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COMPUTATION OF MODEL CURVES FOR CENTRAL FREQUENCY
SOUNDING BY MEANS OF DIGITAL LINEAR FILTER

Summary. Starting with basic equations for CFS response, the computational approach is
developed. A linear relationship exists between the magnetic number and the kernel function
involved in the integral expression. The normalized vertical magnetic field is determined by
subjecting sample values of the kernel function to a digital linear filter. With the help of given filter
coefficients, response curves for homogeneous and two-layer Earth models are computed,
presented and qualitatively analysed.

Riassunto. Partendo dalle equazioni fondamentali per risposte CFS, viene sviluppato un
procedimento per il calcolo di curve teoriche.

Tra il numero magnetico e la funzione di Kernel, contenuta nell’espressione d’integrale,
sussite una relazione lineare.

11 valore del campo magnetico verticale viene determinato sottoponendo la funzione di Kernel
ad una trasformazione lineare mediante un filtro digitale lineare.

Tramite i coefficienti di tale filtro, vengono calcolate, presentate ed analizzate qualitativa-
mente le curve teoriche per i modelli di terra omogenea ed a due strati.
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1. Introduction

Electromagnetic depth sounding is being increasingly applied for solving geological
problems particularly in hard formations. A convenient method of frequency sounding
using a comparatively larger loop, known as Central Frequency Sounding (CFS) has
been introduced by Patra (1967, 1970) in order to solve shallow problems in hard
rocks. CFS measures the existing vertical component of the magnetic field induced at
the center of a circular or square loop placed on a layered Earth. Patra (1967) has given
an expression for the vertical magnetic field with central frequency sounding. This
equation has the form of an infinite integral in which the integrand is the product of two
functions, a kernel function, which depends on the parameters of a layer distribution
and on the frequency, and a Bessel function. Earlier approaches (Patra, 1967, 1970;
Sanyal, 1975) using contour or numerical integration have been found to be time
consuming. The present method involves the calculation of the vertical component of
the magnetic field by subjecting the kernel function to a linear transformation through a
digital linear filter. The method is in line with that Ghosh (1970) used for the
computation of model curves in resistivity sounding problems. Verma (1973, 1977)
and Patra and Mallick (1980) have discussed the application of the digital linear filter
method in the computation of dipole frequency response curves in detail.
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2. Statement of the problem

The ‘measurement of the vertical magnetic field component is of great convenience
in the field. The mode of computation of model curves in terms of normalized vertical
magnetic field is considered. In earlier approaches of computing CFS electromagnetic
response, the evaluation has been made possible only for simple geological models. The
contour integration method applied for solving the problem (Patra, 1970) provides only
an approximate relation for the computation in the two-layer case. The computation of
response curves via numerical integration has so far been restricted for CFS (Sanyal,
1975) only to simple two-layer and three-layer special cases (Patra and Shastri, 1982).
Because of some inherent limitations, numerical integration is replaced here by a linear
digital filter method leading to a rapid preparation of sets of model curves.

Useis made of the digital linear filter developed by Koefoed et al. (1972) and Verma
(1973, 1977) in place of contour and numerical integration approaches. This method
subjects the kernel function to a linear transformation through given digital filter

coefficients in computing CFS response. A 38-point filter is used in the present case.

3. Theoretical formulations

The vertical component H, of the magnetic field at the center of the loop is given by
_the following equation for the case represented in Figs. 1 and 3:

o

al

= e ), (ma) mdm M
0
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Fig. 1 — CFS system over a homogeneous Earth.’

Since the field is measured at the center of the loop, the normal field (H;) for CFS at
the center of the loop is given by eq. (1) (settingr = 0, z = 0 and thereby J, (mr) = 1) as

H,= %I f J; (ma) mdm. 2)

0
With the help of the Lipschitz integral,
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oo

1
f et™ J, (ma) dm =\/W——a2)— 3)

0

eq. (2) can be rewritten as

o

H,=1/2a (since f J; (ma) mdm = 1/&). (4)

0

This is the basic equation for the normal field in the CFS system used for
normalization of field.

The next step is to express and evaluate the magnetic fields for a layered Earth. For
this purpose, use of the following basic equation is made (Sanyal, 1975) to obtain the
vertical component of the magnetic field of a horizontal circular loop (carrying current

I¢*") of radius a placed on the surface of a layered Earth. This can be expressed at any
point on the surface at a distance r from the center of the loop as

al "~
= ? [ [1+ F(m hj’apﬂ]m«L (ma) J, (mr) dm (5)

where F(m) is the kernel function of layer thickness, conductivity and frequency. Since
CFS measures the induced field at the center of the loop, puttingr = 0, eq. (5) reduces to

al ~
H, = ; [ [1+ F(m)] mJ, (ma) dm. (6)

The normalized magnetic field (or magnetic number) can be expressed with the help of
eq. (4) as

=)

H,
h,= H; = o [ [1+ F(m)] mJ;, (ma) dm. (7)

This is the basic equation for the normalized vertical component of the magnetic field
when a circular loop source is placed on the surface of a horizontally stratified Earth.
The components of the electromagnetic vector potential in the horizonal plane are zero
and the radiation term in Maxwell's equation is neglected.

The kernel function F(m) can be computed from the subsurface layer parameters
and the frequency of the primary excitation using a recurrence relation, setting

F(m) = F,, (m). (8)

Ineq. (8), the first suffix refers to the space above the ground surface and the second
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suffix n is the number of subsurface layers. The recurrence relation is expressed as
follows (following the notations used by Koefoed et al. 1972, Sanyal, 1975 and Verma,
1977): '

Myt Fiy (m) €27

F, —
b (W=7 My, By (m) €27 )
and F,, (m) =0
where
2 m;— m,
m;=/(m’ + K ); k=121 y, ajﬁMjE:m .
¥ e

These are the generalized formulations used to compute the kernel function for any
number of subsurface layers.

4. Digital filter coefficients

Eq. (7) can be expressed in a suitable form to compute the integral involved with the
help of a digital linear filter as follows:

h,= a* ‘0/‘ [1» + F(m)] J, (ma) mdm

= a? f mJ, (ma) dm + o [ } (m) mJ, (ma) dm. (10)

0

The first term on the right hand side of eq. (10) represents the magnetic field strength in
free space. By making use of eq. (3), eq. (10) reduces to:

h,=1+d f F (m) mJ, (ma) dm. (11)
0
In order to derive the digital filter, logarithmic scales are introduced such that
x=In (a); y=In (1/m). : (12)

Eq. (11) then becomes

o

h,=1— f Y F (y, by 0, f) T, () dy. (13)

0

It is evident that the relation between the integral as a function of x and the CF'S kernel
function as a function of y (for given values of frequency and the layer parameters)
represents linearity. The integral in eq. (13) is the convolution of two functions. One of
these functions is referred to as the filter function and the other as the input function to
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the filter. The integral itself is termed as the output function. Special care is required in
the choice of the filter function, for the reason that not all the choices are equally good for
practical application.

The following optimum choice is made for CFS system in computing the response
function derived in eq. (13)

input function= — e F(y, h, 0, f)
. (14)
filter function = ™ J, (¢*”).

For deducing the digital filter, the input function is approximated as the sum of the sinc
functions. The integral in eq. (13) is the output function corresponding to input and
filter functions defined in eq. (14). The evaluation of sinc-response of the filter can be
made theoretically by substitution of sinc-function for the input function and then by

numerical evaluation of this integral for the final output function. This is a time
consuming method due to the oscillating character and the slow decay of Bessel
functions involved in the integral. An alternate and a more convenient method to
determine the sinc-response of the filter is by operating on the spectra of the functions
under consideration. The sinc-response of the filter for CFS system is given in Fig. 2.

RESPONSE

40

N
L0  -30 20 210 10 20 3o~ 5.0
7\-—»

Fig. 2 — Sinc response of filter for CFS system.
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5. Frequency-domain sounding

Measurements made by the CFS system with a variety of frequencies form the basis
of the Frequency domain CFS.
Frequency plays an important role indirectly with the kernel function F(m) in the input
function and obviously in the final output function. A dimensionless parameter called
conductivity parameter B = a v/ (wu, 0,/2) containing the frequency component is
introduced in the final solution of the output function. Thus the conductivity parameter
is considered as a variable throughout the computation of frenquency-domain
responses. This facilitates an easy interpretation in the desired range of frequency. The
range of B values is chosen such that the complete frequency domain response due to a
stratified Earth model is obtained within the accuracy of measurement. The frequency,
loop radius and the top layer conductivity influence the output function and to some
extent the filter function particularly in selecting the filter length as illustrated by
Koefoed and others (Koefoed et al., 1972). By making use of eq. (14), the integral in eq.
(13) is solved by treating the input and filter functions in the frequency-domain. The
manner of applying the filter coefficients and their abscissa to the convolution sum
along with the filter weights is given as

N

h, = convolution sum = 3 C, - F (Y}) (15)
where
C, = the filter coefficients at abscissa values 7,

F(Y) = the input function

Yo=x—mn,=In(a) — 1, + k (In (10)/10)

(16)
N = the suffix of the last filter coefficient (= 37, here)
1, = the first abscissa value
a = loop radius.

At each and every value of conductivity parameter (i.e., frequency) the convolution
summation is performed with the help of filter coefficients (Fig. 2). The number of
conductivity parameter values B taken for computation is 24 and the range is between
0.01 and 20.0. The number of filter coefficients is 38. The computations for CF'S based"
on Verma (1977) with sampling interval (In 10)/10 is found adequate to reconstruct the
actual input function between sample points with an absolute error of less than 107>,

6. Computation of response curves
Response for a homogeneous Earth:

A non-magnetic homogeneous Earth (Fig. 3) is considered for computing the
amplitude response. The kernel function in eq. (13) and in the input functions as
derived in eq. (14) can be expressed for a homogeneous Earth (lettingj = 1,n = lineq.

9)) as
Foy=F,=My, = (mg — m,)/(my + m,) (17)

where
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Fig. 3 — Horizontal circular loop over a homogeneous Earth .

my=v/(m’ + kg ); m; = v/(m* + k).

Since the medium 1 as shown in Fig. 3 is air, 0, — 0 and therefore at low frequencies
k, — 0 and m, — m. Then the integral equation for a homogeneous Earth is

oo

_ 2 A T My
h,=1+a f [1+(m+m1)]m]1(ma)dm

0

= 2
=1+d* f _Zm J, (ma) dm. (18)

A m+ m,

This equation can be rewritten in the digital form with the help of substitutions given in
eq. (12). Using the kernel function givenin eq. (17) and consequently the expression for
the input function given in eq. (14), the convolution summation is performed with the
digital notation. In the present study, amplitude response is computed for loop radius
(a) = 1000 m and conductivity = 0.001 S/m.

Two-layer Earth:
Considering the case represented in Fig. 4, the amplitude of the normalized

magnetic field is computed over a two-layer Earth. The corresponding kernel function
derived is as follows:

Letting j = 1 and n = 2, eq. (9) takes the form

—2h
My, + M, e*Hm

—2h] m]
1 +M0,1 M, e

Fy,=F(m)= (19)
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Fig. -+ — Horizontal circular loop over a two-layer Earth.

where
M, =(m,—m,;)/ (m,+ m,)
fV[,2 m; —m,)/ (m; + m
=v(m® + kg )ym;=~/(m" + k )y my = V(m® + k)
—>Oask0—'0andm0—'m1na1rw1th

kg i 2m w0, f where j = 1,2.

The kernel function defined in eq. (19) is substituted in eq. (14) to obtain the input
function. Once the input function for a two layer Earth is found, digital summation is
performed with the usual procedure to obtain the final output function. To compute
frequency-domain responses for a two-layer Earth, the following layer parameters are

considered:
Set I- Loop radius (a)= 50,500,1000 and 1500 m.

g,/ 0, =0.030 and h; =30 m.

Set II - Loop radius (a)= 25 m
g,/ 0, =0.01, 0.1, 0.3, 3.0, 10.0, 30.0, 100.0, °°
a/h, =32,16,4,2.0.

Frequency-domain responses are computed for the above models to study the
resolution trends and its behaviour with different conductivity ratios, thickness ratios
and loop radii.

7. Results

A gradual fall of amplitude over a homogeneous Earth (Fig. 5) is observed with the
increase of conductivity parameter until a saturation is achieved. Similar nature of a
homogeneous Earth response (Fig. 5) and two-layer response curve (for a = 50 m, Fig.
6) implies that the effect of a second layer is not felt even for a thickness of 30 mand for a
loop radius a = 50 m, while for larger values of loop radius, a sharp fall of amplitude
indicates the effect of the existing second layer (Fig. 6).

Amplitude responses for a two-layer Earth model, presented in Figs. 7-10 show the
effect of variation in the layer conductivity of the separation of curves. This change is
reflected on the response curves for larger condcutivity contrast. Separation is poor for
small conductivity contrast between top and bottom layers. Fall of amplitude is slow
and gradual with the increase of second layer conductivity and it decays sharply with
the decrease of bottom layer conductivity. Amplitude response versus B with a/h,; as
- curve parameter presented in Figs. 11 and 12, shows a significant resolution of layer
conductivity for values down to a/h, = 2.0, meaning thereby that the layers are
detected with ease at large conductivity contrast between top and bottom layers.
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Fig. 6 — Amplitude response curve for a two-layer Earth.
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Fig. 7 — Amplitude response curve for a two-layer Earth.
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Fig. 9 — Amplitude response curve for a two-layer Earth.
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Fig. 10 — Amplitude response curve for a two-layer Earth.
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8. Conclusion

The linear digital filter method adopted here in the computation of CFS model
curves is accurate and fast compared to numerical integration approach. The
examination of model curves computed for the cases of a homogeneous and a two-layer
Earth indicates the possibility of a fair resolution of layer parameters. From an analysis
of sets of curves, the depth attainable by the method is inferred to be approximately
equal to half the loop radius.
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