑖
2𝑛

1

 (3.3) 

When evaluating the error in the frequency spectrum, y and y' become the original and 

recovered signal spectra in the frequency domain. 

3.2.6 Datasets 

A robust neural network requires abundant datasets to train and fine-tune the network 

parameters. Structural vibration data especially the long-term monitoring vibration data fit 
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well with the requirement of ‘big data’. The original measured acceleration data are processed 

to serve as the input and output of the neural network. The objective of this study is to recover 

the original signal using the incomplete signal, hence the input of the neural network is the 

acceleration signal with transmission loss and the output is the original acceleration signal to 

be recovered. In practice, the recorded data in the receiver or base station are numbered 

sequentially (Bao et al., 2013). This means that the time point of the lost data is known. At the 

time point that the signal is lost, the record will be empty or set as zero. Consequently, the 

input incomplete signal is generated from the original signal, where the transmission data loss 

is simulated by setting a proportion of the sampling points as zero entries corresponding to the 

lost proportion (Bao et al., 2018). Figure 3-3 shows an example of the input signal with 50% 

data loss and the corresponding original signal measured by the SHM system of Dowling Hall 

Footbridge which will be detailed in Section 3.3.  

Figure 3-3. A comparison between the incomplete signal with 50% data loss and the 

corresponding original signal. 

3.3. Experimental validations on lost data recovery 

Experimental studies are conducted to validate the effectiveness and robustness of using 

the proposed approach for SHM lost data recovery. The experimental studies include three 

scenarios, namely, a single channel signal recovery case, a multiple channel signals recovery 

case and a comparison study for investigating the effect of the sampling rate. These studies 

share the same network architecture but trained by different datasets. In this work, the 

performances of lost data recovery by using a CNN trained based on data from a single channel 

and another network trained from multiple channels data are firstly investigated. Network for 
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a single channel can be trained faster, and it can be only used to recover the lost data of this 

channel. In contrast, the network training for multiple channels is relatively time-consuming 

but has more comprehensive and practical applications to recover the data of more channels. 

The recovery accuracy may be influenced by the significantly reduced sampling rate. 

Therefore, a comparison study to investigate the effect of sampling rate is also conducted using 

the same data with single channel case but different sampling rates. 

3.3.1 Dowling Hall Footbridge and the installed SHM system 

The data used for validating the proposed method are obtained from a long-term SHM 

system installed on the Dowling Hall Footbridge, which is located on the Medford, MA, 

campus of Tufts University. It is a pedestrian bridge connecting the main campus and the 

student services offices as shown in Figure 3-4(a). This bridge is a two-span continuous steel 

frame bridge with a reinforced concrete slab. The total length of Dowling Hall Footbridge is 

44 m and the width is 3.7 m. A long-term SHM system has been installed to monitor the 

vibration responses and ambient conditions of the bridge continuously. 16 weeks vibration 

response from 8 accelerometers as shown in Figure 3-4(b) are collected from January 2010 to 

May 2010. Eight PCB 393B04 uniaxial accelerometers are installed on the bridge and 

connected to National Instruments cRIO-9074 DAQ system including integrated chassis and 

controller. This sensor model has a frequency range from 0.06-450Hz, with 3 μg Root Mean 

Square broadband resolution. The communications with the DAQ system is conducted through 

a wireless-G network at Tufts University. A wireless bridge with an external Hawking 

HAO14SDP antenna featuring a 14dBi gain factor and all-weather construction. More detailed 

descriptions of the footbridge and the SHM system can be found in the literature (Moser & 

Moaveni, 2013). System modal identification of this bridge was conducted in a previous study 

(Moser & Moaveni, 2011), and the identified first six nature frequencies, damping ratios and 

the corresponding mode shapes are used as reference baselines in this study for assessing the 

reliability and accuracy of modal identification results obtained from the recovered data. 
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(a) (b) 

Figure 3-4. (a) South view of Dowling Hall Footbridge. (b) Accelerometer layout. 

3.3.2 Data preprocessing 

Preprocessing data to satisfy the purpose of the network is necessary to improve the 

training process. In this study, to optimize the performance of the used CNN, the measured 

accelerations are preprocessed based on signal filtering techniques and data normalization. As 

introduced in Ref. (Moser & Moaveni, 2013), the provided data have a sampling rate of 128 

Hz and have already been filtered by a band-pass filter from 2 Hz to 55 Hz. However, the 

frequencies of interest are within 4 Hz to 14 Hz as reported in a previous study (Moser & 

Moaveni, 2011). To further minimize the redundant information contained in the acceleration 

data, the acceleration data for the single and multiple channel cases are processed by a low-

pass filter with a cut-off frequency of 16 Hz. It is admitted that less information contained in 

the training dataset means fewer features need to be learned by the networks. With limited 

neurons in the neural networks, the filtering in fact assists in improving the machine learning 

process where the neurons can memorize more about the ‘useful’ features. After filtering, a 

downsampling step is implemented to the measured acceleration data to reduce the sampling 

rate to 32 Hz. This step shrinks the data size as one-quarter of the original data, which enhances 

the training efficiency of the used CNN significantly. Finally, the acceleration data were 

normalized to the range -1 to 1 by using the below equation 

𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 (|𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛|)
(3.4) 
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3.3.3 Datasets generation 

The measured acceleration data in the first week are chosen, in which 5 minutes data in 

each hour are utilized to generate the training and validation datasets for the lost data recovery. 

Four 5-minutes long segmental signals from four randomly selected hours in the first and 

second week are used to generate the testing data for investigating the performance of the 

trained CNN. The total length of data used for training the CNN is 14 hours. Compared to the 

large size of data measured from the long term SHM systems, training a robust CNN for 

recovering the lost data by using only 14 hours data is practical and effective.  

The normalized acceleration data from the second channel of the SHM system, as shown 

in Figure 3-4(b), are selected to evaluate the performance of single channel data loss recovery 

and the comparison study. Since the monitoring systems are always working under uncertain 

conditions, the lost points and the lost proportion are also random, i.e., in different periods, the 

lost pattern and the lost proportion can vary greatly. To simulate the data loss pattern, 5 groups 

of data with different lost proportions using the normalized 14 hours acceleration data are 

generated. Each group of data contains the original signal and the incomplete signal with a 

certain lost proportion from 10% to 90% with a 20% increase. The lost signal points are 

randomly selected from the time sequence. The training and validation samples are small 

patches segmented from the full time series of the acceleration data. A window with a length 

of 1024 points is designed to produce the samples by scanning these 5 groups of data from the 

beginning to the end with a 50% overlap. The length of each sample is 1024 (32 seconds) and 

totally around 400,000 samples are produced and recorded in the datasets. The proportion of 

samples used for training and validation are 90% and 10% respectively.  

In the data loss recovery of multiple channels signals, eight channels of data are fed to 

the CNN together. The way to generate the datasets is slightly different from the single channel 

case. For the sake of keeping the mode shapes information of the data, the eight channels 

signals are firstly conducted the ‘data loss’ process individually and then combined as an array 

following the order of channels. The positions of the lost data points are different for each 

channel which is more realistic in real applications. The combined time series are then 
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normalized using the maximum absolute value among this array. The same window and 

scanning strategy following the single channel case are used, where the number of segmented 

samples is around 3,200,000 in total. Four 5-minutes long normalized segmental signals are 

processed as four groups to serve as the testing data (Test data 1 to Test data 4) consisting of 

incomplete data with 10% to 90% data loss ratios. For the single channel case, the signal from 

the second channel of the Test data 1 to Test data 4 are used. On the other hand, the testing 

data are all the signals from eight channels in Test data 1 to Test data 4 for the multiple channel 

case. The multiple channel testing data also form as an array before using as the input to the 

networks, and then resizing to its original form after obtaining the output. This CNN accepts 

input with a random size, so the 5-minutes long testing data are directly inputted to the trained 

CNN to examine the accuracy of the trained networks. 

3.4. Recovery performance evaluation 

3.4.1 Results of recovering the single channel signal 

The computer used for training this network is built with a GTX1060 Graphics card with 

a 6GB GPU, an i7-6700K CPU and 8GB memory. The training time for the single channel 

case is 2 hours and for the multiple channel case is around 16 hours. Since the architecture of 

the used CNN keeps the same for both studies, the training time is mainly dependent on the 

size of training data. After the training of the network for single channel signal recovery, four 

groups of testing data containing the second channel signal only are inputted to the network. 

Processing each group of testing data can be completed instantaneously, therefore a real-time 

signal recovery is realizable when the trained CNN is ready and could be embedded in the data 

processing algorithms. The single channel lost data recovery results of the Test data 1 in the 

time domain are shown in Figure 3-5. A 100 points segment is presented in this figure, which 

demonstrates the gradually increasing discrepancy between the original and recovered signals 

with the increase of the data loss ratio. The randomly remained signal points used to recover 

the original signal are also drawn in Figure 3-5.  
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Recovered signals by using incomplete signals with 10% to 80% loss ratios have 

exhibited a strong consistency with the original signals. The recovered and original signals are 

almost overlapped within these loss ratios range. For the recovered signal using only 10% 

remained signal points (90% loss), it shows a very similar waveform pattern but for some 

points, the signal amplitudes are varying around the original signal in a tolerable extent. Figure 

3-6 shows the recovery errors quantified using Equation (3.3). The recovery error 

progressively increases with the increasing severity of data loss. In addition, the recovery 

performance of Test data 1 and 4 are better than that of Test data 2 and 3, especially when the 

loss ratios become higher. This phenomenon can be explained as that the Test data 1 and 4 are 

recorded in busy periods. A large number of pedestrians walking on the footbridge provide 

strong operational excitations to excite more vibration modes and induce many free-decay 

formed vibrations in the recorded responses. Those responses cover mainly the first several 

structural modes of the bridge with a relatively higher signal to noise ratio. Compared with the 

low level ambient excitations induced responses, the data loss recovery of the responses 

measured from well excited scenarios is more accurate. Figure 3-7 shows the signal recovered 

from incomplete data with a 90% loss in a free-decay form in Test data 1. The error of this 

signal segment is shown in Figure 3-8, where the recovery error is much smaller than that from 

the Test data 2 and 3 as shown in Figure 3-6. The errors in the data loss recovery are only 5% 

and 9% for the cases with 10% and 20% loss ratios, respectively.  

The recovery accuracy of the proposed approach is also investigated in the frequency 

domain. The time domain signals are transferred into the frequency domain by using Fast 

Fourier Transform (FFT). Figure 3-9 shows the Fourier spectra of the recovered and original 

signals of the Test data 1 in a logarithmic form. The first four modes are well excited at this 

sensor location during the testing period. The trained CNN has demonstrated a strong ability 

to recover the lost signal with a 70% loss ratio. By observing the results of 80% data loss, the 

Fourier spectrum of the recovered signal shows a weak amplitude compared to the original 

signal in the 3rd mode. Meanwhile, when recovering the 90% lost incomplete signal, an 

attenuation of the signal strength at the second mode frequency is found. Even though, the first 

four structural natural frequencies can be clearly identified from the Fourier spectra of those 

javascript:;


 

69 

 

recovered signals. The natural frequencies identified from the recovered signals are almost the 

same as those obtained from the original signals. The observation is consistent with the finding 

from the time domain where the waveforms keep the same but have some differences in the 

amplitudes.  
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Figure 3-5. Comparisons between the original and recovered signals of 100 sampling points 

in Test data 1 with different data loss ratios: (a) 10%; (b) 20%; (c) 30%; (d) 40%; (e) 50%; 

(f) 60%; (g) 70%; (h) 80%; (i) 90%. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
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Figure 3-6. The recovery errors of the four groups of testing data. 

Figure 3-7. The comparison between the original and recovered signals of a free-decay form 

signal segment in Test data 1 originated from the incomplete data with 90% data loss. 

Figure 3-8. The recovery error of the free-decay formed signal segment in Test data 1. 
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Figure 3-9. Comparisons between the original and recovered signals (Test data 1) in the 

frequency domain based on incomplete data with different data loss ratios: (a) 10%; (b) 20%; 

(c) 30%; (d) 40%; (e) 50%; (f) 60%; (g) 70%; (h) 80%; and (i) 90%. 
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Figure 3-10 shows the recovery errors of the four groups of testing data in the frequency 

domain with different data loss ratios. The effectiveness and robustness of the proposed 

approach are validated in these experimental studies, where the structural vibration data have 

severely lost ratios but can be successfully recovered with small errors and accurate frequency 

identification results.  

Figure 3-10. The recovery errors of the four groups of testing data in the frequency domain. 

3.4.2 Results of recovering the multiple channel signals 

When the network for recovering multiple channel signals is successfully trained, four 

groups of incomplete signals with data loss ratios from 10% to 90% are used as the input to 

the network with its original length to examine the performance of lost data recovery. An 

example of the recovery results from the Test data 1 is shown in Figure 3-11. The recovery 

accuracy of this network is slightly worse than that for the single channel case presented in 

Section 3.4.1. The recovered signals almost overlap with the original signals with data loss 

ratios from 10% to 60%. Small errors can be observed between some of the sampling points 

when the loss ratio increases to 70% and 80%. The recovered signal obtained from the 

incomplete data with 90% data loss shows relatively larger differences, as shown in Figure 3-

11(i). However, the recovered signal still follows the same waveform as the original one with 

similar amplitudes and frequencies. The quantified recovery errors corresponding to different 

loss ratios of four groups of testing data are shown in Figure 3-12. For all the four groups of 

testing data, the recovery errors gradually increase with the loss ratio. The trends of the errors 

are similar to those between the recovered and original signals in time domain.  

0

10

20

30

40

50

10 30 50 70 90

R
ec

o
v
er

y
 e

rr
o

r 
(%

)

Lost ratio (%)

Test data 1

Test data 2

Test data 3

Test data 4



 

74 

 

 

Figure 3-11. The comparison between the original and the recovered signals of 100 sampling 

points in Test data 1 originated from incomplete data with: (a) 10% data loss, (b) 20% data 

loss, (c) 30% data loss, (d) 40% data loss, (e) 50% data loss, (f) 60% data loss, (g) 70% data 

loss, (h) 80% data loss, and (i) 90% data loss. 
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Figure 3-12. The recovery errors of the four groups of testing data. 

 

Figure 3-13 shows the original and recovered signals in the frequency domain originated 

from incomplete data with the increasing loss ratios from 10% to 90%. The Fourier spectra of 

the recovered signals are very similar as those of the original signals, when the data loss ratio 

is between 10% and 30%. The discrepancies in the spectra at the non-structural vibration 

frequencies points are progressively increasing for the cases from 40% to 70% data loss, but 

the spectra at structural frequencies are still highly consistent with those of the original signals. 

The recovery accuracy at the structural frequencies is influenced obviously when the loss ratio 

raises to 80% and 90%. With such severe data loss levels, recovering the complete information 

of the original signal is very tough. As a result, the amplitude of the spectrum peaks is 

underestimated but the frequencies are properly reserved, which means that the natural 

frequencies can be reliably identified but the mode shapes may be affected in modal 

identification. The errors between the original and recovered signals in the frequency domain 

are shown in Figure 3-14. The frequency domain results provide a clearer explanation of the 

recovery error, where in general the presented CNN learns the structural frequencies features 

from the training samples accurately and only recovers the critical information of the vibration 

signals, i.e. structural natural frequencies and vibration modes. At the same time, the redundant 

information such as noise and disturbance in the vibration signal during the transmission is not 

recovered. From the neural network aspect, the signals with the information of structural 

frequencies exist in most of the data samples while the noises that are randomly injected in the 

response have no clear and consistent pattern to be learned as a significant feature in the data. 

One of the most significant merits of the proposed approach based on CNN is that it can 
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automatically learn the best features from the vibration data. Considering the natural 

frequencies and vibration modes are the most important fundamental vibration characteristics, 

in this study, they are well recognized and learned by the proposed network and used to capture 

the patterns in the vibration data. This also means that features representing the signals with 

structural frequencies are allocated with large weights while the weight of other neurons 

associated with noises is minimized as it is rarely activated. 

Compared with the single channel recovery results, the recovery accuracy of multiple 

channel signals is slightly worse. It is worth noting that the same network architecture is used 

for both cases, but the complexity of the multiple channels case is obviously higher which 

means more features need to be extracted and more nonlinear relationships need to be 

constructed between the input and output. As a result, the constant number of neurons in the 

CNN may not be able to record all the features, but higher weights are assigned to the neurons 

representing the structural vibration characteristics.  
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Figure 3-13. Comparisons between the original and recovered signals (Test data 1) in the 

frequency domain based on incomplete data with different data loss ratios: (a) 10%, (b) 20%, 

(c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, (i) 90%  

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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Figure 3-14. The recovery errors of the four groups of testing data in the frequency domain. 

3.4.3 Effect of different sampling rates 

The effect of sampling rate is investigated by training two network models with the same 

configuration while using the same training and testing datasets with different sample rates. 

Studies by using the same data but with sampling rates of 32 Hz and 128 Hz respectively are 

conducted. The original and recovered signals in time and frequency domains for the case with 

50% loss ratio are shown in Figures 3-15(a) and (b). The recovery errors in both time and 

frequency domains are shown in Fig. 16. The comparison results show that the recovery 

performance is slightly improved by reducing the sampling rate. As mentioned that the excited 

vibration modes of the bridge are within 14 Hz. For signals with a higher sampling rate, 

redundant information such as noise and local high frequency structural modes may introduce 

additional errors in the data recovery. The proposed method shows a good performance when 

using the data sampled at only 32 Hz in this study. 

 

  

(a) (b) 

Figure 3-15. The comparison between the original and recovered signals from incomplete 

data with 50% loss ratio in: (a) Time domain; (b) Frequency domain 
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(a) (b) 

Figure 3-16. The comparison of average recovery errors in: (a) Time domain; (b) 

Frequency domain. 

3.5 Modal identification using original and recovered signals 

Modal identification of this footbridge by using the original and recovered signals is 

further conducted to demonstrate the feasibility and accuracy of using the recovered signals 

for modal identification. Stochastic Subspace Identification (SSI) (Van Overschee & De Moor, 

2012) is employed to identify the natural frequencies, damping ratios and mode shapes of this 

footbridge. SSI is a time domain parametric identification method that uses the output-only 

data for the modal identification. Another operational modal analysis method named 

Frequency Domain Decomposition (FDD) (Brincker et al., 2001) is used to produce the first 

singular values of the response spectrum matrix, where the peaks of the singular values plot 

are most likely presenting the natural frequencies. The identified modes by using SSI method 

with both the original and recovered signals reconstructed from the incomplete data with 90% 

data loss are shown in the stabilization diagrams presented in Figures 3-17(a) and (b), 

respectively. The first six modes can be identified in both stabilization diagrams, which means 

that the first six modes are excited and the proposed approach effectively recovers the signals 

at those structural frequencies, although an extremely severe data loss ratio of 90% is 

considered. Comparing the results in Figures 3-17(a) and (b), it can be observed that the 

stabilization diagram of the original signals contains more spurious modes than that of the 

recovered signal. The spurious modes especially those at frequencies around 3.8 Hz and 13.5 

Hz that are relatively stable along the system model orders, are potentially reserved in the 
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identification results. This may lead to false identification results. Besides, the physical mode 

at the frequency around 13.8 Hz represents the sixth structural mode, and is inconsistent along 

the system model orders, particularly when comparing the damping ratios. Meanwhile, many 

spurious modes are also generated around this physical mode which may result in the false 

identification of this mode if no prior knowledge is provided. The singular values obtained 

from the FDD analysis of the original and recovered signals as shown in Figures 3-18(a) and 

(b) also confirm the results of SSI. A massive number of relatively weak peaks representing 

the spurious modes can be observed in Figure 3-18(a), and several peaks are closely spaced 

around the sixth mode. On the other side, the singular values plot of the recovered signal is 

much cleaner, i.e., fewer spurious mode peaks and very distinguished physical mode peaks are 

observed in Figure 3-18(b).  

The errors in the identified modal parameters from the original signals and recovered 

signals, which are obtained from the incomplete data with 30%, 60% and 90% lost ratios, are 

summarized in Table 3-2, Table 3-3 and Table 3-4, respectively. It can be observed that the 

identified natural frequencies using the recovered signals are very accurate for the first six 

modes. The maximum discrepancy is about 0.6% when the loss ratio reaches 90%, which is 

acceptable for further analysis such as anomaly detection and damage detection. It should be 

highlighted that the testing signals are measured under different ambient conditions compared 

with training datasets, which means that the network has learned robust features of the 

vibration signals. It can be used for recovering the new measured incomplete data, which are 

not included in the training datasets. The identified damping ratios from the recovered signals 

show relatively large errors compared with the ones from the original signals. However, when 

analysing the original signals, the identified damping ratios at different system orders in SSI 

analysis output exhibit a large discrepancy, especially at the sixth mode. Such a significant 

difference may also be caused by the identification methodology error. 
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Table 3-2. Comparison between the modal identification results from original and recovered 

signals originated from the incomplete signal with 30% data loss. 

Mode Frequency 

(original) 

Frequency 

(recovered) 

Error Damping 

ratio 

(original) 

Damping 

ratio 

(recovered) 

Error MAC 

1st 4.74Hz 4.74Hz 0.0% 0.0016 0.0019 18.75% 1.00 

2nd 6.03Hz 6.03Hz 0.0% 0.0034 0.0044 29.41% 1.00 

3rd 7.24Hz 7.24Hz 0.0% 0.0023 0.0017 26.09% 1.00 

4th 9.04Hz 9.04Hz 0.0% 0.0018 0.0021 16.67% 1.00 

5th 13.24Hz 13.24Hz 0.0% 0.0019 0.0017 10.53% 1.00 

6th 13.87Hz 13.87Hz 0.0% 0.0014 0.0019 35.71% 0.99 

Table 3-3. Comparison between the modal identification results from original and recovered 

signals originated from the incomplete signal with 60% data loss. 

Mode Frequency 

(original) 

Frequency 

(recovered) 

Error Damping 

ratio 

(original) 

Damping 

ratio 

(recovered) 

Error MAC 

1st 4.74Hz 4.74Hz 0.0% 0.0016 0.0021 31.25% 1.00 

2nd 6.03Hz 6.04Hz 0.3% 0.0034 0.0038 11.76% 1.00 

3rd 7.24Hz 7.25Hz 0.1% 0.0023 0.0028 21.74% 1.00 

4th 9.04Hz 9.03Hz 0.1% 0.0018 0.0024 33.33% 0.99 

5th 13.24Hz 13.25Hz 0.1% 0.0019 0.0018 5.26% 0.99 

6th 13.87Hz 13.86Hz 0.1% 0.0014 0.0024 71.43% 0.98 

Table 3-4. Comparison between the modal identification results from original and recovered 

signal originated from the incomplete signal with 90% data loss. 

Mode Frequency 

(original) 

Frequency 

(recovered) 

Error Damping 

ratio 

(original) 

Damping 

ratio 

(recovered) 

Error MAC 

1st 4.74Hz 4.74Hz 0.0% 0.0016 0.0009 43.75% 0.99 

2nd 6.03Hz 6.04Hz 0.2% 0.0034 0.0022 35.29% 0.99 

3rd 7.24Hz 7.28Hz 0.6% 0.0023 0.0017 26.09% 0.98 

4th 9.04Hz 9.04Hz 0.0% 0.0018 0.0014 22.22% 0.97 

5th 13.24Hz 13.25Hz 0.1% 0.0019 0.0017 10.53% 0.98 

6th 13.87Hz 13.83Hz 0.3% 0.0014 0.0025 78.57% 0.96 

The original and recovered first six mode shapes of Dowling Hall Footbridge identified 

by using SSI method are shown in Figure 3-19. In this case, the recovered signals are 

reconstructed from the incomplete signals with 90% data loss. The mode shapes in Figure 3-

19 match well with all the true modes. Only a minor discrepancy between the mode shapes 
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from original and recovered signals can be observed. The accuracies of the recovered mode 

shapes are further evaluated by using the Modal Assurance Criterion (MAC) and summarized 

in Tables 3-2 to 3-4. The worst identification is the sixth mode in Table 3-4, where the MAC 

value is around 96%. By observing the singular values plot of the original signals, it can be 

found that the sixth mode is weakly excited in this measurement period. It is also confirmed 

by the fact that the stable poles of the sixth mode begin to appear at the higher system orders 

in the stabilization diagram. It is worth noting that a MAC value of 0.96 for mode shapes of 

such a weakly excited mode, which are obtained from the recovered signals reconstructed 

based on only 10% information of the original signal, is very good. To investigate the recovery 

effectiveness of each channel, the accuracy of the recovered modal shape for each 

measurement channel is examined by using the Co-ordinate Modal Assurance Criterion 

(COMAC). The COMAC results for all the measurement channels under different levels of 

data loss are shown in Figure 3-20. Very good agreement between the original and recovered 

mode shapes is observed, as evidenced by the obtained COMAC values. The lowest COMAC 

values for the cases with 30%, 60% and 90% data loss levels are 99.6%, 98.6% and 95.5%, 

respectively. As consistent with MAC values, COMAC values using the recovered signals 

with 30% data loss are highest for all the channels among these three scenarios. Recovered 

mode shapes with 60% data loss are better than those with 90% data loss. In general, the 

proposed approach effectively recovers the lost signals for all the channels, which can be used 

for obtaining accurate modal identification results. 
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(a) 

 

(b) 

Figure 3-17. SSI results: (a) The stabilization diagram obtained from the original signals in 

Test data 1; (b) The stabilization diagram from the recovered signals in Test data 1 (90% 

data loss). 

 

  

(a) (b) 

Figure 3-18. FDD results: (a) The singular values plot of the original signals in Test data 

1; (b) The singular values plot of the recovered signals in Test data 1 (90% data loss 

case). 



 

84 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3-19. The comparison between the mode shapes extracted from the original and 

recovered signals originated from the incomplete signal with 90% data loss. (a) 1st mode. 

(b) 2nd mode. (c) 3rd mode. (d) 4th mode. (e) 5th mode. (f) 6th mode. 
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Figure 3-20. COMAC values for each channel under varying data loss ratio. 

3.6 Conclusions 

This chapter proposes an innovative approach based on special designed CNN for 

recovering the lost SHM data during the transmission process. The architecture and detailed 

parameters of the proposed CNN, as well as the entire procedure to implement the lost data 

recovery are elaborated. The accuracy and robustness of the proposed method are investigated 

by two case studies, where one experimental study based on data from a single measurement 

channel and another one based on all eight channels of a SHM system installed on the Dowling 

Hall Footbridge. The testing results demonstrate that the recovery error of the time domain 

signal increases with the data loss ratio. However, the increment of error can be mainly 

contributed to the growing difference of the noise components between the original and 

recovered signals. A comparison study is conducted with different sampling rates. The results 

demonstrate that the proposed approach can accurately recover signals with a low sampling 

rate, as long as the excited vibration modes are covered in the target frequency range of interest 

as half of the sampling rate. The data lost recovery results and modal identification accuracy 

using the recovered signals demonstrate that the proposed CNN has a decent performance to 

effectively recover the lost data in SHM, even with 90% data loss ratio. In the testing to 

validate the performance of the proposed approach, the trained CNNs recover the 5-minutes 

long testing data instantly. However, it should be noted that there is no specific length limit 

for the signal served as the input. The testing data are measured under different ambient 

conditions compared with the training data, but the recovered signals still present a high degree 
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of agreement with the true complete ones. The proposed approach can be used for recovering 

the new measured incomplete data, which are not included in the training datasets. 
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CHAPTER 4 VIBRATION SIGNAL DENOISING FOR 

STRUCTURAL HEALTH MONITORING BY RESIDUAL 

CONVOLUTIONAL NEURAL NETWORKS 

 

Abstract: In vibration based structural health monitoring (SHM), measurement noise 

inevitably exists in the vibration data, which significantly influences the usability and quality 

of measured vibration signals for structural identification and condition monitoring. As a result, 

there is a high demand for developing effective methods to reduce noise effect, especially in 

harsh and extreme environment. This chapter proposes a vibration signal denoising approach 

for SHM based on a specialized Residual Convolutional Neural Networks (ResNet). Dropout, 

skip connection and sub-pixel shuffling techniques are used to improve the performance. The 

effectiveness and robustness of this developed approach are validated with acceleration data 

measured from Guangzhou New TV Tower. The results show that the proposed approach is 

effective in improving the quality of the acceleration data with varying levels of noises and 

different types of noises. Modal identifications based on signals contaminated with intensive 

noise and de-noised signals are conducted. Modal information of the weakly excited modes 

masked by noise and the closely spaced modes can be clearly and accurately identified from 

the de-noised signals, which could not be reliably identified with the original signal, indicating 

the effectiveness of using this developed approach for SHM. Besides white noise, a group of 

data contaminated with pink noise, which is not included in the training data, is also tested. 

Good results are obtained. The developed ResNet extracts high-level features from the 

vibration signal and learns the modal information of structures automatically, therefore it can 

well preserve the most important vibration characteristics in vibration signals, and can assist 

in distinguishing the physical modes from the spurious modes in structural modal 

identification. 

This chapter was published in Measurement with the full bibliographic citation as follows: 

Fan G, Li J, Hao H. (2020). Vibration signal denoising for structural health monitoring by 

residual convolutional neural networks. Measurement, 107651. 

https://doi.org/10.1016/j.measurement.2020.107651. 
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4.1 Introduction 

Ensuring a high degree of availability, reliability and safety of civil infrastructure is 

critical for the society to well function. With the ageing of structures, the strength of current 

structures may degrade below the designed safety strength which threatens the public safety 

and may even cause catastrophic failure of structures.  The degradation can be caused by the 

progressive deterioration and the accumulated damage induced by adverse operating 

conditions and extreme events. Vibration based Structural Health Monitoring (SHM) 

technology has attracted significant attention in recent decades. SHM systems permanently or 

periodically measure the dynamic responses of structures for early warning of abnormal status 

and assist engineers and asset owners to make better decisions on maintenance and operation. 

An increasing number of vibration based SHM systems have been installed on infrastructures 

such as large scale bridges (Cross et al., 2013; Xia et al., 2013) and high rise buildings (Nguyen 

et al., 2015; Ni et al., 2009). Measured dynamic responses containing crucial information of 

structures are further processed to obtain structural vibration characteristics, extract damage 

sensitive features for assessing conditions and detecting local damages in structures.  

Effective and accurate condition assessment of structures usually demands high-quality 

data that contain significant vibration information of structures and low-level noises in 

measurements. However, the in-field testing condition of civil structures is difficult to control. 

Measured dynamic responses can be easily contaminated by strong noise from various sources 

such as environmental noise, measurement noise and instrumental noise. Strong noise may 

mask changes induced by minor damages in structural responses, leading to modal 

identification or damage detection inaccurate or virtually impossible in such cases. 

Consequently, noise immunity ability is one of the critical criteria for evaluating the 

effectiveness of vibration based SHM methods. It has been reported that 10-20% noise injected 

into vibration signals was considered as a high noise level in numerical studies (Li & Law, 

2012; Li et al., 2012) when validating damage detection methods. Considering substantial 

uncertainties during in-field tests, measurement noise may exceed 20% noise level easily in 

situations with some poor testing conditions. Therefore, besides improving noise immunity of 
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SHM methods for modal analysis or damage detection, another important research topic 

named vibration signal denoising, which aims to remove noise components or mitigate noise 

effect from measurements without affecting quality of vibration signals, has gained significant 

attention. Signal denoising can improve the usability and quality of the measured signals 

before any specific analysis. 

Recent researches have been conducted to perform the vibration signal denoising in the 

time, frequency and time-frequency domains for different types of data (He et al., 2014). 

Conventional time domain averaging methods are more suitable for periodic signals (Braun, 

2011). The denoising effect on other kinds of signals may be limited due to the varying 

vibration frequency or amplitude of signals. Filtering methods, such as low-pass filtering and 

band-pass filtering, etc., are typical frequency domain methods that eliminate noise outside 

the user-defined frequency band of interest. The prior knowledge of structures including modal 

frequencies and the corresponding variation ranges induced by operational and environmental 

condition changes needs be known, which limits the application of those methods. Time-

frequency domain methods, such as wavelet transform based denoising techniques have been 

widely investigated (Bi et al., 2019; Lin & Qu, 2000). Those techniques consider both time 

and frequency characteristics, which are suitable for both stationary and nonstationary signals. 

However, wavelet transform based methods require manually selected and tuned optimal 

parameters such as the suitable wavelet basis regarding target signals, the proper threshold 

value of wavelet transform layers and packets to discriminate and remove noise while avoid 

losing useful components (Chegini et al., 2019; He et al., 2014). Other methods based on 

singular value decomposition (Zhao & Jia, 2017), empirical mode decomposition (Lei et al., 

2013) and global projection (Hou et al., 2011) have also been developed to conduct specific 

denoising tasks. Among all of the abovementioned methods, different parameters are required 

for optimizing, resulting in the effectiveness of signal denoising closely dependent on 

engineers’ empirical experiences. Recently, machine learning especially deep learning based 

techniques such as deep Artificial Neural Network (ANN), Denoising Auto-Encoder (DAE) 

(Vincent et al., 2010) and Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012) 

have been extended to denoise image (Jain & Seung, 2009; Xie et al., 2012), audio (Park & 
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Lee, 2016; Xia & Bao, 2013) and medical domain signals (Poungponsri & Yu, 2013) in the 

time, frequency or time-frequency domains with its original waveform or selected features. 

These networks learn nonlinear relationships between noisy and original signals from training 

data, and then map the newly obtained noisy signals to denoised ones. Compared with existing 

methods, deep learning based techniques for signal denoising automatically extract the noise 

insensitive features from measured signals to realize the denoising, which effectively avoid 

manual selecting and fine-tuning of the abovementioned parameters.  

Currently, deep learning techniques are widely applied in the SHM community (Zhao et 

al., 2019) such as damage and crack detection using images (Cha et al., 2017; Jang et al., 2019; 

Xu et al., 2019), vibration signals (Abdeljaber et al., 2017; Guo et al., 2016; Jing et al., 2017; 

Lin et al., 2017; San Martin et al., 2018; Zhang et al., 2019) and vibrational characteristics 

(Pathirage et al., 2018; Pathirage et al., 2019), abnormal measurement diagnosis (Bao et al., 

2019) and vibration lost data recovery (Fan et al., 2019). Even there are applications of deep 

learning techniques for denoising signals in other fields, however, to the authors’ best 

knowledge, researches on developing vibration signal denoising method for SHM using deep 

learning techniques have not been reported. Real-time SHM systems continuously measure 

and record a large amount of vibration data, which fit well with the concept of “big data”, that 

is a crucial requirement of applying deep learning techniques.  

This chapter presents the development and application of Residual Convolution Neural 

Networks (ResNet) with a bottleneck structure incorporated with skip connection, dropout and 

sub-pixel shuffling techniques for denoising measured vibration signals. The proposed ResNet 

is trained in a supervised manner using training datasets, which consist of paired originally 

measured and synthetic noisy signals. Through training, the important features of training data 

are learned and network parameters including weights and biases of convolutional layers are 

tuned. The trained network is then used to map extracted features from input noisy signals to 

the denoised ones for realizing the denoising. It should be highlighted that the exact noise-free 

vibrational signal is not required for training the network. The proposed approach requires less 

prior knowledge of the structure and human intervention and is very applicable in practice. 

Validations of the proposed method by using the measured vibration data from Guangzhou 
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New TV Tower are conducted to investigate the accuracy and performance of the proposed 

approach.  

In the following sections of this chapter, the architecture, selected hyperparameters of the 

designed ResNet and the involved techniques to enhance the effectiveness of the developed 

approach will be introduced in Section 4.2. Experimental studies on a super-high slender 

structure, namely Guangzhou New TV Tower, are conducted for evaluating the effectiveness 

and performance of using the proposed method for denoising the vibration signals with weakly 

excited and closely spaced modes. The details of the structure, the procedure to implement the 

denoising and the evaluation of the denoised results with comparison to a classic wavelet 

transform based method will also be introduced in Section 4.3. To further verify the robustness 

of the proposed method, Section 4.4 presents an evaluation of the trained network by using 

noisy signal contaminated with pink noise that is not included in the training data. Finally, the 

conclusions made from the denoising results and the recommendations for further studies are 

discussed in Section 4.5. 

4.2 Methodology 

CNN as one of the most remarkable progresses in machine learning is gaining significant 

research interest recently. Instead of extracting features by fully connection layers as 

traditional ANN, CNN formed by stacked convolutional layers can automatically extract 

higher-level features of input data using convolutional kernels. Without fully connection, CNN 

has much fewer trainable parameters and minor overfitting. The proposed ResNet inspired by 

a previous study on audio super resolution (Kuleshov et al., 2017) is a fully convolutional 

feedforward network. The developed ResNet has a bottleneck structure which originates from 

Deep Auto-Encoder (Hinton & Salakhutdinov, 2006) and is named as Convolutional Encoder-

Decoder Network (Badrinarayanan et al., 2017). The bottleneck structure encourages models 

to gradually extract higher-level features of input data by reducing the length of encoder 

features. Meanwhile, the reduction of dimension leads layers to only keep robust features and 

sift noise components. The proposed ResNet utilizes advantages of both bottleneck structure 

and convolutional layers by replacing all the fully connected encoder and decoder layers by 
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convolutional layers. Therefore, compared to Auto-Encoder, convolutional layers consisted of 

multiple convolutional kernels can extract more abundant and comprehensive features with 

minor overfitting effect. 

The main contribution of this work is the sophisticatedly designed ResNet which is 

specialized in performing the denoising task of vibration signals. It is fully convolutional so 

that the network can process input data with different lengths. All the convolutional layers are 

modified as one-dimensional which is very adaptable for one-dimensional vibration signals. 

Furthermore, all these embedded techniques are carefully designed with the following features: 

• Skip connection greatly improves the training efficiency of ResNet.  

• Dropout technique mitigates the overfitting of ResNet.  

• Sub-pixel shuffling technique upscales feature maps and also effectively realizes 

the function of deconvolution. 

Using deep learning techniques to denoise vibration signals has many advantages, such 

as less human intervention on parameter selection of filters and automated feature extraction. 

Previous studies utilized the deep learning technique to denoise photos, speeches and 

electrocardiograms. However, these techniques have not been developed and applied to 

vibration signal denoising in SHM. This chapter proposes a vibration signal denoising 

approach based on deep learning techniques, i.e. ResNet, to remove the noise in the vibration 

measurement data. The feasibility and effectiveness of the proposed technique on vibration 

signal denoising are demonstrated. This is the first attempt of using a deep learning technique 

in denoising the vibration signals. 

4.2.1 The Architecture of the proposed ResNet 

The architecture of the proposed ResNet consists of an input layer, eight convolutional 

layers and one output layer, as shown in Figure 4-1. The input and output layers have the same 

number of neurons, equal to the sampling points of input signals to be denoised. Among the 

convolutional layers, there are three compression layers, one bottleneck layer, three 

reconstruction layers and a final resize layer. The number of bottleneck and resize layers is 

fixed according to the bottleneck structure. The depth of the network is determined by testing 
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the performance of ResNet with 1 to 6 pairs of compression and reconstruction layers. 3 pairs 

of layers are selected since the performance stops gaining after using 3 pairs of layers, while 

the computational burden continues increasing. The compression and bottleneck layers reduce 

the dimension of feature maps and extract the higher-level representation of input signals 

gradually by using convolution kernels with a stride of two. Meanwhile, the number of feature 

maps are doubled to enrich the higher-level features. The output feature maps of the bottleneck 

layer possess the smallest dimensionality but represent the highest level of features of input 

data. Then, ResNet turns to reconstruct output denoised signals only considering the 

representative information of input signals by the reconstruction layers. The reconstruction 

layers gradually enlarge the dimension and reduce the number of feature maps.  

One special operation named skip connection is implemented in the reconstruction layers 

that concatenate output features of reconstruction layers with output features of compression 

layers in mirrored positions as shown in Figure 4-1. The paired original and noisy signals are 

quite similar especially when only a low level of noise exists in the noisy signal. Due to the 

symmetric architecture of ResNet, the layers in the mirrored position are sharing a large 

number of features such as the waveform and structural frequencies information. It has also 

been observed that it is easier to learn residual between the output and input, rather than only 

the input. The skip connections between each pair of layers effectively shuttle the features 

extracted in bottom layers to top layers to provide supplementary information that is lost 

during convolution (Isola et al., 2017). It also allows gradients to be back-propagated to bottom 

layers directly, which mitigates the gradient vanishing and provides the ability to train deeper 

networks efficiently (Mao et al., 2016). On the other hand, skip connections or residual 

connections can be used to skip the training of a few layers. One common issue of deep 

learning based techniques is that if the depth of networks keeps increasing, the accuracy will 

start to saturate at one point and even degrade. In general, the optimal number of layers 

required for a neural network might depend on the complexity of the datasets which is hard to 

determine. Therefore, instead of treating the number of layers as an important hyperparameter 

to tune, by adding skip connections to the network, allowing the network to skip training for 
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the layers that are not useful and do not add value in overall accuracy is beneficial and may 

optimally tune the number of layers during training. 

The configurations of the used ResNet are shown in Table 4-1. The kernel number and 

kernel size are initialized similarly as Ref. (Kuleshov et al., 2017) and determined by final 

turning. Currently, there are no certain rules for selecting hyperparameters of deep learning 

models. Most of studies tune hyperparameters by trial and error. It should be noticed that 

designing an adaptive architecture is much more important than optimizing hyperparameters. 

In this study, it is found that the effectiveness can be guaranteed by simply initializing a large 

model that contains a considerable number of neurons. The model with optimized 

hyperparameters as shown in Table 4-1 has a minor improvement than the initial ones. The 

number of kernels starts from 128 which is a multiple of 2. The kernel number is doubled 

among the compression layers and halved among the reconstruction layers to keep the 

symmetry of the network by using sub-pixel shuffling (will be introduced in Section 4.2.4). 

Since the feature maps are shrunken and then enlarged among the layers, the kernel sizes of 

layers also change to fit with the corresponding size of the feature maps. To guarantee the 

output of bottleneck layer as an integer, the input size should be a multiple of 23, that is 8. 

Owning to the fully convolutional and symmetric architecture, the input length can be any 

times of 8. However, it is recommended to use input data which is larger than 64 points for 

utilizing the full capability of the network. In this study, the dimension of feature maps in 

Figure 4-1 and the input and output shapes of each layer are listed in Table 4-1, based on the 

input size of 1024 points, which is the same as that of the training data samples used in the 

subsequent experimental studies.  
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Table 4-1. The detailed configurations of the used ResNet. 

Layer 
Kernel 

number 

Kernel 

size 
Stride Padding 

Input 

shape 
Output shape 

sub-pixel 

shuffling 

Input - - - - (1, 1024) (1, 1024) - 

C1 128 64 2 Same (1, 1024) (128, 512) N 

C2 256 32 2 Same (128, 512) (256, 256) N 

C3 512 16 2 Same (256, 256) (512, 128) N 

Bottleneck 1024 8 2 Same (512, 128) (1024, 64) N 

R3 1024 16 1 Same (1024, 64) (1024, 128) Y 

R2 512 32 1 Same (1024, 128) (512, 256) Y 

R1 256 64 1 Same (512, 256) (256, 256) Y 

Final 2 8 1 Same (256, 512) (1, 1024) Y 

Output - - - - (1, 1024) (1, 1024) - 

Input (1x1024) Output (1x1024)

Bottleneck

(1024x64)

C1 (128x512)

C2 (256x256)

C3 (512x128) R3 (1024x128)

R2 (512x256)

R1 (256x512)

Final (2x512)

Sub-pixle Shuffling

Convolution

Skip connection

Figure 4-1. The architecture of the used ResNet with a bottleneck structure. 

The compression layers, bottleneck layer, reconstruction layers and the final resize layer 

have different functions with different operations. The compression layers and bottleneck layer 

involve two operations: (1) Convolution of the input; and (2) Nonlinear activation of the output 
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using a Leaky rectifier. The Leaky rectifier will be introduced in Section 4.2.3. The 

reconstruction layers involve four operations which are: (1) Convolution of the input features; 

(2) Nonlinear activation of the output using a Leaky rectifier; (3) Resizing of the activated 

output by the sup-pixel shuffling operation detailed in Section 4.2.4; and (4) Final 

concatenation of the activated output with the features from the compression layer in the 

mirrored position (skip connection). In addition, the last layer contains the convolution and 

resizing operations.  

The ResNet is trained in a supervised manner using paired of noisy and original signals 

as input and output. Hence, the objective of the used ResNet is to minimize the discrepancy 

between predicted denoised signal fϕ(x) and the corresponding original signal yk. The objective 

function selected to optimize the parameters of ResNet is defined as the mean of L2-norm 

error of each sample in a mini batch. The objective function is expressed as 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑‖𝑦𝑘 − 𝑓𝜙(𝑥𝑘)‖2

2
𝑁

𝑘=1

 (4.1) 

where N is the number of samples in each mini batch. The ResNet is simply depicted as a 

nonlinear model fϕ (x) that is parameterized by ϕ. Consequently, the target of the training 

process is to determine ϕ by minimizing the Loss function based on the entire training datasets. 

4.2.2 Dropout technique 

Overfitting is a common issue in training deep neural networks, which means the tuned 

parameters of networks are too closely fitted with training data. Dropout technique is a recently 

developed training strategy which is embedded in the training process of this study to address 

the overfitting issue. Dropout means dropping out neurons and disconnecting those neurons 

with the adjacent input and output layers (Srivastava et al., 2014). Neurons in networks are 

dropped randomly when training with a different batch of samples to break up the co-adapted 

sets of neurons. Those remained neurons are trained more robustly and the generalization 

capacity of the network is enhanced. Dropout technique in signal denoising tasks also omits 

the particular relationships concealed in noisy signals by introducing perturbations (Xu et al., 
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2015). Each neuron has an independent probability p to be dropped. p=0.5 is suggested by the 

inventors and used in this study (Srivastava et al., 2014).  

4.2.3 Leaky rectified linear unit (Leaky ReLU) 

The relationship between noisy and original signals is undoubtedly complex. Linear 

functions are insufficient to model this relationship. Therefore, an activation function that 

transfers the mapping from linear to nonlinear is added after the convolution operation to 

support ResNet to model such a sophisticated nonlinear relationship. Leaky ReLU (Maas et 

al., 2013) as an improved version of ReLU (Nair & Hinton, 2010) is an advanced activation 

function. Leaky ReLU has a nonlinear gradient over its whole domain as follows 

𝑓(𝑥) = {
𝑥,        𝑖𝑓 𝑥 > 0

0.01𝑥, otherwise
 (4.2) 

Compared with ‘sigmoid’ or ‘tanh’ activation functions which squash input into a very 

narrow output range ([0 -1] for ‘sigmoid’, and [-1 1] for ‘tanh’), Leaky ReLU has a broad 

range of output which prevents the gradient vanishing. Meanwhile, it allows a non-zero small 

gradient to overcome the defect of ReLU, that is, a neuron is potentially not be activated once 

a large gradient passes it (Maas et al., 2013). 

4.2.4 Sub-pixel shuffling operation 

To implement the skip connection, the lengths of feature maps in bottom layers to higher 

layers should be consistent. As shown in Figure 4-1, the output feature maps of the 

reconstruction layer have half of the length but double the number of the output of the 

corresponding compression layer. The sub-pixel shuffling operation is involved to resize the 

output feature maps from the reconstruction layers. Figure 4-2 demonstrates an example of the 

sub-pixel shuffling with four feature maps consisting of 6 features each. It divides the feature 

maps into two groups and combines two feature maps in the same order of each group as one 

by interpolating one to another. It is a one-dimensional case of a sub-pixel convolution layer 

(Shi et al., 2016). This is an efficient operation for shuffling, which costs less computation 
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than deconvolution. It has also been attested to have strong workability that introduces less 

artefact in the output (Odena et al., 2016).  

 

1-1 3-1 1-2 3-2 1-3 3-3 1-4 3-4 1-5 3-5 1-6 3-6

2-1 4-1 2-2 4-2 2-3 4-3 2-4 4-4 2-5 4-5 2-6 4-6

Divide as 

two groups
Shuffling1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

 

Figure 4-2. An example of the one-dimensional sub-pixel shuffling with 4 feature maps and 

6 elements in each map. 

4.2.5 Evaluation criteria 

 The direct evaluation of the quality of denoised signals is conducted by using Signal to 

Noise Ratio (SNR). Given the original signal y and the noisy signal y', noise is estimated as 

the difference between two signals as y - y'. SNR in decibels (dB) is expressed as, 

where n is the total number of sampling points. SNRs of noisy and denoised signals are 

computed against the corresponding original signals, respectively. Furthermore, the quality of 

noisy and denoised signals in the frequency domain is also considered. Original, noisy and 

denoised signals are transferred to the frequency domain by using Fast Fourier Transform 

(FFT). The discrepancy of signals in the frequency domain is evaluated by using L2-norm, and 

is calculated as 

ξ =
‖𝑓 − 𝑓′‖2

2

‖𝑓‖2
2 =

√∑ (𝑓𝑖 − 𝑓𝑖
′)2𝑛

1

√∑ 𝑓𝑖
2𝑛

1

 
(4.4) 

where f is the original signal in the frequency domain, and f' is the noisy or denoised signals 

in the frequency domain. 

Modal parameters including natural frequencies, damping ratios and mode shapes are 

widely used in vibration-based SHM for damage detection and condition assessment. This 

study also evaluates the effectiveness of using the proposed approach for signal denoising by 

comparing the identification accuracy of modal parameters from noisy and denoised signals. 

SNR = 10 × log10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
= 10 × log10

∑ 𝑦𝑖
2𝑛

1

∑ (𝑦𝑖 − 𝑦𝑖
′)2𝑛

1

 (4.3) 
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Modal analysis of vibration signals is conducted by using a frequency domain non-parametric 

method named Frequency Domain Decomposition (FDD) (Brincker et al., 2001), which is a 

mature operational modal analysis method that has been successfully applied in many studies 

on civil structures. Modal analysis by using FDD method demands engineering experiences to 

distinguish physical modes with spurious modes caused by noise and weakly excited local 

modes. In this case, signals with a low-level noise can produce clearer output diagrams and 

therefore promote users to select structural modes more accurately with less false 

identifications. The comparison of identification results is performed from both qualitative and 

quantitative analyses. The qualitative evaluation of the proposed approach is conducted by 

observing the output of FDD, which shows decomposed singular values of power spectral 

matrix. On the other hand, quantitative evaluation of results is based on the identification 

accuracy of using noisy, denoised and original signals for modal identification. The accuracies 

of frequencies and damping ratios are evaluated by relative error and absolute error, 

respectively. Modal Assurance Criterion (MAC) is used to investigate the accuracy of 

identified mode shapes, which measures the similarity between two mode shape vectors. 

4.3. Experimental validations 

To demonstrate the effectiveness and robustness of using the proposed approach based 

on ResNet for vibration signal denoising, experimental studies using the in-situ acceleration 

data measured from a long-term SHM system on Guangzhou New TV Tower are conducted. 

The vibration signals of Guangzhou New TV Tower contain weakly excited and closely 

spaced vibration modes. Improving quality of signals and removing noise components without 

compromising the identification accuracy of these two kinds of modes are challenging for 

conventional signal denoising methods, especially for selecting bandwidths of filters for the 

frequency domain methods and selecting wavelet basis and noise eliminating thresholds for 

the time-frequency domain methods. In this experimental study, instead of training multiple 

networks for denoising signals of each channel, two ResNets for denoising acceleration 

responses of Guangzhou New TV Tower in the short and long-axis directions are trained 

separately for improving efficiency. These two ResNets have the same architecture and 
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hyperparameters but are trained separately with specific datasets to achieve the signal 

denoising tasks in two directions. 

4.3.1 Guangzhou New TV Tower and its SHM system 

Guangzhou New TV Tower is a 604 meters tall slender structure located in Guangzhou, 

China. It was completed in 2009 and started operation from 2010. As shown in Figure 4-3(a), 

Guangzhou New TV Tower is a supertall tube-in-tube structure, which consists of a reinforced 

concrete inner tube and a steel outer tube with concrete-filled-tube (CFT) columns. Totally 37 

floors connecting the inner tube and the outer tube are constructed for different functions such 

as offices, entertainment, catering and especially for emission of television signals. A 

comprehensive SHM system including more than 600 sensors such as accelerometers, strain 

gauges and other types of sensors, has been installed on the tower for real-time monitoring to 

acquire the vibration responses and environmental conditions of the structure at both 

construction and in-service stages. Figure 4-3(b) shows the deployment of accelerometers and 

data acquisition system for the in-service stage. The installed accelerometers measure the 

acceleration responses of the tower in both short-axis direction with sensors numbers 1, 3, 5, 

7, 8, 11, 13, 15, 17 and 18, and long-axis direction with sensors numbers 2, 4, 6, 9, 10, 12, 14, 

16, 19 and 20. The sensor directions are properly aligned before measurement. The sampling 

frequency of the data acquisition system is set as 50 Hz and raw measurements are filtered by 

a high-pass filter with a 0.05 Hz cutoff frequency. More details of the structure and the 

installed SHM system can be found in Ref. (Ni et al., 2009). The previous studies have shown 

the effectiveness of the SHM system (Chen et al., 2011; Xia et al., 2011) and it has become a 

benchmark platform for high-rise structures.  
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(a) 

 

(b) 

Figure 4-3. (a) Guangzhou New TV Tower; (b) Sensor deployment and data acquisition 

(Chen et al., 2011). 
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4.3.2 Preparation of the datasets for training and testing the network 

Quality of datasets significantly affects training performance of networks. An abundant 

dataset can properly fine-tune trainable parameters and provides a robust neural network. 

Long-term SHM systems continuously collect a massive amount of vibration responses, such 

as strain and acceleration data. In this study, totally 24 hours of the long-term monitoring 

acceleration data from the in-service stage are processed as the datasets to validate the 

proposed approach. Measured acceleration data from two directions are separated but 

processed with the same procedure. These 24 hours data are split as 18 hours, 3 hours and 3 

hours (75%, 12.5% and 12.5%) for training, validation and testing of the network. The training 

data are used to train and fine-tune the trainable parameters of the network. The validation 

data are used to evaluate the network during training process for real-time checking the 

convergence and overfitting. It should be mentioned that the validation data will not be 

involved in tuning the parameters. The testing data are prepared to test the performance of 

trained networks. When considering the lifetime of the SHM system, it is practical and 

effective to train a robust ResNet for denoising incoming data by using only 18 hours of 

measured data 

Pre-processing of the original measurements is based on the modal analysis results of the 

structure in a previous study (Chen et al., 2011) using field measurements and a calibrated 

finite element model. Vibration modes of this structure are closely spaced, where 15 modes 

can be observed from 0 Hz to 2 Hz (Zhang et al., 2016). In general, the first several modes 

contribute most of structural vibrations. Hence, the frequency bandwidth to be considered in 

this study is selected as 0 Hz and 2 Hz. To eliminate the redundant information merged in 

original measured signals, low-pass filtering with a cut-off frequency of 2.5 Hz is first 

implemented. After filtering, signals are processed by downsampling the sampling frequency 

from 50 Hz to 5 Hz. These two pre-processing steps are not compulsory but are important for 

efficient training of the used ResNet. The filtering process eliminates high frequency noise 

components and the very high order local vibration modes that beyond the consideration. The 

filtered signal contains the most important information, which means that a relatively simple 
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nonlinear relationship needs to be constructed to map the input to the output in the training 

process. Since the architecture of ResNet remains unchanged, the training time mainly depends 

on the size of training datasets. The downsampling process reduces the size of datasets by ten 

times and consequently improves the training efficiency significantly. After the data are 

properly pre-processed, the training and validation datasets are generated in pairs of input and 

output data corresponding to the noisy and original acceleration signals. Since collecting 

purely clean acceleration signals is impossible for any practical vibration test, the original 

signal used as output of the network has been already contaminated with varying levels and 

different kinds of noises in experimental tests. The noisy signals are generated by further 

injecting white noise to the corresponding pre-processed original signals as  

𝑆𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦 = 𝑆𝑖𝑔𝑛𝑎𝑙𝑐𝑙𝑒𝑎𝑛 +𝑁𝑜𝑖𝑠𝑒 × 𝑁𝑙 (4.5) 

where Noise is a normally distributed random vector with zero mean and standard deviation 

of the original vibration signals (Li & Law, 2009), and Nl is the noise level. When generating 

the training and validation datasets, an original signal will be paired with 9 noisy signals 

respectively. These 9 noisy signals are contaminated by a certain level of noise from 10% to 

90% with a 10% increase step. In addition, the Noise vector for each noisy signal and each 

channel is random and different, which is realistic for in-field measurements. The paired 

acceleration signals are finally normalized to the range from -1 to 1 to facilitate training 

stability following the below equation 

𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 (|𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛|)
(4.6) 

The paired normalized original signal and noisy signals are depicted in Figure 4-4. The 

parameters of a network may not be properly tuned and the computational demand will be 

significant if all the training data are served as input to the network at the same time. Therefore, 

the training and validation samples (one-hour long each) are formed as small patches, that are 

segmented from full-time histories of the processed acceleration data and are then grouped as 

small batches to train the networks in turn. To generate the training and validation samples, a 

window with a length of 1024 points is implemented for scanning all the training or validation 
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data from the beginning to the end with a 50% overlap. All the generated samples are mixed 

together with a random order to form the training or validation datasets. Testing datasets are 

generated using three hours of acceleration data. These three hours data are processed as three 

groups of testing data named Testing data 1 to 3. Each group contains 9 testing samples that 

are 9 one-hour-long noisy signals with different random white noises and noise levels. As a 

result, two sets of training, validation and testing datasets for short-axis and long-axis 

directions are produced respectively. 

 

 

Figure 4-4. Original and noisy signals with different noise levels. In the time domain: (a) 

10%, (c) 30%, (e) 50%, (g) 70% and (i) 90% and in the frequency domain: (b) 10%, (d) 

30%, (f) 50%, (h) 70%, (j) 90%. 
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4.3.3 Results from testing data with white noise 

The computer used for training these networks has a GTX1060 GPU, an i7-6700K CPU 

and 16GB memory. With the abundant datasets, the network converges very fast. The size of 

the mini batch is 64 and the whole training datasets are repetitively used to turn the trainable 

parameters of the network 10 times. Two ResNets are trained individually and the training 

time for each ResNet is around 3 hours. The testing datasets are then used to validate the 

trained networks. It takes around 4 seconds for each testing sample to produce the denoised 

signal. It should be mentioned that a testing sample is one-hour long acceleration data from 

ten channels, however, only a short processing time is needed. 

4.3.3.1 Evaluation of results in time and frequency domains 

SNRs of the input noisy and output generated denoised signals are computed based on 

Equation (4,3). The comparison of SNRs for the noisy and denoised signals of each group in 

the short-axis and long-axis directions are shown in Figure 4-5. With the increasing level of 

noise, the SNR of the noisy signals decreases, which confirms that the noise has been correctly 

injected into the original signal. The SNRs of the denoised signals reduce with the increase of 

noise level monotonously, but are larger than those of the noisy signals for most noise levels 

of the testing data. The SNR of the denoised signals is up to 8 times better than the 

corresponding noisy ones. These results indicate that noise components are effectively 

eliminated from the noisy signals and the denoised signals become closer to the corresponding 

original signals. The effectiveness of the proposed approach is also validated by evaluating the 

signals in the frequency domain using Equation (4.4). The results as shown in Figure 4-6 

demonstrate that the errors significantly decrease by using the proposed approach for the signal 

denoising, especially when the noise level is high. The errors in the frequency domain reduce 

more than 30% when the noise level reaches 90% for Testing data 1 in both directions and 

Testing data 2 in the short-direction as shown in Figures 4-6(a) – (c). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-5. Comparison of SNRs of noisy and denoised signals. Results for short-axis 

direction: (a) Testing data 1; (c) Testing data 2 and (e) Testing data 3. Long-axis direction: 

(b) Testing data 1; (d) Testing data 2 and (f) Testing data 3. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-6. Comparison of errors of noisy and denoised signals in the frequency domain. 

Results for short-axis direction: (a) Testing data 1; (c) Testing data 2 and (e) Testing data 3. 

Long-axis direction: (b) Testing data 1; (d) Testing data 2 and (f) Testing data 3. 

 

The trained ResNet remarkably enhances the quality of signals in both the time and 

frequency domains. However, denoising of the signals with 10% noise is an exception where 
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the SNRs decrease and the spectral errors increase by the denoising process. The measured 

acceleration data from channel 18 of Testing data 1 in the long direction is selected to explain 

this phenomenon. The pre-processed original signal of the selected data is used as input to the 

trained ResNet. PSD spectra of the input original and the output denoised signals, as well as 

the PSD errors, are shown in Figure 4-7. The PSD errors are the discrepancy of amplitudes for 

each frequency interval. It can be observed that the structural frequency components of the 

denoised signal remain highly consistent with those of the original signal, while the power of 

noise components in non-structural frequency bandwidths are decreased. That means the 

proposed method can not only reduce the manually injected noise but also mitigate the 

measurement noise. 

Therefore, the potential reason for the decrease of SNR and the increase of frequency 

spectra error when denoising noisy signals with 10% injected noise can be attributed to that 

the proposed approach reduces the artificially injected noise as well as the measurement noise 

existed in the original signal at the same time. The reduction of the noise in the original signal, 

which is used as the bench mark for comparison, enlarges the discrepancy between the original 

and the denoised signals and causes a decrease of SNR when the injected noise is less 

significant. It has to be mentioned that the purpose of this study is not to recover but denoise 

the original signal, reduction of the noise in the original signal in practice improves the quality. 

These results indicate that the proposed ResNet can accurately extract the important features 

from the training datasets, which are the vibrational characteristics of the Guangzhou New TV 

Tower. The finding corresponds well with that in a previous study (Lin et al., 2017) where the 

stacked convolutional layers can automatically extract the features of vibration data, which are 

very similar to the natural frequencies and mode shapes of the structure. Therefore, the 

proposed approach operates as an auto-adaptive filter to denoise signals regardless of the noise 

level and source. 
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Figure 4-7. PSD spectra of the pre-processed original and denoised signals, and the errors in 

PSD. 

4.3.3.2 Comparison of results with wavelet transform based method 

Wavelet transform based method is one of the most popular and most researched methods 

for vibration signal denoising in the current literature, therefore it is selected for comparing 

the performance with the proposed method. Wavelet transform decomposes signals into 

different scales by using a selected mother wavelet function. It concentrates features of signals 

in a few scale components with large wavelet coefficients. Scale components with small 

wavelet coefficients that are lower than a defined threshold are categorized as noise and would 

be removed. With the defined threshold of the coefficients, a signal is then reconstructed as a 

denoised one using the remained scale components by conducting inverse wavelet transform. 

Parameters including the mother wavelet function, level of wavelet decomposition and 

threshold are carefully chosen. In this study, for denoising measured acceleration data of 

Guangzhou New TV Tower, Symlet wavelet with 8 vanishing moments (Sym8) is used as the 

mother wavelet function. The level of decomposition is tested from 1 to log2N (14), where N 

is the total number of sampling points. By comparing SNR value of denoised signals with 

different levels of decomposition, level 1 decomposition is finally applied. The threshold is 

defined by using an empirical Bayesian method with a Cauchy prior and a posterior soft 

threshold rule (Johnstone & Silverman, 2005). PSD spectra of the original signal, noisy signal 

with 90% noise and denoised signals by using the trained ResNet and wavelet transform based 
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method are also computed and compared in Figure 4-8. Figures 4-8(a) and (d) show that the 

injected noise seriously contaminates the original signal. More than half of natural frequencies 

with relatively low power existing in the considered frequency bandwidths are masked by the 

intensive noise. In this case, natural frequencies are difficult to be identified from the noisy 

signals without denoising. In contrary, PSDs of the denoised signals by the trained ResNet as 

shown in Figures 4-8(b) and (e) have much clearer spectra, where noises existed in the non-

structural frequency bandwidths are effectively eliminated, leading to a fact that natural 

frequencies can be identified accurately. Comparing PSDs of the noisy and denoised signals, 

the noise level is effectively reduced and there is a very limited influence on using the power 

spectrum for natural frequency identification based on the denoised signals. The proposed 

approach automatically learns the vibration features of the structure through training. 

Recalling the results demonstrated in Figure 4-6, the errors in the frequency domain between 

the original and denoised signals is evaluated by considering the entire frequency bandwidth. 

The performance of the proposed approach is in fact even better if only the most useful 

information, i.e. the frequency intervals around natural frequencies are considered.  

By observing the PSDs of the denoised signals by using the trained ResNet and wavelet 

transform based method as shown in Figures 4-8(c), (d), (e) and (f), it is obvious that the 

proposed approach outperforms the wavelet transform based method on denoising vibration 

signals. Wavelet transform has a minor improvement in signal quality on denoising the 

injected and measurement noises. It can be explained that with heavy noise contamination in 

signals, the wavelet transform based method becomes ineffective to localize the vibration 

features. Only the information in the selected scales is stored and recovered, therefore it could 

be difficult to eliminate noise by simply defining a threshold for the wavelet transform based 

method for signal denoising. 
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(a) 

(b)  
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(d)
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(e) 

 

(f) 

Figure 4-8. Comparison of PSD spectra of signals in Testing data 1, Short-axis direction: (a) 

Original and noisy signals with 90% noise; (b) Original and ResNet denoised signals; (c) 

Original and wavelet denoised signals. Long-axis direction: (c) Original and noisy signals 

with 90% noise; (d) Original and ResNet denoised signals. (f) Original and wavelet denoised 

signals. 

4.3.4 Modal analysis of the testing results using denoised signals 

4.3.4.1 Quantitative evaluation of the denoised signals 

FDD is a robust modal analysis method with strong noise immunity especially to white 

noise. It is noted that the quality of selected testing vibration signals from Guangzhou New 

TV Tower is high. Only a few modes are buried by 90% noise as shown in the above studies. 

To further investigate the effectiveness of the approach and the usability of denoised signals, 

special testing data are generated by using the original signal of Testing data 1. The selected 

signal is contaminated by a very severe noise with a 500% noise level. Figures 4-9 and 4-10 

show the identification results of original, noisy and denoised signals in the short and long-

axis directions using FDD. Figures 4-9(a) and 4-10(a) demonstrate the high quality of the 

original signals, where all the 15 physical modes can be identified and few spurious modes are 
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observed. Figures 4-9(b) and 10(b) show that under such strong noise, the usability of signals 

is significantly affected with most of the modes submerged by the noise except several strongly 

excited modes as marked with green dash arrows. In addition, the noise effect at some 

frequencies is very pronounced as marked with the red arrows in Figures 4-9(b) and 4-10(b), 

which may confuse the engineers’ judgement and lead to false identification results. Noisy 

signals with such a low quality are potentially discarded if no efficient denoising process is 

conducted. To mitigate the noise effect, the noisy signals are used as input to the corresponding 

trained ResNets for denoising. Modal analysis of the output denoised signals is conducted. 

Figures 4-9(c) and 4-10(c) present the singular value spectra from FDD analysis with the 

denoised signals in both directions, respectively. The excellent performance of the proposed 

approach is obvious on denoising signals contaminated by such severe noises. All those 15 

natural frequencies of the structure can be clearly identified from the denoised signals. Both 

the manually injected and the measurement noise with frequencies outside the natural 

frequency bandwidths are effectively eliminated. It should be mentioned that these two 

ResNets are trained with noisy signals containing a maximum of 90% noise. The results 

demonstrate that the proposed approach can denoise signals with much more severe noise than 

the training samples. Comparing Figures 4-9(b) and (c) and Figures 4-10(b) and (c), the 

singular value spectra of the denoised signals are much clearer than those of noisy signals, 

indicating that the quality of the signal is enhanced significantly. It should be highlighted that 

the noise within five very closely spaced modes between 0.36 Hz and 0.56 Hz is successfully 

cleaned without affecting the adjacent structural vibration modes. Moreover, these five modes 

in the denoised signals are accurately separated without any false identification, which is 

difficult for the traditional methods to define the bandwidths of filters if no prior information 

of those four modes is provided. The previous findings confirm that ResNets can automatically 

extract the most important features of the vibrational signals from the noisy signals and 

mapping the noisy input to a cleaner one. The results demonstrate that the proposed approach 

is effective and reliable for vibration signal denoising. 
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(a)  

 

(b)  

 

(c) 

Figure 4-9. Singular value spectra of: (a) original; (b) noisy; and (c) denoised signals of 

Testing data 1 in the short-axis direction. 
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(a) 

(b) 

(c) 

Figure 4-10. Singular value spectra of: (a) original; (b) noisy; and (c) denoised signals of 

Testing data 1 in the long-axis direction.  

4.3.4.2 Evaluation of identified modal parameters 

To evaluate the denoising accuracy, the identified natural frequencies and damping ratios 

of vibration modes within 2 Hz from original, noisy and denoised signals of Testing data 1 are 

listed in Tables 4-2 and 4-3 for short and long-axis directions, respectively. Modal 

identification results using the original signals show good consistency with those in Ref. 

(Zhang et al., 2016). Regardless of the spurious modes and submerged weakly excited modes, 

most of the identified natural frequencies from the noisy signal are very similar to those from 

the original signals as presented in Tables 4-2 and 4-3. Large frequency errors of the 11th 

mode in the short-axis direction and the 13th mode in the long-axis direction are observed and 

Spurious Submerged
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classified as false identifications, where the spectrum of the noise is stronger than the adjacent 

natural frequencies. In contrast, all the identified natural frequencies from the denoised signal 

are very accurate. Minor differences can be found in the weakly excited modes such as the 

2nd, 4th and 9th modes in the short-axis direction. Five closely spaced modes i.e. the 3rd to 

7th modes of the structure are well separated and the identification of these five modes is 

highly accurate in both directions. These results indicate that the used ResNet has mined and 

memorized different features for these five modes consisted in the vibration signals without 

any manual intervention. In addition, by comparing the errors in the identified natural 

frequencies of the noisy and denoised signals, it can be found that the vibration signal 

denoising process slightly improves the identification accuracy of those strongly excited 

modes as well. 

As shown in Tables 4-2 and 4-3, the identification of the damping ratios is not as accurate 

as the natural frequencies. The injected serious noise leads to estimation of damping ratios 

very tough. As a result, the identified damping ratios from the noisy and denoised signals have 

relatively large differences compared with those obtained from the original signals. No clear 

relationship can be found between the estimation accuracy of damping ratios and the denoising 

process. However, with the denoised signals, the damping ratios of all those 15 modes can be 

successfully identified. It should be noted that the damping ratios can only be identified for a 

limited number of modes if noisy signals are used. 
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Table 4-2. Identified natural frequencies and damping ratios from original, noisy and 

denoised signals in the short-axis.  

Original signal Noisy signal Denoised signal 

mode 
f 

(Hz) 

ξ 

(%) 
f (Hz) 

Error 

(%) 
ξ (%) 

Error 

(%) 
f (Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

1 0.094 0.62 0.094 0.00 0.33 0.29 0.094 0.00 0.40 0.22 

2 0.139 0.35 - - - - 0.139 0.32 0.78 0.43 

3 0.367 0.16 0.365 0.66 0.54 0.38 0.367 0.12 0.20 0.04 

4 0.424 0.11 - - - - 0.425 0.29 0.13 0.02 

5 0.475 0.22 0.475 0.00 0.23 0.01 0.475 0.00 0.36 0.13 

6 0.505 0.12 - - - - 0.507 0.24 0.49 0.37 

7 0.522 0.09 0.522 0.00 0.21 0.12 0.522 0.00 0.15 0.06 

8 0.796 0.19 - - - - 0.796 0.00 0.51 0.32 

9 0.968 0.25 - - - - 0.967 0.13 0.36 0.11 

10 1.151 0.11 1.151 0.00 0.15 0.04 1.151 0.00 0.11 0.00 

11 1.191 0.07 1.213 1.84 1.67 1.60 1.191 0.00 0.12 0.05 

12 1.249 0.16 - - - - 1.250 0.10 0.13 0.03 

13 1.388 0.28 1.388 0.00 0.48 0.20 1.388 0.00 0.31 0.03 

14 1.641 0.30 - - - - 1.639 0.07 0.23 0.07 

15 1.945 0.50 - - - - 1.948 0.19 0.55 0.05 

Note: f: frequency; ξ: damping ratio. 

 
      

Table 4-3. Identified natural frequencies and damping ratios from original, noisy and 

denoised signals in the long-axis.  

Original signal Noisy signal Denoised signal 

mode 
f 

(Hz) 

ξ 

(%) 
f (Hz) 

Error 

(%) 
ξ (%) 

Error 

(%) 
f (Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

1 0.094 2.12 0.094 0.09 1.55 0.57 0.094 0.00 1.72 0.40 

2 0.139 0.66 0.139 0.00 0.76 0.10 0.139 0.00 0.49 0.18 

3 0.367 0.23 - - - - 0.368 0.12 0.40 0.16 

4 0.424 0.07 0.424 0.00 0.03 0.03 0.424 0.00 0.02 0.04 

5 0.475 0.21 0.475 0.00 0.51 0.30 0.475 0.00 0.68 0.47 

6 0.505 0.16 0.507 0.24 1.36 1.20 0.506 0.04 0.12 0.03 

7 0.522 0.10 0.522 0.00 0.17 0.07 0.522 0.00 0.12 0.02 

8 0.796 0.28 - - - - 0.795 0.15 0.32 0.04 

9 0.968 0.24 0.968 0.00 0.71 0.47 0.968 0.00 0.22 0.02 

10 1.151 0.13 - - - - 1.151 0.00 0.14 0.01 

11 1.191 0.05 1.191 0.00 0.05 0.00 1.191 0.00 0.28 0.22 

12 1.249 0.18 - - - - 1.250 0.10 0.73 0.55 

13 1.388 0.30 1.464 5.45 2.08 1.78 1.388 0.00 0.50 0.20 

14 1.641 0.22 1.641 0.00 0.33 0.11 1.641 0.00 0.62 0.40 

15 1.945 0.60 - - - - 1.947 0.13 1.20 0.60 

Note: f: frequency; ξ: damping ratio.       
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To evaluate the accuracy of the identified mode shapes, for those true mode shapes of the 

structure, MAC values between the mode shapes from the original signal and those from the 

noisy signals with 90% and 500% noises, and MAC values between the mode shapes from the 

original signals and those from the denoised signals, for short and long-axis directions, are 

shown in Figures 4-11 and 4-12, respectively. It can be observed that the proposed approach 

can assist in extracting the modes buried in noise effectively. A relatively large discrepancy 

can be observed between the original and the ones identified from the noisy and denoised 

signals when the noise level reaches 500%. The identified mode shapes of the noisy and 

denoised signals are similar for the strongly excited modes. It is noted that the injected 

significant noise is random for each channel. The inaccuracy in mode shapes can be attributed 

to that for each channel, the signal components with the same frequencies as the structural 

natural frequencies are affected by the noise effect in varying extents. When denoising the 

noisy signal, the proposed approach is mainly concentrated on denoising the noise outside the 

natural frequency bandwidths. To the best of the authors’ knowledge, to distinguish and 

eliminate the measurement noise on structural vibration frequencies is a very difficult problem 

for all the state-of-the-art denoising methods to address. In practice, 500% noise can rarely 

happen during the field measurements. As can be seen in Figures 4-11 and 4-12, mode shapes 

identified from the noisy signals with 90% noise and the corresponding denoised signals are 

very accurate, where the MAC values of most of the vibration modes are higher than 0.99. 

This is because white noise has limited influences on the mode shapes, therefore even 90% 

white noise is injected into the signal, the mode shape can still be well extracted. These results 

demonstrate that the vibrational characteristics, such as frequencies and mode shapes, can be 

preserved after vibration signal denoising by the proposed approach. 

 



121 

Figure 4-11. MAC values of the identified mode shapes in the short-axis direction. 

Figure 4-12. MAC values of the identified mode shapes in the long-axis direction. 

4.4 Discussion on the effect of pink noise 

In the above studies, the performance of the proposed method is proved to be effective to 

denoise signals with serious white noises. However, field measurements could be 

contaminated by different types of noises. A signal denoising method that is only capable of 

eliminating one kind of noise is impractical for SHM. To further evaluate the applicability of 

the proposed method in practice, a group of testing data contained with increasing levels of 

pink noise is generated using the same original signal as Testing data 1. Different from white 

noise with energy intensity equally distributed in the whole frequency bandwidths, PSD of 

pink noise is inversely proportional to the frequency 𝑓 which can be expressed as, 

𝑃𝑆𝐷𝑝𝑖𝑛𝑘 𝑛𝑜𝑖𝑠𝑒 ∝
1

𝑓
(4.7) 
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The means to generate a noisy signal with pink noise is similar to that of white noise 

using Equation (4.5). The difference is that Noise vector becomes a time sequence of pink 

noise with zero mean and standard deviation of the original signal. 

Figure 4-13 shows the denoised results of both short and long-axis directions in time and 

frequency domains. The increase of SNR and the decrease in the errors of the frequency 

spectrum of denoised signals indicate that the injected pink noise is effectively mitigated by 

the proposed approach. The performance of denoising pink noise is close to that for white 

noise, which demonstrates the robustness of the proposed method. The error in the frequency 

domain is higher than that of the white noise cases, because the original signal is high-pass 

filtered by 0.05Hz while the pink noise has the strongest power in this frequency interval. This 

notable discrepancy in this non-target frequency range causes a large error, as shown in Figure 

4-14. From this figure, it can also be observed that the quality of PSD spectra of the denoised 

signals is much higher than that of the noisy signal. The merged natural frequencies by the 

pink noise can be clearly identified and the spurious modes are much fewer after denoising. 

The results of denoising pink noise in vibration signals show that the proposed approach is 

robust for eliminating different types of noise, indicating the feasibility and broad application 

range of the proposed method for denoising vibration signals. 
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(a) (b) 

  

(c) (d) 

Figure 4-13. Comparison of errors of the noisy and denoised signals in the time and 

frequency domains. Results for short-axis direction in: (a) Time domain and (c) Frequency 

domain; Long-axis direction in: (b) Time domain and (d) Frequency domain. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 4-14. Comparison of PSD spectra for original, noisy and denoised signals. Short-

axis direction: (a) Original signal and noisy signal with 90% noise; (b) Original and 

denoised signals; Long-axis direction: (c) Original signal and noisy signal with 90% noise; 

(d) Original and denoised signals. 
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4.5 Conclusions 

This chapter proposes a ResNet based vibration signal denoising approach to remove 

noise in vibration measurement data. The details of the sophisticatedly designed ResNet and 

involved techniques to improve the capability of the network are elaborated. The effectiveness 

and robustness of the developed approach are demonstrated by using recorded data on 

Guangzhou New TV Tower. Testing results demonstrate that the proposed approach 

effectively improves the quality of noisy signals injected with varying levels and types of 

noises. Modal identification of noisy and denoised signals shows that natural frequencies of 

the weakly excited modes submerged by the noise effect and the closely spaced modes can be 

clearly identified after denoising. These results indicate that the used networks extract the most 

important features from the training datasets, namely vibrational characteristics of the structure. 

The results also demonstrate that the proposed approach has a strong robustness to eliminate 

another type of noise, i.e. pink noise, although it is not included in training datasets. On the 

other hand, the networks learn the features such as natural frequencies of the structure 

automatically and can help to distinguish physical modes from spurious modes to a certain 

degree. The improvement in the identification of damping ratios and mode shapes is limited. 

Future studies can be conducted to address the limitation by using improved deep learning 

networks and objective functions. 
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CHAPTER 5 DYNAMIC RESPONSE 

RECONSTRUCTION FOR STRUCTURAL HEALTH 

MONITORING USING DENSELY CONNECTED 

CONVOLUTIONAL NETWORKS  

Abstract: This chapter proposes a novel dynamic response reconstruction approach for 

structural health monitoring by using Densely Connected Convolutional Networks 

(DenseNets). Skip connection and dense block techniques are carefully applied in the designed 

network architecture, which greatly facilitates the information flow, increases the training 

efficiency and accuracy of feature extraction and propagation with fewer parameters in the 

network. Sub-pixel shuffling and dropout techniques are used in the designed network and 

applied to reduce the computational demand and improve training efficiency. The network is 

trained in a supervised manner, where the input and output are the measurements of the 

available channels at response available locations and desired channels at response unavailable 

locations. The proposed DenseNets automatically extracts the high-level features of the input 

data and constructs the complicated nonlinear relationship between the responses of available 

and desired locations. Experimental studies are conducted using the measured acceleration 

responses from Guangzhou New Television Tower to investigate the effects of the locations 

of available responses, the numbers of available and unavailable channels, and measurement 

noise. The results demonstrate that the proposed approach can accurately reconstruct the 

responses in both time and frequency domains with strong noise immunity. The reconstructed 

response is further used for modal identification to demonstrate the usability and accuracy of 

the reconstructed responses. The applicability of the proposed approach for structural health 

monitoring is further proved by the highly consistent modal parameters identified from the 

reconstructed and true responses. 

This chapter was accepted by Structural Health Monitoring with the full bibliographic 

citation as follows: Fan G, Li J, Hao H. (In press). Dynamic response reconstruction for 

structural health monitoring using densely connected convolutional networks. Structural 

Health Monitoring. 
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5.1 Introduction 

Ensuring the safety and reliability of civil engineering structures is an important agenda 

in society. To real-time monitor and assess the structural condition and early report the 

anomaly in structural conditions and vibration behaviour, an increasing number of long-term 

structural health monitoring (SHM) systems have been installed on large-scale civil 

engineering structures, such as bridges and high rise slender structures (Cross et al., 2013; 

Nguyen et al., 2015; Ni et al., 2009; Xia et al., 2013). However, during the long-term 

monitoring, it is possible that measurement data from one or more sensors could be lost due 

to the technical issues such as the malfunction of cable connections, power supply interruption, 

signal transmission disturbance, sensor malfunction, or regular maintenances such as 

equipment check and sensor replacement. In practice, the locations of installed sensors on the 

monitored structures are selected carefully, and the number of sensors is much smaller 

compared to the total number of degrees of freedom (DOFs) of structures because of the 

limitations on the budget and available channels of data acquisition systems (Law et al., 2011), 

and the inaccessibility of some locations for measurement during operations (Kammer, 1997). 

Credible damage detection and condition assessment techniques assume that all the sensors 

are functioning in perfect condition (Ma et al., 2018). The incomplete acquired measurements 

that miss signals of one or more channels will greatly affect the performance of structural 

condition monitoring since some important local information of structures could be lost. For 

example, under the extreme events, SHM data could be lost due to the malfunction of systems 

and the lack of power supply of some sensors and data acquisition systems. However, the 

measurement data under those events are important for assessing structural conditions and 

evaluating the damage severities. As a result, structural dynamic response reconstruction of 

the lost data for some channels becomes an important research topic in the field of SHM. 

In the past decades, several types of methods regarding the reconstruction of dynamic 

responses have been proposed utilizing the finite element model (FEM) based techniques. 

Transmissibility concept (Ribeiro et al., 2000) based structural response reconstruction 

methods were studied in both the frequency domain (Law et al., 2011) and wavelet domain 
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(Li & Law, 2011). The responses at the desired locations are reconstructed using the responses 

at other measured locations by using the transmissibility matrix. The limitation of these 

methods is that the information on the locations of the input excitations is necessary, and an 

accurate FEM is required. Deriving the transformation matrix utilizing the FEM of the 

structure to obtain the response at unavailable through the available response is another typical 

method (Kammer, 1997). This research is further combined with empirical mode 

decomposition (EMD), which decomposes the measurable time domain data into several 

Intrinsic Mode Function (IMFs), and reconstructs the responses at unavailable DOFs using the 

independent transfer equation of each IMF (He et al., 2012; Wan et al., 2014). The selection 

of IMFs is manually conducted, leading to the performance of the methods highly dependent 

on empirical experiences. An alternative structural response reconstruction method was 

developed based on optimal multi-type sensors placement and Kalman filter with unknown 

excitations (Xu et al., 2016; Zhang & Xu, 2016). Minimum-variance unbiased estimates of the 

generalized state of the structure and the external excitations were computed based on the 

measurements of the carefully selected locations. The generalized state of the structure and the 

external excitations were then used to reconstruct the response at the desired DOFs that are 

not installed with sensors.  

These FEM based methods demand an accurate FEM of the target structure to calculate 

the transmissibility matrix, identify the mode shapes or determine the optimal sensor locations. 

However, developing an accurate FEM for large and complex civil engineering structures with 

a large number of elements and DOFs is time consuming and challenging. Furthermore, 

system and geometry properties, and boundary conditions of the structures are changing with 

the variations of the environmental and operational conditions, which leads to the 

establishment of an accurate FEM representing the in-service structures much more difficult. 

On the other hand, with the rapid development and application of data analysis techniques, 

realizing the response reconstruction by the data-driven methods are attracting significant 

attention. The majority of these data based methods focus on reconstructing the strain data 

(Huang et al., 2011; Zhang & Luo, 2017) or the strain distribution (Chen et al., 2018) using 

the inter-channel correlation. Compared to the strain data, acceleration response is more 
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sensitive to the structural vibration and accumulated damage in structures. However, the 

nonlinear inter-channel relationships are more complicated. Studies on the reconstruction of 

vibration acceleration data are mainly conducted to reconstruct the randomly missing data or 

short-term continuous lost data in a specific channel. For example, Bao et al. (2013) recovered 

the randomly lost acceleration data by leveraging the compressive sensing and further 

improved the developed method with group spare optimization (Bao et al., 2018) and machine 

learning techniques (Bao et al., 2020). Yang and Nagarajaiah (2016) also addressed the 

random data missing issue with sparse representation for inter-channel data reconstruction of 

low rank structures. Wan and Ni (2019) proposed a Bayesian multi-task learning method with 

multi-dimensional Gaussian process to predict the short-term continuous lost data using the 

measurements from the same sensor ahead of the forecasting. However, when a long-term 

successive acceleration data loss occurs or acceleration responses at critical but inaccessible 

locations are desirable, these methods may not be capable of accurately reconstructing the 

required responses.  

With the advance of big data analytics in computer science and the tremendous growth 

of computing power, deep learning has gained much attention in broad research areas. Deep 

learning is capable of automatically identifying the pattern and mining the hidden highly 

abstract features from a large volume of data. SHM systems continuously measure the 

structural vibration responses, which can be used as training data and serve as a platform for 

using deep learning techniques to extract the abstract features and train the complex nonlinear 

relationships between input and output for dynamic response reconstruction. Developing and 

applying the deep learning techniques for SHM has gained significant research attention 

recently. The existing development and application of deep learning techniques in SHM 

mainly focus on the visual inspection and damage detection of structures by using the crack 

images (Cha et al., 2018; Gao & Mosalam, 2018; Xu et al., 2019), vibration responses 

(Abdeljaber et al., 2017; Lin et al., 2017; Zhang et al., 2019) and the pre-extracted vibration 

characteristics (Pathirage et al., 2018; Pathirage et al., 2019) as the input to the networks. A 

comprehensive review on deep learning-based SHM techniques is provided in Ref.(Ye et al., 

2019). Through training the networks with a massive amount of datasets, the high-level 
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representations of the input data are automatically extracted by the deep learning models and 

then used to construct the nonlinear relationships with the output, which can be the structural 

crack locations and widths, damage location and severity. More applications in computer 

vision have been reported, i.e. the pixel-to-pixel recovery of images and audio super resolution 

(Dong et al., 2015; Kuleshov et al., 2017) and image inpainting (Mao et al., 2016; Pathak et 

al., 2016; Yeh et al., 2017). Considering that the concept of structural response reconstruction 

is similar to one-dimensional image recovery, deep learning technique has high potential to be 

leveraged to conduct the response reconstruction for SHM. Fan et al. (2019) developed the 

vibration lost data recovery approach by using convolutional neural networks (CNN) for 

recovering the lost sensor data, by using the measurement data from the same sensor set under 

various loading conditions. However, the reconstruction of vibration responses from 

instrumented sensor locations to other locations with sensor data lost or without sensors, by 

using the artificial intelligence techniques, has rarely been studied.  

This chapter proposes a novel structural response reconstruction approach based on 

Densely Connected Convolutional Networks (DenseNets), for inter-channel vibration 

response reconstruction. Skip connection, dense connection, sub-pixel shuffling and dropout 

techniques are described and applied in the designed DenseNets. The effectiveness and 

accuracy of the proposed approach for the reconstruction of the vibration acceleration 

responses are investigated with the in-field testing data on Guangzhou New Television Tower 

(GNTT). The effects of the locations of available sensors and malfunction sensors, the number 

of available sensors and measurement noise are studied. The response reconstruction accuracy 

is evaluated in both time and frequency domains. Modal identification by using the 

reconstructed responses is also conducted to validate the accuracy of reconstructed responses 

qualitatively and quantitatively. 

5.2 Methodology 

In this study, the designed deep learning model, namely DenseNets, for structural 

dynamic response reconstruction is a one-dimensional fully CNN with densely connected 

layers. The DenseNets learns the inter-sensor relationships by a supervised manner using the 
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training datasets generated from measured vibration data before the sensors at desired 

locations become unavailable (faulty or inaccessible). The trained model can then be used to 

reconstruct the acceleration responses at desired locations leveraging the measurements from 

other available sensors. The idea of the architecture of this designed network is inspired from 

U-net (Ronneberger et al., 2015) (also known as convolutional encoder-decoder (Mao et al., 

2016)), which consists of the compression path to capture the high-level features of the input 

and the reconstruction path to gradually expand the features to reconstruct the output. During 

the compression path, the feature maps are shrunken to facilitate the network to learn robust 

features of the input data while sifting the noise with uncertain patterns. Deep network with 

such architecture is proved to be efficient for conducting the pixel-to-pixel reconstruction tasks 

(Ronneberger et al., 2015). In addition, skip connection, dense connection, sub-pixel shuffling 

and dropout techniques are carefully applied to improve the performance of the developed 

DenseNets. Compared with the typical U-net, this newly designed network uses dense 

connection and skip connection instead of the successively connected convolutional layers to 

boost the information flow among the networks. The use of dense connection and skip 

connection strongly increases the training efficiency and accuracy of feature extraction and 

propagation, substantially reduce the number of parameters and alleviate the vanishing-

gradient problem. In this case, the demanded volume of training data is significantly reduced, 

which makes the preparation of training data simpler. Fewer training data also bring efficient 

training compared with traditional deep neural networks. Moreover, optimized information 

flow also fastens the convergence speed which reduces the computational demand and further 

reduces the training time. Sub-pixel shuffling is a recently attractive method to replace the 

deconvolution which realizes the feature upscaling in a computationally efficient manner. 

Dropout technique is applied in the convolutional layers to mitigate the overfitting. The details 

and benefits of these techniques are elaborated in the following sections. 

5.2.1 Configurations of the proposed DenseNets 

The elaborated architecture of the proposed DenseNets is shown in Figure 5-1 and the 

detailed configurations of the proposed network are summarized in Table 5-1. Figure 5-1 
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shows an example of the networks, by using some functional SHM channel responses to 

reconstruct the response of a specific channel that is faulty or inaccessible. 

  

Dense 2 Dense 3 

(64×1024)

Input 
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(n×1024)

Conv+Leaky ReLU+ShufflingConv+Leaky ReLU Skip connection
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Figure 5-1. The architecture of the proposed DenseNets. 

 

Table 5-1. The detailed configurations of the proposed DenseNets.  

Layer Kernel 

number 

Kerne

l size 

Stride Padding Input 

shape 

Output 

shape 

Leaky 

ReLU 

sub-

pixel 

Input - - - - (n, 1024) (n, 1024) - - 

Low 

level 

64 64 1 Same (1, 1024) (128, 

1024) 

Y N 

Dense 1 64 64 - Same (64, 1024) (64, 512) Y N 

Dense 2 128 32 - Same (64, 512) (128, 256) Y N 

Dense 3 256 16 - Same (128, 256) (256, 128) Y N 

R2 256 16 1 Same (256, 128) (128, 256) Y Y 

R1 128 32 1 Same (256, 256) (64, 512) Y Y 

Final 2 64 1 Same (128, 512) (1, 1024) N Y 

Output - - - - (1, 1024) (1, 1024) - - 

 

The input and output of the DenseNets are the acceleration responses from n available 

locations and an unavailable location. The kernel number and size of each layer are given in 

Table 5-1. The first low-level feature extraction layer (Low-level as shown in Figure 5-1) aims 

to enrich the shallow features from the original input data with limited available channels by 

applying the convolution operation. ‘Same’ padding in Table 5-1 means zero-padding equally 

at the beginning and end of the input to allow the layers generating output with the same length 

as input when the stride is 1 and with a half-length of the input when the stride is 2. From the 

shallow features, the higher representative features of the input are gradually extracted using 

three successive dense blocks (Dense 1 to 3 as shown in Figure 5-1). After each dense block, 

the length of features is halved to facilitate the network for refining the higher-level 
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representative features and eliminating the noise with no certain features. Meanwhile, the 

number of feature maps is doubled to store more information. The output of the last dense 

block (Dense 3) has the highest-level abstraction of input and the largest number of feature 

maps as denoted in Figure 5-1. The reconstruction layers (R1 and R2 as shown in Figure 5-1) 

follow the last dense block to expand the feature maps by using the sub-pixel shuffling. The 

sub-pixel shuffling used here doubles the length and halves the number of feature maps. After 

two reconstruction layers, the output feature maps have half of the length of the input data. 

The final convolutional layer (Final as shown in Figure 5-1) finally reconstructs the structural 

response data at desired unavailable locations by convolutional and sub-pixel shuffling 

operations without the nonlinear transfer of the output (Shi et al., 2016). It should be noted 

that the output features at the symmetric levels have the same length, and the output features 

of the dense block are transported to the symmetric location by the skip connection. The 

shuttled features are concatenated with the output features of the reconstruction layers as the 

input of the next layer. It should be noted that the input and output sizes in Figure 5-1 and 

Table 5-1 are obtained, assuming that the length of data points in input and output sensor 

responses is 1024 time steps. Since the input data are halved three times by the dense blocks, 

the input length should be a multiple of 8 (23) to guarantee the length of the smallest feature 

maps is an integer. It is recommended to tailor the input response longer than the kernel size 

of the low-level feature extraction layer to fully utilize its capacity.  

The proposed DenseNets for dynamic response reconstruction is based on supervised 

learning. For performing the structural response reconstruction at unavailable locations, the 

training datasets are generated using the measurement data with the functional sensors placed 

on these available and unavailable locations. The datasets consist of paired input data from 

available sensor locations and output data from unavailable locations. When using the training 

datasets with a massive number of samples, inputting all the samples to the networks at the 

same time will occupy a huge amount of memory and cause a large computational demand. 

Alternatively, the samples are loaded in batches to tune the parameters, i.e. weights and biases 

of the proposed network. The network parameters are tuned using the back-propagation 

algorithm. During the training process, the input data flow through the DenseNets to 
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reconstruct the responses, and the target of the training process is to minimize the difference 

between the predicted responses and true measured responses as output labels. The way to 

compute the loss between the predictions and labels is using the mean of the normalized L2-

norm error of each sample in a batch as 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑

‖𝑦𝑘 − 𝐶𝜙(𝑥𝑘)‖2
2

‖𝑦𝑘‖2
2

𝑁

𝑘=1

(5.1) 

where N is the number of samples in each batch, 𝑦𝑘 and 𝑥𝑘 denote the input and output of

the kth sample in this mini batch. The proposed network is simply depicted as a nonlinear 

model Cϕ (x) that is parameterized by ϕ. Consequently, the target of the training process is to 

determine ϕ by minimizing the loss function based on the entire training datasets. To fully 

train the networks, the training datasets will be generally loaded by more than 100 epochs 

considering the data complexity. 

5.2.2 One-dimensional convolution 

Compared to the traditional deep artificial neural network (ANN) that fully connects the 

neurons between adjacent layers, CNN is a class of deep neural networks consisting of one or 

more convolutional layers. CNN is a powerful deep learning architecture that can extract the 

hierarchical pattern in data by stacked convolutional layers with fewer parameters. A 

convolutional layer contains several convolutional kernels with each consisted of a weight 

matrix and a bias number to extract the feature of input. Through sliding the kernel across the 

input data with a specific stride, convolution results are obtained as the dot product of the 

weight matrix with the scanned segment of the input data plus the bias number. After the kernel 

reaching the end of input, the results of all positions are concatenated together with the 

sequence to form the output feature map of this kernel. The output feature maps from all 

kernels will be subsequently used as the input for the successive layer. Generally, as the 

complex relationship between the input and output cannot be simply represented by linear 

functions, the output of convolution will be nonlinearly transferred by the activation function 

which can be expressed as 



 

138 

 

𝑂 = 𝐻(𝐼,𝑊, 𝑏) = Φ(𝑊 ∗ 𝐼 + 𝑏) (5.2) 

where O and I are the output and input of the convolutional layer, respectively. W, and b denote 

the learnable weights and bias of the kernel, H and Φ represent the convolutional layer and 

the activation function, respectively. The activation function used in this study is an advanced 

activation function named Leaky Rectified Linear Unit (Leaky ReLU) (Maas et al., 2013), 

which is developed from Rectified Linear Unit (ReLU) (Nair & Hinton, 2010). Compared with 

the ReLU which defines the output as zero when the input is less or equal to zero, and ‘sigmoid’ 

or ‘tanh’ activation functions which squash the input into a very narrow output range ([0 -1] 

for ‘sigmoid’, and [-1 1] for ‘tanh’), Leaky ReLU has a nonlinear gradient over its whole 

domain as follows 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,                 𝑖𝑓 𝑥 > 0
0.01𝑥, otherwise

 (5.3) 

Leaky ReLU has a broader range of output which mitigates the gradient vanishing. 

Meanwhile, it allows a non-zero small gradient to overcome the defect of ReLU, that is, the 

neuron is potentially never be activated once a large gradient passes it (Maas et al., 2013). 

Acceleration data are considered as time-dependent one-dimensional signals. Therefore, the 

one-dimensional convolution is selected among all the layers in this application for structural 

response reconstruction. One-dimensional convolution can be considered as a special case of 

the two-dimensional convolution, where the convolutional kernel slides along only one axis 

of the input. To adopt this method for the case with multichannel signals, the input acceleration 

data from multiple channels are parallelly arranged. Meanwhile, the kernel height is shaped as 

the same as the number of channels. 

5.2.3 Skip connection  

It should be mentioned that when tuning the networks with deep architectures of a layer-

to-layer sequential connection by using the gradient and back-propagation, the gradient 

vanishing in the deeper layers is a crucial problem which significantly influences the extraction 

of higher-level hidden features (Huang et al., 2017). Skip connection directly shuttles the low-
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level features extracted in the bottom layers to the top layers and allows the features to be 

back-propagated to the bottom layers directly, which enhances the information flow and 

alleviates the gradient vanishing issue (Isola et al., 2017). Moreover, it can also pass the low-

level details that are lost during the convolution to the bottom layers (Mao et al., 2016). 

Networks with skip connections are also known as Residual Neural Networks (ResNet). The 

skip connection technique in the proposed DenseNets is used in both shuttling the features 

from the bottom layer to the top layer and embedding in the dense block. The involvement of 

skip connection significantly strengthens the feature propagation and consequently boosts the 

convergence efficiency. 

5.2.4 Dense block 

The dense block is used in the proposed network to enhance the extraction of the hidden 

high-level features from the input. A dense block consists of multiple densely connected 

convolutional layers (Huang et al., 2017; Zhang et al., 2018). The dense connectivity strategy 

is implemented by skip connection between any layer and all subsequent layers as shown 

schematically in Figure 5-2. Dense connection improves the information flow from the 

shallow layer to the deep layers in this block and reduces the number of parameters by sharing 

the features of shallow layers with deep layers. The dense connection extracts the higher-level 

features much more efficiently with fewer parameters than the traditional layer-to-layer 

sequential connected convolutional layers which use a large number of kernels and parameters. 

Compared with traditional deep learning models using the layer-to-layer connection, networks 

equipped with densely connected layers is stronger in feature extraction. Networks with dense 

connections are more efficient in training, and the extracted features are complete and 

comprehensive. Traditional layer-to-layer connected CNN with feature loss is hard to achieve 

the same training accuracy as the proposed networks equipped with the skip and dense 

connections. Especially for time domain response reconstruction that belongs to pixel-to-pixel 

tasks which contain a vast feature extraction and propagation work, which is almost impossible 

by using the traditional CNN. Layer-to-layer connection for response reconstruction requires 

much more kernels resulting in a significant increase in the number of parameters to be trained. 
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In this study, to achieve the similar results as the developed  DenseNet, the required number 

of parameters for networks with the same depth but composed of layer-to-layer connection 

only is around 2 times and the training time is more than 4 times because it needs more training 

iterations for learning response features. 

The detailed configuration of these three successive convolutional layers is shown in 

Table 5-2. In each of the dense blocks, the numbers of kernel and kernel size keep the same. 

The first three convolutional layers (Conv 1-3) implement the convolution by sliding the 

kernels with a stride of 1 to keep the output have the same length. The last convolution layer 

(Conv 4) conducts the convolution utilizing the extracted feature maps from all the previous 

layers. Convolutional kernels slide with a stride of two, which halves the dimension of feature 

maps. The output high-level features are used as the input of the next dense block. 

 

 

Figure 5-2. A schematic 4-layers dense block.  
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Table 5-2. The detailed configurations of the dense blocks. 

Layer 
Kernel 

number 

Kernel 

size 
Stride Padding 

Input 

shape 

Output 

shape 

Leaky 

ReLU 

Dense 

Block 

1 

Conv 1 64 64 1 Same (128, 1024) (64, 1024) Y 

Conv 2 64 64 1 Same (192, 1024) (64, 1024) Y 

Conv 3 64 64 1 Same (256, 1024) (64, 1024) Y 

Conv 4 64 64 2 Same (320, 1024) (64, 512) Y 

Dense 

Block 

2 

Conv 1 128 32 1 Same (64, 512) (128, 512) Y 

Conv 2 128 32 1 Same (192, 512) (128, 512) Y 

Conv 3 128 32 1 Same (320, 512) (128, 512) Y 

Conv 4 128 32 2 Same (448, 512) (128, 256) Y 

Dense 

Block 

3 

Conv 1 256 16 1 Same (128, 256) (256, 256) Y 

Conv 2 256 16 1 Same (384, 256) (256, 256) Y 

Conv 3 256 16 1 Same (640, 256) (256, 256) Y 

Conv 4 256 16 2 Same (896, 256) (256, 128) Y 

5.2.5 Sub-pixel shuffling 

To gradually expand the feature maps in the reconstruction layers of the designed 

networks, the sub-pixel shuffling operation is embedded in the reconstruction layers following 

the nonlinear activation operation to upscale the feature maps by a factor of 2. Figure 5-3 

demonstrates an example of sub-pixel shuffling with four feature maps consisting of 6 features 

each. It divides the feature maps to two groups and combines two feature maps in the same 

order of each group as one by interpolating one to another. It is a one-dimensional case of the 

sub-pixel convolution layer (Shi et al., 2016). This is an efficient operation for upscaling 

features, which costs less computational demand than the general deconvolution. It has also 

been attested to have strong workability that introduces less artefact in the output (Odena et 

al., 2016). 

1-1 3-1 1-2 3-2 1-3 3-3 1-4 3-4 1-5 3-5 1-6 3-6

2-1 4-1 2-2 4-2 2-3 4-3 2-4 4-4 2-5 4-5 2-6 4-6

Divide as 

two groups
Shuffling1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

Figure 5-3. The schematic procedure of one-dimensional sub-pixel shuffling with 4 feature 

maps and 6 elements in each map. 
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5.2.6 Dropout 

Overfitting is a common issue in the training of networks with deep architectures. It 

happens when the network model overfits the training datasets and loses the generalization. 

Instead of spending vast time and computational resources on training several networks with 

random initialization and averaging their outputs, dropout technique is an emerging tool for 

addressing the overfitting issue. Dropout technique de-activates a certain proportion of 

neurons and disconnects these neurons with the adjacent input and output layers to break up 

the co-adapted sets of neurons (Srivastava et al., 2014). The selection of dropping out neurons 

is random when training with a different batch of samples. Those remained neurons are trained 

more robustly, and the generalization capacity of the networks is enhanced. Each neuron has 

an independent probability p to be dropped, where p=0.5 is suggested by the inventors 

(Srivastava et al., 2014) and used in the training of the proposed DenseNets. 

5.3 Experimental studies  

5.3.1 GNTT and its SHM system 

GNTT is a 610 meters supertall slender structure. It has a tube-in-tube structural design 

including a reinforced concrete inner tube and a steel outer tube, which consists of 24 concrete-

filled-tube columns and 46 steel ring beams and bracings. 24 columns are uniformly spaced in 

an oval shape and twisted in the vertical direction as shown in Figure 5-4 (a). The size of the 

oval changes from 50m×80m at the ground level to 20.65 m×27.5 m at the height of 280 m 

and further to 41m×55 m at the top of the tube with a height of 454 m. 37 floors connecting 

the inner tube and the outer tube by beams, are used for offices, entertainment, catering and 

emission of the television signals (Ni et al., 2009). A sophisticatedly designed SHM system 

including more than 600 sensors is installed on the GNTT for monitoring the structural 

vibration behaviour and ambient environmental conditions in both the construction and in-

service stages. The in-service acceleration measurement data are selected as the training and 

testing of the proposed method. The location placement of the accelerometers is shown in 

Figure 5-4(b). Totally 20 uni-axial accelerometers are installed at the assigned heights in both 
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the long-axis and short-axis directions. The sampling rate of the acceleration measurement is 

50 Hz. The raw measurement is processed by a high-pass filter with a 0.05Hz cut-off frequency 

to eliminate the shift at the zero frequency. The previous studies (Chen et al., 2011; Xia et al., 

2011) have validated the effectiveness of the SHM system and extended GNTT as a 

benchmark platform for high-rise structures. The vibration measurement data will be used to 

validate the effectiveness and accuracy of the proposed DenseNets for dynamic structural 

response reconstruction.  

 

  

(a) (b) 

Figure 5-4. (a) GNTT, (b) The deployment of accelerometers and sensor numbers. 

 

In this study, 24 hours measurement data along the short-axis direction including 

channels No. 1, 3, 5, 7, 11, 13, 15 and 17 are processed as the datasets for evaluating the 

accuracy of using the proposed approach for response reconstruction. Two case studies are 

conducted. The first case study is conducted to investigate the effectiveness of reconstructing 

the response of one unavailable channel by using the responses of different numbers of 

available channels. The second case study is conducted to evaluate the performance of the 

proposed method, when data from more than one channels are lost and are reconstructed, 
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especially when the most correlated channel to the desired channel is not available. The noise 

immunity of the proposed method will also be investigated in the second case study by using 

measurement data contaminated with noise effect. 

5.3.2 Data pre-processing 

The previous studies (Chen et al., 2011; Zhang et al., 2016) have conducted the modal 

identification of the GNTT and reported that the first 15 vibration modes are within 2 Hz. 

Therefore, the frequency of interest of this study is selected as 0 to 2 Hz. The original 

measurements sampled at 50 Hz are pre-processed by using the low-pass filtering with a cut-

off frequency of 5Hz and then downsampled to 10 Hz. The filtering processing effectively 

eliminates the redundant information contained in the signals and consequently reduces the 

number of features to be learned by the network. Meanwhile, downsampling the acceleration 

response by a factor of five significantly reduces the dataset size and greatly boost the training 

efficiency. The pre-processed acceleration data are then scaled to a range between -1 and 1 

without affecting its statistical distribution by 

𝐴𝑖,𝑗
′ =

𝐴𝑖,𝑗

𝑚𝑎𝑥 (|𝐴|)
 (5.4) 

where A is the acceleration response vector after downsampling, which consists of the 

measurements from totally k involved channels with n sampling points, 𝐴𝑖,𝑗 denotes the ith 

sampling point of the jth channel, where i ranged in [1, 2…n] and j ranged in [2, 3…k], 𝐴𝑖,𝑗
′

 

is the normalized data after scaling.  

The normalized data A' are then used to generate the training, validation and testing 

datasets. For training the proposed DenseNets by supervised training, the input and output are 

the measurements from available sensor locations and the desired unavailable locations. To 

facilitate the network to learn robust features from comprehensive datasets, the normalized 

acceleration responses in 24 hours are divided as 96 segmentations, where each segmentation 

contains 15 minutes measurement data. The last 10% of segmentations are used as the testing 

data to simulate the situation that the measurement data of the desired channels are unavailable. 

This will be used to test the accuracy of the network for dynamic response reconstruction. The 
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remaining segmentations are randomly grouped as the training and validation datasets 

containing 80% and 10% of the total number of segmentations, respectively, to construct and 

validate the relationship between input and output. As mentioned in Section 5.2.1, utilizing all 

the training data to tune the parameters of deep networks at the same time is impractical. Due 

to the changing of load and vibration characteristics with the variation of ambient conditions, 

inputting the segmentations one by one will lead to the model unstable and hard to reach the 

optimal parameters. Alternatively, the segmentations are cut as small samples with 1024 data 

points each, by a sliding window which is 1024 data points long with a stride of 512. Those 

samples are shuffled and inputted to the DenseNets in batches for both training and validation. 

The batch size is chosen as 32 for the following studies. The acceleration data with 

measurements from available channels are directly inputted to the trained networks and the 

measurements of the desired channel are defined as the labelled output. For testing the network, 

the reconstructed responses are compared with the original true measurement data from the 

channels at unavailable locations to validate the accuracy of the proposed approach. 

5.3.3 The effect of input channels 

Selecting proper available channels as the input of the DenseNet is important for an 

effective response reconstruction. In the first case study, channel 17 is assumed to be faulty 

after a period of service for making reliable measurements. The effect of using different 

locations and numbers of available channels as the input of the DenseNets to conduct the 

dynamic response reconstruction is investigated. Firstly, the selection of the most correlated 

input channels for reconstructing channel 17 is studied. For response reconstruction by deep 

learning models, a channel containing substantial overlapped natural frequencies and vibration 

modes with the desired channel will have a higher correlation. Traditional calculation of 

correlation function of two response series in time domain may not be directly useful since the 

similarity in learned features, i.e. vibration modal information between the recorded and 

desired channels is more important for response reconstruction. On the other hand, manual 

selection of correlated channels may introduce large errors due to noise and measurement 

errors. Therefore, the correlations between channels are evaluated by one-to-one channel 
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reconstruction. Recorded channels used for response reconstruction producing lower 

reconstruction errors means the responses from these channels can provide more useful 

information for feature learning and dynamic response reconstruction of desired channels. 

Seven groups of training, validation and testing datasets containing the available measurement 

data from one of the channels 1, 3, 5, 7, 11, 13 and 15, respectively, and the output from 

channel 17 are generated following the procedure introduced in Section 5.3.2. One to one 

sensor response reconstruction is conducted. Using these datasets, seven networks are trained 

and tested. The relative reconstruction error is quantified by computing and normalizing the 

L2-norm of the discrepancy between the reconstructed acceleration response AR and original 

true acceleration response AT as: 

휀 =
‖𝐴𝑅 − 𝐴𝑇‖2

2

‖𝐴𝑇‖2
2 =

√∑ (𝐴𝑅
𝑖 − 𝐴𝑇

𝑖 )2𝑛
𝑖=1

√∑ 𝐴𝑇
𝑖 2𝑛

𝑖=1

 

(5.5) 

The relative error is the summation of differences at all the points considered. When 

evaluating the error of response reconstruction in the frequency domain, AR and AT are the 

acceleration responses in the frequency domain obtained by Fast Fourier Transfer (FFT).  

The coding of the DenseNets is compiled with Keras under TensorFlow backend. The 

computer used for training is built with a GTX2080TI GPU, an i7-6700K CPU and 16GB 

memory. Each of the above-mentioned networks is trained by the training dataset for 150 

epochs. The training of each network spends around 10 minutes and the testing can be 

implemented in almost real time. The training and validation loss of the DenseNets using input 

data from channel 15 after each epoch of training is illustrated in Figure 5-5. It can be observed 

that both the training and validation losses decrease sharply in the first several epochs because 

of the involved dense connection and skip connection techniques which improve the 

convergence speed effectively. The training loss continues to decrease with increased training 

epoch. While the validation loss stops decreasing around the 110 epochs and finally exceeds 

the training loss when 125 training epochs are finished, indicating that the network starts 

overfitting the training data. After the training process, a minor discrepancy between the 
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training and validation errors is found, which means that the developed DenseNets learns 

robust features from the training data and also fits the validation data well. Selecting 150 

epochs for training is practical, which ensures the proposed networks to be fully trained 

without overfitting. 

 

Figure 5-5. The convergence curve of DenseNets with input measurement from channel 15. 

 

The reconstruction errors for each network with different training dataset in both time 

and frequency domains are shown in Figure 5-6. The errors are computed using all the testing 

data in 150mins to represent more reliable results. The reconstruction errors in the time and 

frequency domains show similar trends. Selecting channel 1 as the input brings the largest 

response reconstruction error, while using channel 15 as input leads to a much smaller 

reconstruction error. Figures 5-7(a) and 8(a) demonstrate the comparison between the original 

true and reconstructed responses of the unavailable location at channel 17 in the time domain 

within an arbitrarily selected 60s, by using responses from channels 1 and 15, respectively. 

Figures 5-7(b) and 8(b) show the true and reconstructed responses of channel 17 in the 

frequency domain.  The spectrum of the response at unavailable locations, i.e., the response 

used for constructing the unavailable response, in the frequency domain is also shown. It 

should be noted that the accelerometer of channel 1 is installed at a height of 30.63 meters of 

the GNTT. Compared to the total height of the structure which is 610 meters, the vibration 

response of the structure under ambient excitation at the location of channel 1 is very small 

and most of the vibration modes are weakly excited as shown in Figure 5-7(b). This leads to a 

low signal to noise ratio (SNR) and results in the reconstruction difficult based on the low 

quality information. This can also explain that except reconstruction by using channel 7, the 

reconstruction errors decrease with the rising height of the available channels with the 
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increasing quality of the input information. Evidenced by Figures 5-7 and 5-8, it is noted that 

for an effective response reconstruction, the responses from the channels at available locations 

should contain the information of the significant vibration modes of the responses at desired 

locations. This idea is similar to optimal sensor placement for modal identification, which 

ensures that the maximum modal information is obtained and the mode shapes are highly 

correlated. Locations that are weakly participated in a certain vibration mode will not 

contribute too much valuable information for response reconstruction at the corresponding 

modal frequency. As a result, the measurement data from these locations may not provide 

essential information for reconstructing the responses related to this particular mode at other 

locations. In this study, for the case with 15 modes, it is impractical that all the involved modes 

of the desired locations are well excited at any one single node, which is far away from the 

desired locations. Therefore, multiple sensors are necessary for accurate dynamic response 

reconstruction, especially when considering a large number of vibration modes. By conducting 

the modal analysis of the measurement data, acceleration response from channel 7 is found to 

have the minimum number of overlapped modes with channel 17, which causes a relatively 

large reconstruction error, as observed in Figure 5-6. Consequently, the reconstruction 

performance is strongly correlated with the response information and the overlapped modes 

between the available channels and desired channels.  

 

  

(a) (b) 

Figure 5-6. One-to-one response reconstruction error by using input measurement from 

different channels. (a) Time domain. (b) Frequency domain. 
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(a) 

 

(b) 

Figure 5-7. Response reconstruction of channel 17 within an arbitrarily selected 60s by 

using channel 1: (a) Time domain; (b) Frequency domain. 

 

 

(a) 

 
(b) 

Figure 5-8. Response reconstruction of channel 17 within an arbitrarily selected 60s by 

using channel 15: (a) Time domain and (b) Frequency domain. 
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On the contrary, using input from multiple channels simplifies this issue. In this section, 

structural response reconstruction with multiple channels input is also conducted to reconstruct 

the responses at the desired locations. To test the reconstruction performance of using every 

single and multi-channels to reconstruct the response of channel 17, the most correlated two, 

three, and until all the available channels are selected and processed as the input to train 

different networks. The number of input channels and the corresponding channels is 

summarized in Table 5-3. The training time of multiple channels is also around 10 minutes for 

each network, since the architecture of the network and the number of training and validation 

samples keep the same. Because the used dense connection and skip connection make the 

feature extraction and propagation very efficient, the small size of training datasets is required 

for constructing the nonlinear relationship. Owning to the high convergence efficiency, the 

training of the networks is only about 10 minutes, which is much shorter compared with 

training a traditional deep network that usually takes hours or even days. The reconstruction 

errors of using each trained network in time and frequency domains are shown in Figure 5-9. 

As shown, the reconstruction error decreases with the increase of available channels, and 

achieves the minimum when data from five channels are used in the reconstruction of the 

response of channel 17. After that, the error increases with the number of channels used for 

reconstruction. It should be noted that when data from channel 1 and channel 7 are used, the 

reconstruction error is higher. This is because channel 1 is farthest from channel 17 and data 

from channel 7 has the minimum overlapped modes with channel 17. As discussed above, the 

measurement from these two channels may not provide valid information for reconstruction 

but slightly affect the effective training and fitting of the network model. From the deep 

learning aspect, guaranteeing the quality of training datasets is of great importance for 

promoting the network to learn effective and abstract features. For example, when conducting 

the image classification using CNN, mixing low-resolution or damaged photos in the training 

datasets will bring serious negative impact on the classification accuracy. Figures 5-10(a) and 

(b) show the reconstructed responses by using the best 5 channels as input to demonstrate the 

effectiveness of the proposed method. The responses are accurately reconstructed in the time 

domain with minor discrepancies, and the vibration modes are matched well in the frequency 
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domain. The measurement data from multiple channels can provide more comprehensive 

information of responses and vibration modes, however, the use of low quality data may even 

affect the accuracy. Nonetheless, the response reconstruction accuracy of using measurement 

data from multiple channels as input is much better than using a single channel, even when 

some interferential information from the farthest channels are involved in the input data. When 

selecting the optimal locations and numbers of sensors from available measurement channels 

for structural response reconstruction, one-to-one channel response reconstruction is 

conducted and sorted from the most to least correlated. The number of available channels is 

increased based on the order of the above obtained sequence from results on one-to-one 

channel reconstruction to serve as input for multiple channel response reconstruction to choose 

the combination with the best performance. It should be noted that this is not the most effective 

way to select correct channels but is effective for most cases with a limited number of installed 

sensors. 

 

Table 5-3. The number of input channels and the corresponding channel numbers.  

No. of input channels Channel numbers 

2 13, 15 

3 11, 13, 15 

4 5, 11, 13, 15 

5 3, 5, 11, 13, 15 

6 3, 5, 7, 11, 13, 15 

7 1, 3, 5, 7, 11, 13, 15 

 

  

(a) (b) 

Figure 5-9. The reconstruction errors of using an increasing number of input channels. (a) 

Time domain. (b) Frequency domain. 
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(a) 

 

(b) 

Figure 5-10. Reconstruction of response at channel 17 by using 5 channels. Comparison in 

(a) time domain and (b) frequency domain. 

5.3.4 Most correlated channel is unavailable 

As discussed above, the correlation between responses of available and unavailable 

locations is very important for structural response reconstruction. One rigorous case is when 

the measurement from the most correlated channel to the desired channels is not available. 

From Figure 5-6, the one-to-one reconstruction results indicate that channel 15 is the most 

correlated channel with channel 17 and provides the best one-to-one reconstruction accuracy. 

From the results as shown in Figure 5-9, using the measurement data from channels 1 and 7 

will induce negative effects on the response reconstruction of channel 17. Therefore, the 

measurement data of the rest channels from No. 3, 5, 11 and 13 are used as the input. The same 

training and testing procedures are followed as described in Section 5.3.2. To clearly show the 

discrepancy, a 60 seconds segment of the true and reconstructed responses in the time domain 

are plotted in Figure 5-11(a). The true and reconstructed responses are then transferred to the 

frequency domain and illustrated in Figure 5-11(b). The reconstructed response in the time 

domain shows a good agreement with the true response in both amplitudes and waveforms. 
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Confirmed by the response in the frequency domain, the trained DenseNets accurately 

reconstructs all the involved vibration modes of channel 17 in both resonant frequencies and 

amplitudes. That indicates the developed DenseNets successfully constructs the complex 

nonlinear relationships between the input and output through the training process. Robust 

high-level features are extracted from the testing data, which is then used to accurately 

reconstruct the response at the desired location. By observing Figure 5-11(b), it can be found 

that the reconstructed response has a higher SNR compared to the raw measurement. This 

proves the advantage of using the bottleneck structure where noise components are eliminated 

when extracting the high level of features by shrinking the feature maps. The reconstruction 

error is 30.11% and 23.51% for the reconstructed response in the time domain and frequency 

domain, respectively. The error is mainly contributed by the noise components submerged in 

the true response in the region of the frequency band without natural frequencies with 

significant energy. In contrast with the reconstruction using the measurement from the best 4 

channels as listed in Table 5-3, the error is slightly higher, but the desired response can still be 

reconstructed with a high degree of accuracy and reliability. 

The case study to reconstruct the responses of two channels by one network is also 

conducted. A minor adjustment of the architecture of DenseNets is implemented, which only 

increases the feature maps of the final layer from 2 to 4. As a result, the output of DenseNets 

becomes the measurement of two channels. The training data is generated where the input data 

contain measured responses from channels 3, 5, 11 and 13 and the output data consist of 

reconstructed responses from channels 15 and 17. Reconstructed responses for these two 

channels are evaluated together, where the errors for response reconstruction in time and 

frequency domains are 31.98% and 25.37%, respectively. With the increasing complexity of 

the relationships between input and output, the reconstruction error is slightly higher than 

reconstructing a single channel. Compared with preparing two datasets and training two 

networks individually, the developed network can also conduct the response reconstruction of 

multiple channels simultaneously which promotes the reconstruction efficiency but slightly 

sacrifices the accuracy.  
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(a) 

 

(b) 

Figure 5-11. Reconstruction response of channel 17 when the most correlated channel is 

unavailable. Comparison in (a) time domain and (b) frequency domain. 

5.3.5 The noise effect 

Noise is a critical issue that influences the effectiveness and accuracy of condition 

assessment and damage detection. The noise immunity of the proposed method is investigated 

by adding a certain level of white Gaussian noise to the input measurement and evaluating the 

accuracy of the reconstructed response. The white noise is simulated as a random vector N 

with the same length and sampling rate as the input response. The random vector follows a 

distribution with zero mean and unit standard deviation. The added noise is proportional to the 

root mean square (RMS) of the response A, the noisy acceleration response 𝐴𝑛𝑜𝑖𝑠𝑦  is 

generated as 

𝐴𝑛𝑜𝑖𝑠𝑦 = 𝐴 + 𝑁 ∗ 𝑅𝑀𝑆(𝐴) ∗ 𝑙 (5.6) 

where l represents the noise level. In this study, the responses from channels 3, 5, 11, 13 and 

15 are selected as the input, and the response of channel 17 is selected as the output to be 

reconstructed. The network is trained with the raw measurement and tested by the noisy 
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response with 20% RMS noise added to the input of the testing data. An example of a 

segmental original and noisy acceleration responses is shown in Figure 5-12. The noisy 

response is then inputted to the trained DenseNets, and the reconstructed response of channel 

17 in time and frequency domains are demonstrated in Figures 5-13(a) and (b), respectively. 

The reconstructed response in the time domain shows a good agreement with the true one. 

From the frequency domain, the modal frequencies are accurately reconstructed excepting 

some minor differences in the amplitudes of a few modes. The errors of the reconstructed 

responses in time and frequency domains are quantified as 31.34% and 25.62%, respectively, 

compared with the true responses. Referring to the results in Section 5.3.3, the errors are 2.35% 

and 3.38% higher than using measured response without noise. The increases of reconstruction 

errors are moderate in term of the severity of the injected noise, demonstrating the superiority 

of using the proposed approach in immunizing the noise effect. The proposed DenseNets 

eliminates most of the noise in the higher level features which can be attributed to the specially 

designed network architecture. 

 

 

Figure 5-12. Comparison between the true response and noisy response with 20% noise. 
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(a) 

  
(b) 

Figure 5-13. Comparison of true and reconstructed responses in the (a) time and (b) 

frequency domain with noisy input. 

 

5.4 Modal identification using the reconstructed response 

Modal parameters including natural frequency, damping ratio and mode shape which 

reflect the dynamic vibration characteristics of the structure, are widely used to develop the 

damage index for condition assessment and damage detection. Accurate identification of 

modal parameters is of significant importance for effective condition monitoring, since the 

identification error may mask the variation of modal parameters induced by structure condition 

changes. Thus, modal analysis by using the true and reconstructed responses is further 

conducted to evaluate the applicability of the proposed method. The responses of channel 17 

are reconstructed using responses of available channels No. 3, 5, 11, 13 and 15. A classic 

operational modal identification method named Frequency Domain Decomposition (FDD) 

(Brincker et al., 2001) is selected for modal parameters identification using original true and 

reconstructed responses from channel 17. FDD method decomposes the spectral density 

function matrix of the responses by singular value decomposition (SVD) and estimates the 

vibration modes by peak picking. The following sections will evaluate the feasibility of using 
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reconstructed responses for modal identification, by comparing with the FDD results of true 

responses from qualitative and quantitative aspects.  

5.4.1 Qualitative analysis of the reconstructed response 

For providing the reference modal information, the modal parameters of GNTT are firstly 

identified by using Stochastic Subspace Identification (SSI) and FDD methods with 

measurements taken from all the channels as shown in Figure 5-14. 15 modes within 2 Hz are 

accurately identified, which agree very well with the results reported in previous studies (Chen 

et al., 2011; Zhang et al., 2016). By conducting the modal parameters identification with true 

and reconstructed responses from channel 17, FDD outputs of these two responses are shown 

in Figures 5-15(a) and (b), respectively. It can be observed from Figure 5-15 that modes No. 

1, 3, 5, 8, 11, 13 and 15 are significantly excited, and are accurately identified with the true 

and reconstruction responses of channel 17. Those modes are selected by peak picking and 

marked by pink points with the corresponding system mode orders. Picking the peak values 

from the plot of singular values is based on the engineering judgement. Consequently, the 

effectiveness of modal identification using FDD is dependent on the quality of responses 

where signals with low SNR can result in a confusing output. Observing the FDD results of 

using the reconstructed responses as shown in Figure 5-15(b), all the excited modes are 

effectively and clearly reconstructed without adding any extra spurious modes. It should be 

highlighted that the power of the response components outside the bandwidths of natural 

frequencies are much lower than that of natural frequencies, which reveals a high signal quality. 

Comparing Figure 5-15(b) with Figure 5-15(a), the SNR of the reconstructed response is better 

than the true response. The results demonstrate that the proposed DenseNets can effectively 

reconstruct the responses which are not measured or are lost, and eliminate the noise 

components simultaneously owning to its strong capacity and specifically designed 

architecture. In addition, it is worth mentioning that vibration modes of GNTT are very closely 

spaced, which leads to the response reconstruction task more difficult for the traditional 

methods especially for defining the thresholds or parameters to split closely spaced modes. In 

contrast, the proposed method can automatically extract the hidden features from the input 
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data and learn the complicated relationships between the input and output accurately. By 

analyzing Figure 5-15(b) where the vibration modes are well reconstructed and the noise is 

eliminated, those learned features are very likely to be the vibrational characteristics. The 

results are consistent with the finding reported in an existing study (Lin et al., 2017) where the 

extracted high level features from vibration responses represent the natural frequencies and 

mode shapes of the structure. 

 

 

Figure 5-14. SSI and FDD outputs of using measurements from all channels. 

 

 

(a) 

 
(b) 

Figure 5-15. Modal identification results of using: (a) True response and (b) Reconstructed 

response. 
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5.4.2 Quantitative analysis of the modal parameters 

The effectiveness of the proposed method is further verified by comparing the identified 

modal parameters from the reconstructed responses and those from the true responses. The 

natural frequencies and damping ratios are identified using true and reconstructed responses, 

respectively. As mode shapes cannot be identified using only one channel, evaluation of the 

mode shapes is realized by considering the correlation between channels of true and 

reconstructed responses. The correlation accuracy evaluation of mode shapes is performed by 

using the Co-ordinate Modal Assurance Criterion (COMAC), which is superior in assessing 

the measurement from a single DOF (Allemang, 2003). The COMAC of a single DOF is 

computed as 

where m is the total number of modes, 𝜙𝑘
𝑇 and 𝜙𝑘

𝑅 are real values representing the mode 

shape values of the kth mode estimated from the true and reconstructed responses. The 

identified modal parameters of those 7 modes observed in Figure 5-15 and the corresponding 

errors are summarized in Table 5-4. The errors in the identified natural frequencies and mode 

shapes are computed as the relative errors, while the errors in the damping ratios are 

represented as the absolute errors since the oscillation in identified damping results is usually 

bigger. The identified natural frequencies from the reconstructed response are completely 

consistent with the ones from the true response, which confirms the observation in Figure 5-

15. Results of damping ratios show relatively large errors. Considering that the damping ratios 

are very sensitive to the measurement noise and modal identification method, the accuracy of 

identified damping ratios with the reconstructed responses is satisfactory. The mode shapes of 

these excited modes are also very close between the ones from true and reconstructed 

responses. The maximum relative error is 2.03% for mode 15, which is a high order mode. As 

shown in Figure 5-14, this mode is relatively unstable comparing to other modes even using 

all the sensors, indicating this mode is weakly excited in this duration. In addition, when 

evaluating the mode shapes correlation of this DOF using the widely accepted criterion, the 

𝐶𝑂𝑀𝐴𝐶 =
(∑ |𝜙𝑘

𝑇𝜙𝑘
𝑅|)2𝑚

𝑘=1

∑ 𝜙𝑘
𝑇2𝑚

𝑘=1 ∑ 𝜙𝑘
𝑅2𝑚

𝑘=1

 
(5.7) 
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COMAC value reaches 99.99% which shows a very high correlation. All the modal parameters 

of these observed modes are accurately identified from the reconstructed response, 

demonstrating the applicability of the proposed method to large civil structures. 

 

Table 5-4. Comparison of the identified modal parameters from true and reconstructed 

responses. 

Mode 

 

ftrue 

(Hz) 

freconstructed 

(Hz) 

f error 

(%) 

ξtrue 

(%) 

ξreconstructed 

(%) 

ξ error 

(%) 

ϕ error 

(%) 

1 0.093 0.093 0.00 2.13 2.05 0.08 0.28 

3 0.366 0.366 0.00 0.84 0.94 0.10 0.81 

5 0.474 0.474 0.00 0.26 0.24 0.02 1.42 

8 0.796 0.796 0.00 0.36 0.37 0.01 1.37 

11 1.191 1.191 0.00 0.13 0.17 0.04 1.88 

13 1.392 1.392 0.00 0.82 0.79 0.03 0.90 

15 1.948 1.948 0.00 0.43 0.38 0.05 2.03 

      COMAC: 99.99% 

Note: f: frequency; ξ: damping ratio; ϕ: mode shape. 

5.5 Conclusions 

This chapter proposes a novel approach based on DenseNets for reconstructing the 

acceleration responses at locations without recorded data, by using recorded responses at other 

locations. The detailed design of the DenseNets for facilitating the reconstruction of vibration 

response is elaborated. The developed DenseNets can alleviate the vanishing-gradient issue, 

strengthen feature extraction and propagation, and substantially reduce the number of 

parameters, which significantly increases the training efficiency and accuracy. The 

effectiveness and robustness of the proposed method are demonstrated by experimental studies 

with real measurement data taken from GNTT. The response reconstruction is accurately 

performed in both time and frequency domains. Meanwhile, the identified modal parameters 

from the true and reconstructed responses show a good agreement. The results demonstrate 

that the proposed method can extract the high-level features from the input data and develop 

the nonlinear relationship between these features and the output responses to be reconstructed. 

The proposed method is also proved to have a strong noise immunity, which is practical for 

civil engineering applications. Further study can be conducted to investigate this topic to select 
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the optimal sensor numbers and locations for response reconstruction by using deep learning 

techniques. 
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CHAPTER 6 DYNAMIC RESPONSE 

RECONSTRUCTION UNDER EXTREME LOADING 

CONDITIONS USING SEGMENT BASED GENERATIVE 

ADVERSARIAL NETWORK 

Abstract: Reconstruction of lost response under extreme loading conditions is important 

for structural health monitoring to evaluate the safety of structures. This chapter proposes a 

Segment based Conditional Generative Adversarial Network (SegGAN), which is a powerful 

deep learning model for solving pixel-to-pixel tasks, to conduct structural dynamic response 

reconstruction under extreme loading conditions. The proposed network consists of a 

bottlenecked generator and a segment based discriminator. Generator features skip and dense 

connections to improve feature extraction, and segment based discriminator uses conditioned 

input to facilitate generator to learn detailed and robust features. Numerical studies on a steel 

frame structure are conducted to evaluate the accuracy and noise immunity of using SegGAN 

for structural response reconstruction. Numerical study on a nonlinear building model is 

performed to validate the capability and accuracy of using the proposed approach in nonlinear 

response features extraction and response reconstruction. Experimental studies on a laboratory 

steel frame structure are conducted to investigate the effectiveness and robustness of the 

proposed SegGAN for response reconstruction with limited measurement data from noisy and 

operational conditions for training and validation, and a few sample data from earthquake 

loads for testing of the developed networks. The reconstruction results of using SegGAN are 

compared with those generated by a densely connected network (DenseNet) with the same 

configuration as the generator and a traditional convolutional neural network (CNN). 

Responses from available and unavailable sensors are selected as input and output of these 

three networks, respectively. SegGAN outperforms the other two networks and produces 

outstanding reconstruction results in both time and frequency domains. 
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6.1 Introduction 

SHM has attracted significant research interest in recent decades. Long-term SHM 

systems measure structural vibration responses continuously, assist engineers for real-time 

assessing the structural condition and early warn the anomaly to prevent calamity. Owning to 

the significant benefits to society and public safety, a rapidly growing number of long-term 

SHM systems have been deployed in large-scale civil structures (Chen et al., 2011; Cross et 

al., 2013; Nguyen et al., 2015; Peeters & De Roeck, 2001; Xia et al., 2013; Zhang et al., 2012). 

However, restricted by construction budget, available channels of data acquisition systems 

(Law et al., 2011), and the inaccessibility of locations for measurement during operations 

(Kammer, 1997), SHM systems typically contain a small number of sensors compared to the 

total number of DOFs of structures. Locations of the limited number of sensors are therefore 

carefully selected with a few redundancies, leading the reliability of following analyses 

heavily dependent on measurements from all sensors. Guaranteeing SHM systems to work 

properly all-weather under all kinds of circumstances to steadily record the vibration data 

(Kullaa, 2010) is vital in this case. Unfortunately, it is possible that data from one or a few 

channels are lost or corrupted due to technical issues such as malfunction of cable connections, 

power supply interruption, signal transmission disturbance or sensor fault, especially when 

structures are under extreme loading conditions, e.g. earthquakes. Since the degradation or 

damage of structures is often caused by extreme loading, vibration responses measured from 

structures under such circumstances are more precious for determining structural conditions. 

Therefore, reconstruction of responses of structures at locations with data loss under extreme 

loading conditions is significant for SHM. 

Structural response reconstruction methods can be categorized into two main streams, 

namely, FEM based methods and data driven methods. Among the FEM based methods, Li 

and Law (2011) proposed an approach based on transmissibility concept (Ribeiro et al., 2000) 

to reconstruct the vibration data at desired locations with no data available using available 

response data at other locations. Transmissibility function derived from the frequency response 

function (FRF) was utilized. Responses were transferred to the wavelet domain for 
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reconstruction in Li and Law’s study and further extended to the frequency domain by Law et 

al. (2011). It should be noted that both methods require the locations of excitations. Using 

transformation matrix derived from mode shapes of structures for response reconstruction is 

an alternative FEM based method (Kammer, 1997). He et al. (2012) combined the 

transformation matrix with empirical mode decomposition (EMD) technique to reconstruct 

responses at locations without properly measured data. Time domain vibration measurements 

are decomposed by using EMD into several Intrinsic Mode Function (IMFs), then responses 

of unavailable DOFs are reconstructed by leveraging independent transfer equations of IMFs. 

Wan et al. (2014) developed a method for solving the difficulty of distinguishing closely 

spaced modes. However, the choice of IMFs is highly dependent on engineers’ empirical 

experiences, resulting in that the reconstructed performance lacks stability. Another kind of 

method was developed based on optimal multi-type sensors placement and Kalman filter that 

conducts the excitation and response reconstruction with unknown excitation (Xu et al., 2016; 

Zhang & Xu, 2016). For those FEM based methods, an accurate FEM of the investigated 

structure is essential for deriving the transmissibility function, transformation function or 

selecting the optimal sensors locations. The performances of those methods are closely related 

to the accuracy of the built FEM, which could be a major limitation in the applications of these 

methods to the large and complex civil structures with many inevitable uncertainties in 

modelling. Besides the inevitable modelling error, varying operational and environmental 

conditions introduce the change in material properties and boundary conditions of structure. 

These indicate that establishing an accurate deterministic FEM that represents the in-service 

vibration behaviour of structures under varying environmental and operational conditions 

becomes time consuming and challenging. 

On the other hand, data driven methods along with the advance in computational power 

and data analysis techniques that directly extract the hidden relationships of vibration 

responses between available and unavailable locations from measured data, have been 

vigorously explored recently. Many researches have been conducted to reconstruct the strain 

(Huang et al., 2011; Oh et al., 2020; Zhang & Luo, 2017) or strain distribution (Chen et al., 

2018) of bridges or spatial structures. They employed intra-channel correlations of stresses, 
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owing to the plane assumption of stresses at different locations. Acceleration responses have 

been widely measured and applied in SHM since they are convenient to measure and sensitive 

to structural conditions. However, reconstruction of acceleration responses has not been 

widely studied due to the complicated intra-channel relationships. Bao et al. (2013) developed 

the compressive sampling based method to recover the random lost acceleration data. The 

performance is further improved when involving group sparse optimization (Bao et al., 2018) 

and machine learning (Bao et al., 2020) techniques. Wan and Ni (2019) proposed a Bayesian 

multi-task learning method with multi-dimensional Gaussian process to recover short-term 

continuous lost acceleration data. These methods used measurements from the same sensor for 

recovering lost data of this particular sensor, but will lose effectiveness when a long-term 

successive data loss occurs. Deep learning as an emerging branch of machine learning 

technique, has achieved an outstanding progress in multiple disciplines such as image 

processing, medical diagnosis, autopilot etc. Development and application of deep learning 

techniques in the field of SHM are recently a hot topic, and mainly focus on structural damage 

detection based on the crack images (Cha et al., 2018; Gao & Mosalam, 2018; Xu et al., 2019), 

vibration responses (Abdeljaber et al., 2017; Lin et al., 2017; Zhang et al., 2019; Zhang et al., 

2019) or damage sensitive features (Pathirage et al., 2018; Pathirage et al., 2019). The 

applications have also been extended to signal processing, such as detecting the anomaly of 

measurements by a deep neural network (Bao et al., 2019). For dynamic response 

reconstruction, Zhang et al. (2019) proposed a long-short term memory network that used the 

measured excitation as input to predict structural seismic response. Dozens of records under 

earthquakes must be provided for training, which might not be practical for those structures 

with short service time or located in areas with few earthquakes. Fan et al. (2019) developed 

a ResNet to reconstruct the randomly lost acceleration responses. Reconstructing the long-

term successive data loss needs to be further investigated. Sun et al. (2017) applied the 

traditional CNN for intra-channel acceleration data reconstruction. With the simple network 

structure, the performance is still good for an experimental simply-supported beam under 

ambient excitation. However, a simple network may not be applicable for real structures with 

a large number of DOFs, uncertainties and different kinds of loadings. Chapter 5 proposed a 



169 

DenseNet for reconstructing response of a real building. The performance is remarkable when 

the building is under ambient excitations.  

Generative adversarial network (GAN) (Goodfellow et al., 2014) is one class of the state-

of-the-art deep learning frameworks consisting of a generative model and a discriminative 

model, which are named as generator and discriminator, respectively. GAN is trained through 

an adversarial process. The generator learns the distribution of real data and generates samples 

to confuse the discriminator, which makes it believe that the generated samples are from the 

real data distribution. On the other hand, the discriminator learns the features of the generated 

and real data to distinguish the source of samples. With continuous adversarial training, the 

generator distribution keeps approaching the data distribution by using feedbacks (gradients) 

provided by discriminator, and the discriminator learns more robust features of generated and 

real data from more and more real generated samples. After training, generator can produce 

samples that are very close to real data. Discriminator works as a self-learned objective 

function of generator to tune its parameters. Owning to the framework of GAN, it has exhibited 

a powerful capability on the pixel-to-pixel tasks such as image super-resolution (Ledig et al., 

2017), style translation (Zhu et al., 2017) and inpainting (Isola et al., 2017; Pathak et al., 2016; 

Yeh et al., 2017). The generated images display clear outlines (low-frequency structure of data) 

and even sharp texture details (high-frequency structure of data), which networks only 

utilizing a human defined loss function may miss. Dynamic response reconstruction can also 

be considered as a pixel-to-pixel task, where the dynamic response is a one-dimensional signal 

with hidden relationships between DOFs of a structure. Vibration characteristics such as 

natural frequencies and mode shapes can be the low-frequency data structure of vibration 

response since they have a small perturbation crossing the time history, while the amplitude 

of each individual time step or instantaneous frequency change can be considered as the high-

frequency data structure. GAN captures both low-frequency and high-frequency data features, 

is therefore very promising to be implemented for response reconstruction of structures under 

extreme loading. 

This chapter proposes a specially designed segment-based conditional GAN (SegGAN) 

leveraging the advantages of GAN to reconstruct the dynamic responses of structures under 
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ambient excitations or extreme loadings using the intra-channel correlations. When applying 

GAN for structural response reconstruction, generator is used to learn the mapping between 

available and desired responses. Discriminator learns to evaluate the accuracy of reconstructed 

responses, and provides feedback to generator to facilitate the learning of more detailed 

features. SegGAN features conditioned input, skip connection, dense connection, and dropout 

techniques to improve the reconstruction. The remainder of this chapter is organized as follows. 

Section 6.2 introduces the detailed configurations and describes the adversarial training 

process of the proposed SegGAN. Section 6.3 validates noise immunity of the proposed 

method by numerical studies on a FEM of a seven-storey steel frame. Networks are trained by 

using simulated ambient responses and tested by using a response with a high level of noise 

under earthquake. Section 6.4 introduces a numerical study on a nonlinear building model, 

which is conducted to assess the effectiveness of nonlinear response feature extraction. The 

training data is extremely limited in this study. Section 6.5 presents experimental studies with 

measured responses of a seven-storey steel frame. The limited ambient responses are used for 

training and the measured responses under a ground motion excitation are employed for testing. 

The performance of the proposed SegGAN is compared with that using a DenseNet (Chapter 

5) and a traditional CNN. DenseNet with the same configuration as the generator is proposed 

to validate the advantage of the proposed approach involving discriminator. Section 6.6 

concludes the results and findings of this study.  

6.2 Methodology 

The proposed SegGAN for structural response reconstruction is inspired by Isola et al. 

(2017). It consists of a generator and followed by a segment based discriminator with 

conditioned input. It is trained in a supervised manner based on an adversarial training strategy. 

Measured raw acceleration responses in time domain from available and desired locations are 

processed to train SegGAN. The specially designed generator is a fully CNN, which has a 

bottleneck structure with skip connection and dense blocks to advance information flow 

among layers, so as to improve the training efficiency and feature extraction capability. The 

input to the generator is the measured response from selected sensors that continuously work 
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properly, and the output is the reconstructed response from desired locations that are 

unavailable after a period of normal recording. The generator is proposed to learn the mapping 

between the input and output responses by using a combined objective function including a 

defined objective function and a self-learned objective function provided by the discriminator. 

For the case without the discriminator, the generator can be categorized as a type of network 

using designed objective functions such as mean absolute error (MAE) or mean squared error 

(MSE) to learn mappings, that tends to produce blurry prediction in pixel-to-pixel tasks 

(Pathak et al., 2016). The reason behind this is that the objective functions are minimised by 

averaging output values, which nonetheless capture the low-frequency structure of data such 

as frequencies and mode shapes of structures but lose some local details such as fast shifts of 

amplitudes and instantaneous frequency changes. The well trained generator of SegGAN will 

be then used to reconstruct structural responses of unavailable locations under both ambient 

and extreme loading conditions. It should be noticed that response reconstruction is fully 

automatic that only uses raw time domain data without any human selected features. The 

segment based discriminator is a fully stacked CNN that aims to provide additional loss 

gradients to the generator for reinforcing high-frequency data structure learning. The proposed 

discriminator has a conditioned input which is the available and reconstructed responses (input 

and output of generator) or available and true responses (input and ground truth of output of 

generator). A condition is given to the input so that the discriminator can consider both the 

authenticity of input and the consistency with the condition when discriminating the input. For 

response reconstruction, it means that rather than learning features from reconstructed and true 

responses, the conditioned input adds intra-channel relationships as the features, that brings 

more physics based significance to the reconstructed responses. The output of segment based 

discriminator is an array which contains scalars ranging from 0 to 1, indicating the ‘truth’ of 

each mapped input segment. Compared to the original GAN (Goodfellow et al., 2014) that 

evaluates the truth of full input data, segment based discriminator evaluates input segment-by-

segment to learn the mapping of the high-frequency structure of data more effectively. 
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6.2.1 Generator with skip and dense connections 

The generator is designed to reconstruct responses by training with a defined objective 

function and discriminator. The specially designed generator is a fully CNN with a bottleneck 

structure that is typically known as ‘U-net’ (Ronneberger et al., 2015) or convolutional 

encoder-decoder (Mao et al., 2016). Networks structured like a ‘bottleneck’ consist of 

compressive layers, bottleneck layer and reconstruction layers, which is developed to 

gradually extract the higher level of data features by the compressive layers and bottleneck 

layer, and then reconstruct the output using the most representative data features extracted by 

bottleneck layer through the stacked reconstruction layers. The compressive layers and 

bottleneck layer gradually shrink the size of feature maps to facilitate the network to learn 

robust features containing useful information of data while eliminating noise with no certain 

pattern. Skip connection is embedded among the network layers, and densely connected blocks 

are involved to substitute traditional compressive layers that are constituted of only a single 

convolution layer. Here, the generator with skip connection and densely connected blocks is 

named as DenseNet. These two techniques skip connect or densely connect convolutional 

layers to greatly improve the information flow among networks. As a result, the training data 

size and training parameters (including weights and bias of convolutional layers) can be 

reduced, and the gradient vanishing issue can be mitigated, resulting in the extraction and 

propagation of the higher level features more efficient and accurate. In addition, the 

convergence speed is also significantly boosted by reducing the computational demand and 

training iterations.  

6.2.1.1 Configurations of generator 

The architecture of the generator is demonstrated in Figure 6-1 with responses from 

multiple available locations served as input and one unavailable location as output. The low-

level features of input data are first enriched by the Low-level convolutional layer. Three 

successive dense blocks (Dense 1 to 3 as shown in Figure 6-1) containing densely connected 

convolutional layers are herein substituted by the layer-by-layer connected convolutional 

layers to form the compressive path for extracting high level of latent features. Data features 
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passing through each dense block will be halved in its length and doubled in the number of 

feature maps. The last convolutional layers in dense block shrink the length of feature maps 

by sliding the convolutional kernels with a stride of 2. The extracted features by Dense 3 have 

the smallest dimension but the highest level of abstraction, which are used for reconstructing 

unavailable responses. Two successive reconstruction layers R2 and R1 and a final reshaping 

layer Final, as shown in Figure 6-1, are designed to reconstruct the unavailable responses 

using the features extracted by Dense 3 and skip connections. Skip connections denoted by 

dashed arrows shuttle features of the shallow layers to the deeper layers. R2 and R1 upscale 

the length of feature maps by a factor of 2 using a one-dimensional sub-pixel shuffling 

operation. Figure 6-2 shows an example of the sub-pixel shuffling with four feature maps 

consisting of six features each. It divides the feature maps into two groups and combines two 

feature maps in the same order of each group as one by interpolating one to another. As a one-

dimensional case presented in a previous study (Shi et al., 2016), this is an efficient operation 

for upscaling features, which costs less computational demand than the general deconvolution 

and has strong workability with less artifact introduced in the output (Odena et al., 2016). 

 

Dense 2 Dense 3 

(64×1024)

Input 

(n×1024)

CoNv + ReLU + ShufflingConv + ReLU Skip connection

 

Output

(1×1024)

Low-level

Dense 1 

(64×512) (128×256) (256×128)

R 2 R 1 

Final

(128×256)(64×512)(2×512)

Conv + ReLU Conv + Shuffling

 
Figure 6-1. The architecture of the generator. 

 

1-1 3-1 1-2 3-2 1-3 3-3 1-4 3-4 1-5 3-5 1-6 3-6

2-1 4-1 2-2 4-2 2-3 4-3 2-4 4-4 2-5 4-5 2-6 4-6

Split as two 

groups
Shuffling

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6
 

Figure 6-2. The schematic procedure of one-dimensional sub-pixel shuffling with 4 feature 

maps and 6 elements in each map. 
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The detailed configurations of the proposed generator are summarized in Table 6-1. The 

depth of DenseNet is determined by testing the performance on structural response 

reconstruction with 1 to 6 pairs of dense block and reconstruction layer. 2 pairs are selected 

since the performance stops gaining at this formation, while the computational burden 

continues increasing. Other model hyper-parameters including kernel number and kernel size, 

are determined by trial and error with an initial value derived from (Kuleshov et al., 2017). 

The mapping relationship between input and output is complicated so that a linear function 

cannot represent accurately. Leaky rectified linear unit, namely, Leaky ReLU (Maas et al., 

2013) as an advanced activation function, is selected to transfer the mapping from linear to 

nonlinear (simplified as ReLU in Figure 6-1). The function of Leaky ReLU can be expressed 

as 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,        𝑖𝑓 𝑥 > 0

0.01𝑥, otherwise
 (6.1) 

Leaky ReLU has a broader range of output which mitigates the gradient vanishing. Meanwhile, 

it allows a non-zero small gradient to overcome the defect of using traditional ReLU, that is, 

the neuron is potentially never activated when a large gradient passes it (Maas et al., 2013). 

Input and output shapes in Figure 6-1 and Table 6-1 are determined by considering the input 

having responses form n locations with a length of 1024 data points. Since there is no fully 

connected layer which needs a constant input to design the number of neurons, fully CNNs 

such as the proposed generator and discriminator accept input data with a flexible length. 

 

Table 6-1. Detail configurations of the generator. 

Layer Kernel 

number 

Kernel 

size 

Stride Input 

shape 

Output 

shape 

Leaky 

ReLU 

Shuffling Dropout 

Input - - - (n, 1024) (n, 1024) - - N 

Low level 64 64 1 (1, 1024) (128, 1024) Y N Y 

Dense 1 64 64 - (64, 1024) (64, 512) Y N Y 

Dense 2 128 32 - (64, 512) (128, 256) Y N Y 

Dense 3 256 16 - (128, 256) (256, 128) Y N Y 

R2 256 16 1 (256, 128) (128, 256) Y Y Y 

R1 128 32 1 (256, 256) (64, 512) Y Y Y 

Final 2 64 1 (128, 512) (1, 1024) N Y N 

Output - - - (1, 1024) (1, 1024) - - N 
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6.2.2.2 Skip connection 

Training a deep neural network with a layer-to-layer sequential connection by using the 

gradient and back-propagation strategy always faces the gradient vanishing issue in deeper 

layers, which could significantly influence the effectiveness of feature extraction and lead the 

deep architecture to fail in training (Huang et al., 2017). Skip connection as shown in Figure 

6-1 shuttles features extracted by shallow layers to deep layers to pass the low-level details

that are lost during the convolution to the deep layers (Mao et al., 2016), which alleviates the 

gradient vanishing issue (Isola et al., 2017). Skip connection also allows the gradient to be 

back-propagated to the shallow layers directly, which further enhances the information flow 

and improves the convergence efficiency. Skip connection with these advantages is then 

embedded in the densely connected blocks to advance the feature extraction.  

6.2.2.3 Dense block 

Data feature extraction as a core part of the proposed DenseNet is emphasized by using 

dense block. A dense block consists of several convolutional layers, where any extracted 

feature maps are skip connected with all the successive ones (Huang et al., 2017; Zhang et al., 

2018). Information flow among a dense block is strongly reinforced. Networks composed by 

dense blocks are much more efficient in extracting high-level features than the layer-by-layer 

sequential connected networks. Furthermore, instead of using a large single layer containing 

considerable parameters, dense block sharing parameters crossing the embedded layers can 

reduce the required parameters. The proposed dense blocks in this study have 4 densely 

connected convolutional layers, namely, Conv 1 to Conv 4, as schematically shown in Figure 

6-3. Detailed configurations of all these dense blocks are summarized in Table 6-2.

Convolution layers inside a dense block sharing the same number of kernel size and kernel 

number. Conv 1 to Conv 3 are three successive convolutional layers with a stride of 1 to keep 

the output size consistent. Conv 4 shrinks the dimension of the features by a convolution 

operation with a stride of 2. Consequently, the sequential dense blocks perform as compressive 

layers in the bottleneck network. 
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Figure 6-3. A dense block with four convolutional layers. 

 

Table 6-2. The detailed configurations of the dense blocks. 

 Layer 
Kernel 

number 

Kernel 

size 
Stride Input shape Output shape 

Leaky 

ReLU 

Dense 

Block 

1 

Conv1 64 64 1 (128, 1024) (64, 1024) Y 

Conv2 64 64 1 (192, 1024) (64, 1024) Y 

Conv3 64 64 1 (256, 1024) (64, 1024) Y 

Conv4 64 64 2 (320, 1024) (64, 512) Y 

Dense 

Block 

2 

Conv1 128 32 1 (64, 512) (128, 512) Y 

Conv2 128 32 1 (192, 512) (128, 512) Y 

Conv3 128 32 1 (320, 512) (128, 512) Y 

Conv4 128 32 2 (448, 512) (128, 256) Y 

Dense 

Block 

3 

Conv1 256 16 1 (128, 256) (256, 256) Y 

Conv2 256 16 1 (384, 256) (256, 256) Y 

Conv3 256 16 1 (640, 256) (256, 256) Y 

Conv4 256 16 2 (896, 256) (256, 128) Y 

6.2.2 Segment based discriminator 

The segment based discriminator as shown in Figure 6-4 is proposed to learn the 

discrimination between true and reconstructed response. For response reconstruction, it can 

also be considered as establishing an objective function for training the generator on mapping 

details of response data. As denoted schematically by the specific segment component 

(denoted in purple colour) in Figure 6-4, a prediction unit is mapping from a segment of input 

data. The segment based discriminator determines the truth of input segment-by-segment, 

which learns more detail information from training data. This is the major difference between 
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SegGAN and the original GAN (Goodfellow et al., 2014) where the output of original GAN 

is a single scalar that signifies ‘real’ or ‘fake’ of full input data. Furthermore, as introduced in 

Section 6.2, the input of the discriminator is conditioned by the input of the generator which 

brings more physics based significance for the learned objective function for the generator that 

allows generator to produce more reasonable responses. As a result, SegGAN is enhanced to 

not only reconstruct response as being close to ‘truth’ as possible, but also keep consistency 

with responses from other channels. Configurations of the discriminator are demonstrated in 

Figure 6-4, where k, ks and s represent the kernel number, kernel size and convolution stride, 

respectively. High-level features are progressively extracted by stacked convolutional layers 

from C1 to C5. It is worth noting that the last convolutional layer C5 uses a Sigmoid activation 

function, which transfers the output to a range from 0 to 1 as a logistic likelihood indicating 

the truth of prediction from false to truth. The expression of Sigmoid activation function is 

expressed as 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
 

(6.2) 

To enforce the discriminator to learn the discrepancy between reconstructed and true responses 

in training, the output labels for the reconstructed and true responses are set as a series of 0 

and 1, respectively, to compute gradients.  
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Figure 6-4. The architecture of the proposed segment based discriminator. 

6.2.3 Objective function of SegGAN 

For response reconstruction, the objective function of training SegGAN is to maximize 

the ‘truth’ of reconstructed responses from generator, which is determined by discriminator 

through an adversarial framework. During the training process, the generator tries to confuse 

the discriminator by learning the mapping between responses from available and desired 

locations and generates desired responses that appear as true. The discriminator learns the 

features of generated and real data and tries to allocate the maximum possibility of truth to 

true response and maximum possibility of fake to reconstructed response. The objective 

function of SegGAN for response reconstruction with conditioned input is expressed as 

𝐿𝑆𝑒𝑔𝐺𝐴𝑁 = argmin
𝐺
max
𝐷
𝔼𝑎,𝑡[𝑙𝑜𝑔𝐷(𝑎, 𝑡)] + 𝔼𝑎[log(1 − 𝐷(𝑎, 𝐺(𝑎)))] (6.3) 

where G and D are the generator and discriminator of SegGAN, 𝔼 means the expected output, 

a and t denote the available and true responses, respectively. Here, G tries to minimize this 

C1: Conv + ReLu

(k = 64, ks = 4, s = 2)

C2: Conv + ReLu

(k = 128, ks = 4, s = 2)

C3: Conv + ReLu

(k = 256, ks = 4, s = 2)

C4: Conv + ReLu

(k = 512, ks = 4, s = 2)

Available + True

Available + Reconstructed

True labelFake label
…

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
…

C5: Conv + Sigmoid

(k = 1, ks = 4, s = 2)
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objective function against an adversarial D that tries to maximize it. Generator and 

discriminator play a two-player minimax game following Equation (6.3) to generate cross-

entropy loss for tuning parameters. It is reported that MAE and MSE based losses that evaluate 

the distance between data have strong capability on learning low-frequency data features 

(Radford et al., 2015). To facilitate the learning of low-frequency data features, the loss of 

generator is herein designed to be supplied by the discriminator and a distance sense objective 

function. As a result, the objective of the generator becomes producing responses to cheat 

discriminator, meanwhile, approaching the true responses in a distance sense. Generator and 

discriminator will be trained simultaneously, but only the generator will remain for response 

reconstruction after training. The final objective function for the generator is expressed as  

𝐿𝐺 = 𝐿𝑆𝑒𝑔𝐺𝐴𝑁 + 𝜆 · 𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (6.4) 

where λ is the weight for scaling Lossdistance. The reason for applying a loss weight is because 

generally, LSegGAN has a much larger scale than Lossdistance which will influence the effectiveness 

of training. Here, Normalized MSE (N-MSE) loss function that has been validated to be 

effective in response reconstruction as introduced in Chapter 5 is recommended as the 

Lossdistance. N-MSE is defined as 

𝐿𝑁−𝑀𝑆𝐸 =∑
(𝑡𝑘 − 𝐺(𝑎𝑘))

2

𝑡𝑘
2

𝑛

𝑘=1

 (6.5) 

where n is the total number of sampling points of a training sample. A loss weight λ of 1000 

is recommended based on Ref. (Pathak et al., 2016).  

6.2.4 Adversarial training procedure of SegGAN 

Training of the proposed SegGAN is realized in a supervised manner as shown in Figure 

6-5. The label for generator is the corresponding true response of generated response, and the 

label for discriminator are 0 and 1 indicating the truth of data corresponding to reconstructed 

and true responses. Before starting the training, all trainable parameters of both the generator 

and discriminator are initialized with a normal distribution. The training of SegGAN consists 

of two adversarial stages. The first stage of training will freeze parameters of the generator 



 

180 

 

and train discriminator by using training data loaded in batches. Available responses from 

sensor measurements flow through the generator to generate reconstructed responses and then 

mix with true responses to form two sets of conditioned input for training the discriminator. 

The discriminator is then trained to distinguish generated and true responses by using 

computed cross entropy loss. Gradients are derived and back-propagated to each layer of the 

discriminator. Once a loop of training data finishes, the parameters of the discriminator will 

be fixed, and then parameters of the generator will be turned to trainable. Available responses 

are again used as input to the generator for producing the generated responses. Combined with 

the available responses, the generated responses are served as input to the discriminator for 

computing a cross entropy loss. On the other hand, N-MSE loss of generated reconstructed 

response is computed with the true response to be reconstructed. Two losses are summed with 

assigned loss weight. Gradients are back-propagated to the parameters of the generator. The 

training data grouped as batches are used in turn to fine-tune generator. These two training 

steps compose of an iteration of training. Generally, the required iteration for training a 

network depends on the volume of training data. With this specially designed architecture, 

training a SegGAN with competitive feature extraction capability can take much fewer 

iterations, compared with the traditional CNN. 

To overcome the overfitting issue, dropout technique (Srivastava et al., 2014) is applied 

in each layer of the generator which randomly de-actives neurons of the convolutional kernel 

to break up the co-adapted sets of neurons. Remaining neurons are forced to learn data features 

to eliminate noise effect, which makes the trained neurons more robust. In this study, every 

neuron has a 50% possibility of being dropped when confronting a different batch of training 

data.  
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Figure 6-5. Adversarial training procedure of the proposed SegGAN.  

6.3 Numerical study on a linear steel frame model 

To validate the effectiveness and accuracy of the proposed SegGAN for structural 

response reconstruction, numerical studies are conducted based on a FEM of an experimental 

seven-storey steel frame structure as shown in Figure 6-6. In this steel frame structure model, 

each floor height is 0.3m with a total model height of 2.1m. The width is 0.5m. The cross 

sections of the column and beam elements are 50mm × 5mm and 50mm × 9 mm, respectively. 

The mass density and elastic modulus of material are 7850kg/m3 and 210GPa, respectively. A 

4 kg lumped mass is added on the corresponding DOFs at a quarter and three-quarter locations 

of each floor to simulate the mass on the floor of the building. An initial FEM model of the 

frame structure is built with planar beam elements. Each node in the FEM consists of three 

DOFs, which are the translational displacements in the x and y directions and the rotational 

displacement in the x-y plane. The FEM of the frame structure includes 70 planar elements 

and 65 nodes as shown in Figure 6-7. With 3 DOFs at each node, the model has 195 DOFs in 
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total. Two fixed supports at node 1 and 65 are modelled by restraining the corresponding DOFs. 

The first two modal damping ratios of the experimental structure are computed as 1.1% and 

0.4% for the first two modes with the sensitivity based model updating method (Li et al., 2017). 

Rayleigh damping model is assumed for this structure. The stiffness matrix and boundary 

conditions of the initial FEM are then updated using the measured responses from the 

experimental structure as introduced in Ref. (Li et al., 2012). It should be noted that the 

updated model is used as a baseline in numerical studies for generating the training, validation 

and testing data.  

 

 

 

  

(b) 

 

(a) (c) 

Figure 6-6. Experimental seven-storey frame structure. (a) Frame structure; (b) Mass 

blocks; (c) Fixed supports. 
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Figure 6-7. FEM of the steel frame structure. 

6.3.1 Data preparation 

Training and validation data are generated as ten-hour dynamic responses of this frame 

structure under ambient excitations along x direction. Dynamic responses of the structure are 

computed by using Newmark-beta method. The ‘measured’ acceleration responses in x 

direction from nodes 4, 7, 10, 13, 16 and 19 are considered as available responses and 

responses at node 22 in x direction is assumed to be unavailable after a period of normal 

recording. It should be noticed that for response reconstruction, the available responses may 

need to contain all the significant vibrational modes excited at the desired location when using 

methods based on intra-channel correlations for accurate reconstruction. Using available 

responses from multiple DOFs can fulfil the requirement. The sampling rate of acceleration 

data is set as 100Hz. Original measurements from all the selected channels are altogether 

scaled to a range between -1 and 1 for training stability while retaining mode shapes 
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information. These ten-hour data are processed as training and validation samples and each 

sample has a length of 1024 sampling points. A window with a length of 1024 that slides along 

the time steps of acceleration data with a stride of 512, is applied to generate samples. 

Generated samples are split as 80% and 20% for training and real-time validating the 

convergence of networks, respectively. Since validation data are never used to tune parameters 

during training, they are used for both validation and testing networks to allow more data for 

training. Testing data are prepared including validation data under ambient excitation and extra 

datasets, that is, structural responses under earthquake excitations. 20% root mean square 

Gaussian noise is added to the testing data for simulating measurement noise. The earthquake 

applied is the recorded acceleration of the El Centro earthquake as shown in Figure 6-8. The 

condition is harsh for response reconstruction for this scenario since the features of testing 

data is different from training data, because the excitations are different. Vibration responses 

under ambient excitations are used for training, but the responses under earthquake excitations 

are used for testing the proposed approach. 

 

 

Figure 6-8. Input El Centro earthquake. 

6.3.2 Selection of objective function for generator 

A suitable objective function is crucial for different concerned tasks. In this study, the 

objective function of the generator is carefully selected by testing the performance of using 

several defined objective functions with different loss weights to work together with the 

adversarial loss. The combination of losses is expressed in Equation (6.4). Four losses with 

two commonly used losses, i.e., MAE and MSE, and two designed losses, namely, normalized 

MAE (N-MAE) and N-MSE, are tested. The objective function of N-MSE is introduced in 

Equation (6.5). N-MAE can be expressed as 
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𝐿𝑁−𝑀𝐴𝐸 =∑
|𝑡𝑘 − 𝐺(𝑎𝑘)|

|𝑡𝑘|

𝑛

𝑘=1

 (6.6) 

The reconstructed response is evaluated with the corresponding true response. The 

reconstruction error is quantified as a relative error with the true response using L2-nrom 

which can be expressed as 

휀 =
‖𝑡 − 𝐺(𝑎)‖2

2

‖𝑡‖2
2 =

√∑ (𝑡𝑖 − 𝐺(𝑎)𝑖)
2𝑛

𝑖=1

√∑ 𝑡𝑖
2𝑛

𝑖=1

 
(6.7) 

Frequency domain responses representing vibration characteristics in the frequency domain 

sometimes are important for SHM. Therefore, this study also evaluates the reconstructed 

response in the frequency domain through Fast Fourier Transfer (FFT). When calculating the 

error in the frequency domain, t and G(a) become the spectra of true and reconstructed 

responses. SegGANs with different loss function combinations are trained individually using 

a computer with an i7-6700k CPU, RTX 2080TI GPU and 16GB memory. The training 

iteration is 150 epochs and training time is half an hour for each one. The validation errors of 

selected objective function and different loss weights combinations are shown in Figure 6-9. 

The errors are small when cross entropy loss LSegGAN is not involved in the generator. However, 

without using LSegGAN, the detail information loss problem will exist. Those results win 

quantitatively but lose in the quality. More explanation will be provided in the following 

sections. Errors of these four loss functions are large when the loss weight is 10, since LSegGAN 

is supposed to facilitate networks to learn detail features. Assigning a large contribution will 

influence the learning of the low-frequency structure of data. Except for MSE, errors drop 

sharply when the loss weight reaches 100 and slightly fluctuate with continually increasing 

loss weight. The smallest error of 8.67% is achieved by using N-MSE with a loss weight of 

1000, which is the same as our recommendation mentioned in Section 6.2.3 and consistent 

with the loss function used in Chapter 5 for response reconstruction and loss weight selected 

in Ref. (Pathak et al., 2016) for image inpainting. As a result, this combination is selected for 

the rest of studies. 
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Figure 6-9. Validation errors of selected objective functions with different loss weights. 

6.3.3 Results evaluation 

The trained generator of SegGAN with best combination is then validated by testing data. 

DenseNet, and a traditional CNN with the same architecture as DenseNet but without skip 

connection and dense blocks, are applied for comparison. Trainings of SegGAN, DenseNet 

and CNN are conducted by using 150, 150 and 500 epochs and take around 0.6, 0.5 and 1.5 

hours, respectively. The convergence processes for these three networks are shown in Figure 

6-10. During training, parameters of networks with the best performance are kept for testing. 

The best points are marked as green stars in Figure 6-10. Training and validation losses of 

SegGAN and DenseNet drop suddenly in the first several training iterations because of the 

involved skip connection and dense blocks which effectively improve the feature extraction. 

As shown in Figure 6-10(a), the validation loss of SegGAN decreases slowly after 50 iterations 

and reaches the best result of 8.67% at the 148th training iteration. The validation error is 

always below training error, which means that no overfitting issue exists in training SegGAN. 

On the other hand, as shown in Figure 6-10(b), DenseNet achieves the smallest loss of 10.54% 

and then the loss starts raising after 60 training iterations. This phenomenon indicates that the 

networks overfit the training data after 60 iterations and adjustments should be made on the 

networks for training. On contrary, SegGAN considering both N-MSE and self-learned losses 

is more robust to overfitting, which represents a stable training process. Figure 6-10(c) shows 

the training process of CNN for 500 epochs, and CNN reaches the smallest validation loss of 

17.14% at the 488th iteration. Compared to SegGAN and DenseNet, the training efficiency is 

much lower, and the smallest loss is also much larger than those obtained from SegGAN and 
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DenseNet. The comparison results further demonstrate the effectiveness and improvement of 

using the skip connection and dense blocks in feature extraction. When comparing the 

performances of SegGAN and DenseNet, training of SegGAN is more stable and the results 

are quantitatively better with smaller loss values. 

(a) (b) (c) 

Figure 6-10. Training processes of (a) SegGAN; (b) DenseNet; and (c) CNN. 

The testing data are then used as input to the trained networks for evaluating the 

effectiveness on reconstructing responses under ambient and extreme loading conditions. 

Figures 6-11 and 6-12 show the comparison of reconstructed and true responses under ambient 

excitations and earthquake loads in both time and frequency domains. The relative errors in 

response reconstruction by applying these three trained networks are shown in Figures 6-13(a) 

and (b) under ambient and earthquake excitations, respectively. Overall, as can be observed in 

Figures 6-11(a), (c) and (e), all these three networks effectively reconstruct the ambient 

responses in time domain. Though SegGAN slightly outperforms DenseNet, they are both 

outstanding for response reconstruction under ambient excitations. CNN may be not as 

accurate as SegGAN and DenseNet in aligning the amplitudes of time steps due to feature loss 

during convolution. On the other hand, by observing Figures 6-11(b) and (d), natural 

frequencies as important information of structural response are accurately reconstructed in 

terms of the frequency and amplitude values. SegGAN with a self-learned loss function is 

stronger than DenseNet in learning and reconstructing spectrum amplitude which is correlated 

to the mode shape of the structure as a vital vibrational characteristic for SHM. CNN produces 

good results in reconstructing several well-excited modes at this DOF as shown in Figure 6-

11(f). However, CNN loses information of responses in higher frequency bandwidths due to 
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the simple layer-to-layer connected structure which might not be effective in higher frequency 

feature extraction. The observed results are consistent with the quantitative errors as shown in 

Figure 6-13(a). Reconstructed response by using SegGAN maintains the smallest relative 

errors while CNN has the largest errors in both the time and frequency domains. 

 

  

  

  

Figure 6-11. Comparison of 5 seconds true and reconstructed ambient responses in time 

and frequency domains under ambient excitations using: SegGAN (a) and (b); DenseNet 

(c) and (d) and CNN (e) and (f). 

 

Reconstruction of earthquake responses with high measurement noise is much more 

challenging. As shown in Figures 6-12(a) and (b), SegGAN demonstrates a strong capability 

in reconstructing response details because of the adversarial framework. Variation in system 

input will result in differences in the features of system responses. Trained by ambient 

responses, SegGAN effectively reconstructs responses under earthquake excitations with 

dominating power concentrated in a narrow frequency bandwidth. Observed from Figure 6-

12(c), time domain response reconstructed by DenseNet shows a large discrepancy in the 

maximum amplitude of responses which is important for evaluating earthquake induced 
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damage. The reconstruction performance in time domain of CNN as shown in Figure 6-12(e) 

is not as good as SegGAN. The reconstructed response exhibits a large discrepancy in the last 

3 seconds. Both DenseNet and CNN using a pre-designed objective function alone lose some 

detail information of responses in different levels. SegGAN self-learns an objective function 

through adversarial training process, which can greatly improve the detail feature extractions. 

By comparing Figures 6-12(b), (d) and (f), there is no large difference between reconstructed 

responses in the frequency domain. The reason behind this is that the frequency spectrum 

obtained by using FFT cannot present the time domain response details but provide modal 

information only. The observations are consistent with the quantitative evaluation of 

reconstructed responses as shown in Figure 6-13(b) where the reconstruction errors in 

frequency domain are generally lower than that in time domain. From this study, it can be 

concluded that even CNN can automatically extract linear response features which are natural 

frequencies and mode shapes of a structure from civil engineers’ perspective. DenseNet and 

SegGAN are more effective in response features extraction than CNN, especially SegGAN, 

which also captures local feature variations. In addition, a high level of noise is injected in the 

testing data but introduces minor effect on reconstruction. This indicates that networks with 

bottlenecked architecture have strong immunity to noise effect and can provide an accurate 

response reconstruction in both time and frequency domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

190 

 

 
 

 

 

 
 

Figure 6-12. Comparison of true and reconstructed earthquake responses in time and 

frequency domains under earthquake loads using: SegGAN (a) and (b); DenseNet (c) and 

(d); and CNN (e) and (f). 

 

  

(a) (b) 

Figure 6-13. Relative errors in response reconstruction under: (a) ambient excitations; (b) 

earthquake loads. 
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6.4 Numerical study on a nonlinear building model 

A nonlinear building model is used for evaluating the accuracy of using the proposed 

approach in capturing the nonlinear response features for structural response reconstruction, 

which exist widely in structures under extreme loading conditions. The nonlinear FEM of the 

building is a shear model consisting of 7 DOFs. As shown in Figure 6-14, the first storey of 

the building is 3.5m in height and the rest stories are 3.0m high. The first storey and the top 

storey are assigned with a mass of 1.6×104kg and 1.25×104kg, respectively. The masses of 

other stories are defined as 1.4×104kg. The 2nd to 7th stories use linear elastic elements with 

a cross section of 0.2m×0.2m and an elastic modulus of 52GPa. The first storey is assumed to 

have nonlinear behaviour following a Bouc-Wen hysteretic model (Wang et al., 2015). The 

equation of motion of the nonlinear building model can be expressed as  

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑓𝑁𝐿[𝑢(𝑡), 𝑡] = 𝑓(𝑡) (6.8) 

where 𝑓𝑁𝐿[𝑢(𝑡), 𝑡] is the nonlinear restoring force of the system which can be expressed as

𝑓𝑁𝐿[𝑢(𝑡), 𝑡] = 𝛼𝑘0𝑢(𝑡) + (1 − 𝑎)𝑘𝑧 (6.9) 

where 𝛼 is the rigidity ratio which is set as 0.05 in this study, k0 as the initial tangent stiffness 

is defined as 8.24×107 kN, z denotes the hysteretic displacement response which can be further 

computed as 

�̇� =
𝐴�̇�−𝜐(𝛽�̇�|𝑧|𝑛+𝛾|�̇�||𝑧|𝑛−1𝑧)

𝜂
, 

with 

(6.10) 

𝜈 = 1.0 + 𝛿𝜈휀,

𝜂 = 1.0 + 𝛿𝜂휀,

휀 = ∫ 𝑧�̇�(𝜏)
𝑡

0

𝑑𝜏 

where 𝛽 and 𝛾 are the parameters defining the hysteretic behaviour of the nonlinear Bouc-

Wen model; 𝐴 is the coefficient of tangent stiffness k0, n determines the transition from the 

linear to nonlinear ranges, 𝜂 and 𝜐 define the stiffness and strength degradation, respectively. 

In this study, the parameters of the Bouc-Wen model are selected as 𝛼 = 0.05, 𝛽 = 𝛾 = 2000, 

n=1, 𝜂 = 1.0, 𝜈 = 1.0, respectively.  
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Figure 6-14. FEM of the nonlinear building model. 

6.4.1 Networks training using nonlinear response data 

The building model is excited by four different earthquake ground motions records from 

low to high intensities of ground motions. Four sets of responses recorded at the 1st, 2nd and 

4th ground motions are selected for training and the 3rd one is kept for testing. The sampling 

rate of acceleration response data is set as 50Hz. The training samples are generated by a 

window with a length of 256 and sliding along the responses with a stride length of 128. There 

are totally 32 samples with a length of 256 in the training datasets. In this study, the response 

of the top storey sensor S7 is assumed to be lost during the third earthquake excitation and 

needs to be reconstructed. The measured responses from sensors S1 to S6 are selected as the 

available responses to serve as the input, and the response from S7 becomes the output of 

networks for response reconstruction. Responses from all the sensors are altogether scaled to 

a range between -1 and 1 for improving the stability of training, while retaining mode shape 

information. The scaled data are processed as training and validation samples by using a 

sliding window with a length of 256 and a stride of 128. Testing data is also scaled but kept as 

the original size. After reconstruction, the output data can be rescaled back to real scale by 
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dividing the same scale factor with the input. Three networks, namely, the proposed SegGAN, 

DenseNet and CNN, are assigned the same parameters as the numerical studies on the frame 

structure. With very limited data, these three networks are trained by 1000, 1000 and 5000 

iterations for feature extraction. It takes 4min, 3min and 8min for these three networks to fully 

converge.  

6.4.2 Testing trained networks 

After training, the three trained networks are tested by using the third earthquake response 

that is not involved in training. The time records of true and reconstructed responses are shown 

in Figure 6-15, and the quantified relative errors of reconstructed responses are shown in 

Figure 6-16. As shown in Figures 6-15(a) and (b), responses reconstructed by using the 

proposed SegGAN accurately match with the corresponding true responses with minor 

differences in a few amplitudes in both time and frequency domains. The observations are 

confirmed by Figure 6-16, which shows that the relative errors in time and frequency domains 

are around 22% and 16%, respectively. The results demonstrate that the designed SegGAN 

can effectively capture both high-frequency and low-frequency features of earthquake 

responses. On contrary, by observing Figures 6-15(c) and (d), there are many differences in 

the amplitudes in the reconstructed response time history, because very limited training data 

are available. DenseNet assigns higher weights to low frequency components that have more 

energy under earthquake excitations. DenseNet does not perform well to detect response 

details and capture local changes, which means that it only learns low-frequency features of 

responses but loses time-variant features induced by the nonlinearity and high frequency 

components. If more datasets are available, the accuracy might be better. Furthermore, as 

shown in Figures 6-15(e) and (f), CNN with simple architectures and trained with such limited 

samples is ineffective in extracting both low and high-frequency responses. Therefore larger 

relative errors are obtained. In this study, SegGAN trained by adversarial strategy outperforms 

the other two networks on nonlinear response feature extraction under extreme loading 

conditions. With an outstanding capability on nonlinear response feature extraction with 
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limited training samples, SegGAN is of great potential for practical applications where limited 

data under extreme loading conditions are available. 

  

  

  

Figure 6-15. Comparison of true and reconstructed earthquake responses in time and 

frequency domains using: SegGAN (a) and (b); DenseNet (c) and (d); and CNN (e) and 

(f). 

 

 

Figure 6-16. Reconstruction errors of nonlinear data in time and frequency domains. 
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6.5 Experimental validations 

To further validate the performance of using the proposed approach for real applications, 

experimental studies are conducted with limited measured response from the steel frame 

structure as described in Section 6.3. As shown in Figure 6-17(a), minor damages are 

introduced into the column of the second and fourth floors of the structure corresponding to 

elements No. 6 and No. 12 of the FEM, as shown in Figure 6-7. Damages are introduced into 

the element as two cuts with a width of 30mm and a depth of 10mm as shown in Figure 6-

17(b).  

Ambient and shake table tests are conducted for the above damaged structure. In the test, 

totally 7 sensors are mounted at one side of the column. The locations of sensors are at beam-

column joint of each floor of the steel frame. The top sensor is assumed to be faulty and 

responses of the rest of sensors are used as available responses. Networks are trained using 

measured ambient responses and validated by measured responses under shake table tests with 

an input earthquake excitation. About 14 minutes of ambient responses of the steel frame 

structure with a sampling rate of 2000Hz are recorded. The first seven modes of this structure 

are within 30Hz. To eliminate redundant features from data and shirk the size of dataset, the 

measured data are pre-processed by a low-pass filter with a 50Hz cut-off frequency and then 

down-sampled to 100Hz before processed as training data. Shake table test is conducted to 

obtain responses of the structure for testing the performance of the proposed approach. The 

preparation of training and validation samples follows the same procedure as the numerical 

study as introduced in Section 6.3.1. Consequently, with the limited measured ambient 

vibration responses, only 128 training samples and 32 validation samples with a length of 1024 

are produced. Generally, a large number of training samples are required for most of the deep 

learning applications in SHM to achieve a good accuracy. In this study, the limited number of 

samples leads to the significantly improved efficiency of feature extraction. SegGAN 

possesses a strong capability in feature extraction from limited training data in the numerical 

study of the nonlinear building model. In this experimental study, the efficiency of feature 
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extraction is also validated by using experimental data measured from the steel frame 

structures under ambient conditions. 

 

 

 

(a) (b) 

Figure 6-17. (a) Frame structure with damage; (b) Detail of the damaged element. 

6.5.1 Training networks 

Three networks including the proposed SegGAN, DenseNet and CNN, are used in the 

experimental studies with the same configurations as those in numerical studies. These three 

networks are trained respectively with the same training data. The training time for SegGAN, 

DenseNet and CNN are around 10min, 8min, and 26min for 1000, 1000 and 5000 training 

iterations. The training and validation errors for these three networks are demonstrated in 

Figure 6-18. By observing Figures 6-18(a) and (b), SegGAN performs the best feature 

extraction capability, and then DenseNet. The losses of using SegGAN and DensetNet drop 

sharply for the first few iterations. The validation errors of SegGAN and DenseNet reduce 

gently until reaching the valley points of 0.08 and 0.09 at the 950th and 930th iterations, 

respectively. There is no overfitting issue during training these two networks, which 

demonstrates that SegGAN and DenseNet efficiently learn robust and representative features 

from training data. Similar to the results in numerical studies, the convergence efficiency of 

CNN is much lower than SegGAN and DenseNet, and the minimum validation error of CNN 

30mm10mm
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is much larger, which retains 0.27 after around 5000 training iterations. With the measurement 

noise and operational conditions in the ambient vibration responses, traditional CNN becomes 

ineffective in extracting abstractive features from very limited measurement data. The 

comparison results indicate that skip and dense connections significantly improve the feature 

extraction and information flow among networks. In addition, considering that the number of 

training samples is extremely limited, SegGAN and DenseNet exhibit excellent feature 

extraction capability, demonstrating high application potential in reconstructing lost in-field 

measurement data.   

   

(a) (b) (c) 

Figure 6-18. Training processes in experimental studies using: (a) SegGAN; (b) 

DenseNet; (c) CNN. 

6.5.2 Testing data evaluation 

By using the trained networks, measured earthquake responses are reconstructed as 

shown in Figure 6-19. With less nonlinearity in this test, SegGAN and DenseNet reconstruct 

responses accurately in both time and frequency domains. Comparing the results in Figures 6-

19(a) and (b) with those in Figures 6-19(c) and (d), SegGAN performs better in reconstructing 

the response time history amplitudes than DenseNet. The superiority of using SegGAN can be 

attributed to the involved segment based discriminator which facilitates the generator to learn 

detail or local features of responses. On the other hand, as shown in Figures 6-19(e) and (f), 

CNN presents less accuracy to extract the detail information of earthquake responses and 

reconstructs inaccurate responses time history amplitudes. The calculated relative errors as 

shown in Figure 6-20 are consistent with the observed results in Figure 6-19, where SegGAN 

holds the smallest errors in both time and frequency domains in reconstructing measured 
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earthquake responses. Recalling the critical condition for training and testing, where limited 

data from ambient excitations only are available and no earthquake response is included in the 

training process, the good results demonstrate the effectiveness and robustness of using 

SegGAN for structural response reconstruction. SegGAN extracts robust response features 

efficiently and accurately, which is therefore very applicable for response reconstruction of 

structures under extreme loading conditions, even though only responses under ambient 

excitations are included in the training datasets. 

 

  

  

  

Figure 6-19. Comparison of true and reconstructed earthquake responses in time and 

frequency domains using: SegGAN (a) and (b); DenseNet (c) and (d); and CNN (e) and 

(f). 
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Figure 6-20. Reconstruction errors of experimental response under earthquake excitations in 

time and frequency domains. 

6.6 Conclusions 

This chapter proposes a specially designed SegGAN for reconstructing structural 

dynamic response under extreme loading conditions. Numerical studies on a steel frame 

structure and a nonlinear building structural model, as well as experimental studies on a 

laboratory tested steel frame structure are conducted to validate the effectiveness and accuracy 

of the proposed approach. The reconstruction results of using the proposed SegGAN are 

compared with those obtained by DenseNet and a traditional CNN. SegGAN featured with 

skip connection, dense connection and bottleneck architecture and trained by an adversarial 

strategy exhibits excellent feature extraction capability, even with limited sample datasets. 

With efficient and accurate feature extraction, SegGAN outperforms the other two networks 

and produces distinct dynamic response reconstruction results in both time and frequency 

domains. In numerical and experimental studies, SegGAN effectively and automatically 

extracts linear and nonlinear response features from limited training data with measurement 

noise under operational conditions, and can be used to reconstruct the responses under extreme 

loading condition, e.g., an earthquake. The advantages of using less measurement data under 

operational conditions and not necessarily including responses under extreme loadings for 

training make this developed approach more applicable for practical applications. 
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

 

7.1 Main findings 

In this thesis, five methods for addressing different technical issues of SHM is proposed 

for improving the applicability of SHM techniques for civil engineering structures. The major 

contributions and findings in this thesis are briefly summarized below: 

Chapter 2 proposes an improved automated OMA approach based on data-driven SSI and 

clustering techniques. The results in numerical and experimental studies reveal that the 

proposed approach is capable of identifying the vibration modes accurately even the data are 

polluted with high level of noise. The proposed approach outperforms the reference method 

because the statistics-based clustering and clustering merging procedures provide more 

comprehensive considerations of modal parameters that can distinguish the physical and 

spurious modes more effectively. The proposed method is fully automated and efficient, which 

can be used for processing long-term vibration data. 

Chapter 3 proposes an innovative approach based on specially designed CNN for 

recovering the lost SHM data during the transmission process. The results of two case studies 

show that the proposed CNN can effectively recover vibration data in both time and frequency 

domains. A comparison study of the effect of sampling rates demonstrates that the proposed 

approach can accurately recover signals with a low sampling rate, as long as the excited 

vibration modes are covered in the target frequency range of interest as half of the sampling 

rate. The data lost recovery results and modal identification accuracy using the recovered 

signals reveal that the proposed CNN has a decent performance to effectively recover the lost 

data in SHM, even with a 90% data loss ratio. 

Chapter 4 proposes a ResNet based vibration signal denoising approach to remove noise 

in vibration measurement data. Experimental studies on Guangzhou New TV Tower 
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demonstrate that the proposed approach effectively improves the quality of noisy signals 

injected with varying levels and types of noises. Modal identification of noisy and denoised 

signals shows that natural frequencies of the weakly excited modes submerged in the noise 

effect and the closely spaced modes can be clearly identified after denoising. These results 

indicate that the used networks extract the most important features from the training datasets, 

namely vibrational characteristics of the structure. On the other hand, the networks learn the 

features such as natural frequencies of the structure automatically and can help to distinguish 

physical modes from spurious modes. 

Chapter 5 proposes a novel approach based on DenseNets for reconstructing the 

acceleration responses at locations without recorded data, by using recorded responses at other 

locations. The developed DenseNets can alleviate the vanishing-gradient issue, strengthen 

feature extraction and propagation, and substantially reduce the number of parameters, which 

significantly increases the training efficiency and accuracy. The results of the experimental 

studies demonstrate that the proposed method can extract the high-level features from the input 

data and develop the nonlinear relationship between these features and the output responses to 

be reconstructed. The proposed method is also proved to have a strong noise immunity, which 

is practical for civil engineering applications. 

Chapter 6 proposes a specially designed SegGAN for reconstructing linear and nonlinear 

response under extreme loadings. The reconstruction results of SegGAN are compared with 

those generated by DenseNet and a traditional CNN. SegGAN featured with skip connection, 

dense connection and bottleneck architecture and trained by an adversarial strategy exhibits 

overwhelming feature extraction capability. With efficient and accurate feature extraction, 

SegGAN outperforms the other two networks and produces distinguished reconstruction 

results in both time and frequency domains. SegGAN effectively and automatically extracts 

linear and nonlinear response features from limited training data with measurement noise and 

varying environmental and operational conditions. The advantages of less data requirement, 

complex environmental adaptability and automation lead this method to more applicable for 

practical applications. 



 

206 

 

7.2 Recommendations for future works 

In the current research, clustering and deep learning techniques have shown strong 

capability on addressing SHM issues. Further study may leverage these advantages and further 

extend the researches and applications in the following areas: 

• The identified long-term modal parameters by using the automated modal 

identification method involve the long-term vibration characteristics of structures. 

They can be utilized as the input to networks for a more robust and automated 

structural condition assessment; 

• For signal denoising, the improvement in the identification of damping ratios and 

mode shapes is limited. Future studies can be conducted to address the limitation by 

using improved deep learning networks and objective functions; 

• In response reconstruction by DenseNet, selection of input channels are manually 

conducted, and the computation would be time-consuming when the number of 

available sensors is large. Therefore selecting optimal input channels can be a future 

research topic; 

• Response reconstruction by networks using inter-channel correlations is similar to 

response transmission. Further study may be conducted to estimate the structural 

transmissibility function by using deep learning networks; 

• SegGAN with strong capability on nonlinear feature extraction has potential to be 

extended to nonlinear system identification.
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THE PSEUDOCODE OF THE STATISTICS-BASED 

CLUSTERING 
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 The pseudocode of the statistics-based clustering 
Generate system modes matrix S from SSI 

Remove spurious modes by hard validation criteria  

Randomize the row order of the cleaned system modes matrix S 

Initialize the cluster number k as 1 

For ii = 1 to ntotal (scan the system mode matrix from the first to the last model order) 

For jj = 1 to the last mode (scan modes from the first to the last mode in each model order) 

 If mode at S[ii,jj] is ungrouped 

Create a new cluster Ck  

Save this mode as the first element of this cluster 

Initialize the validation criteria T𝑓 , T𝑑 , T𝑀𝐴𝐶 , T𝑀𝑃𝐶  as predefined values 

For i = (ii +1) to ntotal (scan from the successive model order) 

For j = 1 to the last element 

If mode at S[i,j] is ungrouped 

Compute the distance of the mode with cluster Ck by Equation (9) 

   End If 

End For  

Find the mode m with the minimum distance to Ck 

If The modal parameters of mode m satisfy all the thresholds in Equation 10 

Collect m to cluster Ck 

If the number of elements in Ck ≥ 10%ntotal 

Compute the difference vectors by Equation (11) 

Update the validation criteria by Equation (12) 

End If 

End If 

End For 

Finish the clustering of Ck and update k as k = k+1 

 End If 

End For 

End For 

Eliminate the clusters containing elements < 10%ntotal 
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