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Abstract 8 

Pervasive human and organizational factors (HOFs) within the public sectors play a vital role 9 

in the prevention and control of epidemic (PCE). Insufficient analysis of HOFs has helped 10 

continue the use of flawed precautions. In this study, we attempted to establish a quantitative 11 

model to (a) clarify HOFs within the public sectors with regard to PCE, (b) predict the 12 

probability of relevant risk factors and an epidemic, and (c) diagnose the critical factors. First, 13 

we systematically identified 47 HOFs based on the Human Factors Analysis and Classification 14 

System (HFACS). We then converted the HFACS framework into a Bayesian Network (BN) 15 

after determining the causalities among these factors. Finally, we applied the hybrid HFACS-16 

BN model to analyze the COVID-19 outbreak in China by virtue of its efficacy in probability 17 

prediction and diagnosis of key risk factors, and thus to test the feasibility of the model itself. 18 

This study contributes to a holistic analysis of HOFs within the public sectors with regard to 19 

PCE by providing a risk assessment model for epidemics or pandemics, and developing risk 20 

analysis methods for the public health field. 21 
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1. Introduction 24 

The coronavirus disease 2019 (COVID-19) has engulfed the world. Statistics from the 25 

World Health Organization (WHO) show that as of July 9, 2020, 11,874,226 cases and 545,481 26 

deaths are attributable to COVID-19, worldwide (WHO, 2020a). Epidemics like SARS and 27 

MERS, and pandemics like 2009 H1N1 and COVID-19 cause fear, threaten people’s lives and 28 

have a negative impact on economic development, social stability, and diplomatic relationships 29 

all over the world. Therefore, the prevention and control of epidemic (PCE) is of critical 30 

importance for all national governments and their implementation triggers increasing 31 

investment (Duan and Zhu, 2020; Nicola et al., 2020; Zhang, 2020). 32 

The public sectors, including government departments (GD), medical institutions (MI), 33 

and centers for disease control and prevention (CDC), act as key leaders and enforcers in PCE 34 

(Dong et al., 2020; Jarquín et al., 2020; Nicola et al., 2020). The management of pervasive 35 

human and organizational factors (HOFs) within these sectors is a crucial task and determines 36 

the responsible sector’s success or failure. Accordingly, it is necessary to systematically and 37 

proactively analyze the pervasive HOFs for PCE (de Bruin et al., 2020; Gasmi et al., 2020; 38 

Peng et al., 2020). 39 

Although there have been a number of studies on PCE, their focus has been on prior risk 40 

assessment, clinical and epidemiological investigation, viral genome analysis, vaccine 41 

development, establishment of evolution and transmission models, and epidemic management 42 

mechanisms (Ahn et al., 2020; Alhazzani et al., 2020; Chen et al., 2020; Phua et al., 2020; Shao 43 

et al., 2020; Wu et al., 2020; Zhang, 2020 ; Zhao et al., 2020a; Zhou et al., 2002). Conversely, 44 

regarding the pervasive and significant HOFs in the public sectors with regard to PCE, there 45 

have only been qualitative analyses of understaffing, lack of medical and emergency supplies, 46 
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lack of emergency drills, improper safety protection operation, improper administration of 47 

epidemic areas, improper surveillance of imported cases of infection, concealed report on or 48 

release of epidemic information, poor technical ability of MI and CDC, insufficient public 49 

intervention, and imperfect management and response mechanisms for emergencies (de Bruin 50 

et al., 2020; Elavarasan and Pugazhendhi, 2020; Gasmi et al., 2020; Lancet, 2020; Lau et al., 51 

2004; Law et al., 2020; Liu et al., 2020; Nicola et al., 2020; Peng et al., 2020; Rutayisire et al., 52 

2020; Wang and Wang, 2020; WHO, 2020b; WHO, 2020c; Zhang et al., 2020). To the best of 53 

our knowledge, no studies have investigated these HOFs using quantitative analysis methods. 54 

As the saying goes, “If you cannot measure it, you cannot manage it.” Therefore, a quantitative 55 

model for analyzing these HOFs is a prerequisite for assessing their integrated impact on PCE 56 

and for diagnosing the critical risk factors, thereby effectively reducing the probability of a new 57 

epidemic. 58 

The aim of this study is to construct a quantitative model to analyze HOFs in the public 59 

sectors with regard to PCE, and thus for predicting the probability of relevant risk factors and 60 

an epidemic, as well as diagnosing the key factors that can precipitate an epidemic. Specifically, 61 

we (a) identify and classify HOFs based on the Human Factors Analysis and Classification 62 

System (HFACS), (b) convert the HFACS framework into a Bayesian Network (BN) after 63 

determining the causalities among the HOFs, and, (c) apply the constructed HFACS-BN model 64 

to quantitatively analyze the HOFs and to test the model’s feasibility, based on empirical data 65 

collected from Tianjin, China, in April 2020. 66 

2. Methodology and research framework 67 

2.1. Human factors analysis and classification system  68 

A variety of techniques have been developed for HOFs modeling, such as the Swiss cheese 69 
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model (Reason, 1990), the cognitive reliability and error analysis method (Hollnagel, 1998), 70 

the HFACS (Shappell and Wiegmann, 2000), and the standardized plant analysis risk-human 71 

reliability analysis (Gertman et al., 2004). Of these methods, the one particularly suitable for 72 

our research purpose is the HFACS (see Fig. 1). With its systematic methodology and 73 

taxonomic nature, the HFACS helps to reduce the incompleteness caused by experts’ limited 74 

knowledge and missing information during the identification and classification of HOFs. The 75 

original HFACS framework describes the direct causes and latent causes of accidents. The 76 

former refers to individual unsafe acts (L1), while the latter includes preconditions for unsafe 77 

acts (L2), unsafe supervision (L3), and organizational influences (L4) (Shappell and Wiegmann, 78 

2000). By virtue of its clear logical architecture, the HFACS enables us to systematically 79 

excavate the latent HOFs within the public sectors with regard to PCE, and thus to compensate 80 

for the insufficient focus on the potential impact of organizational and environmental factors 81 

on PCE by relevant public sectors. 82 

 83 

Fig. 1. The original HFACS framework. 84 

 85 
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2.2. Bayesian network 86 

The HFACS can be only used as an auxiliary tool for identifying and classifying HOFs, 87 

i.e., constructing a conceptual framework of HOFs (Fu et al., 2020). Thus, in this study, the BN 88 

was employed to quantitatively investigate the interactions among the HOFs within the public 89 

sectors with regard to PCE. The BN is a powerful probabilistic network for reasoning and 90 

decision-making under uncertainty, and has been widely used for human reliability assessment 91 

and human error probability assessment (Abrishami et al., 2020; Fu et al., 2020). The 92 

integration of the HFACS and BN contributes to strengthening the risk analysis process. A 93 

simple instance of the BN is presented in Fig. 2, which is composed of nodes representing 94 

variables (i.e., risk factors) and directed edges describing the causalities among variables. More 95 

details of the BN could be found in Pearl (1988).  96 

 97 

Fig. 2. A simple instance of the BN. 98 

2.3. Research framework 99 

Fig. 3 presents the research framework. Phase 1 involves the establishment of the general 100 

HFACS-BN model, including the identification and classification of the HOFs within the 101 

public sectors (Step 1), and the determination of the causalities among the HOFs (Step 2). In 102 

Phase 2, using the COVID-19 outbreak in Tianjin, China as an example, we quantitatively 103 

analyze the identified HOFs and then test the feasibility of the hybrid HFACS-BN model (Step 104 

3). The two phases are detailed in subsequent sections. 105 
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 106 

Fig. 3. Research framework. 107 

3. Establishment of the HFACS-BN model 108 

3.1. Systematic identification of HOFs 109 

In most countries, the public sectors involved in PCE include government departments 110 

(GD), medical institutions (MI), and centers for disease control and prevention (CDC) (de 111 

Bruin et al., 2020; Nicola et al., 2020; Peng et al., 2020). These three public sectors are the 112 

research subjects in this study and their interrelationships are shown in Fig. 4. 113 

 114 
Fig. 4. The interrelationships between the three sectors.  115 

Based on the findings of previous research and on experts’ knowledge, the HOFs within 116 

the three central public sectors were extracted and classified based on the HFACS. The specific 117 

identification steps, based on the study by Fu et al. (2020), were as follows:  118 

Step 1. The HOFs discussed in the literature were extracted and classified into 119 

corresponding locations in HFACS, according to their definitions. 120 

Step 2. The child factors in original HFACS were extracted item by item and taken as 121 

references. Then, the literature was analyzed again to infer and identify new HOFs 122 
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consistent with or similar to the references. 123 

Step 3. To enrich the relevant HOFs and to consolidate the foundation of the constructed 124 

general HFACS framework, in April, 2020, we consulted three experts working at the three 125 

public sectors for additional HOFs (e.g., improper sanitization of epidemic areas, imperfect 126 

legislation). They had experienced and fought against the COVID-19 epidemic in Wuhan, 127 

Hubei Province, China, including one professor (medical doctor) from Tianjin University 128 

of Traditional Chinese Medicine, one official from Chinese Center for Disease Control and 129 

Prevention, and one official from Wuhan Municipal Health Commission. 130 

Step 4. To distill the list of HOFs elicited from the above different channels, the 131 

overlapping factors were further integrated into the HFACS framework. 132 

We identified 92 child factors first and then consolidated them into 47. Table 1 presents 133 

the results and distribution. The new HFACS framework is comprised of six progressive levels, 134 

from external environmental influences (L5) to the outbreak of an epidemic (L0). They are 135 

described as follows:  136 

L1 (unsafe acts) is the direct cause of L0. The constructed HFACS framework includes 137 

the skill-based error, decision error, and routine violations by officials at the MI, CDC, and GD. 138 

Skill-based error refers to errors in skill-related behavior, such as memory error and operation 139 

error. Decision error is a behavior that serves a valuable purpose but does not meet the actual 140 

requirements. Habitual violations are violations that are recognized by most regulators due to 141 

their long-term status and high frequency (Shappell and Wiegmann, 2000). 142 

L2 (preconditions for unsafe acts) is the direct cause of L1. The constructed HFACS 143 

framework includes the condition of operators, personal readiness, crew resource management, 144 

and the internal environment. Condition of operators refers to the mental and physical states 145 
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and limitations of human beings. Personal readiness includes knowledge reserve and 146 

psychological preparation. Crew resource management means the management of resources 147 

and tasks within a team. Internal environment is a type of objective limitation, including 148 

physical and technological components (Shappell and Wiegmann, 2000). 149 

L3 (unsafe supervision) is the direct cause of L2. The constructed HFACS framework 150 

contains the inadequate supervision, planned inappropriate operations, and supervisory 151 

violations. Inadequate supervision refers to a lack of guidance or emergency drills and failure 152 

to provide operating standards. Planned inappropriate operations include inappropriate 153 

deployments of human resources and unclear assignment of tasks. Supervisory violations refer 154 

to the intentional violation of regulations by regulators (Shappell and Wiegmann, 2000). 155 

L4 (organizational influences) is the direct cause of L3. The constructed HFACS 156 

framework includes resource management and operational processes. Resource management 157 

means the management of funds and equipment. Operational processes refer to the 158 

organizational system and management mechanisms (Shappell and Wiegmann, 2000). 159 

Compared with the traditional HFACS framework, L5 (environmental influences) is a new 160 

supplemental level, which is recognized to have a significant influence on L4 (Fu et al., 2020; 161 

Xia et al., 2018). L5 includes the poor medical and technical level, the need to maintain social 162 

stability at all costs, and imperfect legislation. Poor medical and technical level interferes with 163 

how quickly the virus can be detected and may even slow the development of a vaccine. For 164 

the sake of maintaining social stability, government departments may be conservative with 165 

regard to decision-making and releasing epidemic information, which may then lead to a lack 166 

of public understanding of the virus (Rundle et al., 2020; Zhao et al., 2020b). Imperfect 167 

legislation restricts the duties and powers of relevant public sectors, leading to an unclear 168 
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understanding of responsibilities among the key actors. 169 

Table 1. Descriptions of HOFs in the general HFACS framework. 170 

Parent and intermediate factor Child factor Description 

L0: Outbreak of an epidemic 

L1: Unsafe acts 

M1: Skill-based error of MI R1 Improper safety protection operation 

R2 Failure to detect the pathogenic factor 

M2: Decision error of MI R3 Not wearing appropriate medical protective 

equipment 

M3: Routine violations of MI R4 Failure to receive and treat confirmed or suspected 

cases in a timely manner 

R5 Failure to isolate and monitor patient with unknown 

etiology 

R6 Delayed report on special cases 

R7 False, concealed, delayed, or omitted report on 

epidemic information 

R8 Failure to reexamine cases 

M4: Skill-based error of CDC R9 Insufficient epidemiological investigation 

R10 Inappropriate dynamic surveillance for disease 

M5: Decision error of CDC R11 Delayed collection of epidemic information. 

Inaccurate information analysis or risk assessment 

M6: Routine violations of CDC R12 False, concealed, delayed, or omitted report on 

epidemic information 

R13 Improper sanitization of epidemic areas 

R14 Improper verification of close contacts' information 

M7: Skill-based error of GD R15 Delayed or incorrect division of epidemic areas. 

Improper administration of epidemic areas 

M8: Decision error of GD R16 Improper prevention and surveillance of imported 

cases 

R17 Failure to organize experts to reexamine the patients 

R18 Insufficient patient screening 

M9: Routine violations of GD R19 Improper administration of close contacts 

R20 False, concealed, or omitted report on, or delayed 

release of epidemic information 

L2: Preconditions for unsafe acts 

M1: Condition of operators R1 Poor mental states 

R2 Poor physiological states 

M2: Personal readiness R3 A lack of knowledge of diseases 

R4 A lack of responsibility, consciousness, and 

enthusiasm 

R5 A lack of crisis awareness 

R6 A lack of experience. Poor emergency capacity 

R7 Uncertainty over individual authority and 

responsibility. A lack of specific work instructions 
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M3: Crew resource management R8 Understaffing or inappropriate deployments 

R9 Delayed arrangement of rescue personnel 

M4: Internal environment R10 A lack of medical and emergency supplies 

R11 Poor detective technology of MI 

R12 Poor technical ability of CDC 

L3: Unsafe supervision 

M1: Inadequate supervision R1 A lack of emergency drills 

R2 Inadequate personnel education or training 

R3 Inadequate public mobilization, publicity, and 

education on epidemic prevention 

M2: Inappropriate plan R4 Insufficient coordination among sectors and unclear 

responsibilities 

R5 Delayed production, supply, and dispatch of goods 

and materials 

R6 Imperfect infection monitoring system 

R7 Unclear assignment of tasks 

M3: Supervisory violations R8 Non-standard implementation of the supervision 

system 

L4: Organizational influences 

M1: Resource management R1 Insufficient funds 

R2 Imperfect mechanisms for requisition and dispatch of 

emergency supplies 

M2: Operational process R3 Imperfect organizational system 

R4 Imperfect management and response mechanisms for 

emergencies 

L5: External environmental influences 

 R1 Poor medical and technical level 

R2 The need to maintain social stability at all costs 

R3 Imperfect legislation 

3.2. Determination of causalities among HOFs 171 

After constructing the general HFACS framework, we converted it into a BN by further 172 

determining causalities among the risk factors in this framework (i.e., network structure). Each 173 

risk factor was treated as a node, and each causality between two nodes was treated as a directed 174 

edge. Due to insufficient historical data, the BN structure was developed on the basis of expert 175 

knowledge. For a BN with n nodes, there are n(n-1)/2 sets of causalities. To reduce the 176 

workload of experts, we adopted four simplifying assumptions based on the taxonomic features 177 

of the HFACS as follows (Xia et al., 2018; Zhao et al., 2012): 178 
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Assumption 1. The outbreak of an epidemic (L0) is only and directly affected by unsafe 179 

acts (L1). Other HOFs at L2–L5 have an indirect effect on L0 through L1. 180 

Assumption 2. The child factors only and directly affect the parent factor to which they 181 

belong. 182 

Assumption 3. The child factors belonging to the same parent factor are independent of 183 

each other. 184 

Assumption 4. There is no direct influence among the child factors belonging to different 185 

parent factors. 186 

Based on the above four assumptions, the causalities among the nodes in the HFACS-BN 187 

model have been greatly reduced. However, the cross-level influence relationships among the 188 

parent nodes (e.g., the causality between L5 and L2) remain uncertain. To address this issue, 189 

we invited the three experts to determine whether a cross-level effect among the parent nodes 190 

exists. They were asked to assign a probability value (belief) to the two possible relationships 191 

between each pair of parent nodes, as follows: (𝑟1) causality exists, and (𝑟2) causality does 192 

not exist or is uncertain. The relationship with the maximum belief was adopted. In order to 193 

control for the inconsistencies in the opinions provided by the experts, Dempster’s rule of 194 

combination from evidence theory was employed (Dempster, 1967). The integration process is 195 

shown in Equations (1) and (2), as follows: 196 

    𝑚(𝑟𝑖) = [𝑚1 ⨁ 𝑚2 ⨁ 𝑚3 ](𝑟𝑖) =
1

1−𝐾
∑ 𝑚1(𝑟𝑎) × 𝑚2(𝑟𝑏) × 𝑚3(𝑟𝑐)𝑟𝑎∩𝑟𝑏∩𝑟𝑐=𝑟𝑖

. (1) 197 

           𝐾 = ∑ 𝑚1(𝑟𝑎) × 𝑚2(𝑟𝑏) × 𝑚3(𝑟𝑐)𝑟𝑎∩𝑟𝑏∩𝑟𝑐=∅ . (2) 198 

where 𝑚1(𝑟𝑎) , 𝑚2(𝑟𝑏) , and 𝑚3(𝑟𝑐)  are the beliefs assigned by experts 𝑚1 , 𝑚2 , and 𝑚3 199 

for the two possible relationships between each pair of parent nodes. 𝑚𝑗(𝑟𝑖)  satisfies the 200 

conditions as follows: 𝑚𝑗(𝑟𝑖) ∈ [0,1];  ∑ 𝑚𝑗(𝑟𝑖) = 1𝑖=1,2 .  K means the degree of conflict 201 
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among the three experts.  202 

Table 2 shows the aggregating process. The final HFACS-BN model is shown in Fig. 5 203 

comprising six levels, 53 nodes, and 58 directed edges. 204 

Table 2. The aggregating process of expert knowledge based on Dempster’s rule of combination. 205 

# L5→ 

L3 

L5↑ 

L3 

L5→ 

L2 

L5↑ 

L2 

L5→ 

L1 

L5↑ 

L1 

L4→ 

L2 

L4↑ 

L2 

L4→ 

L1 

L4↑ 

L1 

L3→ 

L1 

L3↑ 

L1 

Expert 1 1.00 0.00 0.90 0.10 0.90 0.10 0.90 0.10 0.80 0.20 0.90 0.10 

Expert 2 0.80 0.20 0.80 0.20 0.80 0.20 0.90 0.10 0.90 0.10 0.90 0.10 

Expert 3 0.80 0.20 0.80 0.20 0.70 0.30 0.80 0.20 0.70 0.30 0.70 0.30 

Belief (𝑚(𝑟𝑖)) 1.00 0.00 0.99 0.01 0.99 0.01 1.00 0.00 0.99 0.01 1.00 0.00 

Note: Li → Lj means Li directly causes Lj; Li ↑ Lj means causality does not exist between Fi and Fj or is 206 

uncertain. 207 

4. Model application 208 

After the outbreak of COVID-19 in Wuhan in December, 2019, a majority of the cities in 209 

China were affected to various degrees. Tianjin, a northern economic center of China, has 210 

confirmed a total of 199 people with COVID-19 (including 62 cases from abroad) as of July 9, 211 

2020, of which 195 people have been cured (National Health Commission of the PRC, 2020). 212 

With the COVID-19 outbreak in Tianjin as an example, we will show how the constructed 213 

HFACS-BN model was applied to quantitatively analyze the HOFs within the three public 214 

sectors (GD, MI, and CDC) with regard to PCE. Probability prediction and diagnosis of key 215 

factors were also applied to test the feasibility of the model. 216 

4.1. Elicitation of parameters 217 

Traditionally, the clarification of prior probabilities of child nodes and conditional 218 

probability tables of parent nodes is the prerequisite for applying the reasoning function of a 219 

BN (Pearl, 1988). Due to the large number of nodes in the HFACS-BN model, and for the 220 

purpose of improving the practicability of the model, we employed the ranked nodes/paths 221 

method in this study instead of the traditional method. With this method, only two types of 222 
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parameters are required—the criticality of each child node and the degree of each causality 223 

between two nodes (Fenton et al., 2007).  224 

In April, 2020, a total of 164 experts from the GD, MI, and CDC in Tianjin were invited 225 

to participate in this research. They were asked to complete a questionnaire in which the levels 226 

of the two types of parameters described above ranged from 1 (very low) to 5 (very high). 227 

Finally, 117 valid questionnaires were obtained (with a valid response rate = 71.3%). Table 3 228 

shows participants’ demographics. The average scores of the experts’ ratings were treated as 229 

the final parameter values (see Tables 4 and 5). 230 

Table 3. Respondents’ demographic information. 231 

Item Frequency Percent (%) 

Sector (position)   

MI 94 80.3 

Doctor 52 44.4 

     Nurse 27 23.1 

Administrative personnel 15 12.8 

CDC 14 12.0 

GD 9 7.70 

Work experience (years)   

≤5 42 35.9 

6-10 39 33.3 

11-15 27 23.1 

≥16 9 7.70 

Table 4. Criticality of each child node. 232 

Child node Mean SD Rank Child node Mean SD Rank 

Level 1        

L1R1 3.08 0.51 4 L1R11 1.47 0.03 38 

L1R2 1.46 0.34 39 L1R12 1.76 0.27 28 

L1R3 1.00 0.00 47 L1R13 2.77 0.47 10 

L1R4 2.71 0.62 11 L1R14 3.42 0.72 1 

L1R5 1.32 0.21 42 L1R15 1.72 0.35 30 

L1R6 1.13 0.09 45 L1R16 2.61 0.67 13 

L1R7 1.04 0.02 46 L1R17 1.87 0.41 26 

L1R8 3.11 0.93 3 L1R18 2.18 0.53 19 

L1R9 3.02 0.51 5 L1R19 1.44 0.18 40 

L1R10 3.28 0.32 2 L1R20 1.28 0.07 43 

Level 2        

L2R1 2.62 0.84 12 L2R7 2.13 0.74 21 
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L2R2 1.58 0.09 34 L2R8 1.83 0.06 27 

L2R3 2.14 0.78 20 L2R9 1.94 0.05 25 

L2R4 2.81 0.49 9 L2R10 1.61 0.07 33 

L2R5 2.11 0.73 22 L2R11 1.22 0.03 44 

L2R6 2.94 0.91 6 L2R12 1.69 0.27 32 

Level 3        

L3R1 2.56 0.71 14 L3R5 1.51 0.11 35 

L3R2 2.28 0.83 18 L3R6 2.49 0.59 16 

L3R3 1.41 0.16 41 L3R7 2.10 0.73 23 

L3R4 2.51 0.85 15 L3R8 2.91 0.77 7 

Level 4        

L4R1 1.50 0.48 36 L4R3 2.38 0.96 17 

L4R2 1.97 0.43 24 L4R4 2.87 0.79 8 

Level 5        

L5R1 1.70 0.30 31 L5R3 1.49 0.12 37 

L5R2 1.75 0.35 29     

Table 5. The degree of each causality. 233 

Causality Mean SD Rank Causality Mean SD Rank 

Causalities among levels 

L5→L4 3.24  0.91 44 L4→L1 2.89  1.32 57 

L5→L3 3.08 1.13 51 L3→L2 3.95  1.03 18 

L5→L2 3.18  0.89 46 L3→L1 3.71  1.01 33 

L5→L1 2.87  0.93 58 L2→L1 3.97  1.01 16 

L4→L3 3.52  0.86 37 L1→L0 4.51  1.07 1 

L4→L2 3.29  1.22 40     

Causalities at Level 1 

L1R1→L1 3.85  1.25 27 L1R11→L1 4.09  1.09 10 

L1R2→L1 3.41  1.18 38 L1R12→L1 4.29  1.14 5 

L1R3→L1 4.33  1.04 3 L1R13→L1 3.11  1.12 49 

L1R4→L1 3.94  1.05 19 L1R14→L1 3.55 1.21 35 

L1R5→L1 3.17  1.12 47 L1R15→L1 3.26  1.05 42 

L1R6→L1 3.88  1.02 24 L1R16→L1 3.12 1.04 48 

L1R7→L1 4.08  1.25 11 L1R17→L1 3.06 0.79 53 

L1R8→L1 3.36 1.22 39 L1R18→L1 4.30  1.09 4 

L1R9→L1 3.99 1.04 14 L1R19→L1 4.06 1.04 12 

L1R10→L1 3.01  1.08 56 L1R20→L1 4.12  1.13 8 

Causalities at Level 2 

L2R1→L2 3.54 1.05 36 L2R7→L2 3.81  1.03 28 

L2R2→L2 3.03 1.12 55 L2R8→L2 3.67 1.07 34 

L2R3→L2 3.92 1.02 20 L2R9→L2 3.04  1.06 54 

L2R4→L2 3.91  1.02 21 L2R10→L2 4.12  1.25 9 

L2R5→L2 3.76  1.32 30 L2R11→L2 4.03  1.04 13 

L2R6→L2 3.74 1.06 31 L2R12→L2 4.37  1.05 2 

Causalities at Level 3 

L3R1→L3 3.90  1.10 22 L3R5→L3 3.96 1.04 17 
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L3R2→L3 3.79  1.31 29 L3R6→L3 3.98 1.03 15 

L3R3→L3 3.73  1.21 32 L3R7→L3 3.87 1.13 25 

L3R4→L3 3.27 1.12 41 L3R8→L3 3.25  1.05 43 

Causalities at Level 4 

L4R1→L4 4.22  1.09 6 L4R3→L4 4.13 1.13 7 

L4R2→L4 3.89 1.24 23 L4R4→L4 3.86 1.12 26 

Causalities at Level 5 

L5R1→L5 3.20 1.03 45 L5R3→L5 3.07  1.24 52 

L5R2→L5 3.09 1.07 50     

4.2. Reasoning and sensitivity analysis 234 

The probabilistic reasoning and sensitivity analysis functions of the HFACS-BN model 235 

can help management personnel in the public sectors to intuitively realize the risk level of each 236 

factor and the outbreak of an epidemic, and to diagnose the critical risk factors, which currently 237 

relies heavily on the limited experience of experts (Nicola et al., 2020). To test the feasibility 238 

of the HFACS-BN model, we input the HFACS-BN structure, the criticalities of child nodes, 239 

and the degree of each causality into the AgenaRisk software (2019) and ran a quantitative 240 

analysis of the data, including the reasoning and sensitivity analysis. 241 

Fig. 5 shows the results of probability prediction where different colors represent different 242 

risk levels. The risk of the outbreak of an epidemic (L0) is at a low level. In May and June, 243 

2020, Tianjin confirmed only seven people with COVID-19 from abroad, and one local case 244 

infected by his colleague who had traveled to Beijing several times (National Health 245 

Commission of the PRC, 2020). It means that in the two months after the questionnaire, the 246 

PCE by relevant public sectors in Tianjin was productive, and the COVID-19 outbreak did not 247 

turn into an epidemic. Thus, the predicted results of the constructed HFACS-BN model are 248 

consistent with the actual situation in Tianjin, which verifies the feasibility of the hybrid 249 

HFACS-BN model. 250 
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 251 

Fig. 5. The general HFACS-BN model with the risk level of each node. 252 

Moreover, it can be seen that the risk levels of factors that are closer to L0 are higher. At 253 

L1 (unsafe acts), there are eight child factors at the medium or high level, while this number at 254 

L2 (preconditions for unsafe acts), L3 (unsafe supervision), L4 (organizational influences) and 255 

L5 (external environmental influences) is 3, 1, 1, and 0 respectively. This indicates that 256 

individual unsafe acts are the main risk factors with a relatively high probability of occurrence 257 

in PCE in Tianjin. Such unsafe acts cover improper safety protection operation (L1R1), failure 258 

to receive and treat confirmed or suspected cases in a timely manner (L1R4), failure to 259 

reexamine cases (L1R8), insufficient epidemiological investigation (L1R9), inappropriate 260 
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dynamic surveillance for disease (L1R10), improper sanitization of epidemic areas (L1R13), 261 

improper verification of close contacts' information (L1R14), and improper prevention and 262 

surveillance of imported cases (L1R16). 263 

The most likely risk factors for COVID-19 at L2 include poor personal mental states 264 

(L2R1), a lack of responsibility, consciousness, and enthusiasm (L2R4), and a lack of 265 

experience and emergency capacity (L2R6). These three factors are the main causes of 266 

individual unsafe acts at L1. Non-standard implementation of the supervision system (L3R8) 267 

and imperfect management and response mechanisms for emergencies (L4R4) are also risk 268 

factors with a relatively high probability of occurrence with regard to COVID-19 epidemic in 269 

Tianjin, and thus can undermine PCE efforts.  270 

Fig. 6 shows the sensitivity analysis results. It can be seen that L0 (outbreak of an epidemic) 271 

is most sensitive to L5. This indicates that external environmental factors like the medical and 272 

technical level (L5R1), the need to maintain social stability (L5R2), and legislation (L5R3) 273 

contribute greatly to the spread of COVID-19 virus. The poor medical and technical level limits 274 

the technical abilities of the MI and CDC, while the imperfect legislation may lead to 275 

uncertainty over the responsibilities of relevant public sectors and imperfect coordination 276 

mechanisms. Although improvements of these two aspects cannot be achieved overnight and 277 

require the long-term efforts of health workers and legal personnel, management personnel at 278 

the public sectors should continue to focus on the changes of these two factors for adopting 279 

more effective measures. The need to maintain social stability at all costs has proved to be a 280 

contributing factor to COVID-19 outbreaks (Zhao et al., 2020b). In fact, during the outbreak 281 

of COVID-19 in Wuhan, several doctors had become aware of a new infectious virus and 282 

reported it to the authorities. Unfortunately, as the Chinese New Year was approaching at the 283 
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time, some officials chose to conceal relevant information about the epidemic in order to 284 

maintain social stability and normal production of enterprises (Zhang, 2020). As a result, tens 285 

of millions of citizens did not take timely protective measures and were exposed to a dangerous 286 

situation. It was not until the COVID-19 outbreak became an epidemic in Wuhan that the 287 

authorities in China began to restrict public transportation and mass gatherings and, on January 288 

23, 2020, to lock down the entire city of Wuhan (Zhang et al., 2020). This suggests that the 289 

public sectors should strengthen the assessment of epidemic-related information to avoid 290 

adopting the wrong or delayed response strategies. 291 

 292 

Fig. 6. Results of sensitivity analysis (only the sensitive factors at high levels are shown). 293 
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L0 is also sensitive to L4, including insufficient funds (L4R1), imperfect organizational 294 

system (L4R3), and imperfect management and response mechanisms for emergencies (L4R2, 295 

L4R4). It indicates that sufficient funds are crucial for PCE, which reinforces the argument that 296 

resources play a vital role in disaster management (Chen et al., 2008). It is also clear that the 297 

PCE cannot be undertaken effectively without a strong organizational system and rapid 298 

response mechanisms (Peng et al., 2020). Particularly, as Zhang (2020) stressed, a strong 299 

leadership and perfect logistics distribution system play critical roles in the requisition and 300 

dispatch of emergency supplies. 301 

The more sensitive factors at L3 include unclear assignment of tasks (L3R7), inadequate 302 

personnel education and mobilization (L3R2, L3R3), a lack of emergency drills (L3R1), 303 

imperfect infection monitoring systems (L3R6), delayed production, supply, and dispatch of 304 

goods (L3R5), insufficient coordination among sectors (L3R4), and non-standard 305 

implementation of the supervision system (L3R8). Since the first four factors have a great 306 

impact on personnel readiness at L2, managers at the relevant public sectors should proactively 307 

clarify the responsibilities of each employee and organize regular training and emergency drills. 308 

This is so employees will not have to “cram” in information and improve their skills at the last 309 

minute. Because the COVID-19 virus spreads rapidly, a well-developed infection monitoring 310 

system is an essential tool for management personnel so they can accurately come to grips with 311 

the situation (Lau et al., 2004; Peng et al., 2020). Sufficient reserves of goods and equipment 312 

are of critical importance for health workers in hospitals. It's worth noting that as the protective 313 

equipment is firstly supplied to infectious diseases departments and intensive care units, health 314 

workers in other departments are likely to be affected the worst because of the lack of adequate 315 

protective equipment. In addition, the PCE requires a multi-agency engagement, which means 316 
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that a sound command and coordination mechanism and the strict implementation of the 317 

supervision system are the prerequisite for effectively integrating all forces to fight the virus 318 

(Lancet, 2020; WHO, 2020b). 319 

At L1 and L2, the more sensitive factors include the following: 320 

· Not or incorrectly wearing medical protective equipment (L1R1, L1R3). 321 

· Poor personal readiness (L2R3-L2R7). 322 

· Insufficient patient screening (L1R18). 323 

· Failure to receive and treat confirmed or suspected cases in a timely manner (L1R4). 324 

· Improper verification and administration of close contacts (L1R14, L1R19). 325 

· Inaccurate information analysis or risk assessment (L1R11). 326 

· Concealed report on or delayed release of epidemic information (L1R6, L1R7, L1R12,  327 

L1R20). 328 

· Poor technical ability of MI and CDC (L2R11, L2R12). 329 

· Insufficient epidemiological investigation (L1R9). 330 

· Insufficient medical and emergency supplies (L2R10). 331 

Although these manifest factors are caused by latent risk factors at L3, L4, and L5, 332 

management personnel at the public sectors should be cautious about these factors in their daily 333 

work. Despite the low frequency of an epidemic, health workers should insist on wearing 334 

appropriate protective equipment at work and try to maintain a healthy physical and mental 335 

state so as to avoid internal cross-infection when the virus hit (Chan et al., 2020; Law et al., 336 

2020). In fact, in the early days of the COVID-19 epidemic in Wuhan, a large number of health 337 

workers became infected with the virus since many patients had atypical clinical manifestations 338 

and visited different medical departments (Wang et al., 2020; Zhang, 2020).  339 
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Comprehensive screening of patients, reception and treatment of confirmed and suspected 340 

cases, and verification and administration of close contacts are at the core of the PCE (Nicola 341 

et al., 2020; WHO, 2020b). Only by carrying out these measures can the spread of the virus be 342 

controlled effectively. However, close contacts of infected patients are difficult to verify 343 

because the virus has an incubation period of 14 days and the whereabouts of potentially 344 

infected close contacts are not monitored until they show COVID-19 symptoms. Therefore, 345 

most countries and regions have had to suspend public transportation, close public places, 346 

restrict human movements, conduct grid-based management of populated communities, and 347 

improve big data-based infection monitoring systems (Anderson et al., 2020; Jarquín et al., 348 

2020; Liu et al., 2020).  349 

Accurate risk assessment is a prerequisite for the public sectors to launch emergency 350 

response plans in a timely manner. Therefore, the collection and analysis of information on the 351 

scale and spread of the epidemic should be strengthened, personnel training should be made 352 

more rigorous, and the consulting experts should be highly competence (WHO, 2020c). The 353 

timely and transparent release of epidemic information by the authorities will serve to inform 354 

the public of the situation and enable it to take the appropriate countermeasures. Such proactive 355 

and transparent actions require greater institutional flexibility and a show of courage by 356 

officials (Zhao et al., 2020b). Finally, the MI and the CDC should continuously improve their 357 

technical capabilities, and the GD should coordinate the work of the relevant sectors and ensure 358 

adequate supply of goods and materials to support the PCE. 359 

5. Discussion 360 

In this study, we constructed a hybrid HFACS-BN model for assessing the probability of 361 

an epidemic and quantitatively investigated the role of HOFs within the public sectors with 362 
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regard to PCE. The feasibility of the model was successfully tested by its application to the 363 

COVID-19 outbreak in Tianjin. We found that individual unsafe acts are the main internal risk 364 

factors with a relatively high probability of occurrence, and that adverse external environmental 365 

factors contribute greatly to the COVID-19 epidemic. 366 

5.1. Theoretical implications 367 

This study enhances the understanding of the role of HOFs within the public sectors with 368 

regard to PCE. We extracted 47 human, organizational, and environmental factors, and built a 369 

general HFACS-BN model for epidemic assessment. The model covers six interactional levels 370 

as follows: External environmental influences (L5); organizational influences (L4); unsafe 371 

supervision (L3); preconditions for unsafe acts (L2); unsafe acts (L1); and outbreak of an 372 

epidemic (L0). Although previous studies have discussed most of these risk factors, they have 373 

neglected to assess the integrated impact of these human, organizational, and environmental 374 

factors on the outbreak of an epidemic. Compared with previous studies by de Bruin et al. 375 

(2020), Gasmi et al. (2020), Law et al. (2020), Peng et al. (2020) and Zhang (2020), our study 376 

used empirical data and quantitative methods to show the influences of these internal and 377 

external factors on PCE. Specifically, with the COVID-19 outbreak in Tianjin as a case-study, 378 

the constructed HFACS-BN model predicted the risk level of each factor in the model and 379 

identified the crucial roles played by individual unsafe acts and external environmental factors. 380 

In this respect, our study provides new insights into the vulnerability assessment of the 381 

prevention and control system of epidemics or pandemics. 382 

Notably, the HFACS and BN methods have rarely been used together to analyze the HOFs 383 

within the public sectors with regard to PCE. In this study, we integrated these two methods 384 

to investigate the role of relevant HOFs and demonstrate their application for developing risk 385 
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analysis methods in the public health field. 386 

5.2. Practical implications 387 

In their interviews, the experts said that management personnel at public health sectors in 388 

China lacked a quantitative tool with which to assess the actual risk level of an infection and 389 

diagnose the critical risk factors. The constructed HFACS-BN model with its functions of 390 

probabilistic reasoning and sensitivity analysis relieves this predicament. The application of 391 

the HFACS-BN model to the COVID-19 outbreak in Tianjin, China has validated its 392 

effectiveness and operability. Specifically, the model identified the most critical risk factors as 393 

poor medical and technical level, the need to maintain social stability at all costs, imperfect 394 

legislation, organizational systems, and management mechanisms for emergencies, and 395 

insufficient funds. Other risk factors were unsafe supervision, poor personal readiness, and 396 

individual unsafe acts. In view of these findings, this study contributes to a scientific and 397 

quantitative assessment of epidemic risk and to an accurate formulation of precautions.  398 

5.3. Limitations and future research 399 

Despite the above findings, this study has some limitations. First, the constructed HFACS-400 

BN model can only be used as an auxiliary tool for macro management because the identified 401 

HOFs are not specific enough. Therefore, we suggest future research refine these factors based 402 

on exhaustive incident records, so as to extend the application of the model. Second, we did 403 

not consider the interaction among the child factors at different levels, which may affect the 404 

objectivity and accuracy of the results calculated by the model. Therefore, we recommended a 405 

further exploration of the interrelationships among the child factors. 406 

6. Conclusion 407 

The pervasive HOFs within the public sectors play a crucial role in PCE. Insufficient 408 
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investigation of HOFs is likely to result in imperfect management, and the possibility of a 409 

nationwide epidemic or global pandemic. In this study, we constructed a general HFACS-BN 410 

model to systematically and quantitatively analyze the risk factors. The hybrid model was used 411 

to analyze the COVID-19 outbreak in Tianjin, China, including probability predictions and 412 

sensitivity analysis. The feasibility of the model was also tested in this process. This study 413 

contributes to the development of assessment tools for epidemics or pandemics, which can 414 

facilitate a more holistic analysis of HOFs and the development of risk assessment methods in 415 

the public health field. 416 
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