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ABSTRACT

Civil engineering structures may accumulate damage during the service period,

due to various reasons, such as material degradation, fatigue, overloading, excessive

deformation and vibration under normal operating environment and/or extreme

conditions. Therefore, it is necessary to perform structural condition monitoring and

detect structural damage at an early stage by using the vibration data to prevent

structural failures. The nonlinear hysteretic effect could be observed when severe

damage occurred in structures. Several nonlinear models, such as the Bouc-Wen model

and the bilinear model, are usually used to describe the nonlinear hysteretic effect of

civil engineering structures. Identifying these nonlinear parameters is important for

understanding the vibration behavior and performance of nonlinear structures. When

using the traditional methods, such as the response sensitivity method, to tackle the

above-mentioned two problems, the gradient information and good initial values will

be required. However, acquiring good initial conditions and gradient is difficult,

especially for large-scale structures with strong nonlinearity. Therefore, this research

mainly develops improved approaches based on swarm intelligence and neural network

techniques, as well as their hybridization methods, which do not demand the good

initial values and gradient, for structural identification. Owning to the modeling errors

and measurement noise, the difficulties for structural identification increase. The good

robustness of swarm intelligence and neural network techniques can be used to

effectively overcome this limitation.

The swarm intelligence methods are essentially global optimization algorithms,

which are usually based on machine learning techniques to learn and search through

data instead of explicit formulations. Structural identification can be formulated as an

optimization problem. An appropriate objective function relevant to structural

parameters is defined, and mathematical optimization is conducted to identify the

best-fit parameters with physical meanings. Thus, swarm intelligence methods could be

used for structural identification. Two emerging swarm intelligence techniques, namely,

the Tree Seeds Algorithm (TSA) and the Jaya algorithm, are used and further improved

for structural identification and their performance is investigated with numerical and
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experimental studies. TSA employs the propagation of the trees as a framework while

the Jaya is inspired by the concept that the feasible solution acquired for a given

problem should move towards the best solution and avoid the worst one. Compared

with traditional swarm intelligence techniques, such as the Genetic Algorithm (GA),

Particle Swarm Optimizer (PSO) and Differential Evolution (DE), these two

algorithms have a simpler algorithmic structure but stronger global search ability.

Furthermore, to enhance the performance of these two algorithms, several modified

versions are developed, such as, the clustering based TSA (Chapter 2), the improved

TSA (Chapter 3), and the improved Jaya (Chapter 4). Then these developed methods

are combined with different objective functions to perform structural damage

identification and nonlinear parameter identification. Identification results show that

the clustering based TSA by using the modal data based objective function can be used

effectively to identify damage in a plane truss structure and a frame structure. The

improved TSA combining with the time-domain data can be used to well identify the

Bouc-Wen model and two bilinear models. The improved Jaya combining with the

modified objective function based on the Bayesian inference and the sparse

regularization can be used to identify damage in some relatively large scale structures.

Neural network techniques belong to an important branch of artificial intelligence

algorithms. The working principle of this type of method is to simulate human brains,

through learning a large number of samples to train the network’s ‘inference ability’.

The Deep Belief Neural (DBN) network, as a representative deep network, is used and

further developed to investigate the development and application of neural network

techniques for structural identification. To enhance the performance of the DBN, an

arctan-based sparse constraint is employed to ensure the hidden units to become sparse,

which is easily achieved by adding an arctan norm on the whole of the hidden units’

activation probabilities. The modified DBN is termed as the ‘Arc-tan DBN’ and

undetermined damage identification is conducted. The identification results

demonstrate that the proposed Arc-tan DBN can be used to identify the damages

effectively for a building frame structure, even when the modeling uncertainty and

measurement noise exist, and only limited data is available.

The hybridization methods mean combining at least two different intelligent
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methods to solve more complex identification problems. A hybrid swarm intelligence

method based on Jaya and TSA is proposed, termed as the ‘C-Jaya-TSA’. Specifically,

the clustering strategy is employed to replace solutions with low-quality objective

function values in the Jaya algorithm. Then the search strategy of the TSA is

introduced into the best-so-far solution of each cycle. The C-Jaya-TSA combining with

the modal data based objective function is used to conduct the undetermined damage

identification for the Guangzhou New TV tower benchmark and a simply supported

beam with 100 elements. Furthermore, a non-probabilistic method is used to quantify

the damage index. A hybrid method based on K means Jaya and Artificial Neural

Network (ANN) is proposed, termed as the ‘ANN-K means Jaya’. The used ANN is a

representative shallow network. To enhance the ability of the ANN, the K means Jaya

algorithm is used to replace the back-propagation algorithm during the training process.

The acceleration responses are used as the input, while the corresponding output

contains the improved Dahl nonlinear model parameters and the damage index. Even

though high-level measurement noise is introduced, the proposed two hybridization

methods can yield satisfactory identification results.

Overall, this thesis develops novel swarm intelligence approaches to conduct

structural identification, including structural damage identification and nonlinear

parameter identification. To make these methods more powerful, some modifications

are suggested. Comprehensive numerical and experimental verifications demonstrate

the necessity and rationality of the developed modifications and the effectiveness and

performance of using the proposed approaches for various structural identification

problems.
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CHAPTER 1 INTRODUCTION

1.1 Background

With the development of human society, the quantity and scale of all kinds of structural

engineering facilities across the world have soared up in recent decades. However, no matter

how well these large-scale structural projects are designed and constructed, during their service

periods, due to a variety of reasons, under operating and extreme loading conditions such as

earthquake and impact loading, almost all in-service structures will accumulate certain level of

condition deteriorations owing to fatigue and corrosion damage, and damage caused by

extreme loadings, which lead to strength and stiffness of the structures to decrease. If these

deteriorations are not detected timely, great threats could be posed since some damages may

cause catastrophic destruction to structures, especially to some bridge structures. In 1994, the

48-meter-long concrete slab in the middle of the Shengshui bridge in South Korea collapsed,

leading to 33 deaths and 17 injures. In 1967, the silver bridge on the Ohio river toppled down,

resulting in 50 cars felling into the river and 46 deaths. Furthermore, at least 8 people were

killed and 79 were injured when the I-35W Mississippi river bridge suddenly collapsed in 2007.

Therefore, it is of great significance to assess the condition of structures timely and accurately,

which is beneficial to avoid the occurrence of accidents and minimize the maintenance costs

(Farrar & Worden, 2007; Fan & Qiao, 2011).

Structural Health Monitoring (SHM) system can be used to record the dynamic responses

of a structure in real time. Through a series of sensing, acquisition, communication and some

other means as well as the assistance of data processing system, it could automatically monitor

the operation status of a structure, evaluate the structural safety, and guide the maintenance

work. Damage identification is an important component of a SHM system. When a structure

has damage under the earthquake excitation, some nonlinear hysteresis phenomena could be

observed (Berger & Krousgrill, 2002; Katsaras et al., 2008; Wang et al., 2016). Several

mathematical models, such as Bouc-Wen and bilinear models, have been widely used to

describe the nonlinear hysteretic behavior of civil engineering structures (Belbas & Mayergoyz,

2002; Ikhouane & Rodellar, 2005; Lu et al., 2017). Identifying these nonlinear parameters is

important and necessary for understanding the damage process and vibration behavior of

structures. Therefore, the vibration based structural identification has attracted attentions in
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recent decades and many different types of methodologies have been developed (Salawu, 1997;

Sirca Jr & Adeli, 2012). These methods could be classified into two types, depending on the

fact that structural identification is conducted in the frequency-domain or in the time-domain.

The former one denotes that the identification is performed by utilizing structural modal

information, such as the natural frequencies, mode shapes, flexibility, damping ratios and some

other frequency domain data. Chinchalkar (2001) localized the damage positions of a beam

structure through the alteration of the first three natural frequencies, and also compared the

localized effects with difference damage extents. Xia and Hao (2003) developed a statistical

method using the change of frequencies to conduct the damage identification and also

investigated the effect of noise on identification accuracy. Lu and Law (2007) proposed a

response sensitivity method for structural damage identification and this method was also

extended into the vehicle bridge coupling system (Lu & Liu, 2011) and the crack identification

(Lu et al., 2013). Chang and Shi (2010) applied the wavelet multiresolution analysis method to

conduct identification for the Bouc-Wen system. Besides, the power spectral approach (Zheng

et al., 2015; Pedram et al., 2017; Guo et al., 2020), the flexible matrix (Yang & Sun, 2011;

Zhang et al., 2013), the modal strain energy (Yan et al., 2012; Fan & Qiao., 2012; Ramesh &

Rao, 2018) have been respectively applied to conduct structural identification in the

frequency-domain.

Furthermore, the structural identification methods in the time-domain have been

developed in recent years. Hu et al. (2017) used the homotopy continuous algorithm to identify

cracks in beam structures, in which the acceleration data were employed to formulate the

objective function. An enhanced sensitivity method, in which a trust-region constraint was used

to enhance the convergence performance of the original sensitivity method, was widely used to

perform structural damage identification and nonlinear hysteretic parameter identification (Lu

& Wang, 2016; Lu et al. 2017). The extended/unscented Kalman filter (Corigliano & Mariani,

2004; Yang et al., 2006; Wu & Smyth, 2008; Xie & Feng, 2012), the Volterra series method

(Shiki et al., 2017; Villani & Silva, 2019), are the commonly used methods to handle the

nonlinear parameter identification in the time-domain.

Although the abovementioned methods can basically achieve satisfactory identification,

challenges still exist. Most of the above methods require a good initial condition and good

gradient information. Furthermore, difficulties may increase when using these methods to
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perform structural identification for large-scale structures when limited measurement data are

available. Therefore, a large number of intelligence methods have been widely used to conduct

structural identification. These intelligence methods are usually categorised into two types,

namely, the swarm intelligence techniques and the neural network based methods. The swarm

intelligence techniques are essentially the optimization algorithms, which are usually based on

machine learning techniques to learn and search through data instead of explicit formulations

(Ding et al., 2019). Compared with some traditional optimization methods, the distinguished

feature of the swarm intelligence techniques is that they do not require good initial values and

gradient information. By defining the objective function relevant to structures, it is easy and

convenient to employ the swarm intelligence methods for structural identification. Therefore,

the Genetic algorithm (GA) (Guo & Li, 2009, 2012), the Particle Swarm Optimizer (PSO)

(Kang et al., 2012; Chen & Yu, 2018), the Artificial Fish Swarm (AFS) algorithm (Yu & Li,

2014), the Artificial Bee Colony (ABC) (Sun et al., 2013, 2014; Ding et al., 2016, 2017, 2018),

and the Most Valuable Player (MVP) algorithm (Jahangiri et al., 2019) are respectively adopted

to settle the linear and nonlinear structural identification. In terms of the neural network based

methods, it is actually an important branch of the artificial intelligence technique. The main

principle of this type of methods is to simulate a human’s brain. Through a large number of

samples, the trained network would equip the ‘inference ability’ and therefore could do some

identification or prediction work. Usually, the input of the network is some vibration data while

the corresponding output is the vector of structural parameters to be identified. Many

researchers have also applied the neural network to perform structural identification. Zapico et

al. (2003) utilized the Back-propagation (BP) network to conduct the model updating of a real

bridge. Jiang et al. (2006) integrated the probabilistic neural network with the data fusion

technique to perform damage identification. Furthermore, the Feed-forward Neural Network

(FNN) (Truong et al. 2020), the Radial-Basis Function (RBF) network (Morfidis & Kostinakis,

2019), the Convolutional Neural Network (CNN) (Modarres et al., 2018; Xu et al., 2019;

Khodabandehlou et al., 2019) are gradually becoming major choices when dealing with the

structural identification by using the neural network methods.

Apart from the abovementioned intelligence methods, two novel swarm intelligence

methods, named as the Tree Seeds Algorithm (TSA) (Kiran, 2015) and the Jaya algorithm (Rao,

2016) are employed to perform complex optimization. TSA employs the trees propagation as
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the algorithmic framework while the Jaya is inspired by the conception that feasible solutions

always approach the best-so-far solution and avoid the worst one. Compared with the

traditional swarm intelligence methods, such as the GA, PSO and the ABC, etc, these two

algorithms have simpler algorithmic structures and are successfully applied to solve different

engineering problems ( EI-Fergany & Hasnien, 2018; Zhou et al., 2018; Rao & Saroj, 2017; Xu

et al., 2019; Jian & Weng, 2020; Warid, 2020). Regarding the neural network methods, the

Deep Belief Neworks (DBN), due to its excellent generalization ability, has been widely used

in supervised classification problem (Geng et al. 2018; Rizk et al. 2019), data processing

(Zhang et al. 2019), biomedical field (Chen et al. 2018), etc. Considering that these methods

have been proven to be successful in tackling some other engineering problems, it is feasible to

extend these methods, as well as their further developments and hybridization methods to

structural parameter identification, considering some problems linked with the limitations that

exist in real applications such as using incomplete and a limited amount of measurements as

input and considering uncertainties in identification.

1.2 Research objectives

The primary objective of this study is to develop state-of-the-art intelligence methods for

structural identification considering uncertainties. Numerical studies and experimental

verifications are conducted to demonstrate the effectiveness and efficiency of the proposed

approaches. The detailed tasks include:

1. To develop the clustering based Tree Seeds Algorithm to effectively identify structural

linear damages considering modeling errors and measurement noise;

2. To develop the Improved Tree Seeds Algorithm to effectively identify structural

nonlinear parameters;

3. To investigate an objective function that is sensitive to structural damage and to develop

the Improved Jaya algorithm for structural damage identification, in which only a limited

number of measurement data is required;

4. To develop a sparse Deep Belief Neural network for undetermined structural damage

identification;

5. To develop a non-probabilistic interval analysis method to quantify structural damage

and to develop a hybrid Jaya and Tree Seeds Algorithm for structural damage identification
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considering uncertainties;

6. To develop a hybrid clustering Jaya and Artificial Neural Network for simultaneous

identification of structural damages and nonlinear parameters considering high-level

measurement noise.

1.3 Research outline

This thesis comprises eight chapters. The contents of the seven chapters following this

introductory chapter are described below:

In Chapter 2, the procedure of applying the K-means clustering technique to modify the

standard TSA is elaborately illustrated. The objective function based on the modal data is

formulated for structural damage identification. The finite element modeling errors and noise in

the measurement data are considered. The results from numerical and experimental studies are

compared with those obtained from several latest swarm intelligence techniques. The

identification results demonstrate that the proposed approach is more competitive and robust

for structural damage identification.

In Chapter 3, the Tree Seeds Algorithm is used for identifying three nonlinear models,

including the Bouc-Wen model and two bilinear models. To enhance the performance of the

standard Tree Seeds Algorithm, namely, the Lévy flight search mechanism is introduced for the

best-so-far solution in each cycle while a new updating equation is introduced for the

remaining solutions. Acceleration responses are used to formulate the objective function.

Identification results are compared with those obtained from other swarm intelligence

techniques and the enhanced sensitivity methods to demonstrate the improvement and

superiority of the proposed approach.

In Chapter 4, the application of the Jaya algorithm in undetermined structural damage

identification is investigated. The clustering strategy and a new updating equation are used to

modify the Jaya algorithm. The objective function that is sensitive and robust for effective and

reliable damage identification, is developed based on sparse regularization and Bayesian

inference. Optimization analysis is conducted with the proposed improved Jaya algorithm.

Numerical and experimental studies show that the proposed method can yield satisfactory

identification results, although a limited quantity of modal data is used and significant

measurement noise and modeling errors are assumed.
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Chapter 5 demonstrates the application of the deep belief network (DBN) in undetermined

structural damage identification with uncertainties. Natural frequencies and mode shapes are

extracted as the input to the network, while the output are damage locations and severities of

the structure. To enhance the performance of the DBN, the Arc-tan sparse constraint is

introduced. The final identification results show that the proposed sparse DBN can be used to

identify the damage effectively and its accuracy is better than those obtained by other swarm

intelligence techniques.

Chapter 6 mainly illustrates the hybridization of the TSA and the Jaya algorithm. A hybrid

algorithm along with the non-probabilistic method is applied to conduct the undetermined

damage identification. The alteration of natural frequencies and the MAC (Modal Assurance

Criteria) values as well as the 5.0L sparse regularization norm are used to formulate the

objective function. The simplified Guangzhou New TV Tower model is chosen as the

numerical example and a simply-supported beam is selected for experimental verification.

Structural identification results demonstrate that the hybrid algorithm with the non-probabilistic

method can well quantify damages, even though high-level uncertainties are considered.

In Chapter 7, a hybridization of the K means Jaya and the ANN algorithm is illustrated.

Vibration characteristics, as well as the acceleration responses are extracted as the input to the

network while the output is the nonlinear parameters and structural damages. To make the

standard ANN more powerful, the K means Jaya algorithm is applied to replace the

back-propagation algorithm during the training process. Relatively high-level noise is

introduced into the acceleration data. Final identification results for a benchmark show that the

proposed hybrid approach can effectively identify both the nonlinear parameters and structural

damages.

Chapter 8 briefly discusses and concludes the development and application of the above

developed methods. Major findings are summarized in this chapter, and discussions and

recommendations are provided for the possible future work.

It should be noted that this thesis is compiled by combining the technical papers prepared

by the candidate during his PhD study. Therefore, Chapters 2 to 7 can be read independently.

Furthermore, to make each technical paper complete, the introduction of the intelligence

methods as well as their advantages towards the traditional methodologies are introduced in

each independent chapter. These parts thus might be slightly repetitive with each other.
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CHAPTER 2 STRUCTURALDAMAGE IDENTIFICATIONWITH

UNCERTAINMODELLING ERRORSANDMEASUREMENTNOISE BY

CLUSTERING BASED TREE SEEDSALGORITHM

ABSTRACT1

This paper proposes a novel structural damage identification approach by using the

clustering based Tree Seeds Algorithm, termed as C-TSA, taking into account of both the finite

element modeling errors and measurement noise. In order to make the standard TSA more

powerful and robust, K-means cluster technique is introduced into the standard TSA before

starting the seeds search, which is beneficial to enhance the algorithm’s global optimization

performance. The objective function based on the modal data is formulated for structural

damage identification. Numerical studies on benchmark functions and a 61-bar truss structure

are conducted to investigate the accuracy and robustness of the proposed approach. The finite

element modelling errors and noises in the measurement data are considered. Experimental

verifications on a laboratory steel frame structure model is conducted to further validate the

accuracy of the proposed approach. The results from the numerical and experimental studies

are compared with those obtained from several latest evolutionary algorithms. The

identification results demonstrate that the proposed approach is more competitive and robust

for structural damage identification even considering the modelling errors and measurement

noises.

2.1 Introduction

Structures may accumulate damage inevitably with time, due to the material degradation,

fatigue, over loading, excess deformation and vibrations under extreme events, etc. It is

essential to inspect structural damages at an early stage to ensure the safety of structures. To

achieve this purpose, numerous methods have been developed to conduct structural damage

identification (Fan & Qiao, 2011; Ng, 2014; Li et al., 2017). Vibration based damage

identification methods by using dynamic responses or vibration characteristics, such as

acceleration, natural frequencies, mode shapes, have gained a significant amount of attention.

1This chaper was published in Engineering Structures with the full bibliographic citation as follows:Ding,
Z., Li, J., Hao, H., & Lu, Z. (2019). Structural damage identification with uncertain modelling error and
measurement noise by clustering based tree seeds algorithm. Engineering Structures, 185, 301-314.
https://doi.org/10.1016/j.engstruct.2019.01.118.

https://doi.org/10.1016/j.engstruct.2019.01.118.
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Vibration based structural damage identification can be formulated as an inverse problem.

An appropriate objective function related with structural parameters is defined, and

mathematical optimization is conducted to identify the best-fit parameters with physical

meanings. Swarm intelligence methods (Diptangshu et al. 2018) can be explored to achieve a

better optimization performance. Compared with the traditional methods, such as sensitivity

based method (Lu & Law, 2007; Lu et al. 2017), one noticeable advantage of the swarm

intelligence methods is that a good initial value and gradient information may not be required.

Furthermore, swarm intelligence methods are usually based on machine learning techniques to

learn and make predictions via data instead of using the explicit formulations. This could not

only avoid the shortcomings of many traditional methods, i.e. requiring good initial values, but

also enable to perform the identification of relatively large-scale and complex structures. Lin et

al. (2018) developed a multi-type sensor placement approach for structural damage

identification, in which Genetic Algorithm (GA) is used to find out the optimal sensor

placement locations. Numerical studies show that the obtained optimal multi-type sensor

placement can effectively avoid redundant sensors. Yi et al. (2012) proposed a modified

monkey algorithm (MA) for optimal sensor placement in structural health monitoring, where

the Euclidean distance operator and the stochastic perturbation mechanism of the harmony

search algorithm were used to enhance the standard algorithm’s local and global search ability.

Yi et al. (2017) proposed an innovative approach based on hierarchic wolf algorithm (HWA) to

optimize tri-axial sensor placement locations. To enhance the standard algorithm’s global

optimization ability, five local search strategies are employed and the results show that the

HWA can effectively determine the global optimal tri-axial sensor placement configuration so

that the identified mode shapes have the excellent linear independence. Sun et al. (2013)

formulated the model updating of structures as an inverse problem, and solved it by a modified

Artificial Bee Colony (ABC) algorithm, in which a nonlinear factor for convergence control

was introduced to enhance its performance. Zhu et al. (2017) used the Birds Mating Optimizer

(BMO) to conduct the identification of local structural damage, in which a hybrid objective

function was introduced by minimizing the discrepancies between the measured and calculated

frequencies and correlation function vector of acceleration between damaged and intact

structures. Ding et al. (2016) applied the ABC with hybrid search strategies to identify

structural damage. Yu and Li (2014) utilized a global Artificial Fish Swarm (AFS) algorithm
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for structural damage detection, in which the information of the best-so-far solution was added

into other solutions’ updating equation. Numerical and experimental results show that the

modified AFS can acquire better identification results. Dinh-Cong et al. (2017) compared the

capacities of using Cuckoo Search (CS) algorithm, Differential Evolutionary (DE) algorithm

and Jaya algorithm to handle with structural damage identification problem and concluded the

Jaya is the best choice among the mentioned three algorithms. It has been demonstrated that the

Improved Nelder-Mead Particle Swarm Optimizer (INM-PSO) (Chen & Yu, 2017) and the Ant

Lion Optimizer (ALO) algorithm (Chen et al., 2018) performed well in structural damage

identification. In addition, some other intelligence optimization techniques, such as the

non-probabilistic Artificial Neural Network (ANN) (Padil et al. 2017) and the fuzzy clustering

method (Yu et al. 2013), have also been introduced for structural damage identification.

Although these state-of-the-art methods have achieved relatively satisfactory identified

results, challenges still exist. For example, in the Refs. (Sun et al. 2013; Zhu et al., 2017; Ding

et al., 2016; Yu & Li, 2014; Dinh-Cong et al., 2017; Chen & Yu, 2017; Chen et al., 2018) the

modelling errors, which inevitably exist in the real structures, may not be considered

thoroughly. The identification accuracy in boundary conditions may also need to be improved.

The considered noise is a bit low and the structure used for investigating is relatively simple.

For solving these deficiencies, it is necessary to investigate and develop more efficient and

robust algorithms for structural damage identification considering modelling errors and

significant measurement noise.

Lately, a novel swarm intelligence approach, named as Tree Seeds Algorithm (TSA), has

been proposed (Kiran, 2015). It employs the trees propagation as a framework, which has been

proven to equip a more competitive optimization capacity compared with GA, PSO and DE

algorithm. TSA has already been applied to solve optimal power flow problem (EI-Fergany &

Hasnien, 2018) and estimate parameters for pumped-storage generator motor (Zhou et al. 2018).

In this study, it will be extended to the field of structural damage identification based on

vibration data with modelling errors (Xia et al. 2018) and measurement noises.

TSA plays an important role in identifying local damages. If the TSA does not have a

good robustness, the identified results will be significantly affected by the measurement noise.

When TSA is trapped in the local minimal during the optimization process, the identification

accuracy will be enormously weakened. Generally speaking, for the swarm intelligence
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methods, exploration and exploitation are two essential cornerstones that lead an evolutionary

process toward optimization and/or convergence. These two search modes are very necessary

for search processes when utilizing any meta-heuristic algorithm. Exploration is defined as

visiting the whole new regions of a search space, while exploitation is defined as visiting those

regions of a search space within the neighborhood of previously visited points (Liu et al. 2013).

This is a paradox behind these two search modes. If an algorithm focuses on the exploration, it

would affect the convergence performance. However if an algorithm concentrates on the

exploitation, it may be trapped in the local minimal. Therefore, it is essential for swarm

intelligence methods to achieve a balanced capacity between the exploration and exploitation

through some certain ways, i.e. by colony diversity maintaining, diversity control, diversity

learning etc (Črepinšek et al. 2013). To achieve this purpose, the K-means clustering

mechanism is applied and integrated into the standard TSA before performing the individuals’

updating. This new approach is therefore termed as C-TSA. This mechanism serves as a

crossover operator that can effectively utilize the colony information and achieve the purpose

of balancing the exploration and exploitation (Imrani et al, 2000; Damavandi & Safavi-Naeini,

2005).

This paper proposes a novel structural damage identification approach by using C-TSA,

taking into account of the uncertainties in the modelling and noise in the measurements. An

objective function is established by minimizing the discrepancies between the measured natural

frequencies and Model Assurance Criteria (MAC) values, and the calculated ones from the

finite element model. K-means clustering technique is applied to improve the performance of

the standard TSA. The performance of the proposed approach is investigated and tested on

Benchmark test functions and compared with several latest methods. Numerical studies on

classical benchmarks as well as CEC benchmarks are conducted to compare the global

optimization ability between the C-TSA and other state-of-the-art swarm intelligence methods.

Numerical studies on a 61-bar truss structure with and without uncertainties are conducted to

verify the accuracy and effectiveness of the proposed approach. Errors in the finite element

modelling and noise in the measurements are considered. Experimental validations on a

laboratory steel frame structure are conducted to demonstrate the performance of the proposed

approach.
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2.2 Mathematical Model and Problem Formulation

2.2.1 Structural damage model

Alterations in the structural stiffness or other parameters will lead to change in the

vibration properties of structures, and therefore damage identification in structures can be

conducted based on this fact by using vibration data. The modal characteristics of an

undamaged structure without considering the damping can be obtained by analyzing the

eigenvalue problem

2
i( ) 0i  K M Φ (2.1)

where K and M are the global stiffness and mass matrices, i represents the ith natural

frequency and iΦ denotes the corresponding mode shape.

The mass change of a structure could be inspected visually (Zhu et al., 2017). In this study,

structural damage is assumed only related to the stiffness reduction, i.e. in the elastic module of

material. Structural damage can be expressed through a scalar stiffness reduction variable for

each element ( 1,2,..., )i i nel  with the value between 0 and 1. This damage model can be

described as

d 1
(1 )nel

ii



   eiK k (2.2)

where eik represents the ith elemental stiffness matrix under the intact state; nel denotes

the total number of elements in a structure; and dK denotes the structural stiffness matrix

under the damaged state; i is the elemental stiffness reduction to be identified. It shall be

noted that 1i  means that this element is completely damaged, and 0i  means that the

element is intact. It should be noted that this damage model can also be used to describe the

damage in the boundary stiffness. When simultaneously identifying the elemental stiffness

parameters and the boundary stiffness, both the elemental stiffness and boundary stiffness

parameters are included in the optimization.

2.2.2 Objective function for damage identification

Condition monitoring of structures can be conducted based on the changes in the vibration

modal characteristics, i.e. natural frequencies and mode shapes, which are related with system
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parameters, i.e. stiffness. This is the foundation that the modal information are used for

structural damage identification. The objective function based on both natural frequencies and

MAC can be expressed as (Ding et al., 2016)

2
1 1

( ) (1 )NF NM
i i i i ii i

f W W MAC   
      (2.3)

in which

c m
i i

i m
i

 





  (2.4)

2

2 2

( )
iMAC 


cT m
i i

c m
i i

Φ Φ

Φ Φ
(2.5)

where iW and iW are the weight factors for the ith natural frequency and MAC ,

respectively; It should be noted that the weight factors iW and iW in this paper are defined

as 1, which is the same as those used in Ref. (Ding et al., 2016). This indicates the equal

importance of measured frequencies and mode shapes. c
i and c

iΦ are the ith calculated

natural frequencies and mode shape from the finite element model, respectively; m
i and

m
iΦ are the corresponding measured frequency and mode shape. The calculated modal data

are obtained based on the stiffness reduction parameters 1 1[ , ,..., ]nel  α with the finite

element analysis. If the estimated damage parameters match with the true values perfectly, the

objective function value will achieve the minimum and be 0. The identified stiffness parameter

vector α will reflect the structural damage. Generally speaking, structural damage

identification is treated as an ill-posed problem with the searching parameters region that may

have multiple local optimal points (Sun et al., 2013). In this case, the traditional optimization

techniques could be stuck with the local minimum, which may result in the poor identification

results. Therefore, just as mentioned above, it is necessary to investigate and develop robust

and powerful algorithms, which could deal with the complex identification problems well.

2.3 Methodology

2.3.1 Standard TSA

TSA is a kind of swarm intelligence method, which is developed based on the natural

phenomenon of trees propagation. In reality, trees usually spread to other places through their
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seeds. These seeds will grow into the new trees over time. In the algorithm, these places for

trees and seeds can be considered as searching spaces for the optimization problems. The

specific locations of trees and seeds are considered as feasible solutions. In fact, the core of this

algorithm is searching the seeds since it will update the new feasible solutions in this phase,

which provides two search equations for this process as described below

, , , ,( )i j i j i j j r jS T B T    (2.6)

, , , , ,( )i j i j i j i j r jS T T T    (2.7)

where ,i jS is the jth dimension of the ith seed that would be generated by the ith tree,

,i jT is the jth dimension of the ith tree, jB is the jth dimension of best-so-far solution

in the colony, ,r jT is the jth dimension of the rth solution randomly selected from the

colony size; the coefficient ,i j is a uniform random number, ,i j is the scaling factor

arbitrarily generated in the range of [ 1,1] , and i and j are different indices. Based on the

search equation as shown in Eq. (2.6), a new candidate is produced by removing the old

solution towards the best-so-far solution in the colony, which enhances the exploitation ability

of the algorithm to some extent. However, from Eq. (2.7), a new candidate is created by

removing the old solution towards a randomly chosen one in population. The randomly

selected solution could be a good one, which also has the same likelihood to be a bad one.

Hence Eq. (2.7) has a strong exploration ability (Gao et al., 2015).

Afterwards, the key point is to create a new solution. This process is controlled by a

parameter called search tendency (ST) in the range of [0,1] . Selecting a better equation

between Eqs. (2.6) and (2.7) to update the solution relies on the comparison between a random

number and ST. If the random number is larger than ST, Eq. (2.6) is chosen as the update

equation. Otherwise Eq. (2.7) will be selected. Therefore, for every tree seed, a higher ST value

makes it have a higher chance of exploitation whereas a lower ST value renders it possess

likely for exploration. This is the reason why the exploration and exploitation capacities of the

TSA is controlled by ST parameters.

When applying TSA, the initial possible solutions for the optimization problem are

produced as
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, ,min , ,max ,min( )i j j i j j jT L r H L    (2.8)

where ,minjL and ,maxjH are the lower and upper bounds of the search space respectively,

,i jr is a random number produced for every dimension and location, which is in the range of

[0,1] . The seeds number can be determined approximately as 10% and 25% of the colony size.

The exact number of the seed generation is random in TSA.

2.3.2 The proposed approach

Clustering-based TSA, termed as C-TSA in this paper, is proposed and the motivation

behind this development is described in this section. As mentioned in Section 2.2.2, the

objective function is difficult to be dealt with by using the traditional optimization algorithms

due to its multimodel feature. To balance TSA’s global and local search capacity through

making full use of the colony information and render the proposed algorithm equipped with a

more powerful optimization ability, an improved framework is developed based on clustering

technique. For the original TSA, the updating operation as shown in Eqs. (2.6) and (2.7) is

performed between randomly selected individuals from the entire colony, which allows any

two individuals have a chance to create the new generation. The Greedy Selection Scheme

(Ding et al., 2016) is also applied for the old solution and the new one. Therefore, the problem

is that when dealing with a multimodal problem, it may suffer the slow-convergence problem

or even trap in the local minimal at the final stage. This is because in the final iteration for the

multimodel problem, the whole colony has a large likelihood to distribute around the different

optimal regions. In this case, the distance in the parameter space between different optima is

large, which leads to the slow convergence rate due to the relatively large magnitude of the

vector generated from individuals with different optimal regions (Gao et al., 2014). Besides, the

mutation mechanism in the original TSA cannot guarantee the full use of the colony

information, since only two individuals are adopted to make further exploration in every cycle.

To tackle these two challenges, that is, to enhance the convergence performance and to increase

the utilization rate of the population information, K-means clustering is applied before updating

the solutions.
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2.3.2.1 Overview of the K-means clustering

Clustering is an important research topic in the field of machine learning, which aims to

categorize a massive amount of data into several groups according to their patterns. It can be

used to re-organize the database into a number of groups or clusters so that those data within a

cluster have similar features. Clustering technique is a significant tool to discover the inherent

patterns in any given database (Cai et al., 2011). The clustering centers can represent the whole

clusters, since these centers’ formations are the results of combining with the information of

other individuals in this colony. Therefore, it is beneficial to utilize the information of the

colony efficiently and enhance the algorithm’s convergence performance (Gao et al., 2014), by

introducing the K-means clustering mechanism.

The K-means clustering belongs to an unsupervised learning algorithm. Considering a set

of n data points, i.e. 1 2{ , ,... }nX X XX in the space Ũ and an integer K, the K-means

clustering is to determine a series of K cluster centers 1 2{ , ,... }kC c c c to minimize the sum of

squared errors as
1..

min || ||ii kX
SSE X c




 
X

It usually consists of three steps, namely, selecting

the initial clusters centers, assigning other data to these centers and re-estimating the new

cluster centers (Hussain & Haris, 2019).

The specific procedure of the K-means clustering (Cai et al., 2011) is described as

Step 1: Select k initial cluster centers 1 2, ,..., kc c c randomly from the n points

1 2{ , ,..., }nX X X

Step 2: Assign the point iX , ( 1,2,..., )i n to a cluster , 1,2,...,jC j k , only if the

distance satisfies, | || || ||i j i pX c X c   the point iX belongs to the cluster with the center

point jc Similarly, other clusters can be defined through the comparison with the distance

generated from every center point.

Step 3: The criteria of determining which cluster the point belongs to is based on the

distance between all the centers. In this study, the Euclidean distance is employed to calculate

the distance, which is given as below

2
, ,

1

( , ) || || ( )
D

i j i j i p j p
p

d X X X X X X


    (2.9)
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where iX and jX represent any two individuals from the colony and D denotes the

dimension number of the individual.

Step 4: Calculate new cluster centers ' ' '
1 2, ,..., kc c c based on the following equation

' 1 , 1,2,...,
j i

i j
X ci

c X i k
n 

  (2.10)

where in is the number of elements within the cluster ic .

Step 5: If the center points for the whole colony remain the same, it means the algorithm

terminates and 1 2, ,..., kc c c are selected as the final center points. Otherwise, update each ic

with '
ic ( 1,2,..., )i k , and go back to Step 2 for the next iteration.

2.3.2.2 C-TSA

Recently, some researchers have employed the K-means clustering technique to improve

the performance of swarm intelligence algorithms. For example, Imrani et al. (2000) integrated

the sharing mechanism and a fuzzy clustering algorithm to modify the GA. It is found that the

improved algorithm was good at dealing with the multiple model functions. Damavandi and

Safavi-Naeini (2005) utilized a density clustering mechanism to preserve the diversity of the

colony and the results showed that the hybrid method has greatly enhanced the robustness and

convergence performance of the algorithm for tackling the complex multi-modal circuit

optimization problem.

For the application in civil engineering, structural damage identification taking into

account of uncertain modelling errors and measurement noise is an ill-posed and multi-modal

complex optimization problem (Sun et al., 2013; Zhu et al., 2017; Ding et al., 2016; Yu & Li,

2014; Du et al., 2017; Chen & Yu, 2017; Chen et al., 2018). Besides, due to the simple

mutation mechanism of the original TSA, it may suffer not making the full use of the colony

information. Therefore, the K-means clustering technique is introduced in the proposed

approach before updating the solutions, which is essential to balance the exploration and

exploitation of TSA and accelerate the convergence speed. Figure 2-1 illustrates the framework

of the proposed C-TSA. From observing its algorithmic structure, it is clear that C-TSA equips

the feature of simplicity and easy-operation. On the other hand, C-TSA also possesses the
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deconstruction mechanism (Hussain & Haris, 2019). When canceling the clustering operation,

C-TSA will become the standard TSA. Therefore, it is convenient to investigate whether the

K-means clustering mechanism improves the performance of TSA or not.

Figure 2-1 The flowchart of the proposed C-TSA.

As shown in Figure 2-1, the K-means clustering is performed before the individuals’

updating. To present the process of the K-means clustering in a straightforward way, Figure 2-2

displays its diagram. From Figure 2-2, it is assumed that [2, ]K CS clusters will be

randomly generated and K individuals are selected from the colony as the initial clustering

points. Afterwards, other individuals will be assigned to these cluster centers according to their

Euclidean distances, which can be calculated by Eq. (2-9). Then the K new cluster centers are

calculated by using Eq. (2-10). According to Ref. (Cai et al., 2011), the one step clustering is
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simple, linear time complex but effective. Therefore, in the proposed C-TSA, one step

clustering is also adopted. K individuals are randomly chosen from the colony, and these

individuals with the new clustering centers are combined together as a sample P. The objective

function values of the individuals in the sample P are calculated, and the best K individuals will

be put into the colony again, which enables the elite preservation (Cai et al., 2011). When the

conduction of the K-means clustering is finished, the seeds search is commenced. Figure 2-3

shows the pseudo-code of the proposed C-TSA. It is observed that the proposed C-TSA keeps a

simple structure, which is easy to implement with a deconstruction mechanism and other

advantages of the original TSA.

Figure 2-2 The diagram of operating the K-means clustering in the proposed C-TSA.



23

Step 1. Initialization of the proposed algorithm
Set the number of population size CS , parameter ST
Set the dimension of the problem D
Decide the termination condition
Generate CS random tree location with D dimension on search space using Eq. (2.8)
Evaluate the tree location using objective function based on Eq. (2.3)
Select the best-so-far solution B

Step 2. Operation of the K-means clustering
Step 3. Searching with seeds

For all individuals in the colony
Decide the number of seeds produced for this individual.
For all dimensions

If (rand<ST)
Update this dimension using Eq. (2.6)

Else
Update this dimension using Eq. (2.7)

End If
End For

End For
Select the best seed and compare it with the individual. If the seed location is better than the
individual’s, the seed replace this individual.

End For
Step 4. Selection of Best Solution

Select the best solution in every cycle. If the new best solution is better than the previous best
one, the new best solution substitutes for the previous best solution.

Step 5 Check the termination condition and feedback
If the termination condition is not met, go to Step 2. Report the best solution.

Figure 2-3 The pseudo-code of the proposed C-TSA.

2.4 Numerical Simulations

In this section, the accuracy and performance of the proposed approach will be

demonstrated with numerical simulations and compared with several existing state-of-the-art

algorithms. Six mathematical benchmark functions in the literature (Ding et al., 2017), which

are list in Table 2-1, are employed for conducting colony diversity analysis between the TSA

and C-TSA. After that, C-TSA will be utilized to optimize CEC’05 benchmarks (Sunganthan et

al., 2005) to compare its capacity with several state-of-the-art algorithms. The effectiveness and

performance of using C-TSA for identifying the structure damage are also demonstrated with

numerical studies on a truss structure.
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Table 2-1 Classical mathematical benchmarks.

Number Name Definition Range

F1 Sphere 2
1 1
( ) D

ii
f x x


 [ 100,100]

F2 Griewank 2
2 11
( ) 1 4000 cos 1D D

i i ii
f x x x i

   [ 600,600]

F3 Ackley
2

3 1

1

( ) 20 20exp( 0.2 (1/ ) )

exp((1/ ) cos 2 )

D
ii

D
ii

f x e D x

D x





   






[ 32,32]

F4 Rastrigin 4 1
( ) [ 10cos(2 ) 10]D

i ii
f x x x


  

]12.5,12.5[

F5 Rosenbrock 2 2 22
5 2 2 1 2 11
( ) (100( ) (1 ) )

D

i i ii
f x x x x 

    [ 30,30]

F6 Schaffer
2 2

6 1

2 2
1

( ) 0.5 sin ( 0.5) /

(1 0.001( ))

D
ii

D
ii

f x x

x




  






[ 100,100]

2.4.1 Colony diversity analysis between TSAand C-TSAon classical benchmark

In order to compare the performance of the proposed approach with the TSA, a series of

classical mathematical benchmarks, as list in Table 2-1, are adopted for calculation. According

to the literature (Kiran, 2015; EI-Abd, 2017), the colony size and the search tendency are set as

25CS  and 0.4ST  respectively. For C-TSA, one step clustering is conducted in each

iteration. All benchmark tests are conducted on dimensions 30D  for a maximum of

10000 D . Each situation repeats 50 times, best results are highlighted in bold in Table 2-2.

To quantify the exploration and exploitation ability of these two algorithms, the standard

deviation (std.) of individuals in each cycle is employed to illustrate the improvement of

convergence performance. The colony diversity is measured by

2

1 1

1 ( )
D CS

ji j
i j

Diversity S S
CS 

   (2.11)

where jS is the mean position of the colony.
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Table 2-2 Statistical results obtained by TSA and C-TSA on classical benchmarks.

Function

C-TSA TSA

Objective values Final diversity value Objective values Final diversity value

Mean std Mean std Mean std Mean std

F1 4.47E-150 2.45E-149 1.03E-75 5.63E-75 1.28E-21 3.93E-21 1.84E-19 6.02E-19

F2 0.00E+00 0.00E+00 1.84E-07 8.63E-08 5.91E-03 7.54E-03 1.69E-05 2.42E-05

F3 1.78E-15 2.91E-15 4.67E-15 6.72E-15 3.33E-02 1.82E-01 6.38E-09 3.49E-08

F4 1.89E-15 1.04E-14 2.61E-08 1.91E-08 3.57E+01 3.60E+01 4.03E+00 9.89E+00

F5 2.70E+00 5.73E+00 3.70E-03 7.81E-03 2.68E+01 2.72E+01 2.68E-02 3.80E-02

F6 3.12E-04 9.54E-04 2.68E-07 2.85E-07 1.93E-02 7.97E-02 7.19E+00 2.07E+00
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Figure 2-4 The diversity values on several benchmark functions by using TSA and C-TSA:

(a) Sphere; (b) Rosenbrock; (c) Rastrigin; (d) Schaffer.

Figure 2-4 has shown the colony diversity values of several test benchmarks from TSA

and C-TSA. From the diversity values on several benchmark functions as shown in Figure 4, it

can be observed that during the early iterations (before 500 cycles), the diversity values are

relatively large, which denotes that the individuals scatter in the search space and focus on the

exploration search. With iterations, especially after 2000 cycles, the diversity values remain at

very low values until the end of iterations. This indicates that the individuals gradually gather

together and concentrate on the exploitation search. Therefore, the diversity values could be

(a) (b)

(c) (d)
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used as a criterion to quantify the algorithms’ exploration and exploitation ability to some

extent. Furthermore, as shown in Table 2-2 and Figure 2-4, it is clearly observed that in the

later iterations (after 1000 iterations), the diversity values of the proposed C-TSA are

significantly smaller, indicating that C-TSA achieves a better balance between the exploration

and exploitation and has a quicker convergence rate. This is owning to the operation of the

K-means clustering in the developed C-TSA.

2.4.2 Comparison with state-of-the-art algorithms on CEC benchmarks

In this section, several state-of-the-art algorithms including Global-best Artificial Bee

Colony (GABC) (Zhu & Kwong, 2010), 2011 version of Standard Particle Swarm Optimizer

(SPSO) (Zambrano-Bigiarini et al., 2011), the Improved Global-best Harmony Search (IGHS)

(EI-Abd, 2013) and Global Brain Storm Optimization (GBSO) (EI-Abd, 2017) are employed to

make comparison with the proposed C-TSA on CEC’05. The parameters setting for the C-TSA

are the same as those in the section 4.1. All benchmark tests are conducted on dimensions

10D  , 30D  and 50D  for a maximum of 10000 D function evaluations. In Tables

2-3 to 2-5, best results are highlighted in bold. It is noted that the results of other algorithms are

extracted from a previous study (EI-Abd, 2017). It is clear that the C-TSA can obtain the best

identified results in most cases.

To assess these algorithms’ global optimization capacities in a more rigorous and

persuasive framework, the non-parametric Friedman test with a 5% confidence interval

(EI-Abd, 2017) is employed as a criterion to assess these algorithms. The Friedman test is used

to detect significant differences between the performances of different algorithms (Derrac et al.,

2011). Mean errors of objective function values acquired by the mentioned algorithms are used

for the test. This method first finds the rank of algorithms for the individual problems and then

calculates the average rank to obtain the final rank of the each algorithm for the considered

problems. Figure 2-5 shows the mean rank of the algorithms for the CEC’05 benchmarks. With

calculations by the Friedman test, C-TSA has acquired the best rank among these algorithms,

with the lowest score of 2.45. On the other hand, the p-value for the test is only 43.6 10 ,

which is far less than the 5% confidence interval. This confirms the outstanding performance of

C-TSA for the CEC’05 over the considered algorithms, and lays foundations for the following

identifications (EI-Abd, 2017; Derrac et al., 2011 ).
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Table 2-3 Performance results of various algorithms on CEC05 functions: 10D.

Benchmark

Function

GABC SPSO IGHS GBSO C-TSA

Mean std. Mean std. Mean std. Mean std. Mean std.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.18E-09 2.21E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00

2 6.71E+00 6.30E+00 9.47E-15 2.15E-14 1.13E-08 3.67E-09 9.39E-11 2.42E-10 7.03E-23 2.72E-22

3 6.23E+05 3.08E+05 3.85E+04 2.91E+04 7.54E+04 5.81E+04 4.97E+04 3.81E+04 5.91E+04 4.81E+04

4 6.64E+02 4.14E+02 1.71E-14 2.65E-14 1.34E-08 4.39E-09 2.97E-09 8.06E-09 2.75E-21 1.05E-20

5 2.03E+00 1.56E+00 0.00E+00 0.00E+00 2.75E-03 1.00E-03 1.42E-06 1.00E-06 1.50E-08 3.68E-08

6 7.63E-02 9.26E-02 4.11E+01 9.71E+01 3.19E+01 5.40E+01 6.21E+00 2.60E+00 2.90E-02 4.43E-02

7 7.95E-02 5.09E-02 9.46E-02 1.10E-01 1.64E-01 7.69E-02 8.46E-02 5.13E-02 1.15E-01 6.41E-02

9 0.00E+00 0.00E+00 5.24E+00 2.10E+00 1.63E-06 3.50E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

10 1.35E+01 3.25E+00 4.57E+00 2.09E+00 9.68E+00 3.98E+00 4.61E+00 2.34E+00 9.88E+00 2.83E+00

11 5.23E+00 9.11E-01 3.27E+00 1.65E+00 9.92E-01 9.34E-01 2.57E-01 5.35E-01 0.00E+00 0.00E+00

12 1.96E+02 1.05E+02 2.00E+04 9.50E+03 1.78E+02 4.63E+02 5.44E+02 7.14E+02 1.92E+00 6.73E-01

13 1.36E-01 1.18E-01 7.93E-01 1.68E-01 4.39E-01 1.19E-01 4.84E-01 1.12E-01 7.21E-01 8.32E-02

14 3.21E+00 1.75E-01 2.30E+00 5.10E-01 3.28E+00 6.37E-01 1.94E+00 5.35E-01 3.04E+00 3.56E-01

Table 2-4 Performance results of various algorithms on CEC05 functions: 30D.

Benchmark

Function

GABC SPSO IGHS GBSO C-TSA

Mean std. Mean std. Mean std. Mean std. Mean std.

1 6.82E-14 2.31E-14 5.49E-14 1.04E-14 8.87E-08 1.25E-08 5.49E-14 1.04E-14 1.73E-27 1.88E-27

2 1.38E+03 8.51E+02 3.35E-13 1.07E-13 6.51E-07 1.68E-07 3.15E-04 2.10E+04 1.08E-04 3.40E-04

3 6.22E+06 3.21E+06 2.80E+05 1.37E+05 4.78E+05 2.36E+05 1.06E+06 3.61E+05 1.16E+05 4.96E+04

4 3.29E+04 5.04E+03 5.03E+01 3.27E+01 9.59E-03 1.89E-02 1.83E-01 1.66E-01 3.26E-05 1.03E-04

5 7.62E+03 1.46E+03 4.73E+03 7.93E+02 1.18E+03 5.32E+02 8.90E+01 7.94E+01 5.19E+02 2.68E+01

6 1.53E+01 2.67E+01 5.04E+02 1.06E+03 1.61E+02 1.71E+02 8.80E+01 1.47E+02 7.06E-02 1.19E-01

7 2.77E-02 1.84E-02 2.94E-02 2.43E-02 8.70E-03 1.06E-02 7.72E-03 7.91E-03 2.71E-02 7.43E-13

9 5.68E-14 2.57E-29 5.77E+01 2.71E+01 1.69E-05 1.70E-06 3.60E-01 6.30E-01 9.95E-01 2.25E-15

10 1.70E+02 2.45E+01 5.52E+01 1.31E+01 4.98E+01 1.41E+01 2.52E+01 7.85E+00 6.76E+01 2.56E-14

11 2.69E+01 1.50E+00 2.66E+01 4.48E+00 5.60E+00 2.25E+00 1.35E+00 1.74E+00 8.28E+00 2.32E+00

12 6.54E+03 2.60E+03 1.04E+06 1.51E+05 1.59E+03 1.74E+03 4.44E+03 5.34E+03 1.63E+03 8.75E+01

13 8.07E-01 1.56E-01 5.98E+00 3.30E+00 1.23E+00 2.43E-01 1.73E+00 2.73E-01 3.81E+00 8.53E-01

14 1.27E+01 2.36E-01 1.20E+01 6.68E-01 1.19E+01 5.73E-01 1.01E+01 8.59E-01 1.32E+01 2.83E-01
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Table 2-5 Performance results of various algorithms on CEC05 functions: 50D.

Benchmark

Function

GABC SPSO IGHS GBSO C-TSA

Mean std. Mean std. Mean std. Mean std. Mean std.

1 1.63E-13 2.73E-14 9.47E-14 2.73E-14 2.74E-07 2.87E-08 1.00E-13 2.45E-14 1.55E-27 8.11E-28

2 1.39E+04 6.08E+03 1.38E-11 1.64E-11 9.63E-06 1.92E-06 1.07E-01 4.10E-02 1.15E-01 3.15E-01

3 1.18E+07 3.69E+06 4.33E+05 1.44E+05 9.07E+05 3.72E+05 2.06E+06 7.49E+05 2.94E+05 1.26E+05

4 9.28E+04 1.10E+04 3.92E+03 1.02E+03 3.18E+03 2.03E+03 8.46E+01 4.50E+01 3.02E-02 8.81E-02

5 2.13E+04 1.97E+03 1.24E+04 1.87E+03 3.29E+03 7.67E+02 6.61E+02 3.23E+02 1.11E+02 1.12E+01

6 3.32E+01 4.35E+01 6.77E+02 1.73E+03 1.45E+02 1.70E+02 1.44E+03 2.42E+03 3.99E+00 1.53E-03

7 1.02E-02 1.66E-02 1.12E-02 1.48E-02 1.07E-03 2.80E-03 1.48E-03 3.01E-03 6.20E-03 4.65E-09

9 1.04E-13 2.15E-14 1.31E+02 2.78E+01 5.12E-05 4.33E-06 2.85E+00 1.19E+00 1.42E-15 3.43E-15

10 5.25E+02 6.61E+01 1.52E+02 3.02E+01 8.94E+01 2.13E+01 5.13E+01 1.24E+01 2.06E+02 4.15E+01

11 5.33E+01 2.90E+00 5.72E+01 4.13E+00 1.20E+01 3.35E+00 3.56E+00 2.43E+00 5.90E+00 3.58E-01

12 2.96E+04 1.15E+04 5.16E+06 7.99E+05 1.22E+04 1.04E+04 1.79E+04 1.37E+04 7.83E+04 7.58E+03

13 1.45E+00 2.45E-01 1.38E+01 8.27E+00 2.01E+00 2.83E-01 3.19E+00 5.29E-01 7.71E+00 6.29E--01

14 2.24E+01 2.46E-01 2.16E+01 6.81E-01 2.11E+01 7.82E-01 2.11E+01 9.18E-01 2.30E+01 2.00E-01
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Figure 2-5 Friedman rank test for the CEC’05 benchmarks.

2.4.3 Numerical simulation on a truss structure

The above studies on benchmark functions demonstrate the improved accuracy and

efficiency of the proposed algorithm compared with several latest methods and the standard
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TSA. In this section, numerical studies on a planar truss structure (Ding et al., 2016) are

conducted. The model of the simply supported truss structure and the locations of placed

sensors are shown in Figure 2-6. The structure has 26 nodes and 61 elements. The Young’s

modulus, mass density and Poisson’s ratio of the truss structure member are respectively

70GpaE  , 3 32.7 10  kg/m   and 0.33  . The boundary supports are modeled with

three springs with a large stiffness of 102 10 N/m . The first six nature frequencies of the

structure are obtained as 16.48 Hz, 54.96 Hz, 73.75 Hz, 132.15 Hz, 193.06 Hz and 222.25 Hz,

respectively, based on the finite element model analysis. In terms of parameters setting for TSA

and C-TSA, the colony size, the search tendency and the maximum iteration number are set as

50CS  , 0.4ST  and 200, respectively. The first six frequencies and mode shapes are used

for the identification. For every damage scenario, the identification is repeated 20 times with a

different initialized random seed to obtain the statistical results. To investigate the effect of

measurement noise on damage identification, natural frequencies and mode shapes are

contaminated by adding a uniformly distributed noise (Dinh-Cong et al., 2017)

(1 (2 1) )noise
i i irand        , (1 (2 1) )noise

ji j jirand        (2.12)

where noise
i and noise

ji are the ith natural frequency and the jth component of the ith

mode shape vector polluted by noise; i and j are the noise levels in the frequency and

mode shape, respectively.

Figure 2-6 A planar truss structure in the numerical study.

2.4.4 Damage identification without modeling uncertainty

2.4.4.1 Scenario 1

The first damage scenario is assumed with 15% stiffness reduction introduced in the 3rd
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element, that is, 3 0.15  . The performance of the proposed approach is compared with those

of ABC, quicker Artificial Bee Colony (QABC) algorithm, Artificial Bee Colony algorithm

with hybrid search strategy (ABCHSS) and TSA. Figure 2-7(a) shows the evolutionary process

of the objective function values by using TSA and C-TSA for structural damage identification.

It can be seen that C-TSA has a quicker convergence speed and achieve a very small objective

function value. When 1% noise is added into the frequencies and 10% noise is added into the

mode shapes (Ding et al., 2016), Figure 2-7(b) shows the iterations of the identified damage

index of the 3rd element. It is clearly observed that the iteration process by using C-TSA

converges faster, indicating the proposed improvement based on K-means clustering technique

enhances the performance of the original TSA.

Figure 2-7 The evolutionary process of Scenario 1:

(a) Objective function (without noise); (b) Damage parameters (with noise).

The final structural damage identification results are shown in Figure 2-8. It is noted that

less false identifications are observed from C-TSA, when the noise is included in the

measurement. To compare with other methods, the statistical results of the identified damages

without noise and with noise in the 3rd element are shown in Table 2-6. It can be found that

ABCHSS, TSA and C-TSA can identify the damage correctly for the noise free situation.

Generally TSA and C-TSA provide the better results than ABCHSS, QABC and ABC. When

(a)

(b)
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noise is included in the measurement data, C-TSA outputs the best identification results with

the maximum relative error of 0.09%, better than 0.3% and 1% from TSA and ABCHSS.

Figure 2-8 Damage identification results of Scenario 1.

2.4.4.2 Scenario 2

Three damages in the 5th, 15th and 25th elements with 10% stiffness reduction each are

defined in Scenario 2. The same procedure is followed to identify the damage. Figure 2-9

shows the evolutionary process of the objective function and identified damage extents in

Scenario 2. It is also observed that C-TSA converges quickly, which means that C-TSA is more

competitive and efficient.
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Figure 2-9 The evolutionary process of Scenario 2: (a) Objective function (without noise);

(b) Damage parameters (with noise).
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Figure 2-10 shows the damage identification results in the truss structure. The simulated

damages can be identified accurately, even when the noise is included. C-TSA outputs a less

number of false identifications than TSA, indicating that the performance of the proposed

approach is good and robust. The identified damage extents without noise and with noise are

listed in Table 2-6. It can be seen that C-TSA can accurately identify the multiple damage with

very small standard deviations, and outperforms the other three existing methods.

Figure 2-10 Damage identification results of Scenario 2.

2.4.4.3 Scenario 3

Scenario 3 is defined to investigate the effect of the boundary conditions on the structural

identification. Damage is introduced into the 3rd element with a 15% stiffness reduction. The

boundary stiffness 3K as shown in Figure 2-6 is underestimated as 92.5% of the true value,

which means that a 7.5% reduction is simulated in this boundary stiffness. Both the structural

elemental stiffness parameters and boundary stiffness parameters are included in the

identification. As mentioned in Section 2.1, damage in the boundary stiffness can also be

identified by introducing three extra stiffness parameters into the optimization process. The

final identified results of this scenario are shown in Figure 2-11 and Table 2-6. It can be seen

that C-TSA can identify the element damage and boundary stiffness reduction accurately, even

considering the noise effect. The results demonstrate that the accuracy and robustness of the

proposed algorithm are better than QABC, ABCHSS and TSA.
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Figure 2-11 The identified damage and boundary condition of Scenario 3:

(a) Damage in elements; (b) Damage in boundary conditions.

Table 2-6 Damage identification results in numerical simulation.

Scenarios

Methods

QABC ABCHSS TSA C-TSA

mean std. mean std. Mean std. mean std.

Scenario 1

3

(15%)

Without noise 13.98% 0.02 15% 0 15% 0 15% 0

With noise 7.92% 0.06 13.89% 0.004 14.70% 0.004 14.91% 7.10E-04

Scenario 2

5

(10%)

Without noise 6.76% 0.04 9.54% 0.009 10.00% 1.07E-04 10.00% 0

With noise 6.84% 0.04 9.30% 0.02 9.61% 0.008 9.96% 0.005

15

(10%)

Without noise 6.19% 0.04 9.45% 0.006 10.00% 6.81E-05 10.00% 1.30E-06

With noise 5.97% 0.05 9.10% 0.008 9.57% 0.003 9.77% 8.57E-04

25

(10%)

Without noise 4.11% 0.04 9.53% 0.006 9.95% 1.25E-04 10.00% 1.10E-06

With noise 4.02% 0.03 8.43% 0.01 9.29% 0.03 9.66% 0.002

Scenario 3

3

(15%)

Without noise 11.98% 0.05 14.95% 0.0003 15.00% 5.92E-05 15.00% 5.62E-07

With noise 8.89% 0.04 12.75% 0.01 14.12% 0.004 14.68% 0.002

3k

(7.5%)

Without noise 9.26% 0.22 7.21% 0.0124 7.49% 1.58E-04 7.50% 7.43E-07

With noise 24.28% 0.22 11.47% 0.07 6.41% 0.006 7.00% 0.003

2.4.5 Damage identification with modeling uncertainty

In the above mentioned simulations, the modelling uncertainty is not considered and the
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first six mode shapes of all the degrees of freedom (DOFs) are used for identification. However,

uncertainties inevitably exist in the finite element modelling which affects the subsequent

structural damage identification. Furthermore it is very difficult to acquire the modal data of

those rotational DOFs, implying only incomplete modal data are available for damage

identification analysis. To ensure that the conducted numerical simulations are more realistic

with uncertainties and incomplete measurements, 1% uncertainty with Gaussian distributions

(Xia et al., 2002; Pathirage et al. 2018) is introduced into all the elemental stiffness parameters

to simulate the modelling errors. The first six natural frequencies and the mode shapes in the

vertical direction of all the nodes are used for identification. It has been demonstrated in the last

section that TSA and C-TSA provide the better results than other methods, therefore only these

two algorithms are used in this section for damage identification.

When the modelling uncertainty is introduced, the damage can be determined from the

statistical distributions of the stiffness parameters under the undamaged and damaged states.

For example, if the stiffness parameter of the ith element follows a Gaussian distribution with

a mean value of (1 )iE  and a standard deviation of (1 )i  . The probability of damage

existence is defined as that of 1 i not within 95% confidence interval iΩ(1-α ,0.95) of the

healthy stiffness parameter. Therefore, the probability of damage existence of the ith element

can be calculated as

1 prob( (1 ,0.95)) 1 prob( )

prob( )
i i

i

i
d ip x L x

x L
 



 



        

   
(2.13)

where L is the lower bound of the interval (1 ,0.95)i  . When the confidence level

is set to 95%, the lower bound can be decided by (1 ) 1.645 (1 )i iL E        , which

indicates that there is a probability of 95% that the healthy stiffness parameter falls in the range

of  (1 ) 1.645 (1 ),i iE       (Xia et al., 2002).

2.4.5.1 Scenario 4

15% stiffness reduction is assumed in the 3rd element in this scenario. The same damage

identification procedure is followed, and only the above mentioned modeling uncertainty is

considered. Figure 2-12(a) shows the evolutionary process of the objective function values. It is
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demonstrated again that C-TSA converges quicker. Probability Density Functions (PDFs) of

the ‘health’ stiffness parameters and the damaged stiffness parameters with the maximum error

alarms in the intact elements obtained from TSA and C-TSA are shown in Figures 2-12(b) and

(c), respectively. The lower bound L is also drawn in these two figures. As observed from

the TSA result in Figure 2-12(b), a relatively large part of PDF is located on the left side of L ,

which means that the probability of damage existence is relatively high (87.6%) and a false

identification may be obtained with a large likelihood. It can be observed that basically half of

the PDF from C-TSA locates on the left side of the lower bound L , as shown in Figure

2-12(c), which means that the probability of damage existence is relatively low (59.3%) and the

error in identification results stems from the uncertainty and noise effect with a large likelihood.

This also demonstrates the superiority of the developed C-TSA for damage identification with

uncertainties. The final structural damage identification results are shown in Figure 2-13. The

specific identified damage in the 3rd elements are shown in Table 2-7. The relative errors in the

results obtained from TSA and C-TSA are 1.19% and 0.24%, respectively. Due to the

modelling uncertainty, the difficulty for identification is increased, but the superiority of the

developed C-TSA can also be demonstrated.

Figure 2-12 The identified results of Scenario 4; (a) The evolutionary process of the objective function

value; (b) Distribution results from TSA; (c) Distribution results from C-TSA.

(a)

(b) (c)
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Figure 2-13 Damage identification results of Scenario 4.

2.4.5.2 Scenario 5

In this section, a multiple damage scenario with modeling uncertainty is defined to

investigate the accuracy and effectiveness of the proposed algorithm. 25%, 20%, 13% and 18%

stiffness reductions are introduced in the 4th, 8th, 18th and 45th elements. Figure 2-14 shows the

iteration processes of the identified damages in those four elements. It is observed that C-TSA

has a more stable and faster convergence than TSA. The final damage identification results are

shown in Figure 2-15, and the specific damage extents are listed in Table 2-7. The maximum

false identification obtained from TSA is observed in the 11th element with the mean value of

5.03% and standard deviation of 0.059. Such a large deviation indicates significant error in the

11th element, in contrast to the corresponding error of the results from C-TSA of only 2.67%

with a standard deviation value of 42.91 10 . Furthermore, for the damaged elements, the

maximum relative error in the identification by using TSA and C-TSA are 2.86% and 0.90%,

respectively, indicating the superiority of C-TSA.

2.4.5.3 Scenario 6

In this damage scenario, both the measurement noise and modelling uncertainty are

introduced to investigate the performance of the proposed approach. It is quite challenging to

achieve an effective and reliable structural damage identification when significant

measurement noise and modelling uncertainty effect are involved, since the coupling

uncertainties generally have a significant influence on damage identification results. For the

damage simulations, the same damages as Scenario 5 are introduced, that is, 4 0.25  ,
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8 0.2  , 18 0.13  and 45 0.18  . Figure 2-16 shows the identification results with

uniformly distributed noise. False identifications are observed in the 6th, 11th, 16th, 21st, 26th, 31st,

51st and 56th elements when utilizing the TSA. However, there are no false identifications from

the proposed C-TSA, which indicates again that the proposed approach can significantly

improve the robustness against the measurement noise and uncertainty effects. Furthermore, in

terms of the identified damage extents, the identification accuracy from the proposed C-TSA is

generally more competitive. The performance evaluation results are shown in Table 2-7. The

above numerical studies comprehensively demonstrate the accuracy and robustness of using the

proposed approach in structural damage identification, even when the measurement noise and

finite element modelling errors are considered.

Figure 2-14 The evolutionary processes of the identified damage in Scenario 5

by using TSA and C-TSA: (a) α4; (b) α8; (c) α18; (d) α45 .

(a) (b)

(c) (d)



38

Figure 2-15 Damage identification results in Scenario 5.

Figure 2-16 Damage identification results in Scenario 6.

Table 2-7 Damage identification results in numerical simulation with modelling uncertainty

Scenarios

Methods

TSA C-TSA

Mean std. Mean std.

Scenario 4

3 13.81% 0.0442 15.24% 0.0126 15%

Scenario 5

4 25.97% 0.0037 25.83% 2.2E-4 25%

8 22.86% 0.0167 20.90% 0.0032 20%

18 13.22% 0.0101 12.54% 0.0028 13%

45 18.27% 0.0039 17.88% 2.51E-4 18%

Scenario 6

4 25.67% 0.0044 25.78% 6.5E-4 25%

8 25.33% 0.0319 21.97% 0.0094 20%

18 12.84% 0.0302 13.37% 0.0028 13%

45 17.79% 0.0081 18.03% 0.0011 18%

Assumed
value

va



39

2.5 Experimental Verification

Experimental studies on an eight-story shear-type steel frame model are conducted to

verify the accuracy and performance of the proposed approach. Figure 2-17 shows the

fabricated shear type frame structure in the laboratory. The height and width of the frame

structure are 2000mm and 600mm , respectively. Thick steel bars with dimension of

100mm 25mm are used as the floors of the frame model. Two flat bars of the same cross

section with a width of 50mm and a thickness of 5mm are utilized as columns. The beams

and columns are welded to form rigid beam-column joints. The bottom of the two columns is

welded onto a thick and solid steel plate, which is fixed to a stronger floor. The detailed

dimensions of the frame model are introduced in Ref. (Ni et al., 2018). The initial elastic

modulus of the steel is estimated as 200Gpa and the mass density is 37850kg/m . The

dynamic tests are conducted to obtain the vibration characteristics of the frame structure. A

modal hammer with a rubber tip is used to generate the impact excitation to this frame.

Acceleration responses in the lateral direction of all the floors under the hamper impact are

measured. The sampling rate is set as 1024 Hz and the cut-off frequency range for the

band-pass filter is set from 1 Hz to 100 Hz for all the responses.

Figure 2-17 A steel frame model in the laboratory.
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2.5.1 Initial finite element model

To identify the structural damage accurately, the modelling errors ought to be minimized

through the initial model updating and the intact finite element model with updated parameters

will be taken as the baseline for the damage identification. This procedure can also be

considered as an inverse problem to adjust the parameters to be updated by minimizing the

dynamic responses between the analytical model and the experimental tests (Ding et al., 2016).

In this paper, the discrepancy between the measured frequencies and mode shapes and the

calculated ones from the initial finite element model is used to build the objective function,

which is given as below

2
8 8

2 21 1

| | ( )( ) (1 ),0.7 1.2
| | || || || ||

c real cT real
i i i i

real c reali i
i i i

f  
 

 
      Φ Φβ β

Φ Φ
(2.14)

where c
i and c

iΦ represent the natural frequencies and mode shapes from the analytical

finite element model; β denotes the parameter vector to be updated; real
i and real

iΦ denote

the measured frequency and mode shape values. In the model updating process, the updated

parameters are the elemental stiffness parameters. The measured eight frequencies and mode

shapes in the lateral direction are employed as input. The proposed C-TSA is used to optimize

the objective function, and the natural frequencies before and after updating are shown in Table

2-8.

Table 2-8 Measured and analytical natural frequencies of the experimental model before and after

updating

Mode
Measured

(Hz)

Before updating After updating After updating

Analytical (Hz) Error (%) Analytical (Hz) Error (%) Analytical(Hz) Error(%)

1 4.645 4.586 1.2602 4.645 0.0003 4.636 0.19

2 13.705 13.603 0.7428 13.705 0.0024 13.714 0.06

3 22.554 22.157 1.7615 22.552 0.0077 22.558 0.02

4 30.695 29.956 2.4086 30.698 0.0097 30.776 0.26

5 38.241 36.735 3.9393 38.239 0.0064 38.225 0.04

6 44.434 42.262 4.8871 44.434 0.0003 44.422 0.03

7 48.826 46.351 5.0686 48.828 0.0046 48.712 0.23

8 52.306 48.861 6.5853 52.302 0.0078 52.161 0.28



41

Furthermore, it also compares the updating results acquired by the first-order sensitivity

method (Pathirage et al., 2018). The maximum error of the initial model is up to 6.5853%, and

it is only 0.0097% after updating by the C-TSA in contrast to 0.28% by using the sensitivity

method. This demonstrates the advantages of C-TSA to deal with modal updating problem,

since the accuracy of the finite element model has been significantly improved. This baseline

model is used in the subsequent damage identification analysis.

2.5.2 Damage identified results

Damages are introduced by reducing the cross sections of specific columns of the frame

structure. Two damage cases, namely, Case 1 and Case 2, are defined in this structure. For Case

1, a single damage is introduced, which is introduced with a 20% reduction of the equivalent

stiffness of the 2nd floor. For Case 2, multiple damages are considered, that is, besides the

damage in Case 1, another damage is introduced with 10% stiffness reduction in the 7th floor.

Figure 2-18 shows the details of the introduced damages in these two levels. The first eight

natural frequencies and mode shapes in the lateral direction are used for structural damage

identification by using TSA and C-TSA. The parameter settings are the same as the numerical

simulations. In addition, ANN is used to identify the damages for comparison. For generating

the training samples, in single element damage cases, the stiffness parameter of each damaged

element varies from 1, 0.99, 0.98... to 0.7 while maintaining all other elements undamaged. 30

data is created for the scenario when a local damage is introduced in a specific element. With

eight elements in the finite element model, 240 single element damage cases are simulated. In

multiple element damage cases, the stiffness parameters for two random elements vary from 1,

0.99, 0.98, ... , to 0.7 while keeping the other elements undamaged, thus a total of 25200

multiple element damage scenarios are simulated. The input vector contains eight frequencies

and 8 8 mode shape values, namely, 72 values in total. The final output vector has 8

elemental stiffness parameters.

Figure 2-19 shows the damage identification results for Cases 1 and 2. It is observed that

the results from the proposed C-TSA are very close to the exact values with less and smaller

false identifications. For Case 1, the relative errors in the identified damage extents of the 2nd

level stiffness from ANN, TSA and the C-TSA are 5.80%, 2.17% and 0.42%, respectively. For

Case 2, C-TSA also provides the best results. The relative errors in identified damage of the 2nd
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and 7th floors are 4.89% and 4.34% by using ANN, 2.96% and 3.04% by TSA, and 0.58% and

1.08% by C-TSA. These experimental studies and results demonstrate that the proposed C-TSA

can well identify the preset structural damages in the experimental model with testing data,

which naturally include environmental noise and modeling uncertainties.

Figure 2-18 Introduced damages in the frame model;

(a) Introduced damage at the 2nd floor; (b) Introduced damage at the 7th floor.
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Figure 2-19 Identified damage results in the experimental tests; (a) Case 1; (b) Case 2.

2.6 Conclusions

A new type of swarm intelligence algorithm named TSA is presented for structural

damage identification. To balance the algorithm’s exploration and exploitation ability further,

the K-means clustering is introduced before the seeds search phase. Benchmark functions and a

(a) (b)
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truss structure are utilized to investigate the accuracy and efficiency of the proposed approach

in the numerical studies. Experimental studies are carried out on a shear type steel frame

structure for further verification of the performance of the proposed approach. Some

conclusions can be given as below:

 The proposed C-TSA is more efficient to deal with the benchmark test functions. The

results show an improved performance and global optimization ability compared with the latest

algorithms;

 Results in the numerical studies demonstrate that the proposed approach converges faster,

and it is more robust to obtain good identification results with small variations in the parameter

estimation across many damage cases. Uncertainties in the modelling and measurement noise

are taken into account. The performance of the proposed approach is not sensitive to the

measurement noise. When the modeling uncertainty is considered, C-TSA can still provide a

good damage identification of structures. In contrast, when modeling uncertainty exists, TSA

generates some false structural damage identifications.

 In the modal updating process for a real frame structure, it can be found the C-TSA also

has superb advantages compared with the traditional sensitivity method.

 Experimental studies demonstrate that C-TSA can obtain better identification results,

compared with the standard TSA and ANN.

 Results in the numerical and experimental studies demonstrate that C-TSA is a promising

tool to perform structural damage identifications with data consisting of modelling errors and

measurement noises.
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CHAPTER 3 NONLINEARHYSTERETIC PARAMETER IDENTIFICATION

USINGAN IMPROVED TREE SEEDSALGORITHM

ABSTRACT2

The tree seeds algorithm (TSA) is a new type of heuristic algorithms based on the

simulation of trees propagation. It has been applied to solve continuous optimization problems

effectively and efficiently. This paper proposes an improved TSA, termed as I-TSA, to solve

the nonlinear hysteretic parameter identification problem with three typical hysteretic models,

namely Bouc-Wen model, bilinear model with kinematic hardening and bilinear model with

equal yielding force. In order to enhance the capability of the proposed approach to search for

the best optimization results, the Lévy search mechanism and a new updating equation are

introduced to improve the original TSA. Numerical studies on several mathematical benchmark

test functions, a single degree-of-freedom system and a multi degree-of-freedom system are

conducted to investigate the accuracy and performance of the proposed approach. The

identification results are compared with those obtained from several existing widely used

heuristic algorithms and the enhanced sensitivity method to demonstrate the improvement and

superiority of the proposed approach.

3.1 Introduction

Nonlinear hysteretic effect has been observed in many physical systems, i.e. mechanical

systems with nonlinear joints, structural dampers, seismic isolation systems and friction models

(Katsaras et al., 2018; Berger & Krousgrill, 2002; Wang & Xin, 2015; Wang et al., 2016).

Many mathematical models, such as Preisach, Ischlinskii, Bouc-Wen and bilinear models, have

been used to describe the nonlinear hysteretic behavior of civil and mechanical systems. It is

noted that the nonlinear hysteretic behavior usually has the memory function since its

instantaneous input depends on its past history. Many conventional system identification

methods may fail to solve the nonlinear hysteretic parameters identification problem due to

their inherent non-linearity and memory nature, therefore it is essential to conduct researches

on this kind of inverse problem. Many mathematical models, such as Preisach, Ischlinskii,

2This chaper was published in Swarm and Evolutionary Computation with the full bibliographic citation
as follows:Ding, Z., Li, J., Hao, H., & Lu, Z. (2019). Nonlinear hysteretic parameter identification using
an improved tree-seed algorithm. Swarm and Evolutionary Computation, 46, 69-83.
https://doi.org/10.1016/j.swevo.2019.02.006.

https://doi.org/10.1016/j.engstruct.2019.01.118.
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Bouc-Wen and bilinear models, have been used to describe the nonlinear hysteretic behavior of

civil and mechanical systems. It is noted that the nonlinear hysteretic behavior usually has the

memory function since its instantaneous input depends on its past history. Many conventional

system identification methods may fail to solve the nonlinear hysteretic parameters

identification problem due to their inherent non-linearity and memory nature, therefore it is

essential to conduct researches on this kind of inverse problems (Lu et al., 2017;

Charalampakis & Dimou, 2010).

Two main categories of existing methods for the nonlinear hysteretic parameter

identification can be summarized from the literature. The first category is to formulate it as a

discrete state identification problem, which can be solved by using methods like Kalman filter

and wavelet analysis techniques. Wu and Smyth (2008) proposed combining the extended

Kalman filter and unscented transformation to estimate the nonlinear parameters. Khellat (2009)

introduced the multi-wavelet basis function first, and then the problem can be converted as a

time invariant system estimation problem which can be tackled by the optimal control method.

Chang and Shi (2010) conducted the parameter identification of Bouc-Wen hysteretic systems

via wavelet multiresolution analysis. More recently, Calabrese et al. (2018) used an adaptive

constrained unscented Kalman filter to conduct the identification of real-time nonlinear

structural systems. Wang and Ding (2017) presented a filtering based multi-innovation gradient

estimation algorithm and applied to the nonlinear dynamical system identification. The

above-mentioned studies acquired relatively good results, however, a high sampling rate is

necessary since the discrete state equations shall be accurate enough to approximate the

original differential equations.

The second category is to formulate the hysteretic parameter identification problem as an

inverse problem through defining objective functions relevant to the systematic parameters,

which can be solved with optimization techniques. The objective functions are usually defined

as minimizing the difference between the measured and analytical data, which can be the

modal information and/or the weighted time domain responses (Li & Hao, 2016). Ni et al.

(1998) used the Levenberg-Marquardt algorithm integrated with the frequency-domain

displacement data from periodic vibration tests to identify parameters of friction-type isolators.

However, acquiring frequency-domain data for a nonlinear system is not as straightforward as a

linear one, which requires a large amount of sample data. In contrast, the time-domain data is
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much easier to be accessed. Therefore, various techniques have been developed by formulating

the time domain responses in the objective functions. Loh and Chung (1993) proposed a

three-stage scheme to solve the nonlinear parameter estimation problem by using acceleration

responses. Yar and Hammond (1987) formulated the objective function based on the input force

and output acceleration data, and then utilized Guass-Newton method to identify these

nonlinear parameters. Sues et al. (1988) and Roberts and Sadeghi (1990) used the restoring

force data to deal with such identification problems. More recently, Waubke and Kassess (2016)

proposed a Gaussian closure technique based on Kolmogorov equations and applied it to solve

the Bouc-wen model with white noise excitation. A nonlinear state-space approach (2017) was

proposed to tackle the hysteresis identification problem. Lu et al. (2017) proposed an enhanced

response sensitivity approach to solve the nonlinear hysteretic parameters identification

problem and obtained good parameter estimation results with accelerations.

Nevertheless, when using gradient-based methods (Lu et al., 2017; Los & Chung, 1993;

Yar & Hammond, 1987; Sues et al., 1988; Roberts & Sadeghi, 1990; Waubke &Kassess, 2016;

Noel et al., 2017) for solving this identification problem, good initial values and reliable

sensitivity gradient calculations are required. In addition, difficulties will amplify when

utilizing these methods for the identification of large systems with limited available

measurement data. Heuristic algorithms that could overcome these shortcomings have gained

significant attention.

Garg et al. (2016) used the evolutionary algorithm (EA) to solve identifying the

characteristics problems of bone drilling operations based on three different output models.

Garg et al. (2017) also utilized Genetic programming (GP) to determine wilting point for green

infrastructure. Extending the applications to the nonlinear parameter identification problem,

Charalampakis and Koumousis (2008) adopted the sawtooth Genetic Algorithm (GA)

combined with a new mutation operator to solve identification problem of a steel cantilever

beam with Bouc-Wen model. Later, Charalampakis and Dimou (2010) employed two variants

of the Particle Swarm Optimization (PSO) algorithm for the identification of Bouc-Wen

hysteretic systems. Ortiz et al. (2013) used the discrepancy between the calculated and

measured displacements of a nonlinear system with Bouc-Wen model as the objective function

and then employed a fast multi-objective GA to identify the parameters. Sun et al. (2013) used

the modified Artificial Bee Colony (ABC) algorithm to identify the parameters of nonlinear
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systems with Bouc-Wen models. Besides, some other heuristic algorithms like Firefly

Algorithm (FA) (Zaman & Sikder, 2015), Charged System Search (CSS) optimization

(Talatahari et al., 2012) and Differential Evolutionary (DE) algorithm (Quaranta et al., 2014)

have also been employed to solve such identification problem. Recently, Brewick et al. (2016)

utilized Volterra/Wiener Neural Network (VWNN) to conduct probabilistic identification of

nonlinear hysteric models. Shu and Li (2017) utilized a modified version of GA, in which the

real-integer hybrid coding with adaptive crossover and mutation rates were used, to conduct the

parametric identification of Bouc-Wen models. Ben Abdessalem et al. (2018) used sequential

Monte-Carlo and Bayesian inference to estimate the nonlinear structural parameters. Nguyen et

al. (2018) introduced a neural differential evolution identification approach to perform the

nonlinear systems identification. However, when utilizing these heuristic algorithms to perform

the identification of nonlinear systems, several challenges still remain, i.e., (a) Significant

computational demand and time are required. For example, the maximum iteration step of the

improved PSO algorithm is defined up to 5,000 (Charalampakis & Dimou, 2010); (b) The slow

convergence speed or trapping in the local optima. When the algorithms are not able to balance

their exploration and exploitation ability well, they easily encounter the problem of slow

convergence or acquiring some local optimal values, especially when dealing with the complex

nonlinear problem; (c) The robustness against the measurement noise effect. The accuracy of

identification results may be greatly affected when the measured data are smeared with

significant noise and uncertain effect. To this end, it is important to develop and apply new

algorithms for nonlinear system identification to improve the efficiency and robustness.

Recently, a new heuristic algorithm called as Tree Seeds algorithm (TSA) has been

proposed and proven to be more effective and efficient when dealing with the low-dimensional

continuous optimization problems (Kiran, 2015). The most attractive feature of this algorithm

is its way of producing new solution, since it can generate more offspring instead of

one-dimensional perturbation compared with other traditional heuristic algorithms. Based on

this characteristic, TSA has achieved a better performance to search for the global optima in

some benchmark functions, particularly when dealing with the uniform functions (i.e. Sphere

function). Nevertheless, it should be noted that TSA may also face the slow convergence issue

or stuck with the local optima like other heuristic algorithms. This is a paradox behind these

algorithms. When an algorithm more focuses on the exploitation (local search), the solution
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will be likely trapped in the local optima. However when an algorithm concentrates more on

the exploration (global search), it may suffer the slow convergence problem. Therefore, only

when the exploration and exploitation abilities are balanced well, the algorithm can achieve a

strong performance in optimization accuracy as well as the efficiency. To address this problem,

this paper proposes an improved TSA, named as I-TSA, for the nonlinear hysteretic parameter

identification. An improved framework integrated with the Lévy flight search mechanism and a

new updating equation for every colony individual are developed to form the I-TSA.

Numerical investigations on mathematical benchmark test functions and two nonlinear

hysteretic systems are conducted to verify the accuracy and efficiency of the proposed

approach. The identification results are compared with those from the enhanced sensitivity

method and several existing heuristic algorithms to demonstrate the improvement and

superiority of the proposed approach.

The rest of this paper is organized as follows. Section 2 describes the problem formulation

for nonlinear hysteretic system identification and reviews the nonlinear hysteretic models, such

as Bouc-Wen model and two bilinear models. Section 3 briefly presents the original TSA and

describes the proposed I-TSA in detail with specific modifications. Section 4 mainly

demonstrates the accuracy and efficiency of using the proposed algorithm in the benchmark

tests and numerical simulations on nonlinear system identification. The results are compared

with those obtained from the existing latest methods to demonstrate the improvement and

superiority of the developed algorithm. Finally, conclusions will be drawn in Section 5.

3.2 Nonlinear Hysteretic Models and Parameter Identification

3.2.1 Nonlinear hysteretic models

This section briefly reviews the widely used Bouc-Wen hysteretic model and two kinds of

bi-linear models with kinematic hardening and equal yielding force, respectively. The

hysteretic behavior describes the memory-based relationship between the displacement u and

the restoring force r , which can be generally defined as

 p,,, uurfr   (3.1)

where  f is the nonlinear function representing the hysteretic behavior, and p denotes the

effective model parameters. Bouc-Wen model is a versatile representation (Ismail et al., 2009;
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Brewick & Masri, 2016) which can be used to simulate various nonlinear hysteretic systems,

i.e. dampers, nonlinear joints and isolation devices. It can be described as

)]||||||([1 1 ururruAr nn  


  (3.2)

where  ,,,, A and n are the design parameters to represent the nonlinear hysteretic

behavior. Specifically, the two parameters  and  are respectively controlling the

degrading and pinching behavior (Wu & Smyth, 2008), and could be defined as unity without

loss of generality. The exponential coefficient n is usually set as 1n in order to meet the

requirement of the thermodynamic admissibility (Erlicher & Point, 2004) requiring  || and

0A . To simplify Eq. (2) and build up the equivalence between the design and effective

parameters, a vector BWP is defined as

T
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Besides, the definition domain for the vector is given as below

}1,||,0:{: 4231
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The first bilinear model with kinematic hardening (Katsaras et al., 2018) is described as

uFuukrkkkkr  )])sgn()sgn((
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where 1k and 2k are the primal and degraded stiffness of the model, respectively, 0F is the

yielding force with zero displacement and )sgn( represents the sign function as follows









0,1

0,1
)sgn(

xif
xif

x (3.6)

The simplified form of this bilinear model can be rewritten as

upuuprpppr  )])sgn()sgn(([ 32121  (3.7)

with

T
B Fpkpkkp ],,

2
[ 0322

21
11 


P (3.8)

The parameters shall be in the following domain for this bilinear model

}0,0,0:{: 321
31  pppRp B pp (3.9)
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The second bilinear model with equal yielding force (Yar & Hammond, 1987) can be

expressed as

uFurkkkkr y
 )])sgn(sgn(

22
[ 2121 





 (3.10)

where 1k and 2k represent the stiffness parameters before and after yielding, and yF

denotes the yielding force. Likewise, it can rewritten as

upurppr  )])sgn(sgn([ 321  (3.11)

with

T
yB Fpkkpkkp ],

2
,

2
[ 3

21
2

21
12 





P (3.12)

The parameters shall be in the following domain in this case

}0,0,:{: 3221
32  ppppRp B pp (3.13)

With the presented three nonlinear hysteretic models, a single degree-of-freedom (SDOF)

system as shown in Figure 1 is taken as an example to demonstrate the dynamic response

calculation of a nonlinear system. The equation of motion of the nonlinear system considering

the hysteretic models can be expressed as (Charalampakis & Dimou, 2010)














000 )0(,)0(,)0(
),,,(

)(

rruuuu
uurfr

trkuucum





p

F
(3.14)

where u is the displacement; 00 ,uu  and r0 are respectively the initial displacement, velocity

and restoring force of the nonlinear system; and kcm ,, and F denote the mass, damping,

stiffness and excitation respectively. It should be noted that the restoring force r can be

obtained based on any of the abovementioned three hysteretic models, such as Eqs. (5), (7) and

(10). The Runge-Kutta method (Cash & Karp, 1990) is used to solve Eq. (14) to obtain the

dynamic responses. Likewise, the equation of motion of a nonlinear multi degree-of-freedom

(MDOF) can be built by defining a connection matrix T for those hysteretic components (Lu et

al., 2017).

3.2.2 Nonlinear system identification formulation

Nonlinear system identification with hysteretic models can be formulated as an

optimization problem with a suitable objective function relevant to the structural parameters,
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for instance, the error between the measured and calculated response data (Lu et al., 2017; Sun

et al., 2013). Optimization techniques can then be used to identify the system parameters by

minimizing the objective function.

In this study, )(tF and )(tu are defined as two vectors containing the input and the

output data, respectively; kttt ,...,, 21t denotes the time instant series and )( ktu

represents the response at the time instant kt . }ˆ,...,ˆ,ˆ{ˆ
21 nθ is defined as a vector of

structural parameters that could be stiffness, damping ratio, mass density or nonlinear hysteretic

parameters. The dynamic response )(ˆ ktu at the time instant kt can be expressed as

),ˆ()(ˆ
kk tftu θ (3.15)

The dynamic response can be solved by using the Runge-Kutta method based on the

equation of motion of the nonlinear system, and the difference between the calculated and

measured responses can be obtained. The identification problem has been formulated as

identifying the optimal parameters, which will minimize the difference between the measured

and analytical responses as small as possible. The objective function is defined as follow

T
kiki

resn

i

timen

k
kiki tutututug ))()(ˆ())()(ˆ()ˆ(

1 1


 

θ (3.16a)

}},...2,1{,ˆ|ˆ{ maxmin njR jjj
n  θ (3.16b)

where resn is the number of the available measurements that can be used for updating, which

depends on the number of sensors available in the test; timen is the number of sample points in

each measured response. Eq. (3.16b) defines the lower and upper bounds of the parameters

domain. j̂ is defined as the jth parameter to be identified with the upper and lower bounds

max
j and min

j , respectively; n represents the total number of the parameters to be optimized.

Through Eqs. (3.15) and (3.16), the identification problem is mathematically formulated as a

constrained nonlinear optimization problem (Sun et al., 2013). Generally the objective function

may have multiple local minimum. In this case, the traditional optimization techniques could

be stuck with the local minimum, which may result in the poor identification results. Therefore,

it is necessary to investigate and develop robust and powerful algorithms, which could deal

with the nonlinear identification problem well.
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3.3 Improved Tree SeedsAlgorithm (I-TSA)

3.3.1 Original TSA

TSA is a heuristic algorithm and has been proposed based on the natural phenomenon of

trees propagation (Kiran, 2015). In reality, trees usually spread to other places through their

seeds. These seeds will grow the new trees over time. In the algorithm, these places for trees

and seeds can be considered as searching spaces for optimization problems. The specific

locations of trees and seeds are regarded as feasible solutions. In fact, the core of this algorithm

is the seeds searching since it will update the new feasible solution in this phase, which

provides two search equations for this process given as

)( ,,,, jrjjijijz TBTS   (3.17)

)( ,,,,, jrjijijijz TTTS   (3.18)

where jzS , is the jth dimension of the zth seed that would be generated by the ith tree.

jiT , is the jth dimension of the ith tree, jB is the jth dimension of best-so-far tree

location, jrT , is the jth dimension of the rth tree randomly picked up from the colony

size, ji , is uniformly distributed in the range of ]1,1[ . The seeds number can be usually

determined as 10% - 25% of the colony size. The exact number of the seed generation is

random in TSA. As mentioned before, it is necessary for a heuristic algorithm to define a

proper balance between the global and local searching performances. Based on the search

equation as shown in Eq. (3.17), a new candidate is produced by the old solution towards the

best-so-far solution in the colony, which enhances the algorithm’s local searching ability to

some extent. In contrast, from observing Eq. (3.18), a new candidate is created by moving the

old solution towards a randomly chosen one in population. Meanwhile, the coefficient ji , is

also a uniform random number, therefore Eq. (3.18) has a strong global search ability (Gao et

al., 2015)

One of the key points of the algorithm is to decide whether Eq. (3.17) or Eq. (3.18) will be

chosen to create a new seed location. This process is controlled by a parameter called as search

tendency (ST) within the range of ]1,0[ . Selecting the best equation for the updating relies on

comparing a uniform random number and ST. If the random number is larger than ST, Eq.
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(3.17) is chosen as the update equation. Otherwise Eq. (3.18) will be used. Therefore, for every

individual, a higher ST value makes it have a higher chance to exploitation. This is the reason

why the exploration and exploitation capacities of the TSA is controlled by ST parameters.

Figure 3-1 The flowchart of the TSA
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When applying TSA, the initial tree locations, namely the possible solutions for the

optimization problem, are produced as

)( min,max,,min,, jjjijji LHrLT  (3.19)

where min,jL is the lower bound of the search space and max,jH is the upper bound, jir ,

is a random number produced for every dimension and location, which is in the range of ]1,0[ .

The flowchart of TSA is shown in Figure 3-1.

3.3.2 Proposed modifications

In this section, I-TSA is presented and the motivation behind this development is

described. The Lévy search mechanism and a new updating equation that are used in I-TSA

will be described. As mentioned in Section 3.2.2, the objective function in complex nonlinear

problems is difficult to deal with due to its multimodel feature. To make the TSA more

powerful and balance its exploration (global search) and exploitation (local search) capacities,

two modifications are made. From observing the seeds search equation as shown in Eq. (3.17),

TSA conducts its exploitation just around the current best solution, which may not make the

full use of the information hidden in the other individuals, leading to a premature convergence

in the multimodel cases. Unlike other heuristic algorithm, i.e. Artificial Bee Colony (ABC)

(Karaboga, 2008; Sun et al., 2013), TSA is not equipped with the ‘Scout bee phase’, which is a

negative feedback into the ABC. Due to this mechanism, ABC has an opportunity to discard the

best solution trapped into the local optimal and cease the evolution, which is beneficial for

escaping from local optima. Based on this motivation, a similar framework is introduced into

the original TSA to improve the optimization performance.

Modification 1: Lévy flight mechanism

Lévy flight has a random moving direction with its step size following the power-law

distribution. This turns out to be a quite beneficial way to escape from local minimum for

optimization algorithms. It has been successfully applied in Cuckoo Search algorithm (Yang &

Deh, 2009; Soneji & Sanghvi, 2014), Fruit algorithm (FA) (Miticet et al., 2015) for greatly

enhancing their optimization performances. As shown in Eq. (3.17), the search in the original

TSA is centered as the best solution ( B ) in the current iteration. If the best-so-far solution in



58

every cycle traps in the local optima, it will significantly affect the whole optimization process.

Based on this motivation, the Lévy flight is applied for searching the best-so-far solution of

every iteration. It will launch several random searches around the best solution in every

iteration, which can be viewed as a good way to escape from the local optima (Sharma et al.,

2016; Ding et al., 2016).

Aforementioned, the Lévy flight is actually a random walk where its steps are determined

by the step lengths, which follow a certain probability distribution. The random step lengths s

with the power-law distribution is given as

)20(,|~|)( 1  ssL (3.20)

where )20(   denotes an index, and s denotes the step length.

In this paper, similar with Refs. (Sharma et al., 2016; Ding et al., 2016), the Mantegna

algorithm for a symmetric Lévy distribution is used to create random sizes. Herein, ‘symmetric’

means that the produced size may be positive or negative. Based on a Mantegna framework,

the step length s can be calculated as

,
|| 1 v
ω

s (3.21)

where ω and v follow normal distributions and their expressions can be given as below

),,0(~ 2
uN  ),0(~ 2

vNv  (3.22)

with

1,
2]2/)1[(

)2/sin()1(
1

2/)1(














 vu 







(3.23)

in which )( represents the Gamma function and can be calculated as





0

1)1( dtet  (3.24)

Afterwards, )(_ tsizeStep that is generated based on the Lévy flight to make further

exploitation can be expressed as

))()(()()(_ tttsFtsizeStep rA ΤB  (3.25)

where t is the time instant of the Lévy flight, )(ts is obtained from Eq. (3.21). B is the

best solution in the current iteration cycle and rT is the randomly selected tree which is not
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the same as B in the colony, and AF is the scaling factor. In this study, it equals to 001.0 .

Herein, the final solution updating equation to search around the best solution can be expressed

as

)1,0()(_)()1( Utsizesteptt  BB (3.26)

where B is the best-so-far solution in the current cycle, which is going to be exploited.

)1,0(U is an uniform distribution within 0 and 1, )1,0()(_ Utsizestep  is the actual random

flights for the solution, which is calculated from Lévy flight. After completing the Lévy flight

once, the ‘Greedy Selection Mechanism’ (Karaboga & Basturk, 2008) will be applied and the

solution with a better fitness will replace the previous one. Generally speaking, this means that

the Lévy flight can assist the solution in escaping from the local optima and ceasing the

evolution process in most cases.

Modification 2: A new updating equation for seeds search

In the original TSA, after selecting the best-so-far solution, it will conduct the seeds search

by using Eqs. (3.17) or (3.18). It can be observed from Eq. (3.18) that a new candidate is

created in the direction which is around the previous solution towards any individual chosen

from the colony, whereas the coefficient ji , is a uniform random number within ]1,1[ .

Hence Eq. (3.18) can ensure the algorithm’s global search capacity because of randomly

selecting the individual solution (Gao et al., 2015). However, as shown in Eq. (3.17), it is clear

that when the original algorithm arrives at the seeds searching stage, its way of exploitation just

simply centers on the current best solution, which may not make full use of the colony

information and suffer the premature convergence problem to some extent.

To address this problem, a new updating equation (Cui et al., 2016) is introduced into the

seeds search stage. This equation is described as

)()(
2
1

,,,, jkjjkjjijz TTS  BB  (3.27)

where jkT , represents the jth dimension of another different tree from the colony, jk ,

denotes a random number within ]1,1[ . In this equation, the first term is good at exploitation

whereas the second one does well in exploration (Cui et al., 2016). To further improve the

convergence performance, a nonlinear factor is also utilized. The final updating equation used
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for the modified TSA is given as

)()(
2
1

,,1,, jkjjkjjiji TTS  BB  (3.28)

4
1 )(1

miter
iter

 (3.29)

where iter denotes the current iteration number and miter is the maximum iteration

number. Eqs. (3.28) and (3.29) are used for the I-TSA. When the number of iteration increases,

1 will decrease and the weight of the second term will reduce as well, which could make

I-TSA concentrate on exploitation in the later stage and thus enhance the convergence

performance of the algorithm. Figure 3-2 show the procedures of the developed I-TSA.

3.4 Numerical Studies

In this section, the accuracy and performance of using the proposed approach for

nonlinear system identification will be demonstrated with numerical simulations and compared

with several existing state-of-the-art methods. Since variables of nonlinear structures can

continuously distribute in the feasible solution space, this is generally considered as a

continuous function optimization problem. Firstly, comprehensive benchmark functions are

utilized to verify and compare the accuracy and performance of the proposed approach against

the latest methods. Secondly, a Single Degree Of Freedom (SDOF) system with three nonlinear

hysteretic models respectively is taken as an example to validate the proposed approach, and

compare the nonlinear model parameter identification results with the enhanced sensitivity

method as presented in one of the latest studies (Lu et al., 2017). Finally, the proposed approach

is applied to identify the system parameters of a seven-storey shear building. The system

parameters to be identified in this structure include the external forces, stiffness, damping, and

nonlinear parameters. The accuracy of identification results will be compared with several

existing heuristic algorithms to demonstrate the superiority of the proposed approach.
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Step 1. The initialization of the algorithm
Set the population size CS , ST parameter for the algorithm and the dimension of the
problem D
Decide the termination condition
Generate CS random tree locations with D dimension in the search space using
Eq. (3.19)
Evaluate the tree locations using objective function based on Eq. (3.16)
Select the best-so-far solution B

Step 2. Lévy search mechanism for the Best-so-far solution

Randomly choose an individual rT from the Colony

Initialize 1,1  vt  , and compute u according to Eq. (3.23)

While ( maxtt  ) %% maxt denotes the times of operating Lévy flight

Generate a new feasible solution according Eq. (3.20) to (3.25)

Calculate the objective value, marked as ))1(( tf B

Apply the greedy selection between ))(( tf B and ))1(( tf B

EndWhile
Step 3. Searching with seeds

For all trees
Decide the number of seeds produced for this tree.
For all dimensions

If (rand>ST)
Update this dimension using Eq. (3.28)

Else
Update this dimension using Eq. (3.18)

End If
End For

End For
Select the best seed and compare it with the tree. If the seed location is better than the
tree’s, the seed substitutes this tree.

End For
Step 4. Selection of Best Solution

Select the best solution in every iteration. If new best solution is better than the
previous best solution, new best solution substitutes the previous solution.

Step 5. Testing Termination condition and reporting
If termination condition is not met, go to Step 2. Otherwise, report the best solution.

Figure 3-2 The pseudo code of I-TSA.
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3.4.1 Benchmark Study

Independent contribution analysis of these two modifications

To justify the contributions of the proposed two modifications, the classical benchmark

functions (Gao et al., 2015; Karaboga & Basturk, 2008) have been used for the first benchmark

study. For the comparison purpose, the same maximum calculation time for the involved

algorithms, i.e. TSA, TSA with modification 1 (TSA with M1), TSA with modification 2 (TSA

with M2) and I-TSA are set as 60 seconds per run. The computer used for calculation is

deployed with Intel-I5-Core. The parameters are defined as ,40CS 45.0ST , and the

number of operating Lévy flight is set as 100. The used benchmark functions are listed in Table

3-1. 30 runs are conducted independently, and the mean values and standard deviation (Std) of

identification results are obtained. The results are shown in Table 3-2. It can be observed that

using TSA with M1 and TSA with M2 can improve the identification results over the original

TSA. However better identification results with smaller errors can be obtained with I-TSA.

Figure 3-3 shows the convergence processes of using different algorithms to optimize

Griewank and Rastrigin functions. It is noted that for optimizing the Griewank function, the

main improvement contribution comes from TSA with M2, which is beneficial to improve the

convergence performance. When tackling the Rastrigin function, TSA with M1 plays a more

significant role in escaping the local minimal. The results in Table 3-2 and Figure 3-3

demonstrate that both the modifications can be useful for improving the performance of TSA

independently and the proposed I-TSA can provide the best identification results for most of

benchmark functions.

Table 3-1 Classical benchmark functions employed for tests.

Function Range Dimension Type

Sphere [-100, 100] 30 Uni-modal, Separable

Schaffer [-100, 100] 5 Multi-modal, Non-separable

Ackley [-32, 32] 30 Multi-modal, Non-separable

Rastrigin [-5.12, 5.12] 30 Multi-modal, Separable

Rosenbrock [-30, 30] 15 Uni-modal, Non-separable

Griewank [-600, 600] 15 Multi-modal, Non-separable
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Figure 3-3 The iteration process of two benchmark functions: (a) Griewank; (b) Rastrigin.

Table 3-2 Classical benchmark tests results.

Function

name

TSA TSA with M1 TSA with M2 I-TSA

Mean Std Mean Std Mean Std Mean Std

Sphere 0 0 0 0 0 0 0 0

Schaffer 3.12E-03 3.39E-14 7.76E-06 4.46E-15 1.82E-18 6.69E-18 0 0

Ackley 3.55E-15 0 3.13E-15 0 3.32E-15 0 3.13E-15 0

Rastrigin 85.56 9.36 0 0 13.37 5.57 0 0

Rosenbrock 5.18E-07 7.32E-07 3.88E-09 7.71E-09 4.65E-07 1.44E-07 1.32E-9 6.65E-9

Griewank 7.44E-03 1.66E-03 1.03E-05 2.19E-05 0 0 0 0

Note: The bold values denote the best identification results.

CEC benchmark tests

To verify the effectiveness of using I-TSA for the continuous function optimization, CEC

2014 benchmark functions (Liang et al., 2013) are used for tests. To compare with the results in

the references, all experiments are conducted on dimensions 10D 30D and 50D

for a maximum number of D10000 function evaluations. These CEC benchmarks involve

(a)

(b)
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Unimodal Functions ( 31 ~ FF ), Simple Multimodel Functions ( 164 ~ FF ), Hybrid Functions

( 2217 ~ FF ) and Composite Functions ( 3023 ~ FF ), which can be used to well demonstrate the

capacity of the optimization algorithms. Several latest and powerful algorithms including the

Gbest-guided artificial bee colony algorithm (GABC) (Zhu & Kwong, 2010), 2011-version

Particle Swarm Optimization algorithm (SPSO) (Zambrano-Bigiarini et al., 2013), Global-best

Brain Storm Optimization algorithm (GBSO) (EI-Abd, 2017), and winner algorithm for CEC

2014---an Adaptive DE with Linear Population Size Reduction Mechanism (LSHADE)

(Tanabe & Fukunage, 2014) are employed for comparison in this benchmark study. Regarding

the parameters setting for I-TSA, ,40CS ,45.0ST and the number of the Lévy flight is

100. Tables 3-3 to 3-5 show the errors in the final optimization results from these algorithms

and the proposed approach for D10 , D30 and D50 , respectively.

Results demonstrate that no algorithm could outperform all the other competitors on all

the benchmark functions. For example, for the optimization results of D10 as shown in Table

3-3, GABC offers better optimization results on 8F , 23F and 26F ; GBSO performs well in

functions 12F and 24F . LSHADE is the best performer for 17 functions, i.e. 1F ~ 3F , 6F ,

8F ~ 11F , 14F , 17F , 18F , 20F ~ 22F , 24F , 27F and 29F . The proposed I-TSA provides the best

results on 10 functions, i.e., 4F , 5F , 7F , 13F , 15F , 16F , 19F , 25F , 28F and 30F . This is

because LSHADE utilizes several advanced mechanisms that are not integrated in the proposed

I-TSA, including the success-history based adaption of its parameters, the use of an external

archive and the linear reduction of the population size (EI-Abd, 2017; Tanabe & Fukunage,

2014). All these techniques could be the promising future research directions to further enhance

the performance of the proposed I-TSA. Overall, even comparing with the state-of-the-art and

winner algorithms on CEC14 benchmark functions, the results from the proposed I-TSA still

demonstrates the superiority on a number of test functions, which lays the foundation for the

following nonlinear system identification
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Table 3-3 Performance of I-TSA on CEC14 Functions---Results of 10D.

Benchmark GABC SPSO GBSO LSHADE I-TSA

Function Mean std. Mean std. Mean std. Mean std. Mean std.

1 9.84E+04 7.41E+04 2.04E+04 1.08E+04 4.75E+04 4.85E+04 0.00E+00 0.00E+00 4.59E+04 1.76E+04

2 6.91E+01 1.32E+02 9.51E+02 1.06E+03 2.23E+03 2.15E+03 0.00E+00 0.00E+00 1.01E+03 7.93E+02

3 1.05E+02 1.08E+02 1.24E+03 7.08E+02 4.70E+02 7.70E+02 0.00E+00 0.00E+00 8.89E+01 7.06E+01

4 3.13E-03 4.18E-03 2.36E+01 1.61E+01 2.61E+01 1.49E+01 2.94E+01 1.26E+01 1.45E-03 1.18E-03

5 1.68E+01 7.35E+00 1.88E+01 5.11E+00 1.57E+01 8.32E+00 1.41E+01 8.76E+00 1.22E+01 7.68E-02

6 8.96E-01 4.99E-01 3.18E-01 6.19E-01 4.50E-01 8.71E-01 1.75E-02 1.25E-01 9.65E-02 7.33E-02

7 4.81E-03 6.78E-03 2.13E-02 1.76E-02 5.59E-02 2.93E-02 3.04E-03 6.51E-03 0.00E+00 0.00E+00

8 0.00E+00 0.00E+00 5.21E+00 2.32E+00 3.48E-02 1.61E-01 0.00E+00 0.00E+00 1.39E+00 1.71E+00

9 4.09E+00 1.37E+00 4.44E+00 2.10E+00 2.95E+00 1.21E+00 2.34E+00 8.40E-01 2.67E+00 1.20E+00

10 3.31E-02 3.46E-02 3.57E+02 1.81E+02 1.97E+00 2.40E+00 8.57E-03 2.17E-02 6.59E+01 5.50E+01

11 1.58E+02 1.06E+02 4.28E+02 2.76E+02 1.04E+02 8.01E+01 3.21E+01 3.83E+01 1.86E+02 2.36E+02

12 2.15E-01 6.48E-02 5.39E-01 1.59E-01 8.37E-03 1.37E-02 6.82E-02 1.92E-02 8.80E-03 4.69E-02

13 1.09E-01 1.83E-02 6.16E-02 2.72E-02 5.05E-02 2.12E-02 5.16E-02 1.51E-02 1.42E-02 0.00E+00

14 9.71E-02 2.42E-02 1.13E-01 5.30E-02 1.31E-01 6.04E-02 8.14E-02 2.55E-02 1.22E-01 5.02E-02

15 6.22E-01 1.25E-01 9.33E-01 1.97E-01 8.03E-01 2.54E-01 3.66E-01 6.92E-02 2.88E-01 1.50E-01

16 1.72E+00 3.48E-01 1.84E+00 4.35E-01 1.20E+00 5.79E-01 1.24E+00 3.03E-01 1.05E+00 5.28E-01

17 1.22E+05 1.02E+05 1.51E+03 1.51E+03 1.39E+03 1.66E+03 9.77E-01 1.08E+00 3.43E+03 3.03E+03

18 5.88E+02 5.42E+02 1.66E+03 2.63E+03 8.18E+03 6.48E+03 2.44E-01 3.14E-01 2.02E+00 1.66E-01

19 1.52E-01 6.33E-02 2.24E+00 5.71E-01 8.63E-01 3.31E-01 7.73E-02 6.40E-02 5.31E-02 6.44E-02

20 3.80E+02 5.84E+02 1.84E+02 2.48E+02 3.53E+02 8.12E+02 1.85E-01 1.80E-01 9.62E+01 2.25E+01

21 5.91E+03 5.89E+03 1.03E+03 1.06E+03 2.93E+02 3.18E+02 4.08E-01 3.09E-01 3.73E+01 5.38E+01

22 1.87E-01 1.18E-01 2.86E+01 7.29E+00 2.63E+01 4.49E+01 4.41E-02 2.82E-02 1.60E+01 1.03E+01

23 2.70E+02 1.22E+02 3.29E+02 0.00E+00 3.29E+02 2.30E-13 3.29E+02 2.87E-13 3.29E+02 3.93E-06

24 1.13E+02 2.71E+00 1.12E+02 4.32E+00 1.07E+02 3.99E+00 1.07E+02 2.28E+00 1.12E+02 2.12E+00

25 1.25E+02 4.75E+00 1.81E+02 2.74E+01 1.78E+02 3.17E+01 1.33E+02 4.04E+01 4.88E+01 2.56E+01

26 9.73E+01 1.56E+01 1.00E+02 2.56E-02 1.00E+02 1.97E-02 1.00E+02 1.63E-02 1.00E+02 2.89E-02

27 9.85E+01 1.58E+02 2.61E+02 1.49E+02 2.49E+02 1.14E+02 5.81E+01 1.34E+02 2.62E+02 1.76E+02

28 3.62E+02 5.84E+00 3.96E+02 5.39E+01 4.30E+02 6.51E+01 3.81E+02 3.17E+01 3.45E+02 1.04E+00

29 2.97E+02 4.02E+01 4.91E+02 1.39E+02 1.21E+05 4.11E+05 2.22E+02 4.43E-01 4.49E+02 2.21E+02

30 5.27E+02 6.75E+01 7.75E+02 3.02E+02 5.76E+02 1.16E+02 4.65E+02 1.33E+01 3.59E+02 5.91E+00

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017;
Tanabe & Fukunage, 2014).
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Table 3-4 Performance of I-TSA on CEC14 Functions---Results of 30D.

Benchmark GABC SPSO GBSO LSHADE I-TSA

Function Mean std. Mean std. Mean std. Mean std. Mean std.

1 4.95E+06 3.93E+06 2.74E+05 1.55E+05 8.38E+05 4.94E+05 0.00E+00 0.00E+00 5.42E+05 3.99E+05

2 4.70E+01 7.18E+01 7.48E+03 5.10E+03 8.55E+03 7.48E+03 0.00E+00 0.00E+00 3.91E+03 2.45E+03

3 5.61E+02 5.04E+02 4.51E+03 1.54E+03 2.22E+02 2.96E+02 0.00E+00 0.00E+00 1.59E+02 1.38E+01

4 3.94E+01 3.15E+01 2.39E+01 3.27E+01 6.15E+01 1.83E+01 0.00E+00 0.00E+00 2.05E+01 3.41E+01

5 2.02E+01 5.89E-02 2.07E+01 9.98E-02 2.03E+01 3.33E-01 2.01E+01 3.68E-02 2.01E+01 4.49E-02

6 1.30E+01 1.79E+00 1.21E+01 2.50E+00 9.84E-01 1.18E+00 1.38E-07 9.89E-07 3.79E-01 1.12E-01

7 1.81E-08 4.73E-08 1.06E-02 1.28E-02 9.17E-03 9.68E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

8 1.14E-13 1.03E-28 4.35E+01 1.04E+01 1.70E-01 4.16E-01 0.00E+00 0.00E+00 1.67E+01 2.18E+00

9 5.38E+01 9.20E+00 4.66E+01 1.28E+01 2.31E+01 6.82E+00 6.78E+00 1.48E+00 4.96E+00 6.21E-01

10 8.86E-01 1.57E+00 2.68E+03 5.63E+02 3.80E+00 2.27E+00 1.63E-02 1.58E-02 1.70E+02 7.39E+01

11 1.70E+03 2.68E+02 3.59E+03 6.74E+02 4.37E+02 2.56E+02 1.23E+03 1.83E+02 1.15E+03 1.58E-12

12 1.90E-01 5.71E-02 1.39E+00 2.93E-01 1.86E-02 2.07E-02 1.61E-01 2.29E-02 2.59E-02 2.42E-02

13 2.08E-01 2.62E-02 1.88E-01 4.04E-02 1.57E-01 4.36E-02 1.24E-01 1.75E-22 2.32E-02 4.58E-03

14 1.82E-01 1.58E-02 2.21E-01 4.08E-02 2.21E-01 4.03E-02 2.42E-01 2.98E-02 2.08E-01 3.64E-02

15 4.69E+00 9.99E-01 6.92E+00 2.69E+00 3.38E+00 7.13E-01 2.15E+00 2.51E-01 1.51E+00 8.04E-02

16 9.16E+00 4.43E-01 1.10E+01 4.66E-01 8.66E+00 7.46E-01 8.50E+00 4.58E-01 8.11E+00 4.46E-01

17 2.03E+06 1.34E+06 2.12E+04 1.47E+04 7.28E+04 4.65E+04 1.88E+02 7.50E+01 1.12E+04 1.01E+04

18 5.24E+03 5.75E+03 1.44E+03 1.55E+03 2.39E+03 3.24E+03 5.91E+00 2.89E+00 3.52E+00 1.12E+00

19 7.09E+00 9.24E-01 1.36E+01 2.53E+00 4.72E+00 1.02E+00 3.68E+00 6.80E-01 2.36E+00 7.76E-01

20 5.56E+03 2.13E+03 8.33E+02 4.31E+02 8.80E+01 3.10E+01 3.08E+00 1.47E+00 1.31E+02 1.36E+02

21 2.44E+05 1.75E+05 2.01E+04 1.58E+04 2.32E+04 1.53E+04 8.68E+01 8.99E+01 2.65E+04 2.39E+04

22 2.39E+02 1.15E+02 2.79E+02 9.59E+01 2.24E+02 9.10E+01 2.76E+01 1.79E+01 3.03E+02 2.12E+01

23 3.16E+02 6.50E-01 3.15E+02 6.39E-05 3.15E+02 1.55E-04 3.15E+02 4.02E-13 3.15E+02 1.05E-03

24 2.19E+02 1.74E+01 2.34E+02 7.04E+00 2.00E+02 5.98E-02 2.24E+02 1.06E+00 2.32E+02 4.21E+00

25 2.08E+02 1.36E+00 2.14E+02 2.47E+00 2.03E+02 3.05E-01 2.03E+02 4.96E-02 8.87E+01 2.47E-01

26 1.00E+02 5.86E-02 1.27E+02 4.49E+01 1.00E+02 3.90E-02 1.00E+02 1.55E-02 1.00E+02 3.92E-02

27 4.08E+02 2.88E+00 6.09E+02 1.24E+02 3.96E+02 7.11E+01 3.00E+02 2.40E-13 5.09E+02 7.41E+01

28 8.40E+02 3.39E+01 1.23E+03 2.82E+02 7.94E+02 7.80E+01 8.40E+02 1.40E+01 9.80E+02 3.85E+01

29 1.18E+03 2.25E+02 3.08E+06 6.24E+06 1.71E+05 1.21E+06 7.17E+02 5.13E+00 1.18E+03 9.22E+02

30 3.02E+03 8.46E+02 5.84E+03 1.79E+03 2.03E+03 6.51E+02 1.25E+03 6.20E+02 1.05E+03 6.05E+02

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017;
Tanabe & Fukunage, 2014).
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Table 3-5 Performance of I-TSA on CEC14 Functions---Results of 50D.

Benchmark GABC SPSO GBSO LSHADE I-TSA

Function Mean std. Mean std. Mean std. Mean std. Mean std.

1 1.10E+07 3.89E+06 7.92E+05 2.51E+05 2.22E+06 7.45E+05 1.24E+03 1.52E+03 9.35E+05 5.09E+05

2 6.74E+03 8.87E+03 7.77E+03 7.89E+03 9.26E+03 8.21E+03 0.00E+00 0.00E+00 5.88E+03 3.19E+03

3 6.72E+03 2.82E+03 1.17E+03 3.34E+02 1.59E+03 8.57E+02 0.00E+00 0.00E+00 3.54E+02 9.59E+01

4 6.34E+01 2.98E+01 7.76E+01 3.35E+01 9.66E+01 2.90E+00 5.89E+01 4.56E+01 4.21E+01 3.56E+01

5 2.01E+01 7.40E-02 2.09E+01 9.24E-02 2.09E+01 3.73E-01 2.02E+01 4.59E-02 2.12E+01 6.54E-02

6 2.74E+01 2.10E+00 3.06E+01 3.13E+00 2.08E+00 1.65E+00 2.64E-01 5.23E-01 1.94E+00 4.23E-01

7 2.56E-04 8.99E-04 6.55E-03 1.31E-02 3.04E-03 4.34E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

8 2.20E-13 2.88E-14 1.14E+02 2.23E+01 1.47E+00 1.30E+00 2.58E-09 7.48E-09 3.35E+01 1.03E+01

9 1.23E+02 1.43E+01 1.28E+02 2.53E+01 4.76E+01 1.06E+01 1.14E+01 2.13E+00 5.87E+00 2.72E-01

10 9.62E-01 1.25E+00 5.92E+03 9.42E+02 6.76E+00 6.01E+00 1.22E-01 4.13E-02 1.09E+03 2.71E+02

11 3.98E+03 4.50E+02 6.95E+03 1.09E+03 1.58E+03 5.25E+02 3.22E+03 3.30E+02 8.02E+03 4.75E+03

12 1.84E-01 3.90E-02 2.15E+00 3.93E-01 1.80E-02 1.30E-02 2.19E-01 2.82E-02 5.01E-02 2.70E-02

13 2.65E-01 3.86E-02 3.48E-01 7.08E-02 2.56E-01 4.56E-02 1.60E-01 1.83E-02 3.62E-02 6.04E-03

14 2.19E-01 1.40E-02 2.87E-01 3.33E-02 2.36E-01 6.71E-02 2.97E-01 2.47E-02 2.12E-01 2.06E-02

15 1.22E+01 1.79E+00 2.56E+01 7.36E+00 6.36E+00 1.25E+00 5.15E+00 5.08E-01 4.43E+00 1.01E-01

16 1.73E+01 5.65E-01 2.04E+01 5.29E-01 1.71E+01 8.47E-01 1.69E+01 4.81E-01 2.14E+01 2.99E-01

17 3.11E+06 1.59E+06 3.72E+04 2.02E+04 1.89E+05 1.51E+05 1.40E+03 5.13E+02 3.66E+04 2.75E+04

18 2.19E+03 1.45E+03 1.86E+03 1.06E+03 1.51E+03 1.45E+03 9.73E+01 1.38E+01 5.68E+01 4.78E+00

19 1.84E+01 2.56E+00 5.51E+01 1.94E+01 1.15E+01 1.37E+00 8.30E+00 1.81E+00 1.01E+01 7.74E+00

20 2.71E+04 6.94E+03 8.25E+02 2.55E+02 1.84E+02 4.61E+01 1.39E+01 4.56E+00 3.75E+02 7.45E+02

21 1.84E+06 8.64E+05 4.64E+04 2.22E+04 1.44E+05 7.87E+04 5.15E+02 1.49E+02 3.64E+04 2.02E+04

22 6.80E+02 1.98E+02 7.57E+02 2.50E+02 2.74E+02 1.40E+02 1.14E+02 7.50E+01 4.40E+02 2.97E+02

23 3.46E+02 2.28E+00 3.44E+02 3.59E-02 3.44E+02 1.60E-03 3.44E+02 4.44E-13 3.44E+02 2.34E-13

24 2.59E+02 2.49E+00 2.88E+02 6.81E+00 2.56E+02 2.51E+00 2.75E+02 6.62E-01 2.71E+02 4.27E+00

25 2.15E+02 1.64E+00 2.31E+02 4.46E+00 2.07E+02 8.45E-01 2.05E+02 3.65E-01 1.16E+02 9.50E-01

26 1.00E+02 7.85E-02 1.63E+02 4.89E+01 1.32E+02 4.68E+01 1.00E+02 7.85E-02 1.00E+02 5.35E-02

27 1.07E+03 1.83E+02 1.15E+03 1.22E+02 4.35E+02 5.76E+01 3.33E+02 3.03E+01 6.73E+02 2.48E+00

28 1.35E+03 1.33E+02 2.87E+03 7.01E+02 1.07E+03 7.14E+01 1.11E+03 2.91E+01 1.55E+03 8.74E-01

29 2.00E+03 6.43E+02 4.79E+07 7.40E+07 2.46E+03 6.22E+02 7.95E+02 2.40E+01 1.37E+03 2.56E+02

30 9.92E+03 7.28E+02 2.71E+04 5.73E+03 9.11E+03 6.40E+02 8.66E+03 4.13E+02 7.72E+03 4.01E+02

Note: The bold values denote the best identification results and the results of other algorithms are extracted from Refs (EI-Abd, 2017;
Tanabe & Fukunage, 2014).
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3.4.2 Nonlinear model parameter identification for a SDOF system

The first numerical example is a hysteretic Single Degree Of Freedom (SDOF)

system (Lu et al., 2017), which is used to verify the proposed approach in identifying

the nonlinear hysteretic parameters. The SDOF system is shown in Figure 3-4. The

physical parameters are defined as: mass 1m , stiffness 1k and damping 2.0c .

The external loading is defined as )cos(2)( ttF  , and the restoring force r is

calculated from three nonlinear hysteretic models with parameters listed in Table 3-6.

The initial displacement, velocity and restoring force of the system are all set as zero.

For the parameters setting, the colony size, the search tendency, the number of the Lévy

flight and the search range are defined as 40, 0.45, 100 and ]5,0[ , respectively. The

termination rule is set as the maximum evaluation time. For the nonlinear system

identification in this study, considering that 100 iterations are sufficient for the

proposed approach and the existing methods used for comparison, the computational

time based on 100 iterations is used as the maximum evaluation time for the

termination. Therefore 1335 seconds is used as the maximum function evaluation time

for the identification of this SDOF system.

Figure 3-4 A nonlinear SDOF system with hysteretic effect.

Case 1: identification of the Bouc-Wen nonlinear model parameters

The proposed I-TSA is applied to identify the parameters of the Bouc-Wen

nonlinear model. The objective is to identify the Bouc-Wen parameters

)2,5.0,1,2( 4321  ppppP . To compare the accuracy of using the enhanced
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sensitivity method (Lu et al., 2017), the original TSA and the proposed approach, with

the same response data, namely 10s acceleration response with a sampling rate of

100Hz, are used. Figure 3-5 shows the evolutionary process of the objective function

values. It can be observed that the objective function value by using I-TSA converges

quickly to zero, however, the original TSA suffers the slow-convergence problem after

a few iterations. The final identification results in this case are shown in Table 3-6. It

shows that the proposed I-TSA can identify the Bouc-Wen nonlinear model parameters

exactly, but the maximum errors of using the enhanced sensitivity method and TSA are

0.04% and 0.10%, respectively.
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Figure 3-5 The evolution process of the objective function in Case 1 (without noise).

When 10% white noise is added into the acceleration response, the evolution

processes of nonlinear parameter identification by using I-TSA are shown in Figure 3-6.

It can be observed that the updating process based on I-TSA is more stable and

converge quicker. It only takes around 48 iterations for the proposed approach to

converge to the true values, with a better performance than the original TSA. The final

results are also listed in Table 3-6. The maximum identification errors of using the

standard TSA and I-TSA are 2.97% and 0.88%, respectively. Figure 3-7 presents the

hysteresis loops calculated with true and identified nonlinear model parameters. It can

be seen that a very good agreement between these two curves is obtained, indicating

the nonlinear parameters are identified accurately.
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Figure 3-6 The evolution process of the nonlinear parameter identification in Case 1

with 10% noise effect by using I-TSA.
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Figure 3-7 The true and identified hysteresis loop in Case 1 (with noise).

Case 2: identification of bilinear model with kinematic hardening considering noise
effect

A bi-linear model with Kinematic hardening is used for further verification. The

nonlinear model parameters are defined as )1,2,1( 321  pppP . 10% white noise is

smeared into the 10s acceleration response, which will be used for identification. The

identification results for this case are listed in Table 3-6, and the maximum error of

using the I-TSA is only 0.53%, which is better than those acquired by using the

standard TSA (1.80%) and enhanced sensitivity method (0.89%). The simulated

response and calculated response with the identified parameters are shown in Figure

3-8. It is observed that a very good match is achieved.
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Figure 3-8 The simulated measured response and calculated response with

identified parameters in Case 2.

Case 3: identification of the bilinear model with the equal yielding force considering
noise

In this case, the bilinear model with the equal yielding force is used. Similar to

Case 2, The parameters of this bilinear model are defined as )1,1,3( 321  pppP .

10s acceleration response with a 10% white noise are used for identification. The

identified results of these parameters are shown in Table 3-6. It can be observed that

the maximum error of using the I-TSA is only 0.18%, however, the errors from the

standard TSA and enhanced sensitivity method are 0.67% and 0.49%, respectively. On

the other hand, a smaller standard deviation is obtained from I-TSA than the original

TSA, even with a significant noise effect in the measurements.

Figure 3-9 shows the colony distributions at the initialization and 381 seconds.

Specifically, taking the identification of the first two variables as an example, the

global optima shall be at ( 1,3 21  pp ). It is observed from Figure 3-9 that at the

initialization, the colonies from both the standard TSA and the proposed I-TSA are

randomly distributed in the feasible solution space. After 381 seconds, the individuals

from the I-TSA quickly converge to the true values. However when using TSA, the

variance in the generated populations and the distance to the true values are larger than

those from the proposed algorithm. This also well demonstrates that the convergence

performance of the proposed I-TSA is significantly improved, and an accurate

identification results can be obtained.
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Figure 3-9 The colony distributions at the initial time instant and 381 seconds:

(a) TSA; (b) I-TSA.

Table 3-6 Identified results for a SDOF system with different nonlinear models.

Parameters True values
Enhanced sensitivity

method

TSA I-TSA

Mean Std Mean Std

Case 1

p1 2 1.9999 2.0002 0.0003 2.0000 0

p2 1 1.0001 0.9997 0.0002 1.0000 0

p3 0.5 0.4998 0.4995 0.0017 0.5000 0

p4 2 2.0002 1.9991 0.0006 2.0000 0

Maximum error 0.04% 0.10% 0

Case 1

with 10%

noise

p1 2 2.0559 2.0079 0.0159 1.9984 0.0065

p2 1 1.0025 1.0011 0.0311 1.0022 0.0109

p3 0.5 0.5758 0.4902 0.0489 0.5061 0.0145

p4 2 1.8598 1.9405 0.0063 2.0175 0.0176

Maximum error 16.60% 2.97% 0.88%

(a)

(b)
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Table 3-6 Identified results for a SDOF system with different nonlinear models (Continues)

Case 2

p1 1 1.0070 1.0191 0.0093 1.0043 0.0042

p2 2 1.9874 1.9641 0.0172 1.9895 0.0019

p3 1 1.0089 1.0130 0.0277 1.0053 0.0024

Maximum error 0.89% 1.80% 0.53%

Case 3

p1 3 2.9935+ 2.9982 0.0006 2.9998 0.0000

p2 1 0.9962+ 1.0067 0.0047 0.9982 0.0040

p3 1 1.0049+ 1.0043 0.0053 1.0003 0.0019

Maximum error 0.49% 0.67% 0.18%

3.4.3 Nonlinear model parameter identification for a MDOF system

The above examples demonstrate that accurate identification results for a SDOF

system with three different nonlinear models can be obtained by using I-TSA, which

performs better than the original TSA and the enhanced sensitivity method. In this

section, the performance and accuracy of the proposed approach will be compared with

those of using several existing state-of-the-art heuristic algorithms for the nonlinear

model parameter identification of a MDOF system. Based on the same reason explained

at the beginning of Section 3.4.2, the maximum evaluation time is set as 7530 seconds

for the nonlinear parameter identification of this MDOF system.

A seven-storey shear building (Lu et al., 2017) with nonlinearities is built as

shown in Figure 2-10. Structural properties are defined as: mass of each storey 1m ,

stiffness 1k and the linear damping 1.0c . To simulate the seismic isolation (Yar

& Hammond, 1987), in this study, the bilinear hysteretic model with kinematic

hardening is introduced in the first floor. Following the force used in previous studies

(Lu et al., 2017), the external base excitation is assumed as a cosine function which is

given as
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where A is the amplitude and its value is 2,  represents the frequency of the

external force and the value is 1, and ),;( 0 ntttv is a window function so that the

excitation mainly occurs during ],[ 0 ntt and in this example, it is assumed that
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6,20  ntt . Figure 2-11 shows the hysteretic effect between the displacement and the

restoring force with kinematic hardening.

Figure 3-10 A seven-storey shear building with nonlinear hysteretic effect.

It shall be noted that a more complex identification problem is defined with more

unknown parameters. The external force parameters, stiffness, damping and nonlinear

model parameters are included in the parameter vector to be identified, which increases

the difficulty of the identification problem, compared to existing studies only

considering nonlinear model parameters (Sun et al., 2013). It should be noted that the

parameters to be identified only include the amplitude A and frequency  of the

external force, the parameters of the bilinear model with kinematic hardening, stiffness

and damping. Other parameters can also be identified similarly. To visualize the

parameter identification results clearly, the normalized damping and stiffness values

against the true values are presented. Therefore, the true objective parameter vector S

to be identified in this case includes 21 S (amplitude for the external force), 12 S
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(frequency of the external force), 1,2,1 543  SSS (nonlinear modal parameters),

1,1 76  SS (normalized stiffness and damping parameters). It should be noted that

these parameter values in this system are assumed, not based on the physical system

dimensions or material properties. This is fine to use this system to demonstrate the

effectiveness and performance of the proposed approach since the system parameters

such as stiffness and mass, can be normalized against their initial values.
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Figure 3-11 The hysteresis loop of a bilinear model in the shear building.

Case 4: Comparisons with existing heuristic algorithms

To compare the performance with other heuristic algorithms on the nonlinear

identification of MDOF systems, the modified artificial bee colony algorithm (MABC)

(Sun et al., 2013), differential evolutionary algorithm (DE) (Kyprianou et al., 2001),

Genetic programme (GP) algorithm (Garg et al., 2016) and standard TSA are used for

identification with the same data. For the setting of the common parameters, the colony

size is set as 40 and the evaluation time is set as 7,530 seconds per run. The search

range is defined as [0,5]. The acceleration responses from the 2nd to 5th floors with a

duration of 30s and a sampling rate of 100Hz are used for the identification.

Specifically, for TSA, ST is set as 0.45; for MABC, the parameter ‘limit’ is set as 175

(Karaboga & Basturk, 2008). When using DE, the rand/bin/1 operator is used to mutate,

and the mutation rate is defined as 0.8. For the GP, the crossover, mutation and

reproduction rate are 0.85, 0.1 and 0.05, respectively.
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Figure 3-12 Comparison of the evolutionary processes in objective function values

by using different approaches in Case 4.

Table 3-7 Comparisons between I-TSA and other heuristic algorithms on the identification of a

nonlinear seven-storey shear building.

True

values

MABC DE GP TSA I-TSA

Mean Std Mean Std Mean Std Mean Std Mean Std

s1 2 2.0124 0.0078 1.9987 0.0141 2.0841 0.0033 2.0031 0.0008 2.0000 0

s2 1 1.0068 0.0024 1.0079 0.0084 1.0042 0.0047 1.0000 0.0002 1.0000 0

s3 1 1.1782 0.3267 1.2641 0.2455 1.1134 0.2231 1.0482 0.0328 1.0000 0

s4 2 2.2464 0.5962 2.3766 0.6645 2.1766 0.3798 1.9275 0.0241 2.0000 0

s5 1 1.1896 0.2782 1.3793 0.6732 1.1277 0.1109 1.0591 0.0132 1.0001 8.1E-05

s6 1 0.9998 0.0075 1.0045 0.0517 1.0001 0.0017 0.9982 0.0009 1.0000 0

s7 1 0.9997 0.0098 0.9988 0.0159 0.9998 0.0026 0.9999 0.0004 1.0000 0

Maximum error 18.96% 37.66% 12.77% 5.91% 0.01%

Figure 3-12 shows the evolutionary process of objective function values by using

the proposed approach and the above-mentioned existing methods within the same

evaluation time. It is clearly seen that the proposed algorithm achieves a very small

error at a magnitude of 2710 , with a much faster convergence speed than other methods.

This also indicates that good identification results can be obtained. In contrast, GP, DE

and MABC have been stuck with the local optima and the same situation can be

observed in the original TSA, which confirms that the TSA easily ceases evolution
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when facing more complex case, as mentioned in Section 3.3. When no noise effect is

considered in the “simulated” acceleration responses, the identification results from all

these different methods are listed in Table 3-7. It can be observed that errors in the

identification results of using MABC, DE and GP are a little significant. Using TSA

obtains a relatively good result with the maximum error equal to 5.91%. The obtained

maximum error from the proposed approach is only 0.01%, demonstrating again the

improvement in the identification accuracy of a complex nonlinear parameter

identification problem.
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Figure 3-13 The identified system parameters by using responses with 5% noise.
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Figure 3-14 The identified system parameters by using responses with 10% noise.

Convergence

Convergence



81

To investigate the noise effect on the identification accuracy, two different noise

levels, namely, 5% and 10%, are added into the original response data and then used for

the identification. Since it has been demonstrated that I-TSA performs much better than

MABC, DE and GP, only the proposed algorithm is used to conduct identification with

noisy responses. Figure 3-13 presents the iteration process of the identified nonlinear

parameters with the noisy response including 5% white noise. It can be seen that only

after fifty iterations, all the parameters converge quickly to the preset true values and

the evolutionary curves are quite stable. This demonstrates the good robustness of the

proposed approach. Figure 3-14 shows the iteration process of the identified parameters

by using acceleration responses with 10% noise. It can be seen that the evolutionary

process is stable and the identified values converge quickly to the true values, although

a high level noise is included in the acceleration responses. As can be observed from

Table 3-8, the maximum errors in the identification of nonlinear parameters of 5% and

10% noise levels by using the proposed approach are 2.79% and 4.02%, respectively.

This well demonstrate the robustness and superiority of using I-TSA for nonlinear

system identification, even with noisy response data.

Table 3-8 Identification of a nonlinear seven-storey shear building

under different noise.

Parameters
True

values

Without noise 5% noise 10% noise

Mean Std Mean Std Mean Std

s1 2 2.0000 0 2.0014 2.001E-06 2.0023 0.0030

s2 1 1.0000 0 1.0000 8.811E-07 1.0000 0.0001

s3 1 1.0000 0 0.9721 2.126E-04 0.9897 0.0113

s4 2 2.0000 0 2.0118 3.665E-04 2.0647 0.0129

s5 1 1.0001 8.11E-05 0.9923 2.076E-04 0.9598 0.0135

s6 1 1.0000 0 0.9998 3.921E-05 0.9974 0.0083

s7 1 1.0000 0 0.9999 2.812E-06 0.9996 0.0006

Maximum error 0.01% 2.79% 4.02%
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Case 5: identification of the nonlinear building model with different input data

Different input will be used to identify the nonlinear building model parameters

and investigate the performance. The restoring force, which can be measured by a

non-contacting capacitive probe and a force transducer in experimental tests (Yar &

Hammond, 1987), and displacement data of the first floor are used to conduct the

nonlinear system identification. Figure 3-15 shows the evolutionary processes of the

objective function by using acceleration responses from the 2nd to 5th floors

5432 ,,, uuuu  , and both the restoring force and displacement data of the first floor,

respectively. Overall, these two curves are converging to very small values quickly,

indicating good identification results are obtained. In addition, using both the

displacement and restoring force provides a quicker convergence speed with 85

iterations to reach the optimized results compared with 125 iterations by using

acceleration responses. Table 3-9 shows the identification results. Good identification

accuracy is achieved by using different input data, even with significant noise effect.

Figure 3-15 Comparison of the evolutionary processes in objective function

values by using input data.
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Table 3-9 Comparisons on using different input data for nonlinear system identification by

using I-TSA.

Parameters
True

values

Without noise 5% noise 10% noise

Mean Std Mean Std Mean Std

s1 2 2.0000 0 1.9980 7.26E-06 2.0030 3.32E-07

s2 1 1.0000 0 1.0000 7.00E-07 1.0000 3.37E-07

s3 1 1.0000 0 1.0007 5.26E-06 0.9964 8.64E-07

s4 2 2.0000 0 1.9919 1.54E-07 1.9923 5.31E-06

s5 1 1.0001 2.92E-05 1.0016 7.20E-07 1.0004 2.89E-07

s6 1 1.0000 0 0.9980 1.23E-07 1.0059 1.19E-06

s7 1 1.0000 0 1.0003 9.30E-08 1.0009 1.31E-07

Maximum error 0.01% 0.40% 0.59%

3.5 Conclusions

This paper proposes a new heuristic algorithm, named I-TSA, for nonlinear model

parameter identification with three different hysteretic models. Two modifications,

namely, Lévy flight mechanism and a new updating equation, are added to modify the

standard TSA to improve the efficiency and capability for global optimization. The

accuracy and performance of the proposed approach are verified by conducting the

benchmark studies with benchmark test functions. The independent tests are conducted

to investigate the contribution from these two modifications. Numerical studies on a

nonlinear SDOF system and a nonlinear seven-storey shear building are conducted to

demonstrate the effectiveness and superiority of the proposed approach over several

existing methods. The noise effect on the identification accuracy is also investigated.

Through the above studies, the following conclusions can be drawn:

 Both modifications are useful to improve the performance of TSA, however,

the proposed I-TSA has the best performance in the optimizations of most benchmark

function tests.

 When tackling CEC14 benchmarks, even though the winner algorithm is

employed to conduct comparison, the proposed I-TSA still showcases its superiority on

some specific functions.

 For the identification of a nonlinear SDOF system, it has been demonstrated

that the proposed I-TSA can converge more quickly and obtain better identification
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results compared with the original TSA and enhanced sensitivity method.

 For the identification of a nonlinear seven-storey shear building, the results

demonstrate that the proposed approach has a good robustness even the responses used

for identification analysis contain significant noises, and a better performance than

several existing methods.

 The effectiveness of the proposed approach is independent of the type of input

data used to excite the structure.

 However, there are still some limitations, i.e., uncertainties effect in the

finite element modelling on the accuracy of using the proposed approach for

nonlinear system identification has not been well investigated. These will be

studied in the future.
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CHAPTER 4 STRUCTURAL DAMAGE IDENTIFICATION USING

IMPROVED JAYAALGORITHM BASED ON SPARSE

REGULARIZATION AND BAYESIAN INFERENCE

ABSTRACT3

Structural damage identification can be considered as an optimization problem, by

defining an appropriate objective function relevant to structural parameters to be

identified with optimization techniques. This paper proposes a new heuristic algorithm,

named improved Jaya (I-Jaya) algorithm, for structural damage identification with the

modified objective function based on sparse regularization and Bayesian inference. To

improve the global optimization capacity and robustness of the original Jaya algorithm,

a clustering strategy is employed to replace solutions with low-quality objective values

and a new updated equation is used for the best-so-far solution. The objective function

that is sensitive and robust for effective and reliable damage identification is developed

through sparse regularization and Bayesian inference and used for optimization

analysis with the proposed I-Jaya algorithm. Benchmark tests are conducted to verify

the improvement in the developed algorithm. Numerical studies on a truss structure and

experimental validations on an experimental reinforced concrete bridge model are

performed to verify the developed approach. A limited quantity of modal data, which is

distinctively less than the number of unknown system parameters, are used for

structural damage identification. Significant measurement noise effect and modelling

errors are considered. Damage identification results demonstrate that the proposed

method based on the I-Jaya algorithm and the modified objective function based on

sparse regularization and Bayesian inference can provide accurate and reliable damage

identification, indicating the proposed method is a promising approach for structural

damage detection using data with significant uncertainties and limited measurement

information.

3This chapter was published in Mechanical Systems and Signal Processing with the full
bibliographic citation as follows: Ding, Z., Li, J., & Hao, H. (2019). Structural damage
identification using improved Jaya algorithm based on sparse regularization and Bayesian
inference. Mechanical Systems and Signal Processing, 132, 211-231.
https://doi.org/10.1016/j.ymssp.2019.06.029.

https://doi.org/10.1016/j.engstruct.2019.01.118.
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4.1 Introduction

Conducting damage identification and quantification of structures based on

measured vibration data is one of the most significant research topics in the area of

structural health monitoring (SHM), because it is relevant to assessing the service

performance and evaluating the integrity of structures (Farrar & Worden, 2007). When

structures have damages, alternations are observed in the dynamic vibration

characteristics. Therefore, numerous methods have been developed for structural

damage identification based on the changes in structural vibration characteristics

(Kerschen & Worden, 2006; Wan & Qiao, 2011).

Basically, these methods can be categorized into two types, relying on the fact that

structural damage identification is performed in the frequency domain or the time

domain. Frequency domain based methods are developed to identify damages by using

structural modal information, such as natural frequencies, mode shapes, damping ratios

and other frequency domain data. Pandey and Biswas (1994) used the flexibility

matrices for damage identification. Shi and Law (1998) developed the modal strain

energy ratio to locate the structural damages. Yan et al. (2015a; 2015b) used Principle

Component Analysis (PCA) to analyze structural modal data for distinguishing the

changes in vibration characteristics due to environmental variations or structural

damage. Numerical and experimental studies illustrated that the proposed method can

be effective for the linear and nonlinear structures. Furthermore, the spectral approach

was also widely applied to address structural damage quantification, especially for

nonlinear systems (Machado et al., 2017).

On the other hand, structural damage identification methods in the time domain

have been developed rapidly in the recent years. Lu and Wang (2017) proposed an

enhanced sensitivity method to perform damage identification, in which a trust-region

restriction was introduced to improve the performance of the traditional sensitivity

approach. Hu et al. (2017) developed a method using the homotopy continuation

algorithm to identify the cracks in beam structures, in which acceleration responses

were used to formulate the objective function. Li et al. (2017) developed a damage

identification and optimal sensor placement method for structures under traffic-induced
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vibrations, based on response reconstruction in the time domain. Recently, the time

domain methods have been also developed to conduct the identification of nonlinear

structures. Yang et al. (2006) developed an adaptive Extended Kalman Filter (EKF)

approach to identify the damage in both the linear and nonlinear structures. Xie and

Feng (2012) applied the Iterated Unscented Kalman Filter (IUKF) for highly nonlinear

structures. Experimental results demonstrated that IUKF can be used to provide better

state estimation and parameter identification results than Unscented Kalman Filter

(UKF). For damage identification in initially nonlinear systems, Shiki et al. (2017)

used a discrete Volterra model to separate the linear and nonlinear components of the

dynamic responses of a system. Afterwards, hypothesis tests were introduced to detect

variations in the statistical properties of the damage features. Villani et al (2019)

adopted the stochastic Volterra series to conduct damage identification for uncertain

nonlinear systems, in which the uncertainties were simulated by the variation posed in

the linear stiffness and damping coefficient.

However, most of the above mentioned methods require a good guess of the initial

system parameters and an accurate estimation of the gradients. Furthermore, difficulties

arise when utilizing these methods for the identification of large scale structures when

only few measurement data is available. Regularization in the solution would be

essential to ensure that the identification results are physically meaningful. Considering

that structural damage identification could be viewed as an optimization problem

(Friswell, 2007), computational intelligence techniques are developed to perform the

optimization in structural damage identification, such as the Genetic Algorithm (GA),

the Particle Swarm Optimizer (PSO), the Artificial Bee Colony algorithms (ABCs), the

Differential Evolution (DE) algorithms, the Artificial Neural Network (ANN), the

Support Vector Machine (SVM) and other machine learning methods. These

intelligence methods generally make predictions via data instead of the specific

formulas. Therefore, they could not only avoid the mentioned shortcomings (requiring

good initial values and gradient information), but also enable to perform identification

of large-scale and complex structures (Ding et al., 2019). Wang (2009) developed using

the hybrid GA with the Gaussian-Newton method to identify the parameters of both
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linear and nonlinear structural systems. Guo and Li (2009) developed a two-stage

damage identification method based on the evidence fusion along with the improved

PSO. Later, Chen and Yu (2017) employed the PSO integrated with Nelder-Mead

method to tackle the damage identification problem. Sun et al. (2013) constructed a

modified ABC algorithm to perform the identification of structural parameters, in

which a nonlinear factor used for improving the convergence performance was

introduced to achieve the balance between the global and local searches. Ding et al.

(2017; 2018) adopted ABC to identify structural damages and cracks by using the

objective function based on natural frequencies and the modal assurance criteria

(MAC). Tang et al. (2008) proposed DE to identify structural parameters with and

without considering noise contamination in the measurement data. Padil et al. (2017)

demonstrated that ANN is a good choice to solve the damage identification problem

considering uncertainties. Bornn et al. (2010) developed an approach using the

autoregressive SVM to detect the damage in initially nonlinear systems. Santos et al.

(2016) presented four kernel-based algorithms for damage identification under varying

operational and environmental conditions. From the above studies, it can be found that

these computational intelligence approaches are promising tools for structural

identification, however, challenges still exist, such as

(a) In some studies, the target structures used for investigation have a small

number of elements. The uncertainty effect on the final identification results is rarely

investigated; and

(b) The performance and robustness of algorithms for the scenarios when only

a limited number of measurement data are available and at the same time the data

contain significant noise, need to be improved.

Recently a new computational intelligence method, namely Jaya algorithm (Rao,

2016; Rao & Saroj, 2017), has been developed. Compared with the above-mentioned

computational intelligence methods (Tang & Fan, 2008; Wang, 2009; Li & Guo, 2009;

Sun et al., 2013; Chen & Yu, 2017; Ding et al., 2019), the distinct feature of the Jaya

algorithm is that there are no special controlling parameters in the algorithm. In

contrast for many other methods, GA needs a proper setting of crossover probability,
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mutation rate and selection operator, and ABC needs proper quantities of onlooker bees,

scout bees and parameter ‘limit’. Furthermore, compared with other gradient-based

algorithms (Pandey & Biswas, 1994; Shi & Law, 1998), the Jaya algorithm has the

following superiorities: (i) It is free from sensitivity analysis and initial guess of the

parameters; (ii) It does not require gradient information. When performing the damage

identification of structures with a large number of elements, the gradient information

may be difficult to obtain or the calculation is time consuming due to the significant

computational demand with a large-scale system, which restricts the potential

applications of these gradient-based methods. Therefore, it is interesting to develop and

extend the Jaya algorithm for structural damage identification. Furthermore, to address

the two challenges as mentioned above, modifications are introduced into the standard

Jaya algorithm to enhance its global optimization ability and a better objective function

that is more robust to identify structural parameters with limited measurement

information is proposed. These are the two main contributions of this study.

For addressing the second challenge as mentioned, when developing and applying

optimization methods for damage identification, studies on developing more reasonable

objective functions that are more robust and stable in optimization analysis for damage

identification are conducted. To achieve this purpose, one way is to introduce the

regularization technique to reform the objective function. Recently, the sparse

regularization techniques with the enforcement of the sparsity constraint on the damage

locations have been widely investigated and promising results are obtained, since

damages are often observed at a few locations while the majority of elements remain

intact (Zhou et al., 2015; Hou et al., 2018). Furthermore, the traditional objective

functions (Ding et al., 2017; Ding et al., 2018) are usually ill-posed, and introducing

the sparse regularization constraint on the damage identification is beneficial to

overcome the ill-posedness in the inverse problems (Titurus & Friswell, 2008). Another

possible way to tackle this challenge is to employ the probabilistic analysis, i.e. based

on the Bayesian inference. It considers the complete information relevant to the

measured data for statistical inference with an appropriate likelihood function (Sun &

Betti, 2015). Bayesian-based methods have been developed for damage identification.
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For example, Beck et al. (1999) presented a Bayesian statistical framework for

structural identification and adopted this theory to perform continuous online

identification. Later, Bayesian spectral density approaches, Bayesian Fast Fourier

Transform (FFT) methods (Yuen & Katafygiotis, 2003; Zhang et al., 2016),

Bayesian-based Monte Carlo method (Figueiredo et al., 2014) have been further

developed for structural damage identification. The results in previous studies (Chen &

Yu, 2017; Sun & Betti, 2015) demonstrated that the Bayesian inference can be used to

enhance the robustness of damage identification. Therefore, to improve the

identification with a limited number of measurements of a significant noise effect, a

new objective function is proposed by using incomplete modal data and the penalty

items considering the sparse regularization and Bayesian inference.

This paper proposes an improved Jaya algorithm (I-Jaya) to conduct damage

identification of structures by using vibration measurement data. To enhance the

capacity of the developed methodology for the identification of large-scale structures,

two modifications are developed based on the standard Jaya algorithm to enhance its

global search ability. 1% variation (Xia et al., 2012) is introduced into the elemental

stiffness parameters to simulate the uncertainties in the structure. To improve the

identification with a limited number of measurements of a significant noise effect, a

new objective function is proposed by using incomplete modal data and the penalty

items considering the sparse regularization and Bayesian inference. Classical

mathematical benchmarks are utilized to validate the accuracy and improvement of the

proposed approach. Numerical investigations on a 121-bar truss structure are

performed to demonstrate the accuracy of the developed algorithm with the use of the

modified objective function. Experimental validations on a reinforced concrete bridge

are conducted to demonstrate the performance of the proposed method.

4.2 Theoretical background

4.2.1 Damage identification of structures

Changes in structural system parameters, i.e. stiffness, mass and damping, would

introduce the alterations in structural vibration properties. Hence SDI could be
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conducted based on this fact by using vibration measurement data. Vibration

characteristics, such as frequencies and mode shapes of a structure without considering

the damping, could be obtained by solving the eigenvalue problem

0)( 2  iΦMK i (4.1)

where K and M represent the system stiffness and mass matrices, respectively; i

and iΦ denote the ith natural frequency and the corresponding mode shape,

respectively.

In this study, structural damage is assumed to be only related to the stiffness

reduction, since the mass alteration of a structure could be easily inspected (Zhu et al.,

2017). In this case, structural damage would be characterized via a scalar stiffness

reduction variable for each element ),...,2,1( Nelhh  with the value between 0 and 1

as follows

ehd kK   
)1(

1

Nel

h h (4.2)

where ehk represents the hth elemental stiffness matrix under the undamaged state;

Nel denotes the number of total elements of a structure; dK represents the structural

stiffness matrix under the damaged state; h denotes the elemental stiffness reduction

parameter to be identified. It shall be noted that 1h implies that this element is

totally damaged, and 0h means that the element is intact.

The traditional objective function, denoted as fobj1, is defined based on the

alterations of natural frequencies and Modal Assurance Criterion (MAC), which can be

given as (Ding et al, 2017; Chen & Yu, 2017)
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where c
i and c

iΦ represent the ith calculated natural frequency and mode shape

from the finite element model analysis, respectively; m
i and m

iΦ are the

corresponding measured natural frequency and mode shape, respectively. NF and

NM represent the order numbers of natural frequencies and mode shapes, respectively.

The calculated modal data are acquired by using the stiffness parameters

],...,,[ 21 Nelα with the finite element analysis. Generally speaking, SDI is treated as

an ill-posed problem with the searching parameters that may have multiple local

optimal points (Ding et al., 2018). The optimization techniques can be used for

identifying the optimal set of parameters that could minimize the objective function.

When the input data is limited or even less than the number of unknown parameters to

be identified and the data is contaminated with the significant measurement noise, the

damage identification becomes much more difficult. To overcome these challenges, it is

emerging to investigate and develop robust and powerful algorithms with proper

objective functions, which may improve the identification of the complex structures.

4.2.2 Proposed objective function

4.2.2.1 The objective function based on sparse regularization

In real situations, structural damages happen usually at a few locations (Fan et al.,

2018). Therefore the damage vector ],...,,[ 21 Nelα should be a sparse vector with

most of its items equal to zero or at least close to zero, except the damaged elements

with non-zero entries. When the number of measured data is less than the total number

of unknown parameters in the inverse identification, Eq. (4.3) is underdetermined and

ill-posed. Therefore, the 1l regularization technique (Hou et al., 2018) can be utilized

to help solve the underdetermined inverse problem. The objective function based on

sparse regularization, denoted as obj2, can be defined as

)||||)1((min arg)(minarg 111

2
2 ααα

αα
   

 NM

i i

NF

i iobj MACf (4.6)

where 0 is the regularization parameter and 1||||α denotes the 1l norm of the

solution, namely, ||||||
11  


Nel

h hα . It should be noted that a small  would pose a
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higher penalty on the residual term, resulting in an over-fitting solution. Conversely,

for a large  value, it would loss data fidelity. Therefore, the discrepancy principle

(DP) rule (Hou et al., 2018) is employed here to select the optimal regularization

parameter  .

4.2.2.2 The objective function based on Bayesian inference

Vibration measurement data are usually polluted with the environmental noise,

which could be considered as a zero-mean Gaussian white-noise in numerical

simulations. The noisy response can be described as (Chen & Yu, 2017)

)1( RXX noise (4.7)

where noiseX and X are the noisy and original response vectors, respectively; 

denotes the noise level ranging from 0 to 100%, while R is a random vector with

the standard normal distribution )1,0(N .

To improve the capacity of the developed algorithm against the noise effect in the

optimization process, the Bayesian inference is introduced to modify the objective

function. The theoretical foundation of the Bayesian theory is the conditional

probability, with the prior knowledge resulted from a certain event or hypothesis. This

theory offers a rigorous process for uncertainty quantification. In Bayesian inference,

the posterior Probability Density Function (PDF) of the model parameters ( θ ) can be

obtained via Bayes’ theorem

)()|()|( θθDDθ ppcp  (4.8)

where )|( Dθp represents the PDF of model parameters θ given the modal data D ,

)|( θDp represents the likelihood function given the model parameter θ , and )(θp

denotes the prior PDF of model parameters θ based on observations and/or modelling

assumptions. Specifically, it ought to be noted that modal data D means the real

measured data, such as frequencies and mode shapes. In the Bayesian theory, these

measured data are served to obtain the posterior probability density function of the

model parameters θ . In this study for structural damage identification, the model
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parameters denote the element stiffness parameters vector ],...,,[ 21 Nelα .

Furthermore, the prior distribution of model parameters θ is assumed as a uniform

distribution, which means that their PDFs are a series of constants (Chen & Yu, 2017).

c is a constant which enables the integral of )|( Dθp to be 1. Supposing that the

Bayesian inference is applied on natural frequencies and taking ],...,,[ 21 sN
DDDD  as

observed modal data with sN samples, and ],...,,[ ,,2,1 sisss D denoting the natural

frequencies in the sth observation or measurement. The likelihood functions of the

modal data are assumed to be independent, and the principle of the maximum entropy

is employed as a basis to assume Gaussian distributions for these modal data (Chen &

Yu, 2017). Based on this assumption, the PDF of any frequency parameter ( si , ) can be

obtained as
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where si , represents the ith frequency in the sth measurement, c
i denotes the

ith calculated frequency, and 2
i represents the variance of the ith frequency and

can be calculated as
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where i represents the mean value of the ith natural frequency.

Since it is assumed the testing obtained modal data are independent, the likelihood

in Eq. (4.8) can be calculated as
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When the prior distribution of natural frequencies is considered as the uniform

distribution, substituting Eq. (4.11) to Eq. (4.8) can have the final form of )|( Dθp . It

can be calculated as
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Eq. (4.12) represents the frequency-based Bayesian conditional probability

function. The goal of Bayes analysis is to maximize the likelihood probability function

)|( Dθp based on the test data, which can be converted to minimize the exponent part

in Eq. (4.12). Combining with the item related with the mode shapes in the objective

function as described in Eq. (4.3), the third objective function, denoted as obj3, is given

as
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Comparing with the first objective function defined in Eq. (3), the item relevant to

minimizing the difference in natural frequencies is modified based on Bayesian

inference. It should be noted that when involving the Bayesian inference in the

objective function, significant computational time may be required to obtain the

variances. Since natural frequencies are scalars, their covariance values are relatively

straightforward to be obtained. However, for the mode shapes, obtaining the covariance

matrices will be relatively complex and time-consuming, considering the modal shapes

are vectors. To simplify the calculation and increase the efficiency, only the frequencies

are considered in the objective function in Eq. (4.13).

4.2.2.3 The objective function based on Bayesian inference and sparse
regularization

By considering the Bayesian inference and sparse regularization

simultaneously, a hybrid objective function, defined as obj4 expressed below is

proposed in this study for SDI,
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The Bayesian inference is included to improve the robustness (Chen & Yu, 2017),

and the regularization term is applied to solve the underdetermined inverse problems

(Sun & Betti, 2015). The effectiveness and improvement of these objective functions

will be compared in this study.

4.3 Optimization algorithm
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4.3.1 Jaya algorithm

The proposed I-Jaya algorithm in this study is developed and improved based on

the standard Jaya algorithm. The standard Jaya algorithm is briefly reviewed here (Rao,

2016; Rao & Saroj, 2017) for the completeness of this paper. The Jaya algorithm is a

new type of heuristic algorithms, inspired by the concept that the feasible solution

acquired for a given problem ought to move towards the best solution and avoid the

worst solution. Specifically, for every feasible solution, the way of generating its

offspring is to move closer to the success (i.e. approaching the best solution) and avoid

the failure (i.e. escaping from the worst solution). When generating the offspring, the

objective function values are compared to decide whether the new solution (offspring)

or the previous solution would be selected for the next iteration. Gradually, the

algorithm endeavors to become victories by approaching the best solution and therefore

it is named after Jaya (a Sanskrit word meaning victory). Compared with other

computational intelligence methods, such as ABC, BMO and PSO etc., the distinct

feature of the Jaya algorithm is that there are no special controlling parameters in the

algorithm. The procedures of operating the Jaya algorithm includes three steps, namely,

the initialization, the local search strategy and the greedy selection mechanism, which

are briefly described in the following,

4.3.1.1 Initialization

An initial colony is generated randomly in the search space. This colony

contains CS individuals. Each individual in the colony is marked with jθ .

Every individual ( jθ ) contains n variables ( ],...,,...,,[ 21 nqj θ ), which can be

created as

)()1,0( ,,,,
l
qj

u
qj

l
qjqj rand   (4.15)

where qj , denotes the qth variable of jθ ; u
qj , and l

qj , are the upper bound and

the lower bound of the variable qj , . )1,0(rand represents a random number in the

range within 0 to 1.

4.3.1.2 Local search strategy
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After creating the initial colony, the local search for these individuals will be

carried out. As mentioned before, the core of the Jaya is to pursue success but avoid

failure, therefore, the best solution and the worst one in each iteration would be used to

formulate the local search strategy for every individual. It is assumed that Gqj ,, stands

for the value of the qth dimension of the jth individual at the Gth generation. The

offspring '
,, Gqj created by this value can be calculated as

|)|(|)|( ,,,,,,2,,,,,,1,,
'

,, GqjGqworstGqGqjGqbestGqGqjGqj rr   (4.16)

where Gqr ,,1 and Gqr ,,2 are two random numbers located in the ]1,0[ . Gqbest ,, and

Gqworst ,, are the values of the qth variable for the best individual and the worst one,

respectively. The second item in Eq. (4.16) denotes that the trend of the process

towards the best solution while the third item represents the tendency of the solution to

avoid the worst solution. Afterwards the judgement of boundary condition will be

conducted by using
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4.3.1.3 Greedy selection mechanism

Extending the above-mentioned local search strategy to all dimensions, it will

acquire the new individual '
,Gjθ . The greedy selection mechanism (Zhu et al., 2017) is

applied to determine whether the new individual or the previous one will be selected

for the next iteration. Namely, the objective function values of the Gj ,θ and '
,Gjθ will

be compared. The individual with a smaller function value will be kept to the next

generation
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where f denotes the objective function that requires to be minimized. The algorithm

will be continually conducted until the termination condition is satisfied, i.e., the
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maximum objective function evaluation number is reached.

4.3.2 Improved Jaya algorithm

In the standard Jaya algorithm, it can be found that every mutation as shown in Eq.

(4.16) is relevant to the best-so-far solution and the worst one. Therefore, the whole

colony will centralize into the best-so-far solution with iterations, and the colony

information may not be fully used. In this case, if the best-so-far solution is trapped

into the local minimal, the whole iteration of the algorithm would cease. Besides, from

observing the updated strategy as shown in Eq. (4.16), it is clear that for the best-so-far

solution, the second item trying to reach the best solution would make the optimization

lose efficiency. Aiming at overcoming these drawbacks, two modifications are

developed to enhance the algorithm’s performance.

4.3.2.1 K-means clustering

The K-means clustering is a simple yet powerful tool that organizes a data set

(pattern) into a number of groups or clusters. Within every group or cluster, these data

or pattern are similar to each other. In other words, clustering technique is a useful tool

to discover the inherent pattern in any given dataset (Jain et al., 1999). Besides, the

clustering centers can be viewed as the representations of these clusters, since their

formulations are based on the combinations of other individuals in these clusters.

Therefore, to make full use of the colony information, it seems a smart choice to

integrate the K-means clustering technique into the standard Jaya algorithm, since the

information of the whole colony can be represented through these so-called ‘clustering

centers’. Furthermore, during early iterations, conducting the K-means clustering is

straightforward and this works as a crossover operators that would effectively utilize

the colony information, which is beneficial to improve the algorithm’s convergence

performance (Jain et al., 1999; Cai et al., 2011). The specific procedure of operating

clustering mechanism is described as follow

Step 1: CSK  1.0 initial clustering centers kCCC ,...,, 21 are produced

randomly from the CS individuals ].,...,,[ 21 csθθθ
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Step 2: The remaining individuals are distributed to these clustering centers

according to their distances to these centers. Specifically, jθ is assumed to represent a

remaining individual in the colony. If and only if it satisfies the distance condition

|||||||| pjmj CθCθ  ( pC denotes any other clustering centers), the individual jθ will

belong to the cluster with the clustering center mC . Based on this rule, other

individuals can find their clusters through the comparison with the distances generated

from every clustering center. The distance between any two individuals (i.e., jθ and cθ )

is determined by the Manhattan distance, given as follows

)(||||),(
1 ,, 


n

q qcqjcjcj absd θθθθ (4.19)

Step 3: After assigning other individuals to these clustering centers, the new

clustering centers ''
2

'
1 ,...,, kCCC are calculated by using the following equation

CSj
u mj

j

m

m ,...,2,1,1'  
cθ

θC (4.20)

where mu is the number of individuals belonging to the clustering center mC .

Step 4: Finally, another K parents individuals from the colony will be selected

and then combined with the newly-calculated clustering centers as a new set, marked

with  . The individuals’ objective function values will be calculated in the set  , and

these values are sorted from the smallest to the largest. The first K individuals would

be put in the colony. The clustering operation is demonstrated herein. The pseudo-code

of operating the K-means clustering is shown in Figure 4-1.
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Figure 4-1 The pseudo-code of operating the K-means clustering.

4.3.2.2 A new updating equation for the best solution

In the Jaya algorithm, the best solution in every iteration plays a crucial role in the

whole optimization process, because it guides and draws other individuals to its own

region. To prevent best solutions from trapping in the local minimal to some extents, a

new updating equation that focuses on the global search is introduced here (Gao et al.,

2015)

)( ,,,,,,,,
'

,, GqbestGqjGqbestGqbestGqbest   (4.21)

where Gqbest ,, denotes the value of the qth dimension of the best solution at the Gth

generation and '
,, Gqbest represents its offspring value. Gqbest ,, is a random number

locating in the ]1,0[ . Gqbest ,, means the value of the qth dimension of an arbitrary

individual in the colony. From Eq. (4.21), a new candidate is generated by removing

the old solution towards a randomly chosen one in the colony. Such randomness can

enable this search strategy’s exploration ability.

The above two modifications for the standard Jaya algorithm are presented. These

improvements are easy to operate and do not bring much complexity to the standard

Jaya algorithm. The flowchart of the proposed I-Jaya algorithm is shown in Figure 4-2.
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Figure 4-2 The flowchart of the proposed I-Jaya algorithm.

4.4 Numerical Studies

4.4.1 Benchmark tests

To investigate the accuracy of using the developed I-Jaya algorithm for tackling

optimization problems against the standard Jaya algorithm, classical mathematical

benchmark functions with 100 unknown variables (Ding et al., 2018) are tested here.

These functions can be categorized into four types, that is, an uni-modal separable

function (Sphere), three multi-modal and non-separable functions (Griewank, Schaffer

and Ackley), an uni-modal and non-separable function (Rosenbrock) and a multi-modal

separable function (Rastrigin). The global minimum of these test functions are zero.

Regarding the parameters setting for algorithms, the colony size 100CS and the

termination condition is set as when the total number of function evaluations reaches
510 . Each case is independently repeated 30 times and the means of objective function

values are recorded.

Figure 4-3 shows the convergence progresses of the mentioned six benchmark

functions. It can be clearly observed that the proposed I-Jaya algorithm has a more

competitive convergence speed, and a much better accuracy in the solution than the

standard Jaya algorithm as shown in Table 4-1. Because of its excellent performance in

dealing with optimization problems, the I-Jaya algorithm will be used to tackle the
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following SDI problem.
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Figure 4-3 The convergence line for the classical benchmarks based on Jaya and the proposed

I-Jaya algorithm.

Table 4-1 Statistic results obtained by the Jaya and I-Jaya algorithms for the classical

benchmarks.

Algorithms
Function name

Sphere Griewank Schaffer Ackley Rosenbrock Rastrigin

Jaya
Mean 3.91E+03 2.11E+00 8.22E+01 5.97E+00 2.62E+06 9.45E+02

std. 6.67E+02 3.36E-01 4.33E+00 4.96E-01 7.78E+05 6.67E+01

I-Jaya
Mean 1.07E-109 0.00E+00 1.18E-26 0.00E+00 9.86E-29 0.00E+00

std. 2.88E-110 0.00E+00 6.12E-27 0.00E+00 8.16E-30 0.00E+00

4.4.2 Numerical Simulations

The superiority of the proposed I-Jaya algorithm has been demonstrated in the

above benchmark verifications. In this section, a 121-bar truss structure is employed as

a numerical example to demonstrate the improvement by using the above-mentioned

modified objective functions based on Bayesian inference and sparse regularization to

identify the structural damage with a limited quantity of available measurement

information. The truss model is shown in Figure 4-4. Young’s modulus, density and

Poisson’s ratio are respectively defined as ,GPa70E 3mkg2700 and 33.0 .

The boundary conditions of the truss are simulated by three springs with a large

stiffness, i.e. mN102 10
1,1 K ; mN102 10

2,1 K ; mN102 10
2,49 K . The first six
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natural frequencies and the relevant incomplete mode shapes are used for identification.

It should be noted that in the numerical studies, the number of available modal data is

less than the number of unknowns. Therefore the damage identification of this structure

is an underdetermined inverse problem. Random measurement noises are included in

the natural frequencies and mode shapes, respectively, by using Eq. (4.7). 1% variation

with Gaussian distributions is introduced into all the elemental stiffness parameters for

simulating the uncertainties. In terms of the parameters setting for I-Jaya, the colony

size is 100CS and the maximum objective function evaluation number is set as

49000. For each damage case, 30 runs are independently conducted to acquire

statistical results.

Figure 4-4 The model of the truss structure.

4.4.2.1 Performance comparison on different objective functions

The first damage case, denoted as Case 1, is assumed that there is a 15% stiffness

reduction in the 10th element, which means .15.010  The first six natural

frequencies and mode shapes in the vertical direction of the 2nd, 7th, 12th, 17th, 22nd, 27th,

32nd, 37th, 42nd and 47th nodes are obtained for structural condition identification. There

are six frequencies and sixty mode shape values in total. Significant measurement

noises are assumed and added in natural frequencies and mode shapes with the noise

levels of 3% and 5%, respectively. Furthermore, when calculating the Bayesian

inference, it is assumed that the number of available measurement sets for obj3 and

obj4 is 10 and the average frequencies and mode shapes are used for objective

functions obj1 and obj2. Similar to Ref (Chen & Yu, 2017), these data are generated

with a 3% variance of their real values. It is noted that the DP rule is applied to
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determine the regularization parameters (Hou et al., 2018), therefore the regularization

parameter  for the obj2 and obj4 are set as 4102  and 6102  , respectively. The

proposed algorithm is used for identification, with different objective functions.

Figure 4-5 The convergence processes of the identified damage index 10 with different

objective functions.

Figure 4-6 Damage identification results of Case 1 in the numerical study:

(a) using obj1; (b) using obj2; (c) using obj3; (d) using obj4.

Figure 4-5 shows the iteration processes of the identified damage index 10 by

using different objective functions. It is observed that using obj4 converges faster and

(a) (b)

(c) (d)
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provides more accurate damage identification results. Figure 4-6 shows the final

damage identification results in all the elements of the truss model by using four

different objective functions. The mean values and the variation range with mean

values plus and minus standard deviations are shown in Figure 4-6. The identified

damage extents in the 10th element by using four objective functions are also given in

Table 4-2. It can be observed from Figure 4-6 and Table 4-2 that the identification

results by using obj4 is the most accurate.

Table 4-2 Damage identification results in the numerical studies.

Damage
case

Damage
location

True
value

Obj1 Obj2 Obj3 Obj4

Mean
value

std.
Mean
value

std.
Mean
Value

std.
Mean
value

std.

Case 1 10 0.15 0.1098 0.0598 0.1362 0.0154 0.1556 0.0014 0.1511 0.0006

Case 2
10 0.15 0.1351 0.0164 0.1388 0.0155 0.1440 0.0108 0.1486 0.0009

45 0.15 0.1202 0.0475 0.1381 0.0132 0.1347 0.0399 0.1507 0.0007

The second damage case, denoted as “Case 2”, is assumed with 15% stiffness

reductions in the 10th and the 45th element, namely, 15.04510  . The input modal

data are the same as those in Case 1. The regularization parameters for the obj2 and

obj4 are set as 4105  and 610 , respectively. Figure 4-7 shows the identification

results of Case 2, and Table 4-2 lists the identified damage extents in the damaged

elements. It is clearly observed that when using the obj1, a number of significant false

identifications are generated. With the sparse regularization term, the false

identification by using the obj2 are greatly reduced. By including Bayesian inference in

obj3, the identification can be improved as compared with using obj1. However, there

are still a number of observed false identifications with considerable standard

deviations. The identification accuracy by using obj4 is significantly improved. The

identification results from these two damage cases demonstrate the superiority of using

both the sparse regularization and Bayesian learning. Using only sparse regularization

in obj2 or Bayesian inference in obj3 can certainly improve the accuracy and
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performance in damage identification. However, when sparse regularization and

Bayesian inference are used simultaneously in obj4, a much more accurate

identification is achieved. The identified damage extents are close to the true values

with minor standard deviations, and almost no false identification is observed. These

identification results verify that the new objective function based on Bayesian

inference and sparse regularization can greatly enhance the accuracy and robustness of

utilizing the I-Jaya algorithm for SDI.

Figure 4-7 Damage identification results of Case 2 in the numerical study:

using obj1; (b) using obj2; (c) using obj3; (d) using obj4.

4.4.2.2 Damage identification with limited modal data

The superiority of the proposed objective function obj4 is demonstrated in the

above examples. In this section, only the obj4 is used to investigate the influence on

damage identification by using limited modal data. The third damage case, denoted as

Case 3, is assumed with 8% stiffness reductions in the 10th, 45th, and 100th element

respectively, which means .08.01004510   The first six natural frequencies and

different numbers of mode shape values for these six modes are used for identification.

Significant measurement noises are added in natural frequencies and mode shapes with

(a) (b)

(c) (d)
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the noise levels of 3% and 5%, respectively. Four scenarios are considered and listed in

Table 4-3.

Table 4-3 Used modal data in different scenarios and regularization parameters for Case 3.

Scenario
Number of the used

modal data

Quantity of
used modal

data


1
Six frequencies, and the corresponding mode

shapes in the vertical direction at the
2nd,7th,12 th,...,47th nodes

66 5102 

2
Six frequencies, and the corresponding mode

shapes in the vertical direction at the
2nd,10th,18th,...,50th nodes

48 510

3
Six frequencies, and the corresponding mode

shapes in the vertical direction at the
2nd,11th,20 th,...,47th nodes

42 510

4
Six frequencies, and the corresponding mode

shapes in the vertical direction at the
2nd,12 th,23 th,34 th,45 th nodes

36 5102.1 

Table 4-4 Identified damage extents for Case 3 in the numerical studies.

Damage
location

True
value

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean
value

std.
Mean
value

std.
Mean
value

std.
Mean
value

std.

10 0.08 0.0791 0.0008 0.0795 0.0014 0.0793 0.0009 0.0782 0.0021

45 0.08 0.0800 0.0012 0.0795 0.0013 0.0796 0.0016 0.0786 0.0015

100 0.08 0.0796 0.0013 0.0788 0.0006 0.0784 0.0010 0.0787 0.0013

It is noted that the number of available modal data used for identification in each

scenario is always less than that of unknown system parameters to be identified. For

Scenario 4, a much less number of modal data, that is 36, are used to identify 121

unknown elemental stiffness parameters in this study. The selected regularization

parameters based on DP rule (Hou et al., 2018) as mentioned above are also listed in

Table 4-3. Figure 4-8 shows the iteration processes of the damage index values on the

damaged elements for these four scenarios with different numbers of used modal data.
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It can be found that after around 200 iterations, all the damage index values converge to

the neighborhood of preset values. Figure 4-9 shows the damage identification results

of these four scenarios, and Table 4-4 lists the identified damage extents in the

damaged elements. Accurate identification results are obtained for all the scenarios,

indicating that the introduced damages can be well identified by using the proposed

algorithm with the sparse regularization and Bayesian inference, even with a small

number of available modal data.

Figure 4-8 The iteration processes of the damage indices in damaged elements in Case 3:

(a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.

Figure 4-9 Damage identification results in Case 3 based on different inputs:

Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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4.4.3 Comparison with other optimization techniques

In this section, other optimization techniques including GA, Nelder-Mead

algorithm (Hassan et al., 2018), and Gaussian Bare-bones Artificial Bee Colony

(GBABC) algorithm (Zhou et al., 2016) are employed to make comparisons. The fourth

damage case, denoted as Case 4, is assumed with 5% stiffness reductions in the 10th,

45th and 100th elements, that is, .05.01004510   This case is defined to simulate

minor damage in structures. The used modal data are the same as those defined in

Scenario 4 in Table 4-3, and the objective function obj4 is used for identification with

the regularization parameter defined as 5108.1  . Significant measurement noises are

added in natural frequencies and mode shapes with the noise levels of 3% and 8%,

respectively. Regarding the parameters setting, for GA, the colony size is set as 100.

The mutation rate and crossover rate are defined as 0.1 and 0.8, respectively. For the

Nelder-Mead algorithm, the initial values are set as 0.1 for all the damage indices,

which are quite close to the assumed values. For GBABC, the colony size, parameter

‘limit’ and the search tendency ‘ST’ are set as 100, 6050 and 0.3 respectively, which are

the same as those in a previous study (Zhou et al., 2016). The maximum objective

function evaluation number is set as 49000 for all these optimization methods.
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Figure 4-10 Damage identification results of Case 4 with different optimization

Methods; (a) GA; (b) Nelder-Mead algorithm; (c) GBABC; (d) I-Jaya.
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Figure 4-10 shows the final damage identification results by using different

optimization methods. It is clearly observed that even with the obj4, the state-of-the-art

heuristic algorithm (GBABC) and the classical heuristic algorithm (GA) and the

traditional optimization algorithm (Nelder-Mead) cannot provide accurate and reliable

damage identification results. In contrast, the identified damage results from the

proposed I-Jaya algorithm are accurate and reliable. The damage identification results

on these three damaged elements are: 0469.010  with a standard deviation of 0.0025,

0478.045  with a standard deviation of 0.0011 and 0477.0100  with a standard

deviation of 0.0025, respectively. The identified damage severities are very close to the

assumed values. Besides, the false identifications from the proposed approach are

minor. The results in this case demonstrate the superiority of the proposed approach to

conduct the minor damage identification in structures with the measurement data of

significant noise effect, compared with the latest optimization methods. This lays the

foundation for the following experimental verification.

4.4.4 Comparison with the standard Jaya algorithm and other method

In this section, the standard Jaya algorithm and other two methods reported in the

literature (Du et al., 2017; Wei et al., 2018) are employed to identify a new damage

case. The results are compared with that obtained by the proposed approach to

demonstrate the proposed method. The fifth damage case, denoted as Case 5, is

assumed having a 50% stiffness reduction in the 10th element, that is, 5.010  ,

representing a single large damage in the structure.

Firstly, the standard Jaya and the developed I-Jaya algorithm associated with the

obj4 are used to identify the introduced damage in Case 5. The parameters setting for

the Jaya and I-Jaya are the same as those in Cases 1 to 4. The regularization parameter

is set as 5102  . The used modal data are the same as those in Case 4. Significant

measurement noises are assumed in natural frequencies and mode shapes with the noise

levels of 3% and 8%, respectively. Figure 4-11(a) shows the evolutionary process of the

mean values of the obj4 with the two methods. It can be found that the values acquired
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by the I-Jaya are significantly smaller than those obtained by the Jaya, which indicates

the I-Jaya is able to achieve more satisfactory identification results. Figure 4-12 shows

the evolutionary process of the identification damage index 10 from the I-Jaya

algorithm. After around 320 cycles, the algorithm converges to the neighbourhood of

the assumed true damage value. Figure 4-13 shows the final identification results in all

the elements by using different methods. The Jaya algorithm is not able to identify the

damages accurately, but the proposed I-Jaya algorithm is capable of identifying the

single large damage effectively, with the mean value of 0.5004 and the standard

deviation of 0.0002. The results demonstrate the improvement of the proposed

modifications on the standard Jaya algorithm.
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Figure 4-11 The evolutionary process of the objective values;

(a) Jaya and I-Jaya; (b) MDE and DPSO.

To further demonstrate the superiority of the proposed method, two methods for

structural damage identification, named after the Modified Differential Evolutionary

algorithm (MDE) (Du et al., 2017) and the Disturbed Particle Swarm Optimizer (DPSO)

(Wei et al., 2018) are also employed to identify the damage in Case 5. According to Ref.

(Du et al., 2017), the flexibility matrix is adopted to formulate the objective function

for these two methodologies. For the general parameters setting, their colony size are

set as 100CS and their maximum evaluation times are 49000 . For MDE, the

threshold value is 0.1; the mutation rate is set as 0.4; the mutation constant is a random

number locating in ]9.0,4.0[ . These special parameters setting are the same as those in

(a)

(b)
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Reference. For DPSO, it touches the disturbance mechanism after 100 cycles, and two

parameters relevant to the disturbance mechanism are 310 and 410 ,

respectively. Figure 4-11(b) shows the evolutionary process of the objective values

from these two methods. It can be found that their objective function values basically

maintain at an order of 210 after around 100 cycles, which indicates both these two

methods would not acquire good identification results for Case 5. The final results

obtained from MDE and DPSO are shown in Figure 4-13. Similar to the standard Jaya

algorithm, MDE and DPSO cannot provide accurate damage identification results.
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Figure 4-12 The evolutionary process of the identified damage index

in the damaged element based on I-Jaya.
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Figure 4-13 Identification results for Case 5: (a) I-Jaya; (b) Jaya; (c) MDE; (d) DPSO.
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4.5 Experimental verification

Laboratory studies on a reinforced bridge model are performed to verify the

performance of using the developed approach for structural damage detection with

experimental testing data.

4.5.1 Experimental setup and initial model updating

Figure 4-14 shows the testing structure, which is a simply supported T-type

prestressed concrete bridge model, used for validating the effectiveness of using the

proposed algorithm and the objective function including sparse regularization and

Bayesian inference for damage identification. Figure 4-15 shows the dimensions of the

laboratory model and the placed accelerometer locations for collecting dynamic

vibration testing data. The experimental model is 5 meters long. The widths of the slab

and web elements, and the height of the bridge model are 0.65m, 0.15m and 0.415m,

respectively. The initial Young’s modulus and density of the bridge model are

respectively Mpa106.2 4 and 33 mkg107.2  . More details of the bridge model can

be referred to (Li et al., 2013). Seven accelerometers are located on the top of the

bridge model for acquiring the accelerations in the vertical direction, during the

hammer impact tests for modal identification.

An initial model updating based on modal information from the intact structure is

conducted to generate a baseline for the subsequent damage identification. An initial

finite element model of the bridge is built by using flat shell elements, as shown in

Figure 4-16. The finite element model includes 90 elements and 114 nodes with 6

Degrees-of-Freedom (DOFs) at each node. The boundary constraints are simulated by

the linear springs. The initial model updating is conducted to adjust the stiffness

parameters of the built finite element model by minimizing the difference between the

first three natural frequencies acquired from the finite element model analysis and

measured from the test. In the initial model updating, the Young’s modulus of slab and

web of the bridge as well as the support stiffness, that is three parameters in total, are

chosen as the parameters to be updated. The proposed I-Jaya algorithm is used to

update the initial finite element model. In terms of the parameters setting, CS is set as

30 and the maximum objective function evaluation number is set as 5000. It runs 30
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times and the mean values are selected as the final updated parameters. It can be

observed from Figure 4-17 that are there are discrepancies between the analytical

frequencies and the measured one. After updating, the calculated natural frequencies

from the updated model match very well with the measured ones. The baseline model is

used for the following damage identification.

Figure 4-14 The experimental testing model.

Figure 4-15 Dimensions (unit: mm) of the experimental concrete bridge model and the placed

sensor location.
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Figure 4-16 The finite element model of the experimental bridge model.
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Figure 4-17 The measured and updated frequencies in the experimental studies.

4.5.2 Damage identification for the testing model

The cracks are introduced by applying the two-point loads at the center of the

bridge model. Figure 4-18 shows the cracks observed in the web elements, under the

static loads of KN180 . This is considered as the damaged state, and the stiffness

reductions in web elements are to be identified. Specifically, 24 major cracks are

observed in the web elements, which are from the 4th element to the 15th element. Table

4-5 lists the information about the observed typical cracks in the testing model, which

are mainly distributed from the 8th element to the 13th element. Modal tests are

conducted to obtain the natural frequencies and mode shapes at the sensor locations

under the damaged state, as shown in Figure 4-15. These modal data are used as the

input for the damage identification. The damages mainly occur in the web elements of

the bridge model, and thus only the web elements are included for the identification.

Elements 1 and 18 are however not included as they are outside the supports.
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The proposed I-Jaya algorithm and the obj4 are used to conduct the damage

identification. The colony size is 50CS and the maximum objective function

evaluation number is set as 12250. Multiple measurements are required for the obj4,

when introducing Bayesian inference. Therefore, similar as Ref. (Chen & Yu, 2017),

natural frequencies are assumed to vary within %3 of their real values. Limited

number of modal data, which is less than the total number of the web elements of the

structure, are used to identify the damage. The input data include the first natural

frequency and the corresponding mode shape values at the placed sensor locations.

Therefore totally 8 measured modal data are used to conduct damage identification in

web elements. The regularization parameter is set as 6105  , based on DP rule. The

damage identification will be independently run 30 times to obtain the statistic results.

Figure 4-19 shows the final damage identification result. Since there is no

analytical formula to relate a number of observed cracks in a reinforced concrete bridge

model with the flexural stiffness of elements, it is difficult if not impossible to obtain

the accurate damage extents according to the observed cracks, which are shown in

Figure 4-18 and Table 4-5. Therefore the identified damage pattern in Figure 4-19 is

compared with the observed crack pattern to validate the effectiveness of the proposed

approach for damage identification. The identification results demonstrate that the

main damage pattern, with the main damage distributed from the 8th element to the 13th

element (Li et al, 2013), can be identified. Considering that only the first frequency and

mode shape are used for identification and the main damage pattern can be identified,

the results indicate that the proposed approach has the capacity to identify the damages

in the experimental model with limited measurement data.

Figure 4-18 Observed cracks in the web elements of the concrete bridge model.
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Table 4-5 Reported typical cracks in the tested structure (Li et al.,2018).

Distance from left
support of beam (mm)

1800 1950 2125 2260 2340 2540 2680

Web element number 8 8 9 9 9 10 10

Crack height(mm) 280 248 273 286 243 244 261

Distance from left
support of beam (mm)

2800 2900 3030 3130 3220 3330 3510

Web element number 11 11 12 12 12 13 13

Crack height(mm) 251 120 260 118 274 220 220
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Figure 4-19 Damage identification results of the testing bridge model in the experimental study

with limited input data.

4.6 Conclusions

This paper proposes a new approach for damage identification of structures based

on I-Jaya algorithm. Since the objective function is important in the damage

identification, the sparse regularization and Bayesian inference are added in the

traditional objective function based on modal data to perform the damage identification

and improve the robustness. Numerical studies on a truss structure are conducted to

investigate the accuracy and efficiency of the proposed approach and demonstrate the

improvement by using different objective functions for damage identification.

Experimental studies on a reinforced concrete bridge model are carried out to verify the
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performance and effectiveness of the proposed approach for damage identification with

real experimental testing data. Some conclusions can be drawn as follows

 The proposed I-Jaya algorithm is more efficient to deal with the classical

benchmark test functions. The results show an improved performance and global

optimization ability compared with the original Jaya algorithm;

 Results in the numerical truss example demonstrate that the modified objective

function based on the sparse regularization and Bayesian inference yields more reliable

and accurate identification results, compared with the traditional objective functions or

traditional objective functions with either sparse regularization or Bayesian inference

only;

 Compared with other widely used optimization techniques, such as the

Nelder-Mead algorithm, GA and GBABC algorithm, results from the proposed

approach demonstrate the superiority in identifying the minor damages under the

significant noise effect;

 In the experimental verifications, the proposed approach can be used to perform

the initial model updating accurately. For the following damage identification, the

developed I-Jaya algorithm and the modified objective function based on sparse

regularization and Bayesian inference can well identify the damage pattern of a

reinforced concrete bridge model with few modal data;

 The damage identification results in the numerical and experimental studies well

demonstrate that the proposed approach can effectively and accurately identify the

damages in the structures, even when the uncertainty effect is significant.
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CHAPTER 5 STRUCTURAL DAMAGE IDENTIFICATION BY SPARSE

DEEP BELIEF NEURAL NETWORK USING UNCERTAIN AND

LIMITED DATA

ABSTRACT4

The accuracy of structural damage identification is affected by the uncertainties in

the vibration measurements and the finite element modelling. This paper proposes a

novel approach based on sparse deep belief network (DBN) for structural damage

identification with uncertain and limited data. Vibration characteristics, i.e. natural

frequencies and mode shapes are extracted as the input to the network, while the output

are the damage locations and severities of the structure. DBN is chosen to train the

generated datasets and identify structural damages. Restricted Boltzmann Machines

(RBMs) are used as building blocks to composite a DBN. To further enhance the

capacity of the RBMs, an Arc-tan based sparse constraint is utilized to enable the

hidden units to become sparse. This is achieved by adding an Arc-tan norm constraint

on the whole of the hidden units’ activation probabilities. Numerical and experimental

studies are conducted to verify the accuracy and performance of the proposed method.

Undetermined damage identification is conducted, in which the quantity of input modal

data is less than that of the system parameters to be identified. The identification results

show that the proposed sparse DBN based on Arc-tan can identify the damage

effectively and its accuracy is better than those obtained by other methods, even when

the modelling uncertainty and the measurement noise exist, and only limited data is

available.

5.1 Introduction

Structures could accumulate damage during the ongoing in-service period, due to

various reasons, such as unexpected extreme loading scenarios such as earthquake,

4This chapter was published in Structural Control & Health Monitoring with the full
bibliographic citation as follows: Ding, Z., Li, J., & Hao, H. (2020). Structural damage
identification by sparse deep belief neural network using uncertain and limited data. Structural
Control & Health Monitoring,27(5), e2522. https://doi.org/10.1002/stc.2522.

https://doi.org/10.1002/stc.2522.
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blast and impact, material strength deterioration and fatigue, etc. If these structural

damages cannot be inspected and quantified timely, it might lead to catastrophic

failures of structures. Therefore, detecting structural damage at an early stage is

necessary and important for infrastructure condition monitoring, maintenance planning

and asset management. Numerous vibration-based methods have been developed in the

past several decades for structural health monitoring and damage detection (Farrar &

Worden, 2007; Fan & Qiao, 2011).

Beskhyroun et al. (2010) used a wavelet-based technique to extract representative

vibration signals and then these signals were applied for damage identification. Yuen et

al. (2004) utilized the modal data and the Markov chain Monte Carlo simulation

algorithm to identify damages for the ASCE-IASC four storey benchmark structure.

Later, Chatzielefttheriou and Lagaros (2017) proposed a new two-loop trajectory

method to conduct damage identification. Furthermore, the spectral density method

(Pedram et al., 2016), the Bayesian method (Yuen & Ortiz, 2018; Uzun et al., 2019;

Zhang et al., 2016, Yuen et al., 2002; Yuen et al., 2006; Hu et al., 2018) and the Kalman

filter (Yan et al., 2017) have been respectively employed in the vibration-based

structural identification.

From the prospective of mathematics, structural damage identification can be

formulated as a pattern recognition problem. Therefore, optimization methods have

gained a significant amount of attention in this field. Farshadi et al. (2017) utilized the

least square method for damage identification, in which the objective function was

formulated based on the incomplete frequency response function. Esfandiari (2017)

developed an innovative sensitivity-based method for structural model updating using

the modal data. Then this method was successfully applied to a plane truss and a frame

structure. Hu et al. (2017) developed an extended constitutive relative error (ECRE)

based method for damage identification and the efficiency of this method was

demonstrated on a scaled two-story steel frame. More recently, Lu and Wang (2017)

developed the enhanced response sensitivity method by using the trust-region

algorithm, in which the concrete convergence analysis was conducted to ensure the

performance of the enhanced sensitivity method. Other optimization techniques, such
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as the Homotopy algorithm (Hu et al., 2017), the minimum constitutive error method

(Guo et al., 2018) and the gradient-based method (Aquino et al, 2019), have been

developed for structural damage identification. However, the above-mentioned methods

usually require a good initial value and the gradient information. Difficulties also arise

when using these methods for the identification of large-scale structures with few

available measurement data. In addition, uncertainties inevitably exist in the finite

element modelling and damage identification process, i.e. finite element modelling

errors, measurement noises and uncertain environmental effects, which restricts the

practical applications of these traditional optimization methods for civil engineering

problems.

On the other hand, Artificial Intelligence (AI) and swarm intelligence methods can

be used to overcome the abovementioned drawbacks, since they can learn and make

predictions via data instead of the explicit formulations. These methods have the potentials

to perform well in identifying structural parameters, even when uncertainties are considered.

Many studies by using heuristic algorithms and Artificial Neural Networks (ANN), have

been conducted for structural damage identification. Ding et al. (2019a) adopted Tree

Seeds Algorithm (TSA) to identify structural damages with uncertainties based on

frequency-domain data. Later, Ding et al. (2019b) used Jaya algorithm to conduct

damage identification, in which the objective function is modified by using sparse

regularization technique and Bayesian inference. Kang et al. (2012) proposed an

improved Particle Swarm Optimizer (PSO) to identify structural parameters with and

without considering noise contamination in the measurement data. In addition, Ni et al.

(1999) proposed a structural damage identification approach by utilizing the Back-propagate

(BP) neural network and concluded that using the noise-polluted samples to train the

experimental data would acquire better identification results. Jiang et al. (2011) developed a

two-stage structural damage identification method based on fuzzy neural networks, in which

structural dynamic responses were used as the input to complete the rough assessment. Then

the fusion center data was employed as the input and the final decision was obtained by

filtering the result with a threshold function. Hence a refined structural damage assessment

with a superior reliability was achieved. Xu et al. (2019) proposed an improved Faster
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Region-based Convolutional Neural Network (Faster R-CNN) for the multi-type seismic

damage identification and localization of reinforced concrete columns from images.

Khodabandehlou et al. (2019) used a two-dimensional CNN combined with time domain

data to conduct damage identification of a highway bridge. In addition, Modarres et al.

(2018) also utilized CNN and images to identify damage types and demonstrated that CNN

outperformed several other machine learning methods in identifying damage type.

Furthermore, Padil et al. (2017) developed a non-probabilistic ANN to perform

structural damage identification considering system uncertainties. Pathirage et al. (2018)

proposed the deep auto-encoder neural networks to identify structural damage, in which the

first several natural frequencies and mode shapes were employed as the input and structural

damage locations and severities were identified as the output.

Although successful identifications and applications have been achieved by using the

abovementioned methods, challenges still exist. The modelling uncertainties are not

considered in the studies (Kang et al., 2012; Ni et al, 1999; Jiang et al., 2011; Xu et al.,

2019) , however, they inevitably exist in real applications. Furthermore, when the input data

(frequencies and mode shapes) are polluted by the white noise, the identification accuracy is

greatly affected (Kang et al., 2012). For the ANN methods (Ni et al., 1999; Jiang et al., 2011;

Padil et al., 2017), their weights relevant to the mapping functions act as a critical role in

determining the accuracy and performance of the networks, but these weighting parameters

are difficult to obtain accurately for the real applications when significant measurement

noise and uncertainties are included in the data. It is well-known that the gradient descent

algorithm is one of the most commonly used algorithms for training the neural networks.

Nevertheless, when using these algorithms to train the samples, it might suffer gradient

vanishing problem, especially when the number of the network’s hidden layers is large.

Therefore, an auto-encoder based framework was proposed (Pathirage et al., 2018) to

improve the networks with deep architecture and more hidden layers. It should be noted that

when using this method to conduct damage identification, a sufficient number of input

modal data are used. In practice, it could be difficult to obtain a large number of modal

parameters for the damage identification of large-scale structures. Therefore, investigating

new approaches that require a limited number of modal data for effective identification is of
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significant importance. It is noted that, when the number of the input modal data is less than

the number of parameters to be identified, the identification becomes a more complex

undetermined inverse problem.

Aiming at addressing drawbacks existed in the abovementioned methods, the Deep

Belief Network (DBN), a type of new networks in the deep learning field, is employed to

conduct the undetermined structural damage identification, by considering uncertainties and

using a limited number of modal data less than the parameters to be identified. Based on the

DBN’s algorithmic structure, it is equipped with the potential to overcome the shortcomings

mentioned in the general ANN. This is because the DBN contains several Restricted

Boltzmann Machines (RBMs), which is a probabilistic generative model and can be used to

extract the features of training samples effectively, providing reliable initial weights and bias

for the following training.

To enhance the performance of the DBN, this study mainly concentrates on introducing

the sparse technique to improve the standard network. The principle behind this

modification is to simulate the humans’ visionary system. When a person uses his eyes to

recognize images, sparse visionary neurons are activated (Wu et al., 1992). Some existing

results in the image process field demonstrate that the sparse technique is capable of

eliminating redundant information and noise (Ji et al., 2014). Inspired by this feature, the

sparse technique is applied to modify the standard DBN. In order to stimulate the network’s

sparseness better than that in an existing study (Ji et al., 2014), a more reasonable function,

that is Arctangent (termed as Arc-tan) (Luo, 2017), is applied to achieve this goal.

Specifically, it explicitly encourages the hidden units in the RBMs to be sparse via adding a

sparse constraint on the totality of the hidden units’ activation probabilities, forming a

modified version of the DBN. The modified DBN could show more sparseness when

referring to hidden units’ activation. Furthermore, the modification is based on the

Arctangent function, therefore the modified DBN is also termed as Arc-tan DBN in this

article.

To validate the performance of using the proposed Act-tan DBN for structural damage

identification, a three-dimensional truss and a steel frame structure are employed as the

numerical example and the laboratory model for verifications. In the numerical studies, 1%
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stiffness variations are introduced into the elemental stiffness parameters to simulate

the uncertainty in the finite element modelling (Pathirage et al., 2018). A limited

number of modal data, which is less than that of system parameters to be identified, are

used as the input to the networks. Final identification results show that the proposed

Arc-tan DBN has a good robustness and can obtain better results of undetermined

structural damage identification than other existing methods.

5.2 Structural damage model

Alterations in structural system parameters, i.e. stiffness, mass and damping,

introduce the changes in structural vibration characteristics. Conversely, these changes

can be used to identify the structural damages. Vibration properties, such as natural

frequencies and mode shapes, etc., of a structure without considering the damping are

obtained through conducting the eigenvalue analysis

0)( 2  iΦMK i (5.1)

where K and M denote the system stiffness and mass matrices, respectively. i

and iΦ represent the ith natural frequency and the corresponding mode shape.

In this article, structural damage is assumed to be only related to the stiffness

reduction. Therefore, the damage of a structure can be expressed by a series of scalar

variables for every element ),...,2,1( nelii  with the value ranged from 0 to 1,

eid kK )1(
1 


nel

i i (5.2)

where eik denotes the ith elemental stiffness matrix under the undamaged state; nel

is the total number of elements of a structure; dK means the structural stiffness matrix

under the damaged state; i denotes the elemental stiffness reduction parameter (also

termed as ‘damage index’) to be identified. It shall be noted that 1i implies that

this element is totally damaged, and 0i means that the element is intact.

5.3 Sparse Deep Belief Network
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5.3.1 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a generative stochastic artificial neural

network that can learn a probability distribution over its set of inputs. Its probability

distribution is controlled by an energy function E , with the parameter setting },,{ cbW
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where iv denotes the binary state of the visible unit i ; jh represents the binary state

of the hidden unit j ; ic represents the bias weight of iv ; jb denotes the

corresponding bias weight of jh ; ijw is the collection weight of the hidden layer jh

and the visionary layer iv ; m and n denote the total number of the visible and

hidden units, respectively; and  represents the model parameter of the RBM.

Based on the energy function in Eq. (5.3), the joint probability of the state ),( hv

can be calculated as

)();,( );,(   zehvp hvE (5.4)

 
),(

);,()(
hv

hvEez  (5.5)

where z denotes a partition function defined in Eq. (5.5), which enables that the sum

of probability distribution in Eq. (5.4) equals to 1. Given the training samples, training

the RBM means adjusting the model parameter  . Specifically, it can be found from

Eq. (5.5) that the decrease or increase of the likelihood of the data v can be achieved

by changing the model parameter  .

Due to RBM’s feature that there is no intra-layer collections, the activation

probability of the hidden unit jh can be calculated based on the visible units as

follows,

)();|1(
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i
ijj wvbhp 



 v (5.6)

where
xe

x



1

1)( . In Eq. (5.6), the activation probability of jh is determined by

the transvection of training data iv and the weight ijw . The bigger the transvection is,
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the larger the activation probability of the jh is.

Since the structure of RBM is symmetric, the activation probability of the visible

unit iv is decided by the hidden units as follow

)();|1(
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n

j
jii whcvp 



 h (5.7)

From Eqs. (5.6) and (5.7), with the visible unit v , )|( vjhp can be calculated

and used to determine the state of the hidden units. Then new visible states *v are

obtained through Eq. (5.7). If *v is similar as or equal to v , the hidden units could

be viewed as a “reconstruction” of the visible units. Therefore the RBM has the

feature-selection ability.

The log probability of the training data, given the model parameter  , is

expressed as


h
pp );,(log);(log  hvv (5.8)

The purpose of training the RBM is to fit the training samples by adjusting the

model parameter  , as mentioned above. In order to acquire the best  , it is feasible

to apply the gradient method. Conducting the partial derivative of );(log vp with

respect to system parameter set  yields
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From Eq. (5.9), it can be found that the second term is difficult to obtain, since it

is relevant to the joint probability of the visible and hidden units. To obtain the joint

probability, the specific distribution of )(z ought to be known in advance, which is

however fairly tough to obtain. To overcome this drawback, the Contrastive Divergence

(CD) method (Luo, 2017; Lin et al., 2016) has been introduced. When using CD

method, only several Gibbs sampling steps are required to approximate the gradient

information. Therefore, based on the CD method, the complex derivation process in Eq.

(5.9) could be replaced by Eq. (5.10) and it has been demonstrated in previous studies

that such operation is reasonable and effective (Hinton et al., 2016).
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where  denotes the step-size; data represents that the probability distribution of

);|( vhp and recon denotes the expectation with respect to the model distribution.

5.3.2 Deep Belief Network

DBN is a probabilistic generative graphical model, or can be called as a class of deep

neural networks, which includes several hidden layers. DBN can be considered as a stack of

RBM networks, where the hidden layer of each subnetwork is severed as the visible layer

for the next. Therefore, as shown in Figure 1, there are l layers in a DBN, which are

trained by l RBMs. The parameters of the first RBM, which are composed by 0x and

1h in Figure 5-1, are trained based on the observed data 0x . For the following layers, the

greedy learning algorithm is employed to train the network, with the corresponding input

defined as the activation of the hidden layer in the previous subnetwork.

A composite model is developed by using the stacked RBMs, as shown in Figure 5-1.

The top two layers are defined as the RBM, and the lower one a direct belief net (Hinton et

al., 2016). This hybrid model is named after DBN, with the probability function calculated

as

)|()|(),(),...,,,(
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pppp L1L1L1LL210 hhhvhhhhhx (5-11)

where 0x denotes the observed data and )|( 1 LLp hh  denotes the conditional probability of

1Lh given Lh . ),( 1 LLp hh  is the joint probabilistic distribution, which can also be viewed

as a RBM’s probability distribution with the visible unit 1Lh and the hidden unit Lh .
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Figure 5-1 The architecture of the proposed DBN.

The training process for DBN is to learn the joint probabilistic distribution

),...,,,( 21 Lp hhhx . However, the difficulty of this model lays on the post model probability

)|( 1 LLp hh  , which is unable to calculate. According to reference (Hinton et al., 2016), this

post probability can be approximated as )|( 1LLQ hh , which is defined in the RBM and can

be calculated by using Eq. (5-7). The whole training process contains two stages. The first

stage, namely ‘pre-training’, is based on the greedy algorithm to obtain the initial value. The

second stage is called ‘Fine-tuning’, which generally utilizes the supervised algorithm to

obtain the final network parameters. The greedy algorithm is a type of unsupervised

algorithm, which uses the sampling data to train the first RBM (data x and 1h composed

in the first RBM). Then the parameters of the first RBM are utilized to initialize the first

layer’s parameters of the DBN. The input for the first RBM is calculated for the DBN based

on )|( 1 0xhQ . The newly calculated output will be employed as the input for the next layer

until completing L layers. Then a fine-tuning mechanism is introduced, in which the BP

network is employed to obtain the final systematic parameters. Therefore, it can be found

out that, compared with the random initialization of the traditional ANN, the RBM enables

the DBN with a good initial value and thus guarantees a better performance.
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5.3.3 Sparse RBM based on Arc-tan

It has been reported in existing studies on the mammalian brain that only few neurons

were activated when given a stimulation (Ji et al., 2014). Namely, an event could be

encoded by a few neurons. Based on this evidence, extending the sparsity into machine

learning algorithms becomes popular. In the sparse encoding (Hinton et al., 2006; Donoho,

2006), the 0L norm as the quantity of non-zero elements in a vector is usually used to

achieve the sparsity. However, the 0L norm is non-convex and the optimization belongs to

a Non-deterministic Polynomial-time (NP)-hard problem, that is, directly optimizing the 0L

norm is very difficult (Lee et al., 2007). To overcome this issue, in this study, a smooth

function, that is Arc-tan (Salehani et al., 2014), is used to approach the 0L norm, which is

given as

)arctan(2),(
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xxf 
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where n denotes the dimension number of x with 10   , .10  ix It is obvious

that when  approaches zero, the proposed Arc-tan function is the closest to the 0L norm,

as shown in Figure 5-2. Compared with using the 1L norm and the Log-sum norm (Ji et al.,

2014), the used Arc-tan norm is more reasonable and rational, since the shape of Arc-tan

function is more similar to the 0L norm. It is relatively easy to compute the gradient

information of the Arc-tan function. Furthermore, the Arc-tan norm is directly utilized to

control the activation probability of the hidden units. The specific Arc-tan based penalty

item is defined as

)/|)|(arctan(|2
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where )(Ex represents the conditional expectations given m training samples, k

denotes the total number of the hidden units,  is the hyper-parameter that controls the

similarity between the Arc-tan norm and the 0L norm.
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Figure 5-2 Demonstration of the functions used for approximating the 0L norm, the Log-sum
norm and the proposed Arc-tan norm with a hyper-parameter 01.0 .

In order to achieve the sparse representation, it ought to maximize the log likelihood

function as well as the Arc-tan norm. Therefore, given the m sample data, the objective

function to be optimized in the Arc-tan based RBM is given as below
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where  is a regularization parameter, reflecting the important relationship between the

data distribution and the regularization (penalty) term. From Eq. (5.14), it is clear that the

learning process for the Arc-tan based RBM is to maximize the likelihood and minimize the

penalty term. With the introduced penalty term, the structure of the standard RBM is not

altered. Therefore it is still effective to use the previous CDs method to optimize the

likelihood part in the objective function, as shown in Eq. (5.14).

Algorithm 1 CD algorithm of parameters updating for the Arc-tan RBM for one epoch and one

}0{0 1)(:  xxfL)||1log()(:

xxfLogsum 

||)(:1 xxfL 

)||arctan(2:tan
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xArc
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sample

1. Update the parameters using CDs learning scheme as below

)( recondata  jijiijij hvhvww 

)( recondata  iiii vvbb 

)( recondata  jjjj hhcc 

where  is a learning rate, and recon is an expectation over the reconstructive data, which

is estimated with one iteration of Gibbs sampling.

2. Update the parameter jc via using Eq. (5-16).

3. Repeat Step 1 and Step 2 until the maximum epoch is reached.

The specific procedure of solving Eq. (5.14) is described as follows: Firstly, the CDs

method is used to update the model parameters. Secondly, the gradient descent algorithm is

used to calculate the penalty term. The gradient of the penalty term is calculated as
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To increase the computational efficiency, when using the gradient descent algorithm to

update the penalty term, it would only need to update the bias jc , since jc is directly

related to activate the hidden units (Salehani et al., 2014). The learning process for the

parameters updating of the Arc-tan RBM is summarized in Algorithm 1.

5.3.4 Sparse DBN based on the Arc-tan RBM

As s mentioned above, stacking several RBMs to constitute a DBN is able to extract

more abstract and meaningful characteristics. The proposed novel sparse DBN consists of

several Arc-tan RBMs. Therefore, the proposed DBN in this article is marked as Arc-tan

DBN, as mentioned in introduction. A greedy layer-by-layer training can also be used in the

proposed Arc-tan DBN. Equally, while the bottom Arc-tan RBM is trained, the parameters

ijw , ic and jb are fixed and the probability of every hidden unit given the data is
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calculated by Eq. (5.6). Then these probabilities are employed as the ‘data’ to train the next

layer in the network. This operation could be repeated several times to learn a deep,

hierarchical and sparse model. Once finishing the calculation of several stacked Arc-tan

RBMs, the generated weight coefficients and bias parameters are applied to initialize the

following fine-tune network. The fine-tune network is a BP network with G layers and is

trained via using the conjugate gradient method. In the fine-tune stage, the Mean Squared

Error (MSE) is used to measure the training accuracy of each epoch. Assuming that there are

NoS samples in total in the observed and trained datasets denoted as observed and

trained , the MSE is expressed as

2
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MSE trainedobserved  


(5.19)

5.4 Numerical studies

In this section, the accuracy by using the proposed approach for structural damage

identification is demonstrated with the simulation data generated from a spatial building

frame structure. Two types of uncertainties, including the modeling errors and the

measurement noise are considered in the following numerical studies.

5.4.1 Numerical Model

A 72-element building frame structure as shown in Figure 5-3 is used in numerical

study. The Young’s modulus and mass density of this structure are defined as GPa  210

and 3mkg  7800 , respectively. Each node has three degrees-of-freedom (DOFs). The 1st,

2nd, 3rd and 4th nodes are constrained by a large stiffness. The cross-section area of each

element is 23 m 105.2  . The first five frequencies and mode shapes are utilized as the input

for the training of the network, while the output is the structural element-level damage

indices. The mode shapes are measured at the 5th, 7th, 9th, 11th, 13th, 15th, 17th and 19th nodes,

along the x-axial direction. Considering the data normalization, therefore the quantity of

modal data is 40 in total, which is less than the total number of structural elements, which is

72. That is, the proposed algorithm will be used to perform the undetermined inverse

identification. 1% stiffness variations with Gaussian distribution are introduced into the

elemental stiffness parameters to simulate the uncertainties in the finite element
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modelling (Pathirage et al., 2018). The standard DBN and the Log-sum DBN are also used

to perform structural damage identification for comparison.

5.4.2 Data generation for training

For the training samples, it is assumed that the damage index for two specific elements

are changed from 0.01, 0.02,..., to 0.3, while the other elements remain intact. 230,040

samples are generated in this example. The input data for the networks are the first five

incomplete modal data while the output is a series of elemental damage indices α .

Regarding the parameter setting for the above-mentioned three networks, namely, standard

DBN, Log-sum DBN and the proposed Arc-tan DBN, these models are trained with 100

visible units and 100 hidden units. All the training samples in the numerical studies are

executed by using CD training algorithm for Arc-tan RBM based on mini-batches of

sizes 20 with two iterations. For the following fine-tuning training, a four layer BP

network is introduced. The mini-batches size is set as 36 and the epoch is set as 5102 .

Particularly, according to Ref. (Jin et al., 2014), for the Log-sum DBN and the

proposed Arc-tan DBN, the regularization parameter  and the hyper parameter 

are set as 0.05 and 0.1, respectively. The numerical computations are conducted on a

desktop computer with an Intel i7 8700k processor, 32 GB RAM for parallel computing.

The training time of the DBN, Log-sum DBN, and the proposed Arc-tan DBN last

around 7.8 hours, 7.6 hours, and 7.5 hours, respectively. Basically, the computation

time of these three DBNs are similar and the proposed Arc-tan DBN is slightly fast.

Figure 5-4 shows the activation probabilities of hidden units over the generated

230,040 samples. The quantity of the hidden units of the DBN, the Log-sum DBN and the

proposed Arc-tan DBN, with an activation probability exceeding 0.5, are 30, 26 and 18,

respectively. Furthermore, the proposed Arc-tan DBN has the most hidden units, with an

activation probability lower than 0.1, among the three approaches. Therefore, the proposed

Arc-tan DBN exhibits the sparsity well.
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Figure 5-3 The building structure model used in numerical study.

Figure 5-4 The activation probability of hidden units for the trained samples:

(a) DBN; (b) Log-sum DBN; (c) Arc-tan DBN.

(a)

(b)

(c)
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To further illustrate the sparsity of the used three networks for training data samples,

Figure 5-5 is provided, in which the vertical axis is the number of activation times on

training samples for every hidden unit. It is observed that when training the data

samples, the number of activated hidden units based on the proposed Act-tan DBN is

significantly less than those of the standard DBN and the Log-sum DBN. The majority

of hidden units are activated when using the standard DBN, in contrast, a significant

less number of hidden units are activated while utilizing the proposed Arc-tan DBN.

That is to say, nearly all hidden units of the standard DBN act as an important role in

the representation of the data, but only a minority of hidden units in the proposed

Arc-tan DBN are important for the data representation and network training to achieve

a good performance. This further demonstrates that with the assistance of the

introduced modifications, the sparsity of the proposed network has been greatly

enhanced. As mentioned in Section 5.3.3, the principle of introducing the sparsity is to

simulate human’s visionary system, which requires to activate several neurons while

the majority of neurons keep sleep when eyes work (Ji et al., 2012). Therefore, the

Arc-tan DBN would achieve a better network training efficiency and accuracy, due to

its good sparsity feature.

MSE is employed to present the training accuracy. MSE acquired by the standard

DBN, the Log-sum DBN and the proposed Arc-tan DBN are 41064.5  , 41033.4  and
41087.2  , respectively. This indicates that with the assistance of using the Arc-tan

norm, the fitting performance of the standard DBN has been obviously enhanced. This

also lays the foundation for the following damage identification. To test the

generalization ability of the mentioned three approaches, a variety of damage cases,

including the single damage, two damages and three damages, will be tested.

Furthermore, in order to investigate the influence of noise levels on the identification

results, 2% white noise is added into the frequency and 6% white noise is added into

the mode shapes.
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Figure 5-5 The activation times of each hidden unit on training samples:

(a) Standard DBN; (b) Log-sum DBN; (c) Arc-tan DBN.

(a)

(b)

(c)
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5.4.3 Damage identification results

First, a single minor damage case is considered. It is assumed that there is an 8%

stiffness reduction in the 15th element, which means 08.015  . This damage scenario

is not within the training data set. Figure 5-6 displays the final identification result and

it is clearly observed that these three approaches can locate the damage, but the results

obtained by the proposed Arc-tan DBN are the most accurate. The absolute

identification errors of the 15th element for the DBN, Log-sum DBN and the Arc-tan

DBN are 0.0107, 0.0157 and 0.0021, respectively. Through comparing these

identification results, the accuracy and robustness of utilizing the proposed Arc-tan

DBN for minor single structural damage detection with uncertainty effects (modelling

errors and measurement noises) are illustrated.

Second, a case with two minor damages is considered. It is assumed that there is a

5% stiffness reduction in the 1st element and a 10% stiffness reduction in the 50th

element, which means 05.01  and 1.050  . The final identification results based

on these three trained networks are shown in Figure 5-7. It is clear that the proposed

Arc-tan DBN is capable of identifying both locations and extents of preset double small

damages accurately, even the measurement noise and modelling errors are introduced

in the data. The maximum identification absolute errors of the damaged elements based

on the Arc-tan DBN is 0.0071, better than those acquired by the Log-sum DBN (0.0105)

and the standard DBN (0.0201).

The third damage case is that there are a 5% damage in the 1st element and a 45%

damage in the 20th element, which means, 05.01  and 45.020  . This damage

scenario is defined to investigate the performance of identifying a minor damage and a

large damage, which is not within the training data set. The input data are the same as

the previous case. Figure 5-8 shows the final identification results. These three

networks could localize the damages but the proposed Arc-tan DBN is able to obtain

the best identification accuracy. For the damaged elements, the maximum identification

error by using the proposed Arc-tan DBN is 0.0256, better than those obtained by the

Log-sum DBN (0.0356) and the standard DBN (0.0480).
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The forth case includes three damage locations, i.e., a 20% stiffness reduction in

the 1st element, a 30% stiffness reduction in the 25th element, and a 30% stiffness

reduction in the 27th element, which means 2.01  , 3.025  , and 3.027  . This

damage scenario is defined to investigate the performance of identifying three damages,

which is not within the training data set. Figure 5-9 shows the final identification

results. Similar with the previous three cases, these three networks could localize the

damages but the proposed Arc-tan DBN can obtain the best identification accuracy. For

the damaged elements, the maximum identification error by using the proposed Arc-tan

DBN is 0.0164, again better than those obtained by the Log-sum DBN (0.0211) and the

standard DBN (0.0321).

The above numerical studies and results demonstrate that the proposed Arc-tan DBN

performs better than the standard DBN and the Log-sum DBN in damage identification,

even when the incomplete and uncertain modal data are used.

Figure 5-6 Identification results for a single minor damage case by using:

(a) Standard DBN; (b) Log-sum DBN; (c) Arc-tan DBN.

(a)

(b)

(c)
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Figure 5-7 Identification results for a case with two minor damages by using: (a)DBN; (b)

Log-sum DBN; (c) Arc-tan DBN.

Figure 5-8 Identification results for a minor damage and a large damage case by using: (a) DBN;

(b) Log-sum DBN; (c) Arc-tan DBN.

(c)

(a)

(b)

(a)

(b)

(c)
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Figure 5-9 Identification results for the case with three damages by using: (a)DBN; (b)

Log-sum DBN; (c) Arc-tan DBN.

5.5 Experimental verification

Laboratory studies on an eight-story shear-type steel frame model are conducted to

verify the performance of the proposed approach. The detailed finite element model is

described in reference (Ni et al., 2018). Figure 5-10 shows the fabricated shear type

steel frame structure. The height and width of the frame structure are mm  2000 and

mm  600 , respectively. The floors of this model are simulated by several thick steel

bars with a dimension of mm  25    mm  100  . Two flat bars of the same cross-section

with a width of mm  50 and a thickness of mm  5 are used as columns. The beams and

columns are welded. The bottom of the frame structural model is welded onto a thick

plate. As regards the material properties, the initial elastic modulus and mass density of

the steel are respectively GPa  200 and 3mkg  7850 .

(a)

(b)

(c)
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Figure 5-10 A eight-storey steel frame model.

Dynamic responses of the structure under a modal hammer impact with a rubber

tip are obtained. Acceleration responses in the lateral direction of all the floors under

the hammer impact are measured. The sampling rate is set as 1024 Hz and the cut-off

frequency range for the band-pass filter is set from 1 Hz to 100 Hz for all the responses.

The initial finite element model is built with eight lumped mass and the

abovementioned material properties.

5.5.1 Initial finite element model updating

To identify structural damage accurately, the initial model updating should be

performed and the updated model is used as the baseline for the following damage

identification. Vibration data from the experimental model under the undamaged state

are used to conduct the model updating by minimizing the discrepancy of some

dynamic properties, such as natural frequencies and mode shapes. In this study, the

first-order sensitivity based method is utilized for modal updating (Lu & Wang, 2017;
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Pathirage et al., 2018). Figure 5-11 presents the first eight measured natural frequencies,

and analytical frequencies before and after updating. The updated frequencies are very

close to the measured ones, indicating that an accurate finite element model is obtained

as the baseline.
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Figure 5-11 Measured and analytical frequencies of the laboratory model before and after

updating.

5.5.2 Data generation for training

Similar as the numerical studies, experimental verification on undetermined

inverse identification is also conducted. Therefore, only the first seven natural

frequencies are applied as the input to the networks, in contrast to the scenario with a

number of modal data used in an existing study (Pathirage et al., 2018). For

convenience, the element is defined to describe the floor/beam of the frame structure.

That is, the 1st element means the first floor/beam of the frame. Multiple damages are

simulated to generate the training datasets based on the above baseline model.

Specifically, the stiffness parameters for arbitrary two elements change from 1, 0.99, ...,

to 0.4, while maintaining the remaining elements undamaged. A total of 100,800

multiple damage cases are generated.
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Figure 5-12 The fitting results on all the elements of the trained and observed samples based on

the proposed Act-tan DBN.

The superiority of the proposed Arc-tan DBN over the standard DBN and the

Log-sum DBN has been illustrated in the numerical studies, therefore only the

proposed Arc-tan DBN is used for the experimental verifications. However, three
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state-of-the-art swarm intelligence algorithms are introduced for the comparison

purpose. Regarding the parameter setting for the proposed Arc-tan DBN, the network

model is trained with 100 visible units and 100 hidden units. All the training sample

datasets in the experimental verification are executed by using CD training algorithm

for the RBM based on mini-batches of sizes 20 with one iteration. After training the

RBMs, the weighting parameters would be transmitted to initialize the following used

four layers BP network. The batch-size is set as 56 and the epoch is set as 5000 . The

regularization constant  and the sparse constant  are set as 0.01 and 0.1,

respectively, based on studies on optimal parameter selection in sparse regularization

(Ji et al., 2014). The computations for experimental verifications are conducted on a

desktop computer with an Intel i7 8700k processor, 32 GB RAM for parallel computing.

The whole training time lasts around 1.5 hours.

MSE value obtained by the proposed Arc-tan DBN in this experimental study is
41053.3  . Figure 5-12 shows the fitted results from the 1st element to the 8th element

of the observed and trained samples based on the proposed Arc-tan DBN. It is clearly

observed that the trained samples are close to the observed ones. Such good agreements

indicate the satisfactory training process by using the Arc-tan DBN is achieved. Then

the trained networks are used for the following single and multiple damage

identification. However, it ought to be noted that in reference (Pathirage et al., 2018),

single damage scenarios are particularly designed to train the networks for identifying

the single damage.

5.5.3 Damage identification results

Two realistic damage cases are introduced to the laboratory steel frame model and

vibration tests are conducted. The measured natural frequencies are used as the input to

the trained networks to test the accuracy of the proposed approach. In Case 1, a single

damage is considered, which is introduced with a 20% reduction of the equivalent

stiffness in the 2nd element. In Case 2, multiple damages are introduced, that is, besides

the damage in Case 1, another damage is introduced with 10% stiffness reduction in the

7th element (Ni et al., 2018).

After training and validating the designed Arc-tan DBN, the first seven
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frequencies from the above two damage cases are employed as the input to identify

structural damages. Figures 5-13(a) and (b) present the final identification results. It

should be noted that the single damage case is not included in the training datasets. For

Case 1, the developed Arc-tan DBN can localize and quantify the damage accurately,

although only one very minor error alarm is observed in the 7th element with the

damage index value less than 0.01. The absolute identification error for the 2nd element

is 0.0023. For Case 2, two introduced damages are identified accurately and the

absolute identification errors for the 2nd and 7th elements are 0.0051 and 0.0137,

respectively.
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Figure 5-13 Identification results based on the Arc-tan DBN: (a) Single damage case; (b)

Multiple damages case.

5.5.4 Comparisons with swarm intelligence methods

Three state-of-the-art swarm intelligence methods, including the Gbest-guided

Artificial Bee Colony algorithm (GABC) (Zhu & Kwong, 2010), the Modified

Differential Evolutionary algorithm (MDE) (Du et al., 2017) and the Jaya algorithm

(Du et al., 2018), are used for structural damage identification with the same

measurement data, for demonstration of the effectiveness of the proposed method. To

(a)

(b)
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ensure the fair comparison between different methods, only the first seven natural

frequencies are used to build up the objective function, which is expressed as

 
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where c
l represents the lth calculated natural frequency and measured

l denotes the

lth measured frequency. The abovementioned swarm intelligence methods are used to

optimize the objective function.

Regarding the common parameters setting, the colony size is 50CS and the

maximum iteration number is 200. Specifically, for GABC, the controlling parameter

‘limit’ is set as 200 according to reference (Karaboga & Gorkemi, 2014). For MDE, the

threshold value and mutation rate are set as 0.1 and 0.4, respectively, and the mutation

constant is a random number locating between ]9.0,4.0[ . These special parameter

settings are the same as those in previous studies (Du et al., 2017). Each damage case is

identified with 20 independent runs, and the mean values are employed as the final

identification results.
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Figure 5-14 The iteration processes of all damage indices based on swarm intelligence methods

for Case 2: (a) GABC; (b) MDE; (c) Jaya.

(a) (b)
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Figures 5-14(a), (b) and (c) provide the iteration process of all damage indices of

Case 2, by using GABC, MDE and Jaya algorithm respectively. It is observed that

when the maximum iteration number is reached, all the damage indices obtained by

using these three algorithms almost acquire the same identification results. The

difference is reflected through their different convergence rates.
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Figure 5-15 Identification results by using three swarm intelligence methods and the Arc-tan

DBN: (a) Single damage case; (b) Multiple damages case.

The final identification results for Cases 1 and 2 based on the three algorithms are

shown in Figures 5-15(a) and (b). It should be noted that only seven natural frequencies

are used as input, and this is an undetermined inverse problem. It is clearly observed

that, for the single damage case, these three algorithms obtain more significant false

identifications, i.e. around 3% in the 5th element. Furthermore, for Case 2 with multiple

damages, these three algorithms could not localize the damages accurately, since three

false positives are observed in the 3rd, 5th and 6th elements. Comparing the results in

Figure 5-15, the proposed approach based on Arc-tan DBN provides a better

identification accuracy than using these three algorithms. The potential reason can be

explained from the difference of principle between the DBN and swarm intelligence

methods. Generally speaking, when using the swarm intelligence methods to optimize

(a)

(b)
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the objective function built by the natural frequencies, several obvious false alarms

would occur. This is because the objective function to be optimized is an ill-posed

problem and limited measurement information is provided, which means that small

perturbation would cause significant fluctuations in final identification results (Pan et

al., 2016). There are several ways to address this drawback, such as, introducing the

regularization technique to convert the ill-posed objective function to well-posed one.

It is commonly accepted that structural damages are usually observed at a few locations

(Hou et al., 2018), therefore the damage index should be a sparse vector with most of

its items equal to zero or at least close to zero, except the damaged elements with

non-zero entries. Based on this prior knowledge, regularization technique has been

widely applied in the area of structural damage identification to improve the accuracy

and stability of the solution, especially when performing some relatively difficult

identification problems (Hou et al., 2019; Wang et al., 2020). Or combining the

information of mode shape to formulate the objective function (Ding et al., 2016). In

contrast, the DBN basically trains its ‘inference ability’ through learning the data

samples. Therefore, the DBN could achieve better identification results with the

training data and the well-designed networks and used sparse constraints.

In summary, these results demonstrate the superiority of the proposed Arc-tan

DBN, compared with the three state-of-the-art swarm intelligence methods for solving

the undetermined damage identification problem. Meanwhile, these results further

illustrate that the proposed Arc-tan DBN can well identify the structural damages with

uncertainties, since the testing data measured from the experimental model already

include environmental noise and testing uncertainties.

5.6 Conclusions

A new type of deep learning method named Arc-tan DBN is presented for

structural damage identification. To enhance its performance, a sparse penalty term

based on Arc-tan norm is introduced. The undetermined inverse identification is

conducted. The number of input modal data is less than that of the system parameters to

be identified, which increases the complexity and difficulties of structural damage

identification. Numerical simulations on a building structure model and experimental
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studies on a shear-type steel frame structure are carried out to validate the proposed

approach. The conclusions can be given as below:

 With the assistance of the Arc-tan norm, the sparsity representation of the

samples could be clearly observed. The sparsity presentation is beneficial to improve

the fitting performance of the developed networks. The standard DBN, Log-sum DBN

and the proposed Arc-tan DBN can be applied to locate damages, even when the

incomplete modal data with uncertainties are used. It is noted that the accuracy of the

proposed Arc-tan DBN is the best.

When performing the damage identification of example structures, the proposed

Arc-tan DBN can identify structural damages by using several natural frequencies only,

give better identification results than the swarm intelligence methods, especially when

using them to identify multiple damages.

 In summary, results in the numerical and experimental studies demonstrate that

the proposed Arc-tan DBN is a promising tool to perform structural damage

identification with incomplete modal data.
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CHAPTER 6 NON-PROBABILISTIC METHOD TO CONSIDER

UNCERTAINTIES IN STRUCTURAL DAMAGE IDENTIFICATION

BASED ON HYBRID JAYAAND TREE SEEDS ALGORITHM

ABSTRACT5

This paper proposes a novel non-probabilistic structural damage identification

approach by developing a hybrid swarm intelligence technique based on Jaya and Tree

Seeds Algorithm (TSA), taking into account the high-level uncertainties in the

measurements and finite element modelling. The damage in structure is simulated as

reduction of elemental stiffness, and structural damage identification is formulated as an

optimization problem. To overcome the challenge for structural damage identification with a

limited number of measurement data, an objective function based on the modal data and

sparse regularization technique is defined. To make the optimization algorithm more

powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is

proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is

employed to replace solutions with low-quality objective values in the Jaya algorithm.

Then the search strategy of the TSA is introduced into the best-so-far solution of each

cycle. The proposed hybridization algorithm is termed as “C-Jaya-TSA”. To enhance

the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic

method is also integrated to calculate the interval bound (lower and upper bounds) of

the elemental stiffness changes by using the interval analysis method. To better

quantify the structural damage extents, Damage Measure Index (DMI) values are

introduced for representing structural damage states. The DMI value can be viewed as a

combination of deterministic stiffness reduction and the Possibility of Damage

Existence (PoDE). Numerical benchmark functions, numerical studies and

experimental investigations are conducted to verify the accuracy and performance of

the proposed method. The identification results show that the developed C-Jaya-TSA

integrated with the non-probabilistic interval analysis method is a promising tool to

accurately identify the structural damage, even high-level uncertainties exist.

5Ding, Z., Li, J., & Hao, H. (2020). Non-probabilistic method to uncertainty in structural
damage identification based on Hybrid Jaya and Tree Seeds algorithm, Engineering Structures,
220, 110925. https://doi.org/10.1016/j.engstruct.2020.110925.
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6.1 Introduction

Structures might accumulate damage inevitably with the increasing service time, due to

a number of unforeseen reasons, such as material degradation, corrosion, overloading and

fatigue, etc. Therefore, it is necessary to conduct structural health monitoring at an early

stage, which is important to ensure the safety of the structures. Many scholars have

presented numerous methods (Fan & Qiao, 2011; Li & Hao, 2016; Feng et al. 2018) to

perform structural health monitoring by using the vibration response data and vibration

characteristics, such as the acceleration responses, natural frequencies, mode shapes and

flexibility etc. However, these modal data might be affected by environmental effects.

Therefore, removing environmental or operational effects from identified modal data is also

an important research topic in the field of structural health monitoring (Tsogka et al., 2017;

Ubertini et al., 2018). Obtaining a relatively accurate finite element model and vibration

data is usually the premise of conducting reliable vibration based structural damage

identification. It is noted that the calibration of finite element model of civil engineering

structures is not always straightforward because data measured from in-service structures,

especially in the early stage of these structures are often no available. On the other hand,

model updating analysis could be computationally very demanding, especially when the

number of parameters that are updated is large. Thus reducing computational effort for

model updating is also studied (Garcia-Macias et al., 2019).

Structural damage identification can be formulated as an optimization problem by

defining an objective function that is related to structural dynamic properties, which creates

the likelihood to apply classical optimization theories and swarm intelligence methods for

the identification. Lu et al. (2013) used the curvature mode shapes to localize structural

cracks and then applied the sensitivity based method to obtain the crack locations and depth,

respectively. Lin et al. (2017) proposed a novel hybrid sensitivity method for the parameter

identification of axially functionally graded beams, in which the method only required

several natural frequencies and a few number of acceleration responses. However, when

using these traditional optimization methods, good guess of initial values and gradient

information are required. Furthermore, difficulties arise when applying these methods for

the identification of large-scale structures (Pathirage et al., 2018). More recently,
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swarm intelligence methods are developed to perform optimization in damage

identification. The global optimization mechanism of these methods is based on the

data comparison instead of the specific mathematical function. Therefore, these

methods could not only avoid the abovementioned shortcomings in traditional

optimization methods (requiring good initial values and gradient information), but also

enable conducting the damage identification of some complex and large-scale

structures (Ding et al., 2019a). For example, Kang et al. (2012) proposed artificial

immunity mechanism to enhance Particle Swarm Optimization algorithm to conduct

damage identification of a beam and a truss structure. Yu and Li (2014) developed a

novel Global Artificial Fish Swarm (GAFS) algorithm to detect structural damages, in

which the information of best-so-far solution in each cycle is integrated into other

fishes’ updating equation. Alkayem et al. (2019) proposed a Sine-Cosine (SC)

algorithm to identify damages of three-dimensional irregular structures, in which the

objective function was established by using modal strain energy and mode shape

curvature. Tran-Ngoc et al. (2018) compared the performance of using Genetic

Algorithm (GA) and Particle Swarm Optimizer (PSO) for model updating of a real

bridge and concluded that PSO not only offers a better accuracy between the numerical

model and measurements, but also reduces the computational cost compared to GA.

Jahangiri et al. (2019) proposed using the Most Valuable Player (MVP) algorithm to

perform structural damage identification, in which the objective function, termed as

‘Relative Discrepancy Function’, is built by the first natural frequency and mode shape.

In addition, the Jaya algorithm (Ding et al., 2019b), the Monkey algorithm (MA) (Yi et

al., 2012), the Modified Differential Evolutionary (MDE) algorithm (Du et al., 2017)

and the Tree Seeds Algorithm (TSA) (Ding et al., 2019) are demonstrated to perform

well in structural damage identification. Through the above studies, it is demonstrated

that the swarm intelligence methods are promising tools in performing damage

identification, however, challenges still exist, such as, A): In some studies (Lu et al.,

2013; Lin et al., 2017; Pathirage et al., 2018; Ding et al., 2019a; Kang et al., 2012; Yu

& Li, 2014; Alkayem et al., 2019; Jahangiri et al., 2019;Ding et al., 2019b), the

structures used for numerical investigations are relatively simple, namely, the condition
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number of the global stiffness matrix is maintained at a relatively low level. This means

that dynamic properties of the structure are relatively not easily affected by alterations

of stiffness and numerical calculation errors, therefore identifying damages of the

simple structures might be relatively easy. Furthermore, numerical examples on beams

and plates are quite common while identifying the damage of large scale civil

structures is more challenging; B): In many previous studies (Ding et al., 2019a; Kang

et al., 2012; Yu & Li, 2014; Alkayem et al., 2019; Du et al., 2017), damage

identification is commonly considered as an over-determined inverse problem with a

sufficient amount of measurement information, even with full modal data, for

identification of some extreme cases. In practice, only a limited number of sensors are

usually installed on large-scale structures and it is a common issue that the number of

available measurements, such as natural frequencies and mode shapes, is less than that

of the unknown parameters to be identified; C): Uncertainties in measurements and

finite element models inevitably exist. However, when considering distinct

uncertainties in vibration data, the identification accuracy would be greatly affected.

Furthermore, in most studies (Lu et al., 2013; Lin et al., 2017; Pathirage et al., 2018;

Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019; Tran-Ngoc

et al, 2018; Jahangiri et al., 2019; Ding et al., 2019b;, Yi et al., 2012; Du et al., 2017)

the way of modelling uncertainties is realized through assuming certain distributions

(i.e. uniform or Gaussian distributions).

For addressing the above mentioned challenge A, in this study, the Guangzhou

new TV tower is modelled as an example in numerical investigations. Compared with

some relatively traditional numerical example structures, including beams and plates,

the Guangzhou new TV tower is more complex and the inverse problem is more

difficult, since the condition number of the global stiffness matrix of the Guangzhou

new TV is significantly larger than that of some simple structures, e.g. beam structures

in existing studies (Lu et al., 2013; Lin et al., 2017). The large condition number of the

inverse problem of the Guangzhou new TV tower stems from its finite element

modeling process, which is based on many assumptions that may not well represent the

realistic conditions. The larger the condition number is, the more difficult of the
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inverse problem is to certain extent. Therefore, it is desirable to develop more powerful

evolutionary algorithms to perform the identification of complex civil engineering

structures. Developing hybrid evolutionary algorithms is one of promising ways to

overcome this challenge. The hybridization algorithms are developed to improve the

global optimization performance by integrating at least two different swarm

intelligence methods. A good combination would generate the cooperative effect and

enhance the algorithm’s global optimization ability. Ding et al. (2018) introduced the

search strategy of the Cuckoo Search Algorithm into the onlooker bee phase of the

standard Artificial Bee Colony (ABC) algorithm and then applied the hybrid algorithm

to identify the chaotic systems’ parameters. Ghanem and Janta (2018) proposed a

hybridization of ABC and Dragonfly Algorithm (DA), in which the first stage is

performed for the global search (DA phase), the second stage for the local search

(onlooker bee phase of the ABC) and the third stage with a modified scout bee phase

implemented. Jadon et al. (2017) constructed a hybrid algorithm of the ABC and

Differential Evolutionary (DE), in which the onlooker bee phase of the ABC was

modified by the DE search mechanism. Șenel et al. (2019) developed a new hybrid

algorithm based on the PSO and Grey Wolf Optimizer (GWO). These two methods are

combined by replacing a particle of the PSO of a low-quality objective value with a

particle that is partially modified by the GWO. In addition, the hybridizations of the

Cuckoo Search and the Gravitation Search Algorithm (GSA) (Naik et al., 2015), the

ABC and the Bat Algorithm (BA) (Ghosh et al., 2019) and the ABC and the GA

(Pramanik & Malti, 2019) are respectively presented. Basically, these hybrid

algorithms show better global optimization ability compared with using the single

algorithm. However, using the hybrid algorithm would introduce more controlling

parameters, which could increase the complexity of the algorithm. Therefore, two

emerging swarm intelligence algorithms, named as Jaya (Rao, 2016; Ding et al., 2019b)

and TSA (Ding et al., 2019a), would be smart choices for conducting hybridization.

Jaya and TSA have simple algorithmic structures but relatively strong optimization

ability, which have been successfully applied for damage identification of some simple

structures, i.e. beam and truss structures. It ought to be noted that there is no
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controlling parameters in the Jaya algorithm. Therefore, conducting hybridization of

these two algorithms has some advantages in terms of the algorithm’s complexity.

For addressing the challenge B, namely, using incomplete modal data to perform

the identification of relatively complex structures, one approach is to formulate an

objective function based on sparse regularization technique. A sparse penalty constraint

is introduced in the objective function with the sparse regularization technique. The

principle of applying the sparse regularization for damage identification is based on the

fact that damages are often observed at a few locations while the majority of elements

remain intact (Zhou et al., 2015). In addition, the traditional modal data based objective

function (Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019;

Tran-Ngoc et al., 2018; Jahangiri et al. 2019) are usually ill-posed, and the inverse

problem could be undetermined with a limited number of measured modal information.

The sparse regularization constraint on the structural damage identification can be

applied to overcome the ill-posedness in the undetermined inverse problems.

For addressing the challenge C, a new way of generating the uncertainties is

introduced (Padil et al., 2017). Specifically, the measurement noises in the frequencies

and mode shapes as well as the finite element modeling errors are considered to be

coupled instead of statistically independent. To make the whole identification process

more robust to uncertainties, one traditional method is to assume the uncertainties as

normally distributed random variables (Beck et al., 1999; Yuen & Katafygiotis, 2003).

In reality, however, the probabilistic approaches are less straightforward since it is very

difficult and unrealistic to acquire unbiased probabilistic distributions of uncertainties

(Padil et al., 2017). Furthermore, if introducing probabilistic models into the swarm

intelligence methods, the method would need significant computational demand.

Therefore, a non-probabilistic method is used to model the effect of uncertainties.

Specifically, a non-probabilistic method based on interval analysis is applied to

calculate the interval bound (lower and upper bounds) of the modal data, which can be

used as the input to obtain each elemental stiffness’s upper and lower bounds (Wang et

al., 2008). To establish the relationship between the input parameters (modal data with

uncertainties) and the output parameters (stiffness reductions), an indicator called
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Damage Measure Index (DMI) is defined for the undamaged and damaged status.

Introducing the DMI values to quantify structural damages would greatly enhance the

robustness of the proposed method to uncertainties (Wang et al., 2014).

Aiming at solving the above-mentioned three challenges, this paper proposes a

hybrid algorithm based on Jaya and TSA, termed as Hybrid C-Jaya-TSA, to conduct

structural damage identification by using vibration measurement data. To enhance the

identification performance with incomplete modal data, a new objective function is

proposed by using the penalty items with the sparse regularization. To enhance the

robustness of the hybrid algorithm to uncertainties, DMI is introduced. Classical

mathematical benchmarks are used to verify the accuracy and effectiveness of the

proposed hybrid algorithm. Numerical investigations on the Guangzhou new TV tower

and a benchmark structure are performed to demonstrate the identification accuracy of

the developed algorithm with the use of the non-probabilistic method to consider the

uncertainty effect. Experimental validations on a cantilever beam are also conducted to

show the effectiveness and performance of the proposed method.

6.2 Theoretical background

Alterations of structural physical parameters, such as stiffness and damping, will

introduce the change in vibration properties. Conversely, such change can be used to

conduct damage identification of structures. The frequencies and mode shapes of a

structure without considering the damping, could be obtained by conducting the

eigenvalue analysis,

0)( 2  iΦMK i (6.1)

where K and M represent the global stiffness and mass matrices, respectively; i

and iΦ denote the ith natural frequency and the corresponding mode shape,

respectively.

In this study, structural damage is assumed to be only related to the stiffness

reduction, since the mass alteration of a structure could be easily inspected (Ding et al.,

2019a). Therefore, structural damages could be featured by a series of scalar variables
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for all the element ),...,2,1( Nelhh  (also called as the element stiffness parameter)

with a value between 0 and 1. The stiffness matrix of the damaged structure is

expressed as follows

ehd kK   

Nel

h h1
 (6.2)

where ehk denotes the hth elemental stiffness matrix under the undamaged status;

Nel is the total number of elements; Kd denotes the structural stiffness matrix under

the damaged status; h is the element stiffness parameter to be identified. It is noted

that 1h means that this element is intact, and 0h means that the element is

completely damaged. The element Stiffness Reduction Factor (SRF) is calculated as

hhSRF 1 (6.3)

SRF is used to characterize structural damages.

The objective function is defined based on the changes of natural frequencies and

Modal Assurance Criterion (MAC) as well as the 5.0L sparse regularization norm (Xu

et al., 2010), which can be given as

)||1||)1((minarg)(minarg 5.011
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where α denotes a vector that contains all damage parameters and must be identified;

c
i and c

iΦ represent the i th calculated natural frequency and mode shape from the

finite element analysis, respectively; m
i and m

iΦ are the corresponding measured

natural frequency and mode shape; NF and NM represent the order numbers of

natural frequencies and mode shapes, respectively. Regarding the sparse regularization

term, as mentioned above, this is because the damage identification could be treated as

an ill-posed problem with the searching parameter space that may have multiple local
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optimal points (Titurus & Friswell, 2008). Using the sparse regularization technique

can make the ill-posed problem a well-conditioned one (Sun & Betti, 2015).

Furthermore, the 5.0L norm is introduced in the study. Compared with the 1L norm,

this type of norm is closer to the 0L norm and is more suitable to simulate the

sparseness (Xu et al., 2010).  is termed as the regularization parameter, which plays

an important role in determining the participation extent of the 5.0L norm in the

objective function. When the input modal data is not polluted by the artificial noise, it

ought to be noted that by using the regularization term, the global objective function

value will not be zero and should be a value that is related with the regularization term.

With the above objective function, evolutionary algorithms can be used to perform the

optimization and damage identification results are obtained.

6.3 Hybrid algorithm: Hybrid C-Jaya-TSA

In this section, the proposed hybrid algorithm, namely Hybrid C-Jaya-TSA, is

elaborated in details. Jaya and TSA are briefly introduced first. Then the development

of the proposed hybrid algorithm will be described, and the innovations will be

highlighted.

6.3.1 Jaya algorithm

The Jaya algorithm (Rao, 2016) is an emerging heuristic algorithm, inspired by the

concept that the feasible solution acquired for a given problem should move towards

the best solution while avoid the worst solution. That is, the way of creating the

offspring of a solution is relevant to the best-so-far solution and the worst-so-far

solution in each cycle. Afterwards, comparisons will be made between the offspring

and the previous solution. The solution with a better objective function value will be

survived, which is called as ‘Greedy Selection Mechanism’. Gradually, the whole

colony will become victories via approaching to the best solution and therefore it is

named after Jaya (a Sanskrit word meaning victory). The procedure of the Jaya

algorithm mainly involves three steps, namely, the initialization, the local search
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strategy and the greedy selection mechanism, which are briefly introduced herein.

6.3.1.1 Initialization

An initial colony is created randomly in the search space. This colony contains

CS individuals. Each individual in the colony is marked with jθ . Each individual ( jθ )

has n variables ( ],...,,...,,[ 21 nqj θ ), which could be generated as below,

)()1,0(rand ,,,,
l
qj

u
qj

l
qjqj   (6.7)

where qj , denotes the qth variable of jθ ; u
qj , and l

qj , represent the upper bound

and the lower bound of the variable qj , . )1,0(rand is a random number between 0 and

1.

6.3.1.2 Local search strategy

It is assumed that Gqj ,, represents the value of the qth dimension of the

jth individual at the Gth generation. The offspring '
,, Gqj generated by this

value can be calculated as

|)|(|)|( ,,,,,,2,,,,,,1,,
'

,, GqjGqworstGqGqjGqbestGqGqjGqj rr   (6.8)

where Gqr ,,1 and Gqr ,,2 are two random numbers within the range ]1,0[ . Gqbest ,,

and Gqworst ,, are the values of the qth variable for the best solution and the worst one,

respectively. The second item in Eq. (6.8) shows that the trend of the process towards

the best solution while the third item means the tendency of the solution to avoid the

worst solution.

6.3.1.3 Greedy selection mechanism

Using the above-mentioned local search strategy to all dimensions, the offspring

'
,Gjθ would be acquired. The solution with a better objective function value would be

survived, which can be described as follows
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where f denotes the objective function that requires to be optimized. The procedure

of the proposed algorithm will be continually conducted until the termination condition

is satisfied, i.e., the maximum iteration cycle is reached.

6.3.2 Clustering-based Jaya algorithm

Applying the clustering technique for modifying the swarm intelligence methods

is one of effective ways to enhance the algorithms’ optimization performance (Cai et al.,

2011). In this study, the K-means clustering technique is applied before commencing

the local search stage. Conducting this procedure is straightforward, and this acts as a

crossover operators that would utilize the colony information effectively. This is useful

to improve the algorithm’s convergence performance. The specific step of conducting

the K-means clustering is described as follows

1. Randomly choosing CSK  1.0 individuals from the colony as the initial

clustering centers. The centers are marked as kCCC ,...,, 21 and the individuals from the

colony are marked as ],...,,[ 21 csθθθ .

2. The remaining individuals are assigned to this colony centers based on their

shortest Manhattan distance. The distance between any two individuals (i.e. jθ and cθ )

is calculated as,

)(||||),(
1 ,, 


n

q qcqjcjcj absd θθθθ (6.10)

3. After assigning the remaining individuals to the initial clustering centers, the

new clustering centers ''
2

'
1 ,...,, kCCC are calculated as,

CSj
u mj

j

m

m ,...,2,1,1'  
cθ

θC (6.11)

where mu is the total quantity of individuals belonging to the clustering center mC .

From Eq. (6.11), it is noted that the newly-created clustering centers are the

combinations of other individuals in the colony.
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Finally, another K individuals from the colony are randomly selected and

integrated with the K newly-created clustering centers as the set  . Calculating the

objective function values with the set  , and the results are sorted from the smallest to

the largest. The first K individuals are put into the colony again. Afterwards, the

procedure of the Jaya algorithm will be conducted. Hence, the Clustering-based Jaya

algorithm is illustrated.

6.3.3 Tree Seeds Algorithm

TSA is also a newly-developed swarm intelligence method (Ding et al., 2019a),

which is inspired based on the natural phenomenon of trees propagation. In the real

world, trees generally spread to other locations via their seeds. These seeds will grow

up over time. In general, the seeds quantity could be decided approximately as 10% and

25% of the colony size. In the algorithm, the specific locations of trees and seeds could

be viewed as feasible solutions for the optimization problem. The key to this algorithm

is the local search mode of the seeds. Two search modes can be designed at this phase.

Assuming that Gq , is an arbitrary tree (feasible solution) in the colony at the Gth

generation and Gyq ,, is the yth seed, the updating equation for the jth variable

could be provided as,

)( ,,,,,,,,,,,, GjmGjbestGjyqGjqGjyq r   (6.12)

)( ,,,,,,,,,,,, GjmGjvGjyqGjqGjyq r   (6.13)

where , , ,q y j G is the jth dimension of the yth seed that will be created by the qth

tree at the Gth generation; , ,m j G and Gjv ,, are the jth dimension of the mth tree

and vth at the Gth generation, which are randomly selected from the remaining

individuals in the colony; , ,best j G is the jth dimension of best-so-far solution in the

colony at the Gth generation; the coefficient , , ,q y j Gr is a uniform random number,

which is arbitrarily generated in the range of [ 1,1] . Selecting whether Eq. (6.12) or

Eq. (6.13) to perform the updating is controlled by a parameter called search tendency
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(ST). Specifically, choosing a better equation between Eqs. (6.12) and (6.13) to update

the solution depends on the comparison between a random number and ST. If the

random number is larger than ST, Eq. (6.13) is chosen as the updating equation.

Otherwise Eq. (6.12) will be selected.

6.3.4 The proposed Hybrid C-Jaya-TSA

From observing the updated mechanism of the Jaya algorithm, a good exploitation

search ability could be observed since other individuals in the colony are attracted by

the best-so-far solution. However, when dealing with complex optimization problem,

the best-so-far solution might have a large likelihood to be trapped in the local minimal.

To address this issue, one remedy is to introduce the clustering mechanism, since this

can be helpful to use the colony information more effectively and avoid early-maturing

to some extent (Ding et al., 2019a; Ding et al., 2019b; Cai et al., 2011).

Figure 6-1 The flowchart of the proposed Hybrid C-Jaya-TSA.

Furthermore, considering that the updated strategy of the Jaya algorithm is not

sufficient to approach the best-so-far solution, therefore the updated strategy of the
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TSA will be used to update the best-so-far solution. Compared with the search mode of

the Jaya algorithm, using the updated strategy of the TSA is more beneficial to enhance

the algorithm’s exploration ability, which could be further profitable to prevent the

best-so-far solution trapping in the local minimal. Hence, the hybridization of the

clustering technique, Jaya algorithm and TSA have been demonstrated. The flowchart

of conducting the Hybrid C-Jaya-TSA algorithm is shown in Figure 6-1. The

effectiveness and improvement of the applied modifications and developed hybrid

algorithm will be demonstrated in the numerical simulations and experimental studies.

6.3.5 Non-probabilistic method to consider uncertainties

Considering that the uncertainties, including the measurement noise and the finite

element modelling errors, inevitably exist in the damage identification process and

aiming to providing reliable damage identification results, it is essential to take these

uncertainties into account. However, when the input modal data is submerged with the

effect of various sources of uncertainties, the performance of optimization algorithms

will be affected (Kang et al., 2012). In this case, several measures can be taken to

address this challenge, i.e. using a more robust objective function (Alkayem et al., 2019;

Ding et al.,2019b) for the optimization. In this study, to mitigate the influence on the

identification accuracy owning to the uncertainties, a non-probabilistic method based

on interval analysis is employed. The interval analysis requires the upper and lower

bounds of the input modal parameters ( mω and mΦ ) (Padil et al., 2017; Wang et al.,

2008; Wang et al., 2014). Therefore, assuming that the uncertainties are the coupling

effects of the finite element model errors and the measurement noise, these

uncertainties could be described by providing the upper and lower bounds of the input

modal parameters ( mω and mΦ ). Through this non-probabilistic method (Padil et al.,

2017; Wang et al., 2008; Wang et al., 2014), the developed Hybrid C-Jaya-TSA could

provide the upper and lower bounds of the element stiffness parameters ( h ) via

optimizing the modal data with upper bounds and the data with lower bounds.

Specifically, the modal data with upper and lower bounds are described as,

uncertain
m
i

m
i

m
i X ,  (6.14)
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where m
i and m

i denote the lower and upper bounds of the ith measured

frequency; uncertainX , and
uncertain

X
,

are the uncertainty levels for the natural frequencies;

m
iz and m

iz represent the lower and upper bounds of the data at the zth degree of

freedom (DOF) of the ith mode shape; uncertainX , and
uncertain

X
,

are the uncertainty

levels for the mode shapes. Through using these uncertain data, the upper and lower

bounds of the element stiffness parameters ],;...;,,...,;,[ 2211 NelNelhh  can be

obtained. The middle value of these damage indices is calculated as,

2
1 hhmiddle

hSRF
 

 (6.18)

When the lower and upper bounds of the element stiffness parameter h is

acquired, the Possibility of Damage Existence (PoDE) of each element can be

calculated. To differentiate the damaged and undamaged states of each element, two

marks are introduced. uh denotes that the hth element is undamaged, and dh

means that the hth element is damaged. It should be noted that when using the modal

data of structures under the intact state, it is straightforward to obtain ],[ uhuh  . Figure

6-2 shows the schematic regions of the damaged and undamaged states on two different

axes. A solid rectangle represents the variation of both intervals. The damaged and

undamaged regions are also shown in this figure. In this regard, the PoDE is defined as

the possibility that the identified element stiffness parameter dh is smaller than the

threshold of the undamaged statue uh (Wang et al., 2014).
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Figure 6-2 Damaged and undamaged regions of the hth element.

Then the PoDE is defined as the proportion between the area of the damaged

region and the area of the entire region as follows (Padil et al., 2017; Wang et al., 2008;

Wang et al., 2014)

%100)( 
total

damage
uhdh A

A
ypossibilitPoDE  (6.19)

The PoDE value for each element is in a range from 0 and 100%, with 100%

representing a large likelihood of damage and 0% indicating that no damage occurred

in this element. The %100PoDE occurs when the interference between uh and

dh does not exist, which also means that the upper bound of the damage index ( dh )

equals to or is less than the lower bound of the undamaged status ( uh ). To make the

judgement more clear, Figures 6-3(a) and (b) provide two situations of %100PoDE

on one axis. The first situation is related with the condition uhdh   , where the

distance between two middle values is quite small. This also means that this damage

index is a small value. The second situation means that these two intervals separate

completely, which indicates that the stiffness reduction of this element is relatively

large. Figure 6-3(c) shows the scenario where the PoDE is between 100% and 0%,

where an overlapping is observed between these two intervals with an observed

stiffness reduction.
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With PoDE introduced to describe the likelihood of damage for each element and

stiffness reduction factor used to represent the damage severity, similar as the existing

studies (Padil et al., 2017; Wang et al., 2008; Wang et al., 2014), this study also uses

the DMI developed by Wang et al. (2014) to provide a further reasonable quantification

of damage extent. The DMI value is calculated as the product of stiffness reduction

factor and PoDE. The formula of obtaining DMI for the hth element is given as

h
middle
hh PoDESRFDMI  (6-20)

Figure 6-3 Situation of uncertain h : (a) PoDE=100% with a small damage index;

PoDE=100% with large damage index; (c) PoDE is between 100% and 0%.

6.4 Numerical Studies

In this section, numerical studies are carried out to verify the accuracy and

effectiveness of the proposed algorithm with the defined objective function. Numerical

studies will be divided into two parts. The first part is based on the classical

mathematical benchmarks, which can be used to verify the generality of the proposed

algorithm. The second part are on the Guangzhou New TV tower and a benchmark

study, which are utilized to verify the effectiveness and efficiency of the proposed
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algorithm and objective function on structural damage identification with a limited

quantity of measurement information.

6.4.1 Optimization for the classical benchmark

To compare the performance of using the proposed approach for structural damage

identification with other evolutionary algorithms, a series of classical mathematical

benchmarks (Ding et al., 2018), as listed in Table 6-1, are adopted for comparison. The

global optima of these test functions are all 0. To make the mathematical benchmarks

more difficult, compared with Ref. (Ding et al., 2018), the dimension number of each

problem is greatly increased, as shown in Table 6-1. It is noted that these functions are

categorized into four different types according to their geometric appearances.

Optimizing different types of benchmarks is important to validate the general

applicability of the proposed algorithm. For the comparison purpose, three evolutionary

algorithms, which are more or less related with the proposed Hybrid C-Jaya-TSA, are

applied to optimize the above-mentioned benchmarks as well. These three algorithms

are the Jaya, TSA and the clustering based TSA (C-TSA) (Ding et al., 2019a).

Specifically, in the C-TSA, the K-means clustering mechanism is also applied before its

seeds search stage. Employing these algorithms for comparison is important to

investigate the necessity of the modifications and demonstrate the improvement.

As regards the parameters setting, the common parameters Colony Size (CS) and

the maximum iteration number are 100 and 5000, respectively. For the TSA, C-TSA

and Hybrid C-Jaya-TSA, the parameter ST is set as 0.4. 30 independent runs are

conducted for each test function, and the mean values and standard deviations (std.) are

recorded for comparison. Table 6-2 presents the final optimization results based on the

abovementioned four methods. The best optimization value for each test function is in

bold. It is clearly observed that the proposed algorithm converges to zero, however, the

Jaya and TSA have some difficulties to handle these high-dimensional functions, since

the majority of optimization results acquired by these two algorithms maintain

relatively large magnitudes. In contrast, the C-TSA has some difficulties in dealing

with the Rosenbrock and Schaffer functions. Overall, the proposed algorithm reveals a
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competitive optimization capacity in representative benchmark test functions, which

fully illustrates the improvement due to the hybridization and lays the foundation for

the following structural damage identification in numerical and experimental studies.

Table 6-1 Classical mathematical benchmarks.

Number Name Dimension number Range Function type

F1 Sphere 100 [ 500,500] Uni-modal, Separable

F2 Griewank 200 [ 600,600] Multiple-modal, Non-Separable

F3 Rosenbrock 300 [ 32,32] Uni-modal, Non-Separable

F4 Rastrigin 400 [ 32,32] Multiple-modal, Separable

F5 Ackley 500 [ 32,32] Multiple-modal, Non-Separable

F6 Schaffer 1000 [ 100,100] Multiple-modal, Non-Separable

Table 6-2 Statistical results obtained by TSA, C-TSA, Jaya and C-Jaya-TSA on benchmarks.

Function
TSA C-TSA Jaya C-Jaya-TSA

Mean std Mean std Mean std Mean std

F1 2.51e-06 5.61e-06 8.71e-204 0.00e+00 9.63e-01 3.58e-01 0.00e+00 0.00e+00

F2 4.73e+02 2.26e+02 2.44e-16 1.49e-16 3.15e+00 6.59e-01 0.00e+00 0.00e+00

F3 1.72e+09 1.03e+09 4.01e+02 1.05e+02 1.83e+06 4.99e+05 0.00e+00 0.00e+00

F4 6.85e+09 7.90e+08 4.95e-19 2.71e-18 1.08e+04 8.44e+02 0.00e+00 0.00e+00

F5 2.09e+01 1.21e-02 1.37e-13 1.96e-14 1.82e+01 1.84e+00 0.00e+00 0.00e+00

F6 5.00e-01 2.68e-08 1.46e-02 8.19e-03 4.99e-01 1.34e-06 0.00e+00 0.00e+00

Note: The best optimization value is in bold.

6.4.2 Damage identification for the Guangzhou New TV tower

The Guangzhou New TV tower is the landmark of the Guangzhou city, which is

located in the Haizhu district. It is a super high tube-in-tube structure with a height of

610 m, which has 37 layers, connecting the inner and outer layers mainly used for

office, entertainment, transmission television signals and tourism. In the sophisticated

finite element modeling, the model contains 122,476 elements, 84,370 nodes and

505,104 DOFs (Chen et al., 2011). However, directly using this complex model to

conduct structural damage identification is complicated and not practical. Therefore,

according to the assumptions and simplifications presented in Ref. (Chen et al., 2011),
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a reduced finite element model is developed from the full model. Specifically the

simplified model has 37 beam elements, the axis of the beam element aligns with the

centroid axis of the tower mast, and the horizontal coordinate of the center of the

reduced model is kept at the same location of the full model. The mass of the structure

is lumped at nodes in both the full and reduced model. The equivalent rotational inertia

of the segment with respect to the nodes along the central axis of the reduced model is

calculated to form rotational terms of the equivalent element mass matrix of the

reduced model. The corresponding segment between two horizontal sections is selected

from the full model, which is included in the beam element. There are five DOFs at

each node, namely, the lateral translational displacements in the x and y directions, and

rotations about x, y and z directions. Eventually the finite element model of the

Guangzhou New TV tower is simplified as a structure with 37 elements and 38 nodes

(Chen et al., 2011), as shown in Figure 6-4. The number of nodes is numbered from the

bottom to the free top end. Each node has five degrees of freedom (DOFs), including

two horizontal translations and three rotational displacements. The total DOFs of the

finite element model is 185. The dynamic properties including frequencies and mode

shapes of the simplified finite element model of Guangzhou New TV tower are close to

those obtained from the detail full finite element model, therefore the simplified finite

element model of Guangzhou New TV tower is viewed as the replacement of the

sophisticated model to conduct the following damage identification analysis. Although

the structure is significantly simplified, the difficulty of using this reduced model for

system identification shall be noted. The condition number of the global stiffness

matrix is up to the magnitude of 1010 and is far larger than that of those numerical

structures in existing studies (Lu et al., 2013; Lin et al., 2017; Pathirage et al., 2018;

Ding et al., 2019a; Kang et al., 2012; Yu & Li, 2014; Alkayem et al., 2019; Tran-Ngoc

et al, 2018; Jahangiri et al., 2019; Ding et al., 2019b;, Yi et al., 2012; Du et al., 2017),

which means small perturbation of the stiffness parameters would result in significant

changes in modal parameters of the structure. Therefore, the difficulties of

identification would arise to certain extent. The first five natural frequencies of the

intact structure are 0.1104, 0.1587, 0.3463, 0.3688 and 0.3994HZ, respectively. The
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damage identification of this structure is considered as an underdetermined inverse

problem with limited measurement information, namely, the used input data will be

less than the total number of system parameters to be updated. The first five natural

frequencies and the mode shape data along the x direction of the 1st node, 9th node, 17th

node, 25th node and 33rd node, are used for identification. Totally 30 modal data are

used for identifying the parameters of 37 elements. It should be noted that these modal

data in the following numerical examples are obtained by modal analysis of the

numerical model.

6.4.2.1 Damage identification with incomplete modal data without considering

uncertainty

For the comparison purpose, the Jaya (Rao, 2016), C-TSA (Ding et al., 2019a) and

the MDE algorithm (Du et al., 2017) are used for the damage identification as well. It

should be noted that MDE is an effective method for identification of some basic

structures. In terms of the parameters setting for these algorithms, the common

parameters CS and the maximum iteration number are set as 100 and 500, respectively.

Specifically, for the C-TSA and the proposed C-Jaya-TSA, the parameter ST is defined

as 0.4. For MDE, the threshold value is set as 0.1, the mutation rate is set as 0.4, and

the mutation constant is a random number within ]9.0,4.0[ . These parameters are set the

same as those in Ref.(Du et al., 2017). The purpose of this section is to investigate the

feasibility and applicability of using these algorithms for identifying the assumed

damages in the finite element model of Guangzhou New TV tower, therefore the input

modal data are not polluted by the uncertainties.
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Figure 6-4 The Guangzhou New TV tower and its simplified finite element model.

Single damage case

The first damage case is assumed that there is a 15% stiffness reduction in the 37th

element, which means 15.037 SRF . The Discrepancy Principle (DP) rule (Hou et al.,

2018) is used for selecting the optimal regularization parameter. In this case, the

optimal regularization parameter used in the objective function is selected as
4105  . With the regularization term, the global optimum in this case is 6105.7  .

The above mentioned four algorithms are used to optimize the proposed objective

function as shown in Eq. (6.3), based on the incomplete modal data. Figure 6-5

provides the evolutionary process of the objective function values based on the four

algorithms. It is clearly observed that the iteration process of the proposed algorithm is

the most stable and takes only less than 50 cycles for the proposed algorithm to

converge, indicating that the proposed algorithm’s convergence speed is much faster.

Other three algorithms take significantly more cycles to converge. Furthermore, the

objective function value acquired by the developed Hybrid C-Jaya-TSA is closer to the
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preset global optimum, which indicates that the Hybrid C-Jaya-TSA can obtain better

identification results.

Figure 6-5 The evolutionary processes of the objective function values by using different

methods.

Table 6-3 and Figure 6-6 present the damage identification results of the single

damage case without uncertainties. The proposed Hybrid C-Jaya-TSA yields the best

competitive results with the best accurate mean value of the damage extend and

smallest standard deviation, demonstrating the stable and strong global optimization

ability of the proposed algorithm. C-TSA is able to identify the damage but there are

three false alarms at the 8th, 9th, and 12th elements. The Jaya and MDE methods could

not provide accurate identification results in this case. This is because the objective

function values obtained by the Jaya and MDE algorithms are far away from the preset

global optimum.

Table 6-3 Identification results of single damage case without uncertainties.

Methods Objective function value Damage index at the 37th element

Mean Std. Mean Std.
MDE 1.551e-02 2.084e-03 0.4911 0.2967
Jaya 1.793e-03 3.127e-03 0.1798 0.2376

C-TSA 7.282e-05 1.735e-04 0.1282 0.0565
C-Jaya-TSA 7.489e-06 1.241e-16 0.1496 3.290e-08
True value 7.50e-06 0.15

(The best identification value is in bold)
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Figure 6-6 Identification results for the single damage case without uncertainties.

Multiple damages case

The second damage case is assumed with 20% stiffness reduction in the 16th and

23rd elements respectively, which means that 2.02316  SRFSRF . The regularization

parameter in the objective function is set as 4105  , and the global optimum in this

case is 51000.4  . These four methods are used for optimization. Figure 6-7 provides

the evolutionary process based on the proposed Hybrid C-Jaya-TSA. Similar as the

single damage case, the evolutionary process in this case is also stable. It needs around

150 iterations for the developed algorithm to achieve the convergence to the preset

values.
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Figure 6-7 The evolutionary process of the damage indices based on the proposed method.

The final identification results based on the four methods are presented in Table

6-4 and Figure 6-8. It is clearly observed that MDE and the Jaya fail to provide

significant identification again in the multiple case. In contrast, the C-TSA is capable

to identify these two simulated damages but several error alarms are observed as well.

The performance of the developed Hybrid C-Jaya-TSA is the best. The identified

damage index values and objective function value are very close to the true values.

These two cases demonstrate that when uncertainties are not considered, the

standard Jaya and MDE algorithms are not capable of tackling underdetermined

identification for the Guangzhou New TV tower while the developed Hybrid

C-Jaya-TSA can perform well.

Table 6-4 Identification results of multiple damage case without uncertainties.

Methods Objective function
value

Damage index at the
16th element

Damage index at
the 23rd element

Mean Std. Mean Std. Mean Std.
MDE 2.270e-02 7.972e-03 0.1932 0.0803 0.4587 0.2498
Jaya 6.018e-03 5.270e-03 0.0975 0.1190 0.2148 0.2535

C-TSA 2.830e-04 6.861e-04 0.1893 0.0302 0.2041 0.0116
C-Jaya-TSA 3.999e-05 1.333e-16 0.1999 1.43e-08 0.2000 4.43e-08
True value 4.00e-05 0.20 0.20

Note: The best identification results are in bold.
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Figure 6-8 Identification result for the multiple damage case without uncertainties.

6.4.4.2 Damage identification with incomplete and uncertain modal data

The uncertainties are considered as the coupling effect of the finite element model

errors and measurement noise. Eqs. (6.14) - (6.17) are used to generate the bounds of

the modal data with uncertainties. Both uncertainty levels for the natural frequencies

uncertainX , and uncertainX , are set as 1%, and the uncertainty levels for the mode

shapes uncertainX , and uncertainX , are set as 10%. This is because compared with

mode shapes, the acquisition of natural frequencies is more accurate in the real

applications. It is elaborately demonstrated in Ref. (Padil et al., 2017) that applying the

interval analysis method to analyze the uncertainty effect is reliable and accurate than

directly using the deterministic method for damage identification. That is to say, using

the DMI values for quantifying structural damages is more reliable than using the

deterministic damage index, when the incomplete and uncertain data are used.

Therefore, the Hybrid C-Jaya-TSA combined with the interval analysis method is

introduced to conduct structural damage identification by using uncertain modal data. It

has been demonstrated in the above studies that the developed Hybrid C-Jaya-TSA has

the best performance. The Hybrid C-Jaya-TSA is used only in this section. The
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parameters setting for the algorithm and regularization parameter are the same as the

former cases. The same simulated measurement data are also used.

Single damage case

15% stiffness reduction is assumed in the 37th element. To conduct the interval

analysis method, the first step is to acquire the upper and lower bounds of each element

under the intact state. When performing the optimization with the modal data including

the uncertainties by Eqs. (6.14) and (6.16), the lower bound of the element under the

intact state can be obtained. For optimization by using the modal data with Eqs. (6.15)

and (6.17), the corresponding upper bound values are obtained. Similarly, the proposed

algorithm is used to perform the optimization by using the modal data with

uncertainties under the damaged state. The upper and lower bounds of the damage

indices are then obtained, and the middle vale and PoDE are obtained accordingly.

Figure 6-9 shows the evolutionary process of the middle value of the damage index at

the damaged element middle
37SRF , by the developed Hybrid C-Jaya-TSA. It is clearly

observed that since the uncertainties are considered, around 330 iterations are needed

for the algorithm to converge to the neighborhood of the preset value. The PoDE and

DMI values of all the element are also calculated.

Figure 6-9 The evolutionary process of the damage index at the 37th element by the proposed

method with uncertain modal data.
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Figure 6-10 PoDE and DMI value of each element in the single damage case with uncertain

modal data:(a) PoDE; (b) DMI.

The PoDE and DMI value for each element are shown in the Figure 6-10. It is

found that the PoDE value for the 10th element is around 90%, due to the effect of

uncertainties in the modal data. However, if using the DMI value to quantify damages,

the DMI value at the 10th element is only 1.97%, while the corresponding value at the

37th element is 14.86%, which is very close to the preset damage extent of 15%. This

indicates that DMI by considering the uncertainty effect is more reliable than the

deterministic damage index, i.e. stiffness reduction factors.

Multiple damages case

20% stiffness reductions are assumed in the 16th and 23rd element. The same

procedure as the single damage case is followed to conduct the interval analysis and

obtain the upper and lower bounds of the identification results by using the

non-probabilistic method to consider the effect of uncertainties. Figure 6-11 presents

the PoDE and DMI values for all the elements, respectively. As mentioned, these two

damaged locations are accurately identified. Due to the significant effect of

uncertainties, the damage probability of the 10th, 14th and 37th elements are also large.

However, when using the DMI to quantify damages, similar as the single damage case,

the DMI values of these three false identified elements are minor and the damage

(a)

(b)
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extents of the 16th and 23rd elements are close to the assumed true values. The multiple

damage case further illustrates the effectiveness of using the proposed method to

conduct structural damage identification, even uncertainties are considered.

Figure 6-11 PoDE and DMI values for the multiple damages case with uncertain

modal data: (a) PoDE; (b) DMI.

Minor structural damage case

In the previous cases, the damage extents are relatively large. In this section,

identification of a minor structural damage case is performed. 6% stiffness reduction is

assumed in the 9th element. The regularization parameter is selected as 3104  , and

the other parameters for the algorithm are defined as the same as those in the previous

cases. 1% and 10% uncertainties are respectively introduced into the natural

frequencies and mode shapes. By using the upper and lower bounds of uncertain modal

data, the upper and lower bounds and the middle value of damage index of every

element are obtained for the calculation of PoDE and DMI. Figure 6-12 presents the

iteration processes of the upper bound, lower bound and middle value of the 9th element.

It only needs around 50 iterations to achieve the convergence. Figure 6-13 shows the

lower bound, upper bound, PoDE and DMI values of all the 37 elements. The location

of the minor damage is accurately identified, and the DMI value for the 9th element is

(a)

(b)
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5.67%, which is very close to the true value of 6%. No false identification is observed

in the identification results. This case demonstrates the effectiveness of using the

proposed approach for identifying the minor structural damage, even with 1% and 10%

uncertainties in the natural frequencies and mode shapes respectively.

Figure 6-12 The evolutionary processes of the upper bound, lower bound and middle value of

the damage index of the 9th element in the minor structural damage case.
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Figure 6-13 Identification results for the minor structural damage case:

(a) Lower bound; (b) Upper bound; (c) PoDE; (d) DMI value.
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6.4.3 Verification with a benchmark structure

In this section, a benchmark truss model (Kim et al., 2019; Tam et al., 2020) is

used as an example for further verification. Numerical studies on a simply supported

truss, as shown in Figure 6-14, are conducted. The Young’s modulus and density of this

truss model are 32770kg/m and GPa70 , respectively. The area of cross-section is

2m01.0 . The first three natural frequencies and the mode shape data along the vertical

direction of the 2nd, 4th, 5th, 8th, 12th and 13th nodes are employed as the input for the

proposed Hybrid C-Jaya-TSA. Namely, the total 21 modal data are used to identify 31

stiffness parameters of this truss model. The C-TSA is also utilized for the comparison

purpose. The parameter setting for these two algorithms are set as the same as those in

the previous numerical example.

Case 1 is a minor damage case, and 8% stiffness reduction is assumed in the 10th

element, which means that the stiffness reduction of the 10th element is 8%. Case 2 is a

multiple damage case, in which 10% and 20% stiffness reductions are assumed in the

10th and 19th elements, respectively. Equally, both uncertainty levels for the natural

frequencies uncertainX , and uncertainX , are set as 1% while the uncertainty levels for

the mode shapes uncertainX , and uncertainX , are set as 10%. The regularization

parameter for Case 1 and Case 2 are set as 410 and 5108  .

Figure 6-15 shows the final identification results based on the proposed algorithm

and the C-TSA. Both the algorithms can localize the damages correctly. The proposed

algorithm has advantage in terms of the identification accuracy. For example, in Case 1,

three false alarms are observed by using C-TSA, however, the proposed C-Jaya-TSA

only outputs one. Furthermore, for Case 1, the DMI value of the 10th element acquired

by the proposed algorithm is 7.87%, which is more accurate than using C-TSA. For

Case 2, the obtained DMI value of the 10th and 19th elements are respectively 9.66%

and 19.65%, which are close to the true values, even when the uncertain and limited

modal data are used. The above results demonstrate that the proposed approach can

provide accurate damage identification results for this benchmark truss structure.
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Figure 6-14 A truss model.
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Figure 6-15 Identification results of the truss model; (a) Case 1, (b) Case 2.

The Guangzhou New TV tower and a benchmark truss structure are used as

numerical examples in this section to investigate the effectiveness and accuracy of

using the proposed method for conducting structural damage identification with

significant uncertainties and a limited number of measurement data. With the

simplifications made for modelling this complex Guangzhou New TV tower, the

condition number of the global stiffness matrix is large, which introduce additional

errors in the eigenvalue analysis to obtain the analytical natural frequencies and mode

shapes. The damage identification with a limited number of measurement data which is

less than the system parameters to be identified, is considered as an undetermined

inverse problem. This further increases the difficulties in damage identification. By

using the proposed Hybrid C-Jaya-TSA and the non-probabilistic method based on the

interval analysis to consider the uncertainty effect, structural damage identification is

(a)

(b)
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performed effectively and accurate results are obtained, indicating the superiority of

the proposed algorithm.

6.5 Experimental validations

An experimental cantilever beam (Hou et al., 2018) is taken as an example for the

experimental investigations in this section to verify the effectiveness and accuracy of

the proposed method in structural damage identification. Eleven accelerometers are

used in the vibration testing, and the sensor placement of the beam model is shown in

Figure 6-16. The total length of the beam is mm1000 with a cross section of

5.00mm.mm60.49  The Young’s modulus and density of this beam model are

33 kg/m1067.7  and GPa144 , respectively. Considering that the ratio of the height to

the length of this beam model is very small, Euler beam elements are used to build the

finite element model. The beam is uniformly divided into 100 elements with two DOFs

at each node. The elements are numbered from 1 to 100, from the left support to the

right free end. Each element has a length of 10mm. The introduced damage locations

and extents are listed in Table 6-5.

Figure 6-16 The cantilever beam structure and the locations of accelerometers

(Hou et al., 2018).
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It should be noted that even though the damage extent for a single element is

relatively large, with the fine mesh of 10mm for each element, the damage effect is not

significant. This is evident with the minor changes in the vibration characteristics.

From previous studies on the modal identification results from hammer impact tests by

using an instrumented hammer to apply excitations at a location near the fixed end

(Hou et al., 2018).

Table 6-5 Damage locations and extents for the experimental verifications.

Case number Damage locations SRF DMI (%)

Case 1 1st element 0.4 40
Case 2 1st element 0.6 60
Case 3 1st element 0.6 60

50th element 0.6 60

The first six natural frequencies within the range of 0-300 Hz and the associated

mode shapes were identified from vibration acceleration measurements by using

rational fraction polynomial method (Hou et al., 2018). Model updating is conducted to

calibrate the initial finite element model and make the initial finite element model as

close as possible to the real undamaged structure (Ding et al., 2019a; Ding et al.,

2019b). It is conducted by using the first six natural frequencies and the corresponding

mode shape data along vertical direction of the 11th, 21st, 31st, 41st, 51st, 61st, 71st, 81st,

91st and 101st nodes and the proposed Hybrid C-Jaya-TSA. The first six mode shapes

under the undamaged state used for the initial model updating are shown in Figure 6-17.

Regarding the parameters setting, Colony Size is set as 100CS , the maximum

iteration number is 500 and parameter 4.0ST . Table 6-6 lists the modal data of the

initial finite element model and the updated one. It is clearly observed that the modal

data of the updated model have a good agreement with the experimental measurements.

Table 6-7 summarizes the identified first six natural frequencies and the corresponding

MAC values of the beam under the undamaged and damaged states. Very minor

changes in the natural frequencies and MAC values are obtained between the

undamaged and damaged states. This indicates that minor damage is introduced in the

structure.
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Figure 6-17 The first six measured mode shapes of the undamaged model.

Table 6-6 The first six natural frequencies of the initial and updated finite element models

Mode no. Undamaged Initial model Updated model

Freq.(Hz) Freq.(Hz) MAC Freq.(Hz) MAC

1 3.53 3.50 0.9998 3.53 0.9998

2 21.77 21.90 0.9989 21.77 0.9991

3 60.78 61.18 0.9956 60.78 0.9965

4 119.46 119.46 0.9968 119.45 0.9969

5 194.78 196.50 0.9963 194.78 0.9972

6 292.82 291.51 0.9927 292.82 0.9929

Table 6-7 Measured modal data of the beam under the undamaged and damaged states

Mode
no.

Undamaged Damage case 1 Damage case 2 Damage case 3

Freq.(Hz) Freq.(Hz) MAC Freq.(Hz) MAC Freq.(Hz) MAC

1 3.53 3.49 (-1.24) 0.9999 3.38 (-4.41) 0.9997 3.33 (-5.91) 0.9998

2 21.77 21.39 (-1.72) 0.9995 20.85 (-4.26) 0.9984 20.29 (-6.81) 0.9986

3 60.78 59.46 (-2.16) 0.9988 58.93 (-3.04) 0.9983 58.38 (-3.95) 0.9957

4 119.46 118.31 (-0.96) 0.9988 116.01 (-2.88) 0.9951 113.35 (-5.12) 0.9923

5 194.78 191.98 (-1.44) 0.9978 188.74 (-3.10) 0.9917 188.46 (-3.25) 0.9887

6 292.82 281.56 (-3.84) 0.9807 286.76 (-2.07) 0.9495 275.08 (-6.06) 0.9826

Notes: Values in the brackets are the relative changes (%) in natural frequencies
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Based on the updated cantilever beam and the measured modal data, the proposed

Hybrid C-Jaya-TSA with the non-probabilistic method is used to conduct damage

identification for this beam. The first six natural frequencies and the mode shape values

at the vertical direction of the 11th, 21st, 31st, 41st, 51st, 61st, 71st, 81st, 91st and 101st

nodes, where are the locations of the installed sensors, as shown in Figure 6-16, are

used as the input. Namely, totally 66 modal data are applied to identify the stiffness

parameters of 100 elements. Regarding the parameters setting, 100CS and the

maximum iteration number of 500 and parameter 4.0ST are also used. The

regularization parameter in Case 1 is set as 01.0 . Similar to Ref. (Padil et al.,

2017), uncertainties for the natural frequencies uncertainX , and uncertainX , are set as

1% while the uncertainties for the mode shapes uncertainX , and uncertainX , are set as

10%.

Figure 6-18 shows the lower bound value, the upper bound value, PoDE and DMI

values of all the elements for Case 1. The DMI value of the 1st element is 44.71%,

which is very close to the true value. The proposed Hybrid C-Jaya-TSA associated with

the DMI by the non-probabilistic method can successfully identify the damage.

Figure 6-18 The lower bound, upper bound, DMI values of each element for Case 1 in the

experimental verification: (a) Lower bound; (b) Upper bound; (c) PoDE; (d) DMI values.

(a) (b)

(c) (d)
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For Cases 2 and 3, parameters setting for the algorithm are the same as those in

Case 1. The regularization parameters are set as 0.02 and 0.0004, respectively. The

same uncertainty levels as Case 1 are assumed for natural frequencies and mode shapes.

Figures 6-19 and 6-20 show respectively the obtained PoDE and DMI values for these

two cases. It is clearly observed that the damage locations are accurately identified.

PoDE values of the damaged elements are significant without any minor false

identification results. For Case 2, the DMI value of the 1st element is 68.10%. For Case

3, the DMI values for the 1st and 50th element are 76.15% and 73.79%, respectively.

Overall, the identification accuracy is good, even when the uncertainties are included.

The results in the experimental studies demonstrate that the proposed Hybrid

C-Jaya-TSA can locate damages accurately and identify the damage severities with a

good accuracy, even the uncertainties present in the finite element model and

experimental data.

Figure 6-19 PoDE and DMI values of each element for Case 2 in the experimental verification:

a) PoDE; b) DMI.

(a)

(b)
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Figure 6-20 PoDE and DMI values of each element for Case 3 in the experimental verification:

a) PoDE; b) DMI.

6.6 Conclusions

In this study, a novel non-probabilistic method by using Hybrid C-Jaya-TSA is

presented to conduct structural damage identification considering uncertainties in finite

element modelling errors and measurement errors. The identification difficulties are

increased since the damage identification analysis is underdetermined, with the

quantity of the used modal data less than that of the total system parameters. The

effectiveness and accuracy of the proposed method are verified by the numerical and

experimental verifications. Several conclusions can be drawn:

 When optimizing high-dimension classical benchmarks, the developed Hybrid

C-Jaya-TSA provides more competitive optimization results compared with the latest

algorithms, indicating the effectiveness and necessity of the applied modifications for

improving the existing swarm intelligence methods;

 When conducting the damage identification of complex civil engineering

structures with uncertainties and modelling errors, the developed Hybrid C-Jaya-TSA

combined with the non-probabilistic method based on interval analysis can localize the

damages accurately and provide reliable damage quantification results by using DMI

values;

(a)

(b)
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 The results in the numerical and experimental studies demonstrate that the

proposed method leads to better structural damage identifications with incomplete and

uncertain modal data;

 Overall, the proposed approach can be potentially applied to the real structural

health monitoring. The main reasons are listed as follows: a) The proposed method is

efficient and accurate, even with a limited number of modal data, such as a few natural

frequencies and partial mode shape values; b) Fewer controlling parameters are

involved in the developed approach, compared with some existing swarm intelligence

methods; c) The developed approach does not need to have good initial values and

gradients information in the computation;

 In the future, this method will be extended to solve the long-term structural

health monitoring problem, such as identifying modal information and calibrating the

finite element models.
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CHAPTER 7 SIMULTANEOUS IDENTIFICATION OF STRUCTURAL

DAMAGE AND NONLINEAR HYSTERESIS PARAMETERS BY AN

EVOLUTIONARYARTIFICIAL NEURAL NETWORK BASED ON TIME

DOMAIN DATA

ABSTRACT6

This paper presents a new approach for simultaneous identification of structural

damage and nonlinear hysteresis parameters of nonlinear structures by using an

evolutionary Artificial Neural Network (ANN) based on K-means Jaya algorithm and

time domain vibration response data. ANN is an effective tool to tackle complex

problems in numerous fields. However, the back propagation algorithm, which is

conducted based on gradient descent, is an important component of training ANN. With

vanishing gradients, ANN may suffer the local minimal during the training process. To

over this disadvantage, a type of swarm intelligence method, named the K-means Jaya,

is employed to improve the training of ANN parameters (weight and bias) by

minimizing the discrepancies between real outputs and desired ones and then using

these parameters to develop the networks. To evaluate the performance of the proposed

approach, numerical studies on a nonlinear Single Degree Of Freedom (SDOF) system

and a nonlinear five-story benchmark building model subjected to the seismic loading

are conducted. A high level noise is introduced into acceleration response data to

simulate the strong measurement noise for the nonlinear system identification.

Identification results demonstrate that the evolutionary ANN combined with K-means

Jaya, termed as an ANN-K-means Jaya, is more accurate than other swarm intelligence

methods. The proposed approach can be used effectively for identifying nonlinear

structural damage and nonlinear hysteresis model parameters simultaneously.

7.1 Introduction

Structural damage identification acts as a vital role in evaluating structural

integrity since civil infrastructure is inevitably accumulating damage during the

6Ding, Z., Li, J., Hao, H. (2020). Simultaneous identification of structural damage and
nonlinear hysteresis parameters by an evolutionary artificial neural network based on time
domain data. International Journal of Non-linear Mechanics (Under review)
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in-service period. To monitor structural conditions for reducing the maintenance cost

and prevent catastrophic failures of structures, numerous methods have been developed

for structural damage identification (Farrar & Worden, 2007). Among these studies,

vibration based methods via utilizing the dynamic vibration characteristics, i.e. natural

frequencies and mode shapes, etc., or vibration time domain responses for damage

identification, have attracted an amount of interests and attentions.

For frequency domain based methods, Yan and Golinval (2005) used the state

subspace method integrating with the flexibility to localize damages in beam structures.

Lu et al. (2017) proposed a hybrid sensitivity method to conduct damage identification

for axially functionally graded beams, in which only the first several natural

frequencies and several vibration response measurements are required. Esfandiari et al.

(2020) applied the changes in principle components of frequency response functions to

formulate the objective function, and then the least square method was utilized to

optimize the objective function to identify structural damages. This method was

verified using a truss and a frame structure. Furthermore, the wavelet methods (Ren &

Sun, 2008; Cao et al., 2012; Yazdanpanah et al., 2020), the stochastic subspace

identification method (Altunisik et al., 2017) and the power spectral density method

(Zheng et al., 2015), have been respectively employed for structural damage

identification. On the other hand, structural damage identification methods using time

domain measurement data have also been developed in the recent years. Hu et al. (2017)

formulated the objective function based on acceleration responses and then used the

homotopy continuation algorithm to identify the cracks in beam structures. Lu and

Wang (2017) proposed an enhanced sensitivity method to conduct structural damage

identification, in which a trust-region constraint was introduced to enhance the

performance of the standard sensitivity method. The Extended Kalman Filter (EKF)

(Yang et al., 2006; Xie & Feng, 2012) has been applied to perform online system

identification in the time domain.

However, some of the above-mentioned methods (Lu et al., 2017; Esfandiari et al.,

2020; Hu et al., 2017; Lu & Wang, 2017) require good initial system parameters and an

accurate estimation of the gradients. The state-subspace method (Yan & Golinval,
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2005), the wavelet-based methods (Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah et

al., 2020), and the filter based methods (Yang et al., 2006; Xie & Feng, 2012) are easily

affected by high-level measurement noise. These unfavorable conditions might restrict

the practical applications of these traditional methods, especially for some large-scale

structures or nonlinear structures.

In contrast, machine learning methods can be used to overcome the

abovementioned drawbacks, since machine learning based methods can learn and make

predictions via datasets instead of the explicit formulations (Ding et al., 2019a). Many

studies by using machine learning methods, mainly including the artificial neural networks

(ANN), have been conducted for structural damage identification. Abdeljaber et al. (2018)

proposed using convolutional neural networks for damage identification of joints in a steel

frame. Maity and Saha (2004) used the strain and displacement data for damage

identification of a simple cantilever beam using a back-propagation ANN. Padil et al. (2017)

developed a non-probabilistic ANN to perform structural damage identification

considering system uncertainties. Nadith et al. (2018) proposed the deep auto-encoder

neural networks to identify structural damage, in which the first several natural frequencies

and mode shapes were employed as the input and structural damage locations and extents

were identified as the output. Liu et al. (2014) presented the Rough Sets (RS) theory

combining with ANN to conduct damage identification. An information entropy based

discretization in RS was used for dimension reduction and then ANN was applied for the

following identification. Elshafey et al. (2013) developed a methodology based on the

feed-forward back-propagation and the radial basis neural network to identify cracks for

both thick and thin concrete elements.

Nevertheless, because of the usage of back-propagation algorithms based on gradient

descent, a main shortcoming of ANN is the potential problem of local minimal when the

network generates relative complex error surfaces with many local best points. When

utilizing some traditional deterministic optimization techniques, if a selected initial point is

far away from the global minimum, the optimization problem would converge to the local

minimal instead of the global one. Previous studies (Curry & Morgan, 1997; Gupta &

Sexton, 1999; Valian et al., 2011) have reported this local minimal problem relevant to the
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back-propagation algorithm. Swarm intelligence techniques, i.e. Genetic Algorithm (GA)

(Wang, 2009), Particle Swarm Optimization (PSO) algorithm (Chen & Yu, 2017) and

Artificial Bee Colony (ABC) algorithm (Sun et al., 2013), have been used effectively for

various types of optimization problems in recent years. These algorithms belong to global

search techniques and have a higher likelihood to obtain global minimal and to avoid local

minimal. Therefore, some remarkable successes by combining ANN and swarm intelligence

methods to tackle complex problems in different fields have been obtained. For example,

Geethanjali et al. (2008) concluded that using the PSO to train multi-layered neural

networks is more effective than the back-propagation algorithm, for detecting an internal

fault and distinguishing with other operating conditions of power transforms. Other

combinations, i.e., a combination of GA and ANN, namely, GA-ANN (Yazdanmehr et al.,

2009) and Imperialist Competitive Algorithm based ANN (ICA-ANN) (Toghyani et al.,

2016), and Differential Evolutionary based ANN (DE-ANN) (Nguyen et al., 2016) have

been developed to deal with complex production units problem and the stirling heat engine’s

power prediction.

Apart from the abovementioned algorithms, a new type of swarm intelligence method,

named as Jaya algorithm (Rao & Saroj, 2017), has gained its attention. The most obvious

advantage of the Jaya algorithm is that there is no special controlling parameters in this

algorithm. To enhance the performance of the Jaya algorithm, K-means clustering is

introduced into the Jaya algorithm by Ding et al. (Ding et al., 2019b) and the optimization

performance of the Jaya algorithm has been greatly improved but the simple algorithmic

structure of the Jaya algorithm is still kept. Therefore, the K-means Jaya algorithm is

potentially promising to replace back-propagation algorithms for training ANN.

Regarding structural damage identification, existing studies (Yan & Golinval, 2005;

Lu et al., 2017; Esfandiari et al., 2020; Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah

et al., 2020; Altunisik et al., 2017; Zheng et al., 2015; Hu et al., 2017; Lu & Wang,

2017; Ding et al., 2019a; Maity & Saha, 2004; Padil et al., 2017; Pathirage et al., 2018)

focus more on the linear structures. In real applications, when structures have severe

damages, nonlinear behaviors would be observed (Lu et al., 2017; Katsaras et al., 2008),

especially under strong excitations. To describe the nonlinear behavior resulting from
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structural damages, several nonlinear hysteretic models, such as Preisach, Ischlinskii,

Bouc-Wen and bilinear models (Charalampakis & Dimou, 2010), have been presented.

Identifications of these nonlinear models are also important to understand the structural

vibration behavior and condition (Lu et al., 2017). However, few researches on the

simultaneous identification of structural damage and nonlinear hysteretic models have been

conducted. The measurement noise inevitably exist in the identification process. However,

the noise level in many studies (an & Golinval, 2005; Lu et al., 2017; Esfandiari et al.,

2020; Ren & Sun, 2008; Cao et al., 2012; Yazdanpanah et al., 2020; Altunisik et al.,

2017; Zheng et al., 2015; Hu et al., 2017; Lu & Wang, 2017; Ding et al., 2019a) follows

a certain pattern with a moderate level. Under certain situations, very significant noise

could be observed and the influence of a strong noise on the identification performance

should be investigated to demonstrate the robustness of the developed methods.

This paper proposes a new approach by combining ANN and K-means based Jaya

algorithm for simultaneous identification of structural damage and nonlinear hysteresis

parameters. Specifically, in the training stage to obtain the weights and bias parameters

for the designed ANN, the K-means Jaya algorithm is used to replace the back-propagation

algorithm. As mentioned above, the K-means Jaya algorithm equips stronger global

optimization capacity compared with the traditional gradient information based

back-propagation algorithm. Therefore, using the K-means Jaya algorithm could more

effectively train the ANN. The integrated algorithm is termed as ‘ANN-K- means Jaya’.

Numerical studies are conducted on a benchmark structure with an improved Dahl

hysteresis model (Wang & Liao, 2011) to demonstrate the accuracy and efficiency of

the proposed approach. The simultaneous identification of structural damage and

hysteretic model parameters is conducted for verifying the performance of the proposed

approach. Furthermore, a relatively high level noise is introduced into acceleration data

to simulate the case with strong measurement noise for the identification.

State-of-the-Art swarm intelligence methods, including K-means Jaya (Ding et al.,

2019b), Improved Tree Seeds Algorithm (Ding et al., 2019c), Best Neighbor-guided

ABC (Hu et al., 2019), and the traditional ANN method are also used for comparison

with the proposed ANN-K-means Jaya algorithm in terms of the calculation efficiency
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and identification accuracy.

7.2 Nonlinear Hysteretic Model and Parameter Identification

7.2.1 Improved Dahl hysteresis model

This section briefly reviews the improved Dahl hysteresis model (Wang & Liao,

2011). The equation of motion of the Single Degree Of Freedom (SDOF) nonlinear

system considering the hysteretic models can be expressed as
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where u is the displacement; 00 ,uu  and 0r are respectively the initial displacement,

velocity and restoring force of the nonlinear system; and kcm ,, and F denote the

mass, damping, stiffness and excitation respectively. The restoring force r can be

obtained based on the proposed improved Dahl hysteresis model, in which the

parameter  is used to control the shape of the force-displacement responses.

The hysteretic behavior describes the memory-based relationship between the

displacement u and the r , which can be generally defined as

 ,,, uurfr   (7.2)

where  f is the nonlinear function denoting the hysteresis behavior, and  denotes

the effective controlling parameter. Generally, Bouc-Wen model (Lu et al., 2017; Ding

et al., 2019b) is commonly used to represent the hysteresis response. In this article,

instead of using the Bouc-Wen model, an improved Dahl hysteresis model, as shown in

Figure 7-1, is introduced to simulate the nonlinear hysteresis response.
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Figure 7-1 The improved Dahl nonlinear hysteretic model.

The improved Dahl model can well represent the hysteretic force-displacement

response in the small displacement region and can be expressed as

)||( ruur    (7.3)

where  represents the controlling coefficient; r is the restoring force. The

improved Dahl model could be used to describe the hysteresis phenomenon. Compared

to the Bouc-Wen model, fewer controlling parameters are involved in the improved

Dahl model. Furthermore, the model parameter vector p can be defined as follow

Tck ],,,[ 00 p (7.4)

It ought to be noted that different model vector p could generate different

nonlinear dynamic responses.

7.2.2 Nonlinear Model Parameter Identification

To well describe a nonlinear system with the improved Dahl model, Figure 7-2

presents a Single Degree Of Freedom (SDOF) nonlinear system, which is used as an

example to demonstrate the dynamic response calculation of a nonlinear system.

Firstly, substitute the Eq.(7.3) into the Eq.(7.1) and use the Runge-Kutta method is

used to solve Eq. (7.1) to obtain the dynamic responses. Similarly, the equation of

motion of a nonlinear Multi Degree Of Freedom (MDOF) system or structure can be

built.
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In this article, )(tF and )(tu are respectively defined as two vectors

comprising the input and the output data; kttt ,...,, 21t represents the time instant

series and )( ktu denotes the dynamic response at the time instant kt . As mentioned

above, it is noted from Eq. (7.1) that when using different model vector p , different

dynamic responses would be obtained. Therefore, the analytical dynamic response

)(ˆ ktu under the model vector p̂ at the time instant kt can be expressed as follows

),ˆ()(ˆ kk tftu p (7.5)

When using the swarm intelligence methods to conduct nonlinear model

identification, the discrepancy between the calculated and measured responses can be

used to formulate the objective function, which is defined as (Ding et al., 2019)

T
kiki
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k
kiki tutututug

res time

))()(ˆ())()(ˆ()ˆ(
1 1


 

p (7.6)

where resn is the quantity of the available measurements that are used for updating,

which relies on the number of sensors used in the dynamic test; timen is the number of

sample points in each measured response; )( ki tu denotes the measured dynamic

response.

Figure 7-2 The improved Dahl model in SDOF system.

When using machine learning methods for the nonlinear system identification, a

number of training samples are required. These samples can be obtained with different
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model vector p̂ . The input to the training can be the dynamic responses )(ˆ ktu , and the

output is the corresponding model vector p̂ .

7.3 Methodology

7.3.1 Artificial Neural Network

ANN is developed in the shape of a parallel distributed network inspired by

human nervous system. The distinct feature of ANN is the capacity to learn from

datasets to improve its prediction performance. Thus, the trained neural networks can

be used for parameter identification, classification and pattern recognition, etc. ANN

usually contains three main components, namely the input layer, hidden layer and

output layer. Each layer comprises a set of neurons connected with each other by

training parameters (weights and bias). Every neuron possesses a processing element

with synaptic input connections based on the quantity of the processing neurons in the

previous layer and a single output. Many neural network architectures have been

developed, and multilayer perception neural networks are one of the most frequently

used models. Multilayer perception neural networks contain one or more hidden layers

of neurons linked between the input and output layers. Neurons of one hidden layer

connect only to neurons of the immediately preceding and immediately following

layers. The overview of a three-layer network is shown in Figure 7-3.

Figure 7-3 Three-layer neural network architecture.
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Observed from Figure 7-3, the transfer process between neurons in layers could be

found. The input layer receives input patterns ( nQQ ...1 ), and then the input is

transmitted to hidden layers. The hidden layer possesses several processing units and

has an important role to bridge between the input layer and the output layer. Each

element in the preceding layers is fully connected to the following ones, and these

connections are based on training parameters, i.e. weight and bias. The whole transfer

process is defined by two equations. The first one is a propagation function, which

computes the input to a neuron from the output of its predecessor neurons and their

connections as a weighted sum plus the bias.

),...,2,1(; njbxwinput aj
n
j jaa  (7.7)

where jx denotes the output of the jth processing neuron of the input layer, jaw is

the synaptic weight ratio that links the jth and ath processing neurons; ab is the

bias ratio between input and hidden layers; j and a are the processing neurons in

the input and hidden layers, n is the number of processing neurons in the input layers.

There are m total processing neurons in the output layers. ainput represents the

input to the ath processing neuron of the hidden layer.

When Equation (7.7) is calculated, the second equation is an activation function

used to restrict the value range of the output neurons. The activation function could be

a monotonically increasing linear or nonlinear function (Ertugrul, 2018). A sigmoid

activation function is employed in this study. Output results aoutput are acquired

from the output layer as follows

),...,2,1(;
1

1 ma
e

output
ainputa 


  (7.8)

where ainput , calculated by Equation (7.7), denotes the input of the ath processing

neuron; and aoutput is the output of the ath processing neuron in the output layer.

Training parameters, i.e. weight and bias, are the most important factors that could

determine the success of the trained network. The process of training the network is to
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adjust training parameters by minimizing the difference between the calculated output

and labelled ones based on training datasets. Generally, the algorithms used for training

are the back-propagation methods, which are based on gradient descent. Using these

gradient-based algorithms for training would make the network converge to local

minimal if the network generates complex error surface with too many local minimal

points. To minimize the possibility to face this situation, K-means Jaya (Ding et al.,

2019b), which is an EA based on global search techniques, is employed to minimize the

difference between calculated outputs and desired ones for training the network

parameters. Specifically, the K-means Jaya replaces back-propagation algorithms to

determine training parameters including weight and bias. The trained network is used

to identify structural damages and nonlinear hysteresis model parameters. A number of

samples are generated as training datasets. Acceleration responses are treated as the

input to the network, and the output is the vector of structural damage and nonlinear

model parameters. Afterwards, acceleration responses in the testing datasets are used as

the input and the obtained output provides the identification results.

7.3.2 K-means Jaya algorithm

Jaya algorithm is a powerful swarm intelligence method inspired by the

conception that the feasible solution acquired for a given problem ought to move

towards the best solution and avoid the worst solution (Rao & Saroj, 2017).

Specifically, for each feasible solution, the way of creating its offspring is to move

closer to the success (i.e. approaching the best solution) and avoid the failure (i.e.

escaping from the worst solution). When generating the offspring, the objective

function values are calculated and compared to determine whether this solution or its

offspring comes into the next iteration (the selection process is also termed as ‘Greedy

Selection Rule’) (Ding et al., 2019b). Three main steps are involved in the Jaya

algorithm, which are briefly summarized.

7.3.2.1 Initialization

It is assumed that a colony is randomly generated in the search space and there
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contains CS solutions. Every solution is marked as hθ , which comprises u

variables ( ],...,,[ 21 uhθ ) . These variables could be generated as

)()1,0(rand ,,,,
L
uh

U
uh

L
uhuh   (7.9)

where uh, denotes the uth variable of hθ ; )1,0(rand denotes a random number in

a range from 0 to 1; U
uh, and L

uh, represent the upper and lower bound values,

respectively.

7.3.2.2 Local search strategy

When completing initialization, the local search strategy is operated. Assuming

that Cuh ,, represents the value of the uth dimension of the hth solution at the Cth

iteration, the offspring '
,, Cuh generated by this value is calculated as

|)|(|)|( ,,,,,,2,,,,,,1,,
'

,, CuhCuworstCuCuhCubestCuCuhCuh rr   (7.10)

where Cur ,,1 and Cur ,,2 are two random numbers within in the range ]1,0[ . Cubest ,,

and Cuworst ,, are respectively the values of the uth variable for the best solution and

the worst one in the current iteration.

7.3.2.3 Greedy selection mechanism

With calculations for all dimensions based on Eq. (7.10), the offspring '
,Chθ is

obtained. The objective function values of Ch,θ and '
,Chθ are calculated and the

solution corresponding to better objective function value will be kept in the next

iteration. The algorithm will be continually run until the termination condition is

satisfied, i.e., the maximum iteration number is reached.

The standard Jaya algorithm is illustrated above. To make the Jaya algorithm more

powerful, the K-means clustering mechanism and a special search equation for the best

solution (Ding et al., 2019b) is employed to enhance the standard Jaya algorithm’s

performance, termed as “K-means Jaya”. The specific procedures are illustrated as
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follows.

7.3.2.4 K-means clustering

The clustering technique is a useful tool to discover the inherent pattern in any

given datasets. Therefore introducing the clustering technique into the swarm

intelligence methods would be effective and efficient by making full use of the colony

information (Cai et al., 2011). Among all clustering techniques, the K- means clustering

is the simplest yet effective. During the early iterations of the Jaya algorithm,

conducting the K-means clustering is straightforward and beneficial to improve the

algorithm’s convergence performance (Ding et al., 2019a). The specific steps of

operating K-means clustering are described here

Step 1: CSK  1.0 initial clustering centers kCCC ,...,, 21 are randomly

selected from the CS individuals ],...,,[ 21 csθθθ .

Step 2: The remaining solutions are delivered to these clustering centers according

to their shortest distance to these centers. The distance between any two individuals

(i.e., zθ and cθ ) is determined by the Manhattan distance

)(||||),(
1 ,, 


u
v vcvzczcz absd θθθθ (7.11)

Step 3: When completing the clustering once, each clustering center may attract

several solutions, which can be used to calculate new clustering centers ''
2

'
1 ,...,, kCCC ,

as follows


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Step 4: Finally, another K parent solutions from the colony will be randomly

chosen and then combined with the newly-calculated clustering centers as a new set,

marked as  . The objective function values of the solutions will be calculated in the

set  , and these values are sorted from the smallest to the largest. The first K

individuals are put into the colony.

7.3.2.5 A new updating equation for the best solution



215

In the standard Jaya algorithm, the best solution plays a critical role in the

optimization process, since it guides other solutions to its region. To prevent the

premature convergence of the algorithm, a new updating equation that concentrates on

the global search is introduced here (Ding et al., 2019b; Gao et al., 2015)

)( ,,,,,,
'

,, CubestCuhCubestCubest rand   (7.13)

where Cubest ,, represents the value of the uth dimension of the best solution at the

Cth iteration and '
,, Cubest denotes its offspring value, Cuh ,, means the value of the

uth dimension of an arbitrary solution in the colony. The randomly selected solution

will be used to generate the offspring of the best solution and such randomness can be

helpful in preventing premature convergence.

Figure 7-4 Flowchart of using the proposed ANN-K means Jaya for nonlinear model

identification.

Herein, the K-means Jaya algorithm is demonstrated. The simple structure of the
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standard Jaya algorithm is still kept in the K-means Jaya algorithm, which is used to

replace the back-propagation algorithms in training weights and bias of the designed

ANN. To demonstrate the procedure of the proposed approach, Figure 7-4 presents the

flowchart of using the developed approach, namely ANN-K means Jaya, to conduct the

nonlinear structural damage and model parameter identification.

7.4 Numerical studies

The first numerical example is a nonlinear SDOF system with the improved Dahl

hysteresis model, as shown in Figure 7-1. The model vector of this system is

]6.0,1,2.0,1[p , which is to be identified. The external loading is defined as

)cos()( ttF  . The hysteresis phenomenon with model vector ]6.0,1,2.0,1[p for

]30,0[t is shown in Figure 7-5.

Figure 7-5 Nonlinear system behavior with an improved Dahl hysteresis model.

7.4.1 Training data generation

The acceleration data will be used for the identification. When using the ANN-K

means Jaya for nonlinear model parameter identification, a number of samples are

required for training. In this studies, 600 samples of acceleration data under sinusoidal

excitations are obtained by using randomly generated model vectors. Similar as Ref.
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(Ding et al., 2019c), the input for training ANN with K-means Jaya is the 3 seconds

responses with a sampling frequency of 100 Hz. In the randomly generated 600

samples, the first 420 samples are employed as the training datasets while the

remaining 180 samples are used as the testing datasets. Furthermore, to avoid the

‘dimension disaster’ and to save the computational demand, Principle Component

Analysis (PCA) technique (Golinval, 2017; Lever et al., 2017) is carried out to process

the acceleration data before training. The working mechanism of the principle

components are entirely equivalent to finding the eigenvectors of the covariance matrix.

Each eigenvector corresponds to one principal component, and the principal component

with the largest variance is the most important one. In this study, the first fifteen

principle components, which covers over 95% of the variability in data, are used for the

training and testing.

7.4.2 Parameters setting for the ANN-K means Jaya for a SDOF system

A relatively simple ANN-K means Jaya model is used for the nonlinear SDOF

system identification. Namely, one hidden layer with 10 neurons is designed for the

proposed method. The sigmoid function is employed as the activation function for all

the layers. For the parameter setting of the K-means Jaya algorithm, the number of

initial random solutions is 100CS and the maximum iteration number is 5000 or the

deviation from two consecutive iterations of objective function value is lower than

810 . Similar as Ref. (Pathirage et al., 2018), additional measurement noise is added

into the data. 10% random noise in the acceleration responses in order to train the

network model to be more robust to noisy measurements. 30 runs are repeated by using

the proposed algorithm, and the mean values and the standard deviations (std.) are

recorded as the final identification result.

7.4.3 Training process and identification results

Figure 7-6 shows the iteration process of the objective function values. The

objective function for the proposed ANN-K means Jaya represents the Mean Square

Error (MSE) value between the calculated output and the target output. The objective

function values are at the order of 510 after iterations, which means that the
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discrepancy between calculated outputs and desired ones is sufficiently small and also

indicates that the training of weights and bias parameters is successful. Figure 7-7

shows the fitted results from the 1st parameter to the 4th parameter in the model vector

P based on the training datasets (the first 420 samples) by using the proposed

approach. It can be observed that the fitted results are close to the labels of training

data. This good agreement further demonstrates the satisfactory training process by

using the proposed approach. Figure 7-8 shows the regression of the testing dataset. It

can be found that the normalized data are almost distributed along the 45-degree line

and the R-value for all variables are higher than 0.99, indicating that a very good

agreement between network output and target label results is achieved. The trained

network will be used for nonlinear model parameter identification. 20% noise is

introduced into the acceleration responses to simulate the uncertainties in vibration

measurement. It should be noted that the noise level is much higher than that in Refs.

(Cao et al., 2012; Yazdanpanah et al., 2020; Zheng et al., 2015; Hu et al., 2017; Lu &

Wang, 2017; Lu et al., 2017; Ding et al., 2019c). As regarding the identification, the

trained network will be used to identify the above-mentioned model

parameter ]6.0,1,2.0,1[p . The final identification results are shown in Table 7-1. Good

identification results are obtained and the maximum relative error of the proposed

approach is only 0.45%, demonstrating the good robustness and accuracy of the

proposed ANN-K means Jaya, even with severe noise effect.
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Figure 7-6 Iterations of objective function values for the network training process of the
nonlinear SDOF system.
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Figure 7-7 Fitted results on all parameters in the model vector based on the training

dataset by using the proposed method, (a): 0k ; (b): 0c ; (c)  (d):  .
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Figure 7-8 Regression results on all parameters in the model vector based on the testing

datasets by using the proposed method, (a): 0k ; (b): 0c ; (c)  (d):  .

7.4.4 Comparisons with state-of-the-art swarm intelligence technique

In this section, several state-of-the-art swarm intelligence techniques, including

the K-means Jaya (Ding et al., 2019b), Levy Tree Seeds Algorithm (Ding et al., 2019c)

and Best Neighbor-guided ABC (Hu et al., 2019) are introduced for comparison.

Swarm intelligence methods conduct the nonlinear model parameter identification by

optimizing Eq. (7.7). The input data is the 3 seconds acceleration responses. 20% noise

is also introduced to simulate the uncertainties. In terms of the setting of parameters for

the algorithms, the number of initial random solutions is 100CS and the maximum

iteration number is 100. Specifically, for the Levy Tree Seeds Algorithm, ST is set as

0.45, the number of conducting Levy flight for the best solution is set as 100. For the

Best Neighbor-guided ABC, the parameter limit is set as 200 and the neighbor range is

5. Each algorithm is independently run 30 times, and the mean values and the standard

deviations (std.) are obtained.

(a) (b)

(c) (d)
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Figure 7-9 presents the evolutionary processes of the objective function values

from the abovementioned three swarm intelligence techniques. The objective function

for the swarm intelligence methods represents the discrepancy between the measured

and calculated acceleration responses, as shown in Eq. (7.7). It needs around 80 cycles

for the Levy Tree Seeds Algorithm and K-means Jaya algorithm to converge.

Furthermore, the final values acquired by the Levy Tree Seeds Algorithm and K-means

Jaya algorithm are smaller than that acquired by the Best Neighbor-guided ABC. The

identification results by these three EAs are also listed in Table 7-1. The maximum

relative error from the Best Neighbor-guided ABC, the Levy Tree Seeds Algorithm and

the K-means Jaya algorithm are respectively 23.35%, 6.80%, and 5.85%. The proposed

ANN-K means Jaya significantly outperforms the other three swarm intelligence

methods with a lower relative error. Furthermore, the standard deviation values from

the proposed method are significantly less than those acquired by the swarm

intelligence methods, which means the proposed method is more stable in system

parameter identification of the nonlinear SDOF system. In addition, the numerical

computations are conducted on a laptop with an Intel i5 processor and 16-GB RAM for

computing and the computational times of each algorithm is also given, as observed in

Table 7-1. The required computational time for the proposed method is the most, since

the proposed ANN-K means Jaya requires more time for network training. However,

the proposed approach can provide the most accurate identification results.
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Figure 7-9 Evolutionary processes of objective function values based on state-of-the-art swarm

intelligence methods.

Table 7-1 Identified results for a nonlinear SDOF system with improved Dahl model.

Parameters
True

values

ANN-K means
Jaya

Best
Neighbor-guided

ABC

Levy Tree Seeds
Algorithm

K-means Jaya

Mean
value

std.
Mean
value

std.
Mean
value

std.
Mean
value

std.

p1 1 1.0041 0.0002 1.0626 0.0282 1.0117 0.0122 1.0217 0.0207

p2 0.2 0.1976 0.0000 0.2467 0.0533 0.2136 0.0200 0.2117 0.0373

p3 1 1.0045 0.0001 0.9881 0.0406 0.9870 0.0087 0.9852 0.0077

p4 0.6 0.5971 0.0000 0.5792 0.0381 0.6110 0.0069 0.5849 0.0082

Maximum relative
error (%)

0.45 23.35 6.80 5.85

Computational
time of a run

(minutes)
45 20 25 10

7.5 Identification for a MDOF system

In this section, a MDOF system with a smart controlling device, is used to further

verify the performance of the proposed approach. A five-storey building structure (Wu

& Samali, 2002; Yu et al., 2018) is used here as an example, as shown in Figure 7-10.
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Structural properties of this five-storey building model, including mass, stiffness and

damping coefficients, are listed in Table 7-2. The detailed finite element modeling

(FEM) process of this benchmark model is referred to Refs. (Katsaras et al., 2008; Lu

et al., 2017), in which the shear model is used to simulate this building. The N-S

component of El Centro ground motion recorded at the Imperial Valley Irrigation

District substation in El Centro, California during the earthquake on 19 May 1940, is

used as the external excitation. To simulate the behavior of the seismic isolation device,

in this article, the improved Dahl hysteresis model is introduced in the first floor. The

parameters  and  in the improved Dahl hysteresis model are set as 0.7 and 0.8,

respectively. Structural damage is assumed as the stiffness reduction of a specific

element and the damage status of a structure is quantified through a series of damage

index δ (Ding et al., 2019a). For example, if the damage index of an arbitrary element

( h ) is equal to 0.1, it means 10% stiffness reduction is introduced in this element,

namely, 1.0h . In this study, simultaneous identification of structural damages and

nonlinear hysteresis parameters is conducted.

Table 7-2 Structural properties of the five-storey benchmark building model (Yu et al., 2018).

Floor no. Mass (Kg) stiffness (kN/m) Damping (kN s/m)

1 214 1146 0.0584
2 207 3124 0.1117
3 207 3156 0.1128
4 207 3156 0.1100
5 207 2978 0.1233
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Figure 7-10 Five-storey benchmark building model (Yu et al., 2018).

Figure 7-11 The acceleration response of the 1st floor.

7.5.1 Training data generation

It assumed that the ground excitation is known in advance, namely, the input data

is the acceleration responses of the 1st floor under the EI central seismic excitation.

Figure 7-11 shows the acceleration responses of the first floor of the intact building

under the abovementioned seismic excitation, which lasts 15 seconds with a sampling

frequency of 100 Hz. Considering that the proposed ANN-K means Jaya has the best

performance in the previous numerical studies on a SDOF system, therefore only the

proposed approach is used for the following identification. 1000 sample datasets are
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generated randomly, in which the first 700 samples are employed as the training dataset

while the remaining 300 samples are used as the testing dataset. Then PCA is used to

process the input acceleration data and the first thirty principal components, which also

covers over 95% of the variability in data, are used for the training and testing.

7.5.2 Parameters setting for the ANN-K means Jaya

One hidden layer with 10 neurons (Padil et al., 2017) is designed for the ANN-K

means Jaya. The output of the network includes structural parameters and nonlinear

model parameters. The sigmoid function is served as the activation function for all the

layers. Regarding the parameters setting for the K-means Jaya, the number of initial

random solutions is 100CS . The termination condition is defined as the maximum

iteration number is reaching 100 or the deviation from two consecutive iterations of the

objective function value is lower than 810 . Additional 10% measurement noise is

added into the acceleration response data in order to train the neural network model

robust to noisy measurements. This example is also conducted on a laptop with an Intel

i5 processor and 16 GB RAM for computing. The proposed ANN-K means Jaya is

carried out 30 runs independently, and the mean values and the standard deviations

(std.) are recorded as the final identification result.

7.5.3 Training process and identification results

Figure 7-12 shows the iteration situation of the objective function value for the

training process. It can be found that the objective function value is at the magnitude

order of 510 after around 4500 cycles, which means the discrepancy between

calculated outputs and desired ones is sufficiently small enough and also means that the

training of weights and bias parameters is successful. To further demonstrate the

effectiveness of the trained network, Figure 7-13 presents the regression results of the

samples from the testing dataset. The normalized data are basically distributed along

the 45-degree line and the R-values for all these parameters are higher than 0.96,

indicating that a close agreement between output and target results is achieved. Then

this trained network is used for simultaneous structural damage and nonlinear
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parameter identification. The required calculation time for the training process lasts

around 70 minutes for each run.

Figure 7-12 Iterations of objective function values for the network training process of the

nonlinear MDOF system.

Two cases, which are not included in the training dataset, namely, Case 1 and Case

2, are introduced for testing the performance of the trained network. A small single

damage is defined in Case 1 with 5% reduction in the stiffness of the 3rd floor.

Therefore, the model parameter ],,,,,,[ 543211 P for Case 1 is

]8.0,7.0,0,0,05.0,0,0[1 P . Multiple damages are defined in Case 2 with 20% reduction

in the stiffness of the 1st, 3rd and 5th floors, respectively. Thus, the model parameter

],,,,,,[ 543212 P for Case 2 is ]8.0,7.0,2.0,0,2.0,0,2.0[2 P . 20% measurement

noise is introduced into the acceleration responses of the 1st floor, which are used as the

input to the network. Furthermore, the traditional back propagation algorithm based

ANN is also introduced for comparison. The identification results obtained from the

mentioned two methods are shown in Table 7-3.
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Figure 7-13 Regression results on all parameters in the model vector based on the testing

dataset by using the proposed method; (a) 1 ; (b) 2 ; (c) 3 ; (d) 4 ; (e): 5 ; (f):  ; (g)

 .

(a) (b)

(c) (d)

(e) (f)

(g)
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For Case 1, the maximum identification relative error from the ANN and the

proposed method are respectively 9.60% and 2.60%. For Case 2, the maximum relative

error from the proposed ANN-K means Jaya is 2.61% while that by using ANN is

11.55%. The superiority of the proposed approach is demonstrated in terms of the

identification accuracy. Compared with the results from the nonlinear SDOF system,

the identification error for the MDOF system is increased. However, it should be noted

that the five-storey benchmark building structure and its external excitation are more

complex, and the maximum relative error in the identification results of this nonlinear

MDOF system is less than 3%. Overall, good results by using the proposed approach

are obtained for the simultaneous identification of structural damages and nonlinear

hysteresis parameters, which demonstrates the effectiveness and accuracy of the

proposed approach.

Table 7-3 Identified results for a nonlinear MDOF system with improved Dahl model.

Case 1 Case 2

Parameter
s

True
values

ANN-K means Jaya ANN
True

values

ANN-K-means Jaya ANN

Mean
values

std.
Identification

value
Mean
values

std.
Identification

value

1 0 0 0 0.001 0.2 0.1998 0.0000 0.1877

2 0 0.001 0.0001 0 0 0.002 0.0001 0.001

3 0.05 0.0487 0.0001 0.0452 0.2 0.1956 0.0001 0.1899

4 0 0 0 0.002 0 0.003 0.0002 0.005

5 0 0 0 0.001 0.2 0.1968 0.0003 0.1769
 0.7 0.6885 0.0002 0.6765 0.7 0.6817 0.0002 0.6739
 0.8 0.7982 0.0001 0.7786 0.8 0.7934 0.0003 0.7751

7.6 Conclusions

This paper proposes a new approach for structural damage and nonlinear model

parameter identification of nonlinear structures. The recently developed K-means Jaya

algorithm is used to train the parameters of an ANN, which is then used for structural

damage and nonlinear model parameter identification. The improved Dahl model, with

few controlling parameters, but can well describe the hysteresis phenomenon is used in

this study. High-level noise is added into the acceleration responses to simulate the
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uncertainties in the data used in the identification analysis. Numerical studies are

conducted on a SDOF system for identifying the nonlinear model parameters, and on a

MDOF system for the simultaneous identification of structural damages and nonlinear

model parameters. The following conclusions are drawn from the obtained results:

 For the SDOF system, the proposed ANN-K means Jaya performs better than

several state-of-the-art swarm intelligence methods, in terms of the identification

accuracy;

 For the MDOF system identification, although only using one acceleration

response, the proposed approach still provides good identification results for both

structural damages and nonlinear model parameters. The accuracy of identification

results from the proposed approach is better than that obtained by the traditional ANN

method;

 Overall, the proposed ANN-K means Jaya equips good robustness and is an

effective tool to conduct more complex system identification of nonlinear structures.
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Main findings

This thesis develops and improves swarm intelligence methods, neural network

methods, and hybrid methods to conduct structural identification considering

uncertainties. The major contributions and findings in this thesis are briefly

summarized below:

Chapter 2 presents the clustering based Tree Seeds Algorithm to perform structural

damage identification. The modal data is used to formulate the objective function. The

developed algorithm and the objective function are described. Numerical simulations

and experimental verifications reveal that: (1) The proposed method could identify

damages more accurately than those acquired by some other swarm intelligence

methods; (2) Even though relatively high-level uncertainties is introduced, the

proposed method could still acquire satisfactory results; (3) The proposed method

could also be seen as a useful tool for model updating, especially for simple structures

(usually the total element number is less than 100).

Chapter 3 presents a novel method for nonlinear structural parameter

identification. The Lévy flight mechanism and a new updating equation are employed

to modify the original Tree Seeds Algorithm. The acceleration responses are used to

formulate the objective function. The numerical examples show that: (1) The proposed

algorithm could effectively identify three representative nonlinear models; (2) Using

different types of response data as the input, the proposed method could still identify

these parameters accurately. (3) The proposed algorithm shows obvious improvements

in identification accuracy compared with the enhanced sensitivity method. Therefore,

the proposed method is a better tool for nonlinear parameter identification.

Chapter 4 investigates the application of the Jaya algorithm in structural damage

identification. A novel objective function, which is modified by using the sparse

regularization technique and the Bayesian inference, is proposed. A relatively

large-scale truss structure and a vehicle-bridge model are employed as the numerical

example and the experimental verifications. It is observed that: (1) The proposed
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objective function is more sensitive to structural damage compared with traditional one;

(2) The proposed method could yield more competitive identification results compared

with some traditional optimization methods; (3) The proposed method incorporating

with the proposed objective function can be used to identify the parameters of

relatively large-scale structures.

Chapter 5 presents the development and application of the sparse deep belief

neural network in solving the undetermined structural damage identification problem.

To enhance the capacity of the standard deep belief neural network, the sparse

constraint is introduced. Numerical and experimental studies show that: (1) Due to the

introduction of the sparse constraints, the performance of the deep belief neural

network has been obviously enhanced; (2) Compared with the swarm intelligence

methods, the proposed method has distinctive advantages in damage localization; (3)

Even only the first several natural frequencies are available, the proposed method could

provide satisfactory identification of a frame structure; (4) However, the proposed

method requires more time for calculation.

Chapter 6 investigates the hybridization of the Tree Seeds Algorithm and the Jaya

algorithm to perform structural damage identification of the Guangzhou New TV tower

benchmark structural model and an experimental beam structure. To effectively curb

the effects posed by the uncertainties, the interval analysis method is introduced and a

damage index, termed as the ‘DMI’ value, is employed to quantify structural damages.

It was observed that even though only limited modal data is used, the proposed method

incorporating with the DMI values could yield reliable probabilistic identification.

Chapter 7 studies the hybridization of the K means Jaya algorithm and the

Artificial Neural Network to conduct the simultaneous identification of structural

damages and nonlinear hysterisis parameters. To enhance the performance of the

Artificial Neural Network, the K means Jaya algorithm is applied to replace the

back-propagation algorithm during the training process. The acceleration responses are

employed as the input while the output is the identified parameters. The final

identification results show that the proposed method is capable of identifying these

parameters, and better than those acquired by some swarm intelligence methods and the
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Artificial Neural Network. Overall, although the algorithmic structure of hybrid

algorithms become more complex, the hybrid methods equip potentials to solve more

complex identification problems. The complexity here mainly arises from the fact that

the targets to be identified is more complex and contains different types of parameters.

8.2 Recommendations for future study

In the present work, swarm intelligence methods are developed and improved to

conduct structural parameters identification. Good identification results can be

acquired. Following investigations could be conducted in the future study:

1. Experimental verifications carried out in this study are relatively simple. More

complex and practical experimental models can be used to verify the effectiveness and

efficiency of the proposed methods.

2. The damage model is assumed as the linear stiffness reduction, which does not

cover all the possible damage scenarios. Therefore, more refined damage models can be

investigated.

3. These methods can be extended to tackle the identification problem of practical

civil engineering structures, such as highway bridges and buildings. For example, DBN

can be potentially used to conduct the SHM data recovery. Those swarm intelligence

algorithms can be employed to conduct the identification of linear and nonlinear

structures with limited measurements and the optimal sensor placement.
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