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Although flexible beams for transmitting both translational and rotational large motions are used in practice 
such as ocean drill pipes, their control has not been considered. This paper develops boundary feedback 
controllers to stabilize these beams at their reference configurations. Exact nonlinear partial differential 
equations governing motion of the beams in three-dimensional space are derived and used in the control 
design. The designed controllers guarantee globally practically asymptotically stability of the beam mo-tions 
at the reference states (i.e., positions and rotations of a straight beam moving axially with a desired velocity 
and rotating around its axial axis with a desired velocity). In the control design and analysis of well-posedness 
and stability, we utilize different transformations between the earth-fixed and body-fixed coordinates, Sobolev 
embeddings, and a Lyapunov-type theorem developed for a class of evolution systems in Hilbert space. 
Simulation results are also included to illustrate the effectiveness of the proposed control design.

Keywords: Beams; Transferring motions; Three dimensions; Large motions; Boundary control; Hilbert 
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1. Introduction

Beams for transferring axial linear and rotational motions are often encountered in practice. Typical
examples are long drilling pipes and spindles, see Dong and Chen (2016) for a review on applications
of drilling pipes in oil and gas industry. Due to the linear and rotational motions being transferred,
the energy of the beams does not conserve. This makes sense because the beams need to transfer the
desired energy. This is somewhat different from usual “non-moving” (stationary at the reference con-
figuration) Bernoulli and Timoshenko beams. The transferred motions, slenderness, external loads,
and nonlinear couplings between translational and rotational dynamics cause excessive large motions
and vibrations. Thus, beams for transferring motions are necessarily controlled to reduce their large
motions and vibrations. Boundary control of beams is an attractive and practical approach in com-
parison with distributed control because it only requires measurements and actuators implemented
at their boundaries (usually at only one end) instead of distributed measurements and actuators as
in distributed control, see Do and Pan (2008) for detailed discussion.

Boundary control of stationary (or “non-moving”) Bernoulli and Timoshenko beams has received
extensive attention from control community and excellent results have been achieved. Control of both
large motions and vibrations of Bernoulli beams was considered (e.g., Do (2017a, 2017d, 2018b);
Do and Pan (2008); He, Huang, and Li (2017); He, Meng, He, and Ge (2018); He, Nie, and Meng
(2017) on boundary control of Bernoulli beams with small motions; Do (2017b, 2017c); Do and
Lucey (2017, 2018); Do and Pan (2009) on boundary control of slender beams with large motions).
For Timoshenko beams, most existing works focused on boundary control on their vibrations, see
for example Endo, Matsuno, and Jia (2017); He, Ge, and C.Liu (2014); He, Meng, Liu, and Qin
(2015); Kim and Renardy (1987); Manjunath and Bandyopadhyay (2009); Mei (2009); Morgul (1992);
Queiroz, Dawson, Nagarkatti, and Zhang (2000); Xu and Wang (2013) based on Lyapunov’s direct
method or Krstic, Siranosian, and Smyshlyaev (2006); Krstic, Siranosian, Smyshlyaev, and Bement
(2006) based on the backstepping method Krstic and Smyshlyaev (2008)). Boundary control of large
motions of two- and three-dimensional Timoshenko beams was recently addressed in Do (2017e) and
Do (2018c), respectively. The problem of controlling moving beams/strings was also addressed, see
for example He, Nie, and Meng (2017); Yang, Hong, and Matsuno (2005) on boundary control of
transverse motions of axially moving Bernoulli beams (see also Tabarrok, Leech, and Kim (1974) for
dynamics of these beams), Tucker and Wang (2003) on control of torsional vibrations, Liu, Zhao, and
He (2016a, 2016b, 2017) on stabilization of axially moving strings by boundary feedbacks. In these
works (i.e., He, Nie, and Meng (2017); Liu et al. (2016a, 2016b, 2017); Tabarrok et al. (1974); Yang
et al. (2005)), small motions (vibrations) are considered.

Boundary control and analysis of well-posedness and stability of moving beams governed by exact
nonlinear partial differential equations (PDEs) have not been considered either in two- or three-
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dimensional space. In practice, long beams for transferring axial and rotational motions such as 
ocean drill pipes can exhibit large motions. Strong nonlinear couplings between translational and 
rotational dynamics of these beams under large motions might result in a sudden failure. An example 
is the problem of loop formation due to couplings of the twisting and transverse motions.

This paper develops a new method to design boundary controllers for flexible beams in three-
dimensional space for transferring axial and rotational motions under external loads. The beam under 
consideration is connected to an actuation system at one end, while the other end is connected to an 
object (e.g., drill head) that requires to be transferred axial and rotational motions. Exact nonlinear 
PDEs governing motions of the beam are derived and used in control design and analysis of well-
posedness and stability. These require the unit quaternion for attitude representation, attitude 
tracking, Lyapunov’s direct method, various Young’s and Hölder’s inequalities, Sobolev embedding, 
proper combinations of Earth-fixed and body-fixed coordinates, and cross vector products. Moreover, a 
Lyapunov-type theorem recently developed for study of well-posedness and stability analysis for a class 
of nonlinear evolution systems in Hilbert space is also used. The above tools are carefully utilized in 
conjunction with an introduction of a new Lyapunov functional for solving the tracking problem for 
beams.

The present paper covers the works in Do (2017c) and Do and Lucey (2018) but not vice versa, and is 
significantly advanced in comparison with the works in Do (2017c); Do and Lucey (2018), where a 
boundary control law was designed to stabilize both translational and rotational large motions of 
stationary flexible beams under deterministic and stochastic loads, respectively, due to the following 
three main reasons.

First, the configuration is different i.e., one end of the beam considered in Do (2017c); Do and Lucey 
(2018) is connected a fixed base via a ball-joint/fixed-joint. This eases the boundary control design at 
the other end because Sobolev embedding is not required to be used for deriving the relationship 
between motions of the fixed end to the motions of the whole beam. In other words, the boundary 
control at the actuated end does not need to stabilize motions of the fixed end. In the present paper, the 
uncontrolled end is connected to an object, which is free to move, for aforementioned applications. This 
significantly complicates the design of a boundary control at the actuated end and requires new tools 
from Sobolev embedding, see inequalities 6)-10) of Lemma 3.1.

Second, the reference configuration in Do (2017c); Do and Lucey (2018) is stationary while the 
reference configuration in the present paper moves axially and rotates around its axial axis for trans-
mitting linear and rotating motions, i.e., the present paper considers velocity tracking problem while 
the work in Do (2017c); Do and Lucey (2018) addressed the stabilization objective. This together with 
the free-end configuration requires a new Lyapunov function (comparing (36) with (38) in Do (2017c) 
and (40) in Do and Lucey (2018)). The velocity tracking control problem for beams with both 
translational and rotational large motions is much harder than a stabilization one due to strong 
couplings among velocities, positions, attitudes, and deformations. This can be easily seen from the 
equations of motion (11) that if one component of the linear velocity vector and/or one compo-nent of 
the angular velocity vector is nonzero (i.e., tracking its reference value), all the other terms (positions, 
attitudes, remaining components of veoclity vectors) are potentially destabilized if no ap-propriate 
boundary controls are applied. The aforementioned couplings make the whole control design process 
much more involved than the one in Do (2017c) (comparing Section 4.2 with Section 5 in Do (2017c)) 
and Subsection 5.2 in Do and Lucey (2018) (removing the Hessian terms) when calculating the 
infinitesimal generator of Lyapunov functions.

Third, in Do (2017c); Do and Lucey (2018) and elsewhere the pitch angle, i.e. θ2 in Subsection
2.1, is limited in the range (−π

2 ,
π
2 ) because the Euler-angles are used to represent the attitude of the

beam. The present paper overcomes this limitation by utilizing the quaternion vector to represent
the attitude of the beam. The use of the quaternion vector allows the beam to operate in the whole
three-dimensional space, and thus to cover a larger range of applications. Note that the quaternion
vector is only used in simulations in Do (2017c) but not in the control design.

The rest of the paper is organized as follows: Equations of motion of the beam in space are briefly
derived in Section 2; the control objective is formulated in Section 3; the control design is presented
in Section 4.2, where the well-posedness and stability of evolution systems in A and various remarks
and discussions are included for the reader’s benefit; numerical simulations are included in Section 5
to illustrate the effectiveness of the proposed control design.

Notations. The symbols ∧ and ∨ denote the infimum and supremum operators, respectively. These
operators are also applied to more than two arguments. The symbol ′col′ denotes the column operator.
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The symbol × denotes the vector cross product operator.
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Figure 1.: A) Deformation geometry of the beam; B) Forces and moments acting on a beam element.

2. Mathematical model

A beam in space as shown in Fig. 1 is considered in this paper. The lower-end of the beam is 
connected to an end object, which can be a drill head for instance, via a fixed joint while the upper-end 
is connected to actuators that provide boundary control forces and moments. These actuators can be a 
XYZ-table fixed to a fixed structure (such as a off-shore platform), see AliExpress (2020) for example, 
equipped with tip motors. The XYZ-table is to provide boundary control forces while the tip motors are 
to provide boundary control moments. We assume that plane sections are rigid; and the beam material 
is (nonlinear) elastic, homogeneous and isotropic. In what follows, equations of motion are briefly 
derived, see Do (2017c) for details, for the purpose of the present paper.

2.1. Kinematics

The reference beam is represented by the reference configuration B0 of the beam in space describing 
by the position of the base straight line C0 parameterized by its arclength coordinate s and the fixed 
basis (b , b , b ), where (b , b ) are collinear with the principal axes of inertia of the cross section S0(s) 
through the base point J0, see Figure 1A. The triple (e1, e2, e3) is paralleled to (b , b , b ). Thus, C0 is 
described by the position vector r0(s), which in the fixed basis is expressed as r0(s) = 0e1 +0e2 +se3. 
We denote by Γ the beam length in its reference state. The reference beam rotates around its base 
straight-line (axial axis) with a reference angular velocity ω3d and axially moves with a reference 
linear velocity v3d.

The actual configuration B of the curved beam is described by the actual position C(s, t) of the 
base curve and the actual configuration S(s, t) of cross sections through the base point J . The base 
curve is described by the position vector r(s, t) while the material cross section is described by the 
unit vectors {b1(s, t), b2(s, t), b3(s, t)} with b3 being aligned with rs(s, t) and b3 = b1 × b2.

The deformation from B0 to B is achieved by means of the vector r(s, t) expressed in the local 
basis, i.e., r(s, t) = r1(s, t)b1 + r2(s, t)b2 + r3(s, t)b3, and the orthogonal tensor R1(θ(s, t)) describing 
the incremental rigid rotation suffered by S0(s) so that bk(s, t) = R1(θ(s, t))b0(s), k = 1, 2, 3 via the
sequence θ1 → θ2 → θ3. The matrix R1(θ(s, t)) is given in components by:

R1(θ)=

[
cθ2
cθ3

−cθ2
sθ3

sθ2

cθ3
sθ1
sθ2

+ cθ1
sθ3

cθ1
cθ3
− sθ1

sθ2
sθ3

−cθ2
sθ1

sθ1
sθ3
− cθ1

cθ3
sθ2

cθ3
sθ1

+ cθ1
sθ2
sθ3

cθ1
cθ2

]
, (1)

where θ := col(θ1, θ2, θ3); cθi := cos(θi) and sθi := sin(θi). This gives bks = R1sb
0
k, whereR1s = µ×bk

with µ being the axial vector of R1sR
T
1 . The generalized strains (i.e., the stretch ε and the shear
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strains η1 and η2) are expressed by the stretch vector ν = η1b1 + η2b2 + (1 + ε)b3 in its local basis:
ν = rs. Thus, we have

rs = η1b1 + η2b2 + (1 + ε)b3

µ = µ1b1 + µ2b2 + µ3b3, ω = ω1b1 + ω2b2 + ω3b3,
bks = µ× bk, bkt = ω × bk, (µ× bk)t = (ω × bk)s.

(2)

From (1) and (2), we have

col(η1, η2, ε) = RT
1 rs − r0

s ,
col(µ1, µ2, µ3)=R−1

2 col(θ1s, θ2s, θ3s),
col(ω1, ω2, ω3)=R−1

2 col(θ1t, θ2t, θ3t),

R2(θ)=

[ cθ3
cθ2

− sθ3
cθ2

0
sθ3

cθ3
0

−cθ3
tθ2
sθ3
tθ2

1

]
, (3)

where tθ2
:= tan(θ2).

2.2. Kinetic

Balancing linear and angular momentum on a beam element, see Figure1B, gives the equations of
motion:

m0r̃tt = ns +R1(θ)f1,
J0ωt = ms + rs × n− ω × J0ω + f2,

(4)

where m0 is the beam mass per unit length; J0 = diag(J01, J02, J03) is the mass moment matrix of
inertia; n and m denote the contact force and moment vectors; and (see Fig. 1A)

r̃ = r − r0. (5)

The nonconservative force and moment vectors f1 and f2 are given in the body-fixed frame as

f1 = −D11v + f10(t),

f2 = −D21ω −D22(ω ⊗ ω)ω + f20(t),
(6)

where D11, D21, and D22 are diagonal and positive definite matrices; a⊗ a := diag(a2
1, a

2
2, a

2
3) with

a = col(a1, a2, a3); and f10(t) and f20(t) are external disturbances bounded in L2-norm (including the
gravity), and v = v1b1 + v2b2 + v3b3 is the linear velocity vector with coordinates in the body-fixed
frame, i.e.,

v = R−1
1 (θ)r̃t. (7)

Note that only linear damping is included in the translational dynamics while nonlinear damping
is also included in the rotational dynamics, see (6), because in most applications the translational
dynamics are much “slower” than the rotational dynamics. When θ2 = ±π

2 , there are singularities
in (3). Thus, we use the unit quaternion vector q = col(q1, q2, q3, q4) for attitude representation with
‖q‖2 = 1 relating to (θ1, θ2, θ3) via the sequence θ1 → θ2 → θ3 as follows, see Kuipers (2002):

q(θ)=


cos( θ1

2 ) cos( θ2

2 ) cos( θ3

2 )− sin( θ1

2 ) sin( θ2

2 ) sin( θ3

2 )

sin( θ1

2 ) cos( θ2

2 ) cos( θ3

2 ) + cos( θ1

2 ) sin( θ2

2 ) sin( θ3

2 )

cos( θ1

2 ) sin( θ2

2 ) cos( θ3

2 )− sin( θ1

2 ) cos( θ2

2 ) sin( θ3

2 )

cos( θ1

2 ) cos( θ2

2 ) sin( θ3

2 ) + sin( θ1

2 ) sin( θ2

2 ) cos( θ3

2 )

. (8)

The rotational matrix R1 is given in terms of q as follows:

R1(q) = I3 + 2q1S(q̄) + 2S2(q̄), (9)

where q̄ := col(q2, q3, q4) and the matrix S(x) is defined as S(x)y = x× y for all (x,y) ∈ R3. Let us
also define the matrix:

K(q) =
1

2

[
−q̄T
q1I3 + S(q̄)

]
. (10)

With (3), (7), (9), and (10), we can write (4) as the following system of PDEs:

r̃t = R1(q)v,
qt = K(q)ω,
m0vt = m0(R−1

1 (q))tR1(q)v +R−1
1 (q)ns + f1,

J0ωt = ms − ω × (J0ω) + rs × n+ f2.

(11)

The contact force and moment vectors n and m are given by:

n(s, t) = Q1(s, t)b1 +Q2(s, t)b2 +N(s, t)b3,

m(s, t) = M1(s, t)b1 +M2(s, t)b2 + T (s, t)b3,
(12)

4
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where Q1 and Q2 are the shear forces; N is the axial force; M1 and M2 are the bending moments; and
T is the twisting moment. Using the third-order Maclaurin series expansion of nonlinear stress-strain
relations in Orthwein (1968) results in the constitutive equations:

Qi = GĀiηi, N = EAε,

Mi = EIi
(
µi − 1

2µ
2
i + 1

3µ
3
i

)
, T = GI3

(
µ3 − 1

2µ
3
3 + 1

3µ
3
3

)
,

(13)

where i = 1, 2; E is the Young modulus; G is the shear modulus; A, Ā1, Ā2 are cross section and shear
areas; Ik, k = 1, 2, 3 are principal mass moments of inertia about bk. It is noted that we use linear
constitutive relations for Qi and N while nonlinear ones for Mi and T to make them consistent with
(6). The initial conditions are given by

r̃(s, t0) = r̃10(s), r̃t(s, t0) = r̃20(s),
θ(s, t0) = θ0(s), ω(s, t0) = ω0(s).

(14)

Finally, referring to Fig. 1A the boundary conditions are given by

At s = 0 :


θ1 = θ2 = 0, x̃ = ỹ = 0,

mP
¨̃z = N + fB0

1 ,

JP θ̈3 = T + fB0
2 ,

At s = Γ :


MH

¨̃r = −n+ φ1B +R1(q)fBΓ
1 ,

q̇ = K(q)ω,

JHω̇ = −m− ω × (JHω) + φ2B + fBΓ
2 ,

(15)

where (x̃, ỹ, z̃) are elements of r̃ expressed in the fixed-coordinates, i.e., r̃ = x̃e1 + ỹee + z̃e3, and

At s = 0 :

{
fB0

1 = −d0
11

˙̃z + fB0
10 ,

fB0
2 = −d0

21θ̇3 − d0
22θ̇

3
3 + fB0

20 ,
At s = Γ :

{
fBΓ

1 = −DΓ
11v + fBΓ

10 ,

fBΓ
2 = −DΓ

21ω −DΓ
22(ω ⊗ ω)ω + fBΓ

20 ,

(16)

and mp and JP are the mass and inertia moment of the end object; MH and JH are mass and inertia
moment matrices of the actuator systems; d0

11, d0
21 and d0

22 are positive damping constants; DΓ
ij are

positive definite and diagonal damping matrices; φ1B and φ2B are force and moment boundary control
input vectors; and f0

i0 and fΓ
i0 are external forces and moments on the end object and actuators.

To prepare for the control objective formulation and control design in the sequel, let qd = col(q1d, q̄d)
be the reference quaternion vector at s = Γ defined by

q̇d = K(qd)ωd, (17)

with qd(t0) = col(1, 0, 0, 0) at the initial time t0, i.e., zero reference attitude at the initial time. In
(17), ωd = col(0, 0, ω3d) and K(qd) is the value of K(q) evaluated at q = qd. Define the attitude
tracking errors as follows, see Do (2015):

ξ1 = q1dq1 + q̄Td q,
ξ̄ = q1dq̄ − q1S(q̄d)q̄,

(18)

where the skew-symmetric matrix S(x) is defined as S(x)y = x×y for all (x,y) ∈ R3. Differentiating
both sides of (18) along the solutions of (17) and the equation q̇ = K(q)ω in (15) yields

ξ̇1 = −1
2 ξ̄

T (ω − ωd),
˙̄ξ = 1

2G(ω − ωd),
(19)

where G = ξ1I3 + S(ξ̄) with I3 being the 3× 3 identity matrix.

Lemma 2.1: Suppose that ω̇ is governed by

ω̇ = −(k + ε)(γGT ξ̄ + ω − ωd)− γĠT ξ̄ − γGT ˙̄ξ + ω̇d, (20)

where k, ε, and γ are positive constants, then ξ̄(t) globally asymptotically tends to zero while ξ1(t)
globally asymptotically tends to ±1.

Proof. Consider the Lyapunov function candidate

U = 2kγ‖ξ̄‖2 + 1
2‖γG

T ξ̄ + ω − ωd‖2, (21)

whose derivative along the solutions of (20) and (19) is

U̇ = −kγ‖GT ξ̄‖2 − k‖ω − ωd‖2 − ε‖γGT ξ̄ + ω − ωd‖2, (22)

which by Barbalat’s lemma implies that limt→∞(γGT (t)ξ̄(t) +ω(t)−ωd(t)) = 0, i.e., ω−ωd globally
asymptotically tends to −γGT ξ̄. Substituting this limit to (19) yields

ξ̇1 = γ
2 ξ̄

TGT ξ̄,
˙̄ξ = −γ

2GG
T ξ̄,

(23)

5
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Now, we consider the Lyapunov function candidates U1 and Ū , of which derivatives along the solutions
of (23) as {

U1 = ξ2
1 ,

Ū = ‖ξ̄‖2, ⇒

{
U̇1 = γξ2

1‖ξ̄‖2,
˙̄U = −γξ2

1‖ξ̄‖2,
(24)

The ξ1-subsystem is unstable. Instability of this subsystem implies that ξ1(t) asymptotically tends to
a non-zero but bounded value if ξ1(t0) 6= 0. If ξ1(t0) = 0, arbitrarily small noise will drive ξ1(t0) to a
non-zero value ξ1(t) at some t since the ξ1-subsystem is unstable. A non-zero ξ1(t) implies from the
ξ̄-subsystem that ξ̄(t) tends to zero asymptotically. Since ξ2

1(t) + ‖ξ̄(t)‖2 = 1, ξ1(t) will eventually
converge to 1 or −1. Asymptotic convergence of ξ1(t) to ±1 and ξ̄(t) to 0 implies that of q − qd.
This is because the identity quaternion (1,0) represents a rotation of the negative identity quaternion
(−1,0) by 2π from the desired attitude, and is therefore the same physical orientation, see Do (2015).

3. Control objective

Before stating the control objective, we make the following assumption, which is reasonable in practice,
on boundedness of initial values and external loads.

Assumption 3.1:
1) The initial values r̃10(s), r̃20(s),θ0(s),ω0(s) are bounded in L2-norm, i.e., there exists ε0 ≥ 0

such that
∫ Γ

0 (‖r̃10(s)‖2 + ‖r̃20(s)‖2 + ‖θ0(s)‖2 + ‖ω0(s)‖2)ds ≤ ε0, where ‖ · ‖ denotes the Euclidean
norm. Moreover, ‖r̃1(0, t0)‖2 + ‖r̃2(0, t0)‖2 + ‖θ(0, t0)‖2 + ‖ω(0, t0)‖2 and ‖r̃(Γ, t0)‖2 + ‖r̃t(Γ, t0)‖2 + 
‖θ(Γ, t0)‖2 + ‖ω(Γ, t0)‖2 are also bounded.

2) The external loads are bounded in appropriate norms, i.e. there exist nonnegative constants fMi0 ,
fB0M
i0 , and fBΓM

i0 such that

supt∈[t0,∞)

∫ Γ
0 ‖fi0(s, t)‖2ds ≤ fMi0 , supt∈[t0,∞) ‖fB0

i0 (t)‖2 ≤ fB0M
i0 , supt∈[t0,∞) ‖fBΓ

i0 (t)‖2 ≤ fBΓM
i0 .

(25)

3) The reference velocities and accelerations (v3d, v̇3d) and (ω3d, ω̇3d) are bounded, i.e., there exist
nonnegative constants (vM3d , v̄

M
3d ) and (ω3d, ω̄

M
3d ) such that

supt∈[t0,∞) |v3d(t)| ≤ vM3d , supt∈[t0,∞) |v̇3d(t)| ≤ v̄M3d , supt∈[t0,∞) |ω3d(t)| ≤ ωM3d , supt∈[t0,∞) |ω̇3d(t)| ≤ ω̄M3d .
(26)

Control Objective 3.1: Under Assumption 3.1, design the boundary control vectors φiB, i = 1, 2
such that the beam, of which the dynamics consist of (11)-(15), globally practically asymptotically
track its reference beam in the sense that

E(t) ≤ E(t0)e−c(t−t0) + c0, (27)

where c is a positive constant depending on the initial conditions, c0 is a nonnegative constant, and
E(t) is given by

E(t) = E0Γ(t)+EB0(t)+EBΓ(t),

E0Γ(t)=
∫ Γ

0

[
‖v(s, t)−vd(t)‖2 +‖ω(s, t)−ωd(t)‖2 +‖ϑ(s, t)‖2 +‖µ(s, t)‖2

+(µ4
1(s, t)+µ4

2(s, t)+µ4
3(s, t))

]
ds,

EB0(t) = (v3(0, t)−v3d(t))
2 +(ω3(0, t)−ω3d(t))

2,

EBΓ(t) =
∥∥γ1(r̃(Γ, t)− r̃d(t))+R1(q(Γ, t))(v(Γ, t)−vd(t))+γΓR1(q(Γ, t))ϑ(Γ, t)

∥∥2

+‖r̃(Γ, t)− r̃d(t)‖2 +‖γ2G
T (Γ, t)ξ̄(Γ, t)+ω(Γ, t)−ωd(t)+γΓµ(Γ, t)‖2 +‖ξ̄(Γ, t)‖2,

(28)

where γ, γ1, and γ2 are positive constants (to be chosen later), and

˙̃rd = vd,
vd = col(0, 0, v3d),
ϑ = col(η1, η2, ε).

(29)

Remark 3.1: Since the constant c in (27) depends on the initial values, asymptotic tracking is
achieved instead of exponential tracking. It can be seen that E(t) is a positive definite and radially
unbounded functional of velocity errors, stretch, shear strain, bending and torsional curvatures. While
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this functional penalizes (translational and rotational) displacement and velocity errors of the actuated
end, we only include translational and rotational velocity errors at the object end. This is because
convergence of the translational and rotational displacements at any point of the beam including at
the end object are ensured by convergence of E(t) via Sobolev embedding, see the last five inequalities
in Lemma 3.1 below.

Remark 3.2: It is clearly seen from (27) and (28) that when (27) is achieved (by the boundary
control to be designed), the following desired features are obtained:

• The linear and angular velocity vectors v and ω globally practically asymptotically track their

reference linear and angular velocity vectors vd and ωd in L2-norm, see the term
∫ Γ

0

[
‖v(s, t)−

vd(t)‖2 + ‖ω(s, t)− ωd(t)‖2
]
ds in the expression of E0Γ.

• The position and attitude, linear and angular velocities at the actuated end globally practically
asymptotically track their reference values, see the expression of EBΓ together with Lemma 2.1.
• The linear and angular velocity vectors at the unactuated end globally practically asymptotically

track their reference values, see the expression of EB0.
• The stretch, shear strain, bending and torsional curvatures are globally practically asymptotically

stabilized at the origin in L2-norm, see the term
∫ Γ

0

[
‖ϑ(s, t)‖2+‖µ(s, t)‖2+(µ4

1(s, t)+µ4
2(s, t)+

µ4
3(s, t))

]
ds in the expression of E0Γ.

The above results together with Remark 3.1 ensure that the beam globally practically track its reference
beam as we have defined that the reference beam is a straight-line moving axially with the linear
reference velocity v3d and rotating around it by the angular velocity ω3d.

Several useful equalities and inequalities, which will be used in the control design and stability
analysis, are given in the following lemma.

Lemma 3.1: For all t ≥ t0 ≥ 0 and s ∈ [0,Γ], the following equalities and inequalities hold:

1) ωs = µ1tb1 + µ2tb2 + µ3tb3,
2) ωT (rs × n) = nT (η1b1t + η2b2t + (1 + ε)b3t),
3) µT (rs × n) = −nT (η1b1s + η2b2s + (1 + ε)b3s),
4) nT r̃st = Q1η1t +Q2η2t +Nεt + ωT (rs × n),
5) nT (rs + rsss) = Q1η1 +Q2η2 +N(1 + ε) +Q1η1ss+Q2η2ss+Nεss+ nT (µ× rs)s,
6)

∫ Γ
0 ‖r̃(s, t)‖2 ≤ 2Γ‖r̃(Γ, t)‖2 + 4Γ2

∫ Γ
0 ‖r̃s(s, t)‖

2ds,

7) ‖r̃(0, t)‖2 ≤ 2‖r̃(Γ, t)‖2 + 4Γ
∫ Γ

0 ‖r̃s(s, t)‖
2ds,

8)
∫ Γ

0 ‖r̃(s, t)‖2ds ≤ 2
∫ Γ

0 ‖ϑ(s, t)‖2ds+ 1152Γ2
∫ Γ

0 ‖µ(s, t)‖2ds+ 96Γ(q2
2(Γ, t) + q2

3(Γ, t)),

9) ‖col(q1(0, t)− 1, q̄(0, t))‖2 ≤ 2‖col(q1(Γ, t)− 1, q̄(Γ, t))‖2 + Γ
∫ Γ

0 ‖µ(s, t)‖2ds,
10)

∫ Γ
0 ‖col(q1(s, t)− 1, q̄(s, t))‖2ds ≤ 2‖col(q1(Γ, t)− 1, q̄(Γ, t))‖2 + Γ2

∫ Γ
0 ‖µ(s, t)‖2ds,

(30)

where we have dropped the argument (s, t) for clarity. The inequality 8) is of its own interest because
the right hand-side depends on (q2

2(Γ, t)+q2
3(Γ, t)) not on q1(Γ, t) and q4(Γ, t). This makes the boundary

control design in this paper applicable to spinning beams such as drillers because the right hand-
side of the inequality 8) does not depend on θ3(Γ, t), which is inferred from (8), i.e., q2

2 + q2
3 =

sin2( θ1

2 ) cos2( θ2

2 ) + cos2( θ1

2 ) sin2( θ2

2 ) for all s ∈ [0,Γ] and t ∈ [t0,∞).

Proof. Proof of the first 5 equalities is given in the proof of Lemma 3.1 in Do (2017c) while the
proof of the sixth and seventh inequalities is given in the proof of Lemma 2.1 in Do (2017e). We here
provide the proof of the last three inequalities. From (5) and the first equation of (3), we have

r̃s = R1(q)ϑ+R1(q)e3 − e3, (31)

where ϑ is defined in (29) and e3 := col(0, 0, 1). By taking norm-2 both sides of (31) and applying
Young’s inequality together with the expression of R1(q) in (9), we have

‖r̃s‖2 ≤ 2‖ϑ‖2 + 48(q2
2 + q2

3). (32)

Using the simplified Poincaré inequality, see proof of Lemma 2.1 in Do (2017e) and integrating both
sides of (32) from 0 to Γ give∫ Γ

0 ‖r̃s‖
2ds ≤ 2

∫ Γ
0 ‖ϑ‖

2ds+ 48
∫ Γ

0 (q2
2 + q2

3)ds

≤ 2
∫ Γ

0 ‖ϑ‖
2ds+ 192

∫ Γ
0 (q2

2s + q2
3s)ds+ 96Γ(q2

2(Γ, t) + q2
3(Γ, t))

≤ 2
∫ Γ

0 ‖ϑ‖
2ds+ 1152Γ2

∫ Γ
0 ‖µ‖

2ds+ 96Γ(q2
2(Γ, t) + q2

3(Γ, t)),

(33)
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where we have use qs = K(q)µ ⇒ ‖qs‖2 ≤ 6‖µ‖2 with K(q) given in (10), which completes proof
of the inequality 8). Proof of the inequality 9) is similar to that of the inequality 7) with the use of
|q1 − 1 q̄T |Ts = qs = K(q)µ and KT (q)K(q) = 1

4 . The inequality 10) can be proved by applying the

simplified Poincaré inequality to ‖ |q1 − 1 q̄T |T ‖2. �

4. Control design

4.1. Abstract formulation

The abstract formulation in Do (2016) is applied here to represent the beam dynamics as an evolution
system for control design and stability analysis. Let L2(D) denote the L2-space with the norm ‖.‖L2

and inner product
〈
., .
〉
L2 and Wm,n(D), with (m,n) being integers, denote the Sobolev space of order

m and degree n, see Adams and Fournier (2003), and D := [0,Γ]. Considering s ∈ D as the parameter
defined at every t ≥ t0, we can regard r̃(s, t), q(s, t), v(s, t), and ω(s, t) as r̃(t) ∈ (W 2,2(D))3,
q(t) ∈ (W 2,2(D))4, v(t) ∈ (L2(D))3, ω(t) ∈ (L2(D))3, respectively. Similarly, z̃(0, t), ˙̃z(0, t), θ3(0, t),
and θ̇3(0, t) are regarded as z̃B0(t) ∈ R, vB0

3 (t) ∈ R, θB0
3 (t) ∈ R, ωB0

3 (t) ∈ R, respectively, and the

similar notations are used for x(0, t) and y(0, t). Moreover, r̃(Γ, t), ˙̃r(Γ, t), q(Γ, t), and ω(Γ, t) are
considered as r̃BΓ

1 (t) ∈ R3, r̃BΓ
2 (t) ∈ R3, qBΓ(t) ∈ R4, ωBΓ(t) ∈ R3, respectively. Let us also define

Dφ(s) := ∂φ
∂s . Thus, we can write the beam system (11) in the following evolution system (abstract

form):

dr̃
dt = R1(q)v, dq

dt = K(q)ω,

m0
dv
dt = m0(R−1

1 (q))tR1(q)v +R−1
1 (q)Dn+ f1,

J0
dω
dt = Dm− ω × (J0ω) + Dr × n+ f2.

(34)

The boundary conditions (15) are written as:

At s = 0 : At s = Γ :
θB0

1 = θB0
2 = 0, x̃B0 = ỹB0 = 0,

dz̃B0

dt = vB0
3 , dθB0

3

dt = ωB0
3 ,

mP
dvB0

3

dt = NB0 + fB0
1 ,

JP
dωB0

3

dt = TB0 + fB0
2 ,


dr̃BΓ

1

dt = r̃BΓ
2 ,

dqBΓ

dt = K(qBΓ)ωBΓ,

MH
dr̃BΓ

2

dt = −nBΓ +φ1B+fBΓ
1 ,

JH
dωBΓ

dt = −mBΓ−ωBΓ×(JHω
BΓ)+φ2B+fBΓ

2 ,

(35)

where NB0(t) and TB0(t) are the values of N(t) and T (t) evaluated at s = 0; and nBΓ(t) and mBΓ(t)
are the values of n(t) and m(t) evaluated at s = Γ.

4.2. Control design

To design the boundary control vectors φiB, i = 1, 2, we consider the following Lyapunov functional
candidate:

U = U0 + U1 + UB (36)

where the functionals U0, U1, and U2 are chosen as follows:

U0 = m0

2 ‖v − vd‖
2
L2 + 1

2

〈
ω − ωd,J0(ω − ωd)

〉
L2 + 1

2

∑2
i=1GĀi‖ηi‖2L2 + 1

2EA‖ε‖
2
L2

+
∑2

i=1EIi
〈
µi,
(

1
2µi −

1
6µ

2
i + 1

12µ
3
i

)〉
L2 +GI3

〈
µ3,
(

1
2µ3 − 1

6µ
2
3 + 1

12µ
3
3

)〉
L2 ,

U1 = γm0

〈
Dr − %R1(q)Dr0,R1(q)(v − vd)s

〉
L2 + γ

〈
µ,J0(ω − ωd)s

〉
L2 ,

UB = mP

2 (vB0
3 − v3d)

2 + JP
2 (ωB0

3 − ω3d)
2 + 1

2

(
γ1(r̃BΓ

1 − r̃d) +R1(qBΓ)(vBΓ − vd) + γΓR1(qBΓ)ϑBΓ
)T

×MH

(
γ1(r̃BΓ

1 − r̃d) +R1(qBΓ)(vBΓ − vd) + γΓR1(qBΓ)ϑBΓ
)

+ γ1k1B‖r̃BΓ
1 − r̃d‖2

+1
2

(
γ2G

T ξ̄ + ωBΓ − ωd + γΓµBΓ
)T
JH
(
γ2G

T ξ̄ + ωBΓ − ωd + γΓµBΓ
)

+ 2γ2k2B‖ξ̄‖2,
(37)

where γ, γ1, γ2, k1B,and k2B are positive constants to be chosen later. The constant 0 ≤ % ≤ 1 (to
be specified later) plays the role of handling both large and small bending stiffness relatively to the
shear stiffness. We elaborate the choice of the Lyapunov function candidate U in (36) with U0, U1,
and U2 being given in (37) in the following remark.

Remark 4.1: The function U0 is the sum of kinetic and potential energies of the beam with respect
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to its reference. The choice of U1 is motivated by the backstepping method Krstic, Kanellakopoulos,
and Kokotovic (1995), for example with the first equation of (3) and (29) it can be shown that dr̃1

dt =
γm0ϑs (with a note that Dr = R1(q)ϑ +R1(q)Dr0, see (3)) is globally exponentially stable at the
origin by an appropriate boundary control. The function UB puts appropriate weights on translational
displacements and velocities of the beam at the boundaries with respect to its reference, see also Remark
3.1.

We now find the bounds of U . Using 1
3x

2 + 1
12x

4 ≤ 1
2(x2 − 1

3x
3 + 1

4x
4) ≤ 2

3x
2 + 1

6x
4 for all x ∈ R,

we can bound U0 as:

U0 ≥ m0

2 ‖v − vd‖
2
L2 + λm(J0)

2 ‖ω − ωd‖2L2 + 1
2(GĀ1 ∧GĀ2 ∧ EA)‖ϑ‖2L2 + 1

3(EI1 ∧ EI2 ∧GI3)‖µ‖2L2

+ 1
12(EI1 ∧ EI2 ∧GI3)

〈
1, µ4

1 + µ4
2 + µ4

3

〉
L2 ,

U0 ≤ m0

2 ‖v − vd‖
2
L2 + λM (J0)

2 ‖ω − ωd‖2L2 + 1
2(GĀ1 ∨GĀ2 ∨ EA)‖ϑ‖2L2 + 2

3(EI1 ∨ EI2 ∨GI3)‖µ‖2L2

+1
6(EI1 ∨ EI2 ∨GI3)

〈
1, µ4

1 + µ4
2 + µ4

3

〉
L2 ,

(38)
where λm(•) and λM (•) denote the minimum and maximum eigenvalues of •, respectively. Since
Dr = R1(q)ϑ +R1(q)Dr0, (7), an application of Young’s inequality results in the bound of |U1| as
follows

|U1| ≤ γΓm0(%01 + (1− %)%03)‖v − vd‖2L2 + γΓλM (J0)%02‖ω − ωd‖2L2

+γΓm0

4%01
‖ϑ‖2L2 + γΓλM (J0)

4%02
‖µ‖2L2 + γΓ2m0(1−%)

4%03
,

(39)

where %0i, i = 1, 2, 3 are positive constants to be determined. We can calculate the bounds of U2 as
follows

UB ≥ mP

2 (vB0
3 −v3d)

2 + JP
2 (ωB0

3 −ω3d)
2 + λm(MH)

2 ‖γ1(r̃BΓ
1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ‖2

+γ1k1B‖r̃BΓ
1 − r̃d‖2 + λm(JH)

2 ‖γ2G
T ξ̄+ωBΓ−ωd+γΓµBΓ‖2 +2γ2k2B‖ξ̄‖2,

UB ≤ mP

2 (vB0
3 −v3d)

2 + JP
2 (ωB0

3 −ω3d)
2 + λM (MH)

2 ‖γ1(r̃BΓ
1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ‖2

+γ1k1B‖r̃BΓ
1 − r̃d‖2 + λM (JH)

2 ‖γ2G
T ξ̄+ωBΓ−ωd+γΓµBΓ‖2 +2γ2k2B‖ξ̄‖2,

(40)
Using (38), (39), (40), and U0 − |U1|+ UB ≤ U ≤ U0 + |U1|+ UB, we can bound U as follows:

− %0 + c1 E ≤ U ≤ c2E + %0, (41)

where E is defined in (28), and the constants c1, c2, and %0 are given by

c1 =
[
m0

2 −γΓm0(%01 +(1−%)%03)
]
∧
[λm(J0)

2 −γΓ%02λM (J0)
]
∧
[

1
2(EA∧GĀ1∧GĀ2)− γΓm0

4%01

]
∧
[

1
3(EI1∧EI2∧GI3)− γΓλM (J0)

4%02

]
∧ 1

12(EI1∧EI2∧GI3)∧
[λm(M2H)

2

]
∧mP

2 ∧
JP
2 ∧

λm(MH)
2

∧λm(JH)
2 ∧k1Bγ1∧2γ2k2B,

c2 =
[
m0

2 +γΓm0(%01 +(1−%)%03)
]
∨
[λM (J0)

2 +γΓ%02λM (J0)
]
∨
[

1
2(EA∨GĀ1∨GĀ2)+ γΓm0

4%01

]
∨
[

2
3(EI1∨EI2∨GI3)+ γΓλM (J0)

4%02

]
∨ 1

6(EI1∨EI2∨GI3)∨
[λM (M2H)

2

]
∨mP

2 ∨
JP
2 ∨

λM (MH)
2

∨λM (JH)
2 ∨γ1k1B∨2γ2k2B,

%0 = γΓ2m0(1−%)
4%03

.

(42)

The constants γ, %0i, i = 1, 2, 3, and % are chosen such that

c1 ≥ c�1, (43)

where c�1 is a strictly positive constant. This is always possible by choosing a small γ for given
%0i, i = 1, 2, 3, and %. Thus, U is a proper functional of E .

We now calculate the infinitesimal generator LU . It is obvious from (36) that

LU = LU0 + LU1 + LUB, (44)

where LU0, LU1, and LUB are detailed in what follows.
Calculation of LU0: Differentiating U0 given in (37) along the solutions of (34) yields:

LU0 =
〈
v − vd,m0(R−1

1 (q))tR1(q)v +R−1
1 (q)Dn+ f1 −m0v̇d

〉
L2

+
〈
ω − ωd,Dm− ω × (J0ω) + Dr × n+ f2 − J0ω̇d

〉
L2

+
∑2

i=1GĀi
〈
ηit, ηi

〉
L2 + EA

〈
εt, ε

〉
L2 +

∑2
i=1EIi

〈
µit,

(
µi − 1

2µ
2
i + 1

3µ
3
i

)〉
L2

+GI3

〈
µ3t,

(
µ3 − 1

2µ
2
3 + 1

3µ
3
3

)〉
L2 .

(45)
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Before calculating the upper-bound of LU0, we note that〈
v, (R−1

1 (q))tR1(q)v
〉
L2 = 0,〈

ω,ω×(J0ω)
〉
L2 = 0,〈

v,R−1
1 (q)Dn

〉
L2 =

〈
r̃t,Dn

〉
L2

= (nBΓ)T r̃BΓ−(nB0)T r̃B0−
〈
n,Dr̃t

〉
L2

= (nBΓ)T r̃BΓ−(nB0)T r̃B0−
〈
ω,Dr×n

〉
L2−

∑2
i=1GĀi

〈
ηit, ηi

〉
L2−EA

〈
εt, ε

〉
L2 ,〈

ω,Dm
〉
L2 = (mBΓ)TωBΓ−(mB0)TωB0−

〈
m,Dω

〉
L2

= (mBΓ)TωBΓ−(mB0)TωB0−
∑2

i=1EIi
〈
µit, µi− 1

2µ
2
i + 1

3µ
3
i

)〉
L2 +GI3

〈
µ3t,

(
µ3− 1

2µ
2
3 + 1

3µ
3
3

)〉
L2 ,

(46)
where Inequalities 1) and 4) in Lemma 3.1, see (30), and integration by parts have been used to
obtain the last two equations. Using (46), integration by parts, and Young’s inequality, we can find
the upper-bound of LU0 as follows

LU0 ≤
[
(nBΓ)TR1(qBΓ)(vBΓ−vd)−(nB0)TR1(qB0)(vB0−vd)

]
+
[
(mBΓ)T (ωBΓ−ωd)−(mB0)T (ωB0−ωd)

]
+m0(ε011v

M
3d +ε012v̄

M
3d )‖v−vd‖2L2 +

(
m0vM3d
4ε011

+
|J01−J02|ωM3d

2

)〈
1, ω2

1 +ω2
2

〉
L2 +J03ω̄

M
3dε014

〈
1, (ω3−ω3d)

2
〉
L2

+
(

(GĀ1∨GĀ2)vM3dε013 +
|GĀ1−GĀ2|ωM3d

2

)〈
1, η2

1 +η2
2

〉
L2 +

(GĀ1∨GĀ2)vM3d
4ε013

〈
1, µ2

1 +µ2
2

〉
L2 +

m0Γ|v̄M3d
4ε012

+
J03Γω̄M3d

4ε014

+
〈
v−vd,f1

〉
L2 +

〈
ω−ωd,f2

〉
L2 ,

(47)
where ε01i, i = 1, ..., 4 are positive constants to be specified. It is clearly seen from (47) that the energy
of the beam does not conserve due to the terms multiplied by vM3d , v̄M3d , ωM3d , and ω̄M3d .

Calculation of LU1: Since this is a complicated and difficult task in the control design, details
are given. We use the fact that

〈
ϑ,vs

〉
L2 =

〈
R1(q)ϑ, r̃ts

〉
L2 because of (7) and then differentiate U1

given in (37) along the solutions of (34) to obtain:

LU1 = A1 +A2 +A3 +B1 +B2 +B3 + γ
〈
(Dr − %R1(q)Dr0),R1(q)f1s

〉
L2 + γ

〈
µ,f2s

〉
L2 , (48)

where

A1 = γm0

〈
Drt − %R1t(q)Dr0,R1(q)(v − vd)s

〉
L2 ,

A2 = −γm0

〈
(Dr − %R1(q)Dr0), (R1t(q)vd +R1(q)v̇d)s

〉
L2 ,

A3 = γ
〈
(Dr − %R1(q)Dr0),Dns

〉
L2 ,

B1 = γ
〈
Dω,J0(ω − ωd)s

〉
L2 + γ

〈
µ,Dms

〉
L2 + γ

〈
µ,Dr × n

〉
L2 ,

B2 = γ
〈
ω × µ,J0(ω − ωd)s

〉
L2 − γ

〈
µ,ω × J0ω

〉
L2 ,

B3 = −γ
〈
µ,J0ω̇ds

〉
L2 ,

(49)

where we have used µt = Dω + ω × µ. We now calculate Ai and Bi, i = 1, 2, 3.
Applying integration by parts and Young’s inequality to the term A1 results in

A1 ≤ γΓm0

2 ‖v
BΓ − vd‖2 +

γΓm0vM3d
4ε11

〈
1, µ2

1 + µ2
2

〉
L2 + γ%Γm0

4ε12

〈
1, ω2

1 + ω2
2

〉
L2

+
(
− γm0

2 + γΓm0v
M
3dε11 + γΓ%m0ε12

)
‖v − vd‖2L2 ,

(50)

where ε11 and ε12 are positive constants to be chosen.
Using the first equation of (3) and Young’s inequality, the upper-bound of A2 can be calculated as

follows

A2 ≤ γΓm0

4

(
vM3d
ε13

+
v̄M3d
ε14

)
‖ϑ‖2L2 + γΓm0v

M
3d

(
ε13 + 1−%

4ε15

)〈
1, ω2

1 + ω2
2

〉
L2

+γΓ2
(
v̄M3dε14 + (1− %)vM3dε15 +

(1−%)v̄M3d
2

)
,

(51)

where ε13, ε14, and ε15 are positive constants to be chosen.
Using identity 5) in (30), integration by parts, and Young’s inequality, the upper-bound of A3 is

calculated as follows

A3 ≤ γΓnBΓ(DrBΓ − %R1(qBΓ)Dr0)− γΓ
2 (GĀ1 ∧GĀ2 ∧ EA)‖ϑBΓ‖2 + %γΓ(GĀ1∨GĀ2)

4ε16

〈
1, µ2

1 + µ2
2

〉
L2

−γ
((

GĀ1∧GĀ2

2 − %Γε16(GĀ1 ∨GĀ2)
)
∧ EA

2

)
‖ϑ‖2L2 − γ

〈
n, (µ× Dr)s

〉
L2 ,

(52)
where ε16 is a positive constant to be chosen.

10
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Applying integration by parts and Young’s inequality to the term B1 results in

B1 ≤ γΓλM (J0)
2 ‖ωBΓ − ωd‖2 + γΓ(mBΓ)TµBΓ − γλm(J0)

2 ‖ω − ωd‖2L2 − γΓ
3 (EI1 ∧ EI2 ∧GI3)‖µBΓ‖2

−γΓ
24 (EI1 ∧ EI2 ∧GI3)((µBΓ

1 )4 + (µBΓ
2 )4 + (µBΓ

3 )4)− γ
6 (EI1 ∧ EI2 ∧GI3)‖µ‖2L2

−γ
6 (EI1 ∧ EI2 ∧GI3)

〈
1, µ4

1 + µ4
2 + µ4

3

〉
L2 + γ

〈
µ,Dr × n

〉
L2 ,

(53)
where we have used the fact that −1

2x
2+ 1

6x
3− 1

12x
4 ≤ −1

3x
2− 1

24x
4 and −1

2x
2+ 1

3x
3− 1

4x
4 ≤ −1

6x
2− 1

6x
4

for all x ∈ R. Since γ
〈
µ,ω×J0ω

〉
L2 = γ

〈
µ,ω×J0(ω−ωd

〉
L2 + γ

〈
µ,ω×J0ωd

〉
L2 , by using Young’s

inequality the upper-bound of B2 can be calculated as

B2 ≤ γΓJ̃0M ε21‖µ‖2L2 + γΓJ̃0M

ε21

〈
1, ω4

1 + ω4
2 + (ω3 − ω3d)

4
〉
L2 +

2γΓωM3dλM (J0)
ε22

〈
1, ω2

1 + ω2
2

〉
L2

+2γΓωM3dλM (J0)ε22

〈
1, µ2

1 + µ2
2

〉
L2 ,

(54)

where ε21 and ε22 are positive constants to be specified.
Applying Young’s inequality to the term B3 results in

B3 ≤ γΓω̄M3dJ03ε23‖µ3‖2L2 +
γΓ2ω̄M3dJ03

4ε23
, (55)

where ε23 is a positive constant to be chosen. Substituting (50), (50), (51), (52), (53), (53), and (55)
into (48) yields

LU1 ≤ γΓm0

2 ‖v
BΓ−vd‖2 +γΓ(nBΓ)T (DrBΓ−%R1(qBΓ)Dr0)− γΓ

2 (GĀ1∧GĀ2∧EA)‖ϑBΓ‖2

+γΓλM (J0)
2 ‖ωBΓ−ωd‖2 +γΓ(mBΓ)TµBΓ− γΓ

3 (EI1∧EI2∧GI3)‖µBΓ‖2

−γΓ
24 (EI1∧EI2∧GI3)((µBΓ

1 )4 +(µBΓ
2 )4 +(µBΓ

3 )4)+
[
− γm0

2 +γΓm0v
M
3dε11 +γΓ%m0ε12

]
‖v−vd‖2L2

+
[
− γλm(J0)

2 +γ%Γm0

4ε12
+γΓm0v

M
3d

(
ε13+

1−%
4ε15

)
+

2γΓωM3dλM (J0)
ε22

]
‖ω−ωd‖2+γΓJ̃0M

ε21

〈
1, ω4

1 +ω4
2 +(ω3−ω3d)

4
〉
L2

−γ
[((

GĀ1∧GĀ2

2 −%Γε16(GĀ1∨GĀ2)
)
∧ EA2

)
− Γm0

4

(
vM3d
ε13

+
v̄M3d
ε14

)]
‖ϑ‖2L2

−γ
[(

1
6(EI1∧EI2)− Γm0vM3d

4ε11
− %Γ(GĀ1∨GĀ2)

4ε16
−2ΓωM3dλM (J0)ε22

)
∧
(
GI3−Γω̄M3dJ03ε23

)]
‖µ‖2L2

−γ
6 (EI1∧EI2∧GI3)

〈
1, µ4

1 +µ4
2 +µ4

3

〉
L2 +γΓ2

(
v̄M3dε14 +(1−%)vM3dε15 +

(1−%)v̄M3d
2

)
+
γΓ2ω̄M3dJ03

4ε23

+γ
〈
(Dr−%R1(q)Dr0),R1(q)f1s

〉
L2 +γ

〈
µ,f2s

〉
L2 .

(56)
Calculation of LUB: Differentiating UB given in (37) along the solutions of (35)gives

LUB = (vB0
3 −v3d)(N

B0 +fB0
1 )+(ωB0

3 −ω3d)(T
B0 +fB0

2 )+
[
γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)
+γΓR1(qBΓ)ϑBΓ

]T [
γ1MH(r̃BΓ

2 − ˙̃rd)−nBΓ +φ1B+fBΓ
1 −MHṘ1(qBΓ)vd−MHR1(qBΓ)v̇d

+γΓMHṘ1(qBΓ)ϑBΓ +γΓMHR1(qBΓ)ϑ̇BΓ
]
+2γ1k1B(r̃BΓ

1 − r̃d)T (r̃BΓ
2 − ˙̃rd)

+
[
γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ
]T [

γ2JHĠ
T ξ̄+γ2JHG

T ˙̄ξ−mBΓ−ωBΓ×(JHω
BΓ)

+φ2B+fBΓ
2 −JHω̇d+γΓµ̇BΓ

]
+2γ2k2B ξ̄

TG(ωBΓ−ωd).
(57)

Since (nB0)TR1(qB0)(vB0−vd) = NB0(vB0
3 − v3d) and (mB0)T (ωB0−ωd) = TB0(ωB0

3 −ω3d) due to
the boundary conditions in (35), the expression of LU0 in (47), LU1 in (56), and LUB in (57) suggests
that we choose the boundary controls φ1B and φ2B as follows

φ1B = −
(
k1B+ε11B+ε12B

)(
γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ
)
−γ1MH(r̃BΓ

2 − ˙̃rd)

−R1(qBΓ)DΓ
11v

BΓ +MHṘ1(qBΓ)vd+MHR1(qBΓ)v̇d−γΓMHṘ1(qBΓ)ϑBΓ−γΓMHR1(qBΓ)ϑ̇BΓ,

φ2B = −
(
k2B+ε21B+ε22B

)(
γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ
)
−γ2JHĠ

T ξ̄−γ2JHG
T ˙̄ξ+ωBΓ×(JHω

BΓ)

+DΓ
21ω

BΓ +DΓ
22(ω⊗ωBΓ)ωBΓ +JHω̇d−γΓµ̇BΓ,

(58) 
where εijB, (i, j) = 1, 2 are positive constants. It is seen from (58) that the boundary control vectors 
φiB, i = 1, 2 require only full states of the beam at the actuated end and the reference states, i.e., these 
control vectors are boundary state-feedback.

Remark 4.2: Since Ṙ1(qBΓ) = ∂R1(qBΓ)
∂qBΓ K(qBΓ)ωBΓ, only measurements from the actuated end of

the beam are required for implementation of the boundary controls φ1B and φ2B. The terms r̃BΓ
1 and

qBΓ can be measured by using translational and rotational displacement sensors (qBΓ is determined
from Euler angles via the relationship (8)). The terms ϑBΓ and µBΓ can be measured by using strain
gauges. The terms r̃BΓ

2 , ωBΓ, ϑ̇BΓ, and µ̇BΓ can be obtained by using band-pass filters, through which

11
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the measurements of r̃BΓ
1 , qBΓ, ϑBΓ, and µBΓ are passed, respectively. Then vBΓ = R−1

1 (qBΓ)rBΓ
2 ,

see (7).

Substituting LU0 in (47), LU1 in (56), and LUB in (57) together with the boundary controls φ1B

and φ2B in (58) into (44) results in

LU ≤ k�11‖v − vd‖2L2 + k�12‖ω − ωd‖2L2 + k�12N

〈
1, ω4

1 + ω4
2 + (ω3 − ω3d)

4
〉
L2

−k�21‖ϑ‖2L2 − k�22‖µ‖2L2 − k�22N

〈
1, µ4

1 + µ4
2 + µ4

3

〉
L2 + Ω + ΩB + c�0,

(59)

where

k�11 = m0(ε011v
M
3d +ε012v̄

M
3d )− γm0

2 +γΓm0v
M
3dε11 +γΓ%m0ε12,

k�12 =
(m0vM3d

4ε011
+
|J01−J02|ωM3d

2

)
∨J03|ω̇3d|ε014− γλm(J0)

2 + γ%Γm0

4ε12
+γΓm0v

M
3d

(
ε13 + 1−%

4ε15

)
+

2γΓωM3dλM (J0)
ε22

,

k�12N = γΓJ̃0M

ε21
,

k�21 = γ
[((

GĀ1∧GĀ2

2 −%Γε16(GĀ1∨GĀ2)− 1
γ

(
(GĀ1∨GĀ2)vM3dε013 +

|GĀ1−GĀ2|ωM3d
2

))
∧ EA2

)
−Γm0

4

(vM3d
ε13

+
v̄M3d
ε14

)]
,

k�22 = γ
[(

1
6(EI1∧EI2)− Γm0vM3d

4ε11
− %Γ(GĀ1∨GĀ2)

4ε16
−2ΓωM3dλM (J0)ε22− (GĀ1∨GĀ2)vM3d

4γε013

)
∧
(
GI3−Γω̄M3dJ03ε23

)]
,

k�22N = γ
6 (EI1∧EI2∧GI3),

c�0 = m0Γ|v̇3d|
4ε012

+ J03Γ|ω̇3d|
4ε014

+γΓ2
(
v̄M3dε14 +(1−%)vM3dε15 +

(1−%)v̄M3d
2

)
+
γΓ2ω̄M3dJ03

4ε23
,

(60)
and

Ω =
〈
v−vd,f1

〉
L2 +

〈
ω−ωd,f2

〉
L2 +γ

〈
(Dr−%R1(q)Dr0),R1(q)f1s

〉
L2 +γ

〈
µ,f2s

〉
L2 ,

ΩB=−γ1(r̃BΓ
1 −r̃d)TnBΓ+(1−%)γΓ(R1(qBΓ)Dr0)TnBΓ−γ2(GT ξ̄)TmBΓ− γΓ

2 (GĀ1∧GĀ2∧EA)‖ϑBΓ‖2

−γΓ
3 (EI1∧EI2∧GI3)‖µBΓ‖2− γΓ

24 (EI1∧EI2∧GI3)((µBΓ
1 )4 +(µBΓ

2 )4 +(µBΓ
3 )4)

+(vB0
3 −v3d)f

B0
1 +(ωB0

3 −ω3d)f
B0
2 −

(
k1B+ε11B+ε12B

)
‖γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)

+γΓR1(qBΓ)ϑBΓ‖2 +
[
γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ
]
fBΓ

10

+2γ1k1B(r̃BΓ
1 − r̃d)T (r̃BΓ

2 − ˙̃rd)−
(
k2B+ε21B+ε22B

)
‖γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ‖2

+
[
γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ
]
fBΓ

20 +2γ2k2B ξ̄
TG(ωBΓ−ωd).

(61)
It is noted that in order to obtain (59), we have added and subtracted the terms γ1(r̃BΓ

1 − r̃d)TnBΓ

and γ2(GT ξ̄)TmBΓ to LUB. We now calculate the upper-bound of Ω and ΩB. Using the expression of
f1 and f2, see (6), Young’s inequality, and the identity (x−xd)3 = x3−3xd(x−xd)2−3x2

d(x−xd)−x3
d

for all (x, xd) ∈ R, the upper-bound of Ω can be calculated as follows

Ω ≤ −k∗11‖v − vd‖2L2 − k∗12‖ω − ωd‖2L2 − k∗12N

〈
1, ω4

1 + ω4
2 + (ω3 − ω3d)

4
〉
L2 + k∗21‖ϑ‖2L2

+k∗22‖µ‖2L2 + k∗22N

〈
1, µ4

1 + µ4
2 + µ4

3

〉
L2 + c∗0,

(62)

where

k∗11 = λm(D11)−λM (D11)vM3dδ01−δ02− γΓλM (D11)
4δ11

−γ(1−%)ΓλM (D11)δ14,

k∗12 = λm(D21)−λM (D21)ωM3dδ03−δ04− γΓλM (D21)
4δ21

− 3γΓ(ωM3d)2

4δ15
,

k∗12N = λm(D22)− ωM3dδ
4/3
05

4 −3(ωM3d )2δ06− (ωM3d)3δ4
07

4 − 3γΓλM (D22)

4δ
4/3
23

− γΓωM3dλM (D22)
4δ24

,

k∗21 = γΓ(λM (D11)(δ11 +vM3dδ12)+δ13),

k∗22 = γΓλM (D21)δ21 +γΓωM3dλM (D21)δ22 +γΓωM3dλM (D22)δ24 +3γΓ(ωM3d )2λM (D22)δ25

+γΓωM3dλM (D22)δ26 +γΓδ27,

k∗22N = γΓλM (D22)δ4
23

4 ,

c∗0 =
λM (D11)vM3dΓ

4δ01
+
λM (D21)ωM3dΓ

4δ03
+

3ωM3dΓ
4δ4

05
+

3(ωM3d)2Γ
4δ06

+
3(ωM3d)3Γ

4δ07
+
γλM (D11)vM3d

4δ12
+γ(1−%)λM (D11)vM3dΓ2

+
γΓ2ωM3dλM (D21)

4δ22
+
γΓ2(ωM3d)3λM (D22)

4δ26
+
(

1
4δ02

+ γΓ
4δ13

)
‖f10‖2L2 +γ(1−%)Γ|

〈
1,f10

〉
L2 |+

(
1

4δ04
+ γΓ

4δ27

)
‖f20‖L2 ,

(63)
with δ1i, i = 1, 2, 3 and δ2i, i = 1, ..., 7 being positive constants to be chosen. Using the expression of

12
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n, m, fB0
1 , fB0

2 , fBΓ
1 , and fBΓ

2 , see (12), (13), and (16), Young’s inequality, and expansion of the
terms ‖γ1(r̃BΓ

1 − r̃d) +R1(qBΓ)(vBΓ− vd) + γΓR1(qBΓ)ϑBΓ‖2 and ‖γ2G
T ξ̄+ωBΓ−ωd + γΓµBΓ‖2,

we can bound ΩB as follows

ΩB ≤ −c11B(vB0
3 −v3d)

2−c12B(ωB0
3 −ω3d)

2−c12NB(ωB0
3 −ω3d)

4−c21B‖ϑBΓ‖2−c22B‖µBΓ‖2

−c22NB(µ4
1 +µ4

2 +µ4
3)−c31B‖γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ‖2−c32B‖r̃BΓ
1 − r̃d‖2

−c41B‖γ2G
T ξ̄+ωBΓ−ωd+γΓµBΓ‖2−c42Bξ

2
1‖ξ̄‖2−c51B‖vBΓ−vd‖2−c52B‖ωBΓ−ωd‖2 +c0B,

(64)
where

c11B = d0
11 − d0

11v
M
3dδ31 − δ32,

c12B = d0
21 − d0

21ω
M
3dδ33 − δ34,

c12NB = d0
22 −

9d0
22ω

M
3dδ

4/3
35

4 − 3d0
22(ωM3d )2δ36 − d0

22(ωM3d)3δ4
37

4 ,

c21B = γΓ
2 (GĀ1 ∧GĀ2 ∧ EA) + k1Bγ

2Γ2 − k1Bγγ1Γ
4δ41

− k1BγΓ
4δ42

,

c22B = γΓ
3 (EI1 ∧ EI2 ∧GI3) + k2Bγ

2Γ2 − k2Bγγ2Γ
4δ43

− k2BγΓ
4δ44

,

c22NB = γΓ
24 (EI1 ∧ EI2 ∧GI3),

c31B = ε11B,

c32B = k1Bγ
2
1 − k1Bγγ1Γδ41,

c41B = ε21B,

c42B = k2Bγ
2
2 − k2Bγγ2Γδ43,

c51B = k1B − k1BγΓδ42,

c52B = k2B − k2BγΓδ44,

c0B =
d0

11v
M
3d

4δ31
+ (fB0

10 )2

4δ32
+

d0
21ω

M
3d

4δ33
+ (fB0

20 )2

4δ34
+

3d0
22ω

M
3d

4δ4
35

+
3d0

22(ωM3d)2

4δ36
+

3d0
22(ωM3d)3

4δ
4/3
37

+ ‖fBΓ
1 ‖2

4ε12B
+ ‖fBΓ

2 ‖2
4ε22B

,

(65)

with δ3i, i = 1, ..., 7 and δ4i, i = 1, ..., 4 being positive constants to be specified. Now, substituting (62)
and (64) into (59) results in

LU ≤ −k11‖v−vd‖2L2−k12‖ω−ωd‖2L2−k12N

〈
1, ω4

1 +ω4
2 +(ω3−ω3d)

4
〉
L2−k21‖ϑ‖2L2−k22‖µ‖2L2

−k22N

〈
1, µ4

1 +µ4
2 +µ4

3

〉
L2−c11B(vB0

3 −v3d)
2−c12B(ωB0

3 −ω3d)
2−c12NB(ωB0

3 −ω3d)
4−c21B‖ϑBΓ‖2

−c22B‖µBΓ‖2−c22NB(µ4
1 +µ4

2 +µ4
3)−c31B‖γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ‖2

−c32B‖r̃BΓ
1 − r̃d‖2−c41B‖γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ‖2−c42Bξ
2
1‖ξ̄‖2−c51B‖vBΓ−vd‖2

−c52B‖ωBΓ−ωd‖2 +c0,

(66)
where

k11 = k∗11 − k�11, k12 = k∗12 − k�12, k12N = k∗12N − k�12N
k21 = k�12 − k∗12, k22 = k�22 − k∗22, k22N = k�22N − k∗22N ,
c0 = c�0 + c∗0 + c0B.

(67)

We now choose the constants %, γ, γ1, γ2, k1B, k2B, εijB, (i, j) = 1, 2; δ0i, i = 1, ..., 6; δ1i, i = 1, 2, 3;
δ2i, i = 1, ..., 7; δ3i, i = 1, ..., 7; and δ4i, i = 1, ..., 4 such that

kij ≥ k0
ij , ki2N ≥ k0

i2N , (i, j) = 1, 2

cijB ≥ c0
ijB, i = 1, ..., 4, j = 1, 2,

ci2NB ≥ c0
i2NB, i = 1, 2

(68)

where k0
ij , k

0
i2 with (i, j) = 1, 2, c0

ijB with i = 1, ..., 4, j = 1, 2, c0
i2NB with i = 1, 2, k�110 are positive

constants.

Remark 4.3: While the necessary conditions (68) for ensuring global practical asymptotic stability
of the closed-loop system look complicated, Remark 4.4 below shows that these conditions are always
feasible. The complexity of these conditions comes from the fact that the beams considered are moving
and exhibit both translational and rotational large motions in addition to track a moving reference
beam, for which the coupling term U1 of the Lyapunov function U , see (36) and (37) is introduced
to utilize the beam’s stiffness. Strong couplings among all the motions, and between them and the
reference linear and angular velocities, see Section 1 for discussion, induce the complexity in (68).
Even the stabilization of beams exhibit either only small motions (vibrations) or large motions results
in fairly complicated conditions to guarantee desired stability of the closed-loop system, see Do (2017a,

13
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2017c, 2017d, 2017e, 2018c); Do and Lucey (2018); Do and Pan (2008); He, Nie, and Meng (2017);
Morgul (1992); Queiroz et al. (2000).

We elaborate the choice of the constants %0i, i = 1, 2, 3, %, γ, γ1, γ2, k1B, k2B, εijB, (i, j) = 1, 2;
δ0i, i = 1, ..., 6; δ1i, i = 1, 2, 3; δ2i, i = 1, ..., 7; δ3i, i = 1, ..., 7; and δ4i, i = 1, ..., 4 to ensure that the
conditions listed in (43) and (68) hold in the following remark.

Remark 4.4:
1) The constant c1: It can be seen from (42) that by choosing a small γ the inequality (43) holds

for any given positive constants %0i, i = 1, 2, 3 and 0 ≤ % ≤ 1.
2) The constants (kij , ki2N ), (i, j) = 1, 2: If the bending stiffness is strictly larger than the shear

stiffness multiplied by square of the beam’s length, i.e.,

(EI1 ∧ EI2) > Γ2(GĀ1 ∨GĀ2), (69)

then the constants (kij , ki2N ), (i, j) = 1, 2 can be made strictly positive by choosing % = 1, see the
expression of U1 in (37); Γ

ε16
< 2

3 ; small (γ, ε22, ε23, ε43 under the conditions that (vM3d , v̄
M
3d , ω̄

M
3d ) and

|GĀ1−GĀ2| are not too large, see the expression of k�21 and k�22 in (60). These features usually hold for
motion transporting beams because the beams are easier to be sheared than to be bent, have the same
shear stiffness GĀ1 and GĀ2, and their axial velocity and acceleration, and spinning acceleration are
small. If the condition (69) does not hold, the constant % needs to be a small positive constant.

3) The constants cijB, i = 1, ..., 4, j = 1, 2 and ci2NB, i = 1, 2: elaboration of how to ensure these
constants strictly positive can be carried out similarly to the constants (kij , ki2N ), (i, j) = 1, 2.

With (68), we can write (66) as

LU ≤ −c3E + c0, (70)

where

c3 = k11 ∧ ∧k12 ∧ k21 ∧ k22 ∧ k22N ∧ c11B ∧ c12B ∧ c31B ∧ c32B ∧ c41B ∧ c42Bξ
2
1 . (71)

The control design has been completed. A block diagram of the proposed control design is depicted
in Figure 2.

Control design:
 Abstract formulation: (34), (35)
Lyapunov function (36), (37)

 Infinitesimal generator: (47), (56), (57)
 Controllers: (58)

Beam system:  (11), (12), (13), (14), (15), (16)

Assumption 3.1
Control objective 3.1

Control gain conditions: (43), (68)
Choice of control gains: Remark 4.4

Figure 2.: Block diagram of the control design

We summarize the main results in the following theorem.

Theorem 4.1: Under Assumption 3.1, the boundary control vectors φiB, i = 1, 2 given in (58)
solve Control Objective 3.1 provided that %0i, i = 1, 2, 3, %, γ, γ1, γ2, k1B, k2B, εijB, (i, j) = 1, 2;
δ0i, i = 1, ..., 6; δ1i, i = 1, 2, 3; δ2i, i = 1, ..., 7; δ3i, i = 1, ..., 7; and δ4i, i = 1, ..., 4 are chosen such that
the conditions in (43) and (68) hold. The closed-loop system consisting of (34), (35), and (58) is
globally well-posed and globally practically asymptotically stable at the origin.
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It is noted that larger bounds on the external disturbances, see Assumption 3.1, result in a larger
constant c0 in (70), see (67) with its components in (60), (63), (65). This means that the beam
tracking errors converge to a larger ball centered at the origin. However, the global practical stability
is not lost due to the size of the disturbance bounds.

Proof. We first define

X =



r̃1

q
v
ω
zB0

θB0
3

vB0
3

ωB0
3

r̃BΓ
1

qBΓ

r̃BΓ
2

ωBΓ



, F (X, t) =



R1(q)v
K(q)ω

1
m0

(
m0(R−1

1 (q))tR1(q)v +R−1
1 (q)Dn+ f1

)
J−1

0

(
Dm− ω × (J0ω) + Dr × n+ f2

)
vB0

3

ωB0
3
1
mP

(
NB0 + fB0

1

)
1
JP

(
TB0 + fB0

2

)
r̃BΓ

2

K(qBΓ)ωBΓ

M−1
H

(
− nBΓ + φ1B + fBΓ

1

)
J−1
H

(
−mBΓ − ωBΓ × (JHω

BΓ) + φ2B + fBΓ
2

)



(72)

where φiB, i = 1, 2 are defined in Eq. (58). Next, we can write Eqs. (34) and (35) as follows

dX

dt
= F (X, t). (73)

For well-posedness and stability analysis of Eq. (73), we introduce the functional spaces: H =
(W 1,2(D))6×(L2(D))6×R16, V = (W 2,2(D))6×(L2(D))6×R16, V ∗ = (W−2,2(D))6×(L2(D))6×R16,
where D := (0,Γ), and W−m,p(D) denotes the dual of Wm,p(D). Then, we have the embedding
V ⊂ H ≡ H∗ ⊂ V ∗. Let

X̂ = col(ˆ̃r1, q̂, v̂, ω̂, ẑ
B0, θB0

3 , v̂B0
3 , ω̂B0

3 , ˆ̃r
BΓ
1 , q̂BΓ, ˆ̃r

BΓ
2 , ω̂BΓ). (74)

Define〈
X, X̂

〉
H

= m0

2

〈
v−vd, v̂−vd

〉
L2 + 1

2

〈
ω−ωd,J0(ω̂−ωd)

〉
L2 + 1

2

∑2
i=1GĀi

〈
ηi, η̂i

〉
L2 + EA

2

〈
ε, ε̂
〉
L2

+1
2

∑2
i=1EIi

〈
µi,
(

1
2 µ̂i−

1
6 µ̂

2
i + 1

12 µ̂
3
i

)〉
L2 + 1

2

∑2
i=1EIi

〈(
1
2µi−

1
6µ

2
i + 1

12µ
3
i

)
, µ̂i
〉
L2

+1
2GI3

〈
µ3,
(

1
2 µ̂3− 1

6 µ̂
2
3 + 1

12 µ̂
3
3

)〉
L2 + 1

2GI3

〈(
1
2µ3− 1

6µ
2
3 + 1

12µ
3
3

)
, µ̂3

〉
L2

+1
2γm0

〈
Dr−%R1(q)Dr0,R1(q̂)(v̂−vd)s

〉
L2 + 1

2γm0

〈
R1(q)(v−vd),Dr̂−%R1(q̂)Dr0s

〉
L2

+1
2γ
〈
µ,J0(ω̂−ωd)s

〉
L2 + 1

4γ
〈
J0(ω−ωd), µ̂s

〉
L2 +mP

2 (vB0
3 −v3d)(v̂

B0
3 −v3d)

+JP
2 (ωB0

3 −ω3d)(ω̂
B0
3 −ω3d)+ 1

2

(
γ1(r̃BΓ

1 − r̃d)+R1(qBΓ)(vBΓ−vd)+γΓR1(qBΓ)ϑBΓ
)T
MH

×
(
γ1(ˆ̃r

BΓ
1 −ˆ̃rd)+R1(q̂BΓ)(v̂BΓ−vd)+γΓR1(q̂BΓ)ϑ̂BΓ

)
+γ1k1B(r̃BΓ

1 − r̃d)T (ˆ̃r
BΓ
1 −ˆ̃rd)

+1
2

(
γ2G

T ξ̄+ωBΓ−ωd+γΓµBΓ
)T
JH
(
γ2Ĝ

T ˆ̄ξ+ω̂BΓ−ωd+γΓµ̂BΓ
)
+2γ2k2B ξ̄

T ˆ̄ξ,

(75)

where η̂i, i = 1, 2, µ̂i, i = 1, 2, 3, ε̂, ϑ̂BΓ, Ĝ, and ˆ̄ξ are the values of ηi, i = 1, 2, µi, i = 1, 2, 3, ε,
ϑBΓ, G, and ξ̄ with Dr̃1 and q being replaced by Dˆ̃r1 and q̂, respectively. The constants γ, γ1, γ2,
%, k1B, and k2B the conditions specified in Theorem 4.1. Let us denote by

〈
X, X̂

〉
LH

linearization

of
〈
X, X̂

〉
H

at the origin. Then, it can be verified that
〈
X, X̂

〉
LH

is a inner product with the

norm
〈
X,X

〉
LH

= ‖X‖2LH . In fact, there exist strictly positive constants c̄01 and c̄02 such that

−%0 + c̄01ELH ≤ ‖X‖2LH ≤ c̄02ELH + % locally, where ELH is the linearization of E , which is defined
in Eq. (28).

We now verify all the conditions of Theorem A.1. The continuity condition in Assumption A.1
holds due to continuity of F (X, t). By using

〈
X − X̂,F (X, t)−F (X̂, t)

〉
V,V ∗ =

〈
X − X̂,F (X, t)−

F (X̂, t)
〉
H

with the use of the local inner product in LH defined as above and integration by parts
similarly to the calculation of LU in Section 4.2, it is readily shown that the local monotonicity
condition (A4) and local growth condition (A5) hold. From Eqs. (41) and (70), it follows that

LU ≤ − c3
c2
U + %0c3

c2
+ c0. (76)

Thus, the conditions (A6), (A8) and (A9) hold. This together with Lemma 2.1 yields the proof of
Theorem 4.1, i.e., the above local condition analysis, (41) and (76) (this satisfies both (A8) and (A9))
ensure both global wellposedness and global practical asymptotic stability of the closed-loop system.
�
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5. Simulation results

This section illustrates the effectiveness of the proposed boundary controller via some numerical
simulations on an ocean drill pipe immersed in sea water. The drill pipe system parameters are
taken as Γ = 1000m; outer diameter do = 0.8m; inner diameter din = 0.4m; % = 7850kg/m3; E =
2.04× 1010kg/m2; and G = 8.4× 1010kg/m2. We take mP = 300kg; JP = 150kg/m; MH = 1000I3kg;
J2H = 500I3kg/m; d0

11 = 200kg/s; d0
21 = 100kgm2/s; DΓ

11 = 500I3kg/s; and DΓ
21 = 250kgm2/s. The

nonlinear damping coefficients d0
22 and DΓ

22 are taken to be 50% of d0
11 and DΓ

21, respectively.
For the fluid loading, the one-degree-of-freedom approach in Niedzwecki and Liagre (2003), Sarpkaya

and Isaacso (1981) is extended to beam motion in 3D space. This entails decomposition of the fluid
motion into components perpendicular and parallel to the axis of the cylinder; the load due to the
former is obtained from bluff-body analysis while the load due to the latter arises from the effect
of skin-friction and is modeled using boundary-layer theory. The resulting expressions for D11 =
diag(d111, d112, d113) and D21 = diag(d211, d212, d213) are derived as follows:

dk1i = CLki + CDki
%wdo

2

√
8
πσki(s, t), (77)

for k = 1, 2 and i = 1, 2, 3, where %w is the sea water density; CLi are the (structural) linear viscous
damping coefficients; CDi are the skin-friction drag coefficients; and σi(s, t) is the root mean square of
the water particle velocity. The nonlinear damping coefficient matrixD22 taken to be 50% ofD21. The
coefficients of distributed damping and fluid loads are taken as CL11 = CL12 = 120Ns

m , CL13 = 60Ns,
CD11 = CD12 = 1.2, CD13 = 0.6; CL21 = CL22 = 90Ns, CL23 = 60Nms, CD21 = CD22 = 0.8,
CD23 = 0.4; and sea-water density is %w = 1025kg/m3. Using linear wave theory, the water particle
velocities ϑi are Niedzwecki and Liagre (2003):

ϑi(z, t) =

Ni∑
j=1

Aijωij
cosh(kijz)

sinh(kijL)
sin(ωijt+ ξij), (78)

where ξij = 2πrand() with rand() being a random number between 0 and 1, the amplitude Aij , wave
number kij , and frequency ωij of the wave jth are given by

ωij = ωim +
ωiM − ωim

Ni
j, Sij =

1.25

4

ω4
io

ω5
j

H2
i e
−1.25

(
ωio
ωj

)4

Aij =

√
2Sij

ωiM − ωim
Ni

, 9.8kij tanh(kijΓ) = ω2
ij .

(79)

In (79), the minimum and maximum wave frequencies are ωim = 0.2rad/s, ωiM = 2.5rad/s; the two-
parameter Bretschneider spectrum Sij are used with the significant wave heights Hi = 4m; the modal
frequency is ωio = 2π

Ti
with the period T1 = T2 = 7.8, T3 = 5; Ni = 10.

The initial conditions are taken as t0 = 0; r̃10(s) = col(4 sin
(

4π
Γ s
)
,−4 sin

(
4π
Γ s
)
,−0.75 sin

(
2π
Γ s
)
);

r̃20(s) = 0; θ0(s) = col
(
0.6 sin

(
6π
Γ s
)
, 0.75 cos

(
6π
Γ s
)
, 1.5 sin

(
4π
Γ s
))

; and ω0(s) = 0. The reference
velocities are taken as v3d = 0.1m/s and ω3d = 20rad/s. Following Remark 4.4, the control gains are
chosen as follows: % = 0.05, γ = 1

100Γ , γ1 = γ2 = 3.5γΓ, k1B = 5EA, k2B = 5EI, ε1iB = 1
2EA, i = 1, 2,

and ε2iB = 1
2EI, i = 1, 2. It is readily checked that the above choice of the control gains ensures that all

the conditions specified in Theorem 4.1 hold for some positive constants %0i, i = 1, 2, 3, δ0i, i = 1, ..., 6;
δ1i, i = 1, 2, 3; δ2i, i = 1, ..., 7; δ3i, i = 1, ..., 7; and δ4i, i = 1, ..., 4.
We run two simulations. In the first simulation, the control in Do (2017c), see (57) in this reference,
with the vectors r̃BΓ

1 , r̃BΓ
2 , θBΓ, and ωBΓ being substituted by r̃BΓ

1 = r̃BΓ
1 − rd, r̃BΓ

2 = r̃BΓ
2 − vd,

θBΓ = θBΓ − col(θBΓ
1 , θBΓ

2 , θBΓ
3 − ω3d(t − t0)), and ωBΓ = ωBΓ − ωd, respectively, to make the

stabilization control in Do (2017c) become a velocity tracking one. The control gains are taken the
same as those in the simulation in Do (2017c). In the second simulation, the proposed boundary
controls (58) is used. In both simulations, the length of simulation time is 500 seconds. Moreover, the
second order (in space and time) centered, implicit finite difference scheme is used to numerically solve
the partial differential equations (4) plus the boundary conditions (15) where the boundary controls
φiB, i = 1, 2, 3 given in (58). The time step is ∆t = 0.01 and space step is ∆z = 0.2. This choice
ensures that the convergence parameter r = ∆t

(∆z)2 = 0.25 is positive and less than 0.5 as required

for stable solutions Smith (1985). If the discretized steps are too large, the numerical solution will be
unstable. If they are too small (provided they satisfy the above condition), simulation time will be
very long.
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a) Translational displacements and boundary control
φ1B .

b) Rotational angles and boundary control φ2B .

Figure 3.: Simulation results with the control design in Do (2017c)

a) Translational displacements and boundary control
φ1B .

b) Rotational angles and boundary control φ2B .

Figure 4.: Simulation results with the proposed boundary controls

Case of the control in Do (2017c): The results are plotted in Figure 3a and Figure 3b. The
displacements (x̃(s, t), ỹ(s, t), z̃e(s, t)), where z̃e(s, t) = z̃(s, t) − zd with żd = v3d and zd(0) = 0, are
plotted in Sub-figures. 3a.A, 3a.B and 3a.C, the rotations (θ1(s, t), θ2(s, t), θ3e(s, t)), where θ3e(s, t) =
θ3(s, t) − θd(t) with θ̇3d = ω3d and θd(0) = 0, are plotted in Sub-figures 3b.A, 3b.B and 3b.C, while
the controls φ1B and φ2B are plotted in Sub-figure 3a.D and Sub-figure 3b.D. It is seen that the
displacements and rotations oscillate within a ball centered at the origin with a quite large radius
due to the sea loads and axial and rotational motions. This is due to the robustness property of the
control in Do (2017c), which is a nice property of the Lyapunov-based control design Khalil (2002);
Krstic et al. (1995).

Case with the proposed feedbacks (58): The results are plotted in Figure4a and Figure 4b.

17



March 12, 2020 International Journal of Systems Science Motions˙Transferring˙Beams˙R1

Comparing Sub-figure. (4a.A, 4a.B, 4a.C, 4b.A, 4b.B, 4b.C) in this case with corresponding Sub-
figures (3a.A, 4a.B, 3a.C, 3b.A, 3b.B, 3b.C) in the case, where the control design in Do (2017c) is
used, clearly shows an excellent performance of the proposed controller in the sense of a large reduction
(about 5 times less) in magnitude of all displacements and rotations. This is because as mentioned
before the control design in Do (2017c) is for stabilization, where the couplings of the reference
velocities with all other motions are not considered in the control design. It is also observed from
Sub-figures (3a.D, 3b.D) and Sub-figures. (4a.D, 4b.D) that the controls φ1B and φ2B corresponding
to the control design in Do (2017c) are larger than those in the present paper because all the motions
with the controls in Do (2017c) have larger magnitudes than those in the present paper. Note that if
the external disturbances increase, the radius of the ball centered at the origin will be larger, see the
discussion just below Theorem 4.1, and of course the control efforts will become larger.

6. Conclusions

The problem for beams to track reference axial and rotational velocities in space was posed and
boundary controllers were designed to stabilize them at their reference states. In the control design and
analysis of well-posedness and stability, exact nonlinear partial differential equations governing motion
of the beams were used. Various tools including coordinate transformations, Sobolev embeddings, and
a Lyapunov-type theorem developed for a class of evolution systems in Hilbert space were utilized to
handle difficulties caused by large motion couplings of the beams in space. Future work is to consider
the boundary control problem for a group of beams.

Appendix A. Well-posedness and Stability of Nonlinear Evolution Systems

This appendix presents results on well-posedness (existence, uniqueness, and continuous dependence
on initial conditions) and stability of nonlinear evolution systems. These results are used in control
design and stability analysis of the beam system.

A.1. Space notations

Let H be a separable Hilbert space identified with its dual H∗ by the Riesz isomorphism. Let V be
a real reflexible Banach space such that V ⊂ H continuously and densely, and V ∗ be the dual of V .
From the definitions of H and V , we have that the embedding V ⊂ H ≡ H∗ ⊂ V ∗ is continuous
and dense. We denote by ‖.‖H , ‖.‖V , and ‖.‖V ∗ the norms in H,V , and V ∗, respectively; by

〈
., .
〉
V,V ∗

(i.e.,
〈
z,v

〉
V,V ∗ = z(v) for z ∈ V ∗,v ∈ V ) the duality product between V and V ∗; and by

〈
., .
〉
H

the

inner product in H. The duality product between V and V ∗ has the following property Gawarecki
and Mandrekar (2011): 〈

u,v
〉
V,V ∗ =

〈
u,v

〉
H
,u ∈ H,v ∈ V. (A1)

A.2. Evolution systems

Let us consider the nonlinear evolution system on the space H:

dX(t)

dt
= F (X(t), t), X(t0) = X0 ∈ H, (A2)

where X is assumed to be in H for almost every (a.e.) t ∈ [t0,∞) and F : H × [t0,∞) → V ∗ is a
family of nonlinear operators defined for a.e. t ∈ [t0,∞). The following definition is a deterministic
version of the stochastic one in (Chow, 2007).

Definition A.1: A H-valued process {X(t), t ∈ [t0, T ]} is said to be a variational solution of (A2)
if for any ψ ∈ V : 〈

X(t),ψ
〉
H

=
〈
X0,ψ

〉
H

+
t
∫
t0

〈
F (X(s), s),ψ

〉
V,V ∗ds (A3)

for each t ∈ [t0, T ]. If T is replaced by ∞, then X(t), t ≥ t0, is said to be a global variational solution
of (A2).
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The following definition is an extended version of the one in finite dimensional space in (Khalil,
2002) to infinite dimensional space.

Definition A.2: The variational solution of (A2) is said to be

(1) globally stable if, for each X0 ∈ H, there exists δ = δ(‖X0‖H) such that ‖X(t)‖H ≤ δ(‖X0‖H),
a.e. (X, t) ∈ V × [t0,∞);

(2) globally exponentially stable if it is globally stable and ‖X(t)‖H ≤ ‖X(t0)‖He−c(t−t0), a. e.
(X, t) ∈ V × [t0,∞), where c is a positive constant;

(3) globally practically exponentially stable if it is globally stable and ‖X(t)‖H ≤
‖X(t0)‖He−c(t−t0) + c0, a.e. (X, t) ∈ V × [t0,∞), where c is a positive constant, and c0 is
positive constant.

If c depends on the initial condition, then “exponentially” is replaced by “asymptotically” in the above
statements.

A.3. Well-posedness and stability of evolution systems

We assume that F : H × [t0,∞)→ V ∗ is measurable and satisfies the following continuity and local
monotonicity and growth conditions.

Assumption A.1:
1) [Continuity] The mapping V 3 v → F (v, t) ∈ V ∗ is continuous a.e. t ∈ [t0,∞).
2) [Local monotonicity] For any u,v ∈ V with ‖u‖H ≤ ε and ‖v‖H ≤ ε, where ε is a positive

constant, there exists a constant cε such that

2
〈
u− v,F (u, t)− F (v, t)

〉
V,V ∗ ≤ cε‖u− v‖2H , (A4)

a.e. t ∈ [t0,∞).
3) [Local growth] There exists a constant δ such that:

‖F (u, t)‖V ∗ ≤ δ(1 + ‖u‖p−1
V ) ∀u ∈ V, ‖u‖V ≤ ε. (A5)

Theorem A.1: Under Assumption A.1, suppose that there exist a function U(X, t) ∈ C1(H; [t0,∞))
referred to as a Lyapunov function, an integer p ≥ 0, and nonnegative constants %1 and %2 such that

−%1 + ‖X‖pH ≤ U(X, t) ≤ ‖X‖pH + %2, (A6)

a.e. (X, t) ∈ V × [t0,∞), and that the generator LU := dU
dt given by

LU(X, t) = Ut(X, t) +
〈
F (X, t), UX(X, t)

〉
V,V ∗ , (A7)

with Ut(X, t) and UX(X, t) being the (Fréchet) derivatives of U(X, t) with respect to t and X,
respectively.

1) [well-posedness] If the generator LU(X, t) satisfies

LU(X, t) ≤ c(1 + U(X, t)), a.e. (X, t) ∈ V × [t0,∞), (A8)

where c is a nonnegative constant. Then the system (A2) is globally well-posed in terms of the varia-
tional solution for each X0 ∈ H.

2) [stability] If the generator LU(X, t) satisfies

LU(X, t) ≤ −c3‖X‖pH + c0, a.e. (X, t) ∈ V × [t0,∞), (A9)

where c3 is a positive constant. If c0 = 0, %1 = 0, and %2 = 0, the equilibrium X ≡ 0 is globally
exponentially stable. If any of c0, %1, and %2 is a positive constant, the equilibrium X ≡ 0 is globally
practically exponentially stable. Moreover, if c3 depends on the initial condition, then “exponentially”
is replaced by “asymptotically” in the above statements.

Proof. See Do (2018a).
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