
1 

 

 

Target Learning in Event-Based 

Prospective Memory 
 

Luke Strickland1, Andrew Heathcote2 Michael S. Humphreys3, & 

Shayne Loft4 

 
1 The Future of Work Institute, 

Curtin University, Australia 

 
2 The School of Psychology, 

The University of Tasmania, Australia 

 
3 The School of Psychology,  

The University of Queensland 

 
4 The School of Psychological Science, 

The University of Western Australia, Australia 

 

 

 

Address for Correspondence 
Luke Strickland, 

Future of Work Institute, 

Curtin University, 

78 Murray Street, 

6000 Perth, Australia 

Email: luke.strickland@curtin.edu.au 

 

 

 

mailto:luke.strickland@curtin.edu.au


2 

 

Author Note 

This research was in part supported by an Australian Research Council Discovery Grant 

(DP160101891) awarded to Heathcote and Loft, and by Australian Research Council 

Discovery Grant (DP160100575) awarded to Loft. The data and code associated with the 

manuscript are available at: https://github.com/lukestrickland/Target_Learning. We thank 

Natalie Griffiths for assistance with data collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Abstract 

Event-based prospective memory (PM) tasks require individuals to remember to perform a 

previously planned action when they encounter a specific event. Often, the natural 

environments in which PM tasks occur are embedded are constantly changing, requiring 

humans to adapt by learning. We examine one such adaptation by integrating PM target 

learning with the Prospective Memory Decision Control (PMDC) cognitive model. We 

apply this augmented model to an experiment that manipulated exposure to PM targets, 

comparing a single-target PM condition where the target was well learned from the outset, 

to a multiple-target PM condition with less initial PM target exposure, allowing us to 

examine the effect of continued target learning opportunities. Single-target PM accuracy 

was near ceiling whereas multiple-target PM accuracy was initially poorer but improved 

throughout the course of the experiment. PM response times were longer for the multiple- 

compared to single-target PM task but this difference also decreased over time. The model 

indicated that PM trial evidence accumulation rates, and the inhibition of competing 

responses, were initially higher for single compared to multiple PM targets, but that this 

difference decreased over time due to the learning of multiple-targets over the target 

repetitions. These outcomes provide insight into how the processes underlying event-based 

PM can dynamically evolve over time, and a modelling framework to further investigate 

the effect of learning on event-based PM decision processes.  

 

 

Key Words: Prospective Memory, Prospective Memory Decision Control, Target Learning, 

Evidence Accumulation Models.  
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We often need to remember to perform a deferred action at some point in the future, for 

example, to take medicine after dinner, or attend a meeting. Prospective Memory (PM) refers 

to the cognitive processes required to perform deferred actions. Many daily activities require 

PM, and PM failures are relatively common (Rummel & Kvavilashvili, 2019). Furthermore, 

PM is often impaired in the elderly and clinical populations, interfering with critical activities 

such as medication adherence (Park & Kidder, 1996). Successful PM is also essential to ensure 

safe and efficient performance in workplace settings, such as in defence, air transportation, and 

healthcare (Loft Dismukes, & Grundgeiger, 2019), where PM failures can have serious 

consequences. Given the consequences of PM failures in clinical and safety-critical work 

contexts, it is essential to understand the cognitive processes that underlie prospective 

remembering.  

 Einstein and McDaniel (1990) introduced a paradigm to study PM in the laboratory. 

This paradigm requires participants to remember to execute their PM action while engaged in 

an ongoing task (e.g., a lexical decision task, deciding whether strings of letters form a word 

or a non-word). Often studies examine “event-based” PM, in which participants are required 

to make a response to PM target items if they occur in the ongoing task (e.g., press ‘9’ if 

presented the word ‘chair’ during lexical decision). These studies have revealed factors that 

benefit prospective remembering, including the degree to which attention to stimulus features 

required to detect a PM target overlap with the processing required for ongoing decisions 

(target focality; Einstein & McDaniel, 2005), and instructional emphasis on the importance of 

the PM task (Smith & Bayen, 2004). Recently, Strickland, Loft, Remington and Heathcote 

(2018) proposed Prospective Memory Decision Control (PMDC), a model that specifies the 

cognitive process dynamics underlying the race to response selection between PM and ongoing 

task goals. Unlike prior theories, PMDC can account for the full range of behavioral effects 
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caused by focality and importance manipulations, including ongoing task accuracy, PM 

accuracy, and response time (RT) distributions observed for each participant. PMDC can also 

account for the effects of PM load, importance, and time pressure in more applied domains 

such as air traffic control (Boag, Strickland, Heathcote, Neal, & Loft, 2019; Boag, Strickland, 

Loft, & Heathcote, 2019) and maritime surveillance (Strickland et al., 2019). 

To effectively respond to the ever-changing environment, the human cognitive system 

must adapt. However, to date, the learning processes underlying PM have received little 

attention. Learning is defined as the modification of behavior as a function of task experience 

(Melton, 1963). Learning is a general feature of cognition (Logan, 1988; Rescorla & Wagner, 

1972; Raaijmakers & Shiffrin, 1981) and the brain (e.g., Hebb, 1949), and thus is likely to 

affect PM. Further, differences in learning opportunities across PM and ongoing tasks are 

ubiquitous, with ongoing task responses required more frequently than PM responses, and 

these relative differences in learning may partly underlie PM errors. In line with this, Loft 

and Remington (2010) found that individuals were less likely to remember to make PM 

responses to target aircraft features that were more often practiced with the ongoing-task 

aircraft-acceptance response. 

In the current article, we aim to investigate adaptation in PM by studying target 

learning, in which repeated presentations of a PM target lead to better performance with that 

target. We compare an experimental condition with a single, highly practiced, PM target to 

performance in a condition with multiple PM targets, where in both conditions the overall 

amount of time dedicated to establishing PM intentions is equated. In the former condition, 

target learning is expected to begin at ceiling, whereas in the latter condition learning is 

expected to improve performance over time. We propose a computational model in which 

PM and ongoing task decisions race for retrieval, and in which the number of prior learning 
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opportunities provided linking PM targets to the PM response affects the speed of PM 

response retrieval relative to the ongoing task response and, therefore, increases PM 

accuracy. Before proceeding to describe the current study, we introduce Strickland et al. 

(2018)’s PMDC model, which we then augment to account for learning. 

The PMDC Model 

Until recently, most PM theories relied on analysis of coarse manifest measures, 

particularly PM accuracy and PM cost. PM cost refers to the finding that RTs to non-PM 

trials are often longer in PM blocks of trials, where participants must remember to respond to 

PM items, as compared with control blocks, where participants do not need to remember to 

respond to PM targets (e.g., Marsh, Hicks, Cook, Hansen, & Pallos, 2003; Smith, 2003). 

PMDC allows a more comprehensive quantitative characterization of observed performance, 

including the entire distribution of ongoing task RTs, ongoing task response choices, as well 

as the RT distributions and response choices observed on PM trials.  

PMDC (Figure 1) assumes a race to response selection between PM and ongoing task 

decision processes. Each of the ongoing task accumulators and the PM accumulator has its 

own threshold, which corresponds to the evidence that must be accumulated to make that 

decision. Upon stimulus presentation, evidence accumulates towards each decision at an 

accumulation rate, and the first to reach threshold determines the decision made (Brown & 

Heathcote, 2008). Thus, successful PM hits occur on PM trials where the PM accumulator 

reaches threshold before the ongoing task accumulators, whereas PM errors occur when the 

ongoing task accumulators reach threshold before the PM accumulator.  

PMDC is a measurement model that can accurately estimate its parameters from data, 

and these parameters can be mapped to the cognitive mechanisms underlying PM. Two 

mechanisms prominent in PM theory are capacity sharing and cognitive control. The idea 

behind capacity sharing, borrowed from cognitive resource theories (Kahneman, 1973; 
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Navon & Gopher, 1979), is that PM and ongoing task processing compete for limited 

cognitive resources, and thus devoting resources to one task comes at the expense of the 

other. Cognitive control refers to the processes that allow humans to break the bounds of 

automatic, stimulus-driven behavior and act in a goal directed fashion (Miller & Cohen, 

2001). PMDC includes two forms of cognitive control (Braver, 2012): proactive control, 

which is active in advance of an event so that the control is applied when the event occurs, 

and reactive control, that occurs when an event is encountered, in order to facilitate 

responding to that event.  

 

  

Capacity Sharing. Several PM theories assume that PM costs result from a reduction 

in ongoing task capacity with the addition of a PM task (e.g., Einstein & McDaniel, 2010; 

Smith, 2010). The evidence accumulation rate parameters of PMDC estimated from non-PM 

trial responses provide a measure of ongoing task processing capacity. There are two types of 

ongoing task accumulation rates: match accumulation rates, which index the accumulation 

Figure 1. The PMDC model (as depicted in Strickland et al., 2018). Each accumulator begins with a starting amount 

of evidence drawn from the uniform distribution U[0, A]. Over time, evidence accumulates towards threshold b at a 

rate drawn from a normal distribution with mean v, standard deviation sv. The predicted response is determined by 

the first accumulator to reach threshold. Total response time is equal to total time to accumulate to threshold, plus a 

non-decision time parameter included as time for additional processes such as stimulus encoding and motor 

responding. 
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towards the correct decision (e.g., the word accumulator’s rate for a word stimulus), and 

mismatch accumulation rates, which index the accumulation towards the incorrect decision 

(e.g., the non-word accumulator’s rate for a word stimulus). Either a decrease in match 

accumulation rates, or an increase in mismatch accumulation rates, could indicate a reduction 

in processing capacity. Contrary to previous PM theories, evidence accumulation modelling 

indicates that PM costs are not associated with decreased ongoing task capacity in basic PM 

paradigms (e.g., Heathcote, Loft & Remington, 2015; Horn & Bayen, 2015; Strickland et al., 

2018), but that it is in more demanding paradigms, such as air traffic control (Boag, 

Strickland, Heathcote et al., 2019; Boag, Strickland, Loft et al., 2019). This indicates that 

capacity sharing is more likely when overall capacity demands of a task approach an 

individual total capacity limit, which is less likely to result from simple ongoing tasks such as 

lexical decision making.   

Proactive control. One form of proactive control is to increase ongoing task thresholds 

in PM blocks of trials, so that when PM items are presented the ongoing task accumulators 

are less likely to pre-empt the PM accumulator, improving PM accuracy (Loft & Remington, 

2013). Many studies find that participants increase ongoing task thresholds under PM 

conditions, and that these increased thresholds are the underlying cause of PM costs (e.g., 

Heathcote et al., 2015). However, simulations from PMDC (Strickland et al., 2018), and 

manipulations of ongoing task thresholds (Strickland, Loft & Heathcote, 2020), indicate that 

this form of control provides at best secondary support to PM accuracy, as compared with 

PMDC’s other mechanisms. For example, proactive control can also be exerted over the PM 

threshold; Strickland et al. (2018) found that participants decreased the threshold of the PM 

accumulator when the importance of the PM task was emphasized, and that this substantially 

improved PM accuracy. In addition, PM thresholds have been shown to be larger for non-

focal PM than focal PM, perhaps due to participants having conscious appreciation of higher 
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task demands and thus lower confidence in their ability to successful recognize non-focal PM 

targets compared to focal PM targets.  

Reactive control. In the PMDC model, reactive control is activated by processing of 

PM stimulus features on PM trials (Figure 2). Processing PM stimulus inputs activate the 

“PM” detector, causing participants to accrue evidence towards the PM decision (reactive 

excitation). In addition, PMDC also proposes that the PM detector has inhibitory connections 

to competing ongoing task decisions (e.g., word and non-word), and thus PM detector 

activation reduces accumulation rates towards these decisions. Reactive control can be 

assessed empirically by examining whether PM accumulation rates are faster on PM trials 

than non-PM trials (indicating reactive excitation), and whether ongoing task accumulation 

rates slower on PM trials than non-PM trials (indicating reactive inhibition). Strickland et al., 

(2018) found such evidence of reactive control, and that variations in reactive control were 

critical to accounting for effects such as that of PM target focality and PM importance.  

 

 

 

Figure 2. PMDC’s control architecture (Strickland et al., 2018). Stimulus inputs activate the detectors, which in 

turn excite their corresponding accumulators, and inhibit other accumulators. The left right panel depicts the 

potential effects of inputs from the PM dectector – an increase in the PM accumulation rate (via A1), and a 

decrease in ongoing task accumulation rates (via B1 and B2). 
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Learning and PMDC 

 There is a long history of learning theories in the psychological literature. For 

example, in the search of associative memory theory (SAM; Raaijmakers & Shiffrin, 1980) 

the probability of memory retrieval is a function of the strength of associations between 

memory probes and images in long term memory, and each memory retrieval increases the 

strength of associations between targets and corresponding images. Increased associative 

strengths improves the probability of subsequent memory retrievals, and suppresses the 

retrieval of competing memory images. This process bears a resemblance to PMDC’s 

mechanisms shown in Figure 2 in which PM detector activation increases accumulation of 

PM accumulation and suppresses competing ongoing task accumulators. This core idea of 

learning by modifying associative strengths is common to many theories (e.g., Hebb, 1949; 

LaBerge & Samuels, 1974; Rescorla & Wagner, 1972), and has inspired computational 

models of cognition such as ACT-R (J. R. Anderson & Lebiere, 1998), in which retrieval 

probability is determined by factors such as the frequency with which productions have been 

previously retrieved and the attention paid to stimuli meeting the productions conditions (also 

see Altmann & Trafton, 2002; Altmann & Gray, 2008; Dismukes & Nowinski, 2006; 

Nowinski & Dismukes, 2005).  

Although many theories of learning reference associative strength, alternative cognitive 

mechanisms could also bring about PM target learning. For example, instance theories 

identify the individual experience (i.e., the instance) as the primitive unit of knowledge and 

treat learning as the storage and retrieval of instances from memory (e.g., Brooks, 1978; 

Kruschke, 1992; Logan, 1988; Nosofsky; 1986). Each experience stores an “instance” in 

memory and retrieval probability and speed increases with the number of stored instances. 

Target learning could also occur due to target repetitions invoking a feeling of familiarity, 

which can result from an increase in ease of stimulus processing (perceptual fluency; e.g., 
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Jacoby & Dallas, 1981; Lindsay & Kelley, 1996), and which has been suggested to trigger a 

“discrepancy” experience (when the actual quality of stimulus processing mismatches an 

expected quality of processing; Whittlesea & Williams, 2001a, 2001b) that can increase the 

probability of the retrieval of a PM response (see McDaniel, Guynn, Einstein, & Breneiser, 

2004; Lee & McDaniel, 2013). If familiarity increases through stimulus repetitions, the 

probability of causing a discrepancy experience also increases, which in aggregate could lead 

to an apparently smooth change in behaviour (see Rickard, 1997, for an analogous process in 

skill acquisition). These different mechanisms might also interact. For example, familiarity 

results from an associative learning process in the SAM model (Raaijmakers & Shiffrin, 

1980), and in Logan’s (2002) instance theory of attention and memory model familiarity is 

the sum of the similarities of instances in memory to a presented target (Logan, 2002, see also 

Nosofsky, 1988).   

The current work does not aim to compare the different potential accounts of PM target 

learning, but rather to demonstrate the presence of learning effects in PM, and to provide a 

model framework to describe their effects on PM decision processes. To do so, we assume a 

smooth increasing function that captures a negatively accelerated time course of learning 

towards an asymptotic level (for a review of such functions see Evans et al., 2018). Such a 

function is supported by most accounts of learning. This learning could result from better 

representations of the PM target, either due to the storage of more instances, or better 

connections between PM targets and PM goal representations, for example due to increased 

associative strength, and either of these mechanisms could increase target familiarity and/or 

discrepant target processing. As demonstrated by prior work in the categorization and 

recognition memory literatures, evidence accumulation models such as PMDC can provide a 

meeting point between such representational changes and the dynamic decision process, with 

the rate of evidence accumulation of the decision process a function of both the quality of 
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knowledge representations, and the strength of connections between presented cues and 

knowledge representations (Cox & Shiffrin, 2017; Nosofsky & Palmeri, 1997; Ratcliff, 

Thapar, Gomez, & McKoon, 2004). 

Within the PMDC computational architecture, the key learning mechanism affecting 

behavior is that repeated target presentations result in greater activation of PMDC’s PM 

detector (Figure 2). Increased activation boosts PM accumulation and reduces accumulation 

to competing ongoing task decisions through inhibition. It is possible that there is a direct 

mapping between PM targets and the PM detector, but more likely there is mediator between 

the representation of PM targets and the PM detector. For example, PM targets may be 

associated with an intermediary process such as recognition, or an arbitrary verbal label such 

as ‘PM target’, which is itself associated with the PM detector. The idea of a recognition 

mediator is closely linked to the outlined theories of memory. For example, a 

familiarity/discrepancy process brought about by PM targets could initiate recognition which 

in turn brings about PM responding. Although it is important to recognize the possibility of 

such relationships between familiarity, discrepancy and recognition processes, the current 

modelling is not designed to disentangle them.  

The presence of a mediator implies that there are two possible types of learning – PM 

target to mediator, and mediator to PM detector. Learning the mapping from mediator to 

detector is the same (and relatively easy after some practice) for any PM target regardless of 

the number of targets, and so is expected to reach asymptote fairly quickly. In addition, such 

a mapping needs only to be learned once (e.g., at the outset of a PM experiment), rather than 

varying with PM conditions. Thus, the majority of observable PM target learning is expected 

to result either from adaptations to the direct mapping PM targets onto the PM detector, or 

from mapping PM targets onto an intermediary process such as recognition.   

In the current study, we test PMDC’s account of learning with a multi-session 
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experiment that manipulates exposure to PM targets, with one condition designed to induce 

near ceiling initial learning, and another to result in lower initial learning that enables 

learning to be observed with repeated PM target exposures over time. Although we report 

analyses of observed performance, our key analyses rely on PMDC as it can titrate the effects 

of shifts in the rate of evidence accumulation (i.e., on reactive excitation and inhibition) from 

potential shifts in decision-making strategies (i.e., proactive control), which is not possible 

based on observed measures such as PM costs and PM accuracy.  

The Current Study 

 Participants performed an ongoing lexical decision task with the intention to make a 

PM response to certain PM target words. We included two PM conditions, representing 

different levels of PM target learning, but with the focality of the PM task, total time forming 

PM intentions, and the frequency of making PM responses equated. In one part of each 

experimental session participants performed a multiple-target PM task (make an alternative 

response to any item from a list of eight PM target words), and in another part a single-target 

PM task (make an alternative response to one specific target word). For each task, 

participants were provided the same amount of total study time to initially establish PM 

intentions related to the targets. Consequently, there was greater time for learning of the 

single PM target than of any individual target in the multiple condition. To further reinforce 

these differences in target learning, participants were required to successfully distinguish PM 

targets from non-targets prior to the main experimental blocks, in a recognition memory task 

format. In the single-target condition, participants were required to correctly identify the PM 

target sixteen times to bring learning close to asymptote. In the multiple target PM blocks, 

participants were required to perform two correct identifications of each target, enough to 

ensure adequate encoding but leaving headroom for further learning during the task.  

In order to accurately estimate PM trial parameters, the experiment used a within-
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subjects design, with thousands of trials performed over two days. In the single-target PM 

condition, each target was repeated 64 times throughout the course of each PM block. In the 

multiple-target PM condition, each target was repeated 8 times in each PM block. PM 

performance was expected to be at ceiling in the single target condition, so improvements 

with target repetitions was not expected. In contrast, as learning for the multiple targets does 

not begin at ceiling, the eight target repetitions in each block were expected to improve PM 

performance over the course of each block. 

Given the greater initial learning in the single-target condition, we expected to 

observe better initial PM accuracy in the single-target condition than the multiple-target 

condition. In terms of PMDC, we expected to observe increased PM excitation and increased 

inhibition of competing ongoing task decisions in the single-target condition. In contrast, the 

multiple targets were expected to be learned over the eight stimulus presentations in each 

block, so differences in PM accuracy across single and multiple target PM blocks were 

predicted to decrease later in each block. We apply the PMDC model to describe this learning 

effect by estimating a learning function that can potentially increase PM accumulation and 

PM-induced inhibition as a function of the number of previous times the PM target had 

previously been presented in the block. We fit an exponential function, which has been 

shown to provide a good account of individual level learning curves in skill acquisition 

(Heathcote, Brown,  & Mewhort, 2000; Evans et al., 2018), and incorporates the common 

observation that learning effects proceed towards a ceiling in a smooth, negatively 

accelerated manner. 

PM accuracy may differ between single and multiple-target conditions because of 

strategic changes in response thresholds. For example, participants might consciously 

increase their PM thresholds relative to their ongoing task thresholds in the multiple-target 

condition, either due to an increase in perceived PM task difficulty or concern about elevated 
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PM false alarm rates. A key benefit of PMDC is that it can parse the effects of such conscious 

changes in decision strategies from the effects of changes in PM input detector activation.  

We expect the multiple-target PM condition to result in longer ongoing task RTs than 

single-target PM conditions (i.e., increased PM costs), consistent with some previous studies 

using related paradigms (e.g., Cohen et al., 2008; Humphreys, Li, Burt & Loft, 2020). As 

reviewed, some PM theories claim that difficult PM tasks are associated with longer ongoing 

task RTs because the higher capacity requirements of the PM task drain capacity from the 

ongoing task (Einstein & McDaniel, 2010, Smith, 2010). For example, in the current study, 

participants could attempt to hold PM targets in working memory so that they can be 

consciously compared to presented ongoing task items. Consistent with this, working 

memory has been shown to play a significant role in PM (Ball, Vogel, & Brewer, 2019; 

Smith, 2003). However, with eight PM targets, this strategy would be highly capacity 

consuming, clearly exceeding the limits of working memory in the multiple-target condition, 

and so we think that strategy is unlikely. Participants might attempt such a strategy in the 

single-target condition, which would not overwhelm working memory capacity.  

If participants did use a working memory strategy in the multiple-target condition to 

improve PM, we would expect to see lower PM accumulation rates than in the single-target 

condition, consistent with a set size effect (Schubert et al., 2015), but also lower 

accumulation rates for the ongoing task, in line with substantial capacity demands. An 

alternative explanation is that PM costs are characterized by increases in ongoing task 

thresholds, rather than decreases in capacity, as PMDC modelling has indicated is the case for 

other types of PM cost effects (e.g., Strickland et al, 2018). Fitting PMDC allows us to test 

the degree to which any PM costs we observe arise from increases in ongoing task thresholds 

(proactive control), costs to ongoing task accumulation (capacity sharing), or both. 
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Method 

Participants 

The study had ethics approval from the UWA Human Research Ethics Office. 

Participants included members of the UWA community (receiving $40 AUD dollars as 

reimbursement for their time), and students participating for course credit. We tested until we 

reached our target number of 32 participants (11 males, the rest female) with viable data. 

During this process, two participants did not return for their second session, and one was 

unable to complete the experiment due to a power failure, and so the data of these 

participants was replaced. The data of three further participants was replaced. Two because 

they performed some blocks of trials with near chance ongoing task accuracy (<60%). The 

other was excluded due to 0% accuracy in discriminating their single-target PM cue from 

‘new’ items in a post-block recognition test. The included participant ages ranged from 17 to 

43 (M = 22.06, SD = 5.41).  

Design 

The experiment focused on two within-subjects conditions, multiple-target PM and 

single-target PM. To obtain adequate trial numbers, participants completed two sessions on 

different days. Each day they performed one block of each condition. If they performed the 

multiple-target condition first on day one, they would perform the single-target condition first 

on day two, and vice versa.  Participants were assigned to one of four possible 

counterbalances for their response keys (word: ‘d’, nonword: ‘s’, PM: ‘j’, word: ‘s’, 

nonword: ‘d’, PM: ‘j’, word: ‘j’, nonword: ‘k’, PM: ‘d’, word: ‘k’, nonword: ‘j’, PM: ‘d’). 

The eight possible combinations of condition orders and key assignments were balanced over 

the 32 participants. 

Materials 

Lexical decision and PM stimuli. 1306 words and non-words were randomly 
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selected from Strickland et al. (2018)’s stimuli (Experiment 2). These words had length 

ranging between 5 and 10 characters, and were low in written frequency, ranging between 1 

and 7 per million written words according to the Sydney Morning Herald Database (Dennis, 

1995). Strickland et al. generated non-words with the Wuggy algorithm (Keuleers & 

Brysbaert, 2010), by replacing two out of three subsyllabic segments of the words, whilst 

matching both subsyllabic segment lengths and transition frequencies. For each participant, 

18 words were randomly selected to be PM targets (2 x 8 for each multiple-target block, and 

1 for each single target block). In total, each participant performed 4 blocks of 644 trials. 

Each block included 64 PM trials, 322 non-word trials and 258 word trials. This required 

assigning 1288 non-PM non-words (all of the original 1306 generated non-words except for 

those matching the PM items), and 1032 non-PM words to each participant (there are less 

non-PM words because some word trials are replaced with PM trials).  

The assignment of non-PM trial stimuli to blocks, and the order of non-PM stimulus 

presentation order, was randomized. In the single-target condition, the PM target would be 

presented 64 times over the 644 trial block, and in the multiple-target condition each of the 8 

PM targets would be presented 8 times over the block. PM targets were not presented in the 

first 2 trials of each block, or trials 323 and 324 (which followed a mid-block break). Starting 

after trials 2 and 322, a PM target was presented once every 10 trials. The PM target position 

was randomly selected from the 10-trial range, except that targets were always separated by 

at least 3 non-PM trials. The 8 targets in the multiple-target blocks were shuffled, and then 

assigned to the first 8 PM trials presented in the block, shuffled again, and assigned to the 

next 8 PM trials presented in the block and so on to fill out the 64 PM trial positions.  

Recognition memory tests. Participants performed a recognition memory test prior to 

each PM block and a recognition memory test after each PM block. The recognition memory 

test prior to the blocks were to ensure adequate encoding of PM targets, and to provide 
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enough learning opportunities prior to the experimental blocks for performance to the single 

PM targets to reach ceiling. In the modelling of the subsequent PM task, we assume that each 

PM target repetition presents a learning opportunity, which might not be the case if 

participants failed to initially encode PM targets. Thus, the initial recognition task was looped 

until performed 100% accuracy to ensure adequate target encoding. Although this looping 

resulted in more practice recognition blocks for the multiple-target condition, potentially 

weakening our manipulation, our subsequent analyses reveal that PM learning began at 

ceiling for single-target blocks and not multiple-target blocks, indicating that our 

manipulation worked. The recognition test after each PM block was to further confirm that 

participants adequately recognized their PM targets.  

The recognition tests required participants to discriminate between PM words and non-

PM words. The non-PM words were drawn from Strickland et al. (2018) and were randomly 

selected from a pool of the 590 remaining words from that experiment that were not selected 

to be stimuli in the current study’s primary task. The pre-block recognition memory task 

included 32 trials, 16 corresponding to the PM targets and 16 to non-PM words. In the single-

target blocks, this corresponded to 16 presentations of the PM target. In the multiple-target 

blocks, this corresponded to two presentations of each of the 8 PM targets. To create the 32 

trials, 8 non-PM words were selected and randomly shuffled with the 8 PM items once to 

form the first 16 trials, and this process was repeated to form the next 16 trials. The post-

block recognition memory test consisted of 32 trials, 8 corresponding to PM targets (either 

one of each from the multi-target list or 8 repetitions of the single target), and 24 

corresponding to non-PM words.   

Procedure 

Block procedure. At the start of each day, participants completed 24 practice lexical 

decisions with no PM component. They then received instructions for their first PM block, 
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which informed them that in the next block of lexical decision trials they would be required 

to make an alternative response to a list of target words (multiple-target condition), or to a 

single target word (single-target condition). On the next instruction screen, participants were 

presented with their PM words (or word) and asked to spend two minutes memorizing. 

Participants then performed a 32 trial recognition memory pre-block test. They were 

presented words and required to press ‘y’ to indicate the word was a PM item, or ‘n’ to 

indicate that the word was not.  If they were not 100% accurate in the pre-block test, they 

were returned to study their PM word(s) again for another 2 minutes and were re-tested. This 

process continued until recognition accuracy reached 100%. After the recognition task, 

participants were instructed that they should press the PM key instead of submitting an 

ongoing task response (e.g., press ‘j’ instead of ‘d’) when presented with these PM item(s) 

during the lexical decision task. Participants then performed a three-minute distractor puzzle 

before commencing the block of lexical decision trials. In the middle of the 644 trial block 

participants were presented a break screen and asked to rest for 1 minute, to reduce possible 

fatigue effects. At the end of each block, participants performed a 32 trial post-block 

recognition memory test to assess their memory for their PM target (s).   

Trial procedure. Each trial began with a fixation cross, displayed for 0.5s. This cross 

was followed by a blank screen for 0.25s, which remained until the stimulus (i.e., the lexical 

decision item or recognition memory item) was presented. The stimulus remained on screen 

until a key was pressed. If an incorrect response was submitted, a feedback screen was 

presented that for 1 second saying ‘INCORRECT!’. This screen was not presented for correct 

lexical decision responses to PM trials.  

Results 

The first two trials of each block, and the two trials after the mid-block break, were 

excluded from all further analyses. These trials were excluded to avoid confounding from 
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possible start-up costs at the beginning of each block/after each break. Any trial immediately 

following a PM trial or a PM false alarm was excluded from further analysis. These trials 

were excluded to avoid any confounding of the non-PM trial analysis caused by post-PM 

slowing (Meier & Rey-Mermet, 2012; Rummel et al., 2017). For each participant, trials with 

responses < 0. 2 seconds or > their mean RT + 3 times their IQR/1.349 (a robust equivalent to 

standard deviation) were excluded from further analysis (5.08% of responses). These 

exclusion criteria aim to exclude responses that are confounded by anticipatory responses 

(“fast guesses”), or by overall task disengagement (e.g., not attending to stimulus 

presentation). Before turning to the LBA model analyses, we perform a more traditional 

analysis of the data. We analyzed the effects of our manipulated factors: condition (multiple 

target PM/single target PM) and stimulus type (word/nonword). To capture within-block 

learning effects, we used a four-level ‘trial range’ factor in our analysis, examining trials 2-

162, 162-322, 324-483, and 484-644 (note the two trials at the start of the block and after the 

break are excluded). In each level of this factor each of the multiple targets was presented 

twice and each of the single targets 16 times. PM target learning effects would be reflected in 

improvements in PM accuracy (increases) or PM RT (decreases) for later trial ranges as 

compared with earlier ranges. Finally, we also included a two-level ‘session’ factor (day 

1/day 2) to capture any possible long-running effects of practice.  

We applied mixed effects models with a random intercept for each participant using the 

‘lme4’ package (Bates Mächler, Bolker, & Walker, 2015) implemented in R. To analyze 

accuracies, we fit a generalized linear model with a binomial probit link function to every 

observed response. To analyze RTs, we fitted a general linear model to each participant’s 

mean correct RTs. In text we report the main findings of these models, with tests of each 

effect tabulated in the supplementary materials. The supplementary materials also contain 

follow-up contrasts conducted with the R package lsmeans (Lenth, 2017). Our primary 
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interest was in identifying the strong effects that have theoretical implications and are thus 

crucial for our model to account for. As we applied many analyses, in some cases with a large 

amount of data (e.g., for the probit models fitted to every trial), we applied a conservative 

alpha of p < .005 for statistical significance (Benjamin et al., 2018). Only results that 

achieved this significance level are described in text. Performance on the post-block 

recognition test, which was used to exclude one participant with low recognition accuracy, is 

reported in the supplementary materials. Pre-block recognition test performance is not 

reported, as the pre-block task was run repeatedly until accuracy was 100%. The average 

number of recognition practice blocks required for perfect performance was 1.86 (SD = 1.07) 

for multiple-target conditions and 1.36 (SD = 0.70) for single-target conditions. 

Prospective Memory Task 

Accuracy 

PM responses on non-PM trials were very rare (0.2% of trials) and are not analysed 

further. As PM stimuli were words, there was no stimulus type variable in our analyses of PM 

trial performance. We found a main effect of condition, and an interaction between condition 

and trial range (see Table 1 and supplementary materials). PM accuracy was initially higher 

in the single-target condition than the multiple-target condition, consistent with stronger 

initial learning. However, this difference was reduced for later trial ranges because accuracy 

in the multiple-target condition increased. This is consistent with learning of PM targets over 

repeated target presentations in the multiple-target condition moving towards the ceiling 

achieved in the single-target condition. Despite this learning effect, PM accuracy in the 

single-target condition was still significantly higher than the multiple-target condition even 

for the last trial range in each block, suggesting that learning had not reached asymptote by 

the end of the multiple-target blocks. In contrast to the multiple-target condition learning 
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effect, we found that initial single-target PM accuracy was numerically higher than the 

single-target PM accuracy for subsequent trial ranges, although this effect was not 

statistically significant. 

Table 1 

 PM accuracies. Displaying M (SE), with SEs calculated by the Morey (2008) bias-

corrected method. 

Trial Range Single Multiple 

(2,162] 0.96 (0.01) 0.81 (0.03) 

(162,322] 0.93 (0.02) 0.84 (0.02) 

(324,484] 0.93 (0.01) 0.88 (0.02) 

(484,644] 0.93 (0.01) 0.89 (0.02) 

 

Response Time 

There was a main effect of condition, and the effect of condition interacted with trial 

range. Generally, PM RTs were longer in multiple-target than single-target conditions, but 

these differences decreased for later trial ranges (see Table 2 and supplementary materials). 

Analogous to the PM accuracy results, we found that PM RT for the single-target condition 

was relatively stable across trial ranges, whereas PM RT decreased in the multiple-target 

condition. This is consistent with a ceiling effect for the single-target condition, and learning 

in the multiple-target condition. Again, in contrast to the learning in our multiple-target 

condition, in the single-target condition we found a numerical advantage for PM RT (faster 

RT) for the first trial range as compared with other single-target trial ranges. This advantage 

failed to reach significance, although the difference between the first trial range and the last 
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trial range was very close (p = .005).  In addition to the effects of condition and trial range, 

there was an effect of session, with PM RTs slightly longer on day 1 (M = 0.71s, SE = 0.02s) 

than on day 2 (M = 0.69s, SE = 0.02s). 

Table 2 

 Correct PM Response Times. Displaying M (SE), with SEs calculated by the Morey 

(2008) bias-corrected method. 

Trial Range Single Multiple 

(2,162] 0.63s (0.01s) 0.78s (0.01s) 

(162,322] 0.65s (0.01s) 0.76s (0.01s) 

(324,484] 0.64s (0.01s) 0.74s (0.01s) 

(484,644] 0.66s (0.01s) 0.73s (0.01s) 

 

Lexical Decision Task 

Accuracy 

Ongoing task accuracies are plotted in Figure 3. By far the most substantial effect on 

ongoing task accuracy was that of stimulus type. Accuracy was lower to words, (M = 0.90, 

SE = 0.01) than to non-words (M = 0.96, SE = 0.01). There was an effect of trial range, but 

post-hoc comparisons of the trial ranges indicated only one difference reached significance 

(see supplementary materials). We did not find an effect of PM condition on ongoing task 

accuracy. This has been a common finding in previous PM studies, where costs tend to 

manifest in RT rather than accuracy (see F. T. Anderson, Strube & McDaniel, 2019). 



24 

 

 

Figure 3. Observed ongoing task accuracies displayed by condition, stimulus type, experimental 

session, and trial range. Error bars indicate the Morey (2008) bias-corrected, within-subjects standard errors.  

Response Time 

Mean correct ongoing task RTs are plotted in Figure 4. Stimulus type, condition, 

session, and trial range all had significant effects on mean correct ongoing task RTs. RTs 

were slower on day 1 (M =0.72s, SE = 0.02s) than on day 2 (M =0.69s, SE = 0.02s), and got 

slightly faster for later trial ranges (see contrasts in supplementary materials). Stimulus type 

interacted with condition. RTs were longer in the multiple-target condition for both word 

trials (single M = 0.69s, SE = 0.01s; multiple M = 0.74s, SE = 0.01s) and non-word trials 

(single M = 0.69s, SE = 0.01s; multiple M = 0.71s, SE = 0.01s). The differences in RTs across 

the PM conditions were larger for word trials than non-word trials, possibly because PM 

targets were exclusively words (Heathcote et al., 2015). 
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Figure 4. Observed ongoing task response times displayed by condition, stimulus type, experimental 

session, and trial range. Error bars indicate the Morey (2008) bias-corrected, within-subjects standard errors.  

Model Results 

We fit the three accumulator PMDC model (Figure 1). Each possible decision is 

assigned an accumulator, and evidence in each accumulator begins at a start point drawn 

from a uniform distribution U [0, A]. During stimulus processing evidence is accrued for each 

decision until one of the accumulators reaches threshold b. The first accumulator to reach 

threshold determines the response, and the total RT is equal to time for the accumulator to 

reach threshold plus non-decision time. We report thresholds in terms of B, which is equal to 

b – A. The accumulation rates are drawn from a normal distribution truncated at 0 with mean 

v and standard deviation sv. The design of the experiment includes several factors that model 

parameters could vary over, including stimulus type (word/non-word/PM), condition 

(multiple-target PM/single-target PM), experimental session (day 1/day 2), and latent 

accumulator (one corresponding to the three possible decisions: word, non-word and PM). 

However, several restrictions were applied to the entire set of models reported.  

To constrain parameter estimation, we only allowed one A parameter for each 

participant across all conditions, and one non-decision time parameter. As thresholds are 
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assumed to be set prior to stimulus presentation, and not change during stimulus processing, 

we fixed them so they could not vary over the stimulus factor that varied randomly from trial 

to trial. Thresholds could vary over all other factors and thus a separate threshold was 

estimated for each latent accumulator, for each experimental condition, and for experimental 

session. In order to constrain parameter estimation, thresholds were the only factor allowed to 

vary over experimental session in line with most previous PMDC models. We included only 

two standard deviations of accumulation rates in the model, one corresponding to matching 

accumulation (e.g., accumulation towards PM on a PM trial, accumulation towards word on a 

word trial), and one to mismatching accumulation (e.g., accumulation towards ‘word’ on a 

PM trial, accumulation towards non-word on a word trial). The standard deviation of 

mismatching accumulation was fixed at 1, as a scaling parameter. We estimated a separate 

mean ongoing task accumulation rate for each stimulus type for each latent accumulator and 

for each experimental condition. We estimated PM accumulation rates on PM trials 

separately for each experimental condition. We only estimated one ‘PM false alarm’ 

accumulation rate (i.e., the rate of PM accumulation on non-PM trials) across the two 

conditions, because PM false alarms were rarely observed. We included a ‘reactive 

inhibition’ parameter in our model, which is equal to the difference between ongoing task 

accumulation rates on non-PM trials and on PM trials, with higher inhibition indicating that 

the ongoing task accumulation rate was reduced on PM trials. Reactive inhibition was 

estimated separately for each condition and for each latent accumulator (word/non-word), and 

for each condition (multiple/single).  

In order to model target learning, we allowed PM accumulation and PM-induced 

inhibition to vary as a function of how many times the PM target had previously been 

presented. We modelled learning with an exponential function, where the PM accumulation 

rate for PM target repetition 𝑃𝑁 is given by 𝑃𝑁 = 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒𝑃𝑁 − 𝐷𝑒−𝑁𝛼. Similarly, 
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inhibition is given by 𝐼𝑁 = 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒𝐼𝑁 − 𝐷𝑒−𝑁𝛼. The asymptotes represent the maximum 

PM accumulation rate and PM inhibition of ongoing task accumulation once learning is 

complete. These asymptotes did not vary across single and multiple-target conditions. In 

addition, one learning rate parameter, 𝛼, was estimated for each participant. These constraints 

amount to the assumption that both conditions follow the same learning process, with the 

difference in conditions being the initial amount of learning. The 𝐷 parameter represents the 

difference between the PM accumulation rates and PM inhibition at first target presentation 

and their asymptotes. The D parameter was the same for PM accumulation and PM induced 

inhibition, instantiating the assumption that learning equally affects both by activation of the 

PM detector (Figure 2). The D parameter varied across the single-target and multiple-target 

conditions to allow for different initial levels of learning of single vs. multiple PM targets. As 

this is the first paper to implement this PM learning model, we evaluated its parameter 

recovery properties in detail (see supplementary materials).  

Sampling 

We estimated model parameters with Bayesian estimation, using the Dynamic Models 

of Choice suite of R functions (Heathcote et al., 2019). We estimated separate parameters for 

each individual participant. We could have fit a hierarchical model that assumes a common 

hyper-parameter distribution across participants, and which uses that distribution to constrain 

individual-level estimates (“shrinkage”). However, as with our previous applications of 

PMDC, we found that fitting such a model was prohibitively computationally expensive. 

Further, we did not have knowledge of the appropriate population level distributions for PM 

learning parameters. Fitting a hierarchical model with inappropriately specified population 

distributions could result in inappropriate shrinkage of individual-level parameter estimates. 

Bayesian estimation requires specifying prior distributions, which detail beliefs about the 
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parameter values prior to observing the data. Our chosen prior distributions are displayed in 

Table 1. Generally, they are similar to the priors selected in Strickland et al., (2018).  

Table 3 

Priors for the parameters of the PMDC model fitted to our data. All prior distributions 

were either normal (when no lower or upper bounds were specified), or truncated normal 

(when lower and upper bounds were specified). The v (PM match) and reactive inhibition 

priors refer to the asymptote values in the learning equation.  

Model Parameter M SD Lower Upper 

A 1 1 0 10 

B 2 1 0 None 

v (Ongoing match) 1 2 None None 

v (Ongoing mismatch) 0 2 None None 

v (PM match) 1 2 None None 

v (PM false alarm) 

Reactive inhibition 

𝛼  

-1 

0 

0 

2 

2 

2 

None 

None 

0 

None 

None 

None 

D  0 2 None None 

sv 1 1 0 None 

t0           0.3 1 0.1 1 

 

DMC’s sampling algorithm requires running many parallel Markov chains, which share 

information to efficiently converge to the posterior (Turner, Sederberg, Brown, & Steyvers, 

2013). For each participant, we ran 90 parallel chains, which was three times the number of 

total free model parameters (30). We sampled 3600 iterations for each chain at a time, 

retaining 180 of them after thinning. We continued to run iterations until the posterior 

samples appeared stationary, mixed, and converged, which we confirmed with visual 
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inspection and Gelman’s 𝑅 ̂ statistic (Gelman et al., 2013). 

Model Fit 

Figure 5 and 6 display the posterior predictions of the model. Overall, the model 

provided a close fit to the observed trends in accuracy and RT. The plots reveal some degree 

of miss-fit to errors on PM trials. However, as PM trials are quite rare, and PM accuracy quite 

high, this represents a very small amount of observed data. Figure 7 demonstrates that the 

model is able to fairly accurately capture trends in PM accuracy and RT over repeated 

presentations of the PM target, except for some underestimation of single-target PM accuracy 

for the first eight PM targets. This suggests an adequate learning model.  

 

 

Figure 5. Posterior predictions for accuracies, averaged over participants. The model predictions 

correspond to the white circles, the posterior means correspond to the black shaded dots. The error bars display 

the 95% posterior credible intervals of the predictions. 
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Figure 6. Posterior predictions for response time (RT), pooled over participants. The model predictions 

correspond to the white circles, the posterior means correspond to the black shaded dots. The error bars display 

the 95% posterior credible intervals of the predictions. Three quantiles of RT are depicted. The bottom quantiles 

on each plot represent the 0.1 quantile, the middle the median RT, and the top the 0.9 quantile of RT. 
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Figure 7. Posterior predictions for effects of multiple PM target presentations on PM accuracy and 

correct PM response time (RT). The model predictions correspond to the white circles, the posterior means 

correspond to the black shaded dots. The error bars display the 95% posterior credible intervals of the 

predictions. In the RT graphs, three quantiles of RT are depicted. The bottom quantiles on each plot represent 

the 0.1 quantile, the middle the median RT, and the top the 0.9 quantile of RT. PM Trial Position refers to the 

position of the PM trial within the experimental block. Within the multiple target PM blocks, each PM trial 

position contained exactly 1 presentation of each possible PM target. In the single target blocks, only one PM 

target was presented, and thus each trial position included eight repetitions of the same PM target. 

Parameter Estimates 

In order to examine parameter estimates across experimental conditions, we created a 

‘subject-averaged’ distribution of parameter estimates, which averaged the values of each 

parameter over all subjects for each posterior sample. The posterior mean of the A parameter 

was 0.2 (SD = 0.01), the mean of the non-decision time parameter was 0.12 (SD = 0.002), and 

the posterior mean of the sv parameter towards decisions matching the correct response was 

0.43 (SD = 0.005). In the subsequent sections, we review the patterns in other parameters 
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across experimental conditions, particularly focusing on how they vary across the multiple 

target and single target PM conditions. To statistically test parameter differences, we use a 

posterior p value based on the number of times that one parameter was sampled higher in 

than the other. We report the posterior p in the direction against observed effects, to be 

consistent with intuition about p values. Thus, if we observed parameter x was mostly larger 

than parameter y, we would report posterior p as the proportion of samples on which y was 

larger than x. In the supplementary materials, we explore how the parameter differences 

reported in text related to the observed performance data with simulations. 

PM Learning 

As reviewed, learning theory dictates that both PM conditions shared a common 

asymptote for the overall rate of PM accumulation on PM trials (M = 2.33, SD = 0.06), the 

inhibition of word accumulation on PM trials (M = 1.65, SD = 0.05) and the inhibition of 

non-word accumulation on PM trials (M = 2.52, SD = 0.14). In addition, both conditions 

shared a common learning rate (M = 0.62, SD = 0.09). Conditions were allowed to vary in 

terms of D, which represents the difference between the initial accumulation and inhibition 

rates and the asymptote values. We found that the D parameter was above 0 for the multiple-

target condition (M = 0.21, SD = 0.05), indicating learning, Z = 4.24, p < .001. However, the 

D parameter was below 0 for the single-target condition, indicating that PM accumulation 

and PM-induced inhibition actually decreased with PM target repetitions (M = -0.29, SD = 

0.06), Z = -4.98, p < .001. 

Proactive Control 

The obtained threshold estimates are depicted in Figure 8. We expected participants in 

the multiple-target PM condition might increase their PM thresholds, due to increased 
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perceived task difficulty or awareness of the weaker learning of targets in the multiple-target 

condition. Consistent with this, there were very large differences between the PM threshold 

in the multiple-target condition (Day 1 M = 1.30, SD = 0.02; Day 2 M = 1.26, SD = 0.02) and 

the PM threshold in the single target PM condition (Day 1 M = 1.18, SD = 0.02; Day 2 M = 

1.14, SD = 0.02), Z = 11.57, p < .001. 

 

Figure 8. Estimates of thresholds. The shapes indicate the posterior means and the error bars 

correspond to the mean plus or minus the posterior standard deviation. 

In addition to increasing PM thresholds, participants also increased ongoing task 

thresholds in multiple-target blocks. Thresholds towards making a word response were higher 

in the multiple-target condition (day 1 M = 1.03, SD = 0.02; day 2 M = 0.99, SD = 0.02), than 

in the single-target condition, (day 1 M = 0.97, SD = 0.02; day 2 M = 0.92, SD = 0.01) Z = 

8.47, p < .001). Non-word thresholds were also higher in the multiple target condition (day 1 

M = 0.95), SD = 0.02; day 2 M = 0.90, SD = 0.01) than the single target condition (day 1 M = 

0.94, SD = 0.01; day 2 M = 0.85, SD = 0.01), Z = 4.78, p < .001, although this difference was 

generally smaller and not substantial on day 1. The finding that non-word threshold increases 

were smaller than word thresholds is consistent with Heathcote et al. (2015)’s previous 

modelling of a PM task that only included word PM targets. 
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Capacity Sharing 

Estimates for accumulation rates are depicted in Figure 9. Previous modelling of 

simple paradigms such as lexical decision have found no capacity effects associated with PM 

(e.g., Strickland et al., 2018), and thus we did not expect to find reduced ongoing task 

capacity in the multiple-target condition as compared with the single-target condition. In line 

with this, correct accumulation rates to word trials were not substantially lower in the 

multiple-target condition (M = 1.88, SD = 0.03) compared with the single-target condition, 

(M = 1.9, SD = 0.03), Z = 1.6, p = .057. There were also no substantial differences between 

the correct non-word accumulation rates across multiple (M = 1.86, SD = 0.02) and single (M 

= 1.87, SD = 0.02) target conditions, Z = 0.82, p = .20. These results suggest no appreciable 

loss of ongoing task capacity across multiple and single-target conditions. 

 

Figure 9. Estimates of accumulation rates. The circles indicate the posterior means and the error bars 

correspond to the mean plus or minus the posterior standard deviation. 
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We found mixed results regarding the error accumulation rates. For word trials, error 

accumulation rates were lower in the multiple-target condition (M = -0.27, SD = 0.05) than 

the single-target condition (M = -0.13, SD = 0.04), Z = 3.95, p < .001, consistent with a gain 

in capacity in the multiple-target condition. In contrast, for non-word trials error 

accumulation rates were higher in the multiple condition (M = -0.73, SD = 0.06) than the 

single-target condition (M = -0.86, SD = 0.06), Z = 2.43, p = .009, consistent with a loss of 

capacity. Overall, given the error accumulation rates indicated one in favor of more capacity 

for the multiple-target condition, and one indicative of reduced capacity, they did not provide 

robust evidence for capacity sharing with multiple target PM. 

Discussion 

We manipulated the learning of PM targets in a lexical decision PM paradigm. We 

compared a condition in which participants were required to make a PM response to an 

overlearned single PM target with a multiple-target condition in which participants were 

required to respond to any of a list of eight target words. We found that PM accuracy was 

higher, and PM RT was faster, for the single-target condition. We also measured how PM 

performance evolved over the course of each experimental block. In the single-target 

condition, PM performance did not improve later in the block, consistent with target learning 

beginning at ceiling. In contrast, we found that, later in each block, PM accuracy increased, 

and PM RT decreased in the multiple-target condition, getting closer to comparability with 

the single-target PM condition by the end of each block, consistent with target learning 

proceeding over the course of each block. In addition to these effects on PM performance, we 

also found slower ongoing task RT in multiple-target conditions compared with single-target 

conditions.  

We found that the PMDC model provided good fits to the observed data. The model 

indicated that PM excitation and PM-induced inhibition of ongoing task accumulation on PM 
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trials were initially larger in the single-target PM condition than in the multiple-target 

condition, consistent with greater activation of the PM detector in the single-target condition 

(see Figure 2). This is consistent with increased initial learning of the single PM target due to 

more extensive rehearsal for the single PM target than the multiple PM targets, as well as the 

provision of more learning opportunities in the pre-block recognition task. In addition, our 

model measured learning over the course of the PM blocks, and we found evidence that 

learning over repeated target presentations increased PM accumulation rates and PM-induced 

inhibition of ongoing task responses in multiple-target conditions. This suggests that learning 

of PM targets can occur over the time course of an ongoing task, reflecting adaptation to a 

dynamic task environment. Such learning effects are compatible with multiple psychological 

explanations. This includes associative learning, in which target repetitions strengthen  

associations between PM targets and goal representations (e.g., Raaijmakers & Shiffrin, 

1980), and instance learning, in which target repetitions are automatically stored as instances 

in long term memory, with more instances increasing the probability of memory retrieval 

(Logan, 1988), either of which could have increased target familiarity and the discrepant 

processing of targets (e.g., McDaniel et al., 2004). The contribution of the current study is not 

to distinguish between these explanations, but to demonstrate the presence of learning effects 

in PM, and to provide a model framework to describe their effects on PM decision processes.  

We did not find evidence of target learning in the single-target condition, consistent 

with a ceiling effect. In fact, we found a (non-significant) trend for a decrease in PM accuracy 

and slowing of PM RT after the first 8 target presentations, both of which run in the opposite 

direction to a learning effect. Our PMDC model indicated an effect opposed to learning, with 

decreased PM excitation and PM-induced inhibition for later stimulus presentations. We 

consider three possible explanations for these findings. One possibility is that fatigue over 

blocks caused general degradations in performance. However, ongoing task performance 
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shows little evidence of fatigue over the course of the single-target blocks. Second, although 

we have focused on target learning, other types of learning could also be important, such as 

learning associations between responses and experimental context. That is, over the course of 

the experimental blocks, the association between ongoing task responses and the 

experimental task context may have grown stronger, increasing ongoing task retrieval speed, 

and therefore decreasing the probability of PM retrieval (Loft & Remington, 2010, 2013). 

However, this account predicts a speedup in PM RT over practice, as slow PM decisions 

should be unlikely to reach threshold before fast ongoing task decisions, but the opposite was 

observed. Thirdly, some participants may have rehearsed and maintained their single PM 

target in working memory over the course of the filler tasks, and hence began the 

experimental blocks with the PM item in an activated and readily-accessible state (McElree, 

2006; Oberauer, 2002; Öztekin, Davachi, & McElree, 2010). It is possible that participants 

then learnt that they could achieve reasonable performance by instead relying on recognition 

of the single PM target, rather than maintaining the target in working memory, and 

subsequently abandoned the more demanding, but slightly better performing, working 

memory strategy.  

Given the above suggests that participants may sometimes choose to hold the single PM 

target in working memory, one could ask whether they also attempt to do so in the multiple-

target condition. Given the large capacity demands of holding eight items in memory while 

performing an ongoing task, such a strategy would be expected to lead to large capacity costs 

in the multiple-target condition as compared with the single-target condition. However, the 

current modelling indicated that differences in ongoing task performance across multiple-

target and single-target PM conditions were accounted for by shifts in ongoing task 

thresholds across the conditions, and not shifts in ongoing task accumulation rates (capacity-

sharing). This finding suggests that participants did not attempt to hold PM items in working 



38 

 

memory in the multiple-target condition. It is also consistent with our previous findings in 

lexical decision PM paradigms, where the effects of PM task focality and importance on 

ongoing task performance were explained by threshold increases (Strickland et al., 2018). 

Participants might have increased their ongoing task thresholds in multiple-target conditions 

to allow more time for the slower PM accumulator reach threshold on PM trials, as described 

by the delay theory of PM cost (Heathcote et al., 2015). However, recent simulations and 

empirical work suggest this mechanism is relatively ineffective in promoting PM accuracy 

(Strickland et al., 2020). Thus, thresholds might simply have been raised as a generic 

response to an increase in perceived task difficulty.  

  We found that PM thresholds were lower in the single-target condition than in the 

multiple-target condition. Participants may have raised thresholds in the multiple-target 

condition due to a perception of higher task difficulty, or in response to concern about false 

alarms due to poorer discrimination of the multiple PM targets. Interestingly, Strickland et al. 

(2018) found a similar pattern, where PM thresholds to a single-target focal task were lower 

than thresholds to a categorical PM task. The underlying mechanism between such PM 

threshold elevations warrants further investigation.  

Our paradigm closely resembled a PM “list length” paradigm, in which PM tasks with 

longer lists of target words are compared with tasks to shorter lists (e.g., make a PM response 

to a single target word). Previous findings regarding PM list length have been mixed. Some 

studies find that longer PM target lists diminish PM accuracy (F. T. Anderson et al., 2019; 

Cohen, Jaudas, Hirschhorn, Sobin, & Gollwitzer, 2012), others that longer lists of PM targets 

do not diminish PM accuracy, but instead increase PM costs (e.g., Cohen et al., 2008; 

Einstein et al., 2005), and others still have reported decreased PM accuracy and increased PM 

costs (Humphreys et al., 2020). Accordingly, the effects of PM list length have been 

described as a “puzzle” for PM theories (F. T. Anderson et al. 2019). Previous findings may 
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have been mixed and theoretical inferences clouded due the types of learning effects that we 

have identified, with more learning opportunities for smaller target lists in some designs, 

either directly during testing or indirectly during rehearsal. To our knowledge, the learning of 

target lists cannot be readily balanced with other factors such as the spacing between target 

presentations, the level of boredom and fatigue, and retention interval (Bowyer, Humphreys, 

& Revelle, 1983; Hintzman, 1974). This is why our approach was to push learning to 

asymptote in our single-target condition and observe learning towards that asymptote in the 

multiple-target condition.  

In our study, we controlled for PM target focality, with both our single and multiple 

target conditions including a PM task that is focal to lexical decision making (identify 

specific target words; see the focal/non-focal condition coding in F.T Anderson et al., 2019). 

Nevertheless, our findings may have implications for studies on PM target focality. When 

focality is manipulated, the focal task is most often a single-target word that is repeated many 

times over the course of the block (e.g., Einstein et al., 2005), as in our single-target 

condition, whereas non-focal conditions typically involve no or fewer PM target repetitions. 

As focal PM tasks generally do not involve training recognition memory to ceiling the way 

that we did, it is also possible there is learning over the course of PM blocks as single PM 

targets are repeatedly presented. In line with this, Hicks Franks, and Spitler (2017) found that 

performance in a categorical non-focal task (respond to any word that is an animal) became 

comparable to performance in a focal task when the categorical non-focal task repeated only 

a single target word, suggesting that learning over stimulus repetitions may underlie focality 

effects to some degree. At this stage, it is not possible to disentangle whether the participants 

in Hicks et al. learned to approach their single-target categorical task as if they were 

performing a focal task (i.e., conscious, explicit learning), or they benefitted from implicit 

learning of the PM targets in a slower, graded fashion. 
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A series of previous studies applying PMDC modeling have highlighted the role of 

cognitive-control processes in determining PM performance (Boag, Strickland, Heathcote et 

al., 2019; Boag, Strickland, Loft et al., 2019; Strickland et al., 2018, 2019, 2020). The present 

work shows that learning can decrease PM errors through modulation of the inputs to the 

control processes and presents a framework for modelling such learning. There are several 

possible ways this learning framework could be extended. One way would be to add a decay 

function, to account for reductions over time in the effects of PM target presentations (e.g., 

Anderson, Fincham, & Douglass, 1999). Investigating such a model would likely require 

manipulation of the intervals among target presentations. Future research could also use the 

augmented PMDC model to account for the positive effects of PM context re-instatement 

(Smith, & Skinner, 2019), or negative effects of proactive interference (Oates & 

Peynircioğlu, 2016), on prospective remembering. For example, regarding proactive 

interference, Cook, Marsh, Hicks, and Martin (2006) found that PM targets that were 

associated with items in a previous experimental task reduced their effectiveness as cues in a 

subsequent PM task.  

Another possible direction relates to discrete shifts in strategy. For example, we 

speculated that participants might initially favor a conscious strategy for PM performance in 

our single-target condition in which they attempt to hold items in working memory, but at 

some point transition to a strategy that is more reliant on automatic, recognition memory 

processes. As another example, participants may modify their initially-set decision thresholds 

to speed up responding, and risk the increased possibility of missing PM targets, if they learn 

over time that targets are infrequent (Loft, Kearney & Remington, 2008). The potential for 

such strategic shifts is appreciated by the Dynamic Multi-process View (Scullin et al., 2013). 

This change point idea could be incorporated into PMDC by specifying a model where 

parameters change at some specific point, with the precise location of that point estimated 
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from the data. A final future direction relates to the type of PM errors modelled. In some 

instances, PM errors might occur due to a failure to store a PM target in the first place or 

perhaps through a failure to retrieve PM intent resulting in no activation occurring in the PM 

detector, and it would be important to identify how such errors are affected by learning. In the 

current design, we avoided these possibilities by training participants on PM targets until they 

could adequately recognize them even in the multiple-target condition. However, future 

experimental designs could attempt to induce such failures, which might be modeled in 

PDMC by allowing a probability that the PM accumulator fails to run on a proportion of trials 

(see Matzke et al., 2017, for a related approach).  
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