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ABSTRACT 

Vibration based system identification has attracted significant amount of attention in civil 

engineering community, and the identified structural vibration characteristics can be further 

used for structural damage detection, condition assessment and long term structural health 

monitoring. Modal identification of existing civil engineering structures is critical to capture 

the changes in structural modal parameters, including natural frequencies, mode shapes and 

damping ratios, from the measured dynamic responses under ambient vibrations. However, 

when civil structures are under the extreme operational conditions, e.g. earthquakes, 

typhoons, and other extreme loadings, the measured structural responses are usually 

non-stationary and nonlinear. Under these circumstances, the traditional modal identification 

techniques would be less accurate and reliable to analyse these non-stationary vibration 

signals. To overcome this problem, the advanced time-frequency analysis approaches should 

be employed to track the time-varying modal parameters from the measured non-stationary 

vibration responses. The identified instantaneous modal parameters can be further used for 

structural damage detection by combining with some novel damage indices. In addition, the 

identified instantaneous modal parameters can also be used as input of Bayesian based 

nonlinear model updating, and the calibrated nonlinear model can be used for condition 

assessment of civil engineering structures subjected to extreme operational conditions.      

The investigations carried out in this thesis focus on the development and application of 

vibration based linear and nonlinear system identification techniques for damage detection, 

nonlinear model updating and condition assessment of civil engineering structures under 

operational conditions, both ambient and extreme loading conditions. The contents of this 

thesis include:                       

(1) To perform operational modal identification of civil structures under ambient vibrations, 

an improved Empirical Wavelet Transform (EWT) approach is proposed in this study. Two 

steps are involved in the improved EWT approach. In the first step, the standardised 

autoregressive power spectrum of the measured response is calculated to define the 

boundaries of frequency components for the subsequent EWT analysis. The second step is to 

decompose the measured response into a number of Intrinsic Mode Functions (IMFs) by 

using EWT. When the IMFs are obtained, structural modal information, such as natural 

frequencies, mode shapes and damping ratios, can be identified by using Hilbert transform 

and Random Decrement Technique (RDT).  

(2) When civil engineering structures are excited by the extreme operational conditions, e.g. 

earthquakes, typhoons, and other extreme loadings, the measured structural dynamic 

responses are usually non-stationary and nonlinear. To identify instantaneous modal 
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parameters of civil structures subjected to extreme operational conditions, an enhanced EWT 

approach based on Synchroextracting Transform (SET) is developed in this thesis. According 

to the proposed procedure, SET is conducted to analyse the frequency components of a 

non-stationary vibration signal, and then the filtering boundaries for EWT analysis are 

defined. The individual components of the non-stationary vibration signal are obtained by 

performing EWT analysis. Once the mono-modes are obtained, the instantaneous frequencies 

of each component are identified by using Hilbert Transform.  

(3) To analyse non-stationary vibration signals with coupled frequency modulated 

components in terms of their frequency spectra, analytical mode decomposition (AMD) with 

an adaptive time-varying cutoff frequency identification algorithm is developed in this study. 

In the proposed approach, time-frequency representation of a non-stationary signal is 

performed by using multisynchrosqueezing transform (MSST), and time-varying cutoff 

frequencies of the AMD based low-pass filter are automatically identified based on the 

developed algorithm. Once the time varying cut-off frequencies are determined, AMD based 

filter can be used to adaptively decompose the non-stationary signal into individual 

components. Each mono-component represents an amplitude modulated and frequency 

modulated signal with a limited frequency bandwidth, and the instantaneous modal 

parameters of each mono-component, including instantaneous natural frequencies, mode 

shapes and damping ratios are identified in this study.       

(4) Nonlinearities in the dynamic behaviors of civil structures degrade the performance of 

damage detection by using the traditional time- and frequency- domain methods based on the 

linear theory. To overcome this challenging, in this thesis, a novel damage detection 

approach for initially nonlinear structures is developed based on Variational Mode 

Decomposition (VMD). In the proposed damage detection procedure, the measured dynamic 

responses from nonlinear structures under earthquake excitations are adaptively decomposed 

into individual components by VMD analysis. Then, instantaneous modal parameters of each 

decomposed mono-component, including instantaneous frequencies and mode shapes, are 

identified by performing Hilbert transform. Based on the identified instantaneous modal 

parameters, two novel damage indices are defined to detect the location and severity of 

structural damage, respectively. 

(5) Bayesian based nonlinear model updating approach using the instantaneous amplitudes of 

the decomposed dynamic responses is developed in this thesis. Uncertainty quantification of 

the model updating results due to the measurement noise is conducted. The residual of the 

instantaneous amplitudes of the decomposed structural dynamic responses between the test 

structure and the analytical nonlinear model is used to construct the maximum likelihood 

function. Since nonlinear model parameters and simulated error variances of the 
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instantaneous parameters are all unknown, the extended maximum likelihood estimation 

method is used to update these parameters. The uncertainty in the updated nonlinear model 

parameters can be evaluated by using the Cram-Rao lower bound theorem with the exact 

Fisher Information matrix. The numerical and experimental results demonstrate that the 

proposed approach is reliable and accurate for nonlinear model updating, with the capacity 

of considering the uncertain noise effect in the measurements. 

In summary, the research work presented and the results obtained in this thesis contribute to 

the development of robust and reliable vibration based system identification and nonlinear 

model updating techniques for monitoring the conditions of civil engineering structures. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

Structural health monitoring (SHM) has been an emerging research field since two decades 

ago. The overall goal of a SHM system is to timely detect the possible damage and stiffness 

degradation of the existing structures at the earliest stage so that preventative measures can 

be taken to avoid the unexpected structural failures [1-3]. SHM techniques can be classified 

as local and global methods, depending on the techniques used for condition monitoring [4]. 

The local methods are developed to detect local damage in a small region of the structure. 

Often referred to as nondestructive evaluation, these techniques include acoustics emission, 

hardness testing, thermal field mapping, etc., [5-6]. However, these methods require that the 

vicinity of the damage is known a priori and that the portion of a structure being inspected 

must be accessible. Due to these limitations, the local methods are often limited to the 

damage detection on or near the surface of the structure. On the other hand, the global 

methods can be applied to evaluate the condition of complex civil structures by the 

examination of changes in vibration characteristics [7] and/or dynamic responses. 

To track the changes in structural vibration characteristics, vibration based methods for 

system identification have been widely studied in SHM community [8]. The basic idea is that 

the modal parameters of a structure, including natural frequencies, mode shapes and 

damping ratios, have internal relationships with structural physical properties, such as mass, 

damping and stiffness. Therefore, changes in physical properties will cause changes in the 

modal properties. The main advantage of vibration based methods is that measurements at a 

limited number of locations can be used to assess the condition of the whole structure.  

The primary goal of the vibration based system identification is to extract modal parameters 

of a structure (i.e. natural frequencies, mode shapes and damping ratios) from structural 

responses, which can then be used to identify structural physical parameters or evaluate 

structural conditions. System identification involves various methods in frequency domain 
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such as frequency response methods [9-11], in time domain such as least-squares estimation 

and stochastic subspace methods [12-14], and in time-frequency domain such as wavelet 

transform and Hilbert transform based methods [15-17]. The identified structural parameters 

can serve as input to perform structural model updating, damage detection, condition 

assessment and long-term health monitoring. However, some challenges still exist when 

using the vibration based methods for structural system identification. For the complex civil 

structures under ambient vibrations, structural dynamic responses usually consist of several 

closely-spaced components, how to decompose and identify these modal parameters from 

structural responses is still a challenge in operational modal identification. In addition, it 

should be noticed that most of the structural parameter identification methods in time domain 

or in frequency domain have been focusing on the identification of time-invariant linear 

systems. When the structures are under the extreme operational conditions, e.g. earthquakes, 

typhoons and other extreme loadings, measured responses are typically non-stationary and 

the modal parameters in frequency-domain may change over time. Under this circumstance, 

the time-frequency analysis is essential to decompose and analyse these non-stationary 

responses instead of using the traditional time-domain and frequency domain methods [18]. 

Although the time-frequency analysis methods have been successfully applied for 

time-varying or nonlinear system identification, some problems still exist in some 

engineering applications: 1) the high-resolution time-frequency representation is required to 

address the non-stationary vibration signals with closely-spaced modes; 2) how to use the 

identified instantaneous characteristics from the decomposed dynamic responses for 

nonlinear structural damage detection and model updating is another challenge [19].        

1.2 Research Objectives 

To address the above challenges, the main aim of this thesis is to develop various vibration 

based system identification methods for modal identification with closely-spaced modes, 

time-varying dynamic characteristics identification and damage detection of civil structures 

under operating conditions. The specific objectives of this research are listed as follows: 
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1. To develop an improved Empirical Wavelet Transform (EWT) approach for 

structural modal parameter identification based on the Standardised Auto-Regressive 

(SAR) power spectrum under ambient vibrations; 

2. To apply the Sychroextracting Transform (SET) based time-frequency representation 

approach to enhance EWT method for non-stationary signal analysis and 

time-varying system identification;  

3. To apply an enhanced vibration decomposition approach for non-stationary signal 

analysis and damage detection of civil structures under earthquake excitations; 

4. To define the novel damage indices for nonlinear structural damage detection based 

on the identified instantaneous modal parameters of civil structures subjected to the 

extreme loadings; 

5. To propose a Bayesian based nonlinear model updating approach by using the 

identified instantaneous characteristics of the decomposed dynamic response of 

structures subjected to the extreme operating conditions. 

1.3  Research Outline 

This thesis comprises seven chapters. The contents of these chapters following this 

introductory chapter are described below: 

Chapter 2 develops an improved EWT approach for structural operational modal 

identification based on the SAR power spectrum. Two steps are involved in the improved 

EWT approach. In the first step, the SAR power spectrum of the measured response is 

calculated to define the boundaries of frequency components for the subsequent EWT 

analysis. The second step is to decompose the measured response into a number of Intrinsic 

Mode Functions (IMFs) by using EWT. When the IMFs are obtained, structural modal 

information such as natural frequencies, mode shapes and damping ratios can be identified 

by using Hilbert transform and Random Decrement Technique (RDT). 
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Chapter 3 presents an enhanced EWT method with SET for non-stationary signal analysis 

and time-varying system identification. In this method, SET is first conducted to analyse the 

frequency components of a non-stationary vibration signal measured from a time-varying 

system instead of using classical Fourier Spectrum. Then the filtering boundaries for EWT 

analysis can be defined. The non-stationary vibration signal can be decomposed into a finite 

number of IMFs with the improved EWT. When the IMFs are obtained, the instantaneous 

frequencies of each mode can be effectively identified by using Hilbert Transform.    

Chapter 4 proposes an enhanced vibration decomposition approach based on Analytical 

Mode Decomposition (AMD) and Multisynchrosqueezing Transform (MSST). Although 

AMD based low-pass filter has been applied for signal decomposition with time varying 

cut-off frequencies, these cut-off frequencies are usually manually selected from the wavelet 

scalogram of the target signal. The process therefore significantly reduces the computational 

efficiency by using AMD based low-pass filter for non-stationary signal analysis. To 

overcome this problem, MSST with a time varying cut-off frequency detection algorithm is 

used to automatically define the time-varying bisecting frequencies for the AMD analysis. 

Once the time varying cut-off frequencies are identified, AMD can be used to adaptively 

decompose the non-stationary signal into individual components.  

In Chapter 5, a novel nonlinear damage detection approach is proposed based on the 

Variational Mode Decomposition (VMD). Based on the proposed procedure, the measured 

dynamic responses from nonlinear structures under earthquake excitations are adaptively 

decomposed into a finite number of mono-components by using VMD. Hilbert transform is 

then employed to identify the instantaneous modal parameters of the decomposed 

mono-modes, including instantaneous frequencies and mode shapes. Based on the identified 

modal parameters from the decomposed structural dynamic responses, two damage indices 

are defined to identify the location and severity of structural damage, respectively.  

Chapter 6 proposes a Bayesian based nonlinear model updating approach by using the 

instantaneous amplitudes of the decomposed dynamic responses. Uncertainty quantification 

of the updated results due to the measurement noise is conducted. The residual of the 

instantaneous amplitudes of the decomposed structural dynamic responses between the test 

structure and the analytical nonlinear model is used to construct the maximum likelihood 
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function. Since nonlinear model parameters and simulated error variances of the 

instantaneous parameters are all unknown, the extended maximum likelihood estimation 

method is used to update these parameters. The uncertainty in the updated nonlinear model 

parameters can be evaluated by using the Cram-Rao lower bound theorem with the exact 

Fisher Information matrix. 

The conclusions and recommendations for the future research are presented in Chapter 7. 

It should be noted that this thesis is compiled by combining the technical papers prepared by 

the candidate during his PhD study. Therefore, Chapters 2 to 6 can be read independently. On 

the other hand, to make each technical paper complete, the numerical simulations and 

experimental applications are introduced in almost every chapter (i.e. in each independent 

chapter). These parts thus might be slightly repetitive with each other. 
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CHAPTER 2 OPERATIONAL MODAL IDENTIFICATION OF 
STRUCTURES BASED ON IMPROVED EMPIRICAL WAVELET 

TRANSFORM 

ABSTRACT1 

This chapter proposes an improved Empirical Wavelet Transform (EWT) approach for 

structural operational modal identification based on measured dynamic responses of 

structures under ambient vibrations. Two steps are involved in the improved EWT approach. 

In the first step, the Standardised Auto-Regressive (SAR) power spectrum of the measured 

response is calculated to define the boundaries of frequency components for the subsequent 

EWT analysis. The second step is to decompose the measured response into a number of 

Intrinsic Mode Functions (IMFs) by using EWT. When the IMFs are obtained, structural 

modal information such as natural frequencies, mode shapes and damping ratios can be 

identified by using Hilbert transform and Random Decrement Technique. In numerical 

studies, a simulated signal is used to investigate the effectiveness of the proposed approach. 

Operational modal identification based on the proposed approach and procedure is conducted 

to identify the modal parameters of a simulated spatial frame structure under the ambient 

excitations.The proposed approach is further used for operational modal identification of a 

seven-storey shear type steel frame structure in the laboratory and a real footbridge under 

ambient vibrations to verify the accuracy and performance. The modal identification results 

from both numerical simulations and experimental validations demonstrate that the proposed 

approach can effectively and accurately decompose the vibration responses and identify the 

structural modal parameters under operational conditions. 

2.1 Introduction 

Modal identification technique is essential to identify accurately the structural vibration 

                                                        
1This chapter was published in Structural Control & Health Monitoring with the full bibliographic 

citation as follows: Xin, Y., Hao, H. & Li, J. (2019). Operational modal identification of structures 

based on improved empirical wavelet transform. Structural Control & Health Monitoring, e2323. 

https://doi.org/10.1002/stc.2232 
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characteristics from measured dynamic responses for health monitoring of engineering 

structures. The identified vibration characteristics can be used for structural damage 

detection, condition assessment and long-term monitoring. In the past several decades, 

modal identification has attracted significant attention and numerous methods have been 

developed, e.g. by using the rational fraction polynomials method to extract frequency 

response functions based on both the input excitation and output vibration response 

measurements [1-3].In terms of engineering applications, it is very difficult to measure the 

dynamic external excitations applied on the structures. Operational modal identification 

technique based on output responses only becomes a desirable alternative in civil 

engineering applications [4-9]. Existing methods including peak-picking from power spectral 

density spectrum [10], stochastic subspace identification (SSI) approach [11, 12] and natural 

excitation technique (NExT) [13, 14], have been developed and widely used for modal 

identification of civil structures. Nonetheless, the challenges associated with these methods 

still exist, which are to identify the modal information of structures with closely-spaced 

modes, and to accommodate the significant noise effect in the vibration responses measured 

from the structures under the ambient vibrations.  

In the recent years, time-frequency analysis methods, i.e. Continuous Wavelet Transform 

(CWT) and Hilbert-Huang Transform (HHT), have received increasing attentions for modal 

identification and damage detection of civil structures [15-20]. Staszewski [21] proposed 

three different procedures to identify the damping ratios of a multi-degree-of-freedom 

(MDOF) system based on the CWT. Ruzzene [22] developed using wavelet transform to 

identify the structural modal parameters, i.e. natural frequencies and damping ratios. 

Kijewski-Correa and Kareem [23] used CWT and Empirical Mode Decomposition (EMD) to 

separate two closely-spaced cosine waves, and the results demonstrated that the frequency 

resolution capacities of these two techniques can be problematic.  

HHT is an alternative time-frequency analysis method based on EMD [24], which is to 

decompose adaptively a signal into a discrete number of Intrinsic Mode Functions 

(IMFs).These IMFs represent natural oscillatory modes embedded in the signal and behave 

as basic functions which are derived from the signal itself. EMD has been widely applied for 
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modal identification and structural damage identification [25-28]. To improve the 

performance of using EMD for response decomposition against the noise effect in measured 

responses, Ensemble Empirical Mode Decomposition (EEMD) has been proposed [29]. 

However, the problem of mode mixing still exists. To overcome this shortcoming, a novel 

adaptive filter method named Empirical Wavelet Transform (EWT) was proposed [30], 

which can be used to extract the different modes of a vibration response signal by designing 

an appropriate wavelet filter bank in the Fourier spectrum. EWT has been applied to detect 

the defects of rolling bearings with good results [31-33]. Analysis of the noisy and 

non-stationary signals based on Fourier spectrum would be less effective. It will be difficult 

for EWT to detect the proper boundaries in the Fourier spectrum for extracting the modes, 

since false modes may be observed leading to an improper segmentation in the frequency 

domain [34].  

This chapter proposes an improved EWT approach to perform the signal decomposition and 

conduct the structural operational modal identification from the measured responses of 

structures under ambient excitations. Two steps are involved in the improved EWT approach. 

In the first step, a standardised auto-regression (SAR) power spectrum [36-38] issued to 

define the appropriate boundaries for EWT analysis, instead of using the ordinary Fourier 

spectrum suffering from the mode mixing effect. The second step is to decompose the 

measured response into a number of IMFs by using EWT. The obtained IMFs can be further 

used to identify the structural modal parameters, i.e. natural frequencies, mode shapes and 

damping ratios, by using Hilbert Transform and Random Decrement Technique (RDT). 

Numerical and experimental studies will be conducted in this chapter to demonstrate the 

effectiveness and accuracy of using the proposed approach for operational modal 

identification.  

The remainder of this chapter is organized as follows. Section 2 briefly explains the 

background of the original EWT method, and the SAR power spectrum is introduced. In 

Section 3, the proposed improved EWT approach for structural operational modal 

identification is described. In Section 4, a synthetic signal is first employed to verify the 

feasibility and effectiveness of the proposed approach. Numerical studies on a 
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three-dimensional 4-storey frame structure under the ambient excitation are conducted to 

validate the accuracy and performance of using the proposed approach for operational modal 

identification. Experimental validations on a 7-storey shear type steel frame model and a real 

footbridge under ambient vibrations are conducted in Section 5 to further verify the 

capability of the proposed approach. Finally, the conclusions are summarized in Section 6. 

2.2 Theoretical Background and Development 

2.1.1 The traditional EWT 

A time domain signal 𝑥 𝑡  is assumed to consist of N IMFs, that is, 𝑥 𝑡  (i=1, 2, …, N). 

The Fourier spectrum of the signal can be divided into N segments, and each segment 

includes an individual IMF of the signal.𝜔  is denoted as the boundary of Fourier Spectrum 

required for EWT analysis, and each segment is filtered by an interval 𝜔 ,𝜔  (where 

𝜔 0and𝜔 𝜋). A transient phase with a width of 2𝜏  is defined for each𝜔 , and 

each 𝜏  is defined as  

𝜏 𝛾 𝜔                               (2.1) 

 0  𝛾 𝑚𝑖𝑛                         (2.2) 

The empirical scaling function and the empirical wavelets [30] are then defined as follows 

∅ 𝜔

⎩
⎪
⎨

⎪
⎧ 1 𝑖𝑓 |𝜔| 1 𝛾 𝜔

cos 𝛽 |𝜔| 1 𝛾 𝜔 𝑖𝑓 1 𝛾 𝜔 |𝜔|

0 oherwise

1 𝛾 𝜔   

(2.3) 

𝛹 𝜔

⎩
⎪⎪
⎨

⎪⎪
⎧

1 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

cos 𝛽 |𝜔| 𝜔 𝜏 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

sin 𝛽 |𝜔| 𝜔 𝜏 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

0 oherwise

      

(2.4) 
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in which, 𝛽 𝑥  is an arbitrary function which is defined on [0,1] and satisfies: 

𝛽 𝑥 0                                           𝑖𝑓 𝑥 0
  𝛽 𝑥 𝛽 1 𝑥 1                       ∀𝑥 ∈ 0,1  

               1                                             𝑖𝑓 𝑥 1    
     

             (2.5) 

Many functions satisfy the characteristics of Equation (2.5), and the most used 

function 𝛽 𝑥  in literature [30-34] is:           

𝛽 𝑥 𝑥 35 84𝑥 70𝑥 20𝑥    ∀𝑥 ∈ 0, 1                 (2.6) 

By adopting Fourier spectrum segment information into Equations (2.3) and (2.4), the 

empirical wavelet filter bank is constructed. After the scaling function and empirical 

wavelets are derived, the detail coefficients are given by the inner products 

𝑊 𝑛, 𝑡 𝑥 𝜏 𝛹 𝜏 𝑡 𝑑𝜏 𝐹 𝑋 𝜔 𝛹 𝜔                 (2.7) 

The approximation coefficients are given as 

𝑊 0, 𝑡 𝑥 𝜏 ∅ 𝜏 𝑡 𝑑𝜏 𝐹 𝑋 𝜔 ∅ 𝜔                 (2.8) 

Then the empirical modes decomposed from the signal are given as 

𝑓 𝑡 𝑊 0, 𝑡 ∗ ∅ 𝑡                             (2.9) 

𝑓 𝑡 𝑊 𝑘, 𝑡 ∗ 𝛹 𝑡                            (2.10) 

and the reconstruction signal can be obtained as 

𝑥 𝑡 𝑊 0, 𝑡 ∗ ∅ 𝑡 ∑ 𝑊 𝑛, 𝑡 ∗ 𝛹 𝑡 𝐹 𝑊 0,𝜔 ∅ 𝜔

∑ 𝑊 𝑛,𝜔 ∗ 𝛹 𝜔                 (2.11) 

2.2.2 The improved EWT approach 

As mentioned in the literature [34], it is a big challenge to employ Fourier spectrum for 

determining the boundaries associated with EWT analysis when a signal is contaminated 

with significant noise and/or non-stationary components. Under these circumstances, a 

spectral analysis method, namely, SAR power spectrum, is employed to improve the 

effectiveness and accuracy in defining the boundaries for using EWT to perform the signal 
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decomposition. 

2.2.3 SAR power spectrum 

When a signal is contaminated with the significant noise effect, the SAR power spectrum can 

be used to better define the boundaries of EWT than using the ordinary Fourier spectrum. 

Since the SAR power spectrum is smoothed with a lower level variance compared with 

Fourier spectrum, it is more suitable to use this to define the boundaries in EWT analysis 

instead of Fourier spectrum for signals with low signal-to-noise ratios.  

Assuming that a linear system 𝑆 𝑍  is excited by Gaussian white noise 𝑤 𝑛  with zero 

mean and variance 𝜎 , its auto-regressive (AR) model can be written as [35]  

      𝑥 𝑛 ∑ 𝑎 𝑥 𝑛 𝑘 𝑤 𝑛                    (2.12) 

in which, 𝑥 𝑛  represents the output of the linear system, q denotes the order of the AR 

model, and 𝑎  are called predicted coefficients of the AR model. The auto-correlation 

function of the AR model can be expressed in matrix form as: 

⎣
⎢
⎢
⎢
⎡
𝑟 0 𝑟 1 𝑟 2 ⋯ 𝑟 𝑞
𝑟 1 𝑟 0 𝑟 1 ⋯ 𝑟 𝑞 1
𝑟 2 𝑟 1 𝑟 0 ⋯ 𝑟 𝑞 2
⋮ ⋮ ⋮ ⋮ ⋮

𝑟 𝑞 𝑟 𝑞 1 𝑟 𝑞 2 ⋯ 𝑟 0 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

1
𝑎
𝑎
⋮
𝑎 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
 𝜎

0
0
⋮
0 ⎦
⎥
⎥
⎥
⎤

          (2.13) 

where 𝑟  is the auto-correlation function. These linear equations described in Equation 

(2.13) are called Yule-Walker equation, and the coefficients 𝑎  and 𝜎 can be obtained by 

using the Levinson-Durbin recursion algorithm [35].          

Once the linear system is determined, the standardised power spectrum 𝑃 𝑒  of AR 

model can be estimated by using the obtained linear parameters of 𝑆 𝑍  

𝑃 𝑒
 

∑
                         (2.14) 

𝑃 𝑒 𝑃 𝑒 /𝑚𝑎𝑥 𝑃 𝑒                    (2.15) 

where max( ) denotes the maximum value of 𝑃 𝑒 .  

The order q is a major parameter in AR model, and it determines the identification accuracy 
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of the AR model. Several methods used to determine the value of q have been developed, 

including Singular Value Decomposition (SVD), Akaika Information Criterion (AIC) and 

Final Prediction Error Criterion (FPE) [39]. In this chapter, FPE is used to estimate the 

optimal parameter q of AR model, which can be defined as: 

𝐹𝑃𝐸 𝑝 𝑑𝑒𝑡 ∑ 𝜀 𝑡, 𝑞 𝜀 𝑡, 𝑞
/

/
             (2.16) 

in which N is the number of data samples in the processed signal, 𝜀 𝑡 is the prediction error 

corresponding to the order q, d is the number of parameters of AR model which equals to 

q+1, and det( ) expresses the determinant [40]. Once p is determined, the SAR power 

spectrum is calculated by using the Burg algorithm [36].  

Based on the spectral analysis method mentioned above, the procedure of the improved EWT 

approach is shown in Figure1. In the first step, the SAR power spectrum of the measured 

response is calculated to determine the boundaries. A smoothed SAR power spectrum can be 

applied for the signals with significant noise effect. When the boundaries are defined, EWT 

analysis is performed to decompose the vibration response into a number of IMFs based on 

the defined filtering boundaries. The modal information, i.e. natural frequencies, mode 

shapes and damping ratios, is then identified consequently, which will be presented in details 

in the next section. 
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Figure 2-1 Flowchart of the proposed improved EWT approach 

 

2.3.4 Operational modal identification based on the improved EWT approach 

For a structural system with n Degrees-of-Freedom (DOFs), the equation of motion can 

be described as 

𝐌𝑢 𝑡 𝐂𝑢 𝑡 𝐊𝑢 𝑡 𝐌𝐿𝑥 𝑡                     (2.17) 

where 𝐌,𝐂 and 𝐊 are the mass, damping and stiffness matrices, respectively; 𝑢 𝑡 ,𝑢 𝑡  

and 𝑢 𝑡  are the acceleration, velocity and displacement response vectors of the system, 

respectively; L is the mapping vector of applied excitation at the associated DOFs of the 

structure, and 𝑥 𝑡  is the applied ambient acceleration excitation. The improved EWT 
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approach described in Section 2 is used to decompose structural vibration responses into 

individual IMFs. Then Hilbert Transform and RDT [41, 42] will be employed to identify 

structural modal parameters based on the decomposed IMFs, to obtain natural frequencies, 

mode shapes and damping ratios. The identification process is described in Figure 2-1.  

 

 
Figure 2-2 Using the improved EWT approach for operational modal identification 

 

With the decomposed IMFs from the improved EWT approach, RDT is applied to estimate 

the free vibration response of each mode, which can be expressed as 

𝑢 𝑡 ∑ 𝑢 𝑡 𝜏            0 𝜏 𝑡             (2.18) 

in which 𝑢 𝑡  represents the estimated free vibration response of the rth mono-component, 

𝑢 𝑡 𝜏  is the rth IMF of the measured response,𝑡  isthe start time for each segment, and 

𝑡  is the duration of a segment, which is the same for all the segments. 

Each estimated free vibration response 𝑢 𝑡  has a narrow frequency band corresponding 

to the extracted IMF 𝑢 𝑡 .The analytical signal of 𝑢 𝑡 can be written as 

𝐴 𝑡 𝑒 𝑢 𝑡 𝑗𝐻 𝑢 𝑡                     (2.19) 

in which𝐴 𝑡  and 𝜃 𝑡  are the instantaneous amplitude and phase angle of the rth free 

vibration response 𝑢 𝑡 , respectively; H[ ] represents the Hilbert Transform. The phase and 

amplitude can be expressed as [43, 44] 

𝜃 tan ,𝐴 𝑡 𝐴 𝑡 𝐻 𝑢 𝑡           (2.20)  

Afterwards a nonlinear curve-fitting technique is used to identify the exponentially decaying 

curve for calculating the damping ratio of each individual mode. The estimated curve can be 

written as 

𝐺 𝑡 𝐴 𝑒                         (2.21) 
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where 𝐴  represents the fitted amplitude of the rth free vibration response, d defines the 

decay rate of the exponential function, which can be estimated based on the nonlinear 

curve-fitting analysis. According to the obtained damped free vibration response [45], the 

damping ratio can be approximately identified as  

𝐴 𝑒 𝐴 𝑡 𝑒   ⇒  𝜉                    (2.22) 

In addition, considering the rth modal contributions 𝜑 𝑞 𝑡 and 𝜑 𝑞 𝑡 from the kth and 

lth DOFs respectively, the mode shape can be identified as 

                              (2.23) 

2.3 Numerical Studies 

2.3.1 Analysis of a simulated signal 

A simulated signal with a time-varying amplitude, as defined in Equation (2.24), which 

consists of three frequency components of 16Hz, 20Hz and 28Hz, is used in this section to 

investigate the effectiveness of using the SAR power spectrum to define the boundaries for 

EWT analysis. The time-varying amplitude of this signal is simulated by using the 

exponential function. Gaussian white noise is added to the multi-component signal to 

simulate the effect of noise, and the noisy signal 𝑦 𝑡  is described in Equation (2.25).  

𝑦 𝑡 e . cos 32π𝑡 0.5e cos 40π𝑡 0.5e . cos 56π𝑡         (2.24) 

𝑦 𝑡 𝑎𝑤𝑔𝑛 𝑦 𝑡 , SNR, ′measured′                     (2.25) 

in which, awgn is an in-built function in MATLAB, SNR denotes the signal-to-noise ratio, 

and the option ‘measured’ indicates the SNR used in this function is the measured SNR. In 

this study, the value of the SNR is set as -5.98dB, which denotes a significant noise effect. 

The sampling duration is defined as 5s with a sampling rate of 240Hz, and the simulated 

signal is shown in Figure 2-3.   
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Figure 2-3 The simulated signal  

 

It is mentioned that in Section 2 that SAR power spectrum performs well for the case under 

ambient excitations. Fourier spectrum and SAR power spectrum of the second simulated 

signal are calculated and shown in Figures 2-4 (a) and (b), respectively. It can be seen that 

the three frequency components are not clearly identified and then the boundaries cannot be 

clearly defined by using the Fourier spectrum due to the influence of significant noise effect. 

SAR power spectrum clearly shows these three frequency components so as to effectively 

detect the boundaries in EWT analysis, although the second and third modes are weakly 

excited. The comparison of defined boundaries by using the Fourier spectrum and the SAR 

power spectrum are shown in Figures 2-5 (a) and (b), respectively. It is obvious that using 

the SAR power spectrum can more effectively serve the purpose of defining the boundaries 

to separate three frequency components than the Fourier spectrum. 

 

  

 (a)                                          (b) 

Figure 2-4 Spectral analysis of the simulated signal: (a) Fourier spectrum, (b) SAR power spectrum 
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  (a)                                  (b) 

 Figure 2-5 Comparison of the defined boundaries by using: (a) Fourier spectrum; (b) SAR power 

spectrum 

 

2.3.2 Numerical study on a four-storey spatial frame structure  

Numerical studies on a spatial 4-storey two-bay concrete frame structure, as shown in 

Figure6,areconducted to verify the effectiveness and accuracy of using the proposed 

approach for structural operational modal identification. The frame structure is modelled 

with the finite element analysis package “Opensees” [46]. The elastic beam elements are 

used to model the structure. The heights of the first storey and the rest floors are 4.5m and 

3m, respectively. The lengths of beams in the x-direction and y-direction are 6m and 5m, 

respectively. The elastic modulus of the concrete material is set as 3.25×1010N/m2. The 

cross section of the first floor column is 0.6m×0.6m, and the cross section of the other floor 

columns is 0.4m×0.4m. The cross sections of beams in the x-direction and y-direction are 

defined as 0.4m×0.6m and 0.3m×0.4m, respectively. The damping ratio is assumed as 1% 

for each mode of the frame structure. The bottom of the frame structure is fixed to the 

ground. A Gaussian white noise with a maximum amplitude of 5 m/s2 is simulated as the 

applied ambient excitations to the frame structure along both the x-, y- and z-axes. The 

acceleration signals along the x- and y- axes of all the beam-column joints of the structure 

are recorded with 24 accelerometers. The accelerometer locations are defined as S1, S2, … , 

S24, as shown in Figure6. The sampling duration is defined as 30s with a sampling 

frequency of 240 Hz.  
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Figure 2-6 The spatial frame structure in the numerical study 

 

The measured responses are analysed with the proposed approach and procedure as 

described in Figure 2 to identify the modal information, such as natural frequencies, mode 

shapes and damping ratios of the frame structure. To further investigate the robustness of 

the proposed approach, Gaussian white noise is added to the structural vibration responses, 

and the noise level is 30%. The modal identification results obtained from the proposed 

approach are compared with those obtained from the existing widely used Stochastic 

Subspace Identification (SSI) method [12, 13]. The dynamic responses of S2 in the 

y-direction and S6 in the x-direction are shown in Figures7 (a) and (b), respectively. The 

SAR power spectra of the vibration responses from S1-S8sensorsin the y-direction are 

shown in Figure8 (a), and it is clearly observed that five natural frequencies corresponding 

to the vibration modes in the y-direction can be effectively identified. The SAR power 

spectra of the vibration responses from S1-S8 sensors in the x-direction are shown in 

Figure8 (b). It can be seen from Figure8(b) that five natural frequencies corresponding to 

the modes in the x-direction are detected including two close mode components at 16.46Hz 

and 16.99Hz, respectively. Figure9 shows the ten IMFs extracted from structural vibration 

responses of S2 response in the y-direction and S6 response in the x-direction by using the 

improved EWT approach. It shall be noted that Mode1, Mode 3, Mode 6, Mode 7 and 

Mode 10 correspond to the vibration modes in the y-direction, and Mode 2, Mode 4, Mode 
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5, Mode 8 and Mode 9 correspond to the vibration modes in the x-direction. The estimated 

free vibration responses of the corresponding IMFs obtained by using RDT are shown in 

Figure10. The envelop curves of the vibration responses are then obtained with the 

nonlinear curve fitting technique. 

 

 

 
Figure 2-7 The simulated acceleration responses: (a) S2 in y-direction; (b) S6 in x-direction 

  

(a) 

(b) 
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Figure 2-8 SAR power spectrum analysis results: (a) using S1-S8 responses in the y-direction; (b) 

using S1-S8 responses in the x-direction  

 

  

(a) 

(b) 
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(c) 

 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 2-9 The first ten extracted IMFs using the improved EWT approach: (a) Mode 1; (b) Mode 2; 

(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10 
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Figure 2-10 The estimated free vibration responses using the improved EWT approach 

 

Table 1 lists the identified ten frequencies and damping ratios by using the proposed 

approach and the traditional SSI method. It is noted that the analytical results are obtained 

from the modal Analysis based on the finite element model. Due to the page limit, the first 

three mode shapes in the y-direction and the first two mode shapes in the x-direction are 
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shown in Figure11. To further verify the accuracy of the identified mode shapes, Modal 

Assurance Criterion (MAC) [9] is calculated to evaluate the correlation between the 

analytical and identified mode shapes. MAC values of those five mode shapes are shown in 

Figure11. As observed from Table 1, the proposed approach can accurately identify the 

structural modal parameters, i.e. natural frequencies and damping ratios. It should be noted 

that although 30% noise is added to the measured responses, the closely spaced frequencies 

can also be effectively identified. In addition, by comparing with the modal identification 

results obtained from the traditional SSI method, it can be concluded that the proposed 

approach is generally more accurate to perform the operational modal identification, 

particularly for those closely spaced modes. The results demonstrate that the significant 

noise has a little effect on the identification results of the proposed approach.   

It is noted that a better spectrum analysis method, namely SAR power spectrum, is used to 

identify the modes of the measured vibration response and define the boundaries for EWT 

analysis. By segmenting the spectrum using SAR, individual vibration modes are obtained 

and the extracted IMFs represent those individual vibration modes. These can also be 

evidenced by examining the modal identification results listed in Table 1 and mode shapes 

as shown in Figure 11. The identified results demonstrate that the proposed approach can 

effectively and reliably identify the vibration modes of the structure, even for those 

closely-spaced modes.   
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Table 2-1 Modal identification results in the numerical study 

Mode(direction) Natural Frequency (Hz) (Relative 

error, %) 

Damping Ratio (%) (Relative error, %) 

Analytical SSI   The 

proposed 

approach 

Analytical SSI   The 

proposed 

approach 

1(y) 2.56 2.57(0.4) 2.56(0.0) 1.0 0.93(7) 0.96(4) 

2(x) 3.10 3.10(0.0) 3.10(0.0) 1.0 0.95(5) 1.04(4) 

3(y) 7.72 7.75(0.4) 7.73(0.1) 1.0 0.91(9) 1.03(3) 

4(x) 9.58 9.61(0.3) 9.60(0.2) 1.0 1.21(21) 1.09(9) 

5(rotational) 9.98 10.05(0.7) 9.94(0.4) 1.0 1.14(14) 0.95(5) 

6(rotational) 11.15 11.13(0.2) 11.15(0.0) 1.0 0.89(11) 1.01(1) 

7(y) 13.39 13.21(1.3) 13.50(0.8) 1.0 1.08(8) 1.03(3) 

8(rotational) 16.43 16.51(0.5) 16.46(0.2) 1.0 0.94(4) 0.90(10) 

9(y) 16.77 - 16.99(1.3) 1.0 - 0.90(10) 

10(rotational) 18.18 18.35(0.9) 18.38(1.1) 1.0 0.87(13) 0.94(6) 
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1st mode shape in 

they-direction  

(f1=2.56Hz, ξ1=0.96%, 

MAC=0.94) 

2nd mode shape in they-direction 

(f2=7.73Hz, ξ2=1.03%, 

MAC=0.91) 

3rd mode shape in the y-direction 

(f3=13.50Hz, ξ3=1.03%, 

MAC=0.88) 

(a) 

  
1st mode shape in the x-direction  

(f1=3.10Hz, 

ξ1=1.04%,MAC=0.92) 

2nd mode shape in the x-direction 

(f2=9.60Hz, ξ2=1.09%, 

MAC=0.89) 

(b) 

Figure 2-11 Identified mode shapes: (a) The first three mode shapes in they-direction; (b) The first two 

mode shapes in the x-direction.  

2.4 Experimental Validations  

2.4.1 Verification on a laboratory shear type steel frame structure 

A fabricated seven-storey steel frame structure under ambient excitation as shown in 

Figure12 is used to verify the effectiveness and accuracy of using the proposed approach for 

operational modal identification. The total height of the frame column is 2.1m with each 
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story of 0.3m. The length of steel beam is 0.5m. To simulate the weight of each story, two 

pairs of steel mass blocks are bolted to the top and bottom of the beam so that the added steel 

blocks do not change the centroid of the beam section. The detailed geometrical dimensions 

and materials properties can be referred to [47].The theoretical first seven natural frequencies 

are 2.54Hz, 7.66Hz, 12.86Hz, 18.03Hz, 22.96Hz, 26.99Hz and 29.91Hz. It is noted that the 

higher modes from the fifth to seventh frequencies are closely spaced, and these higher 

modes are usually weakly exited under the ambient excitations. Experimental studies will be 

conducted to investigate whether the proposed approach can be effectively used for 

operational modal identification, and the performance will be compared with the existing 

method, i.e. SSI.   

 

 
Figure 2-12 A laboratory 7-storey steel frame structure  

 

Figure13 shows the sensor layout in the conducted ambient test. 10accelerometerswere 

installed on the steel frame to measure the horizontal acceleration responses under ambient 

excitations. They are numbered as S1, S2, …, S10. National Instruments (NI) compact DAQ 

data acquisition system was employed to record the structural dynamic responses. The 

sampling frequency is set as 2000Hz, and the ambient test data of 500s were recorded. The 
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recorded acceleration response from S4 is shown in Figure14. Since the experimental 

ambient test of the steel frame was conducted in the nighttime in the laboratory, the 

measurement noise is relatively low. Fourier spectrum of S4 response is shown in Figure15. 

It can be observed that the first seven natural frequencies of the frame structure can be 

identified by using the Fourier spectrum analysis. However, several false identification 

results are observed at, i.e. 11.64 Hz, 15.95 Hz and 21.16 Hz. SAR power spectrum analysis 

is then applied to analyse the acceleration responses recorded from sensorsS1 to S7 and the 

proposed approach is used for operational modal identification.Figure16 shows the SAR 

power spectra of the measured acceleration responses from S1-S7.It can be observed that 

seven natural frequencies are clearly and correctly identified in the SAR power spectrum, 

and no false identifications present in Figure 16. The comparison of frequency identification 

results between the proposed approach and the results available in literature [47] is listed in 

Table 2.The procedure described in Figure 2 is followed to further decompose the measured 

responses from S1-S7 to identify the mode shapes and damping ratios. The identified 

damping ratio of these seven vibration modes are presented in Table 2. The first seven 

bending mode shapes are shown in Figure17 by using the acceleration signals recorded from 

7 accelerometers on the left side of the steel frame. The identification results demonstrate 

that the proposed approach provides accurate and reliable modal identification results of a 

7-story steel frame structure under ambient excitation.  

 

Table 2-2 Modal identification results of the laboratory frame structure 

Mode Natural Frequency (Hz)  Damping Ratio (%) 

Ref. [47]   SSI The proposed 

approach 

SSI  The proposed 

approach 

1 2.54 2.55 2.54 0.36 0.35 

2 7.66 7.64 7.62 0.10 0.10 

3 12.86 12.83 12.89 0.08 0.06 

4 18.03 18.01 17.97 0.09 0.09 

5 22.96 22.81 22.85 0.10 0.12 

6 26.99 26.85 26.95 0.08 0.05 

7 29.91 29.67 29.69 0.03 0.04 
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Figure 2-13 Sensor layout of the ambient test 

 

 
Figure 2-14 The recorded acceleration signal from S4 

 

 
Figure 2-15 Fourier spectrum of the measured acceleration response from S4 
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Figure 2-16 SAR power spectra of the measured acceleration responses from S1-S7 

 

 
 

 
 

f1=2.54Hz, ξ1=0.35% f2=7.62Hz, ξ1=0.10% f3=12.89Hz, ξ1=0.06% f4=17.97Hz, ξ1=0.09% 

   

 

f5=22.85Hz, ξ1=0.12% f6=26.95Hz, ξ1=0.05% f7=29.69Hz, ξ1=0.04%  

Figure 2-17 Identified mode shapes of the frame structure by using the proposed approach 

2.4.2 Verification on a real footbridge under ambient vibration 

In this section, a continuously monitored footbridge under ambient vibration is used to 

validate the effectiveness and performance of using the proposed approach for modal 

identification. This footbridge is located on the Medford campus of Tufts University, as 
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shown in Figure18 (a). The full length of the footbridge is 44m with two 22m spans, and the 

width is 3.9m. It is a composite bridge with a reinforced concrete deck supported on a steel 

frame structure. The more detailed material properties and geometrical parameters can be 

referred to [48-51]. The footbridge has been continuously monitored from January 2010 to 

May 2010 with 8 accelerometers installed on the footbridge, as shown in Figure18 (b). These 

accelerometers are numbered as S1, S2, …, S8. 17 weeks of measured data are available to 

public. A 300s data sample with a sampling frequency of 2048Hz was recorded once each 

hour during the operation of monitoring system. In addition, the measured data are 

down-sampled from 2048Hz to 128Hz to improve the computational efficiency.  

 

 

(a) 

 
(b) 

Figure 2-18 A real Footbridge and its sensor placement: (a) Overview of Dowling Hall Footbridge, (b) 

Sensor layout 

 

In this study, the recorded acceleration data at10:00pm on 26April 2010 under environmental 

ambient vibration are selected for structural modal identification. Vibration signal measured 

byS1and the SAR power spectra of sensor responses S1-S4 are shown in Figures19 (a) and 

(b), respectively. It can be seen that six natural frequencies are effectively identified and 
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listed in Table 3. The identification results are compared with those available in a previous 

study [48]. The detected frequency components as shown in the SAR power spectra will be 

used to define the boundaries for EWT analysis. The decomposed six modes using the 

proposed improved EWT approach are shown in Figure20, and the estimated free vibration 

responses of the six modes are shown in Figure21.The damping ratios can be obtained from 

the envelop curves of free vibration responses by using the nonlinear curve fitting technique. 

The identified damping ratios are also listed in Table 3, and compared with the results in 

literature [48]. It can be observed that the identified modal parameters are close to those 

reported in the existing study. Minor differences are observed in several frequencies. This is 

because the environmental conditions when the acceleration responses were recorded in this 

study and in the previous study [48] were not exactly the same, which affected the vibration 

frequencies. Generally, the proposed approach can accurately identify the modal parameters 

of the footbridge under ambient vibration. The closely spaced modes, i.e. 13.10 Hz and 13.58 

Hz as shown in Figure 19(b) can be well identified. However, when using traditional 

methods, i.e. SSI, very careful attention is required to select the appropriate order to obtain 

the reasonable identification results on frequencies and damping ratios.  

 

Table 2-3 Modal identification results of a real footbridge 

Mode Natural Frequency (Hz) Damping Ratio (%) 

Ref. [48] The proposed 

approach 

Ref. [48] The proposed 

approach 

1 4.63 4.65 1.0 1.0 

2 6.07 5.93 0.6 0.6 

3 7.07 7.08 0.7 0.7 

4 8.90 8.88 0.3 0.4 

5 13.13 13.10 0.8 0.8 

6 13.56 13.58 1.1 1.1 
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(a) 

 
(b) 

Figure 2-19 Measured response and spectrum analysis: (a) The measured acceleration from S1; (b) 

SAR power spectrum of S1-S4 responses 
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Figure 2-20 The decomposed IMFs of the acceleration response from S1 
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Figure 2-21 Estimated free vibration responses of individual modes of the acceleration response from 

S1 
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f1=4.65Hz, ξ1=1.0% 

(a) 

f2=5.93Hz, ξ1=0.6% 

(b) 

  

f3=7.08Hz, ξ1=0.7% 

(c) 

f4=8.88Hz, ξ1=0.4% 

(d) 

  

f5=13.10Hz, ξ1=0.8% 

(e) 

f6=13.58Hz, ξ1=1.1% 

(f) 

Figure 2-22. Identified six mode shapes of a real footbridge: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) 

Mode 4; (e) Mode 5; (f) Mode 6 

 

2.5 Conclusions  

This chapter proposes an improved EWT approach along with Hilbert Transform and RDT to 

perform the operational modal identification of civil engineering structures. Firstly, a spectral 

analysis approach, namely, the SAR power spectrum is employed to better define the 

boundaries of frequency components associated with EWT analysis. Then the second step is 

to employ EWT to decompose the measured vibration response into individual IMFs. Hilbert 

Transform and RDT are then performed to identify the structural modal parameters, i.e. 

frequencies, mode shapes and damping ratios, based on the extracted IMFs. The feasibility 
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and effectiveness of using SAR power spectrum for defining the filtering boundaries for 

EWT analysis is investigated with a simulated signal contaminated with a significant 

Gaussian white noise. The result shows that the SAR power spectrum is more reliable and 

effective to analyse the response with a significant noise than the Fourier spectrum. 

Numerical studies on a 4-storeyspatial frame structure under the ambient excitation are then 

conducted to validate the effectiveness and accuracy of using the proposed approach for 

operational modal identification. Experimental studies on a 7-story steel frame and a real 

footbridge under ambient excitation are further conducted to verify the accuracy and 

performance of the proposed approach. Based on numerical and experimental results, the 

following conclusions can be drawn: 

(1) SAR power spectrum can effectively determine the boundaries of frequency components 

associated with EWT analysis, even for signals with significant noise effect; 

(2) Closely-spaced modes can be effectively identified and decomposed by using the 

improved EWT approach; and  

(3) Operational modal identification based on the proposed approach is accurate and reliable 

to identify modal parameters of structures under ambient vibration, i.e. natural frequencies, 

mode shapes and damping ratios. 

In this chapter, the proposed approach is successfully applied for operational modal 

identification of linear structures. The further development and application of using this 

approach for time-varying or nonlinear system identification will be further studied.  
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CHAPTER 3 TIME-VARYING SYSTEM IDENTIFICATION BY 
ENHANCED EMPIRICAL WAVELET TRANSFORM BASED ON 

SYNCHROEXTRACTING TRANSFORM 

ABSTRACT2 

This chapter proposes an improved Empirical Wavelet Transform (EWT) approach based on 

Synchroextracting Transform (SET) for time-varying system identification. SET is first 

conducted to analyse the frequency components of a non-stationary vibration signal 

measured from a time-varying system instead of using classical Fourier Spectrum. Then the 

filtering boundaries for EWT analysis can be defined. The non-stationary vibration signal 

can be decomposed into a finite number of intrinsic mode functions (IMFs) with the 

improved EWT. When the IMFs are obtained, the instantaneous frequencies of each mode 

can be effectively identified by using Hilbert Transform. In numerical simulations, a 

simulated signal with a high level noise is analysed to verify the feasibility of using SET to 

define the filtering boundaries. The proposed approach is used to identify the instantaneous 

frequencies of a time-varying two-storey shear type building under earthquake and Gaussian 

white noise excitations, respectively. Experimental investigations on a time-varying 

bridge-vehicle system are conducted to verify the effectiveness of the proposed method. The 

results in numerical simulations and experimental validations demonstrate that the proposed 

approach can identify and track the instantaneous frequencies of a time-varying system with 

good accuracy. 

3.1 Introduction 

Vibration characteristics of engineering structures often change over time due to the 

environmental condition changes, mass and stiffness changes due to the material loss or 

                                                        
2This chaper was published in Engineering Structures with the full bibliographic citation as follows: 

Xin, Y., Hao, H. & Li, J. (2019). Time-varying system identification by enhanced Empirical Wavelet 

Transform based on Synchroextracting Transform. Engineering Structures, 109313. 

https://doi.org/10.1016/j.engstruct.2019.109313. 
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strength degradation, and the effects of extreme loads, etc. These time-varying system effects 

can be widely observed in the field of civil and mechanical engineering. For example, the 

friction mechanisms used in industry can introduce the changes in the stiffness and damping 

of a structure under normal operations. Civil engineering structures, such as long-span 

bridges and high-rise buildings, may also exhibit time varying vibration characteristics under 

earthquake, tornados and hurricanes, because of the nonlinearities in the structures, and the 

changes in the stiffness and boundary conditions [1]. Therefore, identifying the vibration 

characteristics of time-variant structures is vital for researchers and engineers to understand 

and assess the operational conditions of structures.         

Over the past decades, system identification of time-variant structures based on the measured 

dynamic responses (i.e. acceleration, displacement responses) has obtained a significant 

amount of attention. Various techniques have been developed and reported in the literatures 

[2-3]. Generally, these methods could be classified into two categories: (1) time-varying 

system identification based on adaptive algorithms [4-6]; (2) Time-varying system 

identification by using time-frequency analysis techniques [7-9]. For example, Wang et al. [3] 

used a slide-window least-squares (LS) parameter estimation method to track the real-time 

frequency of the high-voltage switch structures under the cyclic loading excitations in the 

laboratory. Yang et al. [6] developed an online adaptive tracking technique based on LS 

parameter estimation to identify the system parameters of a time- variant structure. In 

addition, in the literature [10], an improved LS strategy is developed to identify the 

hysteretic parameters of a nonlinear system under arbitrary external excitations.  

In recent years, time-frequency analysis techniques have been widely conducted for system 

identification of time-variant structures, i.e. by using Hilbert Transform (HT) [11-12] and 

Wavelet Transform (WT) [13-15]. Shi et al. [16] applied Empirical Mode Decomposition 

(EMD) with HT to identify the modal parameters of a time-varying multi-degree-of-freedom 

(MDOF) system. Bao et al. [2] developed an improved Hilbert-Huang Transform (HHT) 

method for time-varying system identification by using the autocorrelation functions of 

structural dynamic responses as the input to HHT, and therefore reduced the noise effect and 

improved the accuracy of identification. Wang et al. [17] proposed a recursive HT system 
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identification approach, which have been successfully used to track the real-time structural 

characteristics of linear shear-type buildings under the forced vibration. WT, as an alternative 

time-frequency analysis technique, has been widely used for the system identification of 

linear and non-linear structures, and non-stationary signal analysis. Hou et al. [18] proposed 

a continuous wavelet transform (CWT) based technique for instantaneous modal 

identification of a time-varying structure subjected to an earthquake excitation. Wang et al. 

[7] used the extracted wavelet ridges to identify the instantaneous frequency (IF) of a 

time-varying structure under the stochastic excitations. 

More recently, a new time-frequency analysis technique, named Synchrosqueezing 

Transform (SST), has been developed by Daubechies et al. [19], and has been applied for IF 

identification [20-21]. The main advantage of SST is that it squeezes the time-frequency 

coefficients into the IF trajectory, which can be approximated to an ideal tine-frequency 

analysis representation. However, SST has a lower time-frequency resolution when it is used 

to reconstruct the interested components of a non-stationary signal. Based on the theory of 

SST, a novel time-frequency analysis method, namely Synchroextracting Transform (SET), 

have been developed by Yu et al. [22], which can generate a more energy-concentrated 

analysis result than using SST.                             

In this study, an improved Empirical Wavelet Transform (EWT) approach [23] based on SET 

is developed for IF identification of time-varying structures. In the past studies [24-25], 

several modified EWT methods have been successfully applied for linear system 

identification and mechanical fault diagnosis. However, to the authors’ best knowledge, there 

has been no study yet on using or improving EWT for IF identification of time-varying 

structures. With the vibration responses measured from a time-varying structure, 

time-frequency analysis based on SET is first performed to determine the filtering 

boundaries of EWT instead of using the ordinary Fourier Spectrum. Then EWT is applied to 

extract the individual modes from the vibration response signals. Each mode is an 

amplitude-modulation and frequency-modulation signal with a narrow-band property with a 

varying IF. The IF of each time-variant component can be identified by using HT. A synthetic 

signal which consists of two time-varying frequency components is first used to verify the 



45 
 

feasibility and accuracy of the proposed approach. Then the proposed method is employed to 

identify the IF of a two-storey shear-type building under the forced vibration. Experimental 

studies on a real bridge under the heavy traffic loads are conducted to further validate the 

effectiveness of the proposed method.                                               

The remainder of this chapter is organized as follows. Section 2 briefly explains the principle 

of EWT and SET, and provides a fundamental process of time-varying system identification 

based on the proposed approach. In Section 3, numerical studies on a synthetic signal and a 

two-storey time-varying structure are conducted to investigate the accuracy and effectiveness 

of the proposed approach. In Section 4, Experimental verifications on a highway bridge 

under the traffic loads are performed to identify the instantaneous frequencies. Section 5 

provides the discussions and conclusions on the obtained results. 

3.2 Theoretical Background and Development 

3.2.1 The traditional Empirical Wavelet Transform (EWT) 

Assuming 𝑥 𝑡  is a time domain signal which consists of N Intrinsic Mode Functions 

(IMFs), that is 𝑥 𝑡 ∑ 𝑥 𝑡 . The Fourier spectrum of the signal can be divided into N 

segments, and each segment includes an individual IMF of the signal. 𝜔  is denoted as the 

boundary of Fourier Spectrum required for EWT analysis, and each segment is filtered by an 

interval 𝜔 ,𝜔  (where 𝜔 0 and 𝜔 𝜋). A transient phase with a width of 2𝜏  

is defined for each 𝜔 , and  𝜏  is written as  

𝜏 𝛾 𝜔                                    (3.1) 

 0  𝛾 𝑚𝑖𝑛                               (3.2) 

The empirical scaling function and the empirical wavelets can be then defined as follows 

[23] 
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∅ 𝜔

⎩
⎪
⎨

⎪
⎧ 1 𝑖𝑓 |𝜔| 1 𝛾 𝜔

cos 𝛽 |𝜔| 1 𝛾 𝜔 𝑖𝑓 1 𝛾 𝜔 |𝜔|

0 oherwise

1 𝛾 𝜔            

(3.3) 

𝛹 𝜔

⎩
⎪⎪
⎨

⎪⎪
⎧

1 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

cos 𝛽 |𝜔| 𝜔 𝜏 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

sin 𝛽 |𝜔| 𝜔 𝜏 𝑖𝑓 𝜔 𝜏 |𝜔| 𝜔 𝜏

0 oherwise

        

(3.4) 

in which, 𝛽 𝑥  is an arbitrary function which is defined on [0,1] and satisfies: 

𝛽 𝑥

0                                               𝑖𝑓 𝑥 0
  𝛽 𝑥 𝛽 1 𝑥 1                      ∀𝑥 ∈ 0,1                 

               1                                               𝑖𝑓 𝑥 1                

     (3.5) 

Many functions satisfy the characteristics of Equation (3.5), and the most used 

function 𝛽 𝑥  in literature [28] is: 

𝛽 𝑥 𝑥 35 84𝑥 70𝑥 20𝑥    ∀𝑥 ∈ 0, 1                 (3.6) 

The filter bank of the empirical wavelets can be constructed by adopting Fourier spectrum 

segment information into Equations (3.3) and (3.4). After the scaling function and empirical 

wavelets are derived, the detail coefficients are given as 

𝑊 𝑛, 𝑡 𝑥 𝜏 𝛹 𝜏 𝑡 𝑑𝜏 𝐹 𝑋 𝜔 𝛹 𝜔                  (3.7) 

The approximation coefficients can be obtained by  

𝑊 0, 𝑡 𝑥 𝜏 ∅ 𝜏 𝑡 𝑑𝜏 𝐹 𝑋 𝜔 ∅ 𝜔                    (3.8) 

Then, the modes extracted from the vibration signal are described as 

𝑓 𝑡 𝑊 0, 𝑡 ∗ ∅ 𝑡                               (3.9) 
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𝑓 𝑡 𝑊 𝑘, 𝑡 ∗ 𝛹 𝑡                              (3.10) 

and the reconstruction signal can be obtained as 

𝑥 𝑡 𝑊 0, 𝑡 ∗ ∅ 𝑡 ∑ 𝑊 𝑛, 𝑡 ∗ 𝛹 𝑡 𝐹 𝑊 0,𝜔 ∅ 𝜔

∑ 𝑊 𝑛,𝜔 ∗ 𝛹 𝜔     (3.11) 

3.2.2 The improved EWT 

As mentioned in the literature [24], it is a big challenge to employ Fourier Spectrum for 

determining the boundaries associated with EWT analysis when a signal is contaminated 

with significant noise and non-stationary components. Under this circumstance, an improved 

time-frequency analysis approach is worth of investigations to identify and track the 

real-time frequency components of the non-stationary signals. With an improved 

energy-concentration of the time-frequency representation, SET is employed to improve the 

effectiveness and accuracy in defining the boundaries for using EWT to perform the 

non-stationary signal decomposition.  

3.2.3 Synchroextracting Transform (SET)                               

A multicomponent vibration signal 𝑥 𝑡 , which consists of N non-stationary frequency 

components, is presented as 

    𝑥 𝑡 ∑ 𝑥 𝑡 ∑ 𝐴 𝑡 𝑒                    (3.12) 

in which 𝐴 𝑡  and 𝜔 𝑡  represent the instantaneous amplitude and frequency of the ith 

time-varying mono-component, respectively. The different modes can be well separated 

based on a sufficient distance, i.e., 

𝜔 𝑡 𝜔 𝑡 2∆  , 𝑗 ∈  1, … ,𝑚 1                  (3.13) 

where ∆ represents the frequency support of the window function. The Short Time Fourier 

Transform (STFT) representation 𝐺 𝑡,𝜔  of the vibration signal 𝑥 𝑡  can be expressed as 

the following first-order approximation form [22, 26, 27]      
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𝐺 𝑡,𝜔 ∑ 𝐴 𝑡 ∗ 𝑔 𝜔 𝜔 𝑡  𝑒                 (3.14) 

Then, the IF of the vibration signal is derived using Equation (3.14)  

𝜔 𝑡 ∑ 𝜔 𝑡 𝑗 ∗
,

,
                      (3.15) 

In Equation (3.14), 𝑔 is the Fourier transform of the window function 𝑔 ∈ 𝐿 𝑅 .  

To generate an energy-concentrated time-frequency representation, Yu et al. [22] suggested 

to only retain the time-frequency information of the STFT results which is significantly 

related to the time-variant characteristics of a target signal. In this case, SET is expressed as 

𝑇𝑒 𝑡,𝜔 𝐺 𝑡,𝜔 ∗ 𝛿 𝜔 𝜔 𝑡                      (3.16) 

In Equation (3.16), 𝛿 𝜔 𝜔 𝑡  can be further expressed as  

𝛿 𝜔 𝜔 𝑡
1, 𝜔 𝜔 𝑡
0, 𝑒𝑙𝑠𝑒

                         (3.17) 

Combining Equations (3.14) - (3.17), SET can be deduced as 

𝑇𝑒 𝑡,𝜔 ∑ 𝐺𝑒 𝑡,𝜔 ∑ ∑ 𝐴 𝑡 ∗ 𝑔 0  𝑒  

(3.18) 

2.2.2 Time-varying system identification based on the improved EWT 

For an n degree-of-freedom (DOF) time-variant system, the equation of motion is given as 

𝐌 𝑡 𝑢 𝑡 𝐂𝑢 𝑡 𝐊𝑢 𝑡 𝐟 𝑡                      (3.19) 

in which 𝐌, 𝐊 , and 𝐂 denote n×n time-variant mass, stiffness and damping matrices, 

respectively;  𝑢 t , 𝑢 t  and 𝑢 t  are displacement, velocity and acceleration responses 

of the time-variant system, respectively; 𝐟 𝑡  is the external excitation force vector. 

Equation (3.19) can be further transformed into modal spatial coordinates, which can be 

expressed as [1] 

 𝑞 𝑡 2ℎ 𝑞 𝑡 𝜔 𝑞 𝑡
∅𝒊
𝑻𝐟

𝑴𝒊
      𝑖 1,2, …𝑛           (3.20) 
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where 𝑴𝒊 ∅𝒊
𝑻𝐌∅𝒊 denotes the ith modal mass, ∅𝒊 is the ith mode shape vector. The 

natural frequency of the ith modal response is represented by ω . When zero mean 

Gaussian white noise is assumed as the external excitation of the system, the IF of the ith 

modal response can be written as  

  𝜔 𝑡  𝜔 𝑡

∅𝒊
𝑻𝐟

𝑴𝒊

∅𝒊
𝑻𝐟

𝑴𝒊                   (3.21) 

where H denotes HT, and the second term of Eq. (21) is about a zero mean fast time-varying 

function. The natural frequency of the time-variant system can be obtained from the 

identified IF of its analytical signal by filtering out the fast varying component.         

The measured dynamic response of the l-th DOF  𝑢 𝑡  of the time-varying system can be 

described as a function of modal responses 

    𝑢 𝑡 ∑ 𝜙 𝑞                         (3.22) 

where  𝜙  is the l-th coefficient of the i-th mode shape vector. The decomposed ith modal 

response 𝑢 𝑡  from the vibration signal measured from the l-th DOF can be represented 

as  

      𝑢 𝑡 𝜙 𝑞                           (3.23) 

The obtained mono-component signal  𝑢 𝑡  can be written as an analytical 

signal 𝑍 𝑡   

 𝑍 𝑡 𝜙 𝑞 𝜙 𝐻 𝑞 𝜙 𝐴 𝑒             (3.24) 

From Equation (3.24), it indicates that the IF of the decomposed vibration signal equals to 

the IF of the modal response. The flow chart of time-varying system identification based on 

the improved EWT along with HT is shown in Figure 3-1.        
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Figure 3-1 The flow chart of the proposed approach for time-varying system identification. 

 

3.3 Numerical Studies 

3.3.1 A simulation signal  

In this section, a simulated signal 𝑦 𝑡  , as defined in Equation (3.25), is used to 

investigate the effectiveness of using SET to determine the boundaries for EWT analysis. It 

consists of two time-variant frequency components 𝑦 𝑡  and 𝑦 𝑡  which are described 

in Equations (3.26) and (3.27), respectively.  

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑛𝑜𝑖𝑠𝑒 𝑡                         (3.25) 

𝑦 𝑡 2sin 14𝜋𝑡 4𝜋 arctan 2𝑡 2                  (3.26) 

𝑦 𝑡 2 sin 48𝜋𝑡 20𝜋 sin 𝑡                          (3.27) 

To further validate the feasibility of using SET to improve the performance of EWT, a 

high-level noise, that is, 20% Gaussian white noise, is added to the simulated signal. The 

sampling duration is set as 5 seconds with a sampling rate of 120Hz. Figure 3-2 and Figure 

3-3 show the time domain response and the Fourier Spectrum of the simulated signal, 
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respectively. It can be seen that the two frequency components are not obvious and therefore 

properly defining the filtering boundaries for EWT analysis may not be straightforward. SET 

is employed to track and determine the time-varying frequency components of the vibration 

signal. In order to verify the effectiveness of using SET, the classical time-frequency analysis 

technique, namely, WT, is also performed to identify the instantaneous frequencies of the 

signal. The time-frequency analysis results obtained from WT and SET are shown in Figures 

3-4 (a) and (b), respectively. It can be observed that both WT and SET can effectively track 

the two time-variant frequency components of the non-stationary signal. However, as can be 

seen from Figure 3-4(b), SET provides a clearer trajectory and more concentrated energy 

distribution than WT. Based on the time-frequency analysis results from SET, it is clear to 

define a constant filtering boundary between these two frequency components. When the 

filtering boundaries are exactly determined, the Fourier Spectrum of the non-stationary 

signal can be segmented for EWT, and used to construct the filtering bank. Then, the 

individual modes can be effectively decomposed, and the obtained two time-varying IMFs 

are shown in Figure 3-5 (a) and Figure 3-6 (a), respectively. To further verify the 

effectiveness of the proposed approach, Variational Mode Decomposition (VMD) [28] is also 

performed to identify the time-varying components of the signal, and the decomposed two 

IMFs are shown in Figure 3-5 (b) and Figure 3-6 (b), respectively. By comparing the 

identified results in Figures 3-5 and Figure 3-6, it is clearly observed that the improved EWT 

is more reliable and accurate to identify the time-varying components of the signal. In 

addition, Figures 3-7 (a) and (b) display the Fourier spectrum of the extracted IMFs using 

two methods, respectively, it can be observed that the non-stationary simulated signal can be 

accurately decomposed by using the improved EWT approach, even under a significant noise 

effect.      
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Figure 3-2 The simulated signal with 20% noise. 

 

 
Figure 3-3 Fourier Spectrum of the simulated signal. 

 

    

(a)                                         (b) 

      Figure 3-4 Time-frequency analysis of the non-stationary signal using: (a) WT; (b) SET. 

  

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Frequency(Hz)

A
m

pl
it

ud
e

Time(s)

F
re

qu
en

cy
(H

z)

0 1 2 3 4 5
0

10

20

30

40



53 
 

 

 

 

Figure 3-5 The decomposed first mode using: (a) Improved EWT; (b) VMD.  

 

 

 

Figure 3-6 The decomposed second mode using: (a) Improved EWT; (b) VMD.  
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  (a)                                      (b) 

Figure 3-7 Fourier spectrum of the two decomposed IMFs using: (a) Improved EWT; (b) VMD.  

 

3.3.2 Time-varying system identification of a two-storey shear building   

Numerical studies on a two-storey shear building, as shown in Figure 3-8, are conducted to 

investigate the accuracy and effectiveness of using the proposed approach for time-varying 

system identification. The time-varying structure has two masses of m1=2.50×105kg at the 

first floor, and m2=1.70×105kg at the top floor. Two damping coefficients c1=9.6×102 

kN∙s/m and c2=3.2×102kN∙s/m are assumed for these two stories, respectively. The stiffness 

of the first storey k1 is defined to be periodically reduced from 2.10×105 kN∙m to 1.404×

105 kN∙m during a period of t=4 to 16 seconds. That is, 𝑘 2.1 0.058 𝑡 4

0.131 sin 0.5𝜋 𝑡 4 10  kN∙m. The stiffness of the second storey is set to be linearly 

reduced from 1.05×105 kN∙m to 0.7×105 kN∙m in a time duration between 4s and 8s.            

3.3.3 Instantaneous frequency identification  

In order to investigate the effectiveness and reliability of the proposed time-varying system 

identification approach, the following two excitations are considered in the numerical case 

studies. 

Case 1: The 1940 EI Centro ground acceleration record as shown in Figure 3-9 (a) is selected 

as the external excitation to the two-storey building.   

Case 2: The structure is excited by a Gaussian white noise process with zero mean and a 

standard deviation of 0.1g (g denotes the gravitational acceleration), as shown in Figure 
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3-9 (b). 

For the above mentioned two cases, the displacement responses of the first floor are 

measured with a sampling rate of 50Hz. The recorded vibration signals for the two cases are 

shown in Figures 3-10 (a) and (b), respectively. Since the non-stationary characteristics of 

the structural dynamic responses are unknown in prior, SET is first performed to determine 

the filtering boundaries for EWT analysis. The SET results of these two cases are shown in 

Figures 3-11 (a) and (b), respectively. It is clearly seen from Figure 3-11 that a frequency 

interval can be defined between the instantaneous frequencies of these two time-varying 

frequency components. Therefore the filtering boundaries for the analysis of EWT can be 

well defined as three constant frequencies, 0.8Hz, 3.5Hz and 7.5Hz. Once the filtering 

boundaries are defined, the two time-varying frequency components of structural 

displacement responses can be exactly separated by the EWT approach. The decomposed 

signals for the two cases by using EWT are shown in Figures 3-12 (a) and (b), respectively. 

Two mono-components are well separated and identified from the vibration responses. The 

identified instantaneous frequencies of the two cases by using HT are presented in Figures 

3-13 (a) and (b). Significant fluctuations are observed by comparing the results from HT 

with the exact values. By filtering out the rapidly varying component of the identified 

instantaneous frequencies using a low-pass filter, the average value of these instantaneous 

frequencies can accurately represent the time-varying frequency components of the structure.  

 

 
Figure 3-8 The two-storey shear building model.   
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Figure 3-9 External excitations in two numerical cases: (a) El Centro earthquake; (b) Gaussian white 

noise.  

 

 

 
Figure 3-10 Displacement responses of the first floor: (a) under earthquake excitation; (b) under 

Gaussian white noise excitation. 
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(a) 

  

 (b) 

Figure 3-11 The detected filtering boundaries based on SET: (a) under earthquake excitation; (b) 

under Gaussian white noise excitation.  

 

 

 
Figure 3-12 The decomposed two individual modes using the improved EWT: (a) under earthquake 

excitation; (b) under Gaussian white noise excitation.  
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(a) 

 

(b) 

  Figure 3-13 The identified instantaneous frequencies by the proposed approach: (a) under 

earthquake excitation; (b) under Gaussian white noise excitation.  

 

3.3.4 Effects of measurement noise  

To further investigate the performance and reliability of the proposed approach, 5% and 10% 

noises are added to the structural dynamic responses obtained in Case 1 and Case 2. The 

same procedure as above is followed to analyse the data. The extracted average frequency 

components from the two decomposed modes under the effects of the different noise levels 

are presented in Figures 3-14 (a) and (b), respectively. It can be observed that the identified 

instantaneous frequencies are close to the exact values even if under the effects of high-level 

noise. The noise level has a minor effect on the identification accuracy.          
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(a) 

 

(b) 

Figure 3-14 The identified instantaneous frequencies under different noise levels: (a) under earthquake 

excitation; (b) under Gaussian white noise excitation. 

 

3.4. Experimental Investigations   

3.4.1 A highway bridge    

To further investigate the performance of using the proposed approach to identify the 

instantaneous frequency of real civil structures, experimental studies on an operational 

highway bridge are conducted. The target bridge consists of three spans, which is shown in 

Figure 3-15. The beams are 17.10m long in the 1st and 3rd spans, and the central-span beam is 

16.96m long with two half joints at the ends. The half joints shown in Figure 3-15 (b) have 

been strengthened by using external vertical steel strengthening rods as well as the horizontal 

strengthening rods on the two sides of the joint. This half-joint arrangement is different from 

the typical arrangement as there is no bearing between the suspended and supporting nibs 
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while the joints are post-tensioned by an internal tendon crossing the joint. On the abutments 

and piers, the girders are tied by cast-in-situ infill panels, which are supported by two 

4-column piers. The structural dynamic responses of the bridge under the operational traffic 

loads are recorded by a structural health monitoring system installed in 2014. Strain, 

displacement and acceleration responses at various locations of the bridge are measured. The 

acceleration responses of the bridge under the traffic loads are measured with two tri-axial 

accelerometers (S1, S2) at the mid-span of the bridge. The locations of the acceleration 

sensors are shown in Figure 3-16. A camera is installed to capture the traffic vehicles on the 

bridge when the monitoring system is activated, with a frame rate of 1Hz. The health 

monitoring system can be trigged to record the dynamic responses data of the bridge 

subjected to the traffic when the strain response in any of the strain rings reaches a 

pre-defined threshold (equals to 120με ). A two minutes window with 60 seconds 

pre-triggering and 60 seconds afterwards is applied to record the dynamic responses of an 

event with a sampling rate of 130Hz. Since only two accelerometers are installed at the 

mid-span of the bridge to record the vibration signals of the bridge, the natural frequencies of 

the structure under the different traffic loading and environmental conditions can be 

identified, however the mode shape could not be obtained in this case.   

 

      
 (a)                                  (b) 

Figure 3-15 An operational highway bridge: (a) Bird view of the bridge; (b) The reinforced half joints.  
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(a) 

 
(b) 

Figure 3-16 Locations of the installed accelerometers: (a) Elevation view of the bridge; (b) Cross 

section of the mid-span 

 

3.4.2 Time-varying instantaneous frequency identification   

In this section, modal identification of the bridge structure under the weak external excitation 

is conducted, and then the instantaneous frequencies identification of the bridge under heavy 

traffic loads is further discussed and investigated by using the proposed approach. Based on 

the images captured by the installed camera, a light weight traffic excitation case is selected 

for the first case. In this event, the traffic and the measured acceleration response from the 

accelerometer S1 are presented in Figures 3-17 (a) and (b), respectively. It can be seen from 

the measured vibration signal that the maximum response amplitude of the vibration signal is 

approximately equal to 0.007g, which can be considered as a relatively small dynamic 

response measured from the highway bridge. Due to the light weight traffic and the mass of 

those vehicles is negligible as compared to that of the bridge, the acceleration signal is used 

for modal identification of the bridge structure to understand the vibration characteristics of 

the bridge. However, since the global mode shapes of the structure cannot be obtained by 

only using the responses at two locations from two accelerometers, a finite element model, 

as shown in Figure 3-18, developed based on the design drawings is employed to 

S1 S2 
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approximately represent the bridge. The analytical modal frequencies and mode shapes 

obtained from the finite element model are shown in Figures 3-19 (a)-(d), respectively. By 

cross checking the frequencies and mode shapes, four main frequencies of the measured 

vibration signal are identified by using the fast Fourier Transform (FFT) as 5.78Hz, 7.88Hz, 

12.20Hz, and 18.87Hz, respectively, as shown in Figure 3-20. In order to ensure the 

reliability of the identified modes, the phase information of each mode extracted from the 

vibration signals recorded by two accelerometers are compared in Figures 3-21(a)-(d), 

respectively. It can be seen from Figure 3-21 that the two vibration signals have similar 

phase information at the first and the third modes, however, the opposite phase is clearly 

observed at the second and the fourth modes. Compared with the mode shapes from the 

finite element model, it can be concluded that the first and third modes correspond to the 

bending modes of the bridge structure. However, the second and fourth modes are the 

torsional modes of the bridge. For bridges under traffic loads, higher modes are normally 

considered to have relatively lower contributions to the responses than the lower modes [29], 

however, it is observed that the third mode of the bridge at 12.20Hz has the highest energy in 

the Fourier Spectrum. The potential reason can be described as: with the roughness and 

damaged surface on the pavement of the deck, for example, as shown in Figure 3-22, the 

highway bridge is usually forced by the bouncing motion of the moving traffic loads [30-32], 

which may excite the high frequency components of the bridge.  
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(a) 

 

(b) 

Figure 3-17 (a) The light weight traffic excitation; (b) the measured acceleration from sensor S1. 

 

  

Figure 3-18 The finite element model of the bridge.  
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 (a) (b) 

  

(c) (d) 

Figure 3-19 Modal information extracted from the FE model of the Bridge: (a) The first mode 

(f1=5.82Hz); (b) The second mode (f2=7.85Hz); (c) The third mode (f3=12.85Hz); (d) The fourth mode 

(f4=16.77Hz). 

 

  

Figure 3-20 Fourier spectrum of the measured vibration signal 

 

 

A
m

pl
it

ud
e



65 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-21 The phase information of each mode between two measured acceleration signals: (a) The 

first mode; (b) The second mode; (c) The third mode; (d) The fourth mode  

 

         
Figure 3-22 The damaged surface of the bridge deck. 

 

The natural frequencies of the bridge are verified with the finite element analysis. The 

instantaneous frequencies of the bridge under the heavy traffic loads are identified by using 

the proposed approach. The measured acceleration response under two heavy tank trucks is 

used to identify the time-varying IF of the structure. The traffic from the selected event and 

the corresponding vibration signal recorded from the accelerometer S1 are shown in Figures 

3-23 (a) and (b), respectively. Since the mass ratio between two heavy tank trucks and the 

bridge is more significant than the first case, the bridge is considered as a time-varying 

system when the vehicles are crossing the bridge. The maximum recorded acceleration signal 

on the bridge is equal to 0.048g, indicating a significant vibration. In order to identify the 
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varying modes of the acceleration signal, the time-frequency analysis based on SET is first 

performed to determine the frequency boundaries of the modes. The time-frequency analysis 

results from SET are shown in Figures 3-24 (a) and (b), and it is clearly observed that the 

filtering boundaries of EWT can be determined. To extract two bending modes from the 

non-stationary acceleration signal, the filtering boundaries of 4.8Hz, 6.8Hz, 9.5Hz and 

14.2Hz are selected for EWT. It can be noted from Figure 3-24 (a) that the time resolution of 

the first two time-variant modes is low, and the main reason is the time series used in this 

study is too short, which would cause a low time resolution due to the requirement of 

frequency resolution. Once the two bending modes are accurately extracted from the 

non-stationary acceleration signal via EWT, the instantaneous frequencies of two modes can 

be identified and shown in Figures 3-25 (a) and (b), respectively. It can be observed from 

Figure 3-25 that these two identified instantaneous frequencies have a slow fluctuation trend 

when the two heavy trucks are crossing the bridge. As observed from Figure 3- 25 (a), the IF 

of the first bending mode is gradually changing from the 5.96Hz to 4.88Hz, and coming back 

to 5.64Hz at the end of the event. This demonstrates that the bridge under heavy trucks in 

this case is time-varying, due to the significant mass ratio between the two heavy trucks and 

the bridge [31-32], as well as the varying excitation locations. Due to the heavy mass of the 

vehicle, the total mass of the bridge-vehicle system increases and therefore the identified 

natural frequency decreases. As observed from Figure 3-25 (b), the IF of the second bending 

mode of the measured acceleration signal shows a similar variation pattern as the first 

bending mode. The maximum change rate of the IF is approximately equal to 19.5%, which 

indicates that the heavy traffic loads have a significant effect on the modal parameters of the 

highway bridge. Generally, it can be concluded that the proposed approach can well separate 

the two main time-varying modes from a non-stationary vibration signal, as well as track the 

IF of a time-varying bridge-vehicle system.     
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(a) 

 
     (b) 

Figure 3-23 (a) The traffic loads on the bridge; (b) the corresponding measured acceleration from S1 

 

     

     (a)                                      (b) 

Figure 3-24 The two identified bending modes based on the results of SET: (a) Mode1; (b) Mode3.   
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(a) 

 
(b) 

Figure 3-25 The identified instantaneous frequencies of two bending modes via the proposed approach: 

(a) The first bending mode; (b) The second bending mode.  

 

3.5. Conclusions   

This chapter proposes an improved EWT approach based on SET for the time-varying 

system identification. The time-frequency analysis of a vibration signal is performed by 

using SET to determine the filtering boundaries for EWT analysis instead of the ordinary 

Fourier Spectrum. An improved EWT method is developed to separate the vibration signal 

into several IMFs based on the defined filtering boundaries. When IMFs of a vibration signal 

are obtained, HT can be conducted to identify and extract the IF of each mode. The slowly 

varying part of the identified IF by HT is approximately equal to the IF of a time-varying 

system under the external excitations. Based on the numerical simulations and experimental 

validations, the following conclusions can be drawn: 

(1) The improved EWT approach can be used to accurately decompose a non-stationary 

signal into several modes based on the predefined filtering boundaries from SET; 
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(2) The proposed approach is effective and accurate for time-varying system identification to 

obtain the instantaneous frequencies of structures, even under the significant noise effect.  

  



70 
 

References 

[1] Wang Z.C., Ren W.X., Chen G.D. (2013). Time-Varying Linear and Nonlinear Structural 
Identification with Analytical Mode Decomposition and Hilbert Transform. Journal of 
Structural Engineering ASCE, 139(2): 06013001. 

[2] Bao C.X., Hao H., Li Z.X., Zhu X.Q. (2009). Time-varying system identification using a 
newly improved HHT algorithm. Computer and Structures, 87(23-24): 1611-23.  

[3] Huang Q., Xu Y.L., Liu H.J. (2015). An efficient algorithm for simultaneous 
identification of time-varying structural parameters and unknown excitations of a building 
structure. Engineering Structures, 98: 29-37.  

[4] Tang H.S., Xue S.T., Chen R., Sato T. (2006). Online weighted LS-SVM for hysteretic 
structural system identification. Engineering Structures, 28(12): 1728-35.   

[5] Lin J.W., Betti R., Smyth A.W., Longman R.W. (2001). On-line identification of 
nonlinear hysteretic structural system using a variable trace approach. Earthquake 
Engineering and Structural Dynamics, 30:1279-1303.  

[6] Yang J.N., Huang H.W. (2007). Sequential non-linear least-squares estimation for 
damage identification of structures with unknown inputs and unknown outputs. International 
Journal of Non-linear Mechanics, 42(5): 789-801.   

[7] Wang C., Ren W.X., Wang Z.C., Zhu H.P. (2013). Instantaneous frequency identification 
of time-varying structures by continuous wavelet transform. Engineering Structures, 52: 
17-25.  

[8] Wang Z.C., Ren W.X., Chen G.D. (2018). Time-frequency analysis and applications in 
time-varying nonlinear structural systems: A state-of-the-art review, Advances in Structural 
Engineering, 21(10):1562-84.   

[9] Wang Z.C., Xin Y., Xing J.F., Ren W.X. (2017). Hilbert low-pass filter of non-stationary 
time sequence using analytical mode decomposition. Journal of Vibration and Control, 
23(15): 2444-69.  

[10] Smyth A.W., Masri S.F., Chaassiakos A.G., Caughey T.K. (2002). Development of 
adaptive modeling techniques for non-linear hysteretic system. International Journal of 
Non-linear Mechanics, 37(8):1435-51. 

[11] Noel J.P., Kerschen G. (2017). Nonlinear system identification in structural dynamics: 
10 more years of progress. Mechanical Systems and Signal Processing, 83(15): 2-35. 

[12] Wang Z.C., Ren W.X., Chen G.D. (2012). A Hilbert transform method for parameter 
identification of time-varying structures with observer techniques. Smart Material and 
Structures, 21: 105007(9pp). 

[13] Dziedziech K., Staszewski W.J. (2015). Wavelet-based modal analysis for time-variant 
systems. Mechanical Systems and Signal Processing, 50-51: 323-37.   

[14] Klepka A., Uhl T. (2014). Identification of modal parameters of non-stationary systems 
with use of wavelet based on adaptive filtering. Mechanical Systems and Signal Processing, 
47(1-2): 21-34.    

[15] Ulker-Kaustell M., Karoumi R. (2011). Application of the continuous wavelet transform 
on the free vibrations of a steel-concrete composite railway bridge. Engineering Structures, 
33(3): 911-919.   

[16] Shi Z.Y., Law S.S. (2007). Identification of linear time-varying dynamical systems 
using Hilbert transform and empirical mode decomposition method. Journal of Applied 



71 
 

Mechanics, 74(2): 223-30. 

[17] Wang Z.C., Chen G.D. (2012). Recursive Hilbert-Huang Transform Method for 
Time-Varying Property Identification of Linear Shear-Type Buildings under Base Excitations. 
Journal of Engineering Mechanics ASCE, 138(6): 631-39. 

[18] Hou Z.K., Hera A., Shinde A. (2006). Wavelet-based structural health monitoring of 
earthquake excited structures. Computer-Aided Civil and Infrastructure Engineering, 21: 
268-79. 

[19] Daubechies I., Lu J.F., Wu H.T. (2011). Synchrosqueezed Wavelet Transforms: An 
Empirical Mode Decomposition-like Tool. Applied and Computational Harmonic Analysis, 
30(2): 243-61.  

[20] Liu J.L., Wang Z.C., Ren W.X., Li X.X. (2015). Structural time-varying damage 
detection using Synchrosqueezing wavelet transform. Smart Structures and Systems, 15(1): 
119-33.  

[21] Wang S., Chen X., Cai G., Chen B., Li X., He Z. (2014). Matching demodulation 
transform and synchrosqueezing in time-frequency analysis. IEEE Transaction in Signal 
Processing, 62(1): 69-84.    

[22] Yu G., Yu M.J., Xu C.Y. (2017). Synchroextracting Transform. IEEE Transactions on 
Industrial Electronics, 64(10): 8042-54.  

[23] Gilles J. (2013). Empirical Wavelet Transform. IEEE Transactions on Signal Processing, 
61(16): 3999-4010. 

[24] Xin Y., Hao H., Li J. (2019). Operational modal identification of structures based on 
improved empirical wavelet transform, Structural Control & Health Monitoring, 26: e2323.     

[25] Amezquita-Sanchez J.P., Park H.S., Adeli H. (2017). A novel methodology for modal 
parameters identification of large smart structures using MUSIC, empirical wavelet 
transform, and Hilbert transform. Engineering Structures, 147: 148-59.   

[26] Wang S.B., Chen X.F., Tong C.W., Zhao Z.B. (2017). Matching synchrosqueezing 
wavelet transform and application to aeroengine vibration monitoring. IEEE Transactions on 
Industrial Electronics, 66(2): 360-372. 

[27] Thakur G., Wu H.T. (2011). Synchrosqueezing-based recovery of instantaneous 
frequency from nonuniform samples. SLAM Journal of Mathematical Analysis, 43(5): 
2078-95.  

[28] Ni P.H., Li J., Hao H., Xia Y., Wang X.Y., Lee J.M., Jung K.H. (2018). Time-varying 
system identification using variational mode decomposition. Structural Control & Health 
Monitoring, 25: e2175   

[29] Kim J., Lynch J.P. (2012). Experimental analysis of vehicle-bridge interaction using a 
wireless monitoring system and a two-stage system identification technique. Mechanical 
Systems and Signal Processing, 28: 3-19.  

[30] Cantieni R. (1992). Investigation of vehicle-bridge interaction for highway bridges In: 
Heavy vehicles and roads: technology, safety and policy London: Thomas Telford.   

[31] Xiao F., Chen G.S., Hulsey J.L., Zatar W. (2017). Characterization of non-stationary 
properties of vehicle-bridge response for structural health monitoring. Advances in 
Mechanical Engineering, 9(5): 1-6. 

[32] Cantero D., Hester D., Brownjohn J. (2017). Evolution of bridge frequencies and modes 
of vibration during truck passage. Engineering Structures, 152: 452-64.  



72 
 

CHAPTER 4 ENHANCED VIBRATION DECOMPOSITON 
METHOD BASED ON MULTISQUEEZING TRANSFORM AND 

ANALTICAL MODE DECOMPOSITION 

ABSTRACT3 

This chapter proposes an enhanced vibration decomposition approach based on Analytical 

Mode Decomposition (AMD) and Multisynchrosqueezing Transform (MSST). Although 

AMD based low-pass filter has been applied for signal decomposition with time varying 

cut-off frequencies, these cut-off frequencies are usually manually selected from the wavelet 

scalogram of the target signal. The process therefore significantly reduces the computational 

efficiency of using AMD based low-pass filter for non-stationary signal analysis. To 

overcome this problem, in this study, MSST with a time varying cut-off frequency detection 

algorithm is used to automatically define the time-varying bisecting frequencies for the 

AMD analysis. Once the time varying cut-off frequencies are identified, AMD can be used to 

adaptively decompose the non-stationary signal into individual components. To investigate 

the effectiveness of the proposed approach, termed as MSST-AMD, for vibration signal 

decomposition and its application, numerical studies on a non-stationary signal with 

overlapped frequency components are conducted. To further apply the proposed approach for 

structural vibration response analysis, a three-storey shear-type structure with varying 

stiffness subjected to earthquake excitations is simulated in this study for instantaneous 

modal parameter identification. In experimental verifications, the proposed MSST-AMD 

approach combined with a damage index is further extended to evaluate the damage severity 

of a structure under earthquake excitations. The results in both numerical simulations and 

experimental validations demonstrate that the proposed MSST-AMD approach is reliable and 

accurate for non-stationary signal analysis and vibration decomposition, which can be further 

used for instantaneous modal parameter identification and structural damage detection.   

                                                        
3  Xin, Y., Li, J. & Hao, H. (2020). Enhanced Vibration Decomposition Method based on 

Multisynchrosqueezing Transform and Analytical Mode Decomposition. Structural Control & Health 

Monitoring. (Under review) 
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4.1 Introduction 

One of critical issues in structural health monitoring is to accurately extract individual 

frequency components from the measured structural vibration signals, i.e. acceleration and 

displacement responses, etc., for effective structural condition monitoring. However, when 

civil engineering structures are excited by strong external loads, i.e. earthquake, hurricane, 

etc., the measured structural dynamic responses are often non-stationary or nonlinear over 

time [1-2]. Under these circumstances, the traditional time-domain and frequency-domain 

based methods [3-6] cannot be directly employed to track and identify the time-varying 

dynamic characteristics of structures during the vibration periods. To overcome this 

challenge, some advanced time-frequency analysis techniques are developed to identify the 

non-stationary structural dynamic characteristics from the measured vibration signals. The 

time-frequency methods for non-stationary signal analysis studied in the literature include 

Wigner-Ville distribution (WVD), Short Time Fourier Transform (STFT), Wavelet Transform 

(WT) and Hilbert Transform methods [7-10], etc.         

One of the widely used time-frequency analysis techniques is the Hilbert Transform based 

method. For instance, Hilbert-Huang transform (HHT) has been applied for non-stationary 

signal analysis in many engineering fields [11-12]. To further enhance the original HHT 

method, some improved HHT methods have been developed [13-14]. To extract the 

individual frequency components, Feldman [15-16] developed a new signal decomposition 

method named as Hilbert vibration decomposition (HVD), and the method has been 

successfully applied in mechanical engineering vibration signal analysis. Recently, Chen and 

Wang [17] developed a new signal decomposition theorem, termed as analytical mode 

decomposition (AMD), which can adaptively decompose a multi-component signal into 

several individual components based on the predefined cut-off frequencies. For a signal with 

frequency modulation components, Wang et al. [18] further extended the AMD method for 

the time-varying or non-stationary vibration signal analysis. With the varying frequency 

components of the non-stationary signals, the time-varying cut-off frequencies need be 

selected between each two frequency components for signal decomposition, instead of using 

constant bisecting frequencies. Since the non-stationary signals simulated in the literature are 

assumed as the continuous time series, the AMD based low-pass filter can successfully extract 

the individual components based on the predefined time-varying cut-off frequencies. However, 

in real applications, the selection of the time-varying cut-off frequencies is not 

straightforward and the discretization of signals may cause the failure of the low frequency 

component extraction based on AMD theorem. To eliminate the effects of the signal 

discretization, Wang et al. [19] further extended the AMD theory for non-stationary discrete 

time series with two or more amplitude- and frequency-modulation components. Based on 
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the derivations, it is indicated that the AMD based one-step, two-step and four-step low-pass 

filters are reliable for non-stationary discrete signal analysis. 

Although the AMD based low-pass filter have been successfully applied for non-stationary 

discrete signal analysis, the process of selecting the time-varying cut-off frequencies between 

each two individual components significantly reduces computational efficiency of the 

method [20] and even affects the accuracy. Unlike stationary or linear signals, the constant 

bisecting frequencies of AMD method can be directly defined from their frequency spectrum. 

When using AMD method for analysing non-stationary signals, the cut-off frequencies are 

usually predefined from its time-frequency representation and may be difficult to define 

accurately, due to the overlapping of the frequency components. As mentioned in literature 

[18], the time-varying cut-off frequencies of the AMD method can be selected from the 

time-frequency analysis of a signal by wavelet analysis. However, this process cannot be 

automatically conducted. Therefore, it will significantly increase the computational cost of 

using AMD-Hilbert spectral analysis for non-stationary signals.  

To achieve automatic non-stationary signal decomposition by using AMD based low-pass 

filter, a high-resolution time-frequency representation of the non-stationary signal is required 

for defining the time-varying cut-off frequencies. However, restricted by the Heisenberg 

uncertainty principle, the time-frequency representations generated by the traditional 

methods, i.e. WT, S-transform and STFT could be blurry and cause imprecise analysis results 

for non-stationary signals. To overcome this issue, more recently, Daubechies et al. [21] 

proposed an energy-concentrated time-frequency analysis technique, termed as 

Synchrosqueezing Transform (SST), which can squeeze the discrete time-frequency 

coefficients into the instantaneous frequency trajectories. However, when the signal is 

contaminated by high-level noise, the unexpected frequency components of noise would also 

be gathered into the SST results, which may cause an imprecise time-frequency analysis 

results. Based on the theory of SST method, Yu et al. [22] further developed a 

Multisynchrosqueezing transform (MSST) method for non-stationary signal analysis, which 

is used to generate a more energy-concentrated time-frequency representation by performing 

multi-step SST operations. The identification results indicated that the MSST method can 
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accurately track the time-varying features of strong non-stationary signals.   

In this study, MSST is employed to enhance AMD based low-pass filter for adaptive 

non-stationary signal analysis. For a discrete non-stationary signal, time-frequency analysis 

based on MSST is first performed to determine the number and locations of the individual 

frequency components, and a ridge detection algorithm is developed to automatically define 

the time-varying cut-off frequencies between each two individual components. Then, AMD 

based low-pass filter is used to extract the mono-components from the target signal. The 

instantaneous frequencies of the decomposed mono-components can be identified by using 

the ridge detection algorithm. A multi-component non-stationary signal with the overlapping 

of frequencies is simulated to validate the feasibility and accuracy of the proposed approach. 

Then, a three-storey shear building model with varying stiffness coefficients subjected to 

seismic excitations is further developed to investigate the effectiveness of using the enhanced 

method for structural dynamic response decomposition. The proposed approach is also 

extended and applied for structural damage detection combined with a damage index. 

Experimental studies on a 12-storey scaled reinforced concrete (RC) frame structure 

subjected to strong ground motions are conducted to validate the effectiveness of using the 

proposed improved signal decomposition approach for damage detection.     

The remainder of this chapter is organized as follows. Section 2 briefly explains the theory of 

AMD and the derivations of MSST, and then a fundamental process of using the improved 

adaptive low-pass filter based on MSST and AMD for non-stationary signal analysis is 

developed. In Section 3, numerical study on a multi-component non-stationary signal with 

varying frequencies is first conducted to investigate the feasibility of using the proposed 

approach for vibration signal decomposition. Then a three-storey time-varying structure 

subjected to seismic excitations is built to validate the effectiveness of using the proposed 

approach for structural vibration signal analysis and instantaneous modal parameter 

identification. In Section 4, the proposed approach is further applied for time-varying 

structural damage detection. A damage index is defined based on the identified instantaneous 

frequencies of structural vibration responses. Then a 12-storey scaled RC frame structure 

under the various seismic excitations is used as an example to validate the effectiveness and 
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reliability of using the proposed signal decomposition approach for structural damage 

detection. Section 5 provides some discussions and conclusions.  

4.2. Theoretical Background and Development 

4.2.1 AMD based low-pass filter with time-varying cut-off frequencies 

The AMD based low-pass filter for non-stationary signal analysis has been developed in the 

literature [18]. In this study, the time-varying cut-off frequencies are selected to extract the 

individual components from a non-stationary signal. The theorem of AMD with time-varying 

cut-off frequencies can be briefly described as: Let 𝑥 𝑡  represent a vibration signal of m 

time-varying individual components with frequencies:𝜔 𝑡  𝑖 1,2, … ,𝑚 ,𝜔 𝑡 0, it 

can be separated into m components 𝑥 𝑡  𝑖 1,2, … ,𝑚 , whose frequency ranges satisfy: 

|𝜔 𝑡 | 𝜔 𝑡 , 𝜔 𝑡 |𝜔 𝑡 | 𝜔 𝑡 , … ,𝜔 𝑡 |𝜔 𝑡 | 𝜔 𝑡 ,  

and 𝜔 𝑡 |𝜔 𝑡 |. The decomposed individual components can also be expressed as   

𝑥 𝑡 ∑ 𝑥 𝑡                                   (4.1) 

𝜔 𝑡  represents the instantaneous frequency of the ith decomposed signal  𝑥 𝑡 , and 

𝜔 𝑡 ∈ 𝜔 𝑡 ,𝜔 𝑡  𝑖 1,2,⋯ ,𝑚  denotes m-1 time-varying cut-off frequencies. 

Each individual signal can be determined by 

    𝑥 𝑠 𝑡 , 𝑥 𝑠 𝑡 𝑠 𝑡 , … , 𝑥 𝑡 𝑥 𝑡 𝑠 𝑡                 (4.2) 

𝑠 𝑡 sin 𝜔 𝜏 d𝜏 𝐻 𝑥 𝑡 cos 𝜔 𝜏 d𝜏   

cos 𝜔 𝜏 d𝜏 𝐻 𝑥 𝑡 sin 𝜔 𝜏 d𝜏  𝑖 1, 2,⋯ ,𝑚         (4.3) 

in which 𝐻 ⋯  represents Hilbert transform, 𝑠 𝑡  is the ith individual component of the 

target signal. Here, 𝑠 𝑡  is different from those decomposed mono-components described 

in Equation (4.1) due to the use of a filter.                   

Equation (4.3) suggests that using AMD can analytically extract the low-frequency 

component 𝑠 𝑡  of a non-stationary signal by selecting a time-varying cut-off 

frequency 𝜔 𝑡 . The low-pass component 𝑠 𝑡  can be obtained as 

        𝑠 𝑡 sin 𝜔 𝜏 d𝜏 𝐻 𝑥 𝑡 𝑐𝑜𝑠 𝜔 𝜏 d𝜏             
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       cos 𝜔 𝜏 d𝜏 𝐻 𝑥 𝑡 sin 𝜔 𝜏 d𝜏                (4.4) 

Equation (4.4) operates like a low-pass filter that passes any low frequency signal 𝑠 𝑡  but 

prevents the fast-varying signal in time domain. As mentioned in the above equations, the 

AMD based filter is well defined to extract the low-frequency components from a continuous 

multi-component signal. However, in real engineering application, the measured structural 

vibration signals are usually discrete due to the low sampling rate. To use AMD based 

low-pass filter for discrete time sequences analysis, Wang et al. [19] further extended the 

theoretical derivations of AMD to one-step, two-step, and four-step signal decomposition 

approaches according to the different sampling rates, termed as “DAMD”. The 

corresponding descriptions of DAMD are described briefly below.  

It is assumed that  𝑢 𝑡  denotes a discrete vibration signal with m time-varying 

components 𝑢 𝑡  𝑖 1,2, … ,𝑚 , with instantaneous frequencies denoted as 𝜔 𝑡  𝑖

1,2, … ,𝑚 . The sampling rate of the discrete signal is set as 𝜔 . The one-step AMD method 

can be used to extract the individual components of the original signal when the 

time-varying frequencies of all components in any time steps satisfy the following 

Conditions 

            0 𝜔 𝑡 𝜔 𝑡 ⋯ 𝜔 𝑡             (4.5)        

𝜔 𝑡 𝜔 𝑡                         (4.6) 

in which 𝜔 𝑡  is the maximum frequency value of the target signal, 

and 𝜔 𝑡  denotes the maximum value of the time-varying cut-off frequencies.   

It can be noticed that the one-step AMD method is only effective when Equations (4.5) and 

(4.6) are simultaneously satisfied. However, when Equation (4.6) cannot be satisfied, the 

two-step AMD based low-pass filter is needed to perform the discrete non-stationary signal 

analysis. Similarly, the four-step AMD method is required when both conditions in Equations 

(4.5) and (4.6) are not satisfied, but the defined time-varying cut-off frequencies need to 

satisfy 

𝜔 𝑡                          (4.7) 

The extended AMD based filter can analytically extract the low-frequency components from 

a measured discrete signal with appropriate cut-off frequencies. Since the main objective of 

this study aims at developing an automatic AMD based low-pass filter for adaptive 

non-stationary signal decomposition, the signals used in the numerical and experimental 

studies are assumed to satisfy Equations (4.5) and (4.6).     
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4.2.2 An enhanced vibration decomposition based on MSST and AMD 

In Section 2.1, AMD based low-pass filter with time-varying cut-off frequencies is 

introduced for non-stationary signal decomposition. For a non-stationary discrete signal, the 

frequencies of its individual components are usually varying over the vibration duration. 

This may cause the frequency overlapping of different frequency components in Fourier 

spectrum. Under these circumstances, the time-varying cut-off frequencies need to be 

selected carefully from the time-frequency representations of these signals. The scalogram of 

a non-stationary signal by wavelet analysis has been employed for the selection of 

time-varying cut-off frequencies in the literature [18]. However, with the restrictions of the 

Heisenberg uncertainty principles, the classical time-frequency analysis methods, i.e. WT, 

STFT and WVD, may not clearly track the nonlinear characteristics of a strong 

non-stationary signal. This could lead to an incorrect selection of the time-varying cut-off 

frequencies of the non-stationary signal from its time-frequency representation. Therefore, in 

this study, the MSST method combined with a developed ridge detection technique [23-24] 

is employed to enhance the AMD based low-pass filter for automatic non-stationary signal 

decomposition. The theoretic background of MSST is briefly described below.         

It is assumed that a measured vibration signal 𝑢 𝑡 , which consists of m time-varying 

frequency components, is written as  

𝑢 𝑡 ∑ 𝑢 𝑡 ∑ 𝐴 𝑡 𝑒                  (4.8) 

in which 𝐴 𝑡  and 𝜔 𝑡  are the instantaneous amplitude and frequency of the ith 

individual component, respectively. Different frequency components can be well 

decomposed under a sufficient distance, i.e.  

𝜔 𝑡 𝜔 𝑡 2𝜉   𝑖 ∈ 1,2,⋯ ,𝑚 1                (4.9) 

in which 𝜉 is the frequency support of the window function.  

The STFT based time-frequency representation of a vibration signal can be approximately 

expressed as [10]  

𝐺 𝑡,𝜔 ∑ 𝐴 𝑡 ℱ 𝜔 𝜔 𝑡 𝑒         (4.10) 
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where ℱ ⋯  represents the Fast Fourier transform (FFT).   

To improve the time-frequency resolution of STFT approach, a SST based STFT approach is 

developed [25], which can be written as 

     𝑇𝑠 𝑡,𝜑 𝐺 𝑡,𝜔 ∗ 𝛿 𝜑 𝜔 𝑡,𝜔 𝑑𝜔            (4.11) 

in which 𝛿 ⋯  denotes a frequency-reassignment operator, which is applied to squeeze the 

original STFT coefficients 𝐺 𝑡,𝜔  into the corresponding instantaneous frequency 

trajectories. To further improve the time-frequency resolution, Yu et al. [22] proposed to 

execute a multi-step SST analysis, which can obtain a more energy-concentrated 

time-frequency results than one-step SST. The multi-step iterations of SST can be expressed 

as 

𝑇𝑠 𝑡,𝜑 𝑇𝑠 𝑡,𝜑 ∗ 𝛿 𝜑 𝜔 𝑡,𝜔 𝑑𝜔   

𝑇𝑠 𝑡,𝜑 𝑇𝑠 𝑡,𝜑 ∗ 𝛿 𝜑 𝜔 𝑡,𝜔 𝑑𝜔 

⋮

𝑇𝑠 𝑡,𝜑 𝑇𝑠 𝑡,𝜑 ∗ 𝛿 𝜑 𝜔 𝑡,𝜔 𝑑𝜔

            (4.12) 

in which the lth SST operations 𝑇𝑠 𝑡,𝜑  can be translated as 

  𝑇𝑠 𝑡,𝜑 𝐺 𝑡,𝜔 ∗ 𝛿 𝜑 𝜔 𝑡,𝜔 𝑑𝜔            (4.13) 

In Equation (4.13), the lth iterations of 𝜔 𝑡,𝜔  can be calculated as 

   𝜔 𝑡,𝜔 𝜃 𝑡 𝜔 𝜃 𝑡                 (4.14) 

From Equation (4.14), it can be noticed that the estimated instantaneous frequencies are 

closer to the real frequency components by executing multi-step SST iterations. It also 

indicates that the MSST based time-frequency representation is more suitable for the 

time-varying cut-off frequency selection of AMD method.  

To enhance AMD based low-pass filter for non-stationary discrete signal decomposition, a 

ridge detection algorithm is required to reliably and accurately extract the time-varying 

cut-off frequencies from the squeezed time-frequency coefficients. In the literature [22], an 
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effective ridge detection algorithm is applied to identify the time-varying vibration 

characteristics of a non-stationary signal. In this study, this algorithm is further modified to 

identify the time-varying cut-off frequencies of a multi-component vibration signal. The 

process of this algorithm is described in Appendix 1. The time-varying cut-off frequencies of 

a non-stationary vibration signal can be automatically defined from the scalogram of 

performing MSST analysis. Then AMD based low-pass filter can adaptively extract the 

low-frequency components of the target signal by using these predefined cut-off frequencies. 

The proposed enhanced vibration decomposition approach based on MSST and AMD, 

termed as (MSST-AMD), is described in Figure 4-1.      

 

 

Figure 4-1 The enhanced vibration decomposition based on the proposed approach: MSST-AMD.  

 

4.3 Numerical Studies 

4.3.1 Numerical simulation 1  

In this section, a multi-component vibration signal 𝑦 𝑡 , as defined in Equation (4.15), is 

used to investigate the effectiveness of using the proposed MSST-AMD approach for 

adaptive non-stationary signal decomposition. The simulated non-stationary signal 𝑦 𝑡  
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consists of four frequency-modulated individual components  𝑦 𝑡 ,  𝑦 𝑡 , 

𝑦 𝑡  and 𝑦 𝑡 , which are described by Equations (4.16)-(4.19), respectively.    

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑛𝑜𝑖𝑠𝑒 𝑡              (4.15) 

    

𝑦 𝑡
cos 7𝜋𝑡 2 sin 0.4𝜋𝑡 𝑡 ∈ 0,10s

cos 7𝜋𝑡 2 sin 0.5𝜋 𝑡 10   𝑡 ∈ 10, 20s
e . cos 5𝜋𝑡 2 sin 0.4𝜋 𝑡 20   𝑡 ∈ 20, 30s

    (4.16)        

 

𝑦 𝑡
cos 10𝜋𝑡 2 sin 0.4𝜋𝑡 𝑡 ∈ 0,10s

cos 10𝜋𝑡 2 sin 0.5𝜋 𝑡 10   𝑡 ∈ 10, 20s
e . cos 8𝜋𝑡 2 sin 0.4𝜋 𝑡 20   𝑡 ∈ 20, 30s

   (4.17) 

         

𝑦 𝑡
cos 16𝜋𝑡 2 sin 0.4𝜋𝑡 𝑡 ∈ 0,10s

cos 14𝜋𝑡 2 sin 0.4𝜋 𝑡 10   𝑡 ∈ 10, 20s
e . cos 13𝜋𝑡 2 sin 0.5𝜋 𝑡 20   𝑡 ∈ 20, 30s

   (4.18) 

        

𝑦 𝑡
cos 20𝜋𝑡 2 sin 0.4𝜋𝑡 𝑡 ∈ 0,10s

cos 18𝜋𝑡 2 sin 0.5𝜋 𝑡 10  𝑡 ∈ 10, 20s
e . cos 16𝜋𝑡 2 sin 0.5𝜋 𝑡 20  𝑡 ∈ 20, 30s

   (4.19) 

 

In this study, to further investigate the performance of the proposed method under the effects 

of noise, 5% Gaussian white noise is added to the original signal. Figure 4-2 shows the noisy 

signal, with a length of 30 seconds and a sampling rate of 100Hz. The theoretical 

instantaneous frequencies of these four individual components are shown in Figure 4-3. It is 

clearly observed from Figure 4-3 that the instantaneous frequencies of these individual 

components are varying and decaying over time. To validate the superiority of using MSST, 

the time-frequency representation of using MSST is compared with that of wavelet analysis. 

When using the wavelet transform for the non-stationary signal analysis, the Morlet wavelet 

is selected as a mother wavelet function to calculate the wavelet coefficients of the target 

signal. The center frequency is set as 2Hz with a bandwidth parameter equal to 8 s2, and the 

analysis result is shown in Figure 4-4(a). It can be noticed from Figure 4-4 (a) that the 

wavelet analysis of the signal can track the trend of the abovementioned four individual 
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components of the original signal 𝑦 𝑡 . Referring to the wavelet scalogram described in 

Figure 4-4 (a), the time-varying cut-off frequencies if using AMD need to be manually 

selected very carefully between every two mono-components to well separate the 

components. The process will significantly add the computational cost of using AMD based 

approach for non-stationary signal analysis [20]. Then MSST is employed to improve 

defining the low-pass filters for AMD in the multi-component signal analysis. The 

time-frequency analysis of the signal is performed by using one-step and ten-step MSST 

operations, respectively, and the corresponding results are presented in Figures 4-4(b) and (c). 

By comparing the results when using the WT and MSST methods, it can be found that MSST 

generates a more energy-concentrated time-frequency representation than the wavelet 

analysis. In addition, by comparing the analysis results from using one-step and ten-step 

MSST operations, it can be observed that the identified instantaneous frequency trajectories 

based on ten-step MSST is more accurate than those of the one-step MSST and wavelet 

analysis, especially at the first few seconds of the signal. Once the MSST based 

time-frequency analysis of the signal is conducted, the developed cut-off frequency detection 

algorithm described in Appendix 1 is applied to automatically determine the time-varying 

cut-off frequencies for the AMD based low-pass filter. Figure 4-5 shows the identified three 

time-varying cut-off frequencies between four individual modes. Based on these identified 

cut-off frequencies, four mono-components can be adaptively extracted from the original 

signal, and the decomposed components of 𝑦 𝑡  and 𝑦 𝑡  are exhibited in Figures 4-6 (a) 

and (b), respectively. It can be observed from Fig. 6 that the individual components of 𝑦 𝑡  

and 𝑦 𝑡  are well separated by using MSST-AMD with the predefined cut-off frequencies. 

The corresponding instantaneous frequencies of these individual components are identified 

by using Hilbert transform, which are displayed in Figures 4-7(a) and (b), respectively. As 

observed from Figures 4-7(a) and (b), the end effects exist in these two decomposed 

individual components, which is caused by the finite length and incomplete cycle included in 

the non-stationary signal. However, for most the duration of the signal, the identified 

instantaneous frequency components are accurate. To further investigate the superiority of 

the proposed MSST-AMD approach, the identification results by using the proposed 

approach are compared with the S-transform based band-variable filter developed in the 
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literature [26]. The selected filtering window and the identified instantaneous frequencies of 

the second mono-component by the S-transform based filter are shown in Figures 4-8(a) and 

(b), respectively. By comparing the identified instantaneous frequencies as shown in Figure 

4-7(a) and Figure 4-8(b), it can be observed that the identified results based on the 

MSST-AMD are more accurate than those of using the S-transform based filter. In addition, 

when using the S-transform based filter for non-stationary signal decomposition, the filtering 

windows need to be predefined from the S-transform based time-frequency analysis 

manually. Similarly, the computational efficiency may be significantly decreased and errors 

increase when the filtering boundaries are blurry between different individual components. 

However, the proposed MSST-AMD approach can automatically decompose a 

non-stationary signal into several individual components with a better accuracy.   

 

 

Figure 4-2 The simulated non-stationary signal with 5% Gaussian white noise. 

 

 
Figure 4-3 The theoretical instantaneous frequencies of the simulated noisy signal.  
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   (a) 

    

    (b)                                        

 
   (c) 

Figure 4-4 Time-frequency analysis results by using: (a) Wavelet analysis; (b) one-step MSST 

operation; (c) ten-step MSST operation.  
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Figure 4-5 Automatically identified instantaneous frequencies and cut-off frequencies by using 

MSST-AMD. 

 

 

 

Figure 4-6 The decomposed mono-components based on the proposed MSST-AMD approach: (a) The 

2nd mono-component; (b) The 3rd mono-component.   

 

   
   (a)                              (b) 

Figure 4-7 The identified instantaneous frequencies by using the proposed MSST-AMD approach with 

Hilbert transform: (a) The 2nd mono-component; (b) The 3rd mono-component. 
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     (a)                                        (b) 

Figure 4-8 Vibration signal analysis and decomposition by using the S-transform based filter: (a) The 

selected filtering window; (b) The identified instantaneous frequency of the 2nd mono-component. 

4.3.2 Application of MSST-AMD approach for instantaneous modal identification of 

time-varying structures    

In this section, the proposed MSST-AMD approach is further conducted to identify the 

instantaneous modal parameters of time-varying structures subjected to external excitations 

by combining with Hilbert transform. In the proposed procedure, the MSST-AMD approach 

is first used to decompose the measured vibration signals of a time varying structure into 

individual components, and then, Hilbert transform can further be performed to identify the 

instantaneous natural frequencies and mode shapes of the time varying structure.          

To application of the proposed MSST-AMD approach for time-varying system identification, 

a three-storey shear-type building model, as shown in Figure 4-9, is modeled in MATLAB. 

In this building model, the mass 𝑚  𝑖 1,2,3  of each floor of the building is defined as 

2.50×105kg, 1.4×105kg and 0.7×105kg, respectively; the initial elastic stiffness 𝑘  𝑖

1,2,3  of each floor is set as 2.1×105 kN/m, 1.05×105 kN/m and 0.5×105 kN/m, and the 

corresponding damping matrix element 𝑐  𝑖 1,2,3  of each floor is assigned as 

1.2×102kN.s/m, 0.8×102kN.s/m and 0.4×102kN.s/m, respectively. To simulate the 

time-varying dynamic behaviors of the structure subjected to external excitations, the 

time-varying stiffness coefficients of the lst and the 2nd floors are designed as       

𝑘
2.1 10 kN ∙ 𝑚 0𝑠, 4𝑠

2.1 0.058 𝑡 4 0.131 sin 0.5𝜋 𝑡 4 10 kN ∙ 𝑚 4𝑠, 16𝑠
1.404 10 kN ∙ 𝑚 16𝑠,30𝑠

   (4.20)   

𝑘
1.05 10 kN ∙ 𝑚 0𝑠, 4𝑠

0.75 10 𝑡 1.3 10 kN ∙ 𝑚 4𝑠, 8𝑠
0.7 10 kN ∙ 𝑚 8𝑠,30𝑠

             (4.21) 
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Figure 4-9 The time-varying building model 

 

The 1940 EI Centro ground acceleration record with time duration of 30 seconds is selected 

as the external excitation of the three-storey building model, which is shown in Figure 4-10. 

For a real structure, acceleration responses are usually measured for system identification 

[27]. Before using the proposed MSST-AMD approach for the instantaneous modal 

parameter identification of the building model, eigenvalue analysis is first performed to 

calculate the linear natural frequencies of the time-varying structure, which are 2.51Hz, 

4.97Hz and 6.85Hz, respectively. Then, the simulated acceleration responses are used for 

structural instantaneous modal parameter identification. In this study, acceleration responses 

of the building structure are calculated by using the fourth-order Runge-Kutta method with a 

sampling rate of 50Hz. Based on the proposed MSST-AMD approach, the time-frequency 

representation of the measured acceleration response is first performed by using MSST. 

Based on the MSST analysis results and the proposed cut-off-frequency detection algorithm, 

time varying cutoff frequencies are automatically defined between each two modes, which is 

presented in Figure 4-11. Comparing with the frequency distribution of the measured 

acceleration response shown in Figure 4-11, it can be found that the identified time varying 

cut-off frequencies are reliable for individual mode extraction by using AMD based low-pass 

filter. Once the mono-components of structural vibration responses are decomposed by using 

AMD, the instantaneous frequencies of these three modes can be identified by using Hilbert 

Transform. The identified instantaneous frequencies and mode shapes of the structure 

subjected to earthquake excitations are shown in Figure 4-12. It can be observed from Figure 

4-12 that the identified instantaneous frequency components by using Hilbert Transform are 

rapidly varying around the exact values over the vibration duration. To obtain the varying 

natural frequencies of this structure subjected to earthquake excitations, the rapidly-varying 

part is filtered out by using AMD with a suitable cutoff frequency [27]. By filtering out the 

fast time-varying components, the identified instantaneous frequencies of the structure are 
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shown in Figure 4-12. As can be seen from Figure 4-13, the identified instantaneous 

normalised mode shapes at time points A, B and C are presented, which correspond to the 

time points at 2.68 seconds, 6.24 seconds and 26.20 seconds of structural acceleration 

responses, respectively. As observed from Figure 4-12 and Figure 4-13, the results indicate 

that the proposed MSST-AMD approach can effectively identify the time-varying dynamic 

characteristics of a structure under earthquake excitations. 

 

 

Figure 4-10 The applied earthquake excitation  

 

 

Figure 4-11 The identified cut-off frequencies by using MSST approach 

 

 

Figure 4-12 The identified instantaneous frequencies of the building model subjected to earthquake 

excitations 
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Figure 4-13 The identified normalised mode shapes of the building model subjected to earthquake 

excitations at different time points: (a) 1st mode; (b) 2nd mode; (c) 3rd mode.  

 

4.4 Experimental Application               

Experimental investigations and shake table tests on a 12-storey 1/10 scaled spatial RC 

frame model, as presented in Figure 4-14, are conducted to validate the feasibility of using 

the proposed MSST-AMD approach for vibration decomposition and structural damage 

detection. The total height of the testing model is 3.6m with 0.3m for each floor, and the 

dimension of this spatial RC frame structure is 0.6m×0.6m. The detailed geometrical 

dimensions and physical parameters of the RC structure can be found in [29]. The shake 

table tests were performed at Tongji University and the testing data were shared for 

benchmark studies. During the tests, 61 cases were tested to investigate the performance of 

the structure under various earthquake excitations. 23 accelerometers were employed to 

record the tri-axial dynamic responses of the RC structure subjected to the seismic 

excitations. However, in this research, only the measured acceleration responses at the top 

floor of the tested structure under the single-directional El Centro ground motion record are 

used to identify the time-varying dynamic characteristics during structural vibrations. In 

addition, to further evaluate the damage severity of the tested structure subjected to seismic 
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excitations, with the vibration decomposition results by using the proposed MSST-AMD 

approach, a damage index is applied for structural damage detection, which can be expressed 

as 

             𝐷𝑄 ∑                  (4.22) 

in which m denotes the number of the decomposed individual components, 𝜔 𝜏  and 

𝜔 𝜏  denote the identified ith instantaneous frequencies of this structure under the 

reference state and damaged case during the vibrations, respectively.  

Based on Equation (4.22), it can be observed that the defined damage index reflects the 

instantaneous phase change of structural responses between the reference state and damaged 

state. Therefore, the damage index can be used to evaluate the damage severity of a structure 

subjected to different external excitations causing nonlinear vibration behavior. In this study, 

the damage index DQ is calculated by using the identified instantaneous frequencies of the 

decomposed fundamental mode from the measured acceleration responses at the top floor, 

under different structural conditions.                

Four cases of the tested structure under the earthquake excitations are selected for this study, 

which are defined as EQ1, EQ2, EQ3 and EQ4, respectively. The corresponding input ground 

motions of the shake table tests were the regenerated El Centro seismic waves with four 

different peak ground accelerations (PGAs), which are equal to 0.258g, 0.388g, 0.517g and 

0.775g, respectively. The measured acceleration responses at the top floor under four cases 

are shown in Figures 4-15 (a)-(d), respectively, and the associated Fourier spectra are 

presented in Figure 4-16. It can be found from Figure 4-16 that the measured natural 

frequency of the fundamental mode decreases from EQ1 to EQ4, and the main reason is that 

the tested structure has a substantial damage during the shake table testing. Based on the 

study in the literature [28], it can be noticed that the fundamental natural frequency of the 

tested structure under the health condition is 4.01Hz, which is higher than the identified 

result under EQ1. However, according to the experimental report [29], no visible cracks are 

observed on the tested structure subjected to the EQ1 excitation. The phenomenon is likely 
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due to the nonlinear dynamic behaviors of the RC structure during strong ground motion 

vibrations. To evaluate the structural damage conditions under significant ground motion 

excitations, the measured acceleration signals of the tested structure subjected to the EQ1 

excitation is considered as a reference state in this study. The other three states under EQ2, 

EQ3 and EQ4 will be compared with the case under EQ1, to understand and identify the 

changes in structural conditions. Thus, totally three damage cases of the RC structure 

subjected to EQ2, EQ3 and EQ4 excitations are studied. It shall be noted that the purpose of 

this comparison is to identify the changes in structural conditions.                       

Based on the vibration decomposition combined with the damage index DQ, the proposed 

MSST-AMD approach is first performed to extract the individual components from the 

measured acceleration data. Then the instantaneous frequencies of the first two decomposed 

mono-components under three different cases are further identified by using Hilbert 

Transform and are shown in Figures 4-17(a)-(c), respectively. It can be observed that the 

identified natural frequencies of the tested structure under external excitations are gradually 

reduced during the strong structural vibrations, which is caused from the increased damage 

severity of the tested structure. It should be noted that as mentioned above, there were a total 

of 61 testing cases in the study carried out in [29]. In this study, the four selected cases, i.e., 

EQ1-EQ4 are not the continuous testing cases. There were actually a number of testing cases 

in between any two subsequent cases selected for the analysis in this study. Therefore these 

identified instantaneous frequencies under different damage states in those three cases are 

not continuous, i.e., the end status of EQ2 is not necessarily the starting status of EQ3. Since 

the study analyses the instantaneous frequencies of the structure during each test/excitation 

and estimate the condition deterioration, this choice of testing cases does not affect the 

results. Based on the defined damage index in Equation (4.22), the calculated damage 

severity of the tested structure subjected to three earthquake excitations with different 

intensities are listed in Table 1. From Table 1, it can be observed that from EQ2 to EQ4, the 

damage severity of the structure is 0.29, 0.46 and 0.72, respectively. According to the 

experimental report [29], the structure has experienced a moderate damage under EQ2 

(PGA=0.388g), and the damage severity was further increased under EQ3 (PGA=0.517g), 

and severe damage was observed under EQ4 (PGA=0.775g). Therefore, as indicated in Table 

1 the calculated damage index is reliable to define the severity of damage for three damage 

cases. Results in experimental investigations demonstrate that the proposed approach is 

effective and accurate for vibration signal decomposition, which can be further used for 

structural damage detection.    
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Table 4-1 The calculated damage index results under three damage cases 

Case 1 Case 2 Case 3 

0.29 0.46 0.72 

 

 

Figure 4-14 The tested structure  

 

  
    (a)     (b) 

   
    (c)     (d) 

     Figure 4-15 The measured acceleration signals under: (a) EQ1; (b) EQ2; (c) EQ3; (d) EQ4.  
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     (a)      (b) 

   
     (c)      (d) 

Figure 4-16 The Fourier spectrum of the measured acceleration data under: (a) EQ1; (b) EQ2; (c) EQ3; 
(d) EQ4.  

 

   
     (a)                                      (b) 

 
   (c) 

Figure 4-17 The identified instantaneous frequencies of the first two decomposed compoments under 

three damage cases: (a) Case 1; (b) Case 2; (c) Case 3.  
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4.5 Conclusions   

This chapter proposes an enhanced vibration signal decomposition approach based on MSST 

and AMD for non-stationary signal analysis. To overcome the challenge of using AMD for 

non-stationary signal decomposition with overlapped frequency components, the proposed 

MSST-AMD approach can automatically decompose a signal into several mono-components, 

which can reduce the significant computational cost to define the time-varying cut-off 

frequencies of the AMD method. In this study, MSST is first performed to provide the 

accurate time-frequency representation, and then the developed cut-off frequency detection 

algorithm is employed to automatically define the time-varying cut-off frequencies between 

each two individual components. Once the time varying cut-off frequencies are determined, 

the proposed approach can be used to adaptively decompose the non-stationary signal into 

individual components. In addition, the proposed MSST-AMD method combined with a 

damage index is further used for structural damage detection under the earthquake 

excitations based on the identified instantaneous modal parameters. Numerical studies on a 

multi-component signals with overlapped frequency components are first conducted to 

validate the superiority of using the MSST-AMD for vibration signal decomposition. Then, 

numerical simulations on a three-storey building structure subjected to the seismic 

excitations are further performed to investigate the effectiveness of using the proposed 

MSST-AMD approach for structural vibration signal analysis and instantaneous modal 

parameter identification. In experimental application, the measured acceleration responses 

from a 12-storey scaled RC structure under various earthquake excitations are used for 

vibration decomposition with the proposed approach and structural damage detection with a 

defined damage index. Based on numerical simulations and experimental validations, the 

following conclusions can be drawn: 

(1) The MSST based time-frequency representation with the proposed cut-off frequency 

detection algorithm can automatically define the time-varying cut-off frequencies of using 

AMD for non-stationary signal decomposition;    

(2) The proposed MSST-AMD approach can effectively and accurately decompose a 

non-stationary signal into several mono-components, even under the significant noise effect; 

and 

(3) Based on the vibration decomposition results by using the developed approach, structural 

damage detection is conducted by using a damage index. The results indicate that the 

proposed damage detection approach can successfully evaluate the damage severity of the 

structures subjected to the earthquake excitations.   
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CHAPTER 6 BAYESIAN BASED NONLINEAR MODEL 
UPDATING USING INSTANTANEOUS CHARACTERSTICS OF 

STRUCTURAL DYAMIC RESPONSES 

ABSTRUCT4 

This chapter proposes a Bayesian based nonlinear model updating approach using the 

instantaneous amplitudes of the decomposed dynamic responses. Uncertainty quantification 

of the model updating results due to the measurement noise is conducted. The residual of the 

instantaneous amplitudes of the decomposed structural dynamic responses between the test 

structure and the analytical nonlinear model is used to construct the maximum likelihood 

function. Since nonlinear model parameters and simulated error variances of the 

instantaneous parameters are all unknown, the extended maximum likelihood estimation 

method is used to update these parameters. The uncertainty in the updated nonlinear model 

parameters can be evaluated by using the Cram-Rao lower bound theorem with the exact 

Fisher Information matrix. A numerical study on a three-storey building structure model 

under earthquake excitation is performed to verify the accuracy and performance of the 

proposed approach. An experimental verification on a high voltage switch structure under 

harmonic excitation is conducted to investigate the accuracy of using the proposed approach 

for nonlinear model updating. Both numerical and experimental results demonstrate that the 

proposed approach is reliable and accurate for nonlinear model updating, with the capacity 

of considering the uncertain noise effect in the measurements. 

6.1 Introduction 

Finite element model (FEM) has been extensively used for predicting the structural 

responses and structural identification in civil, aerospace and mechanical engineering 

community. Since FEM is built based on the idealized assumption of structural material 

                                                        
4This chapter was published in Engineering Structures with the full bibliographic citation as follows: 

Xin, Y., Hao, H., Li, J., Wang Z., Wan H. & Ren W. (2019). Bayesian based nonlinear model updating 

using instantaneous characteristics of structural dynamic responses. Engineering Structures, 

183:459-474. https://doi.org/10.1016/j.engstruct.2019.01.043. 
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properties and boundary conditions from the original engineering design, it may not 

accurately represent the actual behaviors of an in-service structure. Therefore, it is very 

important to refine the FEM based on the measured structural responses, which is termed as 

finite element model updating (FEMU). The aim of FEMU is to build a high-fidelity FEM 

that is able to characterize the accurate structural behavior reliably. In the last several 

decades, FEMU has gained increasing attention from engineers and researchers, and various 

FEMU techniques have been developed [1-8].  

Generally, the development of the deterministic FEMU methods is relatively mature, and 

numerous approaches have been successfully applied for linear and nonlinear model 

updating in the literature [9-16]. The main objective of the deterministic FEMU techniques is 

to minimize the difference between the quantitative structural characteristics obtained from 

the measured data and the analytical structural model by adjusting structural model 

parameters. Since the number of measured structural response parameters is always less than 

the actual structural parameters in a FEM, optimization analysis is needed in performing 

model updating. The accuracy of deterministic model updating results depends on the 

accuracy of the initial structural model and the accuracy of the structural response 

characteristics extracted from the measured data [17]. However, for deterministic FEMU 

methods, the effect of uncertainties on the model updating results needs to be carefully 

considered. The uncertainties in the model updating usually arise from measurement noise in 

the response data and the modeling errors in the structure. Accounting for the propagation 

effect of these uncertainties on the model updating process and investigating the effect on the 

model updating results have attracted significant attention in recent years [18-24].  

One possible approach to deal with these uncertainties in FEMU is using a probabilistic 

framework based on the well-known Bayesian theorem [18-27]. The initial Bayesian 

approach for parameter estimation in model updating considering uncertainty was developed 

by Beck and Katafygiotis [28-29]. Behmanesh et al. [30-31] proposed a hierarchical 

Bayesian FEMU method for uncertainty quantification and damage identification of 

structural systems. Wan and Ren[32] proposed using an efficient Bayesian inference method 

with delayed rejection adaptive Metropolis (DRAM) algorithm to refine the FEM of a 

four-span pedestrian bridge considering the uncertainty in identified modal properties. 

Most of the aforementioned studies on updating and identifying model parameters 

considering uncertainties are applicable for linear structural models. For the probabilistic 

nonlinear model updating, recursive filtering methods and batch estimation methods [33-35] 

have been developed in the past decades. However, the application of these methods is 

limited or only suitable for some highly idealized nonlinear models such as a single 
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degree-of-freedom (DOF) system, or simplified multi-DOF systems. Ebrahimian et al. [38] 

later used a batch Bayesian method for nonlinear FEMU with the measured dynamic 

responses, and the uncertainties of identified model parameters caused by measurement 

noise were further quantified by using the Cram-Rao lower bound (CRLB) method based on 

two different Fisher Information matrixes (FIM). Although the proposed FEMU method is 

effective for model parameter estimation with noisy responses, the measured response time 

series from real civil engineering structures, i.e. under ambient excitations, are usually very 

long, and it may significantly increase the computational cost when the whole measured data 

is used as target responses. To overcome this issue, Wang et al. [39-40] proposed a nonlinear 

model updating strategy based on instantaneous characteristics of decomposed dynamic 

responses. In this method, considering the slowly-varying characteristics of instantaneous 

parameters (compared with the original oscillating acceleration response), only a total of 15 

local peaks of instantaneous amplitudes and frequencies of the decomposed dynamic 

responses were selected to construct the objective function for nonlinear model updating. 

The calibrated model can accurately predict the dynamic responses of structures. However, 

the uncertainty effect on the parameter identification is not quantified in these deterministic 

nonlinear model updating methods under the influence of measurement noise and modeling 

error. 

This chapter proposes using a nonlinear model updating approach based on the instantaneous 

characteristics of the decomposed dynamic responses, to account for the uncertainty effect 

from the measurement noise. The instantaneous parameters of mono-components are firstly 

extracted from the response signal by using discrete analytical mode decomposed (DAMD) 

method and Hilbert Transform [41]. Then, the likelihood function associated with Bayesian 

method is built by using the instantaneous parameters extracted from analytical nonlinear 

models and testing structures. The nonlinear model parameter updating problem is 

formulated as the Maximum Likelihood Estimation (MLE).The optimization problem of 

MLE is solved with a gradient-based interior point algorithm [42-45], and the uncertainty 

quantification of the identified nonlinear model parameters is conducted by using the CRLB 

theorem [46-50]. To validate the accuracy and effectiveness of the proposed nonlinear model 

updating approach, a numerical study on a three-storey building structure model under 

earthquake excitation is conducted. An experimental verification on a real high voltage 

switch structure subjected to harmonic excitation is also performed to verify the proposed 

approach. 
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6.2 Theoretical Background 

6.2.1 Instantaneous amplitude and frequency identification  

The natural frequencies of a nonlinear structure usually change with time. Wang et al. [51] 

proposed AMD to analyse the time-varying vibration signals without selecting constant 

cutoff frequencies. However, in reality, the measured dynamic signals are discrete since the 

low sampling frequencies are selected. Wang et al. [41] further extended AMD for discrete 

time sequences, termed as “DAMD”. Based on theoretical derivations, one-step, two step 

and four-step low-pass filters have been designed to extract the mono-components of 

non-stationary time sequences according to different sampling frequencies. The one-step 

low-pass filter is only effective when the following condition is satisfied      

Condition 1: 𝜔 𝑡  and 𝜔 𝜔              (6.1)  

in which 𝜔 𝑡 is a time-varying cutoff frequency; 𝜔 is the maximum value of the 

time-varying cutoff frequency;  𝜔  and  𝜔  are maximum frequency and sampling 

frequency of a response signal, respectively.  

Similarly, two-step low-pass filter is effective when Condition 2 is satisfied, and four-step 

filter is valid when Condition 3 is satisfied 

Condition 2: 𝜔 𝑡                          (6.2)  

Condition 3: 𝜔 𝑡                       (6.3)  

In this study, since sampling frequencies satisfy Condition 1, the one-step low-pass filter is 

used to decompose mono-components of acceleration responses. The theorem of one-step 

low-pass filter with time-varying cutoff frequency is described below: 

Let x(t) denotes a real measured signal of n significant individual components with 

frequencies:𝜔 𝑡 ,𝜔 𝑡 ,⋯ ,𝜔 𝑡 , which are all positive and in Lebesque spaceL2(-∞, +∞) 

of the real time variable t. It can be decomposed into n components 𝑥 𝑡  (p=1,2,…,n) with 

the following frequency ranges |𝜔 𝑡 |  𝜔 𝑡 ,  𝜔 𝑡 |𝜔 𝑡 | 𝜔 𝑡 , 

  ⋯  ,𝜔 𝑡 |𝜔 𝑡 | 𝜔 𝑡 , and 𝜔 𝑡 |𝜔 𝑡 |. This can also be 

expressed as 

𝑥 𝑡 ∑ 𝑥 𝑡              (6.4) 

in which 𝜔 𝑡  represents the frequency corresponding to the decomposed component 

𝑥 𝑡  , and 𝜔 𝑡 ∈ 𝜔 𝑡 ,𝜔 𝑡  𝑝 1,2,⋯ ,𝑛 1  are time-varying cutoff 
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frequencies. In this study, these time-varying cutoff frequencies can be determined by using 

wavelet transform. Each individual signal can be determined as 

𝑥 𝑠 𝑡 ,⋯ , 𝑥 𝑡 𝑠 𝑡 𝑠 𝑡 ,⋯ , 𝑥 𝑡 𝑥 𝑡 𝑠 𝑡    (6.5) 

𝑠 𝑡 sin 𝜔 𝜏
∞

d𝜏 𝐻 𝑥 𝑡 cos 𝜔 𝜏
∞

d𝜏

cos 𝜔 𝜏
∞

d𝜏 𝐻 𝑥 𝑡 sin 𝜔 𝜏
∞

d𝜏  

𝑝 1, 2,⋯ ,𝑛 1      (6.6) 

where H means the Hilbert transform, 𝑠 𝑡  is the pth mono-component of the original 

signal. Here, s t  is different from the components 𝑥 𝑡  in Eq. 4 due to the use of a 

filter. Equation (6.6) can be considered as a low-pass filter that passes any low frequency 

signal 𝑠 𝑡 but filters the fast-varying component �̅� 𝑡  in the time domain.  

For an n DOF nonlinear system, the equation of motion can be written as 

𝐌 𝐱 𝑡 𝐅𝐜 𝐱 𝑡 𝐅𝐬 𝐱 𝑡 𝐟 𝑡                   (6.7) 

in which M is the mass matrix,𝐅𝐜 𝐱 𝑡 isthe damping force vector, [ ( )]tsF x is the nonlinear 

restoring force vector and ( )tf is the excitation force vector. For a nonlinear structure, the 

nonlinear restoring force as function of time can be transformed into a multiplication form 

𝐊 𝑡 𝐱 𝑡  with a new time-varying stiffness matrix 𝐊 𝑡  and a system solution 𝐱 𝑡 with an 

overlapping spectrum [52]. Similarly, the nonlinear damping force can also be transformed 

into a function of time as a multiplication 𝐂 𝑡 𝐱 𝑡  between the time-varying damping 

coefficient matrix 𝐂 𝑡  and the velocity𝐱 𝑡 . Thus, the equivalent equation of motion of 

Equation (6.7) can be expressed as 

𝐌 𝑡 𝐱 𝑡 𝐂 𝑡 𝐱 𝑡 𝐊 𝑡 𝐱 𝑡 𝐟 𝑡                (6.8) 

where  𝐌 𝑡 ,𝐂 𝑡  and 𝐊 𝑡  are time-varying mass, damping, and stiffness matrices, 

respectively. 

Dynamic responses of Equation (6.8) can be taken as a combination of several 

mono-components with time-varying frequency and amplitude [52].The measured response 

of the lth degree 𝑥 𝑡  can be expressed as the function of mono-component 𝑥 𝑡  

𝑥 𝑡 ∑ 𝑥 𝑡                             (6.9) 

The analytical signal 𝑍 of the ith decomposed response 𝑥 𝑡  can be expressed as 
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𝑍 𝑥 𝑡 𝐻 𝑥 𝑡 𝐴 𝑡 𝑒             (6.10) 

in which𝐴 𝑡 and𝜔 𝑡 are the instantaneous amplitude and frequency of a decomposed 

non-stationary signal 𝑍 , respectively. In Equation (6.10), 𝐴 𝑡  represents the amplitude 

information of   𝑍 , and 𝜔 𝑡  reflects the instantaneous phase information of the 

decomposed signal. The instantaneous frequency and amplitude can be used to describe the 

characteristics of a non-stationary signal. In the study, instantaneous amplitudes of 

decomposed acceleration responses are used for nonlinear model updating. The accuracy of 

model updating results is evaluated by comparing both the instantaneous amplitudes and 

frequencies from the analytical nonlinear model and testing structure.     

6.2.2 Bayesian approach for nonlinear model updating  

In this section, instantaneous amplitudes extracted from measured acceleration responses are 

used for nonlinear model updating. The identified instantaneous parameters from the 

measured acceleration responses can be expressed as: 

Â Â 𝑡 , Â 𝑡 ,⋯ , Â 𝑡                     (6.11) 

where Â 𝑡  is the instantaneous acceleration amplitude of the 𝑁 th mono-component at 

the time instant t, where 𝑁  denotes the number of mono-components.  

The instantaneous amplitudes  Â   extracted from the measured acceleration responses 

may be different from those calculated from the analytical responses with the structural finite 

element model. The difference can be defined as: 

𝛆 𝜽, 𝑡 Â A 𝜽, 𝑡                          (6.12) 

A 𝜽, 𝑡 A 𝜽, 𝑡 , A 𝜽, 𝑡 ,⋯ , A 𝜽, 𝑡               (6.13) 

in which 𝜽 is the vector of nonlinear model parameters, A 𝜽, 𝑡 is the instantaneous 

amplitude vector identified from the analytical acceleration response, and 𝛆 𝜽, 𝑡  represents 

the difference in the instantaneous amplitudes between the test and analytical results. 

Generally, the residual 𝛆 𝜽, 𝑡  mainly stems from measurement noise and modeling error 

[17]. In this chapter, the uncertainty in the finite element modeling is not considered. The 

measurement noises in the recorded acceleration responses are assumed as stationary and 

independent Gaussian white noises with zero means. Therefore, the difference 

vector 𝛆 𝜽, 𝑡  could also be considered as a Gaussian white noise process [17, 23]. Based 

on this assumption, the nonlinear model updating can be formulated as the following 
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optimization problem 

𝜽 𝑎𝑟𝑔min trace 𝜀 𝑡 𝜀 𝜽, 𝑡  

𝑎𝑟𝑔 min ∑ ∑ Â 𝑡 A 𝜽, 𝑡                     (6.14) 

Solving the optimization problem as shown in Equation (6.14) can be derived based on 

Bayesian framework and the maximum likelihood estimation methods when a Gaussian 

white noise simulation error is assumed [17, 20, 23, 26]. Therefore, the unknown model 

parameters 𝜽 in Equation (6.14) can be considered as stochastic variables based on 

Bayesian strategy for parameter estimation. External excitation information on the structures 

is assumed available for the nonlinear model updating in this study. Therefore, a posterior 

probability density function (PDF) of the nonlinear model parameters can be expressed as 

𝑝 𝜽 Â ∝ 𝑐𝑝 Â 𝜽 𝑝 𝜽                       (6.15) 

where 𝑝 Â 𝜽  is called the likelihood function and used to represent the contribution of 

the instantaneous parameters in a posterior joint PDF of nonlinear model parameters [28, 

29]. 𝑝 𝜽  is a prior PDF of nonlinear model parameters which is assigned based on the 

prior information and available knowledge on the nonlinear parameters. c is a constant which 

is used to ensure 𝑝 𝜽 Â 𝑑𝜽 1.   

In the Bayesian framework for nonlinear model updating, model parameters 𝜽 are usually 

estimated by maximizing the posterior PDF of 𝜽, and the estimation strategy can be 

expressed as 

𝜽 𝑎𝑟𝑔max 𝑝 𝜽 Â 𝑎𝑟𝑔max ∏ ∏ 𝑁 Â 𝑡 𝜽          (6.16) 

To estimate the nonlinear parameters more effectively, Equation (6.16) is usually 

transformed as a minimization problem. Therefore, the parameters 𝜽 in Equation (6.16) can 

be further calculated by minimizing a negative natural logarithm of a posterior PDF as 

follows 

𝜽 𝑎𝑟𝑔min ln 𝑝 𝜽 Â 𝑎𝑟𝑔min ln 𝑝 Â 𝜽 ln 𝑝 𝜽    (6.17)  

where ln 𝑝 Â 𝜽  is a log-likelihood function. In the Bayesian framework for model 
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updating, since the known information about nonlinear model parameters 𝜽 is usually 

limited, the prior PDF of the model parameters 𝑝 𝜽  can be assumed as a uniform PDF [20]. 

In Equation (6.17), if 𝑝 𝜽 is assumed as a uniform PDF, and its natural logarithm will tend 

to a constant. Therefore, the problem of maximizing a posterior PDF will be turned to a 

problem of minimizing the negative log-likelihood function, the estimation process is called 

the maximum likelihood estimation (MLE) of 𝜽 [20, 28]:  

𝜽 𝑎𝑟𝑔min ln 𝑝 Â 𝜽 𝑎𝑟𝑔min Γ 𝜽, Â  

⇒ 𝜽 𝑎𝑟𝑔max 𝐿 𝜽   and  Γ 𝜽, Â ln 𝐿 𝜽                (6.18) 

where 𝐿 𝜽  can be further expressed as 

 𝐿 𝜽 ∏ ∏ / |𝚺𝛆| / 𝑒
𝟏
𝟐

Â 𝜽, 𝚺𝛆 Â 𝜽,         (6.19) 

in which 𝐿 𝜽  denotes the simplified likelihood function, and diagonal matrix 𝚺𝛆 

represents the covariance matrix of the simulation error vector. As described, the residuals in 

the instantaneous amplitudes extracted from acceleration responses between measured data 

and the analytical nonlinear model can be considered as a Gaussian white noise process 

with 𝛆~𝑁 0,𝚺𝛆 . MLE of 𝜽 in Equation (6.17) can be alternatively expressed as  

𝜽 𝑎𝑟𝑔min ln |𝚺𝛆| ∑ ∑ 𝐴 𝑡 𝐴 𝜽, 𝑡 𝚺𝛆
𝟏 𝐴 𝑡 𝐴 𝜽, 𝑡  

(6.20)  

In Equations (6.19) and (6.20), the variance matrix 𝚺𝛆 can be represented as 

𝚺𝛆

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎 , 0 0 ⋯ ⋯ ⋯ 0

0 ⋱ ⋮
⋮ 𝜎 , ⋮

⋮ ⋱ ⋮
⋮ 𝜎

,
0

⋮ ⋱ 0
0 ⋯ ⋯ ⋯ ⋯ 0 𝜎 , ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where 𝜎 ,  is the simulation error variance of instantaneous parameters of the 𝑁 th 

mono-component. For the covariance matrix 𝚺𝛆 in Equations (6.19) - (6.20), the simulation 

error variance 𝜎 ,  is unknown. Therefore it is considered as an unknown parameter in 

nonlinear model updating. Since the simulation error variance for each mono-component is 
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consistent and the variance matrix 𝚺𝛆 is a diagonal matrix, another 𝑁  unknown variables 

are included in the optimization process. To estimate all the unknown parameters including 

𝜽 and 𝝈 , an extended MLE method is used in the study, which is expressed as the 

following objective function and an optimization problem 

𝐺 𝜽,  𝜎
𝑁 𝑁

2
ln |𝚺𝛆|

1
2

𝜺 𝜽, 𝑡 𝚺𝛆
𝟏 𝜺 𝜽, 𝑡  

⇒ 𝜽,𝜎 arg𝑚𝑖𝑛 𝐺 𝜽,  𝜎                            (6.21)  

in which the objective function consists of two parts. The first part ln |𝚺𝛆|  is a 

regularization term penalizing the estimation of large values for the simulation error variance. 

The second part represents the difference in the instantaneous amplitudes of the decomposed 

dynamic responses between nonlinear model and real structure, which is weighted inversely 

by the estimated error variances. The parameter estimation problem in Equation (6.21) can 

be transformed into a constrained nonlinear optimization problem by setting a feasibility 

range for the nonlinear model parameters and the initial error variances (i.e., 𝜽 𝜽

𝜽 and  𝜎 𝜎 𝜎 ). This optimization problem is solved by using a 

gradient-based interior point method [42-43], and the optimization algorithm is available in 

the MALAB optimization toolbox [53]. To obtain the optimal model parameters 𝜽 and 

simulation error variances 𝜎 , the gradient of the objective function is calculated as  

𝑮

𝜽
∑ ∑ 𝐴 𝑡 𝐴 𝜽, 𝑡 𝚺𝛆

𝜽,

𝜽
           (6.22) 

𝑮 ∑ ∑ 𝜽,
𝟐

,      𝑗 1,2, … . ,𝑁 𝑁         (6.23) 

6.2.3 Uncertainty quantification of the identified nonlinear model parameters  

In Section 2.2, nonlinear model parameters 𝜽 and error variances of the instantaneous 

acceleration amplitudes 𝜎  are defined as variables to be adjusted in the defined objective 

function 𝐺 𝜽,  𝜎 . In the proposed Bayesian approach based nonlinear model updating 

framework, the nonlinear parameters and the simulation error variances, namely 𝜽and  𝜎 , 

can be obtained by using the above described optimization algorithm. Compared with the 

stochastic parameter estimation by using Monte Carlo Markov Chain (MCMC), the 
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optimization algorithm based on MLE method may not be directly employed to calculate the 

covariance matrix of the identified nonlinear model parameters.  

To overcome this limitation, a Cramer-Rao lower bound (CRLB) approach [50] is used to 

quantify the uncertainty effect based on the obtained 𝜽   and 𝜎 from the MLE 

of 𝐺 𝜽,  𝜎 . In this study, CRLB of the parameter estimation uncertainty is estimated 

based on the exact FIM. The derivation of the uncertainty quantification process can be 

expressed as [38, 48, 49] 

(1) The model parameters 𝜽 and simulation error 𝜎  can be combined as 𝚮 𝜽;  𝜎 , 

the FIM for MLE of Equations (6.22) and (6.23) can be expressed as:  

𝐅𝐈 𝜽,  𝜎
𝐅𝐈𝜽𝜽 𝟎
𝟎 𝐅𝐈

                (6.24) 

where the sub-matrices 𝐅𝐈𝜽𝜽 and 𝐅𝐈 can be derived as 

𝐅𝐈 𝑬
𝜽,

𝜽

𝜽,

𝜽
𝑬 ∑ ∑ 𝜽,

𝜽
𝚺𝜺 𝐴 𝑡

𝐴 𝜽, 𝑡 𝚺𝜺 ∑ ∑ 𝐴 𝑡 𝐴 𝜽, 𝑡 𝚺𝜺
𝜽,

𝜽

∑ ∑ 𝜽,

𝜽
𝚺𝜺

𝜽,

𝜽
                (6.25) 

𝐅𝐈

⎣
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⎢
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⎢
⎡

⋱
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⋱
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⋱
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⎥
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⎥
⎥
⎥
⎥
⎥
⎤

     (6.26) 

(2) According to CRLB method, if 𝚮 𝜽;𝜎 is an unbiased estimate of 𝚮 based on the 

measured instantaneous data 𝑨 𝑡 , and has a log-likelihood functionln 𝐿 𝜽 , which is 

differentiable with respect to the vector of theoretical values  𝚮 , the covariance matrix 

of the estimated parameters satisfies 

𝑬 𝑨𝒂𝒄𝒄 𝚮 𝚮 𝚮 𝚮 𝚮 𝐅𝐈 𝚮            (6.27) 

Therefore, based on Equations (6.24) - (6.27), the FIM can be further extended as 
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𝑬 𝜽 𝜽 𝚯 𝜽 𝑬 𝜽 𝜽 𝝈 𝝈

𝑬 𝝈 𝝈 𝚯 𝜽 𝑬 𝝈 𝝈 𝝈 𝝈
𝐅𝐈𝜽𝜽 𝐎
𝐎 𝐅𝐈

      (6.28) 

in which𝑬 𝑋 𝑬 𝑨𝒂𝒄𝒄 𝚮 𝑋 𝑋𝒑 𝑨𝒂𝒄𝒄|𝑯 𝑑𝑨𝒂𝒄𝒄 . Thus, the lower bound for the 

covariance matrix of the estimated nonlinear model parameters 𝜽 is given as 

𝑪𝒐𝒗 𝜽 𝐅𝐈𝜽𝜽                           (6.29) 

In these equations, since the nonlinear model parameters 𝜽 and simulation error variances 

𝜎  estimated by using MLE method converge gradually to the true values 𝜽andσ , 

respectively. The covariance matrix of model parameters estimation approximately 

converges to the CRLB obtained by using 𝜽 and𝜎 . Therefore, the uncertainty of the 

calibrated nonlinear model parameters can be quantified with Equation (6.29). 

6.3 Numerical Verification  

A numerical study is conducted in this section to investigate the accuracy and effectiveness 

of using the proposed approach for nonlinear model updating and uncertainty quantification.  

6.3.1 Instantaneous parameters identification  

A three-storey four-bay building structure model, as shown in Figure 6-1, is considered in 

finite element analysis using software Opensees [54] for numerical study. In this simulation, 

all beams and columns of the FEM are modeled by using displacement-based beam-column 

elements with fiber section, and the detailed section dimensions of the FEM are designed 

according to ASTM standards. As can be seen from Figure 6-1, the Wide Flange Beams with 

the dimensions of W24×94 and W27×114 are used to define the sections of beams and 

columns, respectively. In order to simulate the nonlinear dynamic response of the structure 

under earthquake excitation, a modified Giuffré-Menegotto-Pinto nonlinear material 

constitutive model in Opensees is used to define the material of the structure, and the 

stress-strain relationship of the material is described in Figure 6-2. It can be observed from 

Figure 6-2 that the hysteretic characteristics of the material model is determined by three 

parameters fy, E and b, which denote the initial yield strength, Young’s modulus and the 

strain-hardening ratio, respectively. Besides these parameters, another three secondary 

parameters which control the transition from elastic to plastic branches are assumed as 

known constants in this simulation. Therefore, totally six material 

parameters 𝑓 ,𝐸 , 𝑏 , 𝑓 ,𝐸 , and  𝑏 are considered as the unknown 
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nonlinear model parameters of the FEM. For these six parameters, 𝑓 ,𝐸 and 

𝑏 are the material parameters of steel beams, and the nonlinear behaviors of the steel 

columns are defined by 𝑓 ,𝐸 and 𝑏 . The theoretical values of these six hysteretic 

material parameters are set as:𝑓 165MPa,𝐸 2.0GPa,𝑏 0.16,𝑓

345MPa ,𝐸 2.0GPa,𝑏 0.08 .The detailed physical dimensions, sensor locations 

and load arrangements on the numerical model are shown in Figure 6-1. As can be seen in 

Figure 6-1, the distribution loads on three floors are defined as 𝑞 22.5kN/m, 𝑞

24.5kN/m, 𝑞 24.5kN/m, respectively. Three accelerometers S1, S2 and S3 installed on 

the floors are used to record the acceleration responses of the building model under 

earthquake excitation. The longitudinal component of the 1994 Northridge earthquake 

recorded at the Oxnard Boulevard station, as shown in Figure 6-3, is selected as the applied 

external excitation on the model. The nonlinear dynamic responses of the structure are 

calculated by using Newmark and Newton Raphson algorithm with a sampling rate of 240Hz. 

The acceleration response in the horizontal direction obtained from the sensor location S3 as 

shown in Figure 6-1 is assumed as the measured dynamic response, which will be used for 

the signal decomposition. Figure 6-4 shows the measured time domain response. The 

moment-curvature hysteretic loops extracted from the responses of columns and beams are 

shown in Figures 6-5 (a) and (b), respectively. By using the procedure described in Section 

2.1, the identified instantaneous amplitudes of the first and second mono-components from 

the acceleration response on the top floor are shown in Figure 6-6(a) and Figure 6-6(b), 

respectively. The identified instantaneous frequencies of the first two mono-components are 

shown in Figure 6-7 with the slowly-varying components of the identified instantaneous 

frequencies denoted with solid lines, which represent the nonlinear structural behavior and 

can be obtained by filtering out the fast-varying part with DAMD method.  
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Figure 6-1 A three-storey four-bay building structure model 

 

 
Figure 6-2 The stress-strain relationship of the hysteretic material model. 

 

 
Figure 6-3 Acceleration record of Northridge earthquake 
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Figure 6-4 Acceleration response at the top floor 

 

    
(a)                                        (b) 

Figure 6-5 The moment-curvature hysteretic loops under earthquake excitation: (a) Column elements; 
(b) Beam elements. 

 

 

 

 

Figure 6-6 The identified instantaneous amplitudes of the first two mono-components of acceleration 

response at the top floor: (a) The first component; (b) The second component. 
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  Figure 6-7 The identified instantaneous frequencies of the first two mono-components (Part1: the 

first main component; Part 2: the second main component). 

 

6.3.2 Bayesian based nonlinear model updating  

In this section, the identified instantaneous amplitudes of the measured acceleration 

responses are used for nonlinear model updating. Before investigating the performance of 

nonlinear model updating with these selected data points, the assumption made in Section 

2.2 with the difference vector ε 𝜃, 𝑡  considered as a Gaussian white noise process when 

the white noises are smeared in the measured data will be validated first. The simulated 

acceleration response on the top floor added with 5% Gaussian white noise is used in the 

identification analysis. The obtained PDFs of the measurement noise extracted from the 

acceleration responses and the corresponding instantaneous amplitudes have the same 

statistical characteristics, as shown in Figures 6-8(a) - 6-8(f). This validates that the residual 

in the identification instantaneous amplitudes of the decomposed acceleration response can 

also be considered as a Gaussian white noise process with ε~N 0, Σ .  
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    (a)      (b) 

   

    (c)      (d)  

 

 

 
   (e)       (f)  

Figure 6-8 PDFs of the measurement noise extracted from the acceleration responses and the 

corresponding instantaneous amplitudes: (a) Acceleration response; (b) Instantaneous amplitude of the 

acceleration response; (c) The first component of acceleration response; (d) Instantaneous amplitude 

of the first component of acceleration response; (e) The second component of acceleration response; (f) 

Instantaneous amplitude of the second component of acceleration response.  

 

Since the amplitudes of acceleration responses slowly vary with time by comparing with the 

oscillation of the time histories, it is not necessary to select all the measured data points as 

the input to the proposed approach for nonlinear model updating. This will improve the 
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computational efficiency of the proposed approach. However, if the selected data points are 

too few, it may make the selected time series lose the original statistical characteristics. In 

this study, the identification error analysis and computational cost comparison with different 

numbers of selected data points will be conducted to investigate the robustness of the 

proposed approach. Four cases are considered as follows 

Case 1:  1% data points uniformly selected from the extracted instantaneous amplitudes  

Case 2:  5% data points uniformly selected from the extracted instantaneous amplitudes 

Case 3:  10% data points uniformly selected from the extracted instantaneous amplitudes 

Case 4:  the full data points of the instantaneous amplitudes are selected for model updating 

In addition, since a measured dynamic response consists of a finite number of 

mono-components, if all mono-components of the vibration signal are also considered as the 

inputs of the proposed method, the unknown parameters of the objective function used for 

nonlinear model updating will be large, which may cause a numerical problem. Therefore, 

studies with different number of mono-components are conducted to verify the reliability of 

the proposed approach. Three cases are considered as follows 

Case 5:  a primary mono-component of acceleration response are selected 

Case 6:  two main mono-components of acceleration response are selected 

Case 7:  three mono-components of acceleration response are selected 

Similar as studies conducted in Section 3.1, the same six material parameters 

𝑓 ,  𝐸 ,  𝑏 , 𝑓 ,  𝐸 , and  b are identified in this study. To reliably 

evaluate the accuracy of the model updating results, two error indices R  and R  are 

defined as 

R
‖ ‖

100%                        (6.32) 

  R
‖ ‖

100%                        (6.33) 

in which ω t  and ω t  represent the slowly-varying parts of the instantaneous 
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frequencies obtained from the analytical and testing models, 

respectively;A t and A t  are the acceleration amplitudes of the analytical and 

testing models, respectively. ‖⋯‖  represents the l2 norm.    

The initial model parameter values are arbitrarily set as:  𝜃 0.1𝑓 , 0.1𝐸 , 

1.8𝑏 , 1.8𝑓 , 0.2𝐸 , 1.7𝑏 , and the range of these six model parameters is 

defined as: 0. 001θ θ 2θ . It can be observed from Figure 6-8 that the statistical 

characteristics of measurement noise in different mono-components are similar, the error 

variance σ  is selected as the baseline variance in the proposed method for nonlinear model 

updating. The initial simulation error variance is assumed as 8.45σ , and the feasible 

domain of the simulation error variance is defined as: 0.01σ σ 100σ . 

The obtained nonlinear hysteretic model parameters 𝜽 and 𝜎  for the above seven cases 

are listed in Table 1, respectively. The corresponding error indices are presented in Table 2, 

respectively. As observed from Case 1 to Case 4 in Table 1, these six nonlinear model 

parameters can be accurately identified based on the proposed approach. It can also be 

observed that the defined two error indices are smaller than 6%, when more than 1% data 

points are selected. The uncertainty quantification results of these identified parameters when 

considering 5% noise effect are shown in Table 2. It is noteworthy from Table 2 that the 

covariance in the identification results of six parameters is gradually becoming stable when 

the selected data points are more than 10%.The maximum covariance is 1.26% among all the 

parameter identification results, indicating that the proposed approach is reliable and robust. 

As can be seen from Case 5 to case 7 in Table1, it can be found that the proposed method can 

also effectively calibrate the nonlinear model by using a primary component of acceleration 

response with a good accuracy. In addition, from the comparison of the estimated covariance 

of the identified nonlinear parameters in Table 2, it is noteworthy that the values of 

covariance of the Cases 5-7 are significantly smaller than those of the Cases 1-4. The main 

reason is that since a finite number of the mono-components are used for nonlinear model 

updating in Cases 5-7, the effect of measurement noise only within the filter window is 

considered. In other words, the proposed nonlinear model updating approach aims to 

accurately calibrate the main components of the measured dynamic responses. Considering 
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these main components can approximately represent the dynamic features of a measured 

response, it indicates that the proposed method is robust against measurement noise.    

To validate that the proposed approach can significantly save the computational cost, the 

computational time for each case is listed in Table 1, by using a Dell desktop workstation 

with an Intel(R) Core(TM) i7-6700(3.4GHz) processor and 64GB RAM. As can be seen 

from Table 1, it can be found that the required computational time is significantly decreasing 

when a less number of data points are used for nonlinear model updating. The main reason 

could be that using a less number of data points will significantly decrease the complexity of 

nonlinear parameters estimation by using the proposed method. It can be observed from 

Table 2 that the nonlinear model updating using a primary component of acceleration 

response with 10% data points is reliable and accurate.   

The convergence process of the six nonlinear material parameters and the error covariance in 

Cases1-4 are shown in Figures 6-9(a)-(g). It can be observed that when more data points are 

used, a less number of iterations are required in the optimization analysis and a better 

accuracy in the identification results is achieved. To balance the computational cost and 

accuracy, 10% data points uniformly selected from the instantaneous amplitudes of 

decomposed acceleration response is a good option for nonlinear model updating. In addition, 

to validate the reliability of the proposed approach, the identified nonlinear parameters with 

three sets of different initial parameter values are listed in Table 3. It can be clearly seen 

from Table 3 that the identification results are consistent even if the initial parameters are far 

away from the true values. These results demonstrate that the selection of initial nonlinear 

model parameter values has no effect on the identification results. 
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Table 6-1 Identified parameters of the nonlinear hysteretic model with different numbers of data 

points 

Case 
Column parameters    Beam parameters  𝜎

/𝜎  
Running 
time(s) 𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  

Exact 1.00 1.00 1.00 1.00 1.00 1.00 1.00 / 

Case1 1.02 1.01 0.93 1.01 1.10 1.00 1.59 2.86 

Case2 0.99 1.03 0.96 1.00 1.01 1.04 1.36 3.34 

Case3 0.99 1.02 0.95 1.00 1.01 1.04 1.01 5.61 

Case4 0.99 1.02 0.96 1.00 1.00 1.04 1.01 821.01 

Case5 1.01 1.00 0.95 0.99 1.01 1.03 1.02 5.61 

Case6 1.00 1.04 0.95 0.99 1.01 1.07 1.01 15.53 

Case7 0.99 1.01 0.99 1.00 1.01 1.09 0.99 40.01 

 
Table 6-2 Uncertainty quantification of identified nonlinear model parameters with different 

numbers of selected data points 

Case 

Error index 
(%) 

Column parameters Beam parameters 

𝑅  𝑅  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  

Case1 12.42 2.89 1.85 1.80 5.70 2.31 1.95 3.49 

Case2 5.87 0.16 0.71 0.83 2.39 1.07 0.75 1.55 

Case3 4.89 0.06 0.37 0.43 1.25 0.55 0.39 0.82 

Case4 4.38 0.06 0.37 0.41 1.26 0.55 0.39 0.81 

Case5 4.91 0.08 0.06 0.07 0.19 0.08 0.06 0.12 

Case6 4.89 0.08 0.05 0.06 0.17 0.07 0.05 0.11 

Case7 5.21 0.07 0.05 0.05 0.17 0.07 0.05 0.11 
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   (a)       (b) 

  

 (c)       (d) 

  

  (e)      (f) 

 

 

  (g)  

Figure 6-9 The convergence processes of model parameters and error variances with different 

numbers of data points: (a) Initial yield strength for column elements; (b) Young’s modulus for 

column elements; (c) The stain-hardening ratio for column elements; (d) Initial yield strength for 

beam elements; (e) Young’s modulus for beam elements; (f) The stain-hardening ratio for beam 

elements; (g) The standard error variance.  

 

To further study the noise effect, the simulated accelerations with 5%, 10% and 20% white 
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parameters𝑓 ,𝐸 , 𝑏 , 𝑓 ,𝐸 , and 𝑏 are identified. The updated nonlinear 

parameters and error variance are presented in Table 4. It can be seen from Table 4 that the 

proposed approach can accurately identify the nonlinear model parameters when 

measurement noise levels are 5% and 10% with the maximum relative error in the identified 

parameters less than 10%. For the case with 20% noise, the maximum value of the 

identification error indices is less than 15% and the maximum relative error in the parameter 

identification is 11% for the parameter b .The estimated errors and the uncertainty 

quantification results of these six parameters are listed in Table 5 when different noise levels 

are considered. From Table 5, it can be found that the covariance of the parameter 

identification results gradually increase with the measurement noise level, which is 

reasonable and expected. The convergence processes of the six nonlinear material parameters 

in these three cases are shown in Figures 6- 10 (a)-(g). A large number of iterations is usually 

required for the case with a higher noise in the measurement data. A comparison between the 

acceleration responses with 5% noise effect and the analytical response calculated with the 

updated parameters are shown in Figure 6- 11(a). The extracted instantaneous frequencies of 

the first mono-component are shown in Figure 6-11(b). These results also validate that an 

accurate parameter identification is achieved with the proposed approach.  

 

Table 6-3 Identified parameters of the nonlinear hysteretic model with different initial values 

Case 
Column parameters    Beam parameters  

𝜎/𝜎  
𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  

Exact 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Case1 
Initial values 0.10 0.10 1.80 1.80 0.20 1.70 8.45 

Updated values 1.01 1.00 0.95 0.99 1.01 1.03 1.02 

Case2 
Initial values 0.20 0.18 0.10 0.30 1.90 0.10 16.60 

Updated values 1.01 1.00 0.95 0.99 1.01 1.03 1.02 

Case3 
Initial values 0.12 0.33 0.15 1.88 1.98 2.00 100.00 

Updated values 1.01 1.00 0.95 0.99 1.01 1.03 1.02 
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Table 6-4 Identified parameters of the nonlinear hysteretic model with different noise level 

Case 
Column parameters    Beam parameters  

𝜎 /𝜎  
𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  𝑓 /𝑓  𝐸/𝐸  𝑏/𝑏  

Exact 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5% 1.01 1.00 0.95 0.99 1.01 1.03 1.02 

10% 0.99 1.03 0.92 1.00 1.01 1.03 0.98 

20% 1.00 1.02 0.98 0.96 1.00 1.11 1.08 

 

 

Table 6-5 Uncertainty quantification of identified nonlinear model parameters with different noise 
level 

Case 

Error 
index (%) 

Column parameters Beam parameters 

𝑅  𝑅  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  𝐶𝑜𝑣 %  

5% 
4.9
1 

0.08 0.06 0.07 0.19 0.08 0.06 0.12 

10% 
8.2
4 

1.56 0.09 0.11 0.31 0.14 0.10 0.21 

20% 
13.
26 

2.55 0.24 0.27 0.81 0.35 0.24 0.53 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

 

 

(g)  

Figure 6-10 The convergence processes of model parameters and error variances under different 

measurement noise levels: (a) Initial yield strength for column elements; (b) Young’s modulus for 

column elements; (c) The stain-hardening ratio for column elements; (d) Initial yield strength for 

beam elements; (e) Young’s modulus for beam elements; (f) The stain-hardening ratio for beam 

elements; (g) The standard error variance.  
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Figure 6-11 Comparison of the calculated acceleration response and identified instantaneous 
frequency of the first mono-component from the exact analytical and updated nonlinear models with 5% 

measurement noise: (a) Acceleration response; (b) Instantaneous frequency. 

 

6.4 Experimental verification  

6.4.1Nonlinear structural model and experimental setup   

To further validate the effectiveness and accuracy of the proposed approach for nonlinear 

model updating, a high voltage switch structure with three pillars, as shown in Figure 6-12, 

under the harmonic excitation is tested in the laboratory and used as an example for 

nonlinear model updating. The experimental setup consists of three porcelain pillars and a 

steel I-beam which are bolted on the shake table. A wood truss is built and used as a 

transverse support for the test structure. The pillar is bolted to the I-beam by using a steel 

hollow square tube as supports. 3 accelerometers as shown in Figure 6-12 are used to record 

structural dynamic responses. The response signal recorded from accelerometer 3 at the base 

of the shake table is taken as the known external excitation on the testing model, and 

measured response of accelerometer 2 is used for nonlinear model updating. More details of 

this shake table test setup can be referred to [55].  

In experimental tests, the bottom supports of the three-pillar model are gradually fractured 

under continuous harmonic excitation. The damage type of the experimental structure is 

considered as shear and bending failure of the bottom supports. In a previous study [40], the 

fractured support of the rightmost pillar as shown in Figure 6-13 is assumed as the main 

cause of the nonlinearity in the testing structure. The calibrated nonlinear joint model can be 
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effectively used to predict the dynamic responses of the test structure. However, the previous 

study neglected the damage of the other two supports, which may also contribute to the 

nonlinearity of the experimental structure. Considering this, to comprehensively include all 

the possible nonlinearities in the test structure and reduce the modeling errors, a more 

detailed nonlinear model with three joints, as shown in Figure 6-14, is built by using 

OpenSees. 

In this new nonlinear model, three bottom supports are defined as nonlinear joint models. 

Each joint model is simulated by using a spring element with two bilinear steel material 

models in Opensees. Each bilinear material model includes three parameters, 

namely ,𝐹,𝐸 and 𝑏 , representing the initial yield strength, Young’s modulus and the 

strain-hardening ratio, respectively. These two bilinear material models are defined in the 

shear and torsional directions of the spring element, respectively. Linear elastic beam 

elements are used to model three ceramic pillars and all the beams, which are defined based 

on the true physical parameters of the experimental structure. In addition, with the feasible 

characteristics of the upper beam-column connections, four linear spring elements as shown 

in Figure 6-14 are employed to approximately simulate the dynamic characteristics of these 

connections. The damping ratio is measured as 3% based on the test results under a low level 

harmonic excitation [56]. A sinusoidal modulated harmonic loading is applied as the base 

excitation with a sampling frequency of 250 Hz. The measured excitation from 

accelerometer 3 is shown in Figure 6-15, and the measured acceleration at the right top is 

used for identification, as shown in Figure 6-16. Before the model updating of nonlinear 

joints, structural model is assumed as linear and stiffness parameters are updated with the 

response surface based model updating method [5]. The first two natural frequencies of the 

updated linear model are 7.68 Hz, and 13.9 Hz, respectively.  
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    (a) 

            

   (b)                                         (c) 

Figure 6-12 Experimental setup and testing structural model: (a) Testing model on the shake table and 
sensor setup; (b) Wood truss system; (c) The data acquisition system. 

 

       

(a)                                        (b) 

Figure 6-13 Failure of the structure: (a) The fractured bottom support; (b) The detailed damage of the 

bottom support. 
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Figure 6-14 The nonlinear finite element model of testing structure in Opensees 

 

 

Figure 6-15 The measured external excitation at the base of the shake table 

 

 
Figure 6-16 The measured acceleration response from accelerometer 2. 

6.4.2 Nonlinear model updating 

Since the nonlinear characteristic of every joint model is defined with six bilinear material 

parameters, 18 bilinear material parameters are totally selected as nonlinear model 

parameters to be identified. For example, six material 

parameters 𝐹 ,  𝐸 ,  𝑏 ,  𝐹 ,  𝐸  and 𝑏  are used to define the nonlinear characteristics of 

the first joint model of the left column in Figures 6-13. 𝐹 ,  𝐸  and  𝑏  are the nonlinear 
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material parameters of the first joint model in the shear direction, and  𝐹 ,  𝐸  and 𝑏  are 

the nonlinear material parameters in the torsional direction. Similarly, nonlinear 

characteristics of the second and third joint models can be defined with parameters 

 𝐹 ,  𝐸 ,  𝑏 ,  𝐹 ,  𝐸 ,  𝑏  and 𝐹 ,  𝐸 ,  𝑏 ,  𝐹 ,  𝐸 ,  𝑏 , respectively. The initial values of 

three nonlinear joint models are defined based on the behaviors of ceramic structures and the 

bilinear material properties. The identifications by using 5% and 10% points are conducted. 

The results indicate that 5% data points is sufficient to update the experimental nonlinear 

structure under the harmonic excitation. Therefore 5% data points of the instantaneous 

amplitudes of decomposed acceleration response are used for the nonlinear model updating. 

The updated bilinear material parameters are presented in Table 6, and the corresponding 

error indices and error variance are summarized in Table 7, respectively. It can be observed 

that these two error indices are less than 8%, indicating that a very good agreement can be 

obtained between the acceleration responses and the instantaneous frequencies from the 

updated model and the testing model. The uncertainty quantification results of the identified 

nonlinear model parameters are listed in Table 8. As can be seen from Table 7, the 

identified 𝜎  equals to 0.46, which represents an unpractical noise level within a limited 

filter window for the experimental structure. The reason caused the phenomena may be that 

the modeling errors and measurement noise effect in the real experimental tests are more 

significant. The acceleration and slow-varying portion of the instantaneous frequency 

calculated from the updated nonlinear model and the measured data are compared and shown 

in Figures 6-17(a) and (b), respectively. 

The above numerical and experimental results demonstrate that a good accuracy in nonlinear 

model parameter identification is achieved, and the variances in the identification results due 

to the noise effects are evaluated. The main advantages of the proposed nonlinear model 

updating approach are summarized as: (1) Only the commonly measured acceleration 

responses are used for nonlinear model updating, which is a direct and effective approach; (2) 

The error in the identified instantaneous amplitudes of decomposed acceleration responses 

between the analytical model and measured data can be used to account for the variance of 

identified model parameters due to uncertainty effect. The proposed Bayesian based 

nonlinear model updating approach can well identify the nonlinear model parameters 

accurately, even under a significant noise effect. The uncertainty quantification is conducted 

to consider the noise effect on the identification results.  
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Table 6-6 The initial values and updated parameters for the nonlinear joint models 

Nonlinear 

Joint  

Parameter 

location 

𝐹 10 N  

Updated values 

(Initial values) 

𝐸 10 N  

Updated values 

(Initial values) 

𝑏  

Updated values 

(Initial values) 

1st joint  
Shear 1.25(0.90) 4.21(2.50) 0.68(0.50) 

Torsional 1.20(0.90) 3.50(2.50) 0.62(0.50) 

2nd joint  
Shear 1.05(0.90) 4.25(2.50) 0.62(0.50) 

Torsional 1.41(0.90) 3.56(2.50) 0.84(0.50) 

3rd joint  

Shear 1.13(0.90) 2.22(2.50) 0.64(0.50) 

Torsional 1.24(0.90) 2.48(2.50) 0.74(0.50) 

 

Table 6-7 The error indices for the tested nonlinear structure after updating 

𝐄 %  𝐄 %  𝜎  

7.61 0.48 0.46 

 

Table 6-8 The uncertainty quantification of update nonlinear joint model parameters 

 𝐶𝑂𝑉 %  𝐶𝑂𝑉 %  𝐶𝑂𝑉 %  𝐶𝑂𝑉 %  𝐶𝑂𝑉 %  𝐶𝑂𝑉 %  

1st joint 0.38 1.35 3.21 1.08 1.56 1.02 
2nd joint 0.52 2.66 3.35 1.55 1.83 0.89 

3rd joint 0.46 1.37 1.88 0.84 1.01 1.82 

 

 

 
Figure 6-17 Comparison of the acceleration response and identified instantaneous frequency of the 
first mono-component from the measured data and the updated nonlinear model: (a) Acceleration 

response; (b) Instantaneous frequency. 

(b) 

(a) 
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6.5 Conclusions  

This chapter proposes a nonlinear model updating approach based on the instantaneous 

characteristics of the decomposed structural dynamic responses. The instantaneous 

frequencies and amplitudes of decomposed acceleration response are extracted by using 

DAMD method. The Bayesian theory is used to quantify the covariance of the updated 

nonlinear model parameters by using an extended MLE based on the instantaneous 

amplitudes of decomposed acceleration responses. The uncertainty quantification in the 

calibrated nonlinear model parameters is conducted by using the CRLB theorem. Numerical 

studies on a three-story four-bay nonlinear building model and experimental verification on a 

high voltage switch structure are performed to verify the accuracy and performance of the 

proposed approach. Both numerical and experimental results demonstrate that the proposed 

approach can accurately update the nonlinear model parameters, and is capable of 

quantifying the uncertain noise effect in the measurements on the nonlinear model updating 

results.   

Based on the numerical and experimental studies, the following conclusions and discussions 

are provided: 

(1) The proposed approach can effectively update the nonlinear model with a high accuracy, 

even with significantly noisy data.  

(2) In the study, measurement noise is considered as the uncertainty factor in nonlinear 

model updating. The propagation of the uncertainty effect in the identification process is 

investigated and the quantified covariance results in the updated nonlinear parameters are 

given.  

(3) The computational efficiency is significantly improved since a less number of data points 

are used for nonlinear model updating based on the proposed nonlinear model updating 

approach.  

(4) The proposed approach aims to calibrate the main components of the measured dynamic 

responses, indicating that it is robust when the measurement noise level is high. 

(5) Modeling errors may have a significant effect on the structural identification and model 

updating of nonlinear structures. The quantification of the uncertainty effect sourced from 

the modeling errors will be further studied.   
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Main conclusions 

This research mainly focuses on developing the vibration based approaches for operational 

modal identification, time-varying system identification and nonlinear structural damage 

detection under normal and extreme operational conditions. The corresponding conclusions 

and findings made in this thesis can be summarized below:  

1. Chapter 2 develops an improved EWT approach for structural operational modal 

identification based on SAR power spectrum. Firstly, a SAR power spectrum of the 

measured response is calculated to define the boundaries of frequency components for 

the subsequent EWT analysis. Then, the EWT can be applied to decompose the 

measured response into a number of IMFs. When the IMFs are obtained, structural 

modal information such as natural frequencies, mode shapes and damping ratios can be 

identified by using Hilbert transform and RDT. Based on the numerical simulations and 

experimental results, three conclusions can be obtained as 1) SAR power spectrum can 

effectively determine the boundaries of frequency components associated with EWT 

analysis, even for signals with significant noise effect; 2) Closely-spaced modes can be 

effectively identified and decomposed by using the improved EWT approach; 3) 

Operational modal identification based on the proposed approach is accurate and 

reliable to identify modal parameters of structures under ambient vibration, i.e. natural 

frequencies, mode shapes and damping ratios.  

2. Chapter 3 presents an enhanced EWT method based on SET for time-varying system 

identification. In this method, SET is first conducted to analyse the frequency 

components of a non-stationary vibration signal measured from a time-varying system, 

and then, the filtering boundaries for EWT analysis can be defined. The non-stationary 

vibration signal can be decomposed into a finite number of IMFs with the improved 

EWT. When the IMFs are obtained, the instantaneous frequencies of each mode can be 

effectively identified by using Hilbert Transform. Based on the numerical simulations 

and experimental results, three conclusions can be obtained as 1) The improved EWT 
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approach with SET can be used to accurately decompose a non-stationary signal into 

several modes based on the predefined filtering boundaries from SET; 2) The proposed 

approach is effective and accurate for time-varying system identification to obtain the 

instantaneous frequencies of structures, even under the significant noise effect.      

3. Chapter 4 proposes an enhanced vibration decomposition approach based on AMD 

and MSST. In the proposed approach, the MSST approach with a time varying cut-off 

frequency detection algorithm is used to automatically define the time-varying bisecting 

frequencies for the AMD analysis. Once the time varying cut-off frequencies are 

identified, AMD can be used to adaptively decompose the non-stationary signal into 

individual components. Based on the numerical simulations and experimental 

applications, some conclusions can be drawn as 1) The MSST based time-frequency 

representation with the proposed cut-off frequency detection algorithm can 

automatically define the time-varying cut-off frequencies of using AMD for 

non-stationary signal decomposition; 2) The proposed MSST-AMD approach can 

effectively and accurately decompose a non-stationary signal into several individual 

components, even the signal is polluted with significant noise; and 3) Based on the 

vibration decomposition results by using the developed approach, structural damage 

detection is conducted. The results indicate that the damage detection approach can 

successfully evaluate the damage severity of the structures subjected to the earthquake 

excitations.  

4. In Chapter 5, a novel nonlinear damage detection approach is proposed based on the 

VMD. Based on the proposed procedure, the measured dynamic responses from 

nonlinear structures under earthquake excitations are adaptively decomposed into a 

finite number of mono-components by using VMD. Hilbert transform is then employed 

to identify the instantaneous modal parameters of the decomposed mono-modes, 

including instantaneous frequencies and mode shapes. Based on the identified modal 

parameters from the decomposed structural dynamic responses, two damage indices are 

defined to identify the location and severity of structural damage, respectively. Based on 

the identified results in numerical simulations and experimental applications, it can be 

concluded that the proposed approach can be successfully applied for nonlinear 
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structural damage quantification and localization. However, it should be noted that 

dynamic responses of all floors of the tested building frame need be recorded when 

using the proposed indices for damage detection of nonlinear structures. For the 

large-scale and complex structures, further studies on how to use a limited amount of 

structural responses for nonlinear structural damage detection therefore need be 

conducted.            

5. Chapter 6 proposes a Bayesian based nonlinear model updating approach using the 

instantaneous amplitudes of the decomposed dynamic responses. Uncertainty 

quantification of the model updating results due to the measurement noise is conducted. 

The residual of the instantaneous amplitudes of the decomposed structural dynamic 

responses between the test structure and the analytical nonlinear model is used to 

construct the maximum likelihood function. The uncertainty in the updated nonlinear 

model parameters can be evaluated by using the Cram-Rao lower bound theorem with 

the exact Fisher Information matrix. Based on the updated results in numerical 

simulations and experimental applications, some conclusions can be drawn as 1) The 

proposed approach can effectively update the nonlinear model with a high accuracy, 

even with significantly noisy data; 2) In this study, measurement noise is considered as 

the uncertainty factor in nonlinear model updating. The propagation of the uncertainty 

effect in the identification process is investigated and quantified covariance results in 

the updated nonlinear parameters are given; 3) The computational efficiency is 

significantly improved since a less number of data points are used for nonlinear model 

updating based on the proposed approach; 4) The proposed approach aims to calibrate 

the main components of the measured dynamic responses, indicating that it is robust 

when the measurement noise level is high; 5) Modelling errors may have a significant 

effect on the structural identification and model updating of nonlinear structures. The 

quantification of the uncertainty effect sourced from the modeling errors will be further 

studied.   
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7.2 Recommendations for future works  

In this research, the vibration based system identification, damage detection and nonlinear 

model updating of civil engineering structures subjected to normal and extreme operational 

conditions are presented. Various aspects of this research may be worth further investigation 

for possible improvements in future studies. These include but are not limited to the 

following: 

1. The developed SAR-EWT approach has been successfully applied to identify 

structural modal parameters, including natural frequencies, damping ratios and mode 

shapes under ambient vibrations. However, the approach cannot be automatically 

performed. Therefore, the SAR-EWT approach can be further developed for adaptive 

automated modal parameter identification of civil engineering structures under ambient 

vibrations.           

2. SET is used to enhance EWT approach for analysis of non-stationary signals. To 

realize an energy-concentrated time-frequency representation, the SET operation is 

performed based on the coefficients of the Short-time Fourier Transform of the vibration 

signal. To explore a higher-resolution time-frequency representation, the SET operation 

would be further applied by using wavelet transform and S-transform based 

time-frequency coefficients.          

3. Nonlinear structural damage detection is investigated based on the identified 

instantaneous modal parameters of the decomposed dynamic responses of structures 

subjected to extreme operational conditions. However, it should be noticed that dynamic 

responses of all floors of the tested building frame need be recorded when using the 

proposed indices for damage detection of nonlinear structures. For the large-scale and 

complex structures, further studies on how to use a limited number of structural 

responses for nonlinear structural damage detection could be conducted.         

4. To consider the effects of measurement noise in nonlinear structural model updating, 

a Bayesian based nonlinear model updating strategy is developed by using the identified 

instantaneous characteristics of the decomposed dynamic responses of nonlinear 

structures under extreme operational conditions. However, uncertainty quantification of 
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the updated results under the effect of model errors is still not considered. Therefore, the 

uncertainties of the calibrated nonlinear parameters under the effect of model errors 

would be further investigated.    
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APPENDIX I: Cut-off frequency detection algorithm in time-frequency domain 

𝑰𝒏𝒑𝒖𝒕: 

𝑚:𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑢𝑑𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑎 𝑠𝑖𝑔𝑛𝑎𝑙;  

𝑆: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑛𝑒𝑡𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 

𝑇 𝑡,𝜑 : The time-frequency coefficients of the lth MSST operation;    

𝜉:𝑇ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛;  

𝒇𝒐𝒓 𝑘 1 𝑡𝑜 𝑚   

𝒇𝒐𝒓 𝛾 1 𝑡𝑜 𝑆 

𝑭𝒊𝒏𝒅 𝑡 ∗,𝜑 ∗ arg𝑚𝑎𝑥 , 𝑇 𝑡 ,𝜑 ;  𝑡 ∈ 𝛾 1
𝑁
𝑆

, 𝛾
𝑁
𝑆

 ; 

𝒊𝒏 𝒘𝒉𝒊𝒄𝒉 𝑁 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠; 𝑡 0, 𝑡 , 𝑡 ,⋯ , 𝑡 ;  

⇒ 𝐼𝐹 , 𝑡 ∗ 𝜑 ∗; 

⇒ 𝐼𝐹 , 𝑡 ∗ 1 arg𝑚𝑎𝑥 𝑇 𝑡 ∗ 1,𝜑 ; 

𝒇𝒐𝒓 𝑡 𝑡 ∗ 1 𝑡𝑜 𝑁 1 

𝑭𝒊𝒏𝒅 𝐼𝐹 , 𝑡 arg𝑚𝑎𝑥 𝑇 𝑡 ,𝜑 𝛽 𝜑 2𝐼𝐹 , 𝑡 1 𝐼𝐹 , 𝑡 2 ; 

𝒊𝒏 𝒘𝒉𝒊𝒄𝒉 𝜑 ∈ 𝐼𝐹 , 𝑡 1 𝜉, 𝐼𝐹 , 𝑡 1 𝜉 ;  

𝒆𝒏𝒅 𝒇𝒐𝒓   

𝒇𝒐𝒓 𝑡 𝑡 ∗ 1 𝑡𝑜 0 

𝑭𝒊𝒏𝒅 𝐼𝐹 , 𝑡 arg𝑚𝑎𝑥 𝑇 𝑡 ,𝜑 𝛽 𝜑 2𝐼𝐹 , 𝑡 1 𝐼𝐹 , 𝑡 2 ; 

𝒊𝒏 𝒘𝒉𝒊𝒄𝒉  𝜑 ∈ 𝐼𝐹 , 𝑡 1 𝜉, 𝐼𝐹 , 𝑡 1 𝜉 ; 

𝒆𝒏𝒅 𝒇𝒐𝒓 

𝒆𝒏𝒅 𝒇𝒐𝒓 

⇒ 𝐼𝐹 , 𝑡 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑇 𝑡, 𝐼𝐹 , 𝑡 ; 

𝒕𝒉𝒆𝒏 

𝝍 𝐼𝐹 𝒕 , 𝐼𝐹 𝒕 ,⋯ , 𝐼𝐹 𝒕 ;   𝒕 ∈ 𝑡 , 𝑡 ,⋯ , 𝑡 ; 

𝑪
𝐼𝐹 𝒕 𝐼𝐹 𝒕

2
,
𝐼𝐹 𝒕 𝐼𝐹 𝒕

2
,⋯ ,

𝐼𝐹 𝒕 𝐼𝐹 𝒕
2

; 

𝒆𝒏𝒅 𝒇𝒐𝒓    

𝑶𝒖𝒕𝒑𝒖𝒕:𝑪   
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