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ABSTRACT 
 

The increasing demand for composite products to be affordable, net-shaped and efficiently 
assembled makes tight dimensional tolerance is critical.  Due to lack of accurate process models, 
RTM dimensional analysis and control are often performed using trial-and-error approaches 
based on engineers’ experiences or previous production data.  Such approaches are limited to 
specific geometry and materials and often fail to achieve the required dimensional accuracy in 
the final products.  This paper presents an innovative study on the dimensional variation 
prediction and control for polymer matrix fiber reinforced composites.  A dimensional variation 
model was developed for process simulation based on thermal stress analysis and finite element 
analysis (FEA).  This model was validated against the experimental data, the analytical solutions 
and the data from literature.  Using the FEA-based dimensional variation model, the 
deformations of typical composite structures were studied and the regression-based dimensional 
variation model was developed.  By introducing the material modification coefficient, this 
comprehensive model can account for various fiber/resin types and stacking sequences.  The 
regression-based dimensional variation model can significantly reduce computation time by 
eliminating the complicated, time-consuming finite element meshing and material parameter 
defining process, which provides a quick design guide for composite products with reduced 
dimensional variations.  The structural tree method (STM) was developed to compute the 
assembly deformation from the deformations of individual components, as well as the 
deformation of general shape composite components.  The STM enables rapid dimensional 
variation analysis/synthesis for complex composite assemblies with the regression-based 
dimensional variation model.  The exploring work presented in this research provides a 
foundation to develop practical and proactive dimensional control techniques for composite 
products. 
 
KEY WORDS: Dimensional variation, Resin Transfer Molding (RTM), Finite Element Analysis 
(FEA), regression, Structural Tree Method (STM) 
 

1 INTRODUCTION 
 
The applications of composites are important in both commercial and military products due to 
their structural and functional features.  With the increasing demand for composite products to be 
affordable, net-shaped and efficiently assembled, tight dimensional tolerances are often required.  
Traditional dimensional control operations for composites are mainly based on trial-and-error 
approaches, which cannot be directly and effectively employed in real world part design and 
tooling development.  In another aspect, the increasing applications of new processes, such as 
resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM), will also 
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raise a number of new issues in dimensional control.  For example, large warpage in RTM 
process is observed due to the occurrences of resin rich surfaces and resin rich zones. 
 
The problem of dimensional variations for composite parts comes from the volumetric shrinkage 
of the resin during curing and the mismatch in the coefficients of thermal expansion of the matrix 
and the fiber.  Primary causes include crosslinking, non-uniform thermal expansion, shrinkage 
and residual stresses induced in the curing and cooling processes. 
 
The dimensional variations of composites have been studied experimentally [1-3], analytically 
[4-11] and numerically [12-20]. 
 
For simple geometric structures as “L-shaped,” the two curved sides approach each other and 
this leads to a reduction in the enclosed angle.  This decrease in the enclosed angle is referred as 
spring-in.  This is due to the difference between the in-plane CTE and through-thickness CTE as 
well as chemical strains.  The spring-in has been analytically computed for autoclave process [4-
8], RTM process [4-7] and filament winding process [9-11].   
 
In order to predict the spring-in of more complex structures, numerical simulation tools of finite 
element method or finite difference method have been employed.  Theriault et al [12] developed 
a one-dimensional finite difference model to simulate the progression of material properties 
during the processing of metal-clad, multi-layered, fiber mat reinforced, thermoset resins.  The 
general Classical Lamination Theory was implemented to evaluate the dimensional movement of 
the composite laminate.  The spring-in was predicted using FEM by Wiersma et al [13].  His 
approach includes curing simulation, elastic model and viscoelastic model.  Darrow and Smith 
[14-15] employed finite element method to model the processing induced spring-in in laminated 
composites.  Their model accounted for the mold stretching, thickness shrinkage, and fiber 
volume fraction gradients.  This linear elastic model was able to account for 80% of the observed 
spring-in for parts ranging between 1 and 5 mm thick and having a 3 to 13 mm bend radius.  
Golestanian and El-Gizawy [16] modeled the process-induced residual stresses and deformation 
in composite parts using finite element method coupled with cure-dependent mechanical 
properties.  Wang et al [17] conducted finite element method (FEM) analysis to spring-in using 
ABAQUS.  Fernlund et al. [18] presented an engineering approach to predict process-induced 
deformations of three-dimensional composite shell structures, using a two-dimensional special 
purpose finite element process code COMPRO and a standard three-dimensional structural code 
ANSYS. 
 
A number of full 3-D spring-in models have been developed recently.  Ding et al. [19] developed 
a 3-D finite element analysis procedure to predict “spring-in” resulting from anisotropy for both 
thin and thick angled composite shell structures.  Zhu et al. [20] developed a fully 3-D coupled 
thermo-chemo-viscoelastic finite element model to simulate the heat transfer, curing, and 
residual stress development during the manufacturing cycle of thermoset composite parts. 
 
From the literature review, it is seen that many studies have focused on the curing process and 
residual stresses in composite processing.  Various models were proposed for the deformation 
prediction of composite structures.  However, most of them were based on finite element 
analysis and they are not convenient for industry applications.  The influence of design on the 
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dimensional variations has not been fully investigated, which is necessary to achieve good 
dimensional control in the early design stage.  In addition, the prediction and control for 
deformations of composite assemblies lack a thorough study.  Thus, it is highly desirable to 
develop an engineering tool for composite component and assembly design with good 
dimensional control. 
 
In this study, a regression-based dimensional variation model was developed based on the study 
of typical composite structures using the FEA-based dimensional variation model.  The structural 
tree method (STM) was developed to compute the deformations of general shape composite 
components and composite assemblies.  By using the regression-based dimensional variation 
model and the structural tree method, the dimensional variations of composite products and 
assemblies can be predicted effectively and efficiently. 
 

2 FEA-BASED DIMENSIONAL VARIATION MODEL 
 
For the purpose of deformation prediction for part produced with the RTM process, a 
dimensional variation model [21-23] was developed and validated.  The approach is illustrated in 
Figure 1.  A non-isothermal flow and curing model was developed to simulate the flow pattern 
and temperature distribution.  A material model was used to compute the material properties, i.e. 
CTE, moduli, etc.  These results, with the design geometry and processing parameters, were 
imported into the dimensional variation model, which was based on the CLT and FEA, to 
compute the deformation.  Using the same design geometry, material properties and processing 
parameters, experimental parts were fabricated and measured using a coordinate measuring 
machine (CMM) for the purpose of validation.  The measured data and the computational results 
were compared, where in Figure 1, dcom is the computational results and dexp is the experimental 
result.  The model parameters were revised to provide a prediction as accurate as possible. 
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Figure 1: Model development and validation 

 
In order to validate the developed FEA-based dimensional variation model, a single-stiffener, as 
shown in Figure 2, was studied.  The mold assembly is shown in Figure 3.  Experimental parts 
were fabricated from E-glass fiber mats and epoxy resin.  First, a [0/90]s laminate was studied.  
The fiber volume fraction was determined experimentally.  Before the experiment, the fiber mats 
were weighed using a scale.  The mass was 36.8g; after the part was fabricated, as shown in 
Figure 4, the final part was weighed and the mass was 101.11g.  The fiber volume fraction was 
22%.  This data was used in the material model. 
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Figure 2: A single-stiffener structure 

 

   
 

Figure 3: Mold assembly for the single-stiffener structure 
 

 
Figure 4: A finished single-stiffener part 

 
After the thickness was determined, the single stiffener structure was modeled.  Due to the 
lay-up of fiber mats, resin rich zones were formed, as shown in Figure 5, which were accounted 
for in modeling.  Half of the structure was modeled and the symmetric boundary condition was 
applied.  The FEA result is shown in Figure 6, where the contours indicate the total displacement 
in mm.  The spring-in angle is -0.49°. 
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Figure 5: Resin rich zones 

 

  
Figure 6: FEA result for the single-stiffener structure 

Left: mesh; right: dimensional variation 
 
The spring-in angle was measured 10 times on the CMM, as shown in Figure 7.  The 
measurement data is shown in Table 1. The average of the spring-in angle is -0.52°. 
 

 
Figure 7: Spring-in measurement of the single-stiffener part 
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Table 1: Spring-in measurement of single-stiffener 

 
n spring-in (°) 
1 -0.506 
2 -0.466 
3 -0.616 
4 -0.595 
5 -0.469 
6 -0.436 
7 -0.493 
8 -0.481 
9 -0.516 
10 -0.632 

average -0.521 
 
In the same approach, a unidirectional laminate of [90]4 was studied.  The results were compared 
with the computational results as shown in Table 2.  Both cases show that the experimental data 
agree with the computational results. 
 

Table 2: Comparison between computational results and experimental results for the 
single-stiffener E-glass/epoxy parts 

 Computational result (°) Experimental result (°) Relative error 
[0/90]s -0.49 -0.52 6% 
[90]4 -0.063 -0.080 20% 

 
The model validation shows that despite the existence of certain amount of errors, the model is 
capable of accurately predicting the deformation trends of composites. 
 

3 TYPICAL COMPOSITE STRUCTURE STUDY AND REGRESSION-BASED 
DIMENSIONAL VARIATION MODEL 

 
The deformation of composites can be computed using the developed dimensional variation 
model.  However, this approach is FEA-based.  The FEA for composite modeling involves a 
complicated geometric modeling and meshing process, as well as a large amount of parameter 
input work due to the layer-wise structure of composites.  This requires extensive FEA 
knowledge and skills for users.  The computation is often time-consuming when the geometry 
becomes complex and the number of nodes and elements becomes large.  All of these limit its 
applications in industry.  Thus, typical composite structures were investigated and the influences 
of design parameters on the deformation were studied.  The regression-based dimensional 
variation model was developed. 
 
The deformation of composites is related to design geometric parameters, material parameters 
and processing parameters.  This gives us a functional relationship as 

( )PMGf ,,=δ          (1) 
where 



 8 

δ: deformation vector 
G: design geometric parameters 
M: material parameters (fiber, resin) 
P: processing parameters (temperature, curing) 
 
Since geometry is one of the primary factors determining the deformation of composites, 
research attention can be focused onto several typical structures such as angled structures, 
stiffener structures, etc.  The purpose is to relate their deformations with the structural 
parameters and develop a regression-based dimensional variation model. 
 
3.1 Selection of Typical Structures 
 
First, the materials were fixed (E-glass/epoxy) in order to study the effects of geometric 
parameters.  Based on experience, seven commonly used typical structures were chosen, as 
shown in Table 3, together with their corresponding tolerances and design parameters.  The 
developed dimensional variation model was used to simulate the deformation of composites.  
Data were collected by modifying the geometric parameters such as radius and thickness.  
Non-linear regression models were developed based on these collected data. 
 

Table 3: Typical structures and design parameters 
Typical structure Tolerances Design parameters 

 
Angled structure 

Perpendicularity 
Angularity 

Angle φ 
Radius r 

Thickness h 

 
Single-stiffener structure 

Perpendicularity Radius r 
Thickness h 

 
Multiple-stiffener structure 

Perpendicularity 
Parallelism 

Radius r 
Thickness h 

 
Cylindrical shell 

Cylindricity Radius r 
Thickness h 

 
3.2 An Example: a Single-Stiffener Structure 
 
A single-stiffener structure was used to illustrate the approach.  The spring-in of the 
single-stiffener structure is controlled by the perpendicularity.  With reference to Figure 8, the 
design parameters possibly affecting the perpendicularity are the half-length L/2, the height H, 
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the inner radius r, and the thickness h.  The perpendicularity is proportional to the half-length of 
the structure, L/2.  Thus, the spring-in angle was investigated alternatively to reduce the number 
of design parameters.  It is related to the perpendicularity as 

2φ∆= LTpe           (2) 
where Tpe is the perpendicularity; L/2 is the half-length of the single-stiffener structure; and ∆φ is 
the spring-in angle. 

 

L/2 

H
 

∆φ T p
e 

 
Figure 8: Tolerances of the single-stiffener structure 

 
The cross ply E-glass/epoxy laminates were first studied.  First, the fiber volume fraction was 
fixed at 49%.  The design parameters and levels are shown in Table 4. 
 

Table 4: Design parameters and levels for single-stiffener structures 
Thickness h (mm) Radius r (mm) Fiber volume fraction Vf 

1.058 3.175 0.41 
2.117 6.35 0.49 
3.175 9.525 0.57 
4.233 — 0.66 

 
The spring-in was simulated using the FEA-based dimensional variation model.  When the 
thickness is 2.117 mm and the inner radius is 6.35 mm, the FEA result is shown in Figure 9.  The 
spring-in is –0.14º.  The complete results for all cases are shown in Figure 10.  The spring-in 
angle increases linearly with the increase of inner radius r and decreases exponentially with the 
increase of thickness h.  This is because of the existence of resin rich zones.  The resin shrinks 
much more than the lamina, and its modulus is much lower than that of the lamina. 
 

  
Figure 9: FEA result for the single-stiffener structure 

Left: mesh; right: dimensional variation 
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(a) Spring-in vs. thickness h (b) Spring-in vs. radius r 

Figure 10: Influences of radius and thickness on the spring-in of single-stiffener structures 
 
In addition, the effect of fiber volume fraction was also studied.  The results are shown in 
Figure 11.  The spring-in angle decreases with the increase of the fiber volume fraction. 
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Figure 11: Influence of fiber volume fraction on the spring-in of single-stiffener structures 
 
Similarly, in order to reveal the effects of the stacking sequence, the spring-in of symmetric 
angle ply laminates was investigated.  In the study cases, the inner radius is 3.175 mm, 6.35 mm, 
and 9.525 mm, respectively; and the thickness is 2.117 mm.  The results are shown in Figure 12.  
When the fiber orientation changes from 0 to 90°, the difference between the in-plane CTE and 
the through-thickness CTE decreases, thus the spring-in angle decreases. 
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Figure 12: Spring-in of angle ply E-glass/epoxy laminates [θ/-θ]ns 
 
By examining the curves of ∆φ vs. r, linear relationships exhibit.  Thus, linear regression models 
were developed as follows for h = 1.058 mm to 4.233 mm, respectively. 

r021.0075.0 −−=∆φ ,   (h = 1.058 mm)   (3a) 
r010.0073.0 −−=∆φ ,   (h = 2.117 mm)   (3b) 
r007.0070.0 −−=∆φ ,   (h = 3.175 mm)   (3c) 
r004.0075.0 −−=∆φ .   (h = 4.233 mm)   (3d) 

Equation 3 shows that the constant term is nearly constant for the four cases.  When examining 
the slope, an exponential decay relationship exhibits.  Thus, the slopes can be regressed using an 
exponential decay model.  The regression model for Vf = 49% is 

re
h











+−−=∆

−
264.1040.0003.0073.0φ .      (4) 

By examining the curves of ∆φ vs. fiber volume fraction, linear relationships exist and the slopes 
are nearly the same.  Thus the final regression model for the spring-in of E-glass/epoxy 
single-stiffener structures is 

( )49.0173.0040.0003.0073.0 264.1 −+









+−−=∆

−

f

h

Vreφ .    (5) 

The fitted values and original values are compared in Figure 13.  The relative errors are within 
±7%. 
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Figure 13: Comparison between fitted values and original values of spring-in for single-stiffener 

structures 
 
3.3 Regression Models for Other Fiber/Resin Systems 
 
After the regression models for E-glass/epoxy laminates were developed, they were expanded to 
other fiber/resin systems.  When other fiber/resin systems are used, these regression models need 
to be revised.  Based on thermal stress analysis, a material modification coefficient C was 
introduced.  The final regression models for any fiber/resin system are summarized in Table 5. 
 

Table 5: Regression models for typical composite structures 
Angled structures 

( )( ) 90180951.0826.01 φφ −+−=∆ fVC  
 

Single-stiffener structures 

( )











−+








+−−=∆

−
49.0173.0040.0003.0073.0 264.1

2 f

h

VreCφ  

 
Double-stiffener structures 

( )











−−








+++=∆

−−
49.0561.0121.0016.03.0066.0 207.1971.0

2 f

hh

v VreeCφ  

 
Cylindrical shells 

( )[ ]( )rVCT fcy −+= 1180180006.0 2
1 φφ  

 
 
For angled structures and cylindrical shells, the coefficients can be estimated as 

( ) ( )
( ) ( )00000

1 1
1

TT
TTC

TIT

TIT

∆+∆−
∆+∆−

=
ααα
ααα        (6) 
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where 
αI: in-plane CTE 
αT: through-thickness CTE 
∆T: temperature change 
αI0: reference in-plane CTE (E-glass/epoxy cross ply laminates) 
αT0: reference through-thickness CTE (E-glass/epoxy cross ply laminates) 
∆T0: reference temperature change (E-glass/epoxy cross ply laminates) 
For stiffener structures, the coefficients can be estimated as 

( )
( )0000

2 1
1

TT
TTC

mm

mm

∆+∆
∆+∆

=
αα
αα         (7) 

where 
αm: CTE of resin 
αm0: reference CTE (CTE of epoxy) 
The material modification coefficients for some fiber/resin systems are shown in Table 6. 
 

Table 6: Material modification coefficients for some fiber/resin systems (cross ply laminates) 
 Material modification coefficient 

Fiber/resin system Angled structures and 
cylindrical shells 

Single-stiffener and 
double-stiffener structures 

E-glass/epoxy 1.00 1.00 
Carbon/epoxy 1.38 1.00 

E-glass/polyester 1.85 1.90 
Carbon/polyester 2.36 1.90 

 
4 ASSEMBLY ANALYSIS AND OPTIMIZATION 

 
4.1 Structural Tree Method 
 
After the deformation and tolerances of typical structures were studied and the regression models 
were obtained, they were used for assembly analysis and synthesis.  The advantages are that it 
does not need the finite element analysis, thus the amount of computational efforts are greatly 
reduced.  The structural tree method, a method based on structural analysis and coordinate 
transformation, was developed for assembly tolerance analysis and synthesis.  The approach is as 
follows: 

1. For a given composite assembly, from the origin, identify typical structures, e.g. L-
shaped structures, single-stiffener structures… 

2. Assign deformation feature points N1…Nn based on typical structure study.  Generally, 
these points are located at the curved part of these structures. 

3. Construct the structural tree based on these points; each point will form a node of the tree 

 
N0 
 

N1 
 

Nn 
 

… 
. 

4. Using the regression models, determine the rotational angle εi of node i with reference to 
its prior node along the path; Formulate the conversion matrix 

1NNR
−ii

 as 
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






 −
=

−
ii

ii
ii εε

εε
cossin
sincos

1NNR .        (8) 

5. Formulate deformation relations for node Ni as 

( ) ( )1ii1iiNNNN NNNNRδδ
1jj1ii −−

=

−−−







+= ∏ −−

i

j 1

     (9) 

i.e. 

( ) ( )0i1jjNNN NNNNRδ
1kki

−−








−







= ∑ ∏

=
−

=
−

i

j

j

k1 1

.     (10) 

6. After the deformation and tolerances of all nodes are obtained, find the total deformation 
and tolerance of assembly. 

 
A simple assembly composed of two L-shaped structures, as shown in Figure 14, was studied to 
validate this approach.  Its structural tree is constructed in Figure 15. 
 

  
 

ε1 

ε2 

B 

B’ 

A 
A’ 

O 

38 
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Unit: mm 

 
Figure 14: Assembly of two L-shaped structures 

 

 

O A B 

 
Figure 15: Structural tree of the assembly of two L-shaped structures 

 
Using Equation 8, the rotational matrices were formulated as follows: 








 −
=

11

11

cossin
sincos

εε
εε

AOR  
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






 −
=

22

22

cossin
sincos

εε
εε

BAR . 

The deformation of B is derived according to Equation 10 as 
( ) ( ) BABRROARδ AOBAAOB −−+−= . 

When E-glass/epoxy cross ply laminates are considered and the fiber volume fraction is 49%, the 
displacement at B is 

( )[ ]
( ) ( ) 








=








++−

+−−
=

48.0
48.0

sin38cos176
cos138sin76

211

211

εεε
εεε

Bδ . 

The total displacement at B is 68.0
2

=Bδ mm.  In order to test the effectiveness of this method, 
the FEA analysis was also conducted.  The displacement at B from the FEA, as shown in 
Figure 16, is 0.72 mm, which shows the structural tree method can predict the assembly 
deformation of composites effectively. 
 

  
Figure 16: FEA analysis of assembly of two L-shaped structures 

 
4.2 Case Study: Assembly of Two Single-Stiffener Structures and One Angled Structure 
 
A complex assembly composed of two single-stiffener structures 1, 2 and an angled structure 3, 
as shown in Figure 17, was studied.  Its corresponding structural tree is as shown in Figure 18. 
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Figure 17: Assembly of two single-stiffener structures and one angled structure 

 

 

O A B C 

D 

E F 

LCF 

P  
Figure 18: Structural tree for the assembly of two single-stiffener structures and one angled 

structure 
 
In order to formulate the displacement at F, α needs to be calculated in the following procedure: 









−

=
22

22

cossin
sincos

εε
εε

DAR , 

( ) ( )
( )

( ) 







++
++−

=

−+−=

211

211

cos500sin1500
sin500cos1500

εεε
εεε
ADRROARD' AODAAO

, 
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( ) ( )[ ] ( ) ( )[ ]''tantan 11
DPDPDPDP xxyyxxyy −−−−−= −−α . 

The deformation relations for each branch are shown as follows, respectively.  For 
simplification, all the spring-in angles take positive values.  According to the STM, the rotational 
matrices and the displacement at C are: 









−

=
11

11

cossin
sincos

εε
εε

AOR , 



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



−
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2cos2sin
2sin2cos

εε
εε

BAR , 








 −
=
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cossin
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εε
εε

CBR , 

( ) ( ) ( )
( ) ( )

( ) ( ) 





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+−+−++
+−+−+−−

=
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1002cos1002sin500sin1500
20002sin1002cos500cos1500

321211
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εεεεεε
εεεεεε

CBCRRRABRROARδ AOBACBAOBAAOC

. 

The rotational matrices and the displacement at F are: 









−

=
αα
αα

cossin
sincos

EPR , 





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

 −
=

44
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cossin
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εε
εε

FER , 

( ) ( ) ( )
( )

( ) 




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
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+−−−−

=
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1100cos267cos833sin2500
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4

4

εααα
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PFEFRRPERδ EPFEEPF

. 

The assembly deformation between point F and point C is 
FC δδδ

CF
−=L . 

When r = 6.35mm, h = 3.175mm, the spring-in angles were computed using the non-linear 
regression models.  The deformation was computed as [ ]T

Cδ 90.505.0=  and 

[ ]T
Fδ 44.318.0−= .  Thus, [ ]T

CF
δ 46.223.0=L  and 47.2

2
=

CF
δL . 

 
4.3 Design Optimization 
 
When the design parameters are bounded, the assembly deformation can be minimized using the 
STM.  Because of the non-linear nature of the regression-based dimensional variation model and 
the complex transformation relationship, non-linear programming is needed.  Sequential 
quadratic programming was used in this study.  Using the assembly of two single-stiffener 
structures and one angled structure as an example, the objective function and constraints are: 

2CF
δLMin  

s.t. 
123 1 ≤≤ r ; 123 2 ≤≤ r ; 123 3 ≤≤ r ; 

25.33 1 ≤≤ h ; 321 hhh == ; 
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55.045.0 1 ≤≤ fV ; 55.045.0 2 ≤≤ fV ; 55.045.0 3 ≤≤ fV . 

After optimization, the assembly deformation is 76.1
2

=
CF

δL , as show in Table 7.  It is shown 

that by modifying design geometric parameters, the assembly deformation can be reduced by 
29%. 
 

Table 7: Assembly design optimization 
 Original value Optimized value 

r1 (mm) 6.35 6.37 
h1 (mm) 3.175 3.25 

Vf1 0.49 0.55 
r2 (mm) 6.35 3.00 
h2 (mm) 3.175 3.25 

Vf2 0.49 0.55 
r3 (mm) 6.35 6.35 
h3 (mm) 3.175 3.25 

Vf3 0.49 0.45 
Assembly deformation (mm) 2.47 1.76 

 
5 CONCLUSIONS 

 
In this paper, an innovative dimensional variation prediction method was developed.  A 
dimensional variation model was first developed for process simulation based on thermal stress 
analysis and finite element analysis (FEA).  This model was validated against the analytical 
solutions, the data from open literature, and the experiments.  The results show that although 
there are certain errors in some cases, this model can predict the dimensional variations with 
adequate accuracy. 
 
The regression-based dimensional variation model was developed based on the typical structure 
study using the developed FEA-based dimensional variation model.  These typical structures 
include angled structures, single-stiffener structures, double-stiffener structures, cylindrical 
shells, hat shaped structures, structures with an open window, and 3-D stiffener structures were 
modeled.  Data were collected by varying the design geometric parameters.  Regression models 
were developed using the collected data.  In order to make the non-linear regression models 
comprehensive, a material modification coefficient was introduced based on the analytical 
solution and FEA results.  By incorporating this coefficient, the regression-based model can be 
applied to any fiber/resin type and/or any stacking sequence.  The developed regression-based 
dimensional variation model does not require FEA, thus it significantly reduces the amount of 
computation time and provides a quick guide for composite product design. 
 
The structural tree method was developed to compute the deformation of general shape 
composite components and composite assemblies the regression-based dimensional variation 
model.  The advantage of this approach is that it does not need the finite element analysis, thus 
the amount of computation time is greatly reduced, which is crucial for practical applications.  
The methods presented in this paper provide a foundation to develop practical and proactive 
dimensional control techniques. 
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