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ABSTRACT

Civil engineering structures may accumulate damage during the service period,
due to various reasons, such as material degradation, fatigue, overloading, excessive
deformation and vibration under normal operating environment and/or extreme
conditions. Therefore, it is necessary to perform structural condition monitoring and
detect structural damage at an early stage by using the vibration data to prevent
structural failures. The nonlinear hysteretic effect could be observed when severe
damage occurred in structures. Several nonlinear models, such as the Bouc-Wen model
and the bilinear model, are usually used to describe the nonlinear hysteretic effect of
civil engineering structures. Identifying these nonlinear parameters is important for
understanding the vibration behavior and performance of nonlinear structures. When
using the traditional methods, such as the response sensitivity method, to tackle the
above-mentioned two problems, the gradient information and good initial values will
be required. However, acquiring good initial conditions and gradient is difficult,
especially for large-scale structures with strong nonlinearity. Therefore, this research
mainly develops improved approaches based on swarm intelligence and neural network
techniques, as well as their hybridization methods, which do not demand the good
initial values and gradient, for structural identification. Owning to the modeling errors
and measurement noise, the difficulties for structural identification increase. The good
robustness of swarm intelligence and neural network techniques can be used to
effectively overcome this limitation.

The swarm intelligence methods are essentially global optimization algorithms,
which are usually based on machine learning techniques to learn and search through
data instead of explicit formulations. Structural identification can be formulated as an
optimization problem. An appropriate objective function relevant to structural
parameters is defined, and mathematical optimization is conducted to identify the
best-fit parameters with physical meanings. Thus, swarm intelligence methods could be
used for structural identification. Two emerging swarm intelligence techniques, namely,
the Tree Seeds Algorithm (TSA) and the Jaya algorithm, are used and further improved

for structural identification and their performance is investigated with numerical and



experimental studies. TSA employs the propagation of the trees as a framework while
the Jaya is inspired by the concept that the feasible solution acquired for a given
problem should move towards the best solution and avoid the worst one. Compared
with traditional swarm intelligence techniques, such as the Genetic Algorithm (GA),
Particle Swarm Optimizer (PSO) and Differential Evolution (DE), these two
algorithms have a simpler algorithmic structure but stronger global search ability.
Furthermore, to enhance the performance of these two algorithms, several modified
versions are developed, such as, the clustering based TSA (Chapter 2), the improved
TSA (Chapter 3), and the improved Jaya (Chapter 4). Then these developed methods
are combined with different objective functions to perform structural damage
identification and nonlinear parameter identification. Identification results show that
the clustering based TSA by using the modal data based objective function can be used
effectively to identify damage in a plane truss structure and a frame structure. The
improved TSA combining with the time-domain data can be used to well identify the
Bouc-Wen model and two bilinear models. The improved Jaya combining with the
modified objective function based on the Bayesian inference and the sparse
regularization can be used to identify damage in some relatively large scale structures.

Neural network techniques belong to an important branch of artificial intelligence
algorithms. The working principle of this type of method is to simulate human brains,
through learning a large number of samples to train the network’s ‘inference ability’.
The Deep Belief Neural (DBN) network, as a representative deep network, is used and
further developed to investigate the development and application of neural network
techniques for structural identification. To enhance the performance of the DBN, an
arctan-based sparse constraint is employed to ensure the hidden units to become sparse,
which is easily achieved by adding an arctan norm on the whole of the hidden units’
activation probabilities. The modified DBN is termed as the ‘Arc-tan DBN’ and
undetermined damage identification is conducted. The identification results
demonstrate that the proposed Arc-tan DBN can be used to identify the damages
effectively for a building frame structure, even when the modeling uncertainty and
measurement noise exist, and only limited data is available.

The hybridization methods mean combining at least two different intelligent
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methods to solve more complex identification problems. A hybrid swarm intelligence
method based on Jaya and TSA is proposed, termed as the ‘C-Jaya-TSA’. Specifically,
the clustering strategy is employed to replace solutions with low-quality objective
function values in the Jaya algorithm. Then the search strategy of the TSA is
introduced into the best-so-far solution of each cycle. The C-Jaya-TSA combining with
the modal data based objective function is used to conduct the undetermined damage
identification for the Guangzhou New TV tower benchmark and a simply supported
beam with 100 elements. Furthermore, a non-probabilistic method is used to quantify
the damage index. A hybrid method based on K means Jaya and Artificial Neural
Network (ANN) is proposed, termed as the ‘ANN-K means Jaya’. The used ANN is a
representative shallow network. To enhance the ability of the ANN, the K means Jaya
algorithm is used to replace the back-propagation algorithm during the training process.
The acceleration responses are used as the input, while the corresponding output
contains the improved Dahl nonlinear model parameters and the damage index. Even
though high-level measurement noise is introduced, the proposed two hybridization
methods can yield satisfactory identification results.

Overall, this thesis develops novel swarm intelligence approaches to conduct
structural identification, including structural damage identification and nonlinear
parameter identification. To make these methods more powerful, some modifications
are suggested. Comprehensive numerical and experimental verifications demonstrate
the necessity and rationality of the developed modifications and the effectiveness and
performance of using the proposed approaches for various structural identification

problems.
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CHAPTER 1 INTRODUCTION

1.1 Background

With the development of human society, the quantity and scale of all kinds of structural
engineering facilities across the world have soared up in recent decades. However, no matter
how well these large-scale structural projects are designed and constructed, during their service
periods, due to a variety of reasons, under operating and extreme loading conditions such as
earthquake and impact loading, almost all in-service structures will accumulate certain level of
condition deteriorations owing to fatigue and corrosion damage, and damage caused by
extreme loadings, which lead to strength and stiffness of the structures to decrease. If these
deteriorations are not detected timely, great threats could be posed since some damages may
cause catastrophic destruction to structures, especially to some bridge structures. In 1994, the
48-meter-long concrete slab in the middle of the Shengshui bridge in South Korea collapsed,
leading to 33 deaths and 17 injures. In 1967, the silver bridge on the Ohio river toppled down,
resulting in 50 cars felling into the river and 46 deaths. Furthermore, at least 8 people were
killed and 79 were injured when the [-35W Mississippi river bridge suddenly collapsed in 2007.
Therefore, it is of great significance to assess the condition of structures timely and accurately,
which is beneficial to avoid the occurrence of accidents and minimize the maintenance costs
(Farrar & Worden, 2007; Fan & Qiao, 2011).

Structural Health Monitoring (SHM) system can be used to record the dynamic responses
of a structure in real time. Through a series of sensing, acquisition, communication and some
other means as well as the assistance of data processing system, it could automatically monitor
the operation status of a structure, evaluate the structural safety, and guide the maintenance
work. Damage identification is an important component of a SHM system. When a structure
has damage under the earthquake excitation, some nonlinear hysteresis phenomena could be
observed (Berger & Krousgrill, 2002; Katsaras et al., 2008; Wang et al., 2016). Several
mathematical models, such as Bouc-Wen and bilinear models, have been widely used to
describe the nonlinear hysteretic behavior of civil engineering structures (Belbas & Mayergoyz,
2002; Ikhouane & Rodellar, 2005; Lu et al., 2017). Identifying these nonlinear parameters is
important and necessary for understanding the damage process and vibration behavior of

structures. Therefore, the vibration based structural identification has attracted attentions in



recent decades and many different types of methodologies have been developed (Salawu, 1997,
Sirca Jr & Adeli, 2012). These methods could be classified into two types, depending on the
fact that structural identification is conducted in the frequency-domain or in the time-domain.

The former one denotes that the identification is performed by utilizing structural modal
information, such as the natural frequencies, mode shapes, flexibility, damping ratios and some
other frequency domain data. Chinchalkar (2001) localized the damage positions of a beam
structure through the alteration of the first three natural frequencies, and also compared the
localized effects with difference damage extents. Xia and Hao (2003) developed a statistical
method using the change of frequencies to conduct the damage identification and also
investigated the effect of noise on identification accuracy. Lu and Law (2007) proposed a
response sensitivity method for structural damage identification and this method was also
extended into the vehicle bridge coupling system (Lu & Liu, 2011) and the crack identification
(Lu et al., 2013). Chang and Shi (2010) applied the wavelet multiresolution analysis method to
conduct identification for the Bouc-Wen system. Besides, the power spectral approach (Zheng
et al., 2015; Pedram et al., 2017; Guo et al., 2020), the flexible matrix (Yang & Sun, 2011;
Zhang et al., 2013), the modal strain energy (Yan et al., 2012; Fan & Qiao., 2012; Ramesh &
Rao, 2018) have been respectively applied to conduct structural identification in the
frequency-domain.

Furthermore, the structural identification methods in the time-domain have been
developed in recent years. Hu et al. (2017) used the homotopy continuous algorithm to identify
cracks in beam structures, in which the acceleration data were employed to formulate the
objective function. An enhanced sensitivity method, in which a trust-region constraint was used
to enhance the convergence performance of the original sensitivity method, was widely used to
perform structural damage identification and nonlinear hysteretic parameter identification (Lu
& Wang, 2016; Lu et al. 2017). The extended/unscented Kalman filter (Corigliano & Mariani,
2004; Yang et al., 2006; Wu & Smyth, 2008; Xie & Feng, 2012), the Volterra series method
(Shiki et al., 2017; Villani & Silva, 2019), are the commonly used methods to handle the
nonlinear parameter identification in the time-domain.

Although the abovementioned methods can basically achieve satisfactory identification,
challenges still exist. Most of the above methods require a good initial condition and good

gradient information. Furthermore, difficulties may increase when using these methods to



perform structural identification for large-scale structures when limited measurement data are
available. Therefore, a large number of intelligence methods have been widely used to conduct
structural identification. These intelligence methods are usually categorised into two types,
namely, the swarm intelligence techniques and the neural network based methods. The swarm
intelligence techniques are essentially the optimization algorithms, which are usually based on
machine learning techniques to learn and search through data instead of explicit formulations
(Ding et al., 2019). Compared with some traditional optimization methods, the distinguished
feature of the swarm intelligence techniques is that they do not require good initial values and
gradient information. By defining the objective function relevant to structures, it is easy and
convenient to employ the swarm intelligence methods for structural identification. Therefore,
the Genetic algorithm (GA) (Guo & Li, 2009, 2012), the Particle Swarm Optimizer (PSO)
(Kang et al., 2012; Chen & Yu, 2018), the Artificial Fish Swarm (AFS) algorithm (Yu & Li,
2014), the Artificial Bee Colony (ABC) (Sun et al., 2013, 2014; Ding et al., 2016, 2017, 2018),
and the Most Valuable Player (MVP) algorithm (Jahangiri et al., 2019) are respectively adopted
to settle the linear and nonlinear structural identification. In terms of the neural network based
methods, it is actually an important branch of the artificial intelligence technique. The main
principle of this type of methods is to simulate a human’s brain. Through a large number of
samples, the trained network would equip the ‘inference ability’ and therefore could do some
identification or prediction work. Usually, the input of the network is some vibration data while
the corresponding output is the vector of structural parameters to be identified. Many
researchers have also applied the neural network to perform structural identification. Zapico et
al. (2003) utilized the Back-propagation (BP) network to conduct the model updating of a real
bridge. Jiang et al. (2006) integrated the probabilistic neural network with the data fusion
technique to perform damage identification. Furthermore, the Feed-forward Neural Network
(FNN) (Truong et al. 2020), the Radial-Basis Function (RBF) network (Morfidis & Kostinakis,
2019), the Convolutional Neural Network (CNN) (Modarres et al., 2018; Xu et al., 2019;
Khodabandehlou et al., 2019) are gradually becoming major choices when dealing with the
structural identification by using the neural network methods.

Apart from the abovementioned intelligence methods, two novel swarm intelligence
methods, named as the Tree Seeds Algorithm (TSA) (Kiran, 2015) and the Jaya algorithm (Rao,

2016) are employed to perform complex optimization. TSA employs the trees propagation as



the algorithmic framework while the Jaya is inspired by the conception that feasible solutions
always approach the best-so-far solution and avoid the worst one. Compared with the
traditional swarm intelligence methods, such as the GA, PSO and the ABC, etc, these two
algorithms have simpler algorithmic structures and are successfully applied to solve different
engineering problems ( EI-Fergany & Hasnien, 2018; Zhou et al., 2018; Rao & Saroj, 2017; Xu
et al., 2019; Jian & Weng, 2020; Warid, 2020). Regarding the neural network methods, the
Deep Belief Neworks (DBN), due to its excellent generalization ability, has been widely used
in supervised classification problem (Geng et al. 2018; Rizk et al. 2019), data processing
(Zhang et al. 2019), biomedical field (Chen et al. 2018), etc. Considering that these methods
have been proven to be successful in tackling some other engineering problems, it is feasible to
extend these methods, as well as their further developments and hybridization methods to
structural parameter identification, considering some problems linked with the limitations that
exist in real applications such as using incomplete and a limited amount of measurements as

input and considering uncertainties in identification.

1.2 Research objectives

The primary objective of this study is to develop state-of-the-art intelligence methods for
structural identification considering uncertainties. Numerical studies and experimental
verifications are conducted to demonstrate the effectiveness and efficiency of the proposed
approaches. The detailed tasks include:

1. To develop the clustering based Tree Seeds Algorithm to effectively identify structural
linear damages considering modeling errors and measurement noise;

2. To develop the Improved Tree Seeds Algorithm to effectively identify structural
nonlinear parameters;

3. To investigate an objective function that is sensitive to structural damage and to develop
the Improved Jaya algorithm for structural damage identification, in which only a limited
number of measurement data is required,

4. To develop a sparse Deep Belief Neural network for undetermined structural damage
identification;

5. To develop a non-probabilistic interval analysis method to quantify structural damage

and to develop a hybrid Jaya and Tree Seeds Algorithm for structural damage identification



considering uncertainties;
6. To develop a hybrid clustering Jaya and Artificial Neural Network for simultaneous
identification of structural damages and nonlinear parameters considering high-level

measurement noise.

1.3 Research outline

This thesis comprises eight chapters. The contents of the seven chapters following this
introductory chapter are described below:

In Chapter 2, the procedure of applying the K-means clustering technique to modify the
standard TSA is elaborately illustrated. The objective function based on the modal data is
formulated for structural damage identification. The finite element modeling errors and noise in
the measurement data are considered. The results from numerical and experimental studies are
compared with those obtained from several latest swarm intelligence techniques. The
identification results demonstrate that the proposed approach is more competitive and robust
for structural damage identification.

In Chapter 3, the Tree Seeds Algorithm is used for identifying three nonlinear models,
including the Bouc-Wen model and two bilinear models. To enhance the performance of the
standard Tree Seeds Algorithm, namely, the Lévy flight search mechanism is introduced for the
best-so-far solution in each cycle while a new updating equation is introduced for the
remaining solutions. Acceleration responses are used to formulate the objective function.
Identification results are compared with those obtained from other swarm intelligence
techniques and the enhanced sensitivity methods to demonstrate the improvement and
superiority of the proposed approach.

In Chapter 4, the application of the Jaya algorithm in undetermined structural damage
identification is investigated. The clustering strategy and a new updating equation are used to
modify the Jaya algorithm. The objective function that is sensitive and robust for effective and
reliable damage identification, is developed based on sparse regularization and Bayesian
inference. Optimization analysis is conducted with the proposed improved Jaya algorithm.
Numerical and experimental studies show that the proposed method can yield satisfactory
identification results, although a limited quantity of modal data is used and significant

measurement noise and modeling errors are assumed.



Chapter 5 demonstrates the application of the deep belief network (DBN) in undetermined
structural damage identification with uncertainties. Natural frequencies and mode shapes are
extracted as the input to the network, while the output are damage locations and severities of
the structure. To enhance the performance of the DBN, the Arc-tan sparse constraint is
introduced. The final identification results show that the proposed sparse DBN can be used to
identify the damage effectively and its accuracy is better than those obtained by other swarm
intelligence techniques.

Chapter 6 mainly illustrates the hybridization of the TSA and the Jaya algorithm. A hybrid
algorithm along with the non-probabilistic method is applied to conduct the undetermined

damage identification. The alteration of natural frequencies and the MAC (Modal Assurance

Criteria) values as well as the L,s sparse regularization norm are used to formulate the

objective function. The simplified Guangzhou New TV Tower model is chosen as the
numerical example and a simply-supported beam is selected for experimental verification.
Structural identification results demonstrate that the hybrid algorithm with the non-probabilistic
method can well quantify damages, even though high-level uncertainties are considered.

In Chapter 7, a hybridization of the K means Jaya and the ANN algorithm is illustrated.
Vibration characteristics, as well as the acceleration responses are extracted as the input to the
network while the output is the nonlinear parameters and structural damages. To make the
standard ANN more powerful, the K means Jaya algorithm is applied to replace the
back-propagation algorithm during the training process. Relatively high-level noise is
introduced into the acceleration data. Final identification results for a benchmark show that the
proposed hybrid approach can effectively identify both the nonlinear parameters and structural
damages.

Chapter 8 briefly discusses and concludes the development and application of the above
developed methods. Major findings are summarized in this chapter, and discussions and
recommendations are provided for the possible future work.

It should be noted that this thesis is compiled by combining the technical papers prepared
by the candidate during his PhD study. Therefore, Chapters 2 to 7 can be read independently.
Furthermore, to make each technical paper complete, the introduction of the intelligence
methods as well as their advantages towards the traditional methodologies are introduced in

each independent chapter. These parts thus might be slightly repetitive with each other.
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CHAPTER 2 STRUCTURAL DAMAGE IDENTIFICATION WITH

UNCERTAIN MODELLING ERRORS AND MEASUREMENT NOISE BY
CLUSTERING BASED TREE SEEDS ALGORITHM

ABSTRACT!

This paper proposes a novel structural damage identification approach by using the
clustering based Tree Seeds Algorithm, termed as C-TSA, taking into account of both the finite
element modeling errors and measurement noise. In order to make the standard TSA more
powerful and robust, K-means cluster technique is introduced into the standard TSA before
starting the seeds search, which is beneficial to enhance the algorithm’s global optimization
performance. The objective function based on the modal data is formulated for structural
damage identification. Numerical studies on benchmark functions and a 61-bar truss structure
are conducted to investigate the accuracy and robustness of the proposed approach. The finite
element modelling errors and noises in the measurement data are considered. Experimental
verifications on a laboratory steel frame structure model is conducted to further validate the
accuracy of the proposed approach. The results from the numerical and experimental studies
are compared with those obtained from several latest evolutionary algorithms. The
identification results demonstrate that the proposed approach is more competitive and robust
for structural damage identification even considering the modelling errors and measurement

noises.

2.1 Introduction

Structures may accumulate damage inevitably with time, due to the material degradation,
fatigue, over loading, excess deformation and vibrations under extreme events, etc. It is
essential to inspect structural damages at an early stage to ensure the safety of structures. To
achieve this purpose, numerous methods have been developed to conduct structural damage
identification (Fan & Qiao, 2011; Ng, 2014; Li et al., 2017). Vibration based damage
identification methods by using dynamic responses or vibration characteristics, such as

acceleration, natural frequencies, mode shapes, have gained a significant amount of attention.

1This chaper was published in Engineering Structures with the full bibliographic citation as follows:Ding,
Z.,Li, J., Hao, H., & Lu, Z. (2019). Structural damage identification with uncertain modelling error and
measurement noise by clustering based tree seeds algorithm. Engineering Structures, 185, 301-314.
https://doi.org/10.1016/j.engstruct.2019.01.118.
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Vibration based structural damage identification can be formulated as an inverse problem.
An appropriate objective function related with structural parameters is defined, and
mathematical optimization is conducted to identify the best-fit parameters with physical
meanings. Swarm intelligence methods (Diptangshu et al. 2018) can be explored to achieve a
better optimization performance. Compared with the traditional methods, such as sensitivity
based method (Lu & Law, 2007; Lu et al. 2017), one noticeable advantage of the swarm
intelligence methods is that a good initial value and gradient information may not be required.
Furthermore, swarm intelligence methods are usually based on machine learning techniques to
learn and make predictions via data instead of using the explicit formulations. This could not
only avoid the shortcomings of many traditional methods, i.e. requiring good initial values, but
also enable to perform the identification of relatively large-scale and complex structures. Lin et
al. (2018) developed a multi-type sensor placement approach for structural damage
identification, in which Genetic Algorithm (GA) is used to find out the optimal sensor
placement locations. Numerical studies show that the obtained optimal multi-type sensor
placement can effectively avoid redundant sensors. Yi et al. (2012) proposed a modified
monkey algorithm (MA) for optimal sensor placement in structural health monitoring, where
the Euclidean distance operator and the stochastic perturbation mechanism of the harmony
search algorithm were used to enhance the standard algorithm’s local and global search ability.
Yi et al. (2017) proposed an innovative approach based on hierarchic wolf algorithm (HWA) to
optimize tri-axial sensor placement locations. To enhance the standard algorithm’s global
optimization ability, five local search strategies are employed and the results show that the
HWA can effectively determine the global optimal tri-axial sensor placement configuration so
that the identified mode shapes have the excellent linear independence. Sun et al. (2013)
formulated the model updating of structures as an inverse problem, and solved it by a modified
Artificial Bee Colony (ABC) algorithm, in which a nonlinear factor for convergence control
was introduced to enhance its performance. Zhu et al. (2017) used the Birds Mating Optimizer
(BMO) to conduct the identification of local structural damage, in which a hybrid objective
function was introduced by minimizing the discrepancies between the measured and calculated
frequencies and correlation function vector of acceleration between damaged and intact
structures. Ding et al. (2016) applied the ABC with hybrid search strategies to identify

structural damage. Yu and Li (2014) utilized a global Artificial Fish Swarm (AFS) algorithm
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for structural damage detection, in which the information of the best-so-far solution was added
into other solutions’ updating equation. Numerical and experimental results show that the
modified AFS can acquire better identification results. Dinh-Cong et al. (2017) compared the
capacities of using Cuckoo Search (CS) algorithm, Differential Evolutionary (DE) algorithm
and Jaya algorithm to handle with structural damage identification problem and concluded the
Jaya is the best choice among the mentioned three algorithms. It has been demonstrated that the
Improved Nelder-Mead Particle Swarm Optimizer (INM-PSO) (Chen & Yu, 2017) and the Ant
Lion Optimizer (ALO) algorithm (Chen et al., 2018) performed well in structural damage
identification. In addition, some other intelligence optimization techniques, such as the
non-probabilistic Artificial Neural Network (ANN) (Padil et al. 2017) and the fuzzy clustering
method (Yu et al. 2013), have also been introduced for structural damage identification.

Although these state-of-the-art methods have achieved relatively satisfactory identified
results, challenges still exist. For example, in the Refs. (Sun et al. 2013; Zhu et al., 2017; Ding
et al., 2016; Yu & Li, 2014; Dinh-Cong et al., 2017; Chen & Yu, 2017; Chen et al., 2018) the
modelling errors, which inevitably exist in the real structures, may not be considered
thoroughly. The identification accuracy in boundary conditions may also need to be improved.
The considered noise is a bit low and the structure used for investigating is relatively simple.
For solving these deficiencies, it is necessary to investigate and develop more efficient and
robust algorithms for structural damage identification considering modelling errors and
significant measurement noise.

Lately, a novel swarm intelligence approach, named as Tree Seeds Algorithm (TSA), has
been proposed (Kiran, 2015). It employs the trees propagation as a framework, which has been
proven to equip a more competitive optimization capacity compared with GA, PSO and DE
algorithm. TSA has already been applied to solve optimal power flow problem (EI-Fergany &
Hasnien, 2018) and estimate parameters for pumped-storage generator motor (Zhou et al. 2018).
In this study, it will be extended to the field of structural damage identification based on
vibration data with modelling errors (Xia et al. 2018) and measurement noises.

TSA plays an important role in identifying local damages. If the TSA does not have a
good robustness, the identified results will be significantly affected by the measurement noise.
When TSA is trapped in the local minimal during the optimization process, the identification

accuracy will be enormously weakened. Generally speaking, for the swarm intelligence
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methods, exploration and exploitation are two essential cornerstones that lead an evolutionary
process toward optimization and/or convergence. These two search modes are very necessary
for search processes when utilizing any meta-heuristic algorithm. Exploration is defined as
visiting the whole new regions of a search space, while exploitation is defined as visiting those
regions of a search space within the neighborhood of previously visited points (Liu et al. 2013).
This is a paradox behind these two search modes. If an algorithm focuses on the exploration, it
would affect the convergence performance. However if an algorithm concentrates on the
exploitation, it may be trapped in the local minimal. Therefore, it is essential for swarm
intelligence methods to achieve a balanced capacity between the exploration and exploitation
through some certain ways, i.e. by colony diversity maintaining, diversity control, diversity
learning etc (Crepinsek et al. 2013). To achieve this purpose, the K-means clustering
mechanism is applied and integrated into the standard TSA before performing the individuals’
updating. This new approach is therefore termed as C-TSA. This mechanism serves as a
crossover operator that can effectively utilize the colony information and achieve the purpose
of balancing the exploration and exploitation (Imrani et al, 2000; Damavandi & Safavi-Naeini,
2005).

This paper proposes a novel structural damage identification approach by using C-TSA,
taking into account of the uncertainties in the modelling and noise in the measurements. An
objective function is established by minimizing the discrepancies between the measured natural
frequencies and Model Assurance Criteria (MAC) values, and the calculated ones from the
finite element model. K-means clustering technique is applied to improve the performance of
the standard TSA. The performance of the proposed approach is investigated and tested on
Benchmark test functions and compared with several latest methods. Numerical studies on
classical benchmarks as well as CEC benchmarks are conducted to compare the global
optimization ability between the C-TSA and other state-of-the-art swarm intelligence methods.
Numerical studies on a 61-bar truss structure with and without uncertainties are conducted to
verify the accuracy and effectiveness of the proposed approach. Errors in the finite element
modelling and noise in the measurements are considered. Experimental validations on a
laboratory steel frame structure are conducted to demonstrate the performance of the proposed

approach.

14



2.2 Mathematical Model and Problem Formulation
2.2.1 Structural damage model

Alterations in the structural stiffness or other parameters will lead to change in the
vibration properties of structures, and therefore damage identification in structures can be
conducted based on this fact by using vibration data. The modal characteristics of an
undamaged structure without considering the damping can be obtained by analyzing the

eigenvalue problem
(K-o’™)-®, =0 (2.1)
where K and M are the global stiffness and mass matrices, @, representsthe ith natural

frequency and @, denotes the corresponding mode shape.

The mass change of a structure could be inspected visually (Zhu et al., 2017). In this study,
structural damage is assumed only related to the stiffness reduction, i.e. in the elastic module of

material. Structural damage can be expressed through a scalar stiffness reduction variable for

each element «,(i=1,2,...,nel) with the value between 0 and 1. This damage model can be
described as

K,=Y "(-a)k, 2.2)
where k, represents the ith elemental stiffness matrix under the intact state; nel denotes
the total number of elements in a structure; and K, denotes the structural stiffness matrix

under the damaged state; ¢, 1is the elemental stiffness reduction to be identified. It shall be

noted that o, =1 means that this element is completely damaged, and «, =0 means that the

element is intact. It should be noted that this damage model can also be used to describe the
damage in the boundary stiffness. When simultaneously identifying the elemental stiffness
parameters and the boundary stiffness, both the elemental stiffness and boundary stiffness

parameters are included in the optimization.

2.2.2 Objective function for damage identification
Condition monitoring of structures can be conducted based on the changes in the vibration

modal characteristics, i.e. natural frequencies and mode shapes, which are related with system
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parameters, i.e. stiffness. This is the foundation that the modal information are used for
structural damage identification. The objective function based on both natural frequencies and

MAC can be expressed as (Ding et al., 2016)

)= "W, A0+ "W, -(1- MAC) (2.3)
in which
a)ic _ a)fm
Aw, = — 2.4)
a)i

T m\ 2
= % (2.5)

o] o7

where W, and W, are the weight factors for the ith natural frequency and MAC ,

respectively; It should be noted that the weight factors W, and W, in this paper are defined
as 1, which is the same as those used in Ref. (Ding et al., 2016). This indicates the equal

importance of measured frequencies and mode shapes. @ and ®; arethe ith calculated

m

natural frequencies and mode shape from the finite element model, respectively; @ and

®" are the corresponding measured frequency and mode shape. The calculated modal data

are obtained based on the stiffness reduction parameters @ =[¢,,,,...,a,,] Wwith the finite

element analysis. If the estimated damage parameters match with the true values perfectly, the
objective function value will achieve the minimum and be 0. The identified stiffness parameter
vector o will reflect the structural damage. Generally speaking, structural damage
identification is treated as an ill-posed problem with the searching parameters region that may
have multiple local optimal points (Sun et al., 2013). In this case, the traditional optimization
techniques could be stuck with the local minimum, which may result in the poor identification
results. Therefore, just as mentioned above, it is necessary to investigate and develop robust

and powerful algorithms, which could deal with the complex identification problems well.

2.3 Methodology
2.3.1 Standard TSA
TSA is a kind of swarm intelligence method, which is developed based on the natural

phenomenon of trees propagation. In reality, trees usually spread to other places through their
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seeds. These seeds will grow into the new trees over time. In the algorithm, these places for
trees and seeds can be considered as searching spaces for the optimization problems. The
specific locations of trees and seeds are considered as feasible solutions. In fact, the core of this
algorithm is searching the seeds since it will update the new feasible solutions in this phase,

which provides two search equations for this process as described below

S, =T, +7.,%<(B,~T,) (2.6)
S, =T, +a xT,;-T;) 2.7
where S, isthe jth dimension of the ith seed that would be generated by the ith tree,
T, isthe jth dimension of the ithtree, B, isthe jth dimension of best-so-far solution
in the colony, T, is the jth dimension of the rzh  solution randomly selected from the
colony size; the coefficient ¢, ; is a uniform random number, y,, is the scaling factor

arbitrarily generated in the range of [-1,1],and i and j are different indices. Based on the

search equation as shown in Eq. (2.6), a new candidate is produced by removing the old
solution towards the best-so-far solution in the colony, which enhances the exploitation ability
of the algorithm to some extent. However, from Eq. (2.7), a new candidate is created by
removing the old solution towards a randomly chosen one in population. The randomly
selected solution could be a good one, which also has the same likelihood to be a bad one.
Hence Eq. (2.7) has a strong exploration ability (Gao et al., 2015).

Afterwards, the key point is to create a new solution. This process is controlled by a

parameter called search tendency (ST) in the range of [0,1] . Selecting a better equation

between Egs. (2.6) and (2.7) to update the solution relies on the comparison between a random
number and ST. If the random number is larger than ST, Eq. (2.6) is chosen as the update
equation. Otherwise Eq. (2.7) will be selected. Therefore, for every tree seed, a higher ST value
makes it have a higher chance of exploitation whereas a lower ST value renders it possess
likely for exploration. This is the reason why the exploration and exploitation capacities of the
TSA is controlled by ST parameters.

When applying TSA, the initial possible solutions for the optimization problem are

produced as
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T,=L it x(H, W —L

i,j — j,min Jj,max j,min)

(2.8)

where L, and H. are the lower and upper bounds of the search space respectively,

j,min J,max

%, 1s a random number produced for every dimension and location, which is in the range of

[0,1]. The seeds number can be determined approximately as 10% and 25% of the colony size.

The exact number of the seed generation is random in TSA.

2.3.2 The proposed approach

Clustering-based TSA, termed as C-TSA in this paper, is proposed and the motivation
behind this development is described in this section. As mentioned in Section 2.2.2, the
objective function is difficult to be dealt with by using the traditional optimization algorithms
due to its multimodel feature. To balance TSA’s global and local search capacity through
making full use of the colony information and render the proposed algorithm equipped with a
more powerful optimization ability, an improved framework is developed based on clustering
technique. For the original TSA, the updating operation as shown in Egs. (2.6) and (2.7) is
performed between randomly selected individuals from the entire colony, which allows any
two individuals have a chance to create the new generation. The Greedy Selection Scheme
(Ding et al., 2016) is also applied for the old solution and the new one. Therefore, the problem
is that when dealing with a multimodal problem, it may suffer the slow-convergence problem
or even trap in the local minimal at the final stage. This is because in the final iteration for the
multimodel problem, the whole colony has a large likelihood to distribute around the different
optimal regions. In this case, the distance in the parameter space between different optima is
large, which leads to the slow convergence rate due to the relatively large magnitude of the
vector generated from individuals with different optimal regions (Gao et al., 2014). Besides, the
mutation mechanism in the original TSA cannot guarantee the full use of the colony
information, since only two individuals are adopted to make further exploration in every cycle.
To tackle these two challenges, that is, to enhance the convergence performance and to increase
the utilization rate of the population information, K-means clustering is applied before updating

the solutions.
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2.3.2.1 Overview of the K-means clustering

Clustering is an important research topic in the field of machine learning, which aims to
categorize a massive amount of data into several groups according to their patterns. It can be
used to re-organize the database into a number of groups or clusters so that those data within a
cluster have similar features. Clustering technique is a significant tool to discover the inherent
patterns in any given database (Cai et al., 2011). The clustering centers can represent the whole
clusters, since these centers’ formations are the results of combining with the information of
other individuals in this colony. Therefore, it is beneficial to utilize the information of the
colony efficiently and enhance the algorithm’s convergence performance (Gao et al., 2014), by
introducing the K-means clustering mechanism.

The K-means clustering belongs to an unsupervised learning algorithm. Considering a set
of n data points, ie. X={X,,X,,..X,} in the space U and an integer K, the K-means
clustering is to determine a series of K cluster centers C ={c,,c,,...c, } to minimize the sum of

squared errors as SSE = Z mllrkl I|X —c,|| It usually consists of three steps, namely, selecting
Xex '

the initial clusters centers, assigning other data to these centers and re-estimating the new
cluster centers (Hussain & Haris, 2019).

The specific procedure of the K-means clustering (Cai et al., 2011) is described as

Step 1: Select & initial cluster centers c,,c,,...,c, randomly from the » points
{(X,,X,,..X,}

Step 2: Assign the point X,, (i=1,2,..,n) to a cluster Cj,j:1,2,...,k , only if the
distance satisfies, | X, —c;[|<|| X, —c, || the point X, belongs to the cluster with the center

point ¢, Similarly, other clusters can be defined through the comparison with the distance

generated from every center point.
Step 3: The criteria of determining which cluster the point belongs to is based on the
distance between all the centers. In this study, the Euclidean distance is employed to calculate

the distance, which is given as below

p=1

d(X, X)dlX,-X,|= \/Z(Xl.’p -X, )’ 2.9
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where X, and X, represent any two individuals from the colony and D denotes the

dimension number of the individual.

Step 4: Calculate new cluster centers c,,c,,...,c, based on the following equation

c. _1 DX, i=12,..k (2.10)

nl‘ X;eq
where n, is the number of elements within the cluster c;,.

Step 5: If the center points for the whole colony remain the same, it means the algorithm

terminates and ¢,,c,,...,c, are selected as the final center points. Otherwise, update each ¢,

with ¢, (i=1,2,...,k), and go back to Step 2 for the next iteration.

23.2.2C-TSA

Recently, some researchers have employed the K-means clustering technique to improve
the performance of swarm intelligence algorithms. For example, Imrani et al. (2000) integrated
the sharing mechanism and a fuzzy clustering algorithm to modify the GA. It is found that the
improved algorithm was good at dealing with the multiple model functions. Damavandi and
Safavi-Naeini (2005) utilized a density clustering mechanism to preserve the diversity of the
colony and the results showed that the hybrid method has greatly enhanced the robustness and
convergence performance of the algorithm for tackling the complex multi-modal circuit
optimization problem.

For the application in civil engineering, structural damage identification taking into
account of uncertain modelling errors and measurement noise is an ill-posed and multi-modal
complex optimization problem (Sun et al., 2013; Zhu et al., 2017; Ding et al., 2016; Yu & Li,
2014; Du et al., 2017; Chen & Yu, 2017; Chen et al., 2018). Besides, due to the simple
mutation mechanism of the original TSA, it may suffer not making the full use of the colony
information. Therefore, the K-means clustering technique is introduced in the proposed
approach before updating the solutions, which is essential to balance the exploration and
exploitation of TSA and accelerate the convergence speed. Figure 2-1 illustrates the framework
of the proposed C-TSA. From observing its algorithmic structure, it is clear that C-TSA equips

the feature of simplicity and easy-operation. On the other hand, C-TSA also possesses the
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deconstruction mechanism (Hussain & Haris, 2019). When canceling the clustering operation,
C-TSA will become the standard TSA. Therefore, it is convenient to investigate whether the

K-means clustering mechanism improves the performance of TSA or not.

Operate K-means
Clustering

I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
|

Figure 2-1 The flowchart of the proposed C-TSA.

As shown in Figure 2-1, the K-means clustering is performed before the individuals’

updating. To present the process of the K-means clustering in a straightforward way, Figure 2-2
displays its diagram. From Figure 2-2, it is assumed that K €[2,+/CS] clusters will be

randomly generated and K individuals are selected from the colony as the initial clustering
points. Afterwards, other individuals will be assigned to these cluster centers according to their
Euclidean distances, which can be calculated by Eq. (2-9). Then the K new cluster centers are

calculated by using Eq. (2-10). According to Ref. (Cai et al., 2011), the one step clustering is



simple, linear time complex but effective. Therefore, in the proposed C-TSA, one step
clustering is also adopted. K individuals are randomly chosen from the colony, and these
individuals with the new clustering centers are combined together as a sample P. The objective
function values of the individuals in the sample P are calculated, and the best K individuals will
be put into the colony again, which enables the elite preservation (Cai et al., 2011). When the
conduction of the K-means clustering is finished, the seeds search is commenced. Figure 2-3
shows the pseudo-code of the proposed C-TSA. It is observed that the proposed C-TSA keeps a
simple structure, which is easy to implement with a deconstruction mechanism and other

advantages of the original TSA.

Operating the K-means Clustering

Determine K clustering centers

v

Assign individuals to the clustering
center by Eq. (9)

I

Calculate K new clustering centers
by Eq. (10)

;

Randomly choose K individuals from
the colony

v

Combine new clustering centers and
K individuals

!

Sort by objective values and the first
K individuals are kept

Figure 2-2 The diagram of operating the K-means clustering in the proposed C-TSA.
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Step 1. Initialization of the proposed algorithm
Set the number of population size CS' , parameter ST’
Set the dimension of the problem D
Decide the termination condition
Generate CS random tree location with D dimension on search space using Eq. (2.8)
Evaluate the tree location using objective function based on Eq. (2.3)
Select the best-so-far solution B
Step 2. Operation of the K-means clustering
Step 3. Searching with seeds
For all individuals in the colony
Decide the number of seeds produced for this individual.
For all dimensions
If (rand<ST)
Update this dimension using Eq. (2.6)
Else
Update this dimension using Eq. (2.7)
End If
End For
End For
Select the best seed and compare it with the individual. If the seed location is better than the
individual’s, the seed replace this individual.
End For
Step 4. Selection of Best Solution
Select the best solution in every cycle. If the new best solution is better than the previous best
one, the new best solution substitutes for the previous best solution.
Step 5 Check the termination condition and feedback

If the termination condition is not met, go to Step 2. Report the best solution.

Figure 2-3 The pseudo-code of the proposed C-TSA.

2.4 Numerical Simulations

In this section, the accuracy and performance of the proposed approach will be
demonstrated with numerical simulations and compared with several existing state-of-the-art
algorithms. Six mathematical benchmark functions in the literature (Ding et al., 2017), which
are list in Table 2-1, are employed for conducting colony diversity analysis between the TSA
and C-TSA. After that, C-TSA will be utilized to optimize CEC’05 benchmarks (Sunganthan et
al., 2005) to compare its capacity with several state-of-the-art algorithms. The effectiveness and
performance of using C-TSA for identifying the structure damage are also demonstrated with

numerical studies on a truss structure.
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Table 2-1 Classical mathematical benchmarks.

Number Name Definition Range

F1 Sphere i =X"x [~100,100]

F2  Griewank  f,(x)=1/40003" x> ~T17 cosx, /Ni +1  [-600,600]

D
£1(¥) =20 +e—20exp(-0.2+/1/ D) Y x2)
F3 Ackley ) i 2 [-32,32]
+exp((1/ D)~ cos2zx,)

, [-5.12,5.12]
F4 Rastrigin fi(x) =2 [x,~10cos(27x,) +10]

D
F5 Rosenbrock £, (x) = Zzl(loo(xzi —x2 )+ (1-x,)% [-30,30]

fs(x)=0.5+sin (\/m)/ [~100,100]

(1+0.001>.” x?)y

F6 Schaffer

2.4.1 Colony diversity analysis between TSA and C-TSA on classical benchmark

In order to compare the performance of the proposed approach with the TSA, a series of
classical mathematical benchmarks, as list in Table 2-1, are adopted for calculation. According
to the literature (Kiran, 2015; EI-Abd, 2017), the colony size and the search tendency are set as
CS=25 and ST =04 respectively. For C-TSA, one step clustering is conducted in each
iteration. All benchmark tests are conducted on dimensions D =30 for a maximum of
10000 x D . Each situation repeats 50 times, best results are highlighted in bold in Table 2-2.

To quantify the exploration and exploitation ability of these two algorithms, the standard
deviation (std.) of individuals in each cycle is employed to illustrate the improvement of

convergence performance. The colony diversity is measured by

i=l1

D CS _
Diversity =) \/éZ(s =S (2.11)
Jj=1

where §_1. is the mean position of the colony.
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Table 2-2 Statistical results obtained by TSA and C-TSA on classical benchmarks.

C-TSA TSA
Function Objective values  Final diversity value ~ Objective values  Final diversity value
Mean std Mean std Mean std Mean std
F1  4.47E-150 2.45E-149 1.03E-75 5.63E-75 1.28E-21 3.93E-21 1.84E-19 6.02E-19
F2  0.00E+00 0.00E+00 1.84E-07 8.63E-08 5.91E-03 7.54E-03 1.69E-05 2.42E-05
F3  1.78E-15 2.91E-15 4.67E-15 6.72E-15 3.33E-02 1.82E-01 6.38E-09 3.49E-08
F4  1.89E-15 1.04E-14 2.61E-08 1.91E-08 3.57E+01 3.60E+01 4.03E+00 9.89E+00
F5 2.70E+00 5.73E+00 3.70E-03 7.81E-03 2.68E+01 2.72E+01 2.68E-02 3.80E-02
F6  3.12E-04 9.54E-04 2.68E-07 2.85E-07 1.93E-02 7.97E-02 7.19E+00 2.07E+00
(b)
50 5 Rosenbrock
10 10
== = C-TSA
= = TSA
> 0 : >
w 10 | ?
2 | S0
z 50 el = ] ‘ ‘
8 10 o \.\ 7777777777 _8) ““"‘-*'v-v':vs\-mc.\o1-»#0;.».-&
1071 ; ; 10° : :
0 1000 2000 3000 0 1000 2000 3000
Cycles Cycles
© Rastrigin (d) Schaffer
| ==-CTsA | —r=-CTsA
= SUN S B U - S _TSA
o 10 [¢ 2 40° P R S
o p : : @ R
= \ : : = =1
S [} : : =X :I
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107° -10 :
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Figure 2-4 The diversity values on several benchmark functions by using TSA and C-TSA:

Figure 2-4 has shown the colony diversity values of several test benchmarks from TSA
and C-TSA. From the diversity values on several benchmark functions as shown in Figure 4, it
can be observed that during the early iterations (before 500 cycles), the diversity values are
relatively large, which denotes that the individuals scatter in the search space and focus on the
exploration search. With iterations, especially after 2000 cycles, the diversity values remain at
very low values until the end of iterations. This indicates that the individuals gradually gather

together and concentrate on the exploitation search. Therefore, the diversity values could be

(a) Sphere; (b) Rosenbrock; (c) Rastrigin; (d) Schaffer.
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used as a criterion to quantify the algorithms’ exploration and exploitation ability to some
extent. Furthermore, as shown in Table 2-2 and Figure 2-4, it is clearly observed that in the
later iterations (after 1000 iterations), the diversity values of the proposed C-TSA are
significantly smaller, indicating that C-TSA achieves a better balance between the exploration
and exploitation and has a quicker convergence rate. This is owning to the operation of the

K-means clustering in the developed C-TSA.

2.4.2 Comparison with state-of-the-art algorithms on CEC benchmarks

In this section, several state-of-the-art algorithms including Global-best Artificial Bee
Colony (GABC) (Zhu & Kwong, 2010), 2011 version of Standard Particle Swarm Optimizer
(SPSO) (Zambrano-Bigiarini et al., 2011), the Improved Global-best Harmony Search (IGHS)
(EI-Abd, 2013) and Global Brain Storm Optimization (GBSO) (EI-Abd, 2017) are employed to
make comparison with the proposed C-TSA on CEC’05. The parameters setting for the C-TSA
are the same as those in the section 4.1. All benchmark tests are conducted on dimensions
D=10, D=30 and D=50 fora maximum of 10000 x D function evaluations. In Tables
2-3 to 2-5, best results are highlighted in bold. It is noted that the results of other algorithms are
extracted from a previous study (EI-Abd, 2017). It is clear that the C-TSA can obtain the best
identified results in most cases.

To assess these algorithms’ global optimization capacities in a more rigorous and
persuasive framework, the non-parametric Friedman test with a 5% confidence interval
(EI-Abd, 2017) is employed as a criterion to assess these algorithms. The Friedman test is used
to detect significant differences between the performances of different algorithms (Derrac et al.,
2011). Mean errors of objective function values acquired by the mentioned algorithms are used
for the test. This method first finds the rank of algorithms for the individual problems and then
calculates the average rank to obtain the final rank of the each algorithm for the considered
problems. Figure 2-5 shows the mean rank of the algorithms for the CEC’05 benchmarks. With

calculations by the Friedman test, C-TSA has acquired the best rank among these algorithms,
with the lowest score of 2.45. On the other hand, the p-value for the test is only 3.6-107*,

which is far less than the 5% confidence interval. This confirms the outstanding performance of
C-TSA for the CEC’05 over the considered algorithms, and lays foundations for the following

identifications (EI-Abd, 2017; Derrac et al., 2011 ).
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Table 2-3 Performance results of various algorithms on CECO05 functions: 10D.

Benchmark GABC SPSO IGHS GBSO C-TSA
Function  \fean std. Mean std. Mean std. Mean std. Mean std.
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.18E-09 2.21E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.71E+00 6.30E+00 9.47E-15 2.15E-14 1.13E-08 3.67E-09 9.39E-11 2.42E-10 7.03E-23 2.72E-22
3 6.23E+05 3.08E+05 3.85E+04 291E+04 7.54E+04 5.81E+04 4.97E+04 3.81E+04 591E+04 4.81E+04
4 6.64E+02 4.14E+02 1.71E-14 2.65E-14 1.34E-08 4.39E-09 2.97E-09 8.06E-09 2.75E-21 1.05E-20
5 2.03E+00 1.56E+00 0.00E+00 0.00E+00 2.75E-03 1.00E-03 1.42E-06 1.00E-06 1.50E-08 3.68E-08
6 7.63E-02 9.26E-02 4.11E+01 9.71E+01 3.19E+01 5.40E+01 6.21E+00 2.60E+00 2.90E-02 4.43E-02
7 7.95E-02 5.09E-02 9.46E-02 1.10E-01 1.64E-01 7.69E-02 8.46E-02 5.13E-02 1.15E-01 6.41E-02
9 0.00E+00 0.00E+00 5.24E+00 2.10E+00 1.63E-06 3.50E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 1.35E+01 3.25E+00 4.57E+00 2.09E+00 9.68E+00 3.98E+00 4.61E+00 2.34E+00 9.88E+00 2.83E+00
11 5.23E+00 9.11E-01 3.27E+00 1.65E+00 9.92E-01 9.34E-01 2.57E-01 5.35E-01 0.00E+00 0.00E+00
12 1.96E+02 1.05E+02 2.00E+04 9.50E+03 1.78E+02 4.63E+02 5.44E+02 7.14E+02 1.92E+00 6.73E-01
13 1.36E-01 1.18E-01 7.93E-01 1.68E-01 4.39E-01 1.19E-01 4.84E-01 1.12E-01 7.21E-01 8.32E-02
14 321E+00 1.75E-01 2.30E+00 5.10E-01 3.28E+00 6.37E-01 1.94E+00 5.35E-01 3.04E+00 3.56E-01
Table 2-4 Performance results of various algorithms on CECO05 functions: 30D.
Benchmark GABC SPSO IGHS GBSO C-TSA
Function  \fean std. Mean std. Mean std. Mean std. Mean std.
1 6.82E-14 2.31E-14 5.49E-14 1.04E-14 8.87E-08 1.25E-08 5.49E-14 1.04E-14 1.73E-27 1.88E-27
2 1.38E+03 8.51E+02 3.35E-13 1.07E-13 6.51E-07 1.68E-07 3.15E-04 2.10E+04 1.08E-04 3.40E-04
3 6.22E+06 3.21E+06 2.80E+05 1.37E+05 4.78E+05 2.36E+05 1.06E+06 3.61E+05 1.16E+05 4.96E+04
4 3.29E+04 5.04E+03 5.03E+01 3.27E+01 9.59E-03 1.89E-02 1.83E-01 1.66E-01 3.26E-05 1.03E-04
5 7.62E+03 1.46E+03 4.73E+03 7.93E+02 1.18E+03 5.32E+02 8.90E+01 7.94E+01 5.19E+02 2.68E+01
6 1.53E+01 2.67E+01 5.04E+02 1.06E+03 1.61E+02 1.71E+02 8.80E+01 1.47E+02 7.06E-02 1.19E-01
7 2777E-02 1.84E-02 2.94E-02 2.43E-02 8.70E-03 1.06E-02 7.72E-03 7.91E-03 2.71E-02 7.43E-13
9 5.68E-14 2.57E-29 5.77E+01 2.71E+01 1.69E-05 1.70E-06 3.60E-01 6.30E-01 9.95E-01 2.25E-15
10 1.70E+02 2.45E+01 5.52E+01 1.31E+01 4.98E+01 1.41E+01 2.52E+01 7.85E+00 6.76E+01 2.56E-14
11 2.69E+01 1.50E+00 2.66E+01 4.48E+00 5.60E+00 2.25E+00 1.35E+00 1.74E+00 8.28E+00 2.32E+00
12 6.54E+03 2.60E+03 1.04E+06 1.51E+05 1.59E+03 1.74E+03 4.44E+03 5.34E+03 1.63E+03 8.75E+01
13 8.07E-01 1.56E-01 5.98E+00 3.30E+00 1.23E+00 2.43E-01 1.73E+00 2.73E-01 3.81E+00 8.53E-01
14 1.27E+01 2.36E-01 1.20E+01 6.68E-01 1.19E+01 5.73E-01 1.01E+01 8.59E-01 1.32E+01 2.83E-01
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Table 2-5 Performance results of various algorithms on CECO05 functions: 50D.

Benchmark GABC SPSO IGHS GBSO C-TSA
Function  Nfean std. Mean std. Mean std. Mean std. Mean std.
1 1.63E-13  2.73E-14 9.47E-14 2.73E-14 2.74E-07 2.87E-08 1.00E-13 2.45E-14 1.55E-27 8.11E-28
2 1.39E+04 6.08E+03 1.38E-11 1.64E-11 9.63E-06 1.92E-06 1.07E-01 4.10E-02 1.15E-01 3.15E-01
3 1.18E+07 3.69E+06 4.33E+05 1.44E+05 9.07E+05 3.72E+05 2.06E+06 7.49E+05 2.94E+05 1.26E+05
4 9.28E+04 1.10E+04 3.92E+03 1.02E+03 3.18E+03 2.03E+03 8.46E+01 4.50E+01 3.02E-02 8.81E-02
5 2.13E+04 1.97E+03 1.24E+04 1.87E+03 3.29E+03 7.67E+02 6.61E+02 3.23E+02 1.11E+02 1.12E+01
6 3.32E+01 4.35E+01 6.77E+02 1.73E+03 1.45E+02 1.70E+02 1.44E+03 2.42E+03 3.99E+00 1.53E-03
7 1.02E-02 1.66E-02 1.12E-02 1.48E-02 1.07E-03 2.80E-03 1.48E-03 3.01E-03 6.20E-03 4.65E-09
9 1.04E-13 2.15E-14 1.31E+02 2.78E+01 5.12E-05 4.33E-06 2.85E+00 1.19E+00 1.42E-15 3.43E-15
10 5.25E+02 6.61E+01 1.52E+02 3.02E+01 8.94E+01 2.13E+01 S.13E+01 1.24E+01 2.06E+02 4.15E+01
11 5.33E+01 2.90E+00 5.72E+01 4.13E+00 1.20E+01 3.35E+00 3.56E+00 2.43E+00 5.90E+00 3.58E-01
12 2.96E+04 1.15E+04 5.16E+06 7.99E+05 1.22E+04 1.04E+04 1.79E+04 1.37E+04 7.83E+04 7.58E+03
13 145E+00 2.45E-01 1.38E+01 8.27E+00 2.01E+00 2.83E-01 3.19E+00 5.29E-01 7.71E+00 6.29E--01
14 2.24E+01 2.46E-01 2.16E+01 6.81E-01 2.11E+01 7.82E-01 2.11E+01 9.18E-01 2.30E+01 2.00E-01
) Friedman Test
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Figure 2-5 Friedman rank test for the CEC’05 benchmarks.

2.4.3 Numerical simulation on a truss structure

The above studies on benchmark functions demonstrate the improved accuracy and

efficiency of the proposed algorithm compared with several latest methods and the standard
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TSA. In this section, numerical studies on a planar truss structure (Ding et al., 2016) are
conducted. The model of the simply supported truss structure and the locations of placed
sensors are shown in Figure 2-6. The structure has 26 nodes and 61 elements. The Young’s

modulus, mass density and Poisson’s ratio of the truss structure member are respectively

E=70Gpa, p=2.7x10"kg/m’ and u=0.33.The boundary supports are modeled with

three springs with a large stiffness of 2x10'N/m . The first six nature frequencies of the

structure are obtained as 16.48 Hz, 54.96 Hz, 73.75 Hz, 132.15 Hz, 193.06 Hz and 222.25 Hz,
respectively, based on the finite element model analysis. In terms of parameters setting for TSA
and C-TSA, the colony size, the search tendency and the maximum iteration number are set as
CS =50, ST =0.4 and 200, respectively. The first six frequencies and mode shapes are used
for the identification. For every damage scenario, the identification is repeated 20 times with a
different initialized random seed to obtain the statistical results. To investigate the effect of
measurement noise on damage identification, natural frequencies and mode shapes are

contaminated by adding a uniformly distributed noise (Dinh-Cong et al., 2017)
& =(1+Q2-rand -1)-n.) @, @ =1+ (2 rand-1)- n) @, (2.12)

i Ji =

where @™

i

and q)’};”""e are the ith natural frequency and the jth component of the ith

mode shape vector polluted by noise; 7, and 7, are the noise levels in the frequency and

mode shape, respectively.
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Figure 2-6 A planar truss structure in the numerical study.

2.4.4 Damage identification without modeling uncertainty
2.4.4.1 Scenario 1

The first damage scenario is assumed with 15% stiffness reduction introduced in the 3%
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element, that is, «; =0.15. The performance of the proposed approach is compared with those

of ABC, quicker Artificial Bee Colony (QABC) algorithm, Artificial Bee Colony algorithm
with hybrid search strategy (ABCHSS) and TSA. Figure 2-7(a) shows the evolutionary process
of the objective function values by using TSA and C-TSA for structural damage identification.
It can be seen that C-TSA has a quicker convergence speed and achieve a very small objective
function value. When 1% noise is added into the frequencies and 10% noise is added into the
mode shapes (Ding et al., 2016), Figure 2-7(b) shows the iterations of the identified damage
index of the 3™ element. It is clearly observed that the iteration process by using C-TSA
converges faster, indicating the proposed improvement based on K-means clustering technique

enhances the performance of the original TSA.
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Figure 2-7 The evolutionary process of Scenario 1:

(a) Objective function (without noise); (b) Damage parameters (with noise).

The final structural damage identification results are shown in Figure 2-8. It is noted that
less false identifications are observed from C-TSA, when the noise is included in the
measurement. To compare with other methods, the statistical results of the identified damages
without noise and with noise in the 3™ element are shown in Table 2-6. It can be found that
ABCHSS, TSA and C-TSA can identify the damage correctly for the noise free situation.

Generally TSA and C-TSA provide the better results than ABCHSS, QABC and ABC. When
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noise is included in the measurement data, C-TSA outputs the best identification results with

the maximum relative error of 0.09%, better than 0.3% and 1% from TSA and ABCHSS.
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Figure 2-8 Damage identification results of Scenario 1.

2.4.4.2 Scenario 2

Three damages in the 5%, 15" and 25% elements with 10% stiffness reduction each are
defined in Scenario 2. The same procedure is followed to identify the damage. Figure 2-9
shows the evolutionary process of the objective function and identified damage extents in
Scenario 2. It is also observed that C-TSA converges quickly, which means that C-TSA is more

competitive and efficient.
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Figure 2-9 The evolutionary process of Scenario 2: (a) Objective function (without noise);
(b) Damage parameters (with noise).
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Figure 2-10 shows the damage identification results in the truss structure. The simulated
damages can be identified accurately, even when the noise is included. C-TSA outputs a less
number of false identifications than TSA, indicating that the performance of the proposed
approach is good and robust. The identified damage extents without noise and with noise are
listed in Table 2-6. It can be seen that C-TSA can accurately identify the multiple damage with

very small standard deviations, and outperforms the other three existing methods.

TSA(without noise)
C-TSA(without noise)
—B— TSA(with noise)
—<—— C-TSA(without noise)

Damage extent(%)

[} 10 20 30 40 50 60
Element number

Figure 2-10 Damage identification results of Scenario 2.

2.4.4.3 Scenario 3
Scenario 3 is defined to investigate the effect of the boundary conditions on the structural

identification. Damage is introduced into the 3™ element with a 15% stiffness reduction. The

boundary stiffness K, as shown in Figure 2-6 is underestimated as 92.5% of the true value,

which means that a 7.5% reduction is simulated in this boundary stiffness. Both the structural
elemental stiffness parameters and boundary stiffness parameters are included in the
identification. As mentioned in Section 2.1, damage in the boundary stiffness can also be
identified by introducing three extra stiffness parameters into the optimization process. The
final identified results of this scenario are shown in Figure 2-11 and Table 2-6. It can be seen
that C-TSA can identify the element damage and boundary stiffness reduction accurately, even
considering the noise effect. The results demonstrate that the accuracy and robustness of the

proposed algorithm are better than QABC, ABCHSS and TSA.

32



ST N e o TSA(without noise) ||
STy | R SR L C-TSA(without noise) ||
% —HB— TSA(with noise)

g 5 -| —<— C-TSA(with noise)

@© " i

§ of
a

0 10 20 30 40 50 60
Element number

__ 15 ; ;

S
< I TSA (with noise) ‘ ‘ ‘

& 10| I C-TSA (with noise) [ -7 iTooooooe s P
ko I C-TsA(without noise) h h .

o 5t{ INEM TSA(without noise) |- ---+---------- - - - : -
@© T T " " i

£ . . . . .

0

= i i i i i

0.5 1 1.5 2 25 3 3.5
Boundary number

Figure 2-11 The identified damage and boundary condition of Scenario 3:

(a) Damage in elements; (b) Damage in boundary conditions.

Table 2-6 Damage identification results in numerical simulation.

Methods
Scenarios QABC ABCHSS TSA C-TSA
mean std. mean std. Mean std. mean std.
Scenario 1
Without noise  13.98% 0.02 15% 0 15% 0 15% 0
3
(15%) With noise 7.92% 0.06 13.89% 0.004 14.70% 0.004 1491% 7.10E-04
0
Scenario 2
o Without noise  6.76% 0.04 9.54% 0.009  10.00% 1.07E-04 10.00% 0
5
(10%) With noise 6.84% 0.04 9.30% 0.02 9.61% 0.008 9.96% 0.005
0
« Without noise  6.19% 0.04 9.45% 0.006 10.00% 6.81E-05 10.00% 1.30E-06
15
(10%) With noise 5.97% 0.05 9.10% 0.008 9.57% 0.003 9.77% 8.57E-04
0
Without noise  4.11% 0.04 9.53% 0.006 9.95% 1.25E-04 10.00% 1.10E-06
Qs
(10%) With noise 4.02% 0.03 8.43% 0.01 9.29% 0.03 9.66% 0.002
0
Scenario 3
Without noise  11.98% 0.05 14.95% 0.0003 15.00% 5.92E-05 15.00% 5.62E-07
o,
(15%) With noise 8.89% 0.04 12.75% 0.01 14.12% 0.004  14.68%  0.002
0
o Without noise  9.26% 0.22 7.21% 0.0124  7.49% 1.58E-04 7.50% 7.43E-07
k3
(7.5%) Withnoise  24.28% 0.22 11.47% 0.07 6.41% 0.006 7.00% 0.003
. 0

2.4.5 Damage identification with modeling uncertainty

In the above mentioned simulations, the modelling uncertainty is not considered and the
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first six mode shapes of all the degrees of freedom (DOFs) are used for identification. However,
uncertainties inevitably exist in the finite element modelling which affects the subsequent
structural damage identification. Furthermore it is very difficult to acquire the modal data of
those rotational DOFs, implying only incomplete modal data are available for damage
identification analysis. To ensure that the conducted numerical simulations are more realistic
with uncertainties and incomplete measurements, 1% uncertainty with Gaussian distributions
(Xia et al., 2002; Pathirage et al. 2018) is introduced into all the elemental stiffness parameters
to simulate the modelling errors. The first six natural frequencies and the mode shapes in the
vertical direction of all the nodes are used for identification. It has been demonstrated in the last
section that TSA and C-TSA provide the better results than other methods, therefore only these
two algorithms are used in this section for damage identification.

When the modelling uncertainty is introduced, the damage can be determined from the
statistical distributions of the stiffness parameters under the undamaged and damaged states.

For example, if the stiffness parameter of the ith element follows a Gaussian distribution with

a mean value of E(1-¢;) and a standard deviation of o(l1—¢;) . The probability of damage

existence is defined as that of 1—¢, not within 95% confidence interval Q(1-a,,0.95) of the

healthy stiffness parameter. Therefore, the probability of damage existence of the ith element
can be calculated as

py =1-prob(x, € Q(1-¢,0.95))=1-prob(L,<x, <o)

(2.13)
=prob(—w <x, <L)

where L, is the lower bound of the interval Q(1-¢;,0.95) . When the confidence level

is set to 95%, the lower bound can be decided by L,=E(1-¢«,)—1.645c(1-¢,) , which

indicates that there is a probability of 95% that the healthy stiffness parameter falls in the range

of [E(1-a,)—-1.6450(1—a,), 0] (Xiaetal., 2002).

2.4.5.1 Scenario 4
15% stiffness reduction is assumed in the 3™ element in this scenario. The same damage
identification procedure is followed, and only the above mentioned modeling uncertainty is

considered. Figure 2-12(a) shows the evolutionary process of the objective function values. It is
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demonstrated again that C-TSA converges quicker. Probability Density Functions (PDFs) of
the ‘health’ stiffness parameters and the damaged stiffness parameters with the maximum error

alarms in the intact elements obtained from TSA and C-TSA are shown in Figures 2-12(b) and

(c), respectively. The lower bound L, is also drawn in these two figures. As observed from

the TSA result in Figure 2-12(b), a relatively large part of PDF is located on the left side of L,

which means that the probability of damage existence is relatively high (87.6%) and a false

identification may be obtained with a large likelihood. It can be observed that basically half of

the PDF from C-TSA locates on the left side of the lower bound L, , as shown in Figure

2-12(c), which means that the probability of damage existence is relatively low (59.3%) and the
error in identification results stems from the uncertainty and noise effect with a large likelihood.
This also demonstrates the superiority of the developed C-TSA for damage identification with
uncertainties. The final structural damage identification results are shown in Figure 2-13. The
specific identified damage in the 3™ elements are shown in Table 2-7. The relative errors in the
results obtained from TSA and C-TSA are 1.19% and 0.24%, respectively. Due to the
modelling uncertainty, the difficulty for identification is increased, but the superiority of the

developed C-TSA can also be demonstrated.
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Figure 2-12 The identified results of Scenario 4; (a) The evolutionary process of the objective function

value; (b) Distribution results from TSA; (c) Distribution results from C-TSA.
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Damage extent(%)
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Figure 2-13 Damage identification results of Scenario 4.

2.4.5.2 Scenario 5

In this section, a multiple damage scenario with modeling uncertainty is defined to
investigate the accuracy and effectiveness of the proposed algorithm. 25%, 20%, 13% and 18%
stiffness reductions are introduced in the 4%, 8, 18" and 45" elements. Figure 2-14 shows the
iteration processes of the identified damages in those four elements. It is observed that C-TSA
has a more stable and faster convergence than TSA. The final damage identification results are
shown in Figure 2-15, and the specific damage extents are listed in Table 2-7. The maximum
false identification obtained from TSA is observed in the 11" element with the mean value of
5.03% and standard deviation of 0.059. Such a large deviation indicates significant error in the

11" element, in contrast to the corresponding error of the results from C-TSA of only 2.67%
with a standard deviation value of 2.91x107* . Furthermore, for the damaged elements, the

maximum relative error in the identification by using TSA and C-TSA are 2.86% and 0.90%,

respectively, indicating the superiority of C-TSA.

2.4.5.3 Scenario 6

In this damage scenario, both the measurement noise and modelling uncertainty are
introduced to investigate the performance of the proposed approach. It is quite challenging to
achieve an effective and reliable structural damage identification when significant
measurement noise and modelling uncertainty effect are involved, since the coupling

uncertainties generally have a significant influence on damage identification results. For the

damage simulations, the same damages as Scenario 5 are introduced, that is, «,=0.25,
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a;=02, a,=013 and a, =0.18 . Figure 2-16 shows the identification results with

uniformly distributed noise. False identifications are observed in the 6™, 11%, 16, 215, 26, 31,
51 and 56" elements when utilizing the TSA. However, there are no false identifications from
the proposed C-TSA, which indicates again that the proposed approach can significantly
improve the robustness against the measurement noise and uncertainty effects. Furthermore, in
terms of the identified damage extents, the identification accuracy from the proposed C-TSA is
generally more competitive. The performance evaluation results are shown in Table 2-7. The
above numerical studies comprehensively demonstrate the accuracy and robustness of using the
proposed approach in structural damage identification, even when the measurement noise and

finite element modelling errors are considered.
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Figure 2-14 The evolutionary processes of the identified damage in Scenario 5

by using TSA and C-TSA: (a) a4; (b) a8; (c) al8; (d) 045 .
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Figure 2-15 Damage identification results in Scenario 5.
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Figure 2-16 Damage identification results in Scenario 6.

Table 2-7 Damage identification results in numerical simulation with modelling uncertainty

Methods
Scenarios TSA C-TSA Assumed
value
Mean std. Mean std.
Scenario 4
a, 13.81% 0.0442 15.24% 0.0126 15%
Scenario 5
a, 25.97% 0.0037 25.83% 2.2E-4 25%
oy 22.86% 0.0167 20.90% 0.0032 20%
o 13.22% 0.0101 12.54% 0.0028 13%
Ays 18.27% 0.0039 17.88% 2.51E-4 18%
Scenario 6
a, 25.67% 0.0044 25.78% 6.5E-4 25%
o 25.33% 0.0319 21.97% 0.0094 20%
o 12.84% 0.0302 13.37% 0.0028 13%
Qs 17.79% 0.0081 18.03% 0.0011 18%
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2.5 Experimental Verification

Experimental studies on an eight-story shear-type steel frame model are conducted to
verify the accuracy and performance of the proposed approach. Figure 2-17 shows the
fabricated shear type frame structure in the laboratory. The height and width of the frame
structure are 2000mm and 600mm , respectively. Thick steel bars with dimension of
100mm x25mm are used as the floors of the frame model. Two flat bars of the same cross
section with a width of 50mm and a thickness of Smm are utilized as columns. The beams
and columns are welded to form rigid beam-column joints. The bottom of the two columns is
welded onto a thick and solid steel plate, which is fixed to a stronger floor. The detailed

dimensions of the frame model are introduced in Ref. (Ni et al., 2018). The initial elastic
modulus of the steel is estimated as 200Gpa and the mass density is 7850kg/m’ . The

dynamic tests are conducted to obtain the vibration characteristics of the frame structure. A
modal hammer with a rubber tip is used to generate the impact excitation to this frame.
Acceleration responses in the lateral direction of all the floors under the hamper impact are
measured. The sampling rate is set as 1024 Hz and the cut-off frequency range for the

band-pass filter is set from 1 Hz to 100 Hz for all the responses.

Figure 2-17 A steel frame model in the laboratory.
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2.5.1 Initial finite element model

To identify the structural damage accurately, the modelling errors ought to be minimized
through the initial model updating and the intact finite element model with updated parameters
will be taken as the baseline for the damage identification. This procedure can also be
considered as an inverse problem to adjust the parameters to be updated by minimizing the
dynamic responses between the analytical model and the experimental tests (Ding et al., 2016).
In this paper, the discrepancy between the measured frequencies and mode shapes and the
calculated ones from the initial finite element model is used to build the objective function,

which is given as below
g | a) rea/ (DCT (I)real )

_—073 <12 2.14
S®)=2 SO T el (2.14)

where @’ and ®; represent the natural frequencies and mode shapes from the analytical

finite element model; B denotes the parameter vector to be updated; @ and ®’ denote

the measured frequency and mode shape values. In the model updating process, the updated
parameters are the elemental stiffness parameters. The measured eight frequencies and mode
shapes in the lateral direction are employed as input. The proposed C-TSA is used to optimize
the objective function, and the natural frequencies before and after updating are shown in Table

2-8.

Table 2-8 Measured and analytical natural frequencies of the experimental model before and after

updating
Measured Before updating After updating After updating
Mode
(Hz)  Analytical (Hz) Error (%) Analytical (Hz) Error (%) Analytical(Hz) Error(%)
1 4.645 4.586 1.2602 4.645 0.0003 4.636 0.19
2 13.705 13.603 0.7428 13.705 0.0024 13.714 0.06
3 22.554 22.157 1.7615 22.552 0.0077 22.558 0.02
4 30.695 29.956 2.4086 30.698 0.0097 30.776 0.26
5 38.241 36.735 3.9393 38.239 0.0064 38.225 0.04
6 44.434 42.262 4.8871 44.434 0.0003 44.422 0.03
7 48.826 46.351 5.0686 48.828 0.0046 48.712 0.23
8§ 52306 48.861 6.5853 52302 0.0078 52.161 0.28
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Furthermore, it also compares the updating results acquired by the first-order sensitivity
method (Pathirage et al., 2018). The maximum error of the initial model is up to 6.5853%, and
it is only 0.0097% after updating by the C-TSA in contrast to 0.28% by using the sensitivity
method. This demonstrates the advantages of C-TSA to deal with modal updating problem,
since the accuracy of the finite element model has been significantly improved. This baseline

model is used in the subsequent damage identification analysis.

2.5.2 Damage identified results

Damages are introduced by reducing the cross sections of specific columns of the frame
structure. Two damage cases, namely, Case 1 and Case 2, are defined in this structure. For Case
1, a single damage is introduced, which is introduced with a 20% reduction of the equivalent
stiffness of the 2™ floor. For Case 2, multiple damages are considered, that is, besides the
damage in Case 1, another damage is introduced with 10% stiffness reduction in the 7% floor.
Figure 2-18 shows the details of the introduced damages in these two levels. The first eight
natural frequencies and mode shapes in the lateral direction are used for structural damage
identification by using TSA and C-TSA. The parameter settings are the same as the numerical
simulations. In addition, ANN is used to identify the damages for comparison. For generating
the training samples, in single element damage cases, the stiffness parameter of each damaged
element varies from 1, 0.99, 0.98... to 0.7 while maintaining all other elements undamaged. 30
data is created for the scenario when a local damage is introduced in a specific element. With
eight elements in the finite element model, 240 single element damage cases are simulated. In
multiple element damage cases, the stiffness parameters for two random elements vary from 1,
0.99, 0.98, ..., to 0.7 while keeping the other elements undamaged, thus a total of 25200
multiple element damage scenarios are simulated. The input vector contains eight frequencies
and 8x8 mode shape values, namely, 72 values in total. The final output vector has 8
elemental stiffness parameters.

Figure 2-19 shows the damage identification results for Cases 1 and 2. It is observed that
the results from the proposed C-TSA are very close to the exact values with less and smaller
false identifications. For Case 1, the relative errors in the identified damage extents of the 2™
level stiffness from ANN, TSA and the C-TSA are 5.80%, 2.17% and 0.42%, respectively. For

Case 2, C-TSA also provides the best results. The relative errors in identified damage of the 2
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and 7% floors are 4.89% and 4.34% by using ANN, 2.96% and 3.04% by TSA, and 0.58% and
1.08% by C-TSA. These experimental studies and results demonstrate that the proposed C-TSA
can well identify the preset structural damages in the experimental model with testing data,

which naturally include environmental noise and modeling uncertainties.

Figure 2-18 Introduced damages in the frame model;

(a) Introduced damage at the 2nd floor; (b) Introduced damage at the 7th floor.
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Figure 2-19 Identified damage results in the experimental tests; (a) Case 1; (b) Case 2.

2.6 Conclusions
A new type of swarm intelligence algorithm named TSA is presented for structural
damage identification. To balance the algorithm’s exploration and exploitation ability further,

the K-means clustering is introduced before the seeds search phase. Benchmark functions and a
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truss structure are utilized to investigate the accuracy and efficiency of the proposed approach
in the numerical studies. Experimental studies are carried out on a shear type steel frame
structure for further verification of the performance of the proposed approach. Some
conclusions can be given as below:

e  The proposed C-TSA is more efficient to deal with the benchmark test functions. The
results show an improved performance and global optimization ability compared with the latest
algorithms;

e Results in the numerical studies demonstrate that the proposed approach converges faster,
and it is more robust to obtain good identification results with small variations in the parameter
estimation across many damage cases. Uncertainties in the modelling and measurement noise
are taken into account. The performance of the proposed approach is not sensitive to the
measurement noise. When the modeling uncertainty is considered, C-TSA can still provide a
good damage identification of structures. In contrast, when modeling uncertainty exists, TSA
generates some false structural damage identifications.

e In the modal updating process for a real frame structure, it can be found the C-TSA also
has superb advantages compared with the traditional sensitivity method.

o Experimental studies demonstrate that C-TSA can obtain better identification results,
compared with the standard TSA and ANN.

e Results in the numerical and experimental studies demonstrate that C-TSA is a promising
tool to perform structural damage identifications with data consisting of modelling errors and

measurement noises.
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CHAPTER 3 NONLINEAR HYSTERETIC PARAMETER IDENTIFICATION
USING AN IMPROVED TREE SEEDS ALGORITHM

ABSTRACT?

The tree seeds algorithm (TSA) is a new type of heuristic algorithms based on the
simulation of trees propagation. It has been applied to solve continuous optimization problems
effectively and efficiently. This paper proposes an improved TSA, termed as I-TSA, to solve
the nonlinear hysteretic parameter identification problem with three typical hysteretic models,
namely Bouc-Wen model, bilinear model with kinematic hardening and bilinear model with
equal yielding force. In order to enhance the capability of the proposed approach to search for
the best optimization results, the Lévy search mechanism and a new updating equation are
introduced to improve the original TSA. Numerical studies on several mathematical benchmark
test functions, a single degree-of-freedom system and a multi degree-of-freedom system are
conducted to investigate the accuracy and performance of the proposed approach. The
identification results are compared with those obtained from several existing widely used
heuristic algorithms and the enhanced sensitivity method to demonstrate the improvement and

superiority of the proposed approach.

3.1 Introduction

Nonlinear hysteretic effect has been observed in many physical systems, i.e. mechanical
systems with nonlinear joints, structural dampers, seismic isolation systems and friction models
(Katsaras et al., 2018; Berger & Krousgrill, 2002; Wang & Xin, 2015; Wang et al., 2016).
Many mathematical models, such as Preisach, Ischlinskii, Bouc-Wen and bilinear models, have
been used to describe the nonlinear hysteretic behavior of civil and mechanical systems. It is
noted that the nonlinear hysteretic behavior usually has the memory function since its
instantaneous input depends on its past history. Many conventional system identification
methods may fail to solve the nonlinear hysteretic parameters identification problem due to
their inherent non-linearity and memory nature, therefore it is essential to conduct researches

on this kind of inverse problem. Many mathematical models, such as Preisach, Ischlinskii,

2This chaper was published in Swarm and Evolutionary Computation with the full bibliographic citation
as follows:Ding, Z., Li, J., Hao, H., & Lu, Z. (2019). Nonlinear hysteretic parameter identification using
an improved tree-seed algorithm. Swarm and Evolutionary —Computation, 46, 69-83.
https://doi.org/10.1016/j.swevo0.2019.02.006.
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Bouc-Wen and bilinear models, have been used to describe the nonlinear hysteretic behavior of
civil and mechanical systems. It is noted that the nonlinear hysteretic behavior usually has the
memory function since its instantaneous input depends on its past history. Many conventional
system identification methods may fail to solve the nonlinear hysteretic parameters
identification problem due to their inherent non-linearity and memory nature, therefore it is
essential to conduct researches on this kind of inverse problems (Lu et al., 2017;
Charalampakis & Dimou, 2010).

Two main categories of existing methods for the nonlinear hysteretic parameter
identification can be summarized from the literature. The first category is to formulate it as a
discrete state identification problem, which can be solved by using methods like Kalman filter
and wavelet analysis techniques. Wu and Smyth (2008) proposed combining the extended
Kalman filter and unscented transformation to estimate the nonlinear parameters. Khellat (2009)
introduced the multi-wavelet basis function first, and then the problem can be converted as a
time invariant system estimation problem which can be tackled by the optimal control method.
Chang and Shi (2010) conducted the parameter identification of Bouc-Wen hysteretic systems
via wavelet multiresolution analysis. More recently, Calabrese et al. (2018) used an adaptive
constrained unscented Kalman filter to conduct the identification of real-time nonlinear
structural systems. Wang and Ding (2017) presented a filtering based multi-innovation gradient
estimation algorithm and applied to the nonlinear dynamical system identification. The
above-mentioned studies acquired relatively good results, however, a high sampling rate is
necessary since the discrete state equations shall be accurate enough to approximate the
original differential equations.

The second category is to formulate the hysteretic parameter identification problem as an
inverse problem through defining objective functions relevant to the systematic parameters,
which can be solved with optimization techniques. The objective functions are usually defined
as minimizing the difference between the measured and analytical data, which can be the
modal information and/or the weighted time domain responses (Li & Hao, 2016). Ni et al.
(1998) used the Levenberg-Marquardt algorithm integrated with the frequency-domain
displacement data from periodic vibration tests to identify parameters of friction-type isolators.
However, acquiring frequency-domain data for a nonlinear system is not as straightforward as a

linear one, which requires a large amount of sample data. In contrast, the time-domain data is
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much easier to be accessed. Therefore, various techniques have been developed by formulating
the time domain responses in the objective functions. Loh and Chung (1993) proposed a
three-stage scheme to solve the nonlinear parameter estimation problem by using acceleration
responses. Yar and Hammond (1987) formulated the objective function based on the input force
and output acceleration data, and then utilized Guass-Newton method to identify these
nonlinear parameters. Sues et al. (1988) and Roberts and Sadeghi (1990) used the restoring
force data to deal with such identification problems. More recently, Waubke and Kassess (2016)
proposed a Gaussian closure technique based on Kolmogorov equations and applied it to solve
the Bouc-wen model with white noise excitation. A nonlinear state-space approach (2017) was
proposed to tackle the hysteresis identification problem. Lu et al. (2017) proposed an enhanced
response sensitivity approach to solve the nonlinear hysteretic parameters identification
problem and obtained good parameter estimation results with accelerations.

Nevertheless, when using gradient-based methods (Lu et al., 2017; Los & Chung, 1993;
Yar & Hammond, 1987; Sues et al., 1988; Roberts & Sadeghi, 1990; Waubke &Kassess, 2016;
Noel et al., 2017) for solving this identification problem, good initial values and reliable
sensitivity gradient calculations are required. In addition, difficulties will amplify when
utilizing these methods for the identification of large systems with limited available
measurement data. Heuristic algorithms that could overcome these shortcomings have gained
significant attention.

Garg et al. (2016) used the evolutionary algorithm (EA) to solve identifying the
characteristics problems of bone drilling operations based on three different output models.
Garg et al. (2017) also utilized Genetic programming (GP) to determine wilting point for green
infrastructure. Extending the applications to the nonlinear parameter identification problem,
Charalampakis and Koumousis (2008) adopted the sawtooth Genetic Algorithm (GA)
combined with a new mutation operator to solve identification problem of a steel cantilever
beam with Bouc-Wen model. Later, Charalampakis and Dimou (2010) employed two variants
of the Particle Swarm Optimization (PSO) algorithm for the identification of Bouc-Wen
hysteretic systems. Ortiz et al. (2013) used the discrepancy between the calculated and
measured displacements of a nonlinear system with Bouc-Wen model as the objective function
and then employed a fast multi-objective GA to identify the parameters. Sun et al. (2013) used

the modified Artificial Bee Colony (ABC) algorithm to identify the parameters of nonlinear
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systems with Bouc-Wen models. Besides, some other heuristic algorithms like Firefly
Algorithm (FA) (Zaman & Sikder, 2015), Charged System Search (CSS) optimization
(Talatahari et al., 2012) and Differential Evolutionary (DE) algorithm (Quaranta et al., 2014)
have also been employed to solve such identification problem. Recently, Brewick et al. (2016)
utilized Volterra/Wiener Neural Network (VWNN) to conduct probabilistic identification of
nonlinear hysteric models. Shu and Li (2017) utilized a modified version of GA, in which the
real-integer hybrid coding with adaptive crossover and mutation rates were used, to conduct the
parametric identification of Bouc-Wen models. Ben Abdessalem et al. (2018) used sequential
Monte-Carlo and Bayesian inference to estimate the nonlinear structural parameters. Nguyen et
al. (2018) introduced a neural differential evolution identification approach to perform the
nonlinear systems identification. However, when utilizing these heuristic algorithms to perform
the identification of nonlinear systems, several challenges still remain, i.e., (a) Significant
computational demand and time are required. For example, the maximum iteration step of the
improved PSO algorithm is defined up to 5,000 (Charalampakis & Dimou, 2010); (b) The slow
convergence speed or trapping in the local optima. When the algorithms are not able to balance
their exploration and exploitation ability well, they easily encounter the problem of slow
convergence or acquiring some local optimal values, especially when dealing with the complex
nonlinear problem; (c) The robustness against the measurement noise effect. The accuracy of
identification results may be greatly affected when the measured data are smeared with
significant noise and uncertain effect. To this end, it is important to develop and apply new
algorithms for nonlinear system identification to improve the efficiency and robustness.
Recently, a new heuristic algorithm called as Tree Seeds algorithm (TSA) has been
proposed and proven to be more effective and efficient when dealing with the low-dimensional
continuous optimization problems (Kiran, 2015). The most attractive feature of this algorithm
is its way of producing new solution, since it can generate more offspring instead of
one-dimensional perturbation compared with other traditional heuristic algorithms. Based on
this characteristic, TSA has achieved a better performance to search for the global optima in
some benchmark functions, particularly when dealing with the uniform functions (i.e. Sphere
function). Nevertheless, it should be noted that TSA may also face the slow convergence issue
or stuck with the local optima like other heuristic algorithms. This is a paradox behind these

algorithms. When an algorithm more focuses on the exploitation (local search), the solution
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will be likely trapped in the local optima. However when an algorithm concentrates more on
the exploration (global search), it may suffer the slow convergence problem. Therefore, only
when the exploration and exploitation abilities are balanced well, the algorithm can achieve a
strong performance in optimization accuracy as well as the efficiency. To address this problem,
this paper proposes an improved TSA, named as [-TSA, for the nonlinear hysteretic parameter
identification. An improved framework integrated with the Lévy flight search mechanism and a
new updating equation for every colony individual are developed to form the I-TSA.
Numerical investigations on mathematical benchmark test functions and two nonlinear
hysteretic systems are conducted to verify the accuracy and efficiency of the proposed
approach. The identification results are compared with those from the enhanced sensitivity
method and several existing heuristic algorithms to demonstrate the improvement and
superiority of the proposed approach.

The rest of this paper is organized as follows. Section 2 describes the problem formulation
for nonlinear hysteretic system identification and reviews the nonlinear hysteretic models, such
as Bouc-Wen model and two bilinear models. Section 3 briefly presents the original TSA and
describes the proposed I-TSA in detail with specific modifications. Section 4 mainly
demonstrates the accuracy and efficiency of using the proposed algorithm in the benchmark
tests and numerical simulations on nonlinear system identification. The results are compared
with those obtained from the existing latest methods to demonstrate the improvement and

superiority of the developed algorithm. Finally, conclusions will be drawn in Section 5.

3.2 Nonlinear Hysteretic Models and Parameter Identification
3.2.1 Nonlinear hysteretic models

This section briefly reviews the widely used Bouc-Wen hysteretic model and two kinds of
bi-linear models with kinematic hardening and equal yielding force, respectively. The
hysteretic behavior describes the memory-based relationship between the displacement u and

the restoring force r, which can be generally defined as
7= f(r,u,ii,p) 3.1)
where f () is the nonlinear function representing the hysteretic behavior, and p denotes the

effective model parameters. Bouc-Wen model is a versatile representation (Ismail et al., 2009;
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Brewick & Masri, 2016) which can be used to simulate various nonlinear hysteretic systems,

i.e. dampers, nonlinear joints and isolation devices. It can be described as

f=%pw—uu%rvrwm+yvrun (32)

where 7, 4,0, 5,y and n are the design parameters to represent the nonlinear hysteretic

behavior. Specifically, the two parameters 7 and v are respectively controlling the
degrading and pinching behavior (Wu & Smyth, 2008), and could be defined as unity without
loss of generality. The exponential coefficient #n 1is usually set as #>1 in order to meet the

requirement of the thermodynamic admissibility (Erlicher & Point, 2004) requiring| y |< # and

A >0 . To simplify Eq. (2) and build up the equivalence between the design and effective

parameters, a vector P, is defined as

A v v ’
PBW=[p1:_apz:_ﬂap3=_7/7p4=n] (33)
n n n

Besides, the definition domain for the vector is given as below

pep” ={peR :p>0,p,|<p,p, 21} (3.4

The first bilinear model with kinematic hardening (Katsaras et al., 2018) is described as
k+k k -k,

=

sgn((r —k,u)sgn(u) — F,) Ju (3.5)

where k, and k, are the primal and degraded stiffness of the model, respectively, F, is the

0

yielding force with zero displacement and sgn(-) represents the sign function as follows

-1, ifx<0

sgn(x):{1 x>0 (3.6)

The simplified form of this bilinear model can be rewritten as
F=[p +p,— psgn((r = pu)sgn(i) - p,)lu (3.7
with
A A | (8)

The parameters shall be in the following domain for this bilinear model

pep” ={peR’ :p >0,p,>0,p, >0} (3.9
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The second bilinear model with equal yielding force (Yar & Hammond, 1987) can be

expressed as

L ;kz _k ;kz sgn(rsgn(ii) — F )i (3.10)

where k and k, represent the stiffness parameters before and after yielding, and F,

denotes the yielding force. Likewise, it can rewritten as

r=[p, — p,sgn(rsgn(u) - p,)lu (3.11)
with
k +k k —k .
P,=[p = 12 Lp, = 12 t,p.=F] (3.12)

The parameters shall be in the following domain in this case

pep”={peR’ :p 2p,p, >0,p >0} (3.13)

With the presented three nonlinear hysteretic models, a single degree-of-freedom (SDOF)

system as shown in Figure 1 is taken as an example to demonstrate the dynamic response

calculation of a nonlinear system. The equation of motion of the nonlinear system considering
the hysteretic models can be expressed as (Charalampakis & Dimou, 2010)

mii + cu + ku+r =F(¢)

;= f(r,u,i,p) (3.14)
u(0) =uy,u(0)=u,,r(0)=r,

where u is the displacement; u,,u, and rp are respectively the initial displacement, velocity

and restoring force of the nonlinear system; and m ,c, k and F denote the mass, damping,

stiffness and excitation respectively. It should be noted that the restoring force » can be
obtained based on any of the abovementioned three hysteretic models, such as Egs. (5), (7) and
(10). The Runge-Kutta method (Cash & Karp, 1990) is used to solve Eq. (14) to obtain the
dynamic responses. Likewise, the equation of motion of a nonlinear multi degree-of-freedom
(MDOF) can be built by defining a connection matrix 7 for those hysteretic components (Lu et

al., 2017).

3.2.2 Nonlinear system identification formulation
Nonlinear system identification with hysteretic models can be formulated as an

optimization problem with a suitable objective function relevant to the structural parameters,
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for instance, the error between the measured and calculated response data (Lu et al., 2017; Sun
et al., 2013). Optimization techniques can then be used to identify the system parameters by

minimizing the objective function.

In this study, F'(f) and u(¢) are defined as two vectors containing the input and the

output data, respectively; t=1¢,¢,,...,¢, denotes the time instant series and u(¢,)

A

represents the response at the time instant ¢, . 0= {é 0, . 6 .+ 1s defined as a vector of

structural parameters that could be stiffness, damping ratio, mass density or nonlinear hysteretic

parameters. The dynamic response #(#,) at the time instant #, can be expressed as

i) = £(8.1,) (3.15)

The dynamic response can be solved by using the Runge-Kutta method based on the

equation of motion of the nonlinear system, and the difference between the calculated and

measured responses can be obtained. The identification problem has been formulated as

identifying the optimal parameters, which will minimize the difference between the measured
and analytical responses as small as possible. The objective function is defined as follow

Mres  ltime

40 =ZZ(ﬁ,(rk)—u,.(rk» (@, () —u,(t,)) (3.16a)
X={0cR 0™ <0 <0™ Yje{l2,.n} (3.16b)

where 7 is the number of the available measurements that can be used for updating, which

depends on the number of sensors available in the test; n,_ is the number of sample points in

each measured response. Eq. (3.16b) defines the lower and upper bounds of the parameters

domain. 63_/ is defined as the jth parameter to be identified with the upper and lower bounds
0™ and 6™, respectively; n represents the total number of the parameters to be optimized.

Through Egs. (3.15) and (3.16), the identification problem is mathematically formulated as a
constrained nonlinear optimization problem (Sun et al., 2013). Generally the objective function
may have multiple local minimum. In this case, the traditional optimization techniques could
be stuck with the local minimum, which may result in the poor identification results. Therefore,
it is necessary to investigate and develop robust and powerful algorithms, which could deal

with the nonlinear identification problem well.
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3.3 Improved Tree Seeds Algorithm (I-TSA)
3.3.1 Original TSA

TSA is a heuristic algorithm and has been proposed based on the natural phenomenon of
trees propagation (Kiran, 2015). In reality, trees usually spread to other places through their
seeds. These seeds will grow the new trees over time. In the algorithm, these places for trees
and seeds can be considered as searching spaces for optimization problems. The specific
locations of trees and seeds are regarded as feasible solutions. In fact, the core of this algorithm
is the seeds searching since it will update the new feasible solution in this phase, which

provides two search equations for this process given as

S, =T +a,x(B -T,) (3.17)

S =T +a,x(I,~T) (3.18)
where S, ; isthe jth dimensionofthe zth seed that would be generated by the ith tree.

T. . isthe jth dimension of the ith tree, B ; isthe jth dimension of best-so-far tree

LJ

location, T, ; isthe jth dimension of the rth tree randomly picked up from the colony

size, ¢, ; is uniformly distributed in the range of [—L1]. The seeds number can be usually

determined as 10% - 25% of the colony size. The exact number of the seed generation is
random in TSA. As mentioned before, it is necessary for a heuristic algorithm to define a
proper balance between the global and local searching performances. Based on the search
equation as shown in Eq. (3.17), a new candidate is produced by the old solution towards the
best-so-far solution in the colony, which enhances the algorithm’s local searching ability to

some extent. In contrast, from observing Eq. (3.18), a new candidate is created by moving the

old solution towards a randomly chosen one in population. Meanwhile, the coefficient «;, ; is

also a uniform random number, therefore Eq. (3.18) has a strong global search ability (Gao et
al., 2015)
One of the key points of the algorithm is to decide whether Eq. (3.17) or Eq. (3.18) will be

chosen to create a new seed location. This process is controlled by a parameter called as search

tendency (ST) within the range of [0, 1]. Selecting the best equation for the updating relies on

comparing a uniform random number and ST. If the random number is larger than ST, Eq.
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(3.17) is chosen as the update equation. Otherwise Eq. (3.18) will be used. Therefore, for every
individual, a higher ST value makes it have a higher chance to exploitation. This is the reason

why the exploration and exploitation capacities of the TSA is controlled by ST parameters.

Initialize colony
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function values
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Figure 3-1 The flowchart of the TSA
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When applying TSA, the initial tree locations, namely the possible solutions for the

optimization problem, are produced as

T,=L,, +n,x(H,  ~L,.) (3.19)

nnnnnn

where L ;.min 18 the lower bound of the search space and H . is the upper bound, 7; .

n J,max i,j

is a random number produced for every dimension and location, which is in the range of [0, 1].

The flowchart of TSA is shown in Figure 3-1.

3.3.2 Proposed modifications

In this section, I-TSA is presented and the motivation behind this development is
described. The Lévy search mechanism and a new updating equation that are used in [I-TSA
will be described. As mentioned in Section 3.2.2, the objective function in complex nonlinear
problems is difficult to deal with due to its multimodel feature. To make the TSA more
powerful and balance its exploration (global search) and exploitation (local search) capacities,
two modifications are made. From observing the seeds search equation as shown in Eq. (3.17),
TSA conducts its exploitation just around the current best solution, which may not make the
full use of the information hidden in the other individuals, leading to a premature convergence
in the multimodel cases. Unlike other heuristic algorithm, i.e. Artificial Bee Colony (ABC)
(Karaboga, 2008; Sun et al., 2013), TSA is not equipped with the ‘Scout bee phase’, which is a
negative feedback into the ABC. Due to this mechanism, ABC has an opportunity to discard the
best solution trapped into the local optimal and cease the evolution, which is beneficial for
escaping from local optima. Based on this motivation, a similar framework is introduced into

the original TSA to improve the optimization performance.

Modification 1: Lévy flight mechanism

Lévy flight has a random moving direction with its step size following the power-law
distribution. This turns out to be a quite beneficial way to escape from local minimum for
optimization algorithms. It has been successfully applied in Cuckoo Search algorithm (Yang &
Deh, 2009; Soneji & Sanghvi, 2014), Fruit algorithm (FA) (Miticet et al., 2015) for greatly
enhancing their optimization performances. As shown in Eq. (3.17), the search in the original

TSA is centered as the best solution ( B ) in the current iteration. If the best-so-far solution in
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every cycle traps in the local optima, it will significantly affect the whole optimization process.
Based on this motivation, the Lévy flight is applied for searching the best-so-far solution of
every iteration. It will launch several random searches around the best solution in every
iteration, which can be viewed as a good way to escape from the local optima (Sharma et al.,
2016; Ding et al., 2016).

Aforementioned, the Lévy flight is actually a random walk where its steps are determined
by the step lengths, which follow a certain probability distribution. The random step lengths s

with the power-law distribution is given as

L(s)~s|"”,(0<B<2) (3.20)
where £(0< f<2) denotes an index, and s denotes the step length.

In this paper, similar with Refs. (Sharma et al., 2016; Ding et al., 2016), the Mantegna
algorithm for a symmetric Lévy distribution is used to create random sizes. Herein, ‘symmetric’
means that the produced size may be positive or negative. Based on a Mantegna framework,

the step length s can be calculated as

(0]
§=— 3.21
NE 32D

where ® and v follow normal distributions and their expressions can be given as below

w~N(0,67), v~N(0,07) (3.22)
with
. p
- :{ F(l+ﬁ)sm(7zﬁ/?) } R (3.23)
BTIA+p)y 227 )

inwhich I'(-) represents the Gamma function and can be calculated as
I+ p)= Pﬂe"dt (3.24)
Afterwards, Step size(t) that is generated based on the Lévy flight to make further

exploitation can be expressed as

Step _size(t)=F,xs(t)x(B(t)—-T (1)) (3.25)
where ¢ is the time instant of the Lévy flight, s(¢) is obtained from Eq. (3.21). B is the

best solution in the current iteration cycle and T is the randomly selected tree which is not
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the same as B in the colony, and F, is the scaling factor. In this study, it equals to 0.001 .

Herein, the final solution updating equation to search around the best solution can be expressed

as
B(t+1)=B(¢) + step _size(t)xU(0,1) (3.26)
where B is the best-so-far solution in the current cycle, which is going to be exploited.

U(0,1) is an uniform distribution within O and 1, step size(t)xU(0,1) is the actual random

flights for the solution, which is calculated from Lévy flight. After completing the Lévy flight
once, the ‘Greedy Selection Mechanism’ (Karaboga & Basturk, 2008)  will be applied and the
solution with a better fitness will replace the previous one. Generally speaking, this means that
the Lévy flight can assist the solution in escaping from the local optima and ceasing the

evolution process in most cases.

Modification 2: A new updating equation for seeds search
In the original TSA, after selecting the best-so-far solution, it will conduct the seeds search
by using Egs. (3.17) or (3.18). It can be observed from Eq. (3.18) that a new candidate is

created in the direction which is around the previous solution towards any individual chosen

from the colony, whereas the coefficient «,, is a uniform random number within [-11] .

Hence Eq. (3.18) can ensure the algorithm’s global search capacity because of randomly
selecting the individual solution (Gao et al., 2015). However, as shown in Eq. (3.17), it is clear
that when the original algorithm arrives at the seeds searching stage, its way of exploitation just
simply centers on the current best solution, which may not make full use of the colony
information and suffer the premature convergence problem to some extent.

To address this problem, a new updating equation (Cui et al., 2016) is introduced into the

seeds search stage. This equation is described as

S, =%(Tw +B)+a, (B, -T,) (3.27)
where 7, ; represents the Jjth  dimension of another different tree from the colony, ¢, ;
denotes a random number within [—1,1]. In this equation, the first term is good at exploitation

whereas the second one does well in exploration (Cui et al., 2016). To further improve the

convergence performance, a nonlinear factor is also utilized. The final updating equation used
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for the modified TSA is given as
1

S, =5 T, +B)+Aa, (B ~T,) (3.28)
A =1 (s (3.29)
miter

where ifer denotes the current iteration number and mifer is the maximum iteration

number. Egs. (3.28) and (3.29) are used for the I-TSA. When the number of iteration increases,

A, will decrease and the weight of the second term will reduce as well, which could make

I-TSA concentrate on exploitation in the later stage and thus enhance the convergence

performance of the algorithm. Figure 3-2 show the procedures of the developed I-TSA.

3.4 Numerical Studies

In this section, the accuracy and performance of using the proposed approach for
nonlinear system identification will be demonstrated with numerical simulations and compared
with several existing state-of-the-art methods. Since variables of nonlinear structures can
continuously distribute in the feasible solution space, this is generally considered as a
continuous function optimization problem. Firstly, comprehensive benchmark functions are
utilized to verify and compare the accuracy and performance of the proposed approach against
the latest methods. Secondly, a Single Degree Of Freedom (SDOF) system with three nonlinear
hysteretic models respectively is taken as an example to validate the proposed approach, and
compare the nonlinear model parameter identification results with the enhanced sensitivity
method as presented in one of the latest studies (Lu et al., 2017). Finally, the proposed approach
is applied to identify the system parameters of a seven-storey shear building. The system
parameters to be identified in this structure include the external forces, stiffness, damping, and
nonlinear parameters. The accuracy of identification results will be compared with several

existing heuristic algorithms to demonstrate the superiority of the proposed approach.
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Step 1. The initialization of the algorithm
Set the population size CS, ST parameter for the algorithm and the dimension of the
problem D
Decide the termination condition
Generate CS random tree locations with D dimension in the search space using
Eq. (3.19)
Evaluate the tree locations using objective function based on Eq. (3.16)
Select the best-so-far solution B

Step 2. Lévy search mechanism for the Best-so-far solution

Randomly choose an individual T, from the Colony

Initialize #=1,0, =1, and compute o, according to Eq. (3.23)

While (£<¢,, ) %% ¢, denotes the times of operating Lévy flight

Generate a new feasible solution according Eq. (3.20) to (3.25)

Calculate the objective value, marked as f(B(¢ +1))

Apply the greedy selection between f(B(¢)) and f(B(z+1))

End While
Step 3. Searching with seeds
For all trees
Decide the number of seeds produced for this tree.

For all dimensions

If (rand>ST)
Update this dimension using Eq. (3.28)
Else
Update this dimension using Eq. (3.18)
End If
End For

End For
Select the best seed and compare it with the tree. If the seed location is better than the
tree’s, the seed substitutes this tree.
End For

Step 4. Selection of Best Solution
Select the best solution in every iteration. If new best solution is better than the
previous best solution, new best solution substitutes the previous solution.

Step 5. Testing Termination condition and reporting
If termination condition is not met, go to Step 2. Otherwise, report the best solution.

Figure 3-2 The pseudo code of [-TSA.
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3.4.1 Benchmark Study

Independent contribution analysis of these two modifications

To justify the contributions of the proposed two modifications, the classical benchmark
functions (Gao et al., 2015; Karaboga & Basturk, 2008) have been used for the first benchmark
study. For the comparison purpose, the same maximum calculation time for the involved
algorithms, i.e. TSA, TSA with modification 1 (TSA with M1), TSA with modification 2 (TSA
with M2) and I-TSA are set as 60 seconds per run. The computer used for calculation is
deployed with Intel-I5-Core. The parameters are defined as CS =40, ST =0.45, and the
number of operating Lévy flight is set as 100. The used benchmark functions are listed in Table
3-1. 30 runs are conducted independently, and the mean values and standard deviation (Std) of
identification results are obtained. The results are shown in Table 3-2. It can be observed that
using TSA with M1 and TSA with M2 can improve the identification results over the original
TSA. However better identification results with smaller errors can be obtained with I-TSA.
Figure 3-3 shows the convergence processes of using different algorithms to optimize
Griewank and Rastrigin functions. It is noted that for optimizing the Griewank function, the
main improvement contribution comes from TSA with M2, which is beneficial to improve the
convergence performance. When tackling the Rastrigin function, TSA with M1 plays a more
significant role in escaping the local minimal. The results in Table 3-2 and Figure 3-3
demonstrate that both the modifications can be useful for improving the performance of TSA
independently and the proposed I-TSA can provide the best identification results for most of

benchmark functions.

Table 3-1 Classical benchmark functions employed for tests.

Function Range Dimension Type
Sphere [-100, 100] 30 Uni-modal, Separable
Schaffer [-100, 100] 5 Multi-modal, Non-separable
Ackley [-32,32] 30 Multi-modal, Non-separable
Rastrigin [-5.12,5.12] 30 Multi-modal, Separable
Rosenbrock [-30,30] 15 Uni-modal, Non-separable
Griewank [-600, 600] 15 Multi-modal, Non-separable
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Figure 3-3 The iteration process of two benchmark functions: (a) Griewank; (b) Rastrigin.

Table 3-2 Classical benchmark tests results.

TSA TSA with M1 TSA with M2 I-TSA
Function
fame Mean Std Mean Std Mean Std Mean Std
Sphere 0 0 0 0 0 0 0 0
Schaffer ~ 3.12E-03 3.39E-14 7.76E-06 4.46E-15 1.82E-18 6.69E-18 0 0
Ackley 3.55E-15 0 3.13E-15 0 3.32E-15 0 3.13E-15 0
Rastrigin 85.56 9.36 0 0 13.37 5.57 0 0

Rosenbrock 5.18E-07 7.32E-07 3.88E-09 7.71E-09 4.65E-07 1.44E-07 1.32E-9 6.65E-9

Griewank  7.44E-03 1.66E-03 1.03E-05 2.19E-05 0 0 0 0

Note: The bold values denote the best identification results.

CEC benchmark tests

To verify the effectiveness of using I-TSA for the continuous function optimization, CEC
2014 benchmark functions (Liang et al., 2013) are used for tests. To compare with the results in
the references, all experiments are conducted on dimensions D=10 D=30 and D =50

for a maximum number of 10000 x D function evaluations. These CEC benchmarks involve
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Unimodal Functions ( F, ~ F, ), Simple Multimodel Functions ( F, ~ F,, ), Hybrid Functions

( F,, ~ F, ) and Composite Functions ( F,, ~ F, ), which can be used to well demonstrate the

capacity of the optimization algorithms. Several latest and powerful algorithms including the
Gbest-guided artificial bee colony algorithm (GABC) (Zhu & Kwong, 2010), 2011-version
Particle Swarm Optimization algorithm (SPSO) (Zambrano-Bigiarini et al., 2013), Global-best
Brain Storm Optimization algorithm (GBSO) (EI-Abd, 2017), and winner algorithm for CEC
2014---an Adaptive DE with Linear Population Size Reduction Mechanism (LSHADE)
(Tanabe & Fukunage, 2014) are employed for comparison in this benchmark study. Regarding
the parameters setting for I-TSA, CS =40, ST =0.45, and the number of the Lévy flight is
100. Tables 3-3 to 3-5 show the errors in the final optimization results from these algorithms
and the proposed approach for 10D, 30D and 50D, respectively.

Results demonstrate that no algorithm could outperform all the other competitors on all

the benchmark functions. For example, for the optimization results of 10D as shown in Table

3-3, GABC offers better optimization results on F,, F,, and F, ; GBSO performs well in

26 9

functions F, and F, . LSHADE is the best performer for 17 functions, i.e. F ~F,, F,,

12 1 3 6

F

17 2

F

18 2

Fy~F,

22

F,

24

F,, and F, . The proposed I-TSA provides the best

results on 10 functions, ie., F,, F,, F,, F,, F., F

13 15 16 2

F,, F,, F, and F, .Thisis

because LSHADE utilizes several advanced mechanisms that are not integrated in the proposed
I-TSA, including the success-history based adaption of its parameters, the use of an external
archive and the linear reduction of the population size (EI-Abd, 2017; Tanabe & Fukunage,
2014). All these techniques could be the promising future research directions to further enhance
the performance of the proposed I-TSA. Overall, even comparing with the state-of-the-art and
winner algorithms on CEC14 benchmark functions, the results from the proposed I-TSA still
demonstrates the superiority on a number of test functions, which lays the foundation for the

following nonlinear system identification
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Table 3-3 Performance of I-TSA on CEC14 Functions---Results of 10D.

Benchmark GABC SPSO GBSO LSHADE I-TSA
Function Mean std. Mean std. Mean std. Mean std. Mean std.
1 9.84E+04 7.41E+04 2.04E+04 1.08E+04 4.75E+04 4.85E+04 0.00E+00 0.00E+00 4.59E+04 1.76E+04
2 6.91E+01 1.32E+02 9.51E+02 1.06E+03 2.23E+03 2.15E+03 0.00E+00 0.00E+00 1.01E+03 7.93E+02
3 1.05E+02 1.08E+02 1.24E+03 7.08E+02 4.70E+02 7.70E+02 0.00E+00 0.00E+00 8.89E+01 7.06E+01
4 3.13E-03 4.18E-03 2.36E+01 1.61E+01 2.61E+01 1.49E+01 2.94E+01 1.26E+01 1.45E-03 1.18E-03
5 1.68E+01 7.35E+00 1.88E+01 5.11E+00 1.57E+01 8.32E+00 1.41E+01 8.76E+00 1.22E+01 7.68E-02
6 8.96E-01 4.99E-01 3.18E-01 6.19E-01 4.50E-01 8.71E-01 1.75E-02 1.25E-01 9.65E-02 7.33E-02
7 4.81E-03 6.78E-03 2.13E-02 1.76E-02 5.59E-02 2.93E-02 3.04E-03 6.51E-03 0.00E+00  0.00E+00
8 0.00E+00 0.00E+00 5.21E+00 2.32E+00 3.48E-02 1.61E-01 0.00E+00 0.00E+00 1.39E+00 1.71E+00
9 4.09E+00 1.37E+00 4.44E+00 2.10E+00 2.95E+00 1.21E+00 2.34E+00 8.40E-01 2.67E+00 1.20E+00
10 3.31E-02 3.46E-02 3.57E+02 1.81E+02 1.97E+00 2.40E+00 8.57E-03 2.17E-02 6.59E+01 5.50E+01
11 1.58E+02 1.06E+02 4.28E+02 2.76E+02 1.04E+02 8.01E+01 3.21E+01 3.83E+01 1.86E+02  2.36E+02
12 2.15E-01 6.48E-02 5.39E-01 1.59E-01 8.37E-03 1.37E-02 6.82E-02 1.92E-02 8.80E-03 4.69E-02
13 1.09E-01 1.83E-02 6.16E-02 2.72E-02 5.05E-02 2.12E-02 5.16E-02 1.51E-02 1.42E-02 0.00E+00
14 9.71E-02 2.42E-02 1.13E-01 5.30E-02 1.31E-01 6.04E-02 8.14E-02 2.55E-02 1.22E-01 5.02E-02
15 6.22E-01 1.25E-01 9.33E-01 1.97E-01 8.03E-01 2.54E-01 3.66E-01 6.92E-02 2.88E-01 1.50E-01
16 1.72E+00 3.48E-01 1.84E+00 4.35E-01 1.20E+00 5.79E-01 1.24E+00 3.03E-01 1.05E+00 5.28E-01
17 1.22E+05 1.02E+05 1.51E+03 1.51E+03 1.39E+03 1.66E+03 9.77E-01 1.08E+00 3.43E+03 3.03E+03
18 5.88E+02 5.42E+02 1.66E+03 2.63E+03 8.18E+03 6.48E+03 2.44E-01 3.14E-01 2.02E+00 1.66E-01
19 1.52E-01 6.33E-02 2.24E+00 5.71E-01 8.63E-01 3.31E-01 7.73E-02 6.40E-02 5.31E-02 6.44E-02
20 3.80E+02 5.84E+02 1.84E+02 2.48E+02 3.53E+02 8.12E+02 1.85E-01 1.80E-01 9.62E+01 2.25E+01
21 5.91E+03 5.89E+03 1.03E+03 1.06E+03 2.93E+02 3.18E+02 4.08E-01 3.09E-01 3.73E+01 5.38E+01
22 1.87E-01 1.18E-01 2.86E+01 7.29E+00 2.63E+01 4.49E+01 4.41E-02 2.82E-02 1.60E+01 1.03E+01
23 2.70E+02 1.22E+02 3.29E+02 0.00E+00 3.29E+02 2.30E-13 3.29E+02 2.87E-13 3.29E+02 3.93E-06
24 1.13E+02 2.71E+00 1.12E+02 4.32E+00 1.07E+02 3.99E+00 1.07E+02 2.28E+00 1.12E+02  2.12E+00
25 1.25E+02 4.75E+00 1.81E+02 2.74E+01 1.78E+02 3.17E+01 1.33E+02 4.04E+01 4.88E+01  2.56E+01
26 9.73E+01 1.56E+01 1.00E+02 2.56E-02 1.00E+02 1.97E-02 1.00E+02 1.63E-02 1.00E+02 2.89E-02
27 9.85E+01 1.58E+02 2.61E+02 1.49E+02 2.49E+02 1.14E+02 5.81E+01 1.34E+02 2.62E+02 1.76E+02
28 3.62E+02 5.84E+00 3.96E+02 5.39E+01 4.30E+02 6.51E+01 3.81E+02 3.17E+01 3.45E+02  1.04E+00
29 2.97E+02 4.02E+01 4.91E+02 1.39E+02 1.21E+05 4.11E+05 2.22E+02 4.43E-01 4.49E+02  2.21E+02
30 5.27E+02 6.75E+01 7.75E+02 3.02E+02 5.76E+02 1.16E+02 4.65E+02 1.33E+01 3.59E+02  5.91E+00

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017,

Tanabe & Fukunage, 2014).
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Table 3-4 Performance of I-TSA on CEC14 Functions---Results of 30D.

Benchmark GABC SPSO GBSO LSHADE I-TSA
Function Mean std. Mean std. Mean std. Mean std. Mean std.

1 4.95E+06 3.93E+06 2.74E+05 1.55E+05 8.38E+05 4.94E+05 0.00E+00 0.00E+00 5.42E+05  3.99E+05
2 4.70E+01 7.18E+01 7.48E+03 5.10E+03 8.55E+03 7.48E+03 0.00E+00 0.00E+00 3.91E+03  2.45E+03
3 5.61E+02 5.04E+02 4.51E+03 1.54E+03 2.22E+02 2.96E+02 0.00E+00 0.00E+00 1.59E+02 1.38E+01
4 3.94E+01 3.15E+01 2.39E+01 3.27E+01 6.15E+01 1.83E+01 0.00E+00 0.00E+00 2.05E+01 3.41E+01
5 2.02E+01 5.89E-02 2.07E+01 9.98E-02 2.03E+01 3.33E-01 2.01E+01 3.68E-02 2.01E+01 4.49E-02
6 1.30E+01 1.79E+00 1.21E+01 2.50E+00 9.84E-01 1.18E+00 1.38E-07 9.89E-07 3.79E-01 1.12E-01
7 1.81E-08 4.73E-08 1.06E-02 1.28E-02 9.17E-03 9.68E-03 0.00E+00 0.00E+00 0.00E+00  0.00E+00
8 1.14E-13 1.03E-28 4.35E+01 1.04E+01 1.70E-01 4.16E-01 0.00E+00 0.00E+00 1.67E+01 2.18E+00
9 5.38E+01 9.20E+00 4.66E+01 1.28E+01 2.31E+01 6.82E+00 6.78E+00 1.48E+00 4.96E+00  6.21E-01
10 8.86E-01 1.57E+00 2.68E+03 5.63E+02 3.80E+00 2.27E+00 1.63E-02 1.58E-02 1.70E+02  7.39E+01
11 1.70E+03 2.68E+02 3.59E+03 6.74E+02 4.37E+02 2.56E+02 1.23E+03 1.83E+02 1.15E+03 1.58E-12
12 1.90E-01 5.71E-02 1.39E+00 2.93E-01 1.86E-02 2.07E-02 1.61E-01 2.29E-02 2.59E-02 2.42E-02
13 2.08E-01 2.62E-02 1.88E-01 4.04E-02 1.57E-01 4.36E-02 1.24E-01 1.75E-22 2.32E-02 4.58E-03
14 1.82E-01 1.58E-02 2.21E-01 4.08E-02 2.21E-01 4.03E-02 2.42E-01 2.98E-02 2.08E-01 3.64E-02
15 4.69E+00 9.99E-01 6.92E+00 2.69E+00 3.38E+00 7.13E-01 2.15E+00 2.51E-01 1.51E+00  8.04E-02
16 9.16E+00 4.43E-01 1.10E+01 4.66E-01 8.66E+00 7.46E-01 8.50E+00 4.58E-01 8.11E+00 4.46E-01
17 2.03E+06 1.34E+06 2.12E+04 1.47E+04 7.28E+04 4.65E+04 1.88E+02 7.50E+01 1.12E+04 1.01E+04
18 5.24E+03 5.75E+03 1.44E+03 1.55E+03 2.39E+03 3.24E+03 5.91E+00 2.89E+00 3.52E+00 1.12E+00
19 7.09E+00 9.24E-01 1.36E+01 2.53E+00 4.72E+00 1.02E+00 3.68E+00 6.80E-01 2.36E+00 7.76E-01
20 5.56E+03 2.13E+03 8.33E+02 4.31E+02 8.80E+01 3.10E+01 3.08E+00 1.47E+00 1.31E+02 1.36E+02
21 2.44E+05 1.75E+05 2.01E+04 1.58E+04 2.32E+04 1.53E+04 8.68E+01 8.99E+01 2.65E+04  2.39E+04
22 2.39E+02 1.15E+02 2.79E+02 9.59E+01 2.24E+02 9.10E+01 2.76E+01 1.79E+01 3.03E+02  2.12E+01
23 3.16E+02 6.50E-01 3.15E+02 6.39E-05 3.15E+02 1.55E-04 3.15E+02 4.02E-13 3.15E+02 1.05E-03
24 2.19E+02 1.74E+01 2.34E+02 7.04E+00 2.00E+02 5.98E-02 2.24E+02 1.06E+00 2.32E+02  4.21E+00
25 2.08E+02 1.36E+00 2.14E+02 2.47E+00 2.03E+02 3.05E-01 2.03E+02 4.96E-02 8.87E+01 2.47E-01
26 1.00E+02 5.86E-02 1.27E+02 4.49E+01 1.00E+02 3.90E-02 1.00E+02 1.55E-02 1.00E+02 3.92E-02
27 4.08E+02 2.88E+00 6.09E+02 1.24E+02 3.96E+02 7.11E+01 3.00E+02 2.40E-13 5.09E+02  7.41E+01
28 8.40E+02 3.39E+01 1.23E+03 2.82E+02 7.94E+02 7.80E+01 8.40E+02 1.40E+01 9.80E+02  3.85E+01
29 1.18E+03 2.25E+02 3.08E+06 6.24E+06 1.71E+05 1.21E+06 7.17E+02 5.13E+00 1.18E+03  9.22E+02
30 3.02E+03 8.46E+02 5.84E+03 1.79E+03 2.03E+03 6.51E+02 1.25E+03 6.20E+02 1.05SE+03  6.0SE+02

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017
Tanabe & Fukunage, 2014).
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Table 3-5 Performance of I-TSA on CEC14 Functions---Results of 50D.

Benchmark GABC SPSO GBSO LSHADE I-TSA
Function Mean std. Mean std. Mean std. Mean std. Mean std.
1 1.10E+07 3.89E+06 7.92E+05 2.51E+05 2.22E+06 7.45E+05 1.24E+03 1.52E+03 9.35E+05  5.09E+05
2 6.74E+03 8.87E+03 7.77E+03 7.89E+03 9.26E+03 8.21E+03 0.00E+00 0.00E+00 5.88E+03  3.19E+03
3 6.72E+03 2.82E+03 1.17E+03 3.34E+02 1.59E+03 8.57E+02 0.00E+00 0.00E+00 3.54E+02  9.59E+01
4 6.34E+01 2.98E+01 7.76E+01 3.35E+01 9.66E+01 2.90E+00 5.89E+01 4.56E+01 4.21E+01  3.56E+01
5 2.01E+01 7.40E-02 2.09E+01 9.24E-02 2.09E+01 3.73E-01 2.02E+01 4.59E-02 2.12E+01 6.54E-02
6 2.74E+01 2.10E+00 3.06E+01 3.13E+00 2.08E+00 1.65E+00 2.64E-01 5.23E-01 1.94E+00  4.23E-01
7 2.56E-04 8.99E-04 6.55E-03 1.31E-02 3.04E-03 4.34E-03 0.00E+00 0.00E+00 0.00E+00  0.00E+00
8 2.20E-13 2.88E-14 1.14E+02 2.23E+01 1.47E+00 1.30E+00 2.58E-09 7.48E-09 3.35E+01 1.03E+01
9 1.23E+02 1.43E+01 1.28E+02 2.53E+01 4.76E+01 1.06E+01 1.14E+01 2.13E+00 5.87E+00  2.72E-01
10 9.62E-01 1.25E+00 5.92E+03 9.42E+02 6.76E+00 6.01E+00 1.22E-01 4.13E-02 1.09E+03  2.71E+02
11 3.98E+03 4.50E+02 6.95E+03 1.09E+03 1.58E+03 5.25E+02 3.22E+03 3.30E+02 8.02E+03  4.75E+03
12 1.84E-01 3.90E-02 2.15E+00 3.93E-01 1.80E-02 1.30E-02 2.19E-01 2.82E-02 5.01E-02 2.70E-02
13 2.65E-01 3.86E-02 3.48E-01 7.08E-02 2.56E-01 4.56E-02 1.60E-01 1.83E-02 3.62E-02 6.04E-03
14 2.19E-01 1.40E-02 2.87E-01 3.33E-02 2.36E-01 6.71E-02 2.97E-01 2.47E-02 2.12E-01 2.06E-02
15 1.22E+01 1.79E+00 2.56E+01 7.36E+00 6.36E+00 1.25E+00 5.15E+00 5.08E-01 4.43E+00  1.01E-01
16 1.73E+01 5.65E-01 2.04E+01 5.29E-01 1.71E+01 8.47E-01 1.69E+01 4.81E-01 2.14E+01 2.99E-01
17 3.11E+06 1.59E+06 3.72E+04 2.02E+04 1.89E+05 1.51E+05 1.40E+03 5.13E+02 3.66E+04  2.75E+04
18 2.19E+03 1.45E+03 1.86E+03 1.06E+03 1.51E+03 1.45E+03 9.73E+01 1.38E+01 5.68E+01  4.78E+00
19 1.84E+01 2.56E+00 5.51E+01 1.94E+01 1.15E+01 1.37E+00 8.30E+00 1.81E+00 1.01E+01  7.74E+00
20 2.71E+04 6.94E+03 8.25E+02 2.55E+02 1.84E+02 4.61E+01 1.39E+01 4.56E+00 3.75E+02  7.45E+02
21 1.84E+06 8.64E+05 4.64E+04 2.22E+04 1.44E+05 7.87E+04 5.15E+02 1.49E+02 3.64E+04  2.02E+04
22 6.80E+02 1.98E+02 7.57TE+02 2.50E+02 2.74E+02 1.40E+02 1.14E+02 7.50E+01 4.40E+02  2.97E+02
23 3.46E+02 2.28E+00 3.44E+02 3.59E-02 3.44E+02 1.60E-03 3.44E+02 4.44E-13 3.44E+02  2.34E-13
24 2.59E+02 2.49E+00 2.88E+02 6.81E+00 2.56E+02 2.51E+00 2.75E+02 6.62E-01 2.71E+02  4.27E+00
25 2.15E+02 1.64E+00 2.31E+02 4.46E+00 2.07E+02 8.45E-01 2.05E+02 3.65E-01 1.16E+02  9.50E-01
26 1.00E+02 7.85E-02 1.63E+02 4.89E+01 1.32E+02 4.68E+01 1.00E+02 7.85E-02 1.00E+02  5.35E-02
27 1.07E+03 1.83E+02 1.15E+03 1.22E+02 4.35E+02 5.76E+01 3.33E+02 3.03E+01 6.73E+02  2.48E+00
28 1.35E+03 1.33E+02 2.87E+03 7.01E+02 1.07E+03 7.14E+01 1.11E+03 2.91E+01 1.55E+03  8.74E-01
29 2.00E+03 6.43E+02 4.79E+07 7.40E+07 2.46E+03 6.22E+02 7.95E+02 2.40E+01 1.37E+03  2.56E+02
30 9.92E+03 7.28E+02 2.71E+04 5.73E+03 9.11E+03 6.40E+02 8.66E+03 4.13E+02 7.72E+03  4.01E+02

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017,

Tanabe & Fukunage, 2014).
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3.4.2 Nonlinear model parameter identification for a SDOF system

The first numerical example is a hysteretic Single Degree Of Freedom (SDOF)
system (Lu et al., 2017), which is used to verify the proposed approach in identifying
the nonlinear hysteretic parameters. The SDOF system is shown in Figure 3-4. The

physical parameters are defined as: mass m =1, stiffness k=1 and dampingc=0.2.

The external loading is defined as F(¢)=2cos(¢) , and the restoring force r is

calculated from three nonlinear hysteretic models with parameters listed in Table 3-6.
The initial displacement, velocity and restoring force of the system are all set as zero.

For the parameters setting, the colony size, the search tendency, the number of the Lévy

flight and the search range are defined as 40, 0.45, 100 and [0, 5], respectively. The

termination rule is set as the maximum evaluation time. For the nonlinear system
identification in this study, considering that 100 iterations are sufficient for the
proposed approach and the existing methods used for comparison, the computational
time based on 100 iterations is used as the maximum evaluation time for the
termination. Therefore 1335 seconds is used as the maximum function evaluation time

for the identification of this SDOF system.

stiffness: k

external load F(t)

damping: c mass:m I

®tj$

ANANANANAN

OHO)
LSS

Figure 3-4 A nonlinear SDOF system with hysteretic effect.

Case 1: identification of the Bouc-Wen nonlinear model parameters
The proposed I-TSA is applied to identify the parameters of the Bouc-Wen

nonlinear model. The objective is to identify the Bouc-Wen parameters

P(p,=2,p,=1,p,=0.5,p,=2) . To compare the accuracy of using the enhanced
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sensitivity method (Lu et al., 2017), the original TSA and the proposed approach, with
the same response data, namely 10s acceleration response with a sampling rate of
100Hz, are used. Figure 3-5 shows the evolutionary process of the objective function
values. It can be observed that the objective function value by using I-TSA converges
quickly to zero, however, the original TSA suffers the slow-convergence problem after
a few iterations. The final identification results in this case are shown in Table 3-6. It
shows that the proposed [-TSA can identify the Bouc-Wen nonlinear model parameters
exactly, but the maximum errors of using the enhanced sensitivity method and TSA are

0.04% and 0.10%, respectively.

Objective function value

\ . \ \ \
0 20 40 60 80 100 120
Iterations

Figure 3-5 The evolution process of the objective function in Case 1 (without noise).

When 10% white noise is added into the acceleration response, the evolution
processes of nonlinear parameter identification by using I-TSA are shown in Figure 3-6.
It can be observed that the updating process based on I-TSA is more stable and
converge quicker. It only takes around 48 iterations for the proposed approach to
converge to the true values, with a better performance than the original TSA. The final
results are also listed in Table 3-6. The maximum identification errors of using the
standard TSA and [-TSA are 2.97% and 0.88%, respectively. Figure 3-7 presents the
hysteresis loops calculated with true and identified nonlinear model parameters. It can
be seen that a very good agreement between these two curves is obtained, indicating

the nonlinear parameters are identified accurately.
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Figure 3-6 The evolution process of the nonlinear parameter identification in Case 1

with 10% noise effect by using I-TSA.

150 Calculated with true parameter values 1
) = =*= = Calculated with identified parameter values
P iyt N
1 - 1 ll -
/< v I
e / s I’ 1
3 = / L | y 4
o 05 / ;o /
< / 5oy /
! /
en / Fi /
£ / / / /
g o / / / 1
2 ! / ;
7] / /
I~ / / J
0.5 II II Il 4
/ / /
/ / /s
1 Il _—’/ ,4/’ b
_________ e
15 I I I I I
-3 2 1 0 1 2 3

Displacement u,

Figure 3-7 The true and identified hysteresis loop in Case 1 (with noise).

Case 2: identification of bilinear model with kinematic hardening considering noise

effect

A bi-linear model with Kinematic hardening is used for further verification. The
nonlinear model parameters are defined as P(p, =1,p, =2,p, =1). 10% white noise is

smeared into the 10s acceleration response, which will be used for identification. The
identification results for this case are listed in Table 3-6, and the maximum error of
using the I-TSA is only 0.53%, which is better than those acquired by using the
standard TSA (1.80%) and enhanced sensitivity method (0.89%). The simulated
response and calculated response with the identified parameters are shown in Figure
3-8. It is observed that a very good match is achieved.
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Simulated measured response
== Calculated response with identified parameters using I-TSA

Acceleration response in Kinematic hardening case

Time (s)
Figure 3-8 The simulated measured response and calculated response with

identified parameters in Case 2.

Case 3: identification of the bilinear model with the equal yielding force considering

noise

In this case, the bilinear model with the equal yielding force is used. Similar to

Case 2, The parameters of this bilinear model are defined as P(p, =3,p,=1Lp,=1).

10s acceleration response with a 10% white noise are used for identification. The
identified results of these parameters are shown in Table 3-6. It can be observed that
the maximum error of using the I-TSA is only 0.18%, however, the errors from the
standard TSA and enhanced sensitivity method are 0.67% and 0.49%, respectively. On
the other hand, a smaller standard deviation is obtained from I[-TSA than the original
TSA, even with a significant noise effect in the measurements.

Figure 3-9 shows the colony distributions at the initialization and 381 seconds.

Specifically, taking the identification of the first two variables as an example, the

global optima shall be at ( p,=3,p,=1). It is observed from Figure 3-9 that at the

initialization, the colonies from both the standard TSA and the proposed I-TSA are
randomly distributed in the feasible solution space. After 381 seconds, the individuals
from the I-TSA quickly converge to the true values. However when using TSA, the
variance in the generated populations and the distance to the true values are larger than
those from the proposed algorithm. This also well demonstrates that the convergence
performance of the proposed I-TSA is significantly improved, and an accurate
identification results can be obtained.
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Figure 3-9 The colony distributions at the initial time instant and 381 seconds:

(a) TSA; (b) I-TSA.

Table 3-6 Identified results for a SDOF system with different nonlinear models.

Enhanced sensitivity TSA I-TSA
Parameters True values
method Mean Std Mean Std
pl 2 1.9999 2.0002 0.0003 2.0000 0
p2 1 1.0001 0.9997 0.0002 1.0000 0
Case 1
p3 0.5 0.4998 0.4995 0.0017 0.5000 0
p4 2 2.0002 1.9991 0.0006 2.0000 0
Maximum error 0.04% 0.10% 0
pl 2 2.0559 2.0079 0.0159 1.9984 0.0065
Case 1
p2 1 1.0025 1.0011 0.0311 1.0022 0.0109
with 10%
. p3 0.5 0.5758 0.4902 0.0489 0.5061 0.0145
noise
p4 2 1.8598 1.9405 0.0063 2.0175 0.0176
Maximum error 16.60% 2.97% 0.88%
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Table 3-6 Identified results for a SDOF system with different nonlinear models (Continues)

pl 1 1.0070 1.0191 0.0093 1.0043 0.0042
Case 2 p2 2 1.9874 1.9641 0.0172 1.9895 0.0019
p3 1 1.0089 1.0130 0.0277 1.0053 0.0024

Maximum error 0.89% 1.80% 0.53%
pl 3 2.9935* 2.9982 0.0006 2.9998 0.0000
Case 3 p2 1 0.9962* 1.0067 0.0047 0.9982 0.0040
p3 1 1.0049* 1.0043 0.0053 1.0003 0.0019

Maximum error 0.49% 0.67% 0.18%

3.4.3 Nonlinear model parameter identification for a MDOF system

The above examples demonstrate that accurate identification results for a SDOF
system with three different nonlinear models can be obtained by using I-TSA, which
performs better than the original TSA and the enhanced sensitivity method. In this
section, the performance and accuracy of the proposed approach will be compared with
those of using several existing state-of-the-art heuristic algorithms for the nonlinear
model parameter identification of a MDOF system. Based on the same reason explained
at the beginning of Section 3.4.2, the maximum evaluation time is set as 7530 seconds
for the nonlinear parameter identification of this MDOF system.

A seven-storey shear building (Lu et al., 2017) with nonlinearities is built as
shown in Figure 2-10. Structural properties are defined as: mass of each storey m=1,
stiffness k=1 and the linear damping c¢=0.1. To simulate the seismic isolation (Yar
& Hammond, 1987), in this study, the bilinear hysteretic model with kinematic
hardening is introduced in the first floor. Following the force used in previous studies
(Lu et al., 2017), the external base excitation is assumed as a cosine function which is

given as

/)y .t<t,
Wt t) =11t <t<t, (2-30)

84).2( t=ty)

a, = Acos@- OVt 1)

A>t
where A is the amplitude and its value is 2, @ represents the frequency of the

external force and the value is 1, and v(#;¢,,¢7,) 1is a window function so that the

excitation mainly occurs during [z,f,] and in this example, it is assumed that
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t,=2,t, =6 . Figure 2-11 shows the hysteretic effect between the displacement and the

restoring force with kinematic hardening.
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Figure 3-10 A seven-storey shear building with nonlinear hysteretic effect.

It shall be noted that a more complex identification problem is defined with more
unknown parameters. The external force parameters, stiffness, damping and nonlinear
model parameters are included in the parameter vector to be identified, which increases
the difficulty of the identification problem, compared to existing studies only
considering nonlinear model parameters (Sun et al., 2013). It should be noted that the
parameters to be identified only include the amplitude A4 and frequency @ of the
external force, the parameters of the bilinear model with kinematic hardening, stiffness
and damping. Other parameters can also be identified similarly. To visualize the
parameter identification results clearly, the normalized damping and stiffness values

against the true values are presented. Therefore, the true objective parameter vector S

to be identified in this case includes S, =2 (amplitude for the external force), S, =1
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(frequency of the external force), §,=LS,=2,5,=1 (nonlinear modal parameters),

S, =LS, =1 (normalized stiffness and damping parameters). It should be noted that

6
these parameter values in this system are assumed, not based on the physical system
dimensions or material properties. This is fine to use this system to demonstrate the
effectiveness and performance of the proposed approach since the system parameters

such as stiffness and mass, can be normalized against their initial values.

Restoring force I,

. . . .
-1.5 -1 -0.5 0 0.5 1
Displacement u,

Figure 3-11 The hysteresis loop of a bilinear model in the shear building.

Case 4: Comparisons with existing heuristic algorithms

To compare the performance with other heuristic algorithms on the nonlinear
identification of MDOF systems, the modified artificial bee colony algorithm (MABC)
(Sun et al., 2013), differential evolutionary algorithm (DE) (Kyprianou et al., 2001),
Genetic programme (GP) algorithm (Garg et al., 2016) and standard TSA are used for
identification with the same data. For the setting of the common parameters, the colony
size is set as 40 and the evaluation time is set as 7,530 seconds per run. The search
range is defined as [0,5]. The acceleration responses from the 2"¢ to 5% floors with a
duration of 30s and a sampling rate of 100Hz are used for the identification.
Specifically, for TSA, ST is set as 0.45; for MABC, the parameter ‘/imit’ is set as 175
(Karaboga & Basturk, 2008). When using DE, the rand/bin/I operator is used to mutate,
and the mutation rate is defined as 0.8. For the GP, the crossover, mutation and

reproduction rate are 0.85, 0.1 and 0.05, respectively.

78



Objective function values

100 200 300

400 500

ITterations

600

700 800

Figure 3-12 Comparison of the evolutionary processes in objective function values

by using different approaches in Case 4.

Table 3-7 Comparisons between [-TSA and other heuristic algorithms on the identification of a

nonlinear seven-storey shear building.

True MABC DE GP TSA I-TSA
values
Mean Std Mean Std Mean Std Mean Std Mean Std

sl 2 2.0124 0.0078 1.9987 0.0141 2.0841 0.0033  2.0031 0.0008 2.0000 0
s2 1 1.0068 0.0024 1.0079 0.0084 1.0042 0.0047 1.0000 0.0002 1.0000 0
s3 1 1.1782 0.3267 1.2641 0.2455 1.1134  0.2231  1.0482 0.0328 1.0000 0
s4 2 2.2464 0.5962 23766 0.6645 2.1766 0.3798  1.9275 0.0241 2.0000 0
s5 1 1.1896 0.2782 1.3793 0.6732  1.1277 0.1109 1.0591 0.0132 1.0001 8.1E-05
s6 1 0.9998 0.0075 1.0045 0.0517 1.0001 0.0017  0.9982 0.0009 1.0000 0
s7 1 0.9997 0.0098 0.9988 0.0159 0.9998 0.0026  0.9999 0.0004 1.0000 0

Maximum error 18.96% 37.66% 12.77% 591% 0.01%

Figure 3-12 shows the evolutionary process of objective function values by using

the proposed approach and the above-mentioned existing methods within the same

evaluation time. It is clearly seen that the proposed algorithm achieves a very small

error at a magnitude of 10, with a much faster convergence speed than other methods.

This also indicates that good identification results can be obtained. In contrast, GP, DE

and MABC have been stuck with the local optima and the same situation can be

observed in the original TSA, which confirms that the TSA easily ceases evolution
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when facing more complex case, as mentioned in Section 3.3. When no noise effect is
considered in the “simulated” acceleration responses, the identification results from all
these different methods are listed in Table 3-7. It can be observed that errors in the
identification results of using MABC, DE and GP are a little significant. Using TSA
obtains a relatively good result with the maximum error equal to 5.91%. The obtained
maximum error from the proposed approach is only 0.01%, demonstrating again the
improvement in the identification accuracy of a complex nonlinear parameter

identification problem.
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Figure 3-13 The identified system parameters by using responses with 5% noise.
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Figure 3-14 The identified system parameters by using responses with 10% noise.
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To investigate the noise effect on the identification accuracy, two different noise
levels, namely, 5% and 10%, are added into the original response data and then used for
the identification. Since it has been demonstrated that I-TSA performs much better than
MABC, DE and GP, only the proposed algorithm is used to conduct identification with
noisy responses. Figure 3-13 presents the iteration process of the identified nonlinear
parameters with the noisy response including 5% white noise. It can be seen that only
after fifty iterations, all the parameters converge quickly to the preset true values and
the evolutionary curves are quite stable. This demonstrates the good robustness of the
proposed approach. Figure 3-14 shows the iteration process of the identified parameters
by using acceleration responses with 10% noise. It can be seen that the evolutionary
process is stable and the identified values converge quickly to the true values, although
a high level noise is included in the acceleration responses. As can be observed from
Table 3-8, the maximum errors in the identification of nonlinear parameters of 5% and
10% noise levels by using the proposed approach are 2.79% and 4.02%, respectively.
This well demonstrate the robustness and superiority of using I-TSA for nonlinear

system identification, even with noisy response data.

Table 3-8 Identification of a nonlinear seven-storey shear building

under different noise.

True Without noise 5% noise 10% noise
Parameters
values
Mean Std Mean Std Mean Std
sl 2 2.0000 0 2.0014 2.001E-06 2.0023 0.0030
s2 1 1.0000 0 1.0000 8.811E-07 1.0000 0.0001
s3 1 1.0000 0 0.9721 2.126E-04 0.9897 0.0113
s4 2 2.0000 0 2.0118 3.665E-04 2.0647 0.0129
s5 1 1.0001 8.11E-05 0.9923 2.076E-04 0.9598 0.0135
s6 1 1.0000 0 0.9998 3.921E-05 0.9974 0.0083
s7 1 1.0000 0 0.9999 2.812E-06 0.9996 0.0006
Maximum error 0.01% 2.79% 4.02%
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Case 5: identification of the nonlinear building model with different input data
Different input will be used to identify the nonlinear building model parameters
and investigate the performance. The restoring force, which can be measured by a
non-contacting capacitive probe and a force transducer in experimental tests (Yar &
Hammond, 1987), and displacement data of the first floor are used to conduct the
nonlinear system identification. Figure 3-15 shows the evolutionary processes of the

objective function by using acceleration responses from the 2" to 5% floors

i,,1i,1,,1s , and both the restoring force and displacement data of the first floor,

respectively. Overall, these two curves are converging to very small values quickly,
indicating good identification results are obtained. In addition, using both the
displacement and restoring force provides a quicker convergence speed with 85
iterations to reach the optimized results compared with 125 iterations by using
acceleration responses. Table 3-9 shows the identification results. Good identification

accuracy is achieved by using different input data, even with significant noise effect.

displacement and restoring force

o T acceleration responses

107} AN convergence 1

convergence . \ /
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Figure 3-15 Comparison of the evolutionary processes in objective function

values by using input data.
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Table 3-9 Comparisons on using different input data for nonlinear system identification by

using [-TSA.
True Without noise 5% noise 10% noise
Parameters
values Mean Std Mean Std Mean Std
sl 2 2.0000 0 1.9980 7.26E-06  2.0030  3.32E-07
s2 1 1.0000 0 1.0000 7.00E-07  1.0000  3.37E-07
s3 1 1.0000 0 1.0007 5.26E-06  0.9964  8.64E-07
s4 2 2.0000 0 1.9919 1.54E-07 19923  5.31E-06
s5 1 1.0001 2.92E-05 1.0016 7.20E-07  1.0004  2.89E-07
s6 1 1.0000 0 0.9980 1.23E-07  1.0059  1.19E-06
s7 1 1.0000 0 1.0003 9.30E-08  1.0009 1.31E-07
Maximum error 0.01% 0.40% 0.59%

3.5 Conclusions

This paper proposes a new heuristic algorithm, named I-TSA, for nonlinear model
parameter identification with three different hysteretic models. Two modifications,
namely, Lévy flight mechanism and a new updating equation, are added to modify the
standard TSA to improve the efficiency and capability for global optimization. The
accuracy and performance of the proposed approach are verified by conducting the
benchmark studies with benchmark test functions. The independent tests are conducted
to investigate the contribution from these two modifications. Numerical studies on a
nonlinear SDOF system and a nonlinear seven-storey shear building are conducted to
demonstrate the effectiveness and superiority of the proposed approach over several
existing methods. The noise effect on the identification accuracy is also investigated.
Through the above studies, the following conclusions can be drawn:

e Both modifications are useful to improve the performance of TSA, however,
the proposed I-TSA has the best performance in the optimizations of most benchmark
function tests.

e When tackling CEC14 benchmarks, even though the winner algorithm is
employed to conduct comparison, the proposed I-TSA still showcases its superiority on
some specific functions.

e For the identification of a nonlinear SDOF system, it has been demonstrated

that the proposed I-TSA can converge more quickly and obtain better identification
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results compared with the original TSA and enhanced sensitivity method.

e For the identification of a nonlinear seven-storey shear building, the results
demonstrate that the proposed approach has a good robustness even the responses used
for identification analysis contain significant noises, and a better performance than
several existing methods.

e The effectiveness of the proposed approach is independent of the type of input
data used to excite the structure.

e However, there are still some limitations, i.e., uncertainties effect in the
finite element modelling on the accuracy of using the proposed approach for
nonlinear system identification has not been well investigated. These will be

studied in the future.
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CHAPTER 4 STRUCTURAL DAMAGE IDENTIFICATION USING
IMPROVED JAYA ALGORITHM BASED ON SPARSE
REGULARIZATION AND BAYESIAN INFERENCE

ABSTRACT?

Structural damage identification can be considered as an optimization problem, by
defining an appropriate objective function relevant to structural parameters to be
identified with optimization techniques. This paper proposes a new heuristic algorithm,
named improved Jaya (I-Jaya) algorithm, for structural damage identification with the
modified objective function based on sparse regularization and Bayesian inference. To
improve the global optimization capacity and robustness of the original Jaya algorithm,
a clustering strategy is employed to replace solutions with low-quality objective values
and a new updated equation is used for the best-so-far solution. The objective function
that is sensitive and robust for effective and reliable damage identification is developed
through sparse regularization and Bayesian inference and used for optimization
analysis with the proposed I-Jaya algorithm. Benchmark tests are conducted to verify
the improvement in the developed algorithm. Numerical studies on a truss structure and
experimental validations on an experimental reinforced concrete bridge model are
performed to verify the developed approach. A limited quantity of modal data, which is
distinctively less than the number of unknown system parameters, are used for
structural damage identification. Significant measurement noise effect and modelling
errors are considered. Damage identification results demonstrate that the proposed
method based on the I-Jaya algorithm and the modified objective function based on
sparse regularization and Bayesian inference can provide accurate and reliable damage
identification, indicating the proposed method is a promising approach for structural
damage detection using data with significant uncertainties and limited measurement

information.

3This chapter was published in Mechanical Systems and Signal Processing with the full
bibliographic citation as follows: Ding, Z., Li, J., & Hao, H. (2019). Structural damage
identification using improved Jaya algorithm based on sparse regularization and Bayesian
inference. Mechanical Systems and Signal Processing, 132, 211-231.
https://doi.org/10.1016/j.ymssp.2019.06.029.
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4.1 Introduction

Conducting damage identification and quantification of structures based on
measured vibration data is one of the most significant research topics in the area of
structural health monitoring (SHM), because it is relevant to assessing the service
performance and evaluating the integrity of structures (Farrar & Worden, 2007). When
structures have damages, alternations are observed in the dynamic vibration
characteristics. Therefore, numerous methods have been developed for structural
damage identification based on the changes in structural vibration characteristics
(Kerschen & Worden, 2006; Wan & Qiao, 2011).

Basically, these methods can be categorized into two types, relying on the fact that
structural damage identification is performed in the frequency domain or the time
domain. Frequency domain based methods are developed to identify damages by using
structural modal information, such as natural frequencies, mode shapes, damping ratios
and other frequency domain data. Pandey and Biswas (1994) used the flexibility
matrices for damage identification. Shi and Law (1998) developed the modal strain
energy ratio to locate the structural damages. Yan et al. (2015a; 2015b) used Principle
Component Analysis (PCA) to analyze structural modal data for distinguishing the
changes in vibration characteristics due to environmental variations or structural
damage. Numerical and experimental studies illustrated that the proposed method can
be effective for the linear and nonlinear structures. Furthermore, the spectral approach
was also widely applied to address structural damage quantification, especially for
nonlinear systems (Machado et al., 2017).

On the other hand, structural damage identification methods in the time domain
have been developed rapidly in the recent years. Lu and Wang (2017) proposed an
enhanced sensitivity method to perform damage identification, in which a trust-region
restriction was introduced to improve the performance of the traditional sensitivity
approach. Hu et al. (2017) developed a method using the homotopy continuation
algorithm to identify the cracks in beam structures, in which acceleration responses
were used to formulate the objective function. Li et al. (2017) developed a damage

identification and optimal sensor placement method for structures under traffic-induced
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vibrations, based on response reconstruction in the time domain. Recently, the time
domain methods have been also developed to conduct the identification of nonlinear
structures. Yang et al. (2006) developed an adaptive Extended Kalman Filter (EKF)
approach to identify the damage in both the linear and nonlinear structures. Xie and
Feng (2012) applied the Iterated Unscented Kalman Filter (IUKF) for highly nonlinear
structures. Experimental results demonstrated that [IUKF can be used to provide better
state estimation and parameter identification results than Unscented Kalman Filter
(UKF). For damage identification in initially nonlinear systems, Shiki et al. (2017)
used a discrete Volterra model to separate the linear and nonlinear components of the
dynamic responses of a system. Afterwards, hypothesis tests were introduced to detect
variations in the statistical properties of the damage features. Villani et al (2019)
adopted the stochastic Volterra series to conduct damage identification for uncertain
nonlinear systems, in which the uncertainties were simulated by the variation posed in
the linear stiffness and damping coefficient.

However, most of the above mentioned methods require a good guess of the initial
system parameters and an accurate estimation of the gradients. Furthermore, difficulties
arise when utilizing these methods for the identification of large scale structures when
only few measurement data is available. Regularization in the solution would be
essential to ensure that the identification results are physically meaningful. Considering
that structural damage identification could be viewed as an optimization problem
(Friswell, 2007), computational intelligence techniques are developed to perform the
optimization in structural damage identification, such as the Genetic Algorithm (GA),
the Particle Swarm Optimizer (PSO), the Artificial Bee Colony algorithms (ABCs), the
Differential Evolution (DE) algorithms, the Artificial Neural Network (ANN), the
Support Vector Machine (SVM) and other machine learning methods. These
intelligence methods generally make predictions via data instead of the specific
formulas. Therefore, they could not only avoid the mentioned shortcomings (requiring
good initial values and gradient information), but also enable to perform identification
of large-scale and complex structures (Ding et al., 2019). Wang (2009) developed using

the hybrid GA with the Gaussian-Newton method to identify the parameters of both
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linear and nonlinear structural systems. Guo and Li (2009) developed a two-stage
damage identification method based on the evidence fusion along with the improved
PSO. Later, Chen and Yu (2017) employed the PSO integrated with Nelder-Mead
method to tackle the damage identification problem. Sun et al. (2013) constructed a
modified ABC algorithm to perform the identification of structural parameters, in
which a nonlinear factor used for improving the convergence performance was
introduced to achieve the balance between the global and local searches. Ding et al.
(2017; 2018) adopted ABC to identify structural damages and cracks by using the
objective function based on natural frequencies and the modal assurance criteria
(MAC). Tang et al. (2008) proposed DE to identify structural parameters with and
without considering noise contamination in the measurement data. Padil et al. (2017)
demonstrated that ANN is a good choice to solve the damage identification problem
considering uncertainties. Bornn et al. (2010) developed an approach using the
autoregressive SVM to detect the damage in initially nonlinear systems. Santos et al.
(2016) presented four kernel-based algorithms for damage identification under varying
operational and environmental conditions. From the above studies, it can be found that
these computational intelligence approaches are promising tools for structural
identification, however, challenges still exist, such as

(a) In some studies, the target structures used for investigation have a small
number of elements. The uncertainty effect on the final identification results is rarely
investigated; and

(b)  The performance and robustness of algorithms for the scenarios when only
a limited number of measurement data are available and at the same time the data
contain significant noise, need to be improved.

Recently a new computational intelligence method, namely Jaya algorithm (Rao,
2016; Rao & Saroj, 2017), has been developed. Compared with the above-mentioned
computational intelligence methods (Tang & Fan, 2008; Wang, 2009; Li & Guo, 2009;
Sun et al., 2013; Chen & Yu, 2017; Ding et al., 2019), the distinct feature of the Jaya
algorithm is that there are no special controlling parameters in the algorithm. In

contrast for many other methods, GA needs a proper setting of crossover probability,
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mutation rate and selection operator, and ABC needs proper quantities of onlooker bees,
scout bees and parameter ‘limit’. Furthermore, compared with other gradient-based
algorithms (Pandey & Biswas, 1994; Shi & Law, 1998), the Jaya algorithm has the
following superiorities: (i) It is free from sensitivity analysis and initial guess of the
parameters; (ii) It does not require gradient information. When performing the damage
identification of structures with a large number of elements, the gradient information
may be difficult to obtain or the calculation is time consuming due to the significant
computational demand with a large-scale system, which restricts the potential
applications of these gradient-based methods. Therefore, it is interesting to develop and
extend the Jaya algorithm for structural damage identification. Furthermore, to address
the two challenges as mentioned above, modifications are introduced into the standard
Jaya algorithm to enhance its global optimization ability and a better objective function
that is more robust to identify structural parameters with limited measurement
information is proposed. These are the two main contributions of this study.

For addressing the second challenge as mentioned, when developing and applying
optimization methods for damage identification, studies on developing more reasonable
objective functions that are more robust and stable in optimization analysis for damage
identification are conducted. To achieve this purpose, one way is to introduce the
regularization technique to reform the objective function. Recently, the sparse
regularization techniques with the enforcement of the sparsity constraint on the damage
locations have been widely investigated and promising results are obtained, since
damages are often observed at a few locations while the majority of elements remain
intact (Zhou et al., 2015; Hou et al., 2018). Furthermore, the traditional objective
functions (Ding et al., 2017; Ding et al., 2018) are usually ill-posed, and introducing
the sparse regularization constraint on the damage identification is beneficial to
overcome the ill-posedness in the inverse problems (Titurus & Friswell, 2008). Another
possible way to tackle this challenge is to employ the probabilistic analysis, i.e. based
on the Bayesian inference. It considers the complete information relevant to the
measured data for statistical inference with an appropriate likelihood function (Sun &

Betti, 2015). Bayesian-based methods have been developed for damage identification.
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For example, Beck et al. (1999) presented a Bayesian statistical framework for
structural identification and adopted this theory to perform continuous online
identification. Later, Bayesian spectral density approaches, Bayesian Fast Fourier
Transform (FFT) methods (Yuen & Katafygiotis, 2003; Zhang et al., 2016),
Bayesian-based Monte Carlo method (Figueiredo et al., 2014) have been further
developed for structural damage identification. The results in previous studies (Chen &
Yu, 2017; Sun & Betti, 2015) demonstrated that the Bayesian inference can be used to
enhance the robustness of damage identification. Therefore, to improve the
identification with a limited number of measurements of a significant noise effect, a
new objective function is proposed by using incomplete modal data and the penalty
items considering the sparse regularization and Bayesian inference.

This paper proposes an improved Jaya algorithm (I-Jaya) to conduct damage
identification of structures by using vibration measurement data. To enhance the
capacity of the developed methodology for the identification of large-scale structures,
two modifications are developed based on the standard Jaya algorithm to enhance its
global search ability. 1% variation (Xia et al., 2012) is introduced into the elemental
stiffness parameters to simulate the uncertainties in the structure. To improve the
identification with a limited number of measurements of a significant noise effect, a
new objective function is proposed by using incomplete modal data and the penalty
items considering the sparse regularization and Bayesian inference. Classical
mathematical benchmarks are utilized to validate the accuracy and improvement of the
proposed approach. Numerical investigations on a 121-bar truss structure are
performed to demonstrate the accuracy of the developed algorithm with the use of the
modified objective function. Experimental validations on a reinforced concrete bridge

are conducted to demonstrate the performance of the proposed method.

4.2 Theoretical background
4.2.1 Damage identification of structures
Changes in structural system parameters, i.e. stiffness, mass and damping, would

introduce the alterations in structural vibration properties. Hence SDI could be
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conducted based on this fact by using vibration measurement data. Vibration
characteristics, such as frequencies and mode shapes of a structure without considering

the damping, could be obtained by solving the eigenvalue problem

(K-o'™M)-® =0 4.1)
where K and M represent the system stiffness and mass matrices, respectively; o,

and ®, denote the ith natural frequency and the corresponding mode shape,

respectively.
In this study, structural damage is assumed to be only related to the stiffness
reduction, since the mass alteration of a structure could be easily inspected (Zhu et al.,

2017). In this case, structural damage would be characterized via a scalar stiffness

reduction variable for each element «,(h=1,2,...,Nel) with the value between 0 and 1

as follows
K,=> "(-a,)k, (4.2)

where k_, represents the #hth elemental stiffness matrix under the undamaged state;

ch

Nel denotes the number of total elements of a structure; K, represents the structural

d

stiffness matrix under the damaged state; «, denotes the elemental stiffness reduction
parameter to be identified. It shall be noted that o, =1 implies that this element is

totally damaged, and «, =0 means that the element is intact.

The traditional objective function, denoted as f.s;, is defined based on the
alterations of natural frequencies and Modal Assurance Criterion (MAC), which can be

given as (Ding et al, 2017; Chen & Yu, 2017)

o’ =argmin f, (a)=arg min(Zi‘Aa)f + Z:’ (1-MAC))) (4.3)
with
Ao, =1 (4.4)
a)i
-
mac, =P (*3)
@[] @7 ]
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where @’ and ®; represent the ith calculated natural frequency and mode shape

m

from the finite element model analysis, respectively; o, and @ are the

corresponding measured natural frequency and mode shape, respectively. NF and
NM represent the order numbers of natural frequencies and mode shapes, respectively.

The calculated modal data are acquired by using the stiffness parameters

a=[c,aq,,..,a,]with the finite element analysis. Generally speaking, SDI is treated as

an ill-posed problem with the searching parameters that may have multiple local
optimal points (Ding et al.,, 2018). The optimization techniques can be used for
identifying the optimal set of parameters that could minimize the objective function.
When the input data is limited or even less than the number of unknown parameters to
be identified and the data is contaminated with the significant measurement noise, the
damage identification becomes much more difficult. To overcome these challenges, it is
emerging to investigate and develop robust and powerful algorithms with proper

objective functions, which may improve the identification of the complex structures.

4.2.2 Proposed objective function
4.2.2.1 The objective function based on sparse regularization

In real situations, structural damages happen usually at a few locations (Fan et al.,

2018). Therefore the damage vector a=[«a,,a,,....a,,] should be a sparse vector with

most of its items equal to zero or at least close to zero, except the damaged elements
with non-zero entries. When the number of measured data is less than the total number

of unknown parameters in the inverse identification, Eq. (4.3) is underdetermined and

ill-posed. Therefore, the [/ regularization technique (Hou et al., 2018) can be utilized

to help solve the underdetermined inverse problem. The objective function based on

sparse regularization, denoted as 0bj2, can be defined as

o =argmin £, (@) =argmin(Y Aa + Y (1-MAC)+A|al,) (4.6)
where A4>0 is the regularization parameter and | a|, denotes the / norm of the

solution, namely, ||“||1:ZZ|% | . It should be noted that a small 4 would pose a

96



higher penalty on the residual term, resulting in an over-fitting solution. Conversely,
for a large A value, it would loss data fidelity. Therefore, the discrepancy principle
(DP) rule (Hou et al., 2018) is employed here to select the optimal regularization

parameter A.

4.2.2.2 The objective function based on Bayesian inference
Vibration measurement data are usually polluted with the environmental noise,
which could be considered as a zero-mean Gaussian white-noise in numerical

simulations. The noisy response can be described as (Chen & Yu, 2017)

X =X(1+R) (4.7)

where X, and X are the noisy and original response vectors, respectively; ¢

denotes the noise level ranging from 0 to 100%, while R is a random vector with

the standard normal distribution N(0,1).

To improve the capacity of the developed algorithm against the noise effect in the
optimization process, the Bayesian inference is introduced to modify the objective
function. The theoretical foundation of the Bayesian theory is the conditional
probability, with the prior knowledge resulted from a certain event or hypothesis. This
theory offers a rigorous process for uncertainty quantification. In Bayesian inference,
the posterior Probability Density Function (PDF) of the model parameters ( 0) can be

obtained via Bayes’ theorem
p@[D)=c-p(D|0)p(6) (4.8)
where p(0|D) represents the PDF of model parameters @ given the modal data D,

p(D|0) represents the likelihood function given the model parameter 0, and p(0)

denotes the prior PDF of model parameters 0 based on observations and/or modelling
assumptions. Specifically, it ought to be noted that modal data D means the real
measured data, such as frequencies and mode shapes. In the Bayesian theory, these
measured data are served to obtain the posterior probability density function of the

model parameters 0 . In this study for structural damage identification, the model
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parameters denote the element stiffness parameters vector a=[a,a,,...a,,]

Furthermore, the prior distribution of model parameters 0 is assumed as a uniform

distribution, which means that their PDFs are a series of constants (Chen & Yu, 2017).

¢ is a constant which enables the integral of p(0|D) to be 1. Supposing that the
Bayesian inference is applied on natural frequencies and taking D=[D,,D,,...,D, ]Jas

observed modal data with N samples, and D =[wo

ls? 2 seeey

o, ] denoting the natural

frequencies in the sth observation or measurement. The likelihood functions of the
modal data are assumed to be independent, and the principle of the maximum entropy

is employed as a basis to assume Gaussian distributions for these modal data (Chen &

Yu, 2017). Based on this assumption, the PDF of any frequency parameter (@, ) can be

obtained as

(a)z,: - a)i(‘ )2

207 ] (4.9)

p(@, |8)=c exp[-

where o, represents the ith frequency in the sth measurement, ®; denotes the

ith calculated frequency, and o’ represents the variance of the ith frequency and

can be calculated as
o’ b E W(a) -@)’ (4.10)
PN oA '

where @, represents the mean value of the sz natural frequency.

Since it is assumed the testing obtained modal data are independent, the likelihood

in Eq. (4.8) can be calculated as
pMO)=[]r® [&)=T]]r(@.10) (4.11)
When the prior distribution of natural frequencies is considered as the uniform

distribution, substituting Eq. (4.11) to Eq. (4.8) can have the final form of p(0|D). It

can be calculated as

(0] D) = cexp[— ZZ[ (@, _a’) (4.12)

s=1 =l
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Eq. (4.12) represents the frequency-based Bayesian conditional probability

function. The goal of Bayes analysis is to maximize the likelihood probability function

p(0]D) based on the test data, which can be converted to minimize the exponent part

in Eq. (4.12). Combining with the item related with the mode shapes in the objective
function as described in Eq. (4.3), the third objective function, denoted as o0bj3, is given

as

Ny NF _

= argmln /(@)= argmm(ZZ[ =~ ] + Z(l —-MAQC)) (4.13)

s=1 =l

Comparing with the first objective function defined in Eq. (3), the item relevant to
minimizing the difference in natural frequencies is modified based on Bayesian
inference. It should be noted that when involving the Bayesian inference in the
objective function, significant computational time may be required to obtain the
variances. Since natural frequencies are scalars, their covariance values are relatively
straightforward to be obtained. However, for the mode shapes, obtaining the covariance
matrices will be relatively complex and time-consuming, considering the modal shapes
are vectors. To simplify the calculation and increase the efficiency, only the frequencies

are considered in the objective function in Eq. (4.13).

4.2.2.3 The objective function based on Bayesian inference and sparse
regularization

By considering the Bayesian inference and sparse regularization
simultaneously, a hybrid objective function, defined as obj4 expressed below is

proposed in this study for SDI,

Ny NF

—argmmfm(u) argmln(zz ] Z(l MAC)+Alal) (4.14)

s=1 =l

The Bayesian inference is included to improve the robustness (Chen & Yu, 2017),
and the regularization term is applied to solve the underdetermined inverse problems
(Sun & Betti, 2015). The effectiveness and improvement of these objective functions

will be compared in this study.

4.3 Optimization algorithm
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4.3.1 Jaya algorithm

The proposed I-Jaya algorithm in this study is developed and improved based on
the standard Jaya algorithm. The standard Jaya algorithm is briefly reviewed here (Rao,
2016; Rao & Saroj, 2017) for the completeness of this paper. The Jaya algorithm is a
new type of heuristic algorithms, inspired by the concept that the feasible solution
acquired for a given problem ought to move towards the best solution and avoid the
worst solution. Specifically, for every feasible solution, the way of generating its
offspring is to move closer to the success (i.e. approaching the best solution) and avoid
the failure (i.e. escaping from the worst solution). When generating the offspring, the
objective function values are compared to decide whether the new solution (offspring)
or the previous solution would be selected for the next iteration. Gradually, the
algorithm endeavors to become victories by approaching the best solution and therefore
it is named after Jaya (a Sanskrit word meaning victory). Compared with other
computational intelligence methods, such as ABC, BMO and PSO etc., the distinct
feature of the Jaya algorithm is that there are no special controlling parameters in the
algorithm. The procedures of operating the Jaya algorithm includes three steps, namely,
the initialization, the local search strategy and the greedy selection mechanism, which

are briefly described in the following,

4.3.1.1 Initialization

An initial colony is generated randomly in the search space. This colony

contains CS individuals. Each individual in the colony is marked with 9, .

Every individual (8,) contains » variables (0,=[6,.6,....,0,,...,6,1), which can be

q
created as

0,=0', +rand(0,)-(0", 0') (4.15)

74

where 6, denotes the gth variable of O ; 6’ and @ are the upper bound and

the lower bound of the variable 6, . rand(0,1) represents a random number in the

range within 0 to 1.

4.3.1.2 Local search strategy
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After creating the initial colony, the local search for these individuals will be
carried out. As mentioned before, the core of the Jaya is to pursue success but avoid

failure, therefore, the best solution and the worst one in each iteration would be used to

formulate the local search strategy for every individual. It is assumed that 6, , stands
for the value of the gth dimension of the jth individual at the Gth generation. The

offspring @, . created by this value can be calculated as

9;#,6 = 9/,44(7 + rl‘q.G : (elve.vf,q,G_ ‘ 9/’,1],6 |) - rZ,q,G ' (e‘mm,q,G - | 9/,1]‘(; D (4' 1 6)
where r . and r, . are two random numbers located in the [0,1]. 6, . and
0., are the values of the qth variable for the best individual and the worst one,

respectively. The second item in Eq. (4.16) denotes that the trend of the process
towards the best solution while the third item represents the tendency of the solution to
avoid the worst solution. Afterwards the judgement of boundary condition will be

conducted by using

0,;,:" %fejlc < Hjlz
0,,=10,. if6,, >0, (4.17)
) otherwise

JiG?

4.3.1.3 Greedy selection mechanism

Extending the above-mentioned local search strategy to all dimensions, it will

acquire the new individual @, . The greedy selection mechanism (Zhu et al., 2017) is

applied to determine whether the new individual or the previous one will be selected
for the next iteration. Namely, the objective function values of the ©,, and 6 , will
be compared. The individual with a smaller function value will be kept to the next

generation

o - {6J,G,f(e,,c)Sf(0,,G> 4.18)

0, ,otherwise
where f denotes the objective function that requires to be minimized. The algorithm

will be continually conducted until the termination condition is satisfied, i.e., the
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maximum objective function evaluation number is reached.

4.3.2 Improved Jaya algorithm

In the standard Jaya algorithm, it can be found that every mutation as shown in Eq.
(4.16) is relevant to the best-so-far solution and the worst one. Therefore, the whole
colony will centralize into the best-so-far solution with iterations, and the colony
information may not be fully used. In this case, if the best-so-far solution is trapped
into the local minimal, the whole iteration of the algorithm would cease. Besides, from
observing the updated strategy as shown in Eq. (4.16), it is clear that for the best-so-far
solution, the second item trying to reach the best solution would make the optimization
lose efficiency. Aiming at overcoming these drawbacks, two modifications are

developed to enhance the algorithm’s performance.

4.3.2.1 K-means clustering

The K-means clustering is a simple yet powerful tool that organizes a data set
(pattern) into a number of groups or clusters. Within every group or cluster, these data
or pattern are similar to each other. In other words, clustering technique is a useful tool
to discover the inherent pattern in any given dataset (Jain et al., 1999). Besides, the
clustering centers can be viewed as the representations of these clusters, since their
formulations are based on the combinations of other individuals in these clusters.
Therefore, to make full use of the colony information, it seems a smart choice to
integrate the K-means clustering technique into the standard Jaya algorithm, since the
information of the whole colony can be represented through these so-called ‘clustering
centers’. Furthermore, during early iterations, conducting the K-means clustering is
straightforward and this works as a crossover operators that would effectively utilize
the colony information, which is beneficial to improve the algorithm’s convergence
performance (Jain et al., 1999; Cai et al., 2011). The specific procedure of operating

clustering mechanism is described as follow

Step 1: K=0.1-CS initial clustering centers C,,C,....,C are produced

k

randomly from the CS individuals [0,,0,,...,0_].
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Step 2: The remaining individuals are distributed to these clustering centers

according to their distances to these centers. Specifically, 0 is assumed to represent a

remaining individual in the colony. If and only if it satisfies the distance condition

10,-C, [I<]|0, -C, [[(C, denotes any other clustering centers), the individual 0, will

belong to the cluster with the clustering center C,_ . Based on this rule, other

m

individuals can find their clusters through the comparison with the distances generated

from every clustering center. The distance between any two individuals (i.e.,0 and 0 )

is determined by the Manhattan distance, given as follows

d®,8)=0, -0 |= z abs(6,,-06.,) (4.19)
Step 3: After assigning other individuals to these clustering centers, the new

clustering centers C,,C,,...,C, are calculated by using the following equation

c =L >00,.j=12,..,CS (4.20)

where u, is the number of individuals belonging to the clustering center C, .

Step 4: Finally, another K parents individuals from the colony will be selected
and then combined with the newly-calculated clustering centers as a new set, marked
with 7. The individuals’ objective function values will be calculated in the set 7, and
these values are sorted from the smallest to the largest. The first K individuals would
be put in the colony. The clustering operation is demonstrated herein. The pseudo-code

of operating the K-means clustering is shown in Figure 4-1.
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Algorithm 1 Conducting K-means clustering before individuals’ updating
1. Randomly select K =rnd int[0.1-CS| individuals from the colony

2. Calculate the distances between remaining individuals and clustering centers by
Eq.(4.19)

3. Assign remaining individuals to clustering centers based on the nearest distance

4. Calculate the new clustering centers by Eq. (4.20)

5. Take away K parents individuals from the colony. Sort them together with the
newly-calculated clustering centers in the r

6. Calculate individuals’ objective values in the 7 and sort them from the smallest
to the largest
7. The first K individuals are put in the colony

Figure 4-1 The pseudo-code of operating the K-means clustering.

4.3.2.2 A new updating equation for the best solution

In the Jaya algorithm, the best solution in every iteration plays a crucial role in the
whole optimization process, because it guides and draws other individuals to its own
region. To prevent best solutions from trapping in the local minimal to some extents, a
new updating equation that focuses on the global search is introduced here (Gao et al.,

2015)

Hl;fsl,q,(} = ebes/.q,(/ + wb(’s/.q,(/ (ej,q.G - ebesl,q,G) (4‘2 1)

where 6, , denotes the value of the g2 dimension of the best solution at the Gtk
generation and 6, . represents its offspring value. ¢, . 1s a random number

locating in the [0,]]. 6, , means the value of the gth dimension of an arbitrary

individual in the colony. From Eq. (4.21), a new candidate is generated by removing
the old solution towards a randomly chosen one in the colony. Such randomness can
enable this search strategy’s exploration ability.

The above two modifications for the standard Jaya algorithm are presented. These
improvements are easy to operate and do not bring much complexity to the standard

Jaya algorithm. The flowchart of the proposed I-Jaya algorithm is shown in Figure 4-2.
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Figure 4-2 The flowchart of the proposed I-Jaya algorithm.

4.4 Numerical Studies
4.4.1 Benchmark tests

To investigate the accuracy of using the developed I-Jaya algorithm for tackling
optimization problems against the standard Jaya algorithm, classical mathematical
benchmark functions with 100 unknown variables (Ding et al., 2018) are tested here.
These functions can be categorized into four types, that is, an uni-modal separable
function (Sphere), three multi-modal and non-separable functions (Griewank, Schaffer
and Ackley), an uni-modal and non-separable function (Rosenbrock) and a multi-modal
separable function (Rastrigin). The global minimum of these test functions are zero.
Regarding the parameters setting for algorithms, the colony size CS =100 and the
termination condition is set as when the total number of function evaluations reaches
10° . Each case is independently repeated 30 times and the means of objective function
values are recorded.

Figure 4-3 shows the convergence progresses of the mentioned six benchmark
functions. It can be clearly observed that the proposed I-Jaya algorithm has a more
competitive convergence speed, and a much better accuracy in the solution than the
standard Jaya algorithm as shown in Table 4-1. Because of its excellent performance in

dealing with optimization problems, the I-Jaya algorithm will be used to tackle the
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following SDI problem.
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Figure 4-3 The convergence line for the classical benchmarks based on Jaya and the proposed

[-Jaya algorithm.

Table 4-1 Statistic results obtained by the Jaya and I-Jaya algorithms for the classical

benchmarks.

Function name

Algorithms
Sphere Griewank  Schaffer Ackley Rosenbrock Rastrigin

Mean 391E+03  2.11E+00 8.22E+01 5.97E+00 2.62E+06 9.45E+02
std. 6.67E+02 3.36E-01 4.33E+00 4.96E-01 7.78E+05 6.67E+01
Mean 1.07E-109  0.00E+00 1.18E-26 0.00E+00 9.86E-29 0.00E+00
std. 2.88E-110 0.00E+00 6.12E-27 0.00E+00 8.16E-30 0.00E+00

Jaya

I-Jaya

4.4.2 Numerical Simulations

The superiority of the proposed I-Jaya algorithm has been demonstrated in the
above benchmark verifications. In this section, a 121-bar truss structure is employed as
a numerical example to demonstrate the improvement by using the above-mentioned
modified objective functions based on Bayesian inference and sparse regularization to
identify the structural damage with a limited quantity of available measurement

information. The truss model is shown in Figure 4-4. Young’s modulus, density and

Poisson’s ratio are respectively defined as E =70GPa, p=2700kg/m’ and u=0.33.

The boundary conditions of the truss are simulated by three springs with a large

stiffness, i.e. K, =2x10"N/m; K ,6=2x10"N/m; K,,=2x10"N/m . The first six
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natural frequencies and the relevant incomplete mode shapes are used for identification.
It should be noted that in the numerical studies, the number of available modal data is
less than the number of unknowns. Therefore the damage identification of this structure
is an underdetermined inverse problem. Random measurement noises are included in
the natural frequencies and mode shapes, respectively, by using Eq. (4.7). 1% variation
with Gaussian distributions is introduced into all the elemental stiffness parameters for
simulating the uncertainties. In terms of the parameters setting for I-Jaya, the colony
size is CS =100 and the maximum objective function evaluation number is set as
49000. For each damage case, 30 runs are independently conducted to acquire

statistical results.
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2 & a 6 8 44 46 4s|‘_5?|
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@
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K1,2 Y K“?:Z
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Figure 4-4 The model of the truss structure.

4.4.2.1 Performance comparison on different objective functions

The first damage case, denoted as Case 1, is assumed that there is a 15% stiffness

reduction in the 10™ element, which means ¢, =0.15. The first six natural

frequencies and mode shapes in the vertical direction of the 27, 7t 12t 7%, 22nd 27t
32nd 37th 42nd and 47™ nodes are obtained for structural condition identification. There
are six frequencies and sixty mode shape values in total. Significant measurement
noises are assumed and added in natural frequencies and mode shapes with the noise
levels of 3% and 5%, respectively. Furthermore, when calculating the Bayesian
inference, it is assumed that the number of available measurement sets for obj3 and
obj4 is 10 and the average frequencies and mode shapes are used for objective
functions objl and obj2. Similar to Ref (Chen & Yu, 2017), these data are generated

with a 3% variance of their real values. It is noted that the DP rule is applied to
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determine the regularization parameters (Hou et al., 2018), therefore the regularization
parameter A for the 0bj2 and obj4 are set as 2-10" and 2-10°, respectively. The

proposed algorithm is used for identification, with different objective functions.

0.24 ; . k ‘ ‘
objé
----- obj2
022 [ | obj3
- = = objt
02 |
0.18 M3t 1
é |l
Bowf | .
o ] H
1 7
g014[y [~ = A
53 —_
8 1| leeees r
012 1 rteee 4
4 T
01 " . ]
1 I T ks T
Lo1r, - L 4
008 Yo', _,
0.06 ! ! ! I : ‘ ‘
0 50 100 150 200 250 300 350 400

Cycles

Figure 4-5 The convergence processes of the identified damage index «;q with different

objective functions.
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Figure 4-6 Damage identification results of Case 1 in the numerical study:

(a) using objl; (b) using obj2; (c) using obj3; (d) using obj4.

Figure 4-5 shows the iteration processes of the identified damage index «,, by

using different objective functions. It is observed that using 0bj4 converges faster and
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provides more accurate damage identification results. Figure 4-6 shows the final
damage identification results in all the elements of the truss model by using four
different objective functions. The mean values and the variation range with mean
values plus and minus standard deviations are shown in Figure 4-6. The identified
damage extents in the 10" element by using four objective functions are also given in
Table 4-2. It can be observed from Figure 4-6 and Table 4-2 that the identification

results by using obj4 is the most accurate.

Table 4-2 Damage identification results in the numerical studies.

Objl1 Obj2 Obj3 Obj4
Damage Damage  True
. Mean Mean Mean Mean
case location value std. std. std. std.
value value Value value

Case 1 a, 0.15 0.1098 0.0598 0.1362 0.0154 0.1556 0.0014 0.1511 0.0006

a, 0.15 0.1351 0.0164 0.1388 0.0155 0.1440 0.0108 0.1486 0.0009
Case 2
a, 0.15 0.1202 0.0475 0.1381 0.0132 0.1347 0.0399 0.1507 0.0007

The second damage case, denoted as “Case 27, is assumed with 15% stiffness

reductions in the 10" and the 45" element, namely, o, =a, =0.15. The input modal

1

data are the same as those in Case 1. The regularization parameters for the obj2 and
obj4 are set as 5-10" and 10, respectively. Figure 4-7 shows the identification
results of Case 2, and Table 4-2 lists the identified damage extents in the damaged
elements. It is clearly observed that when using the 0bj/, a number of significant false
identifications are generated. With the sparse regularization term, the false
identification by using the o0bj2 are greatly reduced. By including Bayesian inference in
obj3, the identification can be improved as compared with using obj/. However, there
are still a number of observed false identifications with considerable standard
deviations. The identification accuracy by using obj4 is significantly improved. The
identification results from these two damage cases demonstrate the superiority of using
both the sparse regularization and Bayesian learning. Using only sparse regularization

in obj2 or Bayesian inference in 0bj3 can certainly improve the accuracy and
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performance in damage identification. However, when sparse regularization and
Bayesian inference are used simultaneously in obj4, a much more accurate
identification is achieved. The identified damage extents are close to the true values
with minor standard deviations, and almost no false identification is observed. These
identification results verify that the new objective function based on Bayesian
inference and sparse regularization can greatly enhance the accuracy and robustness of

utilizing the I-Jaya algorithm for SDI.
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Figure 4-7 Damage identification results of Case 2 in the numerical study:

using objl; (b) using obj2; (c) using obj3; (d) using obj4.

4.4.2.2 Damage identification with limited modal data

The superiority of the proposed objective function 0bj4 is demonstrated in the
above examples. In this section, only the 0bj4 is used to investigate the influence on
damage identification by using limited modal data. The third damage case, denoted as

Case 3, is assumed with 8% stiffness reductions in the 10", 45% and 100" element

respectively, which means «,, =a, =«,, =0.08. The first six natural frequencies and

different numbers of mode shape values for these six modes are used for identification.

Significant measurement noises are added in natural frequencies and mode shapes with
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the noise levels of 3% and 5%, respectively. Four scenarios are considered and listed in

Table 4-3.

Table 4-3 Used modal data in different scenarios and regularization parameters for Case 3.

Quantity of
) Number of the used
Scenario used modal A
modal data
data

Six frequencies, and the corresponding mode
1 shapes in the vertical direction at the 66 2:10°°
ond 7th 12t 47%hnodes
Six frequencies, and the corresponding mode
2 shapes in the vertical direction at the 48 10°
2nd 10t 18t . 50% nodes
Six frequencies, and the corresponding mode
3 shapes in the vertical direction at the 42 10°
2rd 11t 20t 47t nodes
Six frequencies, and the corresponding mode
4 shapes in the vertical direction at the 36 1.2:10°
ond 12th 23th 34th 45t nodes

Table 4-4 Identified damage extents for Case 3 in the numerical studies.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Damage True
. Mean Mean Mean Mean
location value std. std. std. std.
value value value value

a, 0.08 0.0791 0.0008 0.0795 0.0014 0.0793 0.0009 0.0782 0.0021

a, 0.08 0.0800 0.0012 0.0795 0.0013 0.0796 0.0016 0.0786 0.0015

Ay, 0.08 0.0796 0.0013 0.0788 0.0006 0.0784 0.0010 0.0787 0.0013

It is noted that the number of available modal data used for identification in each
scenario is always less than that of unknown system parameters to be identified. For
Scenario 4, a much less number of modal data, that is 36, are used to identify 121
unknown elemental stiffness parameters in this study. The selected regularization
parameters based on DP rule (Hou et al., 2018) as mentioned above are also listed in
Table 4-3. Figure 4-8 shows the iteration processes of the damage index values on the

damaged elements for these four scenarios with different numbers of used modal data.
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It can be found that after around 200 iterations, all the damage index values converge to
the neighborhood of preset values. Figure 4-9 shows the damage identification results
of these four scenarios, and Table 4-4 lists the identified damage extents in the
damaged elements. Accurate identification results are obtained for all the scenarios,
indicating that the introduced damages can be well identified by using the proposed
algorithm with the sparse regularization and Bayesian inference, even with a small

number of available modal data.

() (b)
Using obj4 Using obj4
Lot 77T “0 g 0161 e %0
§ 0.14 —_—y é 0.14
$012 T~ T%ofj 3012
£ 01 § o1
= (=]
0.08 i 0.08
0.06 0.06
n 100 200 300 400 0 100 200 300 400
() UC.ycIesb.4 (d) (-)ycles -
0.12 sing obj Using obj4
————— 5 4 —— -
% 10 . 0.16 Yo
2 0.1 —%s € 0.14 =0
e == =% © 0.12 =~ ~%o0
g 5]
5 0.08 L p— E 01
O 0.08 e
0.06 0.06
0 100 200 300 400 0 100 200 300 400
Cycles Cycles

Figure 4-8 The iteration processes of the damage indices in damaged elements in Case 3:

(a) Scenario 1; (b) Scenario 2; (¢) Scenario 3; (d) Scenario 4.

(@ —— (b)
sing obj; Using obj4
0.1 9 0b) 0.1 9 bl
3 3
_'E 0.05 E 0.05
[ (]
& &
E o E o
a o
-0.05 -0.05
0] 50 100 n 50 100
Element number (d) Element number
(c) Using obj4 o Using obj4
5 g
B 0.05 £0.05
g g
e £
8 [0] S 0]
-0.05 -0.05
o] 50 100 6] 50 100
Element number Element number

Figure 4-9 Damage identification results in Case 3 based on different inputs:

Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.
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4.4.3 Comparison with other optimization techniques

In this section, other optimization techniques including GA, Nelder-Mead
algorithm (Hassan et al.,, 2018), and Gaussian Bare-bones Artificial Bee Colony
(GBABC) algorithm (Zhou et al., 2016) are employed to make comparisons. The fourth

damage case, denoted as Case 4, is assumed with 5% stiffness reductions in the 10%,

45™ and 100" elements, that is, «, =, =a,, =0.05. This case is defined to simulate

100

minor damage in structures. The used modal data are the same as those defined in
Scenario 4 in Table 4-3, and the objective function 0bj4 is used for identification with
the regularization parameter defined as 1.8-10° . Significant measurement noises are
added in natural frequencies and mode shapes with the noise levels of 3% and 8%,
respectively. Regarding the parameters setting, for GA, the colony size is set as 100.
The mutation rate and crossover rate are defined as 0.1 and 0.8, respectively. For the
Nelder-Mead algorithm, the initial values are set as 0.1 for all the damage indices,
which are quite close to the assumed values. For GBABC, the colony size, parameter
‘limit’ and the search tendency ‘ST’ are set as 100, 6050 and 0.3 respectively, which are
the same as those in a previous study (Zhou et al., 2016). The maximum objective

function evaluation number is set as 49000 for all these optimization methods.
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Figure 4-10 Damage identification results of Case 4 with different optimization

Methods; (a) GA; (b) Nelder-Mead algorithm; (¢) GBABC; (d) I-Jaya.
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Figure 4-10 shows the final damage identification results by using different
optimization methods. It is clearly observed that even with the obj4, the state-of-the-art
heuristic algorithm (GBABC) and the classical heuristic algorithm (GA) and the
traditional optimization algorithm (Nelder-Mead) cannot provide accurate and reliable
damage identification results. In contrast, the identified damage results from the

proposed I-Jaya algorithm are accurate and reliable. The damage identification results

on these three damaged elements are: ¢, =0.0469 with a standard deviation of 0.0025,

a, =0.0478 with a standard deviation of 0.0011 and «,, =0.0477 with a standard

deviation of 0.0025, respectively. The identified damage severities are very close to the
assumed values. Besides, the false identifications from the proposed approach are
minor. The results in this case demonstrate the superiority of the proposed approach to
conduct the minor damage identification in structures with the measurement data of
significant noise effect, compared with the latest optimization methods. This lays the

foundation for the following experimental verification.

4.4.4 Comparison with the standard Jaya algorithm and other method

In this section, the standard Jaya algorithm and other two methods reported in the
literature (Du et al., 2017; Wei et al., 2018) are employed to identify a new damage
case. The results are compared with that obtained by the proposed approach to

demonstrate the proposed method. The fifth damage case, denoted as Case 5, is

assumed having a 50% stiffness reduction in the 10" element, that is, «,=0.5,

10
representing a single large damage in the structure.

Firstly, the standard Jaya and the developed I-Jaya algorithm associated with the
obj4 are used to identify the introduced damage in Case 5. The parameters setting for
the Jaya and I-Jaya are the same as those in Cases 1 to 4. The regularization parameter
is set as 2-107 . The used modal data are the same as those in Case 4. Significant
measurement noises are assumed in natural frequencies and mode shapes with the noise
levels of 3% and 8%, respectively. Figure 4-11(a) shows the evolutionary process of the

mean values of the 0bj4 with the two methods. It can be found that the values acquired
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by the I-Jaya are significantly smaller than those obtained by the Jaya, which indicates

the I-Jaya is able to achieve more satisfactory identification results. Figure 4-12 shows

the evolutionary process of the identification damage index ¢«, from the I-Jaya

algorithm. After around 320 cycles, the algorithm converges to the neighbourhood of
the assumed true damage value. Figure 4-13 shows the final identification results in all
the elements by using different methods. The Jaya algorithm is not able to identify the
damages accurately, but the proposed I-Jaya algorithm is capable of identifying the
single large damage effectively, with the mean value of 0.5004 and the standard
deviation of 0.0002. The results demonstrate the improvement of the proposed

modifications on the standard Jaya algorithm.
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Figure 4-11 The evolutionary process of the objective values;

(a) Jaya and I-Jaya; (b) MDE and DPSO.

To further demonstrate the superiority of the proposed method, two methods for
structural damage identification, named after the Modified Differential Evolutionary
algorithm (MDE) (Du et al., 2017) and the Disturbed Particle Swarm Optimizer (DPSO)
(Wei et al., 2018) are also employed to identify the damage in Case 5. According to Ref.
(Du et al., 2017), the flexibility matrix is adopted to formulate the objective function
for these two methodologies. For the general parameters setting, their colony size are
set as CS =100 and their maximum evaluation times are 49000 . For MDE, the

threshold value is 0.1; the mutation rate is set as 0.4; the mutation constant is a random

number locating in [0.4,0.9]. These special parameters setting are the same as those in
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Reference. For DPSO, it touches the disturbance mechanism after 100 cycles, and two
parameters relevant to the disturbance mechanism are &£=10" and A=10" ,
respectively. Figure 4-11(b) shows the evolutionary process of the objective values
from these two methods. It can be found that their objective function values basically
maintain at an order of 107 after around 100 cycles, which indicates both these two
methods would not acquire good identification results for Case 5. The final results
obtained from MDE and DPSO are shown in Figure 4-13. Similar to the standard Jaya

algorithm, MDE and DPSO cannot provide accurate damage identification results.
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Figure 4-12 The evolutionary process of the identified damage index

in the damaged element based on I-Jaya.
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Figure 4-13 Identification results for Case 5: (a) I-Jaya; (b) Jaya; (c) MDE; (d) DPSO.
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4.5 Experimental verification

Laboratory studies on a reinforced bridge model are performed to verify the
performance of using the developed approach for structural damage detection with
experimental testing data.
4.5.1 Experimental setup and initial model updating

Figure 4-14 shows the testing structure, which is a simply supported T-type
prestressed concrete bridge model, used for validating the effectiveness of using the
proposed algorithm and the objective function including sparse regularization and
Bayesian inference for damage identification. Figure 4-15 shows the dimensions of the
laboratory model and the placed accelerometer locations for collecting dynamic
vibration testing data. The experimental model is 5 meters long. The widths of the slab
and web elements, and the height of the bridge model are 0.65m, 0.15m and 0.415m,

respectively. The initial Young’s modulus and density of the bridge model are

respectively 2.6x10°Mpa and 2.7x10°kg/m’ . More details of the bridge model can

be referred to (Li et al., 2013). Seven accelerometers are located on the top of the
bridge model for acquiring the accelerations in the vertical direction, during the
hammer impact tests for modal identification.

An initial model updating based on modal information from the intact structure is
conducted to generate a baseline for the subsequent damage identification. An initial
finite element model of the bridge is built by using flat shell elements, as shown in
Figure 4-16. The finite element model includes 90 elements and 114 nodes with 6
Degrees-of-Freedom (DOFs) at each node. The boundary constraints are simulated by
the linear springs. The initial model updating is conducted to adjust the stiffness
parameters of the built finite element model by minimizing the difference between the
first three natural frequencies acquired from the finite element model analysis and
measured from the test. In the initial model updating, the Young’s modulus of slab and
web of the bridge as well as the support stiffness, that is three parameters in total, are
chosen as the parameters to be updated. The proposed I-Jaya algorithm is used to
update the initial finite element model. In terms of the parameters setting, CS is set as

30 and the maximum objective function evaluation number is set as 5000. It runs 30
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times and the mean values are selected as the final updated parameters. It can be
observed from Figure 4-17 that are there are discrepancies between the analytical
frequencies and the measured one. After updating, the calculated natural frequencies
from the updated model match very well with the measured ones. The baseline model is

used for the following damage identification.

Figure 4-14 The experimental testing model.
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Figure 4-15 Dimensions (unit: mm) of the experimental concrete bridge model and the placed

sensor location.
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Figure 4-16 The finite element model of the experimental bridge model.
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Figure 4-17 The measured and updated frequencies in the experimental studies.

4.5.2 Damage identification for the testing model

The cracks are introduced by applying the two-point loads at the center of the
bridge model. Figure 4-18 shows the cracks observed in the web elements, under the
static loads of 180KN . This is considered as the damaged state, and the stiffness
reductions in web elements are to be identified. Specifically, 24 major cracks are
observed in the web elements, which are from the 4™ element to the 15" element. Table
4-5 lists the information about the observed typical cracks in the testing model, which
are mainly distributed from the 8" element to the 13™ element. Modal tests are
conducted to obtain the natural frequencies and mode shapes at the sensor locations
under the damaged state, as shown in Figure 4-15. These modal data are used as the
input for the damage identification. The damages mainly occur in the web elements of
the bridge model, and thus only the web elements are included for the identification.

Elements 1 and 18 are however not included as they are outside the supports.
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The proposed I-Jaya algorithm and the obj4 are used to conduct the damage
identification. The colony size is CS =50 and the maximum objective function
evaluation number is set as 12250. Multiple measurements are required for the obj4,
when introducing Bayesian inference. Therefore, similar as Ref. (Chen & Yu, 2017),
natural frequencies are assumed to vary within +£3% of their real values. Limited
number of modal data, which is less than the total number of the web elements of the
structure, are used to identify the damage. The input data include the first natural
frequency and the corresponding mode shape values at the placed sensor locations.
Therefore totally 8 measured modal data are used to conduct damage identification in
web elements. The regularization parameter is set as A =5-10", based on DP rule. The
damage identification will be independently run 30 times to obtain the statistic results.

Figure 4-19 shows the final damage identification result. Since there is no
analytical formula to relate a number of observed cracks in a reinforced concrete bridge
model with the flexural stiffness of elements, it is difficult if not impossible to obtain
the accurate damage extents according to the observed cracks, which are shown in
Figure 4-18 and Table 4-5. Therefore the identified damage pattern in Figure 4-19 is
compared with the observed crack pattern to validate the effectiveness of the proposed
approach for damage identification. The identification results demonstrate that the
main damage pattern, with the main damage distributed from the 8" element to the 131
element (Li et al, 2013), can be identified. Considering that only the first frequency and
mode shape are used for identification and the main damage pattern can be identified,
the results indicate that the proposed approach has the capacity to identify the damages

in the experimental model with limited measurement data.

Figure 4-18 Observed cracks in the web elements of the concrete bridge model.
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Table 4-5 Reported typical cracks in the tested structure (Li et al.,2018).

Distance from left
1800 1950 2125 2260 2340 2540 2680
support of beam (mm)

Web element number 8 8 9 9 9 10 10
Crack height(mm) 280 248 273 286 243 244 261

Distance from left
2800 2900 3030 3130 3220 3330 3510
support of beam (mm)

Web element number 11 11 12 12 12 13 13
Crack height(mm) 251 120 260 118 274 220 220
0.14
0.12

0.1

0.08

0.06

0.04

Damage index

0.02

-0.02

S I N S N S SN S M
2 4 6 8 10 12 14 16 18
Element number

Figure 4-19 Damage identification results of the testing bridge model in the experimental study

with limited input data.

4.6 Conclusions

This paper proposes a new approach for damage identification of structures based
on I-Jaya algorithm. Since the objective function is important in the damage
identification, the sparse regularization and Bayesian inference are added in the
traditional objective function based on modal data to perform the damage identification
and improve the robustness. Numerical studies on a truss structure are conducted to
investigate the accuracy and efficiency of the proposed approach and demonstrate the
improvement by using different objective functions for damage identification.

Experimental studies on a reinforced concrete bridge model are carried out to verify the
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performance and effectiveness of the proposed approach for damage identification with
real experimental testing data. Some conclusions can be drawn as follows

e The proposed I-Jaya algorithm is more efficient to deal with the classical
benchmark test functions. The results show an improved performance and global
optimization ability compared with the original Jaya algorithm;

® Results in the numerical truss example demonstrate that the modified objective
function based on the sparse regularization and Bayesian inference yields more reliable
and accurate identification results, compared with the traditional objective functions or
traditional objective functions with either sparse regularization or Bayesian inference
only;

e Compared with other widely used optimization techniques, such as the
Nelder-Mead algorithm, GA and GBABC algorithm, results from the proposed
approach demonstrate the superiority in identifying the minor damages under the
significant noise effect;

e In the experimental verifications, the proposed approach can be used to perform
the initial model updating accurately. For the following damage identification, the
developed I-Jaya algorithm and the modified objective function based on sparse
regularization and Bayesian inference can well identify the damage pattern of a
reinforced concrete bridge model with few modal data;

e The damage identification results in the numerical and experimental studies well
demonstrate that the proposed approach can effectively and accurately identify the

damages in the structures, even when the uncertainty effect is significant.
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CHAPTER 5 STRUCTURAL DAMAGE IDENTIFICATION BY SPARSE
DEEP BELIEF NEURAL NETWORK USING UNCERTAIN AND
LIMITED DATA

ABSTRACT*

The accuracy of structural damage identification is affected by the uncertainties in
the vibration measurements and the finite element modelling. This paper proposes a
novel approach based on sparse deep belief network (DBN) for structural damage
identification with uncertain and limited data. Vibration characteristics, i.e. natural
frequencies and mode shapes are extracted as the input to the network, while the output
are the damage locations and severities of the structure. DBN is chosen to train the
generated datasets and identify structural damages. Restricted Boltzmann Machines
(RBMs) are used as building blocks to composite a DBN. To further enhance the
capacity of the RBMs, an Arc-tan based sparse constraint is utilized to enable the
hidden units to become sparse. This is achieved by adding an Arc-tan norm constraint
on the whole of the hidden units’ activation probabilities. Numerical and experimental
studies are conducted to verify the accuracy and performance of the proposed method.
Undetermined damage identification is conducted, in which the quantity of input modal
data is less than that of the system parameters to be identified. The identification results
show that the proposed sparse DBN based on Arc-tan can identify the damage
effectively and its accuracy is better than those obtained by other methods, even when
the modelling uncertainty and the measurement noise exist, and only limited data is

available.

5.1 Introduction
Structures could accumulate damage during the ongoing in-service period, due to

various reasons, such as unexpected extreme loading scenarios such as earthquake,

“This chapter was published in Structural Control & Health Monitoring with the full
bibliographic citation as follows: Ding, Z., Li, J., & Hao, H. (2020). Structural damage
identification by sparse deep belief neural network using uncertain and limited data. Structural
Control & Health Monitoring,27(5), €2522. https://doi.org/10.1002/stc.2522.
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blast and impact, material strength deterioration and fatigue, etc. If these structural
damages cannot be inspected and quantified timely, it might lead to catastrophic
failures of structures. Therefore, detecting structural damage at an early stage is
necessary and important for infrastructure condition monitoring, maintenance planning
and asset management. Numerous vibration-based methods have been developed in the
past several decades for structural health monitoring and damage detection (Farrar &
Worden, 2007; Fan & Qiao, 2011).

Beskhyroun et al. (2010) used a wavelet-based technique to extract representative
vibration signals and then these signals were applied for damage identification. Yuen et
al. (2004) utilized the modal data and the Markov chain Monte Carlo simulation
algorithm to identify damages for the ASCE-IASC four storey benchmark structure.
Later, Chatzielefttheriou and Lagaros (2017) proposed a new two-loop trajectory
method to conduct damage identification. Furthermore, the spectral density method
(Pedram et al., 2016), the Bayesian method (Yuen & Ortiz, 2018; Uzun et al., 2019;
Zhang et al., 2016, Yuen et al., 2002; Yuen et al., 2006; Hu et al., 2018) and the Kalman
filter (Yan et al., 2017) have been respectively employed in the vibration-based
structural identification.

From the prospective of mathematics, structural damage identification can be
formulated as a pattern recognition problem. Therefore, optimization methods have
gained a significant amount of attention in this field. Farshadi et al. (2017) utilized the
least square method for damage identification, in which the objective function was
formulated based on the incomplete frequency response function. Esfandiari (2017)
developed an innovative sensitivity-based method for structural model updating using
the modal data. Then this method was successfully applied to a plane truss and a frame
structure. Hu et al. (2017) developed an extended constitutive relative error (ECRE)
based method for damage identification and the efficiency of this method was
demonstrated on a scaled two-story steel frame. More recently, Lu and Wang (2017)
developed the enhanced response sensitivity method by using the trust-region
algorithm, in which the concrete convergence analysis was conducted to ensure the

performance of the enhanced sensitivity method. Other optimization techniques, such

127



as the Homotopy algorithm (Hu et al., 2017), the minimum constitutive error method
(Guo et al., 2018) and the gradient-based method (Aquino et al, 2019), have been
developed for structural damage identification. However, the above-mentioned methods
usually require a good initial value and the gradient information. Difficulties also arise
when using these methods for the identification of large-scale structures with few
available measurement data. In addition, uncertainties inevitably exist in the finite
element modelling and damage identification process, i.e. finite element modelling
errors, measurement noises and uncertain environmental effects, which restricts the
practical applications of these traditional optimization methods for civil engineering
problems.

On the other hand, Artificial Intelligence (Al) and swarm intelligence methods can
be used to overcome the abovementioned drawbacks, since they can learn and make
predictions via data instead of the explicit formulations. These methods have the potentials
to perform well in identifying structural parameters, even when uncertainties are considered.
Many studies by using heuristic algorithms and Artificial Neural Networks (ANN), have
been conducted for structural damage identification. Ding et al. (2019a) adopted Tree
Seeds Algorithm (TSA) to identify structural damages with uncertainties based on
frequency-domain data. Later, Ding et al. (2019b) used Jaya algorithm to conduct
damage identification, in which the objective function is modified by using sparse
regularization technique and Bayesian inference. Kang et al. (2012) proposed an
improved Particle Swarm Optimizer (PSO) to identify structural parameters with and
without considering noise contamination in the measurement data. In addition, Ni et al.
(1999) proposed a structural damage identification approach by utilizing the Back-propagate
(BP) neural network and concluded that using the noise-polluted samples to train the
experimental data would acquire better identification results. Jiang et al. (2011) developed a
two-stage structural damage identification method based on fuzzy neural networks, in which
structural dynamic responses were used as the input to complete the rough assessment. Then
the fusion center data was employed as the input and the final decision was obtained by
filtering the result with a threshold function. Hence a refined structural damage assessment

with a superior reliability was achieved. Xu et al. (2019) proposed an improved Faster
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Region-based Convolutional Neural Network (Faster R-CNN) for the multi-type seismic
damage identification and localization of reinforced concrete columns from images.
Khodabandehlou et al. (2019) used a two-dimensional CNN combined with time domain
data to conduct damage identification of a highway bridge. In addition, Modarres et al.
(2018) also utilized CNN and images to identify damage types and demonstrated that CNN
outperformed several other machine learning methods in identifying damage type.
Furthermore, Padil et al. (2017) developed a non-probabilistic ANN to perform
structural damage identification considering system uncertainties. Pathirage et al. (2018)
proposed the deep auto-encoder neural networks to identify structural damage, in which the
first several natural frequencies and mode shapes were employed as the input and structural
damage locations and severities were identified as the output.

Although successful identifications and applications have been achieved by using the
abovementioned methods, challenges still exist. The modelling uncertainties are not
considered in the studies (Kang et al., 2012; Ni et al, 1999; Jiang et al., 2011; Xu et al.,
2019) , however, they inevitably exist in real applications. Furthermore, when the input data
(frequencies and mode shapes) are polluted by the white noise, the identification accuracy is
greatly affected (Kang et al., 2012). For the ANN methods (Ni et al., 1999; Jiang et al., 2011,
Padil et al., 2017), their weights relevant to the mapping functions act as a critical role in
determining the accuracy and performance of the networks, but these weighting parameters
are difficult to obtain accurately for the real applications when significant measurement
noise and uncertainties are included in the data. It is well-known that the gradient descent
algorithm is one of the most commonly used algorithms for training the neural networks.
Nevertheless, when using these algorithms to train the samples, it might suffer gradient
vanishing problem, especially when the number of the network’s hidden layers is large.
Therefore, an auto-encoder based framework was proposed (Pathirage et al., 2018) to
improve the networks with deep architecture and more hidden layers. It should be noted that
when using this method to conduct damage identification, a sufficient number of input
modal data are used. In practice, it could be difficult to obtain a large number of modal
parameters for the damage identification of large-scale structures. Therefore, investigating

new approaches that require a limited number of modal data for effective identification is of
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significant importance. It is noted that, when the number of the input modal data is less than
the number of parameters to be identified, the identification becomes a more complex
undetermined inverse problem.

Aiming at addressing drawbacks existed in the abovementioned methods, the Deep
Belief Network (DBN), a type of new networks in the deep learning field, is employed to
conduct the undetermined structural damage identification, by considering uncertainties and
using a limited number of modal data less than the parameters to be identified. Based on the
DBN’s algorithmic structure, it is equipped with the potential to overcome the shortcomings
mentioned in the general ANN. This is because the DBN contains several Restricted
Boltzmann Machines (RBMs), which is a probabilistic generative model and can be used to
extract the features of training samples effectively, providing reliable initial weights and bias
for the following training.

To enhance the performance of the DBN, this study mainly concentrates on introducing
the sparse technique to improve the standard network. The principle behind this
modification is to simulate the humans’ visionary system. When a person uses his eyes to
recognize images, sparse visionary neurons are activated (Wu et al., 1992). Some existing
results in the image process field demonstrate that the sparse technique is capable of
eliminating redundant information and noise (Ji et al., 2014). Inspired by this feature, the
sparse technique is applied to modify the standard DBN. In order to stimulate the network’s
sparseness better than that in an existing study (Ji et al., 2014), a more reasonable function,
that is Arctangent (termed as Arc-tan) (Luo, 2017), is applied to achieve this goal.
Specifically, it explicitly encourages the hidden units in the RBMs to be sparse via adding a
sparse constraint on the totality of the hidden units’ activation probabilities, forming a
modified version of the DBN. The modified DBN could show more sparseness when
referring to hidden units’ activation. Furthermore, the modification is based on the
Arctangent function, therefore the modified DBN is also termed as Arc-tan DBN in this
article.

To validate the performance of using the proposed Act-tan DBN for structural damage
identification, a three-dimensional truss and a steel frame structure are employed as the

numerical example and the laboratory model for verifications. In the numerical studies, 1%
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stiffness variations are introduced into the elemental stiffness parameters to simulate
the uncertainty in the finite element modelling (Pathirage et al., 2018). A limited
number of modal data, which is less than that of system parameters to be identified, are
used as the input to the networks. Final identification results show that the proposed
Arc-tan DBN has a good robustness and can obtain better results of undetermined

structural damage identification than other existing methods.

5.2 Structural damage model

Alterations in structural system parameters, i.e. stiffness, mass and damping,
introduce the changes in structural vibration characteristics. Conversely, these changes
can be used to identify the structural damages. Vibration properties, such as natural
frequencies and mode shapes, etc., of a structure without considering the damping are

obtained through conducting the eigenvalue analysis

(K-o'™)-®, =0 (5.1
where K and M denote the system stiffness and mass matrices, respectively. o,

and @, represent the ith natural frequency and the corresponding mode shape.

In this article, structural damage is assumed to be only related to the stiffness

reduction. Therefore, the damage of a structure can be expressed by a series of scalar

variables for every element o, (i=1,2,...,nel) with the value ranged from 0 to 1,
K,=>"(-a)k, (5.2)
where k_ denotes the itk elemental stiffness matrix under the undamaged state; nel
is the total number of elements of a structure; K, means the structural stiffness matrix
under the damaged state; ¢, denotes the elemental stiffness reduction parameter (also
termed as ‘damage index’) to be identified. It shall be noted that «, =1 implies that

this element is totally damaged, and «, =0 means that the element is intact.

5.3 Sparse Deep Belief Network
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5.3.1 Restricted Boltzmann Machine
Restricted Boltzmann Machine (RBM) is a generative stochastic artificial neural

network that can learn a probability distribution over its set of inputs. Its probability

distribution is controlled by an energy function E, with the parameter setting A ={W,b,c}

By == ey, =S =3 Y vhw, (5.3)

=l j=1

where v, denotes the binary state of the visible unit i; h, represents the binary state
of the hidden unit j ; ¢, represents the bias weight of v ; b  denotes the
corresponding bias weight of /4 ; w, is the collection weight of the hidden layer #,

and the visionary layer v,; m and n denote the total number of the visible and
hidden units, respectively; and A represents the model parameter of the RBM.

Based on the energy function in Eq. (5.3), the joint probability of the state (v,#4)

can be calculated as
PO 2) =€ [2(2) (5.4)

z(A)= Ze’m’hm (5.5)

(v.h)

where z denotes a partition function defined in Eq. (5.5), which enables that the sum
of probability distribution in Eq. (5.4) equals to 1. Given the training samples, training
the RBM means adjusting the model parameter A . Specifically, it can be found from
Eq. (5.5) that the decrease or increase of the likelihood of the data v can be achieved
by changing the model parameter A.

Due to RBM’s feature that there is no intra-layer collections, the activation

probability of the hidden unit h_/. can be calculated based on the visible units as
follows,

p(h =11v:2) =0 (b, + 3 vw,) (5.6)
where a(x)zﬁ. In Eq. (5.6), the activation probability of /4, is determined by

the transvection of training data v, and the weight w,. The bigger the transvection is,
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the larger the activation probability of the 74, is.

Since the structure of RBM is symmetric, the activation probability of the visible

unit v, is decided by the hidden units as follow
pO, =1l ) =o(c,+ Y hw) (5.7)

From Egs. (5.6) and (5.7), with the visible unit v, p(h |v) can be calculated

and used to determine the state of the hidden units. Then new visible states v' are
obtained through Eq. (5.7). If v" is similar as or equal to Vv, the hidden units could
be viewed as a “reconstruction” of the visible units. Therefore the RBM has the
feature-selection ability.

The log probability of the training data, given the model parameter A , is

expressed as
log p(v;A)=log D, p(v,h; 1) (5.8)

The purpose of training the RBM is to fit the training samples by adjusting the

model parameter A, as mentioned above. In order to acquire the best A4 , it is feasible

to apply the gradient method. Conducting the partial derivative of log p(v;4) with

respect to system parameter set A yields

dlog (v;4) B

. —Z @ )8E(v, ,/1)+Z (v 1y 2ECm ) (5.9)

oA

From Eq. (5.9), it can be found that the second term is difficult to obtain, since it

is relevant to the joint probability of the visible and hidden units. To obtain the joint

probability, the specific distribution of z(A4) ought to be known in advance, which is

however fairly tough to obtain. To overcome this drawback, the Contrastive Divergence
(CD) method (Luo, 2017; Lin et al., 2016) has been introduced. When using CD
method, only several Gibbs sampling steps are required to approximate the gradient
information. Therefore, based on the CD method, the complex derivation process in Eq.
(5.9) could be replaced by Eq. (5.10) and it has been demonstrated in previous studies

that such operation is reasonable and effective (Hinton et al., 2016).
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where 7 denotes the step-size; <>,  represents that the probability distribution of

pth|v;A) and <>__  denotes the expectation with respect to the model distribution.

5.3.2 Deep Belief Network

DBN is a probabilistic generative graphical model, or can be called as a class of deep
neural networks, which includes several hidden layers. DBN can be considered as a stack of
RBM networks, where the hidden layer of each subnetwork is severed as the visible layer

for the next. Therefore, as shown in Figure 1, there are [/ layers in a DBN, which are

trained by / RBMs. The parameters of the first RBM, which are composed by x, and

h, in Figure 5-1, are trained based on the observed data x, . For the following layers, the

1

greedy learning algorithm is employed to train the network, with the corresponding input
defined as the activation of the hidden layer in the previous subnetwork.

A composite model is developed by using the stacked RBMs, as shown in Figure 5-1.
The top two layers are defined as the RBM, and the lower one a direct belief net (Hinton et
al., 2016). This hybrid model is named after DBN, with the probability function calculated

as

PObBt) = plh )y )] b [h,) (5-11)
where x, denotes the observed data and p(h,  |h,) denotes the conditional probability of
h,, given h,. p(h, ,h,) is the joint probabilistic distribution, which can also be viewed

as a RBM’s probability distribution with the visible unit h, , and the hidden unit h, .
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Figure 5-1 The architecture of the proposed DBN.

The training process for DBN is to learn the joint probabilistic distribution

p(x,h h,,..h, ). However, the difficulty of this model lays on the post model probability
p(h, |h,), which is unable to calculate. According to reference (Hinton et al., 2016), this

post probability can be approximated as Q(h, |h, ), which is defined in the RBM and can

be calculated by using Eq. (5-7). The whole training process contains two stages. The first
stage, namely ‘pre-training’, is based on the greedy algorithm to obtain the initial value. The
second stage is called ‘Fine-tuning’, which generally utilizes the supervised algorithm to

obtain the final network parameters. The greedy algorithm is a type of unsupervised

algorithm, which uses the sampling data to train the first RBM (data x and h, composed

in the first RBM). Then the parameters of the first RBM are utilized to initialize the first
layer’s parameters of the DBN. The input for the first RBM is calculated for the DBN based
on O(h |x,). The newly calculated output will be employed as the input for the next layer
until completing L layers. Then a fine-tuning mechanism is introduced, in which the BP
network is employed to obtain the final systematic parameters. Therefore, it can be found
out that, compared with the random initialization of the traditional ANN, the RBM enables

the DBN with a good initial value and thus guarantees a better performance.
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5.3.3 Sparse RBM based on Arc-tan

It has been reported in existing studies on the mammalian brain that only few neurons
were activated when given a stimulation (Ji et al.,, 2014). Namely, an event could be
encoded by a few neurons. Based on this evidence, extending the sparsity into machine

learning algorithms becomes popular. In the sparse encoding (Hinton et al., 2006; Donoho,

2006), the L, norm as the quantity of non-zero elements in a vector is usually used to
achieve the sparsity. However, the L, norm is non-convex and the optimization belongs to

a Non-deterministic Polynomial-time (NP)-hard problem, that is, directly optimizing the L,
norm is very difficult (Lee et al., 2007). To overcome this issue, in this study, a smooth

function, that is Arc-tan (Salehani et al., 2014), is used to approach the L, norm, which is
given as
f(e,x)= zzarctan(ﬁ) (5.12)
=4 &g
where n denotes the dimension number of x with 0<e<l, 0<x <I. It is obvious

that when & approaches zero, the proposed Arc-tan function is the closest to the L, norm,

as shown in Figure 5-2. Compared with using the L, norm and the Log-sum norm (Ji et al.,

2014), the used Arc-tan norm is more reasonable and rational, since the shape of Arc-tan

function is more similar to the L, norm. It is relatively easy to compute the gradient

information of the Arc-tan function. Furthermore, the Arc-tan norm is directly utilized to
control the activation probability of the hidden units. The specific Arc-tan based penalty

item is defined as

Rzii%arctanﬂEx(h,’ [v)|/€) (5.13)

=l j=l
where Ex(-) represents the conditional expectations given m  training samples, &

denotes the total number of the hidden units, & is the hyper-parameter that controls the

similarity between the Arc-tan norm and the L, norm.
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Figure 5-2 Demonstration of the functions used for approximating the L; norm, the Log-sum

norm and the proposed Arc-tan norm with a hyper-parameter &=0.01.

In order to achieve the sparse representation, it ought to maximize the log likelihood
function as well as the Arc-tan norm. Therefore, given the m sample data, the objective

function to be optimized in the Arc-tan based RBM is given as below

. N Lo 2
A= arggnaxglog(v,,ﬂ,)—r;;;arctanﬂ Et/|v)|/¢e) (5.14)
in which
E(h/|v)=pHh;=0]v,)-0+p(hj=1|v)=p(h/=1]v,) (5.15)
p(h/ =1|v)=0(c, +Zv;w‘_,) (5.16)
where 7 is a regularization parameter, reflecting the important relationship between the

data distribution and the regularization (penalty) term. From Eq. (5.14), it is clear that the
learning process for the Arc-tan based RBM is to maximize the likelihood and minimize the
penalty term. With the introduced penalty term, the structure of the standard RBM is not
altered. Therefore it is still effective to use the previous CDs method to optimize the

likelihood part in the objective function, as shown in Eq. (5.14).
Algorithm 1 CD algorithm of parameters updating for the Arc-tan RBM for one epoch and one
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sample

1. Update the parameters using CDs learning scheme as below

Wij A wij + 77 : (< Vih_, >du|a —< v:hj >|‘Cc(\n)

bz <~ bl + 77 : (< vr >dala —<v >recon)

i

c/ <_c/ +’7 .(< hj >da|a —< h >recon)

J

where 77 is a learning rate, and <-> is an expectation over the reconstructive data, which

recon

is estimated with one iteration of Gibbs sampling.

2. Update the parameter ¢, via using Eq. (5-16).

3. Repeat Step 1 and Step 2 until the maximum epoch is reached.

The specific procedure of solving Eq. (5.14) is described as follows: Firstly, the CDs
method is used to update the model parameters. Secondly, the gradient descent algorithm is

used to calculate the penalty term. The gradient of the penalty term is calculated as

0 12 1 _ _
~R=—= ————p/(1-p/)v S 17
ow, e & ey LY (5.17)

Opl2y 1

= — pi(-p 5.18
ac, Y = 1+(p,’/8)2p (A=r) (5.18)

To increase the computational efficiency, when using the gradient descent algorithm to

update the penalty term, it would only need to update the bias c, , since ¢, is directly

related to activate the hidden units (Salehani et al., 2014). The learning process for the

parameters updating of the Arc-tan RBM is summarized in Algorithm 1.

5.3.4 Sparse DBN based on the Arc-tan RBM

As s mentioned above, stacking several RBMs to constitute a DBN is able to extract
more abstract and meaningful characteristics. The proposed novel sparse DBN consists of
several Arc-tan RBMs. Therefore, the proposed DBN in this article is marked as Arc-tan
DBN, as mentioned in introduction. A greedy layer-by-layer training can also be used in the

proposed Arc-tan DBN. Equally, while the bottom Arc-tan RBM is trained, the parameters

w,, ¢, and b, are fixed and the probability of every hidden unit given the data is

i
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calculated by Eq. (5.6). Then these probabilities are employed as the ‘data’ to train the next
layer in the network. This operation could be repeated several times to learn a deep,
hierarchical and sparse model. Once finishing the calculation of several stacked Arc-tan
RBMs, the generated weight coefficients and bias parameters are applied to initialize the
following fine-tune network. The fine-tune network is a BP network with G layers and is
trained via using the conjugate gradient method. In the fine-tune stage, the Mean Squared
Error (MSE) is used to measure the training accuracy of each epoch. Assuming that there are
NoS samples in total in the observed and trained datasets denoted as observed and
trained , the MSE is expressed as

Z (observed , —trained )
oS ‘=

MSE =

(5.19)

5.4 Numerical studies

In this section, the accuracy by using the proposed approach for structural damage
identification is demonstrated with the simulation data generated from a spatial building
frame structure. Two types of uncertainties, including the modeling errors and the

measurement noise are considered in the following numerical studies.

5.4.1 Numerical Model
A 72-element building frame structure as shown in Figure 5-3 is used in numerical

study. The Young’s modulus and mass density of this structure are defined as 210 GPa

and 7800 kg/m’, respectively. Each node has three degrees-of-freedom (DOFs). The 1%,

2nd) 37 and 4™ nodes are constrained by a large stiffness. The cross-section area of each
element is 2.5x107 m’. The first five frequencies and mode shapes are utilized as the input
for the training of the network, while the output is the structural element-level damage
indices. The mode shapes are measured at the 5%, 7%, 9t 11t 13t 15% 17h and 19" nodes,
along the x-axial direction. Considering the data normalization, therefore the quantity of
modal data is 40 in total, which is less than the total number of structural elements, which is
72. That is, the proposed algorithm will be used to perform the undetermined inverse
identification. 1% stiffness variations with Gaussian distribution are introduced into the

elemental stiffness parameters to simulate the uncertainties in the finite element
139



modelling (Pathirage et al., 2018). The standard DBN and the Log-sum DBN are also used

to perform structural damage identification for comparison.

5.4.2 Data generation for training

For the training samples, it is assumed that the damage index for two specific elements
are changed from 0.01, 0.02,..., to 0.3, while the other elements remain intact. 230,040
samples are generated in this example. The input data for the networks are the first five
incomplete modal data while the output is a series of elemental damage indices a .
Regarding the parameter setting for the above-mentioned three networks, namely, standard
DBN, Log-sum DBN and the proposed Arc-tan DBN, these models are trained with 100
visible units and 100 hidden units. All the training samples in the numerical studies are
executed by using CD training algorithm for Arc-tan RBM based on mini-batches of
sizes 20 with two iterations. For the following fine-tuning training, a four layer BP
network is introduced. The mini-batches size is set as 36 and the epoch is set as 2x10°.
Particularly, according to Ref. (Jin et al., 2014), for the Log-sum DBN and the
proposed Arc-tan DBN, the regularization parameter 7 and the hyper parameter ¢
are set as 0.05 and 0.1, respectively. The numerical computations are conducted on a
desktop computer with an Intel 17 8700k processor, 32 GB RAM for parallel computing.
The training time of the DBN, Log-sum DBN, and the proposed Arc-tan DBN last
around 7.8 hours, 7.6 hours, and 7.5 hours, respectively. Basically, the computation
time of these three DBNs are similar and the proposed Arc-tan DBN is slightly fast.

Figure 5-4 shows the activation probabilities of hidden units over the generated
230,040 samples. The quantity of the hidden units of the DBN, the Log-sum DBN and the
proposed Arc-tan DBN, with an activation probability exceeding 0.5, are 30, 26 and 18,
respectively. Furthermore, the proposed Arc-tan DBN has the most hidden units, with an
activation probability lower than 0.1, among the three approaches. Therefore, the proposed

Arc-tan DBN exhibits the sparsity well.
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Figure 5-3 The building structure model used in numerical study.
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Figure 5-4 The activation probability of hidden units for the trained samples:

(a) DBN; (b) Log-sum DBN; (¢) Arc-tan DBN.
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To further illustrate the sparsity of the used three networks for training data samples,
Figure 5-5 is provided, in which the vertical axis is the number of activation times on
training samples for every hidden unit. It is observed that when training the data
samples, the number of activated hidden units based on the proposed Act-tan DBN is
significantly less than those of the standard DBN and the Log-sum DBN. The majority
of hidden units are activated when using the standard DBN, in contrast, a significant
less number of hidden units are activated while utilizing the proposed Arc-tan DBN.
That is to say, nearly all hidden units of the standard DBN act as an important role in
the representation of the data, but only a minority of hidden units in the proposed
Arc-tan DBN are important for the data representation and network training to achieve
a good performance. This further demonstrates that with the assistance of the
introduced modifications, the sparsity of the proposed network has been greatly
enhanced. As mentioned in Section 5.3.3, the principle of introducing the sparsity is to
simulate human’s visionary system, which requires to activate several neurons while
the majority of neurons keep sleep when eyes work (Ji et al., 2012). Therefore, the
Arc-tan DBN would achieve a better network training efficiency and accuracy, due to
its good sparsity feature.

MSE is employed to present the training accuracy. MSE acquired by the standard
DBN, the Log-sum DBN and the proposed Arc-tan DBN are 5.64x10™, 4.33x10~ and
2.87x10™, respectively. This indicates that with the assistance of using the Arc-tan
norm, the fitting performance of the standard DBN has been obviously enhanced. This
also lays the foundation for the following damage identification. To test the
generalization ability of the mentioned three approaches, a variety of damage cases,
including the single damage, two damages and three damages, will be tested.
Furthermore, in order to investigate the influence of noise levels on the identification
results, 2% white noise is added into the frequency and 6% white noise is added into

the mode shapes.
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Figure 5-5 The activation times of each hidden unit on training samples:

(a) Standard DBN; (b) Log-sum DBN; (c) Arc-tan DBN.
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5.4.3 Damage identification results

First, a single minor damage case is considered. It is assumed that there is an 8%

stiffness reduction in the 15" element, which means ¢, =0.08. This damage scenario

is not within the training data set. Figure 5-6 displays the final identification result and
it is clearly observed that these three approaches can locate the damage, but the results
obtained by the proposed Arc-tan DBN are the most accurate. The absolute
identification errors of the 15™ element for the DBN, Log-sum DBN and the Arc-tan
DBN are 0.0107, 0.0157 and 0.0021, respectively. Through comparing these
identification results, the accuracy and robustness of utilizing the proposed Arc-tan
DBN for minor single structural damage detection with uncertainty effects (modelling
errors and measurement noises) are illustrated.

Second, a case with two minor damages is considered. It is assumed that there is a

5% stiffness reduction in the 15t element and a 10% stiffness reduction in the 50™

element, which means «, =0.05 and «,, =0.1. The final identification results based

on these three trained networks are shown in Figure 5-7. It is clear that the proposed
Arc-tan DBN is capable of identifying both locations and extents of preset double small
damages accurately, even the measurement noise and modelling errors are introduced
in the data. The maximum identification absolute errors of the damaged elements based
on the Arc-tan DBN is 0.0071, better than those acquired by the Log-sum DBN (0.0105)
and the standard DBN (0.0201).

The third damage case is that there are a 5% damage in the 1% element and a 45%

damage in the 20" element, which means, «, =0.05 and «, =0.45. This damage

scenario is defined to investigate the performance of identifying a minor damage and a
large damage, which is not within the training data set. The input data are the same as
the previous case. Figure 5-8 shows the final identification results. These three
networks could localize the damages but the proposed Arc-tan DBN is able to obtain
the best identification accuracy. For the damaged elements, the maximum identification
error by using the proposed Arc-tan DBN is 0.0256, better than those obtained by the

Log-sum DBN (0.0356) and the standard DBN (0.0480).
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The forth case includes three damage locations, i.e., a 20% stiffness reduction in

the 1% element, a 30% stiffness reduction in the 25" element, and a 30% stiffness

reduction in the 27" element, which means «, =0.2, «, =03, and «, =0.3. This

damage scenario is defined to investigate the performance of identifying three damages,
which is not within the training data set. Figure 5-9 shows the final identification
results. Similar with the previous three cases, these three networks could localize the
damages but the proposed Arc-tan DBN can obtain the best identification accuracy. For
the damaged elements, the maximum identification error by using the proposed Arc-tan
DBN is 0.0164, again better than those obtained by the Log-sum DBN (0.0211) and the
standard DBN (0.0321).

The above numerical studies and results demonstrate that the proposed Arc-tan DBN
performs better than the standard DBN and the Log-sum DBN in damage identification,

even when the incomplete and uncertain modal data are used.
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Figure 5-6 Identification results for a single minor damage case by using:

(a) Standard DBN; (b) Log-sum DBN; (c) Arc-tan DBN.
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Figure 5-9 Identification results for the case with three damages by using: (a)DBN; (b)

Log-sum DBN; (c) Arc-tan DBN.

5.5 Experimental verification

Laboratory studies on an eight-story shear-type steel frame model are conducted to
verify the performance of the proposed approach. The detailed finite element model is
described in reference (Ni et al., 2018). Figure 5-10 shows the fabricated shear type
steel frame structure. The height and width of the frame structure are 2000 mm and
600 mm , respectively. The floors of this model are simulated by several thick steel
bars with a dimension of 100 mm x 25 mm . Two flat bars of the same cross-section
with a width of 50 mmand a thickness of 5 mm are used as columns. The beams and
columns are welded. The bottom of the frame structural model is welded onto a thick

plate. As regards the material properties, the initial elastic modulus and mass density of

the steel are respectively 200 GPaand 7850 kg/m’.
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Figure 5-10 A eight-storey steel frame model.

Dynamic responses of the structure under a modal hammer impact with a rubber
tip are obtained. Acceleration responses in the lateral direction of all the floors under
the hammer impact are measured. The sampling rate is set as 1024 Hz and the cut-off
frequency range for the band-pass filter is set from 1 Hz to 100 Hz for all the responses.
The initial finite element model is built with eight lumped mass and the

abovementioned material properties.

5.5.1 Initial finite element model updating

To identify structural damage accurately, the initial model updating should be
performed and the updated model is used as the baseline for the following damage
identification. Vibration data from the experimental model under the undamaged state
are used to conduct the model updating by minimizing the discrepancy of some
dynamic properties, such as natural frequencies and mode shapes. In this study, the

first-order sensitivity based method is utilized for modal updating (Lu & Wang, 2017,
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Pathirage et al., 2018). Figure 5-11 presents the first eight measured natural frequencies,
and analytical frequencies before and after updating. The updated frequencies are very
close to the measured ones, indicating that an accurate finite element model is obtained

as the baseline.
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Figure 5-11 Measured and analytical frequencies of the laboratory model before and after

updating.

5.5.2 Data generation for training

Similar as the numerical studies, experimental verification on undetermined
inverse identification is also conducted. Therefore, only the first seven natural
frequencies are applied as the input to the networks, in contrast to the scenario with a
number of modal data used in an existing study (Pathirage et al., 2018). For
convenience, the element is defined to describe the floor/beam of the frame structure.
That is, the 1% element means the first floor/beam of the frame. Multiple damages are
simulated to generate the training datasets based on the above baseline model.
Specifically, the stiffness parameters for arbitrary two elements change from 1, 0.99, ...,
to 0.4, while maintaining the remaining elements undamaged. A total of 100,800

multiple damage cases are generated.
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Figure 5-12 The fitting results on all the elements of the trained and observed samples based on

the proposed Act-tan DBN.

The superiority of the proposed Arc-tan DBN over the standard DBN and the
Log-sum DBN has been illustrated in the numerical studies, therefore only the

proposed Arc-tan DBN is used for the experimental verifications. However, three
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state-of-the-art swarm intelligence algorithms are introduced for the comparison
purpose. Regarding the parameter setting for the proposed Arc-tan DBN, the network
model is trained with 100 visible units and 100 hidden units. All the training sample
datasets in the experimental verification are executed by using CD training algorithm
for the RBM based on mini-batches of sizes 20 with one iteration. After training the
RBMs, the weighting parameters would be transmitted to initialize the following used
four layers BP network. The batch-size is set as 56 and the epoch is set as 5000. The
regularization constant 7 and the sparse constant & are set as 0.01 and 0.1,
respectively, based on studies on optimal parameter selection in sparse regularization
(Ji et al., 2014). The computations for experimental verifications are conducted on a
desktop computer with an Intel 17 8700k processor, 32 GB RAM for parallel computing.
The whole training time lasts around 1.5 hours.

MSE value obtained by the proposed Arc-tan DBN in this experimental study is
3.53x107*. Figure 5-12 shows the fitted results from the 1% element to the 8" element
of the observed and trained samples based on the proposed Arc-tan DBN. It is clearly
observed that the trained samples are close to the observed ones. Such good agreements
indicate the satisfactory training process by using the Arc-tan DBN is achieved. Then
the trained networks are used for the following single and multiple damage
identification. However, it ought to be noted that in reference (Pathirage et al., 2018),
single damage scenarios are particularly designed to train the networks for identifying

the single damage.

5.5.3 Damage identification results

Two realistic damage cases are introduced to the laboratory steel frame model and
vibration tests are conducted. The measured natural frequencies are used as the input to
the trained networks to test the accuracy of the proposed approach. In Case 1, a single
damage is considered, which is introduced with a 20% reduction of the equivalent
stiffness in the 2" element. In Case 2, multiple damages are introduced, that is, besides
the damage in Case 1, another damage is introduced with 10% stiffness reduction in the
7% element (Ni et al., 2018).

After training and validating the designed Arc-tan DBN, the first seven
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frequencies from the above two damage cases are employed as the input to identify
structural damages. Figures 5-13(a) and (b) present the final identification results. It
should be noted that the single damage case is not included in the training datasets. For
Case 1, the developed Arc-tan DBN can localize and quantify the damage accurately,
although only one very minor error alarm is observed in the 7" element with the
damage index value less than 0.01. The absolute identification error for the 2" element
is 0.0023. For Case 2, two introduced damages are identified accurately and the
absolute identification errors for the 2™ and 7™ elements are 0.0051 and 0.0137,

respectively.
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Figure 5-13 Identification results based on the Arc-tan DBN: (a) Single damage case; (b)

Multiple damages case.

5.5.4 Comparisons with swarm intelligence methods

Three state-of-the-art swarm intelligence methods, including the Gbest-guided
Artificial Bee Colony algorithm (GABC) (Zhu & Kwong, 2010), the Modified
Differential Evolutionary algorithm (MDE) (Du et al., 2017) and the Jaya algorithm
(Du et al.,, 2018), are used for structural damage identification with the same

measurement data, for demonstration of the effectiveness of the proposed method. To
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ensure the fair comparison between different methods, only the first seven natural

frequencies are used to build up the objective function, which is expressed as

measured |

7o -
fw=3 (5:20)
1

where @' represents the /th calculated natural frequency and @™ denotes the

1

Ith measured frequency. The abovementioned swarm intelligence methods are used to
optimize the objective function.

Regarding the common parameters setting, the colony size is CS =50 and the
maximum iteration number is 200. Specifically, for GABC, the controlling parameter
‘limit’ is set as 200 according to reference (Karaboga & Gorkemi, 2014). For MDE, the

threshold value and mutation rate are set as 0.1 and 0.4, respectively, and the mutation
constant is a random number locating between [0.4,0.9] . These special parameter
settings are the same as those in previous studies (Du et al., 2017). Each damage case is

identified with 20 independent runs, and the mean values are employed as the final

identification results.
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Figure 5-14 The iteration processes of all damage indices based on swarm intelligence methods

for Case 2: (a) GABC; (b) MDE; (c) Jaya.
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Figures 5-14(a), (b) and (c) provide the iteration process of all damage indices of
Case 2, by using GABC, MDE and Jaya algorithm respectively. It is observed that
when the maximum iteration number is reached, all the damage indices obtained by
using these three algorithms almost acquire the same identification results. The

difference is reflected through their different convergence rates.
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Figure 5-15 Identification results by using three swarm intelligence methods and the Arc-tan

DBN: (a) Single damage case; (b) Multiple damages case.

The final identification results for Cases 1 and 2 based on the three algorithms are
shown in Figures 5-15(a) and (b). It should be noted that only seven natural frequencies
are used as input, and this is an undetermined inverse problem. It is clearly observed
that, for the single damage case, these three algorithms obtain more significant false
identifications, i.e. around 3% in the 5" element. Furthermore, for Case 2 with multiple
damages, these three algorithms could not localize the damages accurately, since three
false positives are observed in the 3™, 5" and 6™ elements. Comparing the results in
Figure 5-15, the proposed approach based on Arc-tan DBN provides a better
identification accuracy than using these three algorithms. The potential reason can be
explained from the difference of principle between the DBN and swarm intelligence

methods. Generally speaking, when using the swarm intelligence methods to optimize
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the objective function built by the natural frequencies, several obvious false alarms
would occur. This is because the objective function to be optimized is an ill-posed
problem and limited measurement information is provided, which means that small
perturbation would cause significant fluctuations in final identification results (Pan et
al., 2016). There are several ways to address this drawback, such as, introducing the
regularization technique to convert the ill-posed objective function to well-posed one.
It is commonly accepted that structural damages are usually observed at a few locations
(Hou et al., 2018), therefore the damage index should be a sparse vector with most of
its items equal to zero or at least close to zero, except the damaged elements with
non-zero entries. Based on this prior knowledge, regularization technique has been
widely applied in the area of structural damage identification to improve the accuracy
and stability of the solution, especially when performing some relatively difficult
identification problems (Hou et al., 2019; Wang et al.,, 2020). Or combining the
information of mode shape to formulate the objective function (Ding et al., 2016). In
contrast, the DBN basically trains its ‘inference ability’ through learning the data
samples. Therefore, the DBN could achieve better identification results with the
training data and the well-designed networks and used sparse constraints.

In summary, these results demonstrate the superiority of the proposed Arc-tan
DBN, compared with the three state-of-the-art swarm intelligence methods for solving
the undetermined damage identification problem. Meanwhile, these results further
illustrate that the proposed Arc-tan DBN can well identify the structural damages with
uncertainties, since the testing data measured from the experimental model already

include environmental noise and testing uncertainties.

5.6 Conclusions

A new type of deep learning method named Arc-tan DBN is presented for
structural damage identification. To enhance its performance, a sparse penalty term
based on Arc-tan norm is introduced. The undetermined inverse identification is
conducted. The number of input modal data is less than that of the system parameters to
be identified, which increases the complexity and difficulties of structural damage

identification. Numerical simulations on a building structure model and experimental
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studies on a shear-type steel frame structure are carried out to validate the proposed
approach. The conclusions can be given as below:

e With the assistance of the Arc-tan norm, the sparsity representation of the
samples could be clearly observed. The sparsity presentation is beneficial to improve
the fitting performance of the developed networks. The standard DBN, Log-sum DBN
and the proposed Arc-tan DBN can be applied to locate damages, even when the
incomplete modal data with uncertainties are used. It is noted that the accuracy of the
proposed Arc-tan DBN is the best.

e When performing the damage identification of example structures, the proposed
Arc-tan DBN can identify structural damages by using several natural frequencies only,
give better identification results than the swarm intelligence methods, especially when
using them to identify multiple damages.

e In summary, results in the numerical and experimental studies demonstrate that
the proposed Arc-tan DBN is a promising tool to perform structural damage

identification with incomplete modal data.
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CHAPTER 6 NON-PROBABILISTIC METHOD TO CONSIDER
UNCERTAINTIES IN STRUCTURAL DAMAGE IDENTIFICATION
BASED ON HYBRID JAYA AND TREE SEEDS ALGORITHM

ABSTRACT?

This paper proposes a novel non-probabilistic structural damage identification
approach by developing a hybrid swarm intelligence technique based on Jaya and Tree
Seeds Algorithm (TSA), taking into account the high-level uncertainties in the
measurements and finite element modelling. The damage in structure is simulated as
reduction of elemental stiffness, and structural damage identification is formulated as an
optimization problem. To overcome the challenge for structural damage identification with a
limited number of measurement data, an objective function based on the modal data and
sparse regularization technique is defined. To make the optimization algorithm more
powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is
proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is
employed to replace solutions with low-quality objective values in the Jaya algorithm.
Then the search strategy of the TSA is introduced into the best-so-far solution of each
cycle. The proposed hybridization algorithm is termed as “C-Jaya-TSA”. To enhance
the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic
method is also integrated to calculate the interval bound (lower and upper bounds) of
the elemental stiffness changes by using the interval analysis method. To better
quantify the structural damage extents, Damage Measure Index (DMI) values are
introduced for representing structural damage states. The DMI value can be viewed as a
combination of deterministic stiffness reduction and the Possibility of Damage
Existence (PoDE). Numerical benchmark functions, numerical studies and
experimental investigations are conducted to verify the accuracy and performance of
the proposed method. The identification results show that the developed C-Jaya-TSA
integrated with the non-probabilistic interval analysis method is a promising tool to

accurately identify the structural damage, even high-level uncertainties exist.

SDing, Z., Li, J., & Hao, H. (2020). Non-probabilistic method to uncertainty in structural
damage identification based on Hybrid Jaya and Tree Seeds algorithm, Engineering Structures,
220, 110925. https://doi.org/10.1016/j.engstruct.2020.110925.
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6.1 Introduction

Structures might accumulate damage inevitably with the increasing service time, due to
a number of unforeseen reasons, such as material degradation, corrosion, overloading and
fatigue, etc. Therefore, it is necessary to conduct structural health monitoring at an early
stage, which is important to ensure the safety of the structures. Many scholars have
presented numerous methods (Fan & Qiao, 2011; Li & Hao, 2016; Feng et al. 2018) to
perform structural health monitoring by using the vibration response data and vibration
characteristics, such as the acceleration responses, natural frequencies, mode shapes and
flexibility etc. However, these modal data might be affected by environmental effects.
Therefore, removing environmental or operational effects from identified modal data is also
an important research topic in the field of structural health monitoring (Tsogka et al., 2017;
Ubertini et al., 2018). Obtaining a relatively accurate finite element model and vibration
data is usually the premise of conducting reliable vibration based structural damage
identification. It is noted that the calibration of finite element model of civil engineering
structures is not always straightforward because data measured from in-service structures,
especially in the early stage of these structures are often no available. On the other hand,
model updating analysis could be computationally very demanding, especially when the
number of parameters that are updated is large. Thus reducing computational effort for
model updating is also studied (Garcia-Macias et al., 2019).

Structural damage identification can be formulated as an optimization problem by
defining an objective function that is related to structural dynamic properties, which creates
the likelihood to apply classical optimization theories and swarm intelligence methods for
the identification. Lu et al. (2013) used the curvature mode shapes to localize structural
cracks and then applied the sensitivity based method to obtain the crack locations and depth,
respectively. Lin et al. (2017) proposed a novel hybrid sensitivity method for the parameter
identification of axially functionally graded beams, in which the method only required
several natural frequencies and a few number of acceleration responses. However, when
using these traditional optimization methods, good guess of initial values and gradient
information are required. Furthermore, difficulties arise when applying these methods for

the identification of large-scale structures (Pathirage et al., 2018). More recently,
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swarm intelligence methods are developed to perform optimization in damage
identification. The global optimization mechanism of these methods is based on the
data comparison instead of the specific mathematical function. Therefore, these
methods could not only avoid the abovementioned shortcomings in traditional
optimization methods (requiring good initial values and gradient information), but also
enable conducting the damage identification of some complex and large-scale
structures (Ding et al., 2019a). For example, Kang et al. (2012) proposed artificial
immunity mechanism to enhance Particle Swarm Optimization algorithm to conduct
damage identification of a beam and a truss structure. Yu and Li (2014) developed a
novel Global Artificial Fish Swarm (GAFS) algorithm to detect structural damages, in
which the information of best-so-far solution in each cycle is integrated into other
fishes’ updating equation. Alkayem et al. (2019) proposed a Sine-Cosine (SC)
algorithm to identify damages of three-dimensional irregular structures, in which the
objective function was established by using modal strain energy and mode shape
curvature. Tran-Ngoc et al. (2018) compared the performance of using Genetic
Algorithm (GA) and Particle Swarm Optimizer (PSO) for model updating of a real
bridge and concluded that PSO not only offers a better accuracy between the numerical
model and measurements, but also reduces the computational cost compared to GA.
Jahangiri et al. (2019) proposed using the Most Valuable Player (MVP) algorithm to
perform structural damage identification, in which the objective function, termed as
‘Relative Discrepancy Function’, is built by the first natural frequency and mode shape.
In addition, the Jaya algorithm (Ding et al., 2019b), the Monkey algorithm (MA) (Yi et
al., 2012), the Modified Differential Evolutionary (MDE) algorithm (Du et al., 2017)
and the Tree Seeds Algorithm (TSA) (Ding et al., 2019) are demonstrated to perform
well in structural damage identification. Through the above studies, it is demonstrated
that the swarm intelligence methods are promising tools in performing damage
identification, however, challenges still exist, such as, A): In some studies (Lu et al.,
2013; Lin et al., 2017; Pathirage et al., 2018; Ding et al., 2019a; Kang et al., 2012; Yu
& Li, 2014; Alkayem et al., 2019; Jahangiri et al., 2019;Ding et al., 2019b), the

structures used for numerical investigations are relatively simple, namely, the condition
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number of the global stiffness matrix is maintained at a relatively low level. This means
that dynamic properties of the structure are relatively not easily affected by alterations
of stiffness and numerical calculation errors, therefore identifying damages of the
simple structures might be relatively easy. Furthermore, numerical examples on beams
and plates are quite common while identifying the damage of large scale civil
structures is more challenging; B): In many previous studies (Ding et al., 2019a; Kang
et al.,, 2012; Yu & Li, 2014; Alkayem et al., 2019; Du et al.,, 2017), damage
identification is commonly considered as an over-determined inverse problem with a
sufficient amount of measurement information, even with full modal data, for
identification of some extreme cases. In practice, only a limited number of sensors are
usually installed on large-scale structures and it is a common issue that the number of
available measurements, such as natural frequencies and mode shapes, is less than that
of the unknown parameters to be identified; C): Uncertainties in measurements and
finite element models inevitably exist. However, when considering distinct
uncertainties in vibration data, the identification accuracy would be greatly affected.
Furthermore, in most studies (Lu et al., 2013; Lin et al., 2017; Pathirage et al., 2018;
Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019; Tran-Ngoc
et al, 2018; Jahangiri et al., 2019; Ding et al., 2019b;, Yi et al., 2012; Du et al., 2017)
the way of modelling uncertainties is realized through assuming certain distributions
(i.e. uniform or Gaussian distributions).

For addressing the above mentioned challenge A, in this study, the Guangzhou
new TV tower is modelled as an example in numerical investigations. Compared with
some relatively traditional numerical example structures, including beams and plates,
the Guangzhou new TV tower is more complex and the inverse problem is more
difficult, since the condition number of the global stiffness matrix of the Guangzhou
new TV is significantly larger than that of some simple structures, e.g. beam structures
in existing studies (Lu et al., 2013; Lin et al., 2017). The large condition number of the
inverse problem of the Guangzhou new TV tower stems from its finite element
modeling process, which is based on many assumptions that may not well represent the

realistic conditions. The larger the condition number is, the more difficult of the
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inverse problem is to certain extent. Therefore, it is desirable to develop more powerful
evolutionary algorithms to perform the identification of complex civil engineering
structures. Developing hybrid evolutionary algorithms is one of promising ways to
overcome this challenge. The hybridization algorithms are developed to improve the
global optimization performance by integrating at least two different swarm
intelligence methods. A good combination would generate the cooperative effect and
enhance the algorithm’s global optimization ability. Ding et al. (2018) introduced the
search strategy of the Cuckoo Search Algorithm into the onlooker bee phase of the
standard Artificial Bee Colony (ABC) algorithm and then applied the hybrid algorithm
to identify the chaotic systems’ parameters. Ghanem and Janta (2018) proposed a
hybridization of ABC and Dragonfly Algorithm (DA), in which the first stage is
performed for the global search (DA phase), the second stage for the local search
(onlooker bee phase of the ABC) and the third stage with a modified scout bee phase
implemented. Jadon et al. (2017) constructed a hybrid algorithm of the ABC and
Differential Evolutionary (DE), in which the onlooker bee phase of the ABC was
modified by the DE search mechanism. Senel et al. (2019) developed a new hybrid
algorithm based on the PSO and Grey Wolf Optimizer (GWQO). These two methods are
combined by replacing a particle of the PSO of a low-quality objective value with a
particle that is partially modified by the GWO. In addition, the hybridizations of the
Cuckoo Search and the Gravitation Search Algorithm (GSA) (Naik et al., 2015), the
ABC and the Bat Algorithm (BA) (Ghosh et al., 2019) and the ABC and the GA
(Pramanik & Malti, 2019) are respectively presented. Basically, these hybrid
algorithms show better global optimization ability compared with using the single
algorithm. However, using the hybrid algorithm would introduce more controlling
parameters, which could increase the complexity of the algorithm. Therefore, two
emerging swarm intelligence algorithms, named as Jaya (Rao, 2016; Ding et al., 2019b)
and TSA (Ding et al., 2019a), would be smart choices for conducting hybridization.
Jaya and TSA have simple algorithmic structures but relatively strong optimization
ability, which have been successfully applied for damage identification of some simple

structures, i.e. beam and truss structures. It ought to be noted that there is no

164



controlling parameters in the Jaya algorithm. Therefore, conducting hybridization of
these two algorithms has some advantages in terms of the algorithm’s complexity.

For addressing the challenge B, namely, using incomplete modal data to perform
the identification of relatively complex structures, one approach is to formulate an
objective function based on sparse regularization technique. A sparse penalty constraint
is introduced in the objective function with the sparse regularization technique. The
principle of applying the sparse regularization for damage identification is based on the
fact that damages are often observed at a few locations while the majority of elements
remain intact (Zhou et al., 2015). In addition, the traditional modal data based objective
function (Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019;
Tran-Ngoc et al., 2018; Jahangiri et al. 2019) are usually ill-posed, and the inverse
problem could be undetermined with a limited number of measured modal information.
The sparse regularization constraint on the structural damage identification can be
applied to overcome the ill-posedness in the undetermined inverse problems.

For addressing the challenge C, a new way of generating the uncertainties is
introduced (Padil et al., 2017). Specifically, the measurement noises in the frequencies
and mode shapes as well as the finite element modeling errors are considered to be
coupled instead of statistically independent. To make the whole identification process
more robust to uncertainties, one traditional method is to assume the uncertainties as
normally distributed random variables (Beck et al., 1999; Yuen & Katafygiotis, 2003).
In reality, however, the probabilistic approaches are less straightforward since it is very
difficult and unrealistic to acquire unbiased probabilistic distributions of uncertainties
(Padil et al., 2017). Furthermore, if introducing probabilistic models into the swarm
intelligence methods, the method would need significant computational demand.
Therefore, a non-probabilistic method is used to model the effect of uncertainties.
Specifically, a non-probabilistic method based on interval analysis is applied to
calculate the interval bound (lower and upper bounds) of the modal data, which can be
used as the input to obtain each elemental stiffness’s upper and lower bounds (Wang et
al., 2008). To establish the relationship between the input parameters (modal data with

uncertainties) and the output parameters (stiffness reductions), an indicator called
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Damage Measure Index (DMI) is defined for the undamaged and damaged status.
Introducing the DMI values to quantify structural damages would greatly enhance the
robustness of the proposed method to uncertainties (Wang et al., 2014).

Aiming at solving the above-mentioned three challenges, this paper proposes a
hybrid algorithm based on Jaya and TSA, termed as Hybrid C-Jaya-TSA, to conduct
structural damage identification by using vibration measurement data. To enhance the
identification performance with incomplete modal data, a new objective function is
proposed by using the penalty items with the sparse regularization. To enhance the
robustness of the hybrid algorithm to uncertainties, DMI is introduced. Classical
mathematical benchmarks are used to verify the accuracy and effectiveness of the
proposed hybrid algorithm. Numerical investigations on the Guangzhou new TV tower
and a benchmark structure are performed to demonstrate the identification accuracy of
the developed algorithm with the use of the non-probabilistic method to consider the
uncertainty effect. Experimental validations on a cantilever beam are also conducted to

show the effectiveness and performance of the proposed method.

6.2 Theoretical background

Alterations of structural physical parameters, such as stiffness and damping, will
introduce the change in vibration properties. Conversely, such change can be used to
conduct damage identification of structures. The frequencies and mode shapes of a
structure without considering the damping, could be obtained by conducting the

eigenvalue analysis,

(K-o'M)-® =0 (6.1)
where K and M represent the global stiffness and mass matrices, respectively; o,

and @, denote the ith natural frequency and the corresponding mode shape,

respectively.
In this study, structural damage is assumed to be only related to the stiffness
reduction, since the mass alteration of a structure could be easily inspected (Ding et al.,

2019a). Therefore, structural damages could be featured by a series of scalar variables
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for all the element «,(h=12,...,Nel) (also called as the element stiffness parameter)

with a value between O and 1. The stiffness matrix of the damaged structure is

expressed as follows
K,=> "a,k, (6.2)
where k_, denotes the hth elemental stiffness matrix under the undamaged status;

Nel 1is the total number of elements; Kq denotes the structural stiffness matrix under

the damaged status; «, is the element stiffness parameter to be identified. It is noted

that o, =1 means that this element is intact, and «, =0 means that the element is
completely damaged. The element Stiffness Reduction Factor (SRF) is calculated as
SRF, =1-a, (6.3)
SRF is used to characterize structural damages.
The objective function is defined based on the changes of natural frequencies and
Modal Assurance Criterion (MAC) as well as the L, sparse regularization norm (Xu
et al., 2010), which can be given as

' =argmin f(a) =argmin(}_ A+ (1-MAC)+A|1-al,) (6.4)

with
A@:'“’f;f"f (6.5)
a)i
c =@ D) (6.6)
| @; Il @} |

where a denotes a vector that contains all damage parameters and must be identified;
o' and @; represent the ith calculated natural frequency and mode shape from the

m

finite element analysis, respectively; ®" and ®; are the corresponding measured

natural frequency and mode shape; NF and NM represent the order numbers of
natural frequencies and mode shapes, respectively. Regarding the sparse regularization
term, as mentioned above, this is because the damage identification could be treated as
an ill-posed problem with the searching parameter space that may have multiple local
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optimal points (Titurus & Friswell, 2008). Using the sparse regularization technique

can make the ill-posed problem a well-conditioned one (Sun & Betti, 2015).

Furthermore, the L, norm is introduced in the study. Compared with the L norm,

this type of norm is closer to the L, norm and is more suitable to simulate the
sparseness (Xu et al., 2010). A is termed as the regularization parameter, which plays

an important role in determining the participation extent of the L,, norm in the

0.5

objective function. When the input modal data is not polluted by the artificial noise, it
ought to be noted that by using the regularization term, the global objective function
value will not be zero and should be a value that is related with the regularization term.
With the above objective function, evolutionary algorithms can be used to perform the

optimization and damage identification results are obtained.

6.3 Hybrid algorithm: Hybrid C-Jaya-TSA

In this section, the proposed hybrid algorithm, namely Hybrid C-Jaya-TSA, is
elaborated in details. Jaya and TSA are briefly introduced first. Then the development
of the proposed hybrid algorithm will be described, and the innovations will be

highlighted.

6.3.1 Jaya algorithm

The Jaya algorithm (Rao, 2016) is an emerging heuristic algorithm, inspired by the
concept that the feasible solution acquired for a given problem should move towards
the best solution while avoid the worst solution. That is, the way of creating the
offspring of a solution is relevant to the best-so-far solution and the worst-so-far
solution in each cycle. Afterwards, comparisons will be made between the offspring
and the previous solution. The solution with a better objective function value will be
survived, which is called as ‘Greedy Selection Mechanism’. Gradually, the whole
colony will become victories via approaching to the best solution and therefore it is
named after Jaya (a Sanskrit word meaning victory). The procedure of the Jaya

algorithm mainly involves three steps, namely, the initialization, the local search
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strategy and the greedy selection mechanism, which are briefly introduced herein.

6.3.1.1 Initialization

An initial colony is created randomly in the search space. This colony contains

CS individuals. Each individual in the colony is marked with 6 . Each individual (0)

has n variables (0, =[6,,0,,...,0 ,...,0 1), which could be generated as below,

q

0,,=0', +rand(0,1)- (9", -0' ) (6.7)

74

where @ denotes the gth variable of @ ; @/ and @ represent the upper bound

and the lower bound of the variable 6 . rand(0,1) is a random number between 0 and

1.

6.3.1.2 Local search strategy

It is assumed that @, , represents the value of the g¢#2 dimension of the

jth individual at the Gth generation. The offspring 6 . generated by this

G

value can be calculated as

0/‘,1/,0‘ = 0/.4,(; + Fac” (ebeu,q,(l_ | gj,q,c |) Vo (awom,q,u - | 9/,4,0 |) (68)
where 7 . and r, . are two random numbers within the range [0]1]. 6, .
and 6, . are the values of the gth variable for the best solution and the worst one,

respectively. The second item in Eq. (6.8) shows that the trend of the process towards
the best solution while the third item means the tendency of the solution to avoid the

worst solution.

6.3.1.3 Greedy selection mechanism

Using the above-mentioned local search strategy to all dimensions, the offspring

0 . would be acquired. The solution with a better objective function value would be

J.G

survived, which can be described as follows
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_ {e}mf(g}.c) <f(0,,) (6.9)

0, ;,otherwise
where [ denotes the objective function that requires to be optimized. The procedure

of the proposed algorithm will be continually conducted until the termination condition

is satisfied, i.e., the maximum iteration cycle is reached.

6.3.2 Clustering-based Jaya algorithm

Applying the clustering technique for modifying the swarm intelligence methods
is one of effective ways to enhance the algorithms’ optimization performance (Cai et al.,
2011). In this study, the K-means clustering technique is applied before commencing
the local search stage. Conducting this procedure is straightforward, and this acts as a
crossover operators that would utilize the colony information effectively. This is useful
to improve the algorithm’s convergence performance. The specific step of conducting
the K-means clustering is described as follows

1. Randomly choosing K =0.1-CS individuals from the colony as the initial

clustering centers. The centers are marked as C,,C,....,C, and the individuals from the

colony are marked as [0,,0,,...,0_].

2. The remaining individuals are assigned to this colony centers based on their

shortest Manhattan distance. The distance between any two individuals (i.e. 0 and 0,)

is calculated as,
d,6)=0 -0 |= z abs(0,,-0.,) (6.10)

3. After assigning the remaining individuals to the initial clustering centers, the

new clustering centers C,,C,,...,C, are calculated as,

C :LZQi,jzl,z,...,CS (6.11)

um 0jcem
where u, is the total quantity of individuals belonging to the clustering center C, .

From Eq. (6.11), it is noted that the newly-created clustering centers are the
combinations of other individuals in the colony.
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Finally, another K individuals from the colony are randomly selected and
integrated with the K newly-created clustering centers as the set & . Calculating the
objective function values with the set &, and the results are sorted from the smallest to
the largest. The first K individuals are put into the colony again. Afterwards, the
procedure of the Jaya algorithm will be conducted. Hence, the Clustering-based Jaya

algorithm is illustrated.

6.3.3 Tree Seeds Algorithm

TSA is also a newly-developed swarm intelligence method (Ding et al., 2019a),
which is inspired based on the natural phenomenon of trees propagation. In the real
world, trees generally spread to other locations via their seeds. These seeds will grow
up over time. In general, the seeds quantity could be decided approximately as 10% and
25% of the colony size. In the algorithm, the specific locations of trees and seeds could
be viewed as feasible solutions for the optimization problem. The key to this algorithm

is the local search mode of the seeds. Two search modes can be designed at this phase.

Assuming that 6 ; is an arbitrary tree (feasible solution) in the colony at the Gth

generation and 6 . is the yth seed, the updating equation for the jth variable

.G

could be provided as,

4G 04,,‘,6 + Vyvic” (Hhe.\'r,/'.G - em,/,a) (6 12)
ali«y-,f«G = eqw./ﬁ + rq«yn/ﬂ ’ (0"-./‘5 - em,iﬁ) (6 13)
where 6, .. isthe jth dimension of the y#h seed that will be created by the gih

tree at the Gth generation; 6, ;

and 6 . arethe jth dimension of the mrh tree

G
and wth at the Gth generation, which are randomly selected from the remaining

individuals in the colony; &

hest.;.c 18 the  jth  dimension of best-so-far solution in the

colony at the Grh generation; the coefficient 7, .. is a uniform random number,

which is arbitrarily generated in the range of [-1,1]. Selecting whether Eq. (6.12) or

Eq. (6.13) to perform the updating is controlled by a parameter called search tendency
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(ST). Specifically, choosing a better equation between Eqs. (6.12) and (6.13) to update
the solution depends on the comparison between a random number and ST. If the
random number is larger than ST, Eq. (6.13) is chosen as the updating equation.

Otherwise Eq. (6.12) will be selected.

6.3.4 The proposed Hybrid C-Jaya-TSA

From observing the updated mechanism of the Jaya algorithm, a good exploitation
search ability could be observed since other individuals in the colony are attracted by
the best-so-far solution. However, when dealing with complex optimization problem,
the best-so-far solution might have a large likelihood to be trapped in the local minimal.
To address this issue, one remedy is to introduce the clustering mechanism, since this
can be helpful to use the colony information more effectively and avoid early-maturing

to some extent (Ding et al., 2019a; Ding et al., 2019b; Cai et al., 2011).

Initialize the Calculate the objective
colony size CS function values

Hybridization

Calculate the objective
function values

New best solution
substitutes the old one

Figure 6-1 The flowchart of the proposed Hybrid C-Jaya-TSA.

Furthermore, considering that the updated strategy of the Jaya algorithm is not

sufficient to approach the best-so-far solution, therefore the updated strategy of the
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TSA will be used to update the best-so-far solution. Compared with the search mode of
the Jaya algorithm, using the updated strategy of the TSA is more beneficial to enhance
the algorithm’s exploration ability, which could be further profitable to prevent the
best-so-far solution trapping in the local minimal. Hence, the hybridization of the
clustering technique, Jaya algorithm and TSA have been demonstrated. The flowchart
of conducting the Hybrid C-Jaya-TSA algorithm is shown in Figure 6-1. The
effectiveness and improvement of the applied modifications and developed hybrid

algorithm will be demonstrated in the numerical simulations and experimental studies.

6.3.5 Non-probabilistic method to consider uncertainties

Considering that the uncertainties, including the measurement noise and the finite
element modelling errors, inevitably exist in the damage identification process and
aiming to providing reliable damage identification results, it is essential to take these
uncertainties into account. However, when the input modal data is submerged with the
effect of various sources of uncertainties, the performance of optimization algorithms
will be affected (Kang et al., 2012). In this case, several measures can be taken to
address this challenge, i.e. using a more robust objective function (Alkayem et al., 2019;
Ding et al.,2019b) for the optimization. In this study, to mitigate the influence on the
identification accuracy owning to the uncertainties, a non-probabilistic method based
on interval analysis is employed. The interval analysis requires the upper and lower
bounds of the input modal parameters (®" and ®") (Padil et al., 2017; Wang et al.,
2008; Wang et al., 2014). Therefore, assuming that the uncertainties are the coupling
effects of the finite element model errors and the measurement noise, these
uncertainties could be described by providing the upper and lower bounds of the input
modal parameters (®" and ®" ). Through this non-probabilistic method (Padil et al.,

2017; Wang et al., 2008; Wang et al., 2014), the developed Hybrid C-Jaya-TSA could

provide the upper and lower bounds of the element stiffness parameters ( «, ) via

optimizing the modal data with upper bounds and the data with lower bounds.
Specifically, the modal data with upper and lower bounds are described as,

(6.14)

a)lm — w}m _ a)im . Xw
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o' =0+ X (6.15)

@.uncertain

(6.16)

O uncertain

Q=" -0 - X

O =" + D" X

iz i D uncertain

(6.17)

where " and J denote the lower and upper bounds of the ith measured

frequency; X and X  are the uncertainty levels for the natural frequencies;

. uncertain @ uncertain ’

®” and QT represent the lower and upper bounds of the data at the zth degree of

freedom (DOF) of the ith mode shape; X and X ____ are the uncertainty

@ uncertain D uncertain

levels for the mode shapes. Through using these uncertain data, the upper and lower

bounds of the element stiffness parameters [al,Z;az,a_z,...ah,a_h;...;awﬁ] can be
obtained. The middle value of these damage indices is calculated as,
a, +a,
SRF"™" =1—== 5 (6.18)

When the lower and upper bounds of the element stiffness parameter «, is
acquired, the Possibility of Damage Existence (PoDE) of each element can be
calculated. To differentiate the damaged and undamaged states of each element, two

marks are introduced. «, denotes that the Ahth element is undamaged, and «,

means that the /Ath element is damaged. It should be noted that when using the modal

data of structures under the intact state, it is straightforward to obtain [auh,a_

uh

]. Figure

6-2 shows the schematic regions of the damaged and undamaged states on two different
axes. A solid rectangle represents the variation of both intervals. The damaged and

undamaged regions are also shown in this figure. In this regard, the PoDE is defined as

the possibility that the identified element stiffness parameter «, is smaller than the

threshold of the undamaged statue «, (Wang et al., 2014).
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Figure 6-2 Damaged and undamaged regions of the Ath element.

Then the PoDE is defined as the proportion between the area of the damaged
region and the area of the entire region as follows (Padil et al., 2017; Wang et al., 2008;

Wang et al., 2014)

A
PoDE = possibility(a,, <a,)=—""-x100% (6.19)

total

The PoDE value for each element is in a range from 0 and 100%, with 100%

representing a large likelihood of damage and 0% indicating that no damage occurred

in this element. The PoDE =100% occurs when the interference between ¢, and

o, does not exist, which also means that the upper bound of the damage index (O‘_,M)
equals to or is less than the lower bound of the undamaged status ( «,, ). To make the

judgement more clear, Figures 6-3(a) and (b) provide two situations of PoDE =100%

on one axis. The first situation is related with the condition a_d,,za“,, , where the

distance between two middle values is quite small. This also means that this damage
index is a small value. The second situation means that these two intervals separate
completely, which indicates that the stiffness reduction of this element is relatively
large. Figure 6-3(c) shows the scenario where the PoDE is between 100% and 0%,
where an overlapping is observed between these two intervals with an observed

stiffness reduction.
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With PoDE introduced to describe the likelihood of damage for each element and
stiffness reduction factor used to represent the damage severity, similar as the existing
studies (Padil et al., 2017; Wang et al., 2008; Wang et al., 2014), this study also uses
the DMI developed by Wang et al. (2014) to provide a further reasonable quantification
of damage extent. The DMI value is calculated as the product of stiffness reduction

factor and PoDE. The formula of obtaining DMI for the hth element is given as

DMI, = SRE”idd'E x PoDE, (6-20)
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Figure 6-3 Situation of uncertain ¢, : (a) PODE=100% with a small damage index;

PoDE=100% with large damage index; (c) PoDE is between 100% and 0%.

6.4 Numerical Studies

In this section, numerical studies are carried out to verify the accuracy and
effectiveness of the proposed algorithm with the defined objective function. Numerical
studies will be divided into two parts. The first part is based on the classical
mathematical benchmarks, which can be used to verify the generality of the proposed
algorithm. The second part are on the Guangzhou New TV tower and a benchmark

study, which are utilized to verify the effectiveness and efficiency of the proposed
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algorithm and objective function on structural damage identification with a limited

quantity of measurement information.

6.4.1 Optimization for the classical benchmark

To compare the performance of using the proposed approach for structural damage
identification with other evolutionary algorithms, a series of classical mathematical
benchmarks (Ding et al., 2018), as listed in Table 6-1, are adopted for comparison. The
global optima of these test functions are all 0. To make the mathematical benchmarks
more difficult, compared with Ref. (Ding et al., 2018), the dimension number of each
problem is greatly increased, as shown in Table 6-1. It is noted that these functions are
categorized into four different types according to their geometric appearances.
Optimizing different types of benchmarks is important to validate the general
applicability of the proposed algorithm. For the comparison purpose, three evolutionary
algorithms, which are more or less related with the proposed Hybrid C-Jaya-TSA, are
applied to optimize the above-mentioned benchmarks as well. These three algorithms
are the Jaya, TSA and the clustering based TSA (C-TSA) (Ding et al., 2019a).
Specifically, in the C-TSA, the K-means clustering mechanism is also applied before its
seeds search stage. Employing these algorithms for comparison is important to
investigate the necessity of the modifications and demonstrate the improvement.

As regards the parameters setting, the common parameters Colony Size (CS) and
the maximum iteration number are 100 and 5000, respectively. For the TSA, C-TSA
and Hybrid C-Jaya-TSA, the parameter ST is set as 0.4. 30 independent runs are
conducted for each test function, and the mean values and standard deviations (std.) are
recorded for comparison. Table 6-2 presents the final optimization results based on the
abovementioned four methods. The best optimization value for each test function is in
bold. It is clearly observed that the proposed algorithm converges to zero, however, the
Jaya and TSA have some difficulties to handle these high-dimensional functions, since
the majority of optimization results acquired by these two algorithms maintain
relatively large magnitudes. In contrast, the C-TSA has some difficulties in dealing

with the Rosenbrock and Schaffer functions. Overall, the proposed algorithm reveals a
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competitive optimization capacity in representative benchmark test functions, which
fully illustrates the improvement due to the hybridization and lays the foundation for

the following structural damage identification in numerical and experimental studies.

Table 6-1 Classical mathematical benchmarks.

Number Name Dimension number  Range Function type
Fl1 Sphere 100 [-500,500] Uni-modal, Separable
F2 Griewank 200 [-600,600]  Multiple-modal, Non-Separable
F3  Rosenbrock 300 [-32,32] Uni-modal, Non-Separable
F4 Rastrigin 400 [-32,32] Multiple-modal, Separable
F5 Ackley 500 [-32,32] Multiple-modal, Non-Separable
F6 Schaffer 1000 [-100,100]  Multiple-modal, Non-Separable

Table 6-2 Statistical results obtained by TSA, C-TSA, Jaya and C-Jaya-TSA on benchmarks.

) TSA C-TSA Jaya C-Jaya-TSA
Function
Mean std Mean std Mean std Mean std

F1 2.51e-06 5.61e-06 8.71e-204 0.00e+00 9.63e-01 3.58e-01 0.00e+00 0.00e+00
F2 4.73e+02 2.26e+02 2.44e-16 1.49e-16 3.15e+00 6.59e-01 0.00e+00 0.00e+00
F3 1.72e+09 1.03e+09 4.01e+02 1.05e+02 1.83e+06 4.99¢+05 0.00e+00 0.00e+00
F4 6.85e+09 7.90e+08 4.95¢-19 2.71e-18 1.08e+04 8.44e+02 0.00e+00 0.00e+00
F5 2.09e+01 1.21e-02 1.37e-13 1.96e-14 1.82e¢+01 1.84e+00 0.00e+00 0.00e+00
F6 5.00e-01 2.68e-08 1.46e-02 8.19e-03 4.99¢-01 1.34e-06 0.00e+00 0.00e+00

Note: The best optimization value is in bold.

6.4.2 Damage identification for the Guangzhou New TV tower

The Guangzhou New TV tower is the landmark of the Guangzhou city, which is
located in the Haizhu district. It is a super high tube-in-tube structure with a height of
610 m, which has 37 layers, connecting the inner and outer layers mainly used for
office, entertainment, transmission television signals and tourism. In the sophisticated
finite element modeling, the model contains 122,476 elements, 84,370 nodes and
505,104 DOFs (Chen et al., 2011). However, directly using this complex model to
conduct structural damage identification is complicated and not practical. Therefore,

according to the assumptions and simplifications presented in Ref. (Chen et al., 2011),
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a reduced finite element model is developed from the full model. Specifically the
simplified model has 37 beam elements, the axis of the beam element aligns with the
centroid axis of the tower mast, and the horizontal coordinate of the center of the
reduced model is kept at the same location of the full model. The mass of the structure
is lumped at nodes in both the full and reduced model. The equivalent rotational inertia
of the segment with respect to the nodes along the central axis of the reduced model is
calculated to form rotational terms of the equivalent element mass matrix of the
reduced model. The corresponding segment between two horizontal sections is selected
from the full model, which is included in the beam element. There are five DOFs at
each node, namely, the lateral translational displacements in the x and y directions, and
rotations about x, y and z directions. Eventually the finite element model of the
Guangzhou New TV tower is simplified as a structure with 37 elements and 38 nodes
(Chen et al., 2011), as shown in Figure 6-4. The number of nodes is numbered from the
bottom to the free top end. Each node has five degrees of freedom (DOFs), including
two horizontal translations and three rotational displacements. The total DOFs of the
finite element model is 185. The dynamic properties including frequencies and mode
shapes of the simplified finite element model of Guangzhou New TV tower are close to
those obtained from the detail full finite element model, therefore the simplified finite
element model of Guangzhou New TV tower is viewed as the replacement of the
sophisticated model to conduct the following damage identification analysis. Although
the structure is significantly simplified, the difficulty of using this reduced model for
system identification shall be noted. The condition number of the global stiffness
matrix is up to the magnitude of 10" and is far larger than that of those numerical
structures in existing studies (Lu et al., 2013; Lin et al., 2017; Pathirage et al., 2018;
Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019; Tran-Ngoc
et al, 2018; Jahangiri et al., 2019; Ding et al., 2019b;, Yi et al., 2012; Du et al., 2017),
which means small perturbation of the stiffness parameters would result in significant
changes in modal parameters of the structure. Therefore, the difficulties of
identification would arise to certain extent. The first five natural frequencies of the

intact structure are 0.1104, 0.1587, 0.3463, 0.3688 and 0.3994HZ, respectively. The
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damage identification of this structure is considered as an underdetermined inverse
problem with limited measurement information, namely, the used input data will be
less than the total number of system parameters to be updated. The first five natural
frequencies and the mode shape data along the x direction of the 1% node, 9™ node, 17"
node, 25" node and 33" node, are used for identification. Totally 30 modal data are
used for identifying the parameters of 37 elements. It should be noted that these modal
data in the following numerical examples are obtained by modal analysis of the

numerical model.

6.4.2.1 Damage identification with incomplete modal data without considering
uncertainty

For the comparison purpose, the Jaya (Rao, 2016), C-TSA (Ding et al., 2019a) and
the MDE algorithm (Du et al., 2017) are used for the damage identification as well. It
should be noted that MDE is an effective method for identification of some basic
structures. In terms of the parameters setting for these algorithms, the common
parameters CS and the maximum iteration number are set as 100 and 500, respectively.
Specifically, for the C-TSA and the proposed C-Jaya-TSA, the parameter ST is defined

as 0.4. For MDE, the threshold value is set as 0.1, the mutation rate is set as 0.4, and
the mutation constant is a random number within [0.4,0.9]. These parameters are set the
same as those in Ref.(Du et al., 2017). The purpose of this section is to investigate the
feasibility and applicability of using these algorithms for identifying the assumed

damages in the finite element model of Guangzhou New TV tower, therefore the input

modal data are not polluted by the uncertainties.
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Figure 6-4 The Guangzhou New TV tower and its simplified finite element model.

Single damage case

The first damage case is assumed that there is a 15% stiffness reduction in the 37%

element, which means SRF, =0.15. The Discrepancy Principle (DP) rule (Hou et al.,

2018) is used for selecting the optimal regularization parameter. In this case, the
optimal regularization parameter used in the objective function is selected as
A=5-10". With the regularization term, the global optimum in this case is 7.5-107.
The above mentioned four algorithms are used to optimize the proposed objective
function as shown in Eq. (6.3), based on the incomplete modal data. Figure 6-5
provides the evolutionary process of the objective function values based on the four
algorithms. It is clearly observed that the iteration process of the proposed algorithm is
the most stable and takes only less than 50 cycles for the proposed algorithm to
converge, indicating that the proposed algorithm’s convergence speed is much faster.
Other three algorithms take significantly more cycles to converge. Furthermore, the
objective function value acquired by the developed Hybrid C-Jaya-TSA is closer to the
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preset global optimum, which indicates that the Hybrid C-Jaya-TSA can obtain better

identification results.

Hybrid C-Jaya-TSA
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Figure 6-5 The evolutionary processes of the objective function values by using different

methods.

Table 6-3 and Figure 6-6 present the damage identification results of the single
damage case without uncertainties. The proposed Hybrid C-Jaya-TSA yields the best
competitive results with the best accurate mean value of the damage extend and
smallest standard deviation, demonstrating the stable and strong global optimization
ability of the proposed algorithm. C-TSA is able to identify the damage but there are
three false alarms at the 8", 9™, and 12" elements. The Jaya and MDE methods could
not provide accurate identification results in this case. This is because the objective
function values obtained by the Jaya and MDE algorithms are far away from the preset

global optimum.

Table 6-3 Identification results of single damage case without uncertainties.

Methods Objective function value Damage index at the 37™ element
Mean Std. Mean Std.
MDE 1.551e-02  2.084¢-03 0.4911 0.2967
Jaya 1.793e-03  3.127¢-03 0.1798 0.2376
C-TSA 7.282e-05  1.735e-04 0.1282 0.0565
C-Jaya-TSA  7.489e-06 1.241e-16 0.1496 3.290e-08
True value 7.50e-06 0.15

(The best identification value is in bold)
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Figure 6-6 Identification results for the single damage case without uncertainties.

Multiple damages case

The second damage case is assumed with 20% stiffness reduction in the 16" and

231 elements respectively, which means that SRF,; = SRF,; =0.2 . The regularization

parameter in the objective function is set as A=5-10"*, and the global optimum in this

case is 4.00-107>. These four methods are used for optimization. Figure 6-7 provides

the evolutionary process based on the proposed Hybrid C-Jaya-TSA. Similar as the
single damage case, the evolutionary process in this case is also stable. It needs around
150 iterations for the developed algorithm to achieve the convergence to the preset

values.
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Figure 6-7 The evolutionary process of the damage indices based on the proposed method.

The final identification results based on the four methods are presented in Table
6-4 and Figure 6-8. It is clearly observed that MDE and the Jaya fail to provide
significant identification again in the multiple case. In contrast, the C-TSA is capable
to identify these two simulated damages but several error alarms are observed as well.
The performance of the developed Hybrid C-Jaya-TSA is the best. The identified
damage index values and objective function value are very close to the true values.

These two cases demonstrate that when uncertainties are not considered, the
standard Jaya and MDE algorithms are not capable of tackling underdetermined
identification for the Guangzhou New TV tower while the developed Hybrid

C-Jaya-TSA can perform well.

Table 6-4 Identification results of multiple damage case without uncertainties.

Methods Objective function Damage index at the Damage index at
value 16t element the 23" element

Mean Std. Mean Std. Mean Std.
MDE 2.270e-02  7.972e-03 0.1932 0.0803 0.4587 0.2498
Jaya 6.018e-03  5.270e-03 0.0975 0.1190 0.2148 0.2535

C-TSA 2.830e-04 6.861e-04 0.1893 0.0302 0.2041 0.0116
C-Jaya-TSA 3.999e-05 1.333e-16 0.1999 1.43¢-08 0.2000 4.43¢-08
True value 4.00e-05 0.20 0.20

Note: The best identification results are in bold.
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Figure 6-8 Identification result for the multiple damage case without uncertainties.

6.4.4.2 Damage identification with incomplete and uncertain modal data

The uncertainties are considered as the coupling effect of the finite element model
errors and measurement noise. Eqs. (6.14) - (6.17) are used to generate the bounds of
the modal data with uncertainties. Both uncertainty levels for the natural frequencies

X and X ———— are set as 1%, and the uncertainty levels for the mode

o, uncertain w,uncertain

shapes X ncertain  a0d are set as 10%. This is because compared with

®,uncertain
mode shapes, the acquisition of natural frequencies is more accurate in the real
applications. It is elaborately demonstrated in Ref. (Padil et al., 2017) that applying the
interval analysis method to analyze the uncertainty effect is reliable and accurate than
directly using the deterministic method for damage identification. That is to say, using
the DMI values for quantifying structural damages is more reliable than using the
deterministic damage index, when the incomplete and uncertain data are used.
Therefore, the Hybrid C-Jaya-TSA combined with the interval analysis method is
introduced to conduct structural damage identification by using uncertain modal data. It
has been demonstrated in the above studies that the developed Hybrid C-Jaya-TSA has

the best performance. The Hybrid C-Jaya-TSA is used only in this section. The
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parameters setting for the algorithm and regularization parameter are the same as the

former cases. The same simulated measurement data are also used.

Single damage case

15% stiffness reduction is assumed in the 37" element. To conduct the interval
analysis method, the first step is to acquire the upper and lower bounds of each element
under the intact state. When performing the optimization with the modal data including
the uncertainties by Eqs. (6.14) and (6.16), the lower bound of the element under the
intact state can be obtained. For optimization by using the modal data with Egs. (6.15)
and (6.17), the corresponding upper bound values are obtained. Similarly, the proposed
algorithm is used to perform the optimization by using the modal data with
uncertainties under the damaged state. The upper and lower bounds of the damage
indices are then obtained, and the middle vale and PoDE are obtained accordingly.

Figure 6-9 shows the evolutionary process of the middle value of the damage index at
the damaged element SRFZ“/“ by the developed Hybrid C-Jaya-TSA. It is clearly

observed that since the uncertainties are considered, around 330 iterations are needed
for the algorithm to converge to the neighborhood of the preset value. The PoDE and

DMI values of all the element are also calculated.
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Figure 6-9 The evolutionary process of the damage index at the 37th element by the proposed

method with uncertain modal data.
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Figure 6-10 PoDE and DMI value of each element in the single damage case with uncertain

modal data:(a) PoDE; (b) DMI.

The PoDE and DMI value for each element are shown in the Figure 6-10. It is
found that the PoDE value for the 10" element is around 90%, due to the effect of
uncertainties in the modal data. However, if using the DMI value to quantify damages,
the DMI value at the 10" element is only 1.97%, while the corresponding value at the
37" element is 14.86%, which is very close to the preset damage extent of 15%. This
indicates that DMI by considering the uncertainty effect is more reliable than the

deterministic damage index, i.e. stiffness reduction factors.

Multiple damages case

20% stiffness reductions are assumed in the 16" and 237 element. The same
procedure as the single damage case is followed to conduct the interval analysis and
obtain the upper and lower bounds of the identification results by using the
non-probabilistic method to consider the effect of uncertainties. Figure 6-11 presents
the PoDE and DMI values for all the elements, respectively. As mentioned, these two
damaged locations are accurately identified. Due to the significant effect of
uncertainties, the damage probability of the 10®, 14% and 37™ elements are also large.
However, when using the DMI to quantify damages, similar as the single damage case,

the DMI values of these three false identified elements are minor and the damage
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extents of the 16" and 23™ elements are close to the assumed true values. The multiple
damage case further illustrates the effectiveness of using the proposed method to

conduct structural damage identification, even uncertainties are considered.
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Figure 6-11 PoDE and DMI values for the multiple damages case with uncertain

modal data: (a) PoDE; (b) DMI.

Minor structural damage case
In the previous cases, the damage extents are relatively large. In this section,

identification of a minor structural damage case is performed. 6% stiffness reduction is

assumed in the 9" element. The regularization parameter is selected as A =4-10", and

the other parameters for the algorithm are defined as the same as those in the previous
cases. 1% and 10% uncertainties are respectively introduced into the natural
frequencies and mode shapes. By using the upper and lower bounds of uncertain modal
data, the upper and lower bounds and the middle value of damage index of every
element are obtained for the calculation of PoDE and DMI. Figure 6-12 presents the
iteration processes of the upper bound, lower bound and middle value of the 9" element.
It only needs around 50 iterations to achieve the convergence. Figure 6-13 shows the
lower bound, upper bound, PoDE and DMI values of all the 37 elements. The location

of the minor damage is accurately identified, and the DMI value for the 9" element is
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5.67%, which is very close to the true value of 6%. No false identification is observed

in the identification results. This case demonstrates the effectiveness of using the

proposed approach for identifying the minor structural damage, even with 1% and 10%

uncertainties in the natural frequencies and mode shapes respectively.
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Figure 6-12 The evolutionary processes of the upper bound, lower bound and middle value of

the damage index of the 9th element in the minor structural damage case.
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Figure 6-13 Identification results for the minor structural damage case:

(a) Lower bound; (b) Upper bound; (c) PoDE; (d) DMI value.
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6.4.3 Verification with a benchmark structure
In this section, a benchmark truss model (Kim et al., 2019; Tam et al., 2020) is
used as an example for further verification. Numerical studies on a simply supported

truss, as shown in Figure 6-14, are conducted. The Young’s modulus and density of this

truss model are 277Okg/m3 and 70GPa , respectively. The area of cross-section is

0.01m? . The first three natural frequencies and the mode shape data along the vertical

direction of the 2nd, 4t 5t 8t 12t and 13t nodes are employed as the input for the
proposed Hybrid C-Jaya-TSA. Namely, the total 21 modal data are used to identify 31
stiffness parameters of this truss model. The C-TSA is also utilized for the comparison
purpose. The parameter setting for these two algorithms are set as the same as those in
the previous numerical example.

Case 1 is a minor damage case, and 8% stiffness reduction is assumed in the 10"
element, which means that the stiffness reduction of the 10% element is 8%. Case 2 is a
multiple damage case, in which 10% and 20% stiffness reductions are assumed in the
10t and 19" elements, respectively. Equally, both uncertainty levels for the natural

and X

o, uncertain w,uncertain

frequencies X are set as 1% while the uncertainty levels for

o o
the mode shapes Xg yucermain and X omm are set as 10%. The regularization

parameter for Case 1 and Case 2 are setas 10~ and 8-107°.

Figure 6-15 shows the final identification results based on the proposed algorithm
and the C-TSA. Both the algorithms can localize the damages correctly. The proposed
algorithm has advantage in terms of the identification accuracy. For example, in Case 1,
three false alarms are observed by using C-TSA, however, the proposed C-Jaya-TSA
only outputs one. Furthermore, for Case 1, the DMI value of the 10% element acquired
by the proposed algorithm is 7.87%, which is more accurate than using C-TSA. For
Case 2, the obtained DMI value of the 10™ and 19" elements are respectively 9.66%
and 19.65%, which are close to the true values, even when the uncertain and limited
modal data are used. The above results demonstrate that the proposed approach can

provide accurate damage identification results for this benchmark truss structure.
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Figure 6-15 Identification results of the truss model; (a) Case 1, (b) Case 2.

The Guangzhou New TV tower and a benchmark truss structure are used as
numerical examples in this section to investigate the effectiveness and accuracy of
using the proposed method for conducting structural damage identification with
significant uncertainties and a limited number of measurement data. With the
simplifications made for modelling this complex Guangzhou New TV tower, the
condition number of the global stiffness matrix is large, which introduce additional
errors in the eigenvalue analysis to obtain the analytical natural frequencies and mode
shapes. The damage identification with a limited number of measurement data which is
less than the system parameters to be identified, is considered as an undetermined
inverse problem. This further increases the difficulties in damage identification. By
using the proposed Hybrid C-Jaya-TSA and the non-probabilistic method based on the

interval analysis to consider the uncertainty effect, structural damage identification is
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performed effectively and accurate results are obtained, indicating the superiority of

the proposed algorithm.

6.5 Experimental validations

An experimental cantilever beam (Hou et al., 2018) is taken as an example for the
experimental investigations in this section to verify the effectiveness and accuracy of
the proposed method in structural damage identification. Eleven accelerometers are
used in the vibration testing, and the sensor placement of the beam model is shown in
Figure 6-16. The total length of the beam is 1000mm with a cross section of

49.60mm x5.00mm. The Young’s modulus and density of this beam model are

7.67x10° kg/m3 and 144GPa , respectively. Considering that the ratio of the height to

the length of this beam model is very small, Euler beam elements are used to build the
finite element model. The beam is uniformly divided into 100 elements with two DOFs
at each node. The elements are numbered from 1 to 100, from the left support to the
right free end. Each element has a length of 10mm. The introduced damage locations

and extents are listed in Table 6-5.

Figure 6-16 The cantilever beam structure and the locations of accelerometers

(Hou et al., 2018).
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It should be noted that even though the damage extent for a single element is
relatively large, with the fine mesh of 10mm for each element, the damage effect is not
significant. This is evident with the minor changes in the vibration characteristics.
From previous studies on the modal identification results from hammer impact tests by
using an instrumented hammer to apply excitations at a location near the fixed end

(Hou et al., 2018).

Table 6-5 Damage locations and extents for the experimental verifications.

Case number Damage locations SRF DMI (%)
Case 1 1%t element 0.4 40
Case 2 1% element 0.6 60
Case 3 1%t element 0.6 60

50t element 0.6 60

The first six natural frequencies within the range of 0-300 Hz and the associated
mode shapes were identified from vibration acceleration measurements by using
rational fraction polynomial method (Hou et al., 2018). Model updating is conducted to
calibrate the initial finite element model and make the initial finite element model as
close as possible to the real undamaged structure (Ding et al., 2019a; Ding et al.,
2019b). It is conducted by using the first six natural frequencies and the corresponding
mode shape data along vertical direction of the 11", 215, 315, 415, 515, 615, 71%, 81%,
915t and 101% nodes and the proposed Hybrid C-Jaya-TSA. The first six mode shapes
under the undamaged state used for the initial model updating are shown in Figure 6-17.
Regarding the parameters setting, Colony Size is set as CS =100, the maximum
iteration number is 500 and parameter ST =0.4 . Table 6-6 lists the modal data of the
initial finite element model and the updated one. It is clearly observed that the modal
data of the updated model have a good agreement with the experimental measurements.
Table 6-7 summarizes the identified first six natural frequencies and the corresponding
MAC values of the beam under the undamaged and damaged states. Very minor
changes in the natural frequencies and MAC values are obtained between the
undamaged and damaged states. This indicates that minor damage is introduced in the

structure.
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Figure 6-17 The first six measured mode shapes of the undamaged model.

Table 6-6 The first six natural frequencies of the initial and updated finite element models

Mode no. Undamaged

Initial model

Updated model

Freq.(Hz)  Freq.(Hz) MAC Freq.(Hz) MAC
1 3.53 3.50 0.9998 3.53 0.9998
2 21.77 21.90 0.9989 21.77 0.9991
3 60.78 61.18 0.9956 60.78 0.9965
4 119.46 119.46 0.9968 119.45 0.9969
5 194.78 196.50 0.9963 194.78 0.9972
6 292.82 291.51 0.9927 292.82 0.9929

Table 6-7 Measured modal data of the beam under the undamaged and damaged states

N::)de Undamaged Damage case 1 Damage case 2 Damage case 3

Freq.(Hz) Freq.(Hz) MAC Freq.(Hz) MAC Freq.(Hz) MAC
1 3.53 3.49 (-1.24)  0.9999 3.38 (-4.41) 0.9997 3.33 (-5.91)  0.9998
2 21.77 21.39 (-1.72)  0.9995  20.85(-4.26)  0.9984  20.29 (-6.81) 0.9986
3 60.78 59.46 (-2.16)  0.9988  58.93 (-3.04)  0.9983  58.38 (-3.95) 0.9957
4 119.46  118.31 (-0.96) 0.9988 116.01 (-2.88) 0.9951 113.35(-5.12) 0.9923
5 194.78  191.98 (-1.44) 0.9978 188.74 (-3.10) 0.9917 188.46 (-3.25) 0.9887
6 292.82  281.56 (-3.84) 09807 286.76 (-2.07)  0.9495 275.08 (-6.06) 0.9826

Notes: Values in the brackets are the relative changes (%) in natural frequencies
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Based on the updated cantilever beam and the measured modal data, the proposed
Hybrid C-Jaya-TSA with the non-probabilistic method is used to conduct damage
identification for this beam. The first six natural frequencies and the mode shape values
at the vertical direction of the 11t%, 215t 31st 41st, 51st 61t 71t 81, 91t and 101%
nodes, where are the locations of the installed sensors, as shown in Figure 6-16, are
used as the input. Namely, totally 66 modal data are applied to identify the stiffness
parameters of 100 elements. Regarding the parameters setting, CS =100 and the
maximum iteration number of 500 and parameter ST =0.4 are also used. The

regularization parameter in Case 1 is set as A4 =0.01 . Similar to Ref. (Padil et al.,

2017), uncertainties for the natural frequencies X, yucormain and X oo are set as
o . L
1% while the uncertainties for the mode shapes X yneerain a0d X oo are set as

10%.
Figure 6-18 shows the lower bound value, the upper bound value, PoDE and DMI

values of all the elements for Case 1. The DMI value of the 15 element is 44.71%,
which is very close to the true value. The proposed Hybrid C-Jaya-TSA associated with

the DMI by the non-probabilistic method can successfully identify the damage.
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Figure 6-18 The lower bound, upper bound, DMI values of each element for Case 1 in the
experimental verification: (a) Lower bound; (b) Upper bound; (c) PoDE; (d) DMI values.
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For Cases 2 and 3, parameters setting for the algorithm are the same as those in

Case 1. The regularization parameters are set as 0.02 and 0.0004, respectively. The

same uncertainty levels as Case 1 are assumed for natural frequencies and mode shapes.

Figures 6-19 and 6-20 show respectively the obtained PoDE and DMI values for these

two cases. It is clearly observed that the damage locations are accurately identified.

PoDE values of the damaged elements are significant without any minor false

identification results. For Case 2, the DMI value of the 1% element is 68.10%. For Case

3, the DMI values for the 1% and 50" element are 76.15% and 73.79%, respectively.

Overall, the identification accuracy is good, even when the uncertainties are included.

The results in the experimental studies demonstrate that the proposed Hybrid

C-Jaya-TSA can locate damages accurately and identify the damage severities with a

good accuracy, even the uncertainties present in the finite

experimental data.
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Figure 6-19 PoDE and DMI values of each element for Case 2 in the experimental verification:

a) PoDE; b) DMI.
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Figure 6-20 PoDE and DMI values of each element for Case 3 in the experimental verification:

a) PoDE; b) DMI.

6.6 Conclusions

In this study, a novel non-probabilistic method by using Hybrid C-Jaya-TSA is
presented to conduct structural damage identification considering uncertainties in finite
element modelling errors and measurement errors. The identification difficulties are
increased since the damage identification analysis is underdetermined, with the
quantity of the used modal data less than that of the total system parameters. The
effectiveness and accuracy of the proposed method are verified by the numerical and
experimental verifications. Several conclusions can be drawn:

e When optimizing high-dimension classical benchmarks, the developed Hybrid
C-Jaya-TSA provides more competitive optimization results compared with the latest
algorithms, indicating the effectiveness and necessity of the applied modifications for
improving the existing swarm intelligence methods;

e When conducting the damage identification of complex civil engineering
structures with uncertainties and modelling errors, the developed Hybrid C-Jaya-TSA
combined with the non-probabilistic method based on interval analysis can localize the
damages accurately and provide reliable damage quantification results by using DMI

values;
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e The results in the numerical and experimental studies demonstrate that the
proposed method leads to better structural damage identifications with incomplete and
uncertain modal data;

¢ Overall, the proposed approach can be potentially applied to the real structural
health monitoring. The main reasons are listed as follows: a) The proposed method is
efficient and accurate, even with a limited number of modal data, such as a few natural
frequencies and partial mode shape values; b) Fewer controlling parameters are
involved in the developed approach, compared with some existing swarm intelligence
methods; c¢) The developed approach does not need to have good initial values and
gradients information in the computation;

e In the future, this method will be extended to solve the long-term structural
health monitoring problem, such as identifying modal information and calibrating the

finite element models.
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CHAPTER 7 SIMULTANEOUS IDENTIFICATION OF STRUCTURAL
DAMAGE AND NONLINEAR HYSTERESIS PARAMETERS BY AN
EVOLUTIONARY ARTIFICTIAL NEURAL NETWORK BASED ON TIME
DOMAIN DATA

ABSTRACTS®

This paper presents a new approach for simultaneous identification of structural
damage and nonlinear hysteresis parameters of nonlinear structures by using an
evolutionary Artificial Neural Network (ANN) based on K-means Jaya algorithm and
time domain vibration response data. ANN is an effective tool to tackle complex
problems in numerous fields. However, the back propagation algorithm, which is
conducted based on gradient descent, is an important component of training ANN. With
vanishing gradients, ANN may suffer the local minimal during the training process. To
over this disadvantage, a type of swarm intelligence method, named the K-means Jaya,
is employed to improve the training of ANN parameters (weight and bias) by
minimizing the discrepancies between real outputs and desired ones and then using
these parameters to develop the networks. To evaluate the performance of the proposed
approach, numerical studies on a nonlinear Single Degree Of Freedom (SDOF) system
and a nonlinear five-story benchmark building model subjected to the seismic loading
are conducted. A high level noise is introduced into acceleration response data to
simulate the strong measurement noise for the nonlinear system identification.
Identification results demonstrate that the evolutionary ANN combined with K-means
Jaya, termed as an ANN-K-means Jaya, is more accurate than other swarm intelligence
methods. The proposed approach can be used effectively for identifying nonlinear

structural damage and nonlinear hysteresis model parameters simultaneously.

7.1 Introduction
Structural damage identification acts as a vital role in evaluating structural

integrity since civil infrastructure is inevitably accumulating damage during the

®Ding, Z., Li, J., Hao, H. (2020). Simultaneous identification of structural damage and
nonlinear hysteresis parameters by an evolutionary artificial neural network based on time
domain data. International Journal of Non-linear Mechanics (Under review)
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in-service period. To monitor structural conditions for reducing the maintenance cost
and prevent catastrophic failures of structures, numerous methods have been developed
for structural damage identification (Farrar & Worden, 2007). Among these studies,
vibration based methods via utilizing the dynamic vibration characteristics, i.e. natural
frequencies and mode shapes, etc., or vibration time domain responses for damage
identification, have attracted an amount of interests and attentions.

For frequency domain based methods, Yan and Golinval (2005) used the state
subspace method integrating with the flexibility to localize damages in beam structures.
Lu et al. (2017) proposed a hybrid sensitivity method to conduct damage identification
for axially functionally graded beams, in which only the first several natural
frequencies and several vibration response measurements are required. Esfandiari et al.
(2020) applied the changes in principle components of frequency response functions to
formulate the objective function, and then the least square method was utilized to
optimize the objective function to identify structural damages. This method was
verified using a truss and a frame structure. Furthermore, the wavelet methods (Ren &
Sun, 2008; Cao et al.,, 2012; Yazdanpanah et al., 2020), the stochastic subspace
identification method (Altunisik et al., 2017) and the power spectral density method
(Zheng et al., 2015), have been respectively employed for structural damage
identification. On the other hand, structural damage identification methods using time
domain measurement data have also been developed in the recent years. Hu et al. (2017)
formulated the objective function based on acceleration responses and then used the
homotopy continuation algorithm to identify the cracks in beam structures. Lu and
Wang (2017) proposed an enhanced sensitivity method to conduct structural damage
identification, in which a trust-region constraint was introduced to enhance the
performance of the standard sensitivity method. The Extended Kalman Filter (EKF)
(Yang et al., 2006; Xie & Feng, 2012) has been applied to perform online system
identification in the time domain.

However, some of the above-mentioned methods (Lu et al., 2017; Esfandiari et al.,
2020; Hu et al., 2017; Lu & Wang, 2017) require good initial system parameters and an

accurate estimation of the gradients. The state-subspace method (Yan & Golinval,
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2005), the wavelet-based methods (Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah et
al., 2020), and the filter based methods (Yang et al., 2006; Xie & Feng, 2012) are easily
affected by high-level measurement noise. These unfavorable conditions might restrict
the practical applications of these traditional methods, especially for some large-scale
structures or nonlinear structures.

In contrast, machine learning methods can be used to overcome the
abovementioned drawbacks, since machine learning based methods can learn and make
predictions via datasets instead of the explicit formulations (Ding et al., 2019a). Many
studies by using machine learning methods, mainly including the artificial neural networks
(ANN), have been conducted for structural damage identification. Abdeljaber et al. (2018)
proposed using convolutional neural networks for damage identification of joints in a steel
frame. Maity and Saha (2004) used the strain and displacement data for damage
identification of a simple cantilever beam using a back-propagation ANN. Padil et al. (2017)
developed a non-probabilistic ANN to perform structural damage identification
considering system uncertainties. Nadith et al. (2018) proposed the deep auto-encoder
neural networks to identify structural damage, in which the first several natural frequencies
and mode shapes were employed as the input and structural damage locations and extents
were identified as the output. Liu et al. (2014) presented the Rough Sets (RS) theory
combining with ANN to conduct damage identification. An information entropy based
discretization in RS was used for dimension reduction and then ANN was applied for the
following identification. Elshafey et al. (2013) developed a methodology based on the
feed-forward back-propagation and the radial basis neural network to identify cracks for
both thick and thin concrete elements.

Nevertheless, because of the usage of back-propagation algorithms based on gradient
descent, a main shortcoming of ANN is the potential problem of local minimal when the
network generates relative complex error surfaces with many local best points. When
utilizing some traditional deterministic optimization techniques, if a selected initial point is
far away from the global minimum, the optimization problem would converge to the local
minimal instead of the global one. Previous studies (Curry & Morgan, 1997; Gupta &

Sexton, 1999; Valian et al., 2011) have reported this local minimal problem relevant to the
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back-propagation algorithm. Swarm intelligence techniques, i.e. Genetic Algorithm (GA)
(Wang, 2009), Particle Swarm Optimization (PSO) algorithm (Chen & Yu, 2017) and
Artificial Bee Colony (ABC) algorithm (Sun et al., 2013), have been used effectively for
various types of optimization problems in recent years. These algorithms belong to global
search techniques and have a higher likelihood to obtain global minimal and to avoid local
minimal. Therefore, some remarkable successes by combining ANN and swarm intelligence
methods to tackle complex problems in different fields have been obtained. For example,
Geethanjali et al. (2008) concluded that using the PSO to train multi-layered neural
networks is more effective than the back-propagation algorithm, for detecting an internal
fault and distinguishing with other operating conditions of power transforms. Other
combinations, i.e., a combination of GA and ANN, namely, GA-ANN (Yazdanmehr et al.,
2009) and Imperialist Competitive Algorithm based ANN (ICA-ANN) (Toghyani et al.,
2016), and Differential Evolutionary based ANN (DE-ANN) (Nguyen et al., 2016) have
been developed to deal with complex production units problem and the stirling heat engine’s
power prediction.

Apart from the abovementioned algorithms, a new type of swarm intelligence method,
named as Jaya algorithm (Rao & Saroj, 2017), has gained its attention. The most obvious
advantage of the Jaya algorithm is that there is no special controlling parameters in this
algorithm. To enhance the performance of the Jaya algorithm, K-means clustering is
introduced into the Jaya algorithm by Ding et al. (Ding et al., 2019b) and the optimization
performance of the Jaya algorithm has been greatly improved but the simple algorithmic
structure of the Jaya algorithm is still kept. Therefore, the K-means Jaya algorithm is
potentially promising to replace back-propagation algorithms for training ANN.

Regarding structural damage identification, existing studies (Yan & Golinval, 2005;
Lu et al., 2017; Esfandiari et al., 2020; Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah
et al., 2020; Altunisik et al., 2017; Zheng et al., 2015; Hu et al., 2017; Lu & Wang,
2017; Ding et al., 2019a; Maity & Saha, 2004; Padil et al., 2017; Pathirage et al., 2018)
focus more on the linear structures. In real applications, when structures have severe
damages, nonlinear behaviors would be observed (Lu et al., 2017; Katsaras et al., 2008),

especially under strong excitations. To describe the nonlinear behavior resulting from
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structural damages, several nonlinear hysteretic models, such as Preisach, Ischlinskii,
Bouc-Wen and bilinear models (Charalampakis & Dimou, 2010), have been presented.
Identifications of these nonlinear models are also important to understand the structural
vibration behavior and condition (Lu et al., 2017). However, few researches on the
simultaneous identification of structural damage and nonlinear hysteretic models have been
conducted. The measurement noise inevitably exist in the identification process. However,
the noise level in many studies (an & Golinval, 2005; Lu et al., 2017; Esfandiari et al.,
2020; Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah et al., 2020; Altunisik et al.,
2017; Zheng et al., 2015; Hu et al., 2017; Lu & Wang, 2017; Ding et al., 2019a) follows
a certain pattern with a moderate level. Under certain situations, very significant noise
could be observed and the influence of a strong noise on the identification performance
should be investigated to demonstrate the robustness of the developed methods.

This paper proposes a new approach by combining ANN and K-means based Jaya
algorithm for simultaneous identification of structural damage and nonlinear hysteresis
parameters. Specifically, in the training stage to obtain the weights and bias parameters
for the designed ANN, the K-means Jaya algorithm is used to replace the back-propagation
algorithm. As mentioned above, the K-means Jaya algorithm equips stronger global
optimization capacity compared with the traditional gradient information based
back-propagation algorithm. Therefore, using the K-means Jaya algorithm could more
effectively train the ANN. The integrated algorithm is termed as ‘ANN-K- means Jaya’.
Numerical studies are conducted on a benchmark structure with an improved Dahl
hysteresis model (Wang & Liao, 2011) to demonstrate the accuracy and efficiency of
the proposed approach. The simultaneous identification of structural damage and
hysteretic model parameters is conducted for verifying the performance of the proposed
approach. Furthermore, a relatively high level noise is introduced into acceleration data
to simulate the case with strong measurement noise for the identification.
State-of-the-Art swarm intelligence methods, including K-means Jaya (Ding et al.,
2019b), Improved Tree Seeds Algorithm (Ding et al., 2019¢), Best Neighbor-guided
ABC (Hu et al., 2019), and the traditional ANN method are also used for comparison

with the proposed ANN-K-means Jaya algorithm in terms of the calculation efficiency
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and identification accuracy.

7.2 Nonlinear Hysteretic Model and Parameter Identification
7.2.1 Improved Dahl hysteresis model

This section briefly reviews the improved Dahl hysteresis model (Wang & Liao,
2011). The equation of motion of the Single Degree Of Freedom (SDOF) nonlinear
system considering the hysteretic models can be expressed as

mi+cu+ku+a-r=F(@)
7= f(r,u,u,p) (7.1)
u(0) = uy,u(0) =y, (0) =1y

where u is the displacement; u(,u, and #, are respectively the initial displacement,

velocity and restoring force of the nonlinear system; and m,c,k and F denote the
mass, damping, stiffness and excitation respectively. The restoring force «-r can be
obtained based on the proposed improved Dahl hysteresis model, in which the
parameter « is used to control the shape of the force-displacement responses.

The hysteretic behavior describes the memory-based relationship between the

displacement u and the r, which can be generally defined as
F=f(rui, p) (7.2)
where f () is the nonlinear function denoting the hysteresis behavior, and o denotes

the effective controlling parameter. Generally, Bouc-Wen model (Lu et al., 2017; Ding
et al., 2019b) is commonly used to represent the hysteresis response. In this article,
instead of using the Bouc-Wen model, an improved Dahl hysteresis model, as shown in

Figure 7-1, is introduced to simulate the nonlinear hysteresis response.
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r
r: restoring force
u: displacement

<V

Figure 7-1 The improved Dahl nonlinear hysteretic model.

The improved Dahl model can well represent the hysteretic force-displacement

response in the small displacement region and can be expressed as

7= pQu—|ulr) (7.3)
where p represents the controlling coefficient; r» is the restoring force. The
improved Dahl model could be used to describe the hysteresis phenomenon. Compared

to the Bouc-Wen model, fewer controlling parameters are involved in the improved

Dahl model. Furthermore, the model parameter vector p can be defined as follow

p:[ko,co,a’p]T (74)
It ought to be noted that different model vector p could generate different

nonlinear dynamic responses.

7.2.2 Nonlinear Model Parameter Identification

To well describe a nonlinear system with the improved Dahl model, Figure 7-2
presents a Single Degree Of Freedom (SDOF) nonlinear system, which is used as an
example to demonstrate the dynamic response calculation of a nonlinear system.

Firstly, substitute the Eq.(7.3) into the Eq.(7.1) and use the Runge-Kutta method is
used to solve Eq. (7.1) to obtain the dynamic responses. Similarly, the equation of
motion of a nonlinear Multi Degree Of Freedom (MDOF) system or structure can be

built.
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In this article, F(#) and u(f) are respectively defined as two vectors
comprising the input and the output data; t=¢,7,,....,¢;, represents the time instant
series and u(¢;,) denotes the dynamic response at the time instant ¢, . As mentioned

above, it is noted from Eq. (7.1) that when using different model vector p, different

dynamic responses would be obtained. Therefore, the analytical dynamic response

u(t,) under the model vector p at the time instant 7, can be expressed as follows

u(ty) = f(0.4) (7.5)
When using the swarm intelligence methods to conduct nonlinear model
identification, the discrepancy between the calculated and measured responses can be

used to formulate the objective function, which is defined as (Ding et al., 2019)

n.n

gB)= 3" (i) =, 1)) G (1) =, 1) (7.6)

i=1 k=1

where n,, is the quantity of the available measurements that are used for updating,

which relies on the number of sensors used in the dynamic test; is the number of

Niime

sample points in each measured response; u;(f,) denotes the measured dynamic

response.

/ stiffness: k
/ — external load F(t)
damping: c ] mass:m I

OHO)
S

—> restoring force: r

Figure 7-2 The improved Dahl model in SDOF system.

When using machine learning methods for the nonlinear system identification, a

number of training samples are required. These samples can be obtained with different
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model vector p . The input to the training can be the dynamic responses u(f;), and the

output is the corresponding model vector p.

7.3 Methodology
7.3.1 Artificial Neural Network

ANN is developed in the shape of a parallel distributed network inspired by
human nervous system. The distinct feature of ANN is the capacity to learn from
datasets to improve its prediction performance. Thus, the trained neural networks can
be used for parameter identification, classification and pattern recognition, etc. ANN
usually contains three main components, namely the input layer, hidden layer and
output layer. Each layer comprises a set of neurons connected with each other by
training parameters (weights and bias). Every neuron possesses a processing element
with synaptic input connections based on the quantity of the processing neurons in the
previous layer and a single output. Many neural network architectures have been
developed, and multilayer perception neural networks are one of the most frequently
used models. Multilayer perception neural networks contain one or more hidden layers
of neurons linked between the input and output layers. Neurons of one hidden layer
connect only to neurons of the immediately preceding and immediately following

layers. The overview of a three-layer network is shown in Figure 7-3.

Figure 7-3 Three-layer neural network architecture.
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Observed from Figure 7-3, the transfer process between neurons in layers could be

found. The input layer receives input patterns ( Q,..0, ), and then the input is

transmitted to hidden layers. The hidden layer possesses several processing units and
has an important role to bridge between the input layer and the output layer. Each
element in the preceding layers is fully connected to the following ones, and these
connections are based on training parameters, i.e. weight and bias. The whole transfer
process is defined by two equations. The first one is a propagation function, which
computes the input to a neuron from the output of its predecessor neurons and their

connections as a weighted sum plus the bias.
. n .
input, = Z_,' WigX; +b,5(j=12,...,n) (7.7)

where x; denotes the output of the jsh processing neuron of the input layer, w;, is

the synaptic weight ratio that links the jth and ath processing neurons; b, is the

a
bias ratio between input and hidden layers; j and a are the processing neurons in
the input and hidden layers, n is the number of processing neurons in the input layers.
There are m total processing neurons in the output layers. imput, represents the

input to the ath processing neuron of the hidden layer.
When Equation (7.7) is calculated, the second equation is an activation function
used to restrict the value range of the output neurons. The activation function could be

a monotonically increasing linear or nonlinear function (Ertugrul, 2018). A sigmoid
activation function is employed in this study. Output results oufput, are acquired

from the output layer as follows

1

i e—inputa >

output , = (a=12,...,m) (7.8)
1

where input, , calculated by Equation (7.7), denotes the input of the ath processing

neuron; and output, is the output of the ath processing neuron in the output layer.

Training parameters, i.e. weight and bias, are the most important factors that could

determine the success of the trained network. The process of training the network is to
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adjust training parameters by minimizing the difference between the calculated output
and labelled ones based on training datasets. Generally, the algorithms used for training
are the back-propagation methods, which are based on gradient descent. Using these
gradient-based algorithms for training would make the network converge to local
minimal if the network generates complex error surface with too many local minimal
points. To minimize the possibility to face this situation, K-means Jaya (Ding et al.,
2019b), which is an EA based on global search techniques, is employed to minimize the
difference between calculated outputs and desired ones for training the network
parameters. Specifically, the K-means Jaya replaces back-propagation algorithms to
determine training parameters including weight and bias. The trained network is used
to identify structural damages and nonlinear hysteresis model parameters. A number of
samples are generated as training datasets. Acceleration responses are treated as the
input to the network, and the output is the vector of structural damage and nonlinear
model parameters. Afterwards, acceleration responses in the testing datasets are used as

the input and the obtained output provides the identification results.

7.3.2 K-means Jaya algorithm

Jaya algorithm is a powerful swarm intelligence method inspired by the
conception that the feasible solution acquired for a given problem ought to move
towards the best solution and avoid the worst solution (Rao & Saroj, 2017).
Specifically, for each feasible solution, the way of creating its offspring is to move
closer to the success (i.e. approaching the best solution) and avoid the failure (i.e.
escaping from the worst solution). When generating the offspring, the objective
function values are calculated and compared to determine whether this solution or its
offspring comes into the next iteration (the selection process is also termed as ‘Greedy
Selection Rule’) (Ding et al., 2019b). Three main steps are involved in the Jaya

algorithm, which are briefly summarized.

7.3.2.1 Initialization

It is assumed that a colony is randomly generated in the search space and there
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contains CS  solutions. Every solution is marked as 0, , which comprises u
variables (0, =[6,,6,,...,6,]) . These variables could be generated as

0).. = Op, +1and(0,1)-(8), — 6, (7.9)
where 6, , denotes the uth variable of 0y,; rand(0,1) denotes a random number in

a range from 0 to 1; H,ff . and 49}{‘,” represent the upper and lower bound values,

respectively.

7.3.2.2 Local search strategy

When completing initialization, the local search strategy is operated. Assuming

that 6, , - represents the value of the wuth dimension of the hth solution at the Crh
iteration, the offspring Hi;,u,c generated by this value is calculated as

eh,u,C = ah,u,C + Nu,c* (ehest,u,C_ | eh,u,C |) ~hHhuc (eworst,u,C_ | eh,u,C |) (7 1 0)

where 7, and r,, . are two random numbers within in the range [0,1]. Oy, c

and 6,,,,, c are respectively the values of the wuth variable for the best solution and

the worst one in the current iteration.

7.3.2.3 Greedy selection mechanism

With calculations for all dimensions based on Eq. (7.10), the offspring 9}1,c is

obtained. The objective function values of 0,. and Oyh’c are calculated and the

solution corresponding to better objective function value will be kept in the next
iteration. The algorithm will be continually run until the termination condition is
satisfied, i.e., the maximum iteration number is reached.

The standard Jaya algorithm is illustrated above. To make the Jaya algorithm more
powerful, the K-means clustering mechanism and a special search equation for the best
solution (Ding et al., 2019b) is employed to enhance the standard Jaya algorithm’s

performance, termed as “K-means Jaya”. The specific procedures are illustrated as
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follows.

7.3.2.4 K-means clustering

The clustering technique is a useful tool to discover the inherent pattern in any
given datasets. Therefore introducing the clustering technique into the swarm
intelligence methods would be effective and efficient by making full use of the colony
information (Cai et al., 2011). Among all clustering techniques, the K- means clustering
is the simplest yet effective. During the early iterations of the Jaya algorithm,
conducting the K-means clustering is straightforward and beneficial to improve the
algorithm’s convergence performance (Ding et al., 2019a). The specific steps of

operating K-means clustering are described here

Step 1: K=0.1-CS initial clustering centers C,,C,,..,C, are randomly

selected from the CS individuals [0,,0,,...,0

CS] °
Step 2: The remaining solutions are delivered to these clustering centers according

to their shortest distance to these centers. The distance between any two individuals

(i.e.,0,and 0_) is determined by the Manhattan distance

d,.,0.)=06,-0.|= Zz:labs(ﬁzav -0.,) (7.11)
Step 3: When completing the clustering once, each clustering center may attract

several solutions, which can be used to calculate new clustering centers C;,C,,...,C;,

as follows
o1
C,=— >0, (7.12)
En 0,ec,

Step 4: Finally, another K parent solutions from the colony will be randomly
chosen and then combined with the newly-calculated clustering centers as a new set,
marked as 7. The objective function values of the solutions will be calculated in the
set 7, and these values are sorted from the smallest to the largest. The first K

individuals are put into the colony.

7.3.2.5 A new updating equation for the best solution
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In the standard Jaya algorithm, the best solution plays a critical role in the
optimization process, since it guides other solutions to its region. To prevent the
premature convergence of the algorithm, a new updating equation that concentrates on

the global search is introduced here (Ding et al., 2019b; Gao et al., 2015)
gbest,u,C = gbest,u,C +rand - (gh,u,C - gbest,u,C) (7 13)

where 6, , c represents the value of the urh dimension of the best solution at the

Cth iteration and Qgest,u’c denotes its offspring value, 6, , - means the value of the

uth dimension of an arbitrary solution in the colony. The randomly selected solution
will be used to generate the offspring of the best solution and such randomness can be

helpful in preventing premature convergence.

Data acquisition

v

Build network architecture

v

Using K-means Jaya to select
the best parameters for ANN

A

Calculated outputs Target outputs

Agreement?

Network creation

'

Obtain training parameters

v

Identify structural damages and
nonlinear parameters

Figure 7-4 Flowchart of using the proposed ANN-K means Jaya for nonlinear model

identification.

Herein, the K-means Jaya algorithm is demonstrated. The simple structure of the
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standard Jaya algorithm is still kept in the K-means Jaya algorithm, which is used to
replace the back-propagation algorithms in training weights and bias of the designed
ANN. To demonstrate the procedure of the proposed approach, Figure 7-4 presents the
flowchart of using the developed approach, namely ANN-K means Jaya, to conduct the

nonlinear structural damage and model parameter identification.

7.4 Numerical studies
The first numerical example is a nonlinear SDOF system with the improved Dahl

hysteresis model, as shown in Figure 7-1. The model vector of this system is

p=[1,0.2,1,0.6] , which is to be identified. The external loading is defined as
F(t)=cos(t) . The hysteresis phenomenon with model vector p=[1,0.2,1,0.6] for

t €[0,30] is shown in Figure 7-5.

Restoring force r

2 1.5 -1 05 0 05 1 15 2
Displacement u

Figure 7-5 Nonlinear system behavior with an improved Dahl hysteresis model.

7.4.1 Training data generation

The acceleration data will be used for the identification. When using the ANN-K
means Jaya for nonlinear model parameter identification, a number of samples are
required for training. In this studies, 600 samples of acceleration data under sinusoidal

excitations are obtained by using randomly generated model vectors. Similar as Ref.
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(Ding et al., 2019¢), the input for training ANN with K-means Jaya is the 3 seconds
responses with a sampling frequency of 100 Hz. In the randomly generated 600
samples, the first 420 samples are employed as the training datasets while the
remaining 180 samples are used as the testing datasets. Furthermore, to avoid the
‘dimension disaster’ and to save the computational demand, Principle Component
Analysis (PCA) technique (Golinval, 2017; Lever et al., 2017) is carried out to process
the acceleration data before training. The working mechanism of the principle
components are entirely equivalent to finding the eigenvectors of the covariance matrix.
Each eigenvector corresponds to one principal component, and the principal component
with the largest variance is the most important one. In this study, the first fifteen
principle components, which covers over 95% of the variability in data, are used for the

training and testing.

7.4.2 Parameters setting for the ANN-K means Jaya for a SDOF system

A relatively simple ANN-K means Jaya model is used for the nonlinear SDOF
system identification. Namely, one hidden layer with 10 neurons is designed for the
proposed method. The sigmoid function is employed as the activation function for all
the layers. For the parameter setting of the K-means Jaya algorithm, the number of
initial random solutions is CS =100 and the maximum iteration number is 5000 or the

deviation from two consecutive iterations of objective function value is lower than

107% . Similar as Ref. (Pathirage et al., 2018), additional measurement noise is added

into the data. 10% random noise in the acceleration responses in order to train the
network model to be more robust to noisy measurements. 30 runs are repeated by using
the proposed algorithm, and the mean values and the standard deviations (std.) are

recorded as the final identification result.

7.4.3 Training process and identification results
Figure 7-6 shows the iteration process of the objective function values. The
objective function for the proposed ANN-K means Jaya represents the Mean Square

Error (MSE) value between the calculated output and the target output. The objective

function values are at the order of 10~ after iterations, which means that the
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discrepancy between calculated outputs and desired ones is sufficiently small and also
indicates that the training of weights and bias parameters is successful. Figure 7-7
shows the fitted results from the 1% parameter to the 4" parameter in the model vector
P based on the training datasets (the first 420 samples) by using the proposed
approach. It can be observed that the fitted results are close to the labels of training
data. This good agreement further demonstrates the satisfactory training process by
using the proposed approach. Figure 7-8 shows the regression of the testing dataset. It
can be found that the normalized data are almost distributed along the 45-degree line
and the R-value for all variables are higher than 0.99, indicating that a very good
agreement between network output and target label results is achieved. The trained
network will be used for nonlinear model parameter identification. 20% noise is
introduced into the acceleration responses to simulate the uncertainties in vibration
measurement. It should be noted that the noise level is much higher than that in Refs.
(Cao et al., 2012; Yazdanpanah et al., 2020; Zheng et al., 2015; Hu et al., 2017; Lu &
Wang, 2017; Lu et al., 2017; Ding et al., 2019¢c). As regarding the identification, the

trained network will be used to identify the above-mentioned model

parameter p =[1,0.2,1,0.6]. The final identification results are shown in Table 7-1. Good

identification results are obtained and the maximum relative error of the proposed
approach is only 0.45%, demonstrating the good robustness and accuracy of the

proposed ANN-K means Jaya, even with severe noise effect.
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Figure 7-6 Iterations of objective function values for the network training process of the
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Figure 7-8 Regression results on all parameters in the model vector based on the testing

datasets by using the proposed method, (a): ky; (b): ¢y;(c) a (d): p.

7.4.4 Comparisons with state-of-the-art swarm intelligence technique

In this section, several state-of-the-art swarm intelligence techniques, including
the K-means Jaya (Ding et al., 2019b), Levy Tree Seeds Algorithm (Ding et al., 2019c)
and Best Neighbor-guided ABC (Hu et al., 2019) are introduced for comparison.
Swarm intelligence methods conduct the nonlinear model parameter identification by
optimizing Eq. (7.7). The input data is the 3 seconds acceleration responses. 20% noise
is also introduced to simulate the uncertainties. In terms of the setting of parameters for
the algorithms, the number of initial random solutions is CS =100 and the maximum
iteration number is 100. Specifically, for the Levy Tree Seeds Algorithm, ST is set as
0.45, the number of conducting Levy flight for the best solution is set as 100. For the
Best Neighbor-guided ABC, the parameter /imit is set as 200 and the neighbor range is
5. Each algorithm is independently run 30 times, and the mean values and the standard

deviations (std.) are obtained.
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Figure 7-9 presents the evolutionary processes of the objective function values
from the abovementioned three swarm intelligence techniques. The objective function
for the swarm intelligence methods represents the discrepancy between the measured
and calculated acceleration responses, as shown in Eq. (7.7). It needs around 80 cycles
for the Levy Tree Seeds Algorithm and K-means Jaya algorithm to converge.
Furthermore, the final values acquired by the Levy Tree Seeds Algorithm and K-means
Jaya algorithm are smaller than that acquired by the Best Neighbor-guided ABC. The
identification results by these three EAs are also listed in Table 7-1. The maximum
relative error from the Best Neighbor-guided ABC, the Levy Tree Seeds Algorithm and
the K-means Jaya algorithm are respectively 23.35%, 6.80%, and 5.85%. The proposed
ANN-K means Jaya significantly outperforms the other three swarm intelligence
methods with a lower relative error. Furthermore, the standard deviation values from
the proposed method are significantly less than those acquired by the swarm
intelligence methods, which means the proposed method is more stable in system
parameter identification of the nonlinear SDOF system. In addition, the numerical
computations are conducted on a laptop with an Intel i5 processor and 16-GB RAM for
computing and the computational times of each algorithm is also given, as observed in
Table 7-1. The required computational time for the proposed method is the most, since
the proposed ANN-K means Jaya requires more time for network training. However,

the proposed approach can provide the most accurate identification results.

221



T T T T T T T T

—O©— K-means Jaya B
—>—Levy TSA
—%— Best Neighbor-guided ABC

3.2

Objective function values

0 10 20 30 40 50 60 70 80 90 100
Cycles

Figure 7-9 Evolutionary processes of objective function values based on state-of-the-art swarm

intelligence methods.

Table 7-1 Identified results for a nonlinear SDOF system with improved Dahl model.

Best

ANN-K means . . Levy Tree Seeds
Neighbor-guided . K-means Jaya
True Jaya Algorithm
Parameters ABC
values
Mean Mean Mean Mean
std. std. std. std.
value value value value
pl 1 1.0041 0.0002 1.0626 0.0282 1.0117 0.0122 1.0217 0.0207
p2 0.2 0.1976 0.0000 0.2467 0.0533 0.2136 0.0200 0.2117 0.0373
p3 1 1.0045 0.0001 0.9881 0.0406 0.9870 0.0087 0.9852 0.0077
p4 0.6 0.5971 0.0000 0.5792 0.0381 0.6110 0.0069 0.5849 0.0082
Maximum relative
0.45 23.35 6.80 5.85
error (%)
Computational
time of a run 45 20 25 10
(minutes)

7.5 Identification for a MDOF system
In this section, a MDOF system with a smart controlling device, is used to further
verify the performance of the proposed approach. A five-storey building structure (Wu

& Samali, 2002; Yu et al., 2018) is used here as an example, as shown in Figure 7-10.
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Structural properties of this five-storey building model, including mass, stiffness and
damping coefficients, are listed in Table 7-2. The detailed finite element modeling
(FEM) process of this benchmark model is referred to Refs. (Katsaras et al., 2008; Lu
et al., 2017), in which the shear model is used to simulate this building. The N-S
component of El Centro ground motion recorded at the Imperial Valley Irrigation
District substation in El Centro, California during the earthquake on 19 May 1940, is
used as the external excitation. To simulate the behavior of the seismic isolation device,

in this article, the improved Dahl hysteresis model is introduced in the first floor. The

parameters « and p in the improved Dahl hysteresis model are set as 0.7 and 0.8,

respectively. Structural damage is assumed as the stiffness reduction of a specific
element and the damage status of a structure is quantified through a series of damage
index o (Ding et al., 2019a). For example, if the damage index of an arbitrary element

(&) is equal to 0.1, it means 10% stiffness reduction is introduced in this element,

namely, 6, =0.1. In this study, simultaneous identification of structural damages and

nonlinear hysteresis parameters is conducted.

Table 7-2 Structural properties of the five-storey benchmark building model (Yu et al., 2018).

Floor no. Mass (Kg) stiffness (kN/m) Damping (kN s/m)
1 214 1146 0.0584
2 207 3124 0.1117
3 207 3156 0.1128
4 207 3156 0.1100
5 207 2978 0.1233
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Figure 7-10 Five-storey benchmark building model (Yu et al., 2018).

1st floor

Acceleration responses(m/sz)

Time/s

Figure 7-11 The acceleration response of the 1st floor.

7.5.1 Training data generation

It assumed that the ground excitation is known in advance, namely, the input data
is the acceleration responses of the 1% floor under the EI central seismic excitation.
Figure 7-11 shows the acceleration responses of the first floor of the intact building
under the abovementioned seismic excitation, which lasts 15 seconds with a sampling
frequency of 100 Hz. Considering that the proposed ANN-K means Jaya has the best
performance in the previous numerical studies on a SDOF system, therefore only the

proposed approach is used for the following identification. 1000 sample datasets are
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generated randomly, in which the first 700 samples are employed as the training dataset
while the remaining 300 samples are used as the testing dataset. Then PCA is used to
process the input acceleration data and the first thirty principal components, which also

covers over 95% of the variability in data, are used for the training and testing.

7.5.2 Parameters setting for the ANN-K means Jaya

One hidden layer with 10 neurons (Padil et al., 2017) is designed for the ANN-K
means Jaya. The output of the network includes structural parameters and nonlinear
model parameters. The sigmoid function is served as the activation function for all the
layers. Regarding the parameters setting for the K-means Jaya, the number of initial
random solutions is CS =100 . The termination condition is defined as the maximum

iteration number is reaching 100 or the deviation from two consecutive iterations of the

objective function value is lower than 107® . Additional 10% measurement noise is

added into the acceleration response data in order to train the neural network model
robust to noisy measurements. This example is also conducted on a laptop with an Intel
i5 processor and 16 GB RAM for computing. The proposed ANN-K means Jaya is
carried out 30 runs independently, and the mean values and the standard deviations

(std.) are recorded as the final identification result.

7.5.3 Training process and identification results
Figure 7-12 shows the iteration situation of the objective function value for the

training process. It can be found that the objective function value is at the magnitude

order of 107> after around 4500 cycles, which means the discrepancy between

calculated outputs and desired ones is sufficiently small enough and also means that the
training of weights and bias parameters is successful. To further demonstrate the
effectiveness of the trained network, Figure 7-13 presents the regression results of the
samples from the testing dataset. The normalized data are basically distributed along
the 45-degree line and the R-values for all these parameters are higher than 0.96,
indicating that a close agreement between output and target results is achieved. Then

this trained network is used for simultaneous structural damage and nonlinear
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parameter identification. The required calculation time for the training process lasts

around 70 minutes for each run.
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Figure 7-12 Iterations of objective function values for the network training process of the

nonlinear MDOF system.

Two cases, which are not included in the training dataset, namely, Case 1 and Case
2, are introduced for testing the performance of the trained network. A small single

damage is defined in Case 1 with 5% reduction in the stiffness of the 3™ floor.

Therefore, the model parameter P, =[0,0,,55,94,05,,p] for Case 1 is
P, =[0,0,0.05,0,0,0.7,0.8] . Multiple damages are defined in Case 2 with 20% reduction
in the stiffness of the 1%, 3" and 5" floors, respectively. Thus, the model parameter
P, =[6,,6,,05,0,4,05,a, p] for Case 2 1s P, =[0.2,0,0.2,0,0.2,0.7,0.8] . 20% measurement

noise is introduced into the acceleration responses of the 1% floor, which are used as the
input to the network. Furthermore, the traditional back propagation algorithm based
ANN is also introduced for comparison. The identification results obtained from the

mentioned two methods are shown in Table 7-3.
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For Case 1, the maximum identification relative error from the ANN and the
proposed method are respectively 9.60% and 2.60%. For Case 2, the maximum relative
error from the proposed ANN-K means Jaya is 2.61% while that by using ANN is
11.55%. The superiority of the proposed approach is demonstrated in terms of the
identification accuracy. Compared with the results from the nonlinear SDOF system,
the identification error for the MDOF system is increased. However, it should be noted
that the five-storey benchmark building structure and its external excitation are more
complex, and the maximum relative error in the identification results of this nonlinear
MDOF system is less than 3%. Overall, good results by using the proposed approach
are obtained for the simultaneous identification of structural damages and nonlinear
hysteresis parameters, which demonstrates the effectiveness and accuracy of the

proposed approach.

Table 7-3 Identified results for a nonlinear MDOF system with improved Dahl model.

Case 1 Case 2
ANN-K means Jaya ANN ANN-K-means Jaya ANN
Parameter True True
Mean Identification Mean Identification
S values std. values std.
values value values value
S, 0 0 0.001 0.2 0.1998  0.0000 0.1877
0, 0.001 0.0001 0 0 0.002 0.0001 0.001
0, 0.05 0.0487  0.0001 0.0452 0.2 0.1956  0.0001 0.1899
o, 0 0 0 0.002 0 0.003 0.0002 0.005
o, 0 0 0 0.001 0.2 0.1968  0.0003 0.1769
a 0.7 0.6885 0.0002 0.6765 0.7 0.6817  0.0002 0.6739
Y 0.8 0.7982  0.0001 0.7786 0.8 0.7934  0.0003 0.7751

7.6 Conclusions

This paper proposes a new approach for structural damage and nonlinear model
parameter identification of nonlinear structures. The recently developed K-means Jaya
algorithm is used to train the parameters of an ANN, which is then used for structural
damage and nonlinear model parameter identification. The improved Dahl model, with
few controlling parameters, but can well describe the hysteresis phenomenon is used in

this study. High-level noise is added into the acceleration responses to simulate the
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uncertainties in the data used in the identification analysis. Numerical studies are
conducted on a SDOF system for identifying the nonlinear model parameters, and on a
MDOF system for the simultaneous identification of structural damages and nonlinear
model parameters. The following conclusions are drawn from the obtained results:

e For the SDOF system, the proposed ANN-K means Jaya performs better than
several state-of-the-art swarm intelligence methods, in terms of the identification
accuracy;

e For the MDOF system identification, although only using one acceleration
response, the proposed approach still provides good identification results for both
structural damages and nonlinear model parameters. The accuracy of identification
results from the proposed approach is better than that obtained by the traditional ANN
method;

e Overall, the proposed ANN-K means Jaya equips good robustness and is an

effective tool to conduct more complex system identification of nonlinear structures.
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Main findings

This thesis develops and improves swarm intelligence methods, neural network
methods, and hybrid methods to conduct structural identification considering
uncertainties. The major contributions and findings in this thesis are briefly
summarized below:

Chapter 2 presents the clustering based Tree Seeds Algorithm to perform structural
damage identification. The modal data is used to formulate the objective function. The
developed algorithm and the objective function are described. Numerical simulations
and experimental verifications reveal that: (1) The proposed method could identify
damages more accurately than those acquired by some other swarm intelligence
methods; (2) Even though relatively high-level uncertainties is introduced, the
proposed method could still acquire satisfactory results; (3) The proposed method
could also be seen as a useful tool for model updating, especially for simple structures
(usually the total element number is less than 100).

Chapter 3 presents a novel method for nonlinear structural parameter
identification. The Lévy flight mechanism and a new updating equation are employed
to modify the original Tree Seeds Algorithm. The acceleration responses are used to
formulate the objective function. The numerical examples show that: (1) The proposed
algorithm could effectively identify three representative nonlinear models; (2) Using
different types of response data as the input, the proposed method could still identify
these parameters accurately. (3) The proposed algorithm shows obvious improvements
in identification accuracy compared with the enhanced sensitivity method. Therefore,
the proposed method is a better tool for nonlinear parameter identification.

Chapter 4 investigates the application of the Jaya algorithm in structural damage
identification. A novel objective function, which is modified by using the sparse
regularization technique and the Bayesian inference, is proposed. A relatively
large-scale truss structure and a vehicle-bridge model are employed as the numerical

example and the experimental verifications. It is observed that: (1) The proposed
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objective function is more sensitive to structural damage compared with traditional one;
(2) The proposed method could yield more competitive identification results compared
with some traditional optimization methods; (3) The proposed method incorporating
with the proposed objective function can be used to identify the parameters of
relatively large-scale structures.

Chapter 5 presents the development and application of the sparse deep belief
neural network in solving the undetermined structural damage identification problem.
To enhance the capacity of the standard deep belief neural network, the sparse
constraint is introduced. Numerical and experimental studies show that: (1) Due to the
introduction of the sparse constraints, the performance of the deep belief neural
network has been obviously enhanced; (2) Compared with the swarm intelligence
methods, the proposed method has distinctive advantages in damage localization; (3)
Even only the first several natural frequencies are available, the proposed method could
provide satisfactory identification of a frame structure; (4) However, the proposed
method requires more time for calculation.

Chapter 6 investigates the hybridization of the Tree Seeds Algorithm and the Jaya
algorithm to perform structural damage identification of the Guangzhou New TV tower
benchmark structural model and an experimental beam structure. To effectively curb
the effects posed by the uncertainties, the interval analysis method is introduced and a
damage index, termed as the ‘DMI’ value, is employed to quantify structural damages.
It was observed that even though only limited modal data is used, the proposed method
incorporating with the DMI values could yield reliable probabilistic identification.

Chapter 7 studies the hybridization of the K means Jaya algorithm and the
Artificial Neural Network to conduct the simultaneous identification of structural
damages and nonlinear hysterisis parameters. To enhance the performance of the
Artificial Neural Network, the K means Jaya algorithm is applied to replace the
back-propagation algorithm during the training process. The acceleration responses are
employed as the input while the output is the identified parameters. The final
identification results show that the proposed method is capable of identifying these

parameters, and better than those acquired by some swarm intelligence methods and the
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Artificial Neural Network. Overall, although the algorithmic structure of hybrid
algorithms become more complex, the hybrid methods equip potentials to solve more
complex identification problems. The complexity here mainly arises from the fact that

the targets to be identified is more complex and contains different types of parameters.

8.2 Recommendations for future study

In the present work, swarm intelligence methods are developed and improved to
conduct structural parameters identification. Good identification results can be
acquired. Following investigations could be conducted in the future study:

1. Experimental verifications carried out in this study are relatively simple. More
complex and practical experimental models can be used to verify the effectiveness and
efficiency of the proposed methods.

2. The damage model is assumed as the linear stiffness reduction, which does not
cover all the possible damage scenarios. Therefore, more refined damage models can be
investigated.

3. These methods can be extended to tackle the identification problem of practical
civil engineering structures, such as highway bridges and buildings. For example, DBN
can be potentially used to conduct the SHM data recovery. Those swarm intelligence
algorithms can be employed to conduct the identification of linear and nonlinear

structures with limited measurements and the optimal sensor placement.
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