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baseline thresholds that are often applied arbitrarily, or in apparently subjective ways in the 24 

literature. We use simulated SAR data to assess (1) the influence of residual noise and SBAS 25 

network configuration on InSAR-derived deformation rates, and (2) how the number of 26 

interferograms and data gaps in the time series may further impact the estimated rates. This 27 

leads us to an approach for defining a SBAS network based on geodetic reliability theory 28 

represented by the redundancy number (𝑟-number). Simulated InSAR datasets are generated 29 

with three subsidence signals of linear rates plus sinusoidal annual amplitudes of −2 mm/yr 30 

plus 2 mm, −20 mm/yr plus 5 mm and −100 mm/yr plus 10 mm, contaminated by Gaussian 31 

residual noise bounded within [−2;+2] mm, [−5;+5] mm and [−10;+10] mm, 32 

corresponding to standard deviations of approximately 0.5 mm, 1.5 mm and 3.0 mm, 33 

respectively. The influence of data gaps is investigated through simulations with percentages 34 

of missing data ranging from 5% to 50% that are selected (1) randomly across the 4-year 35 

time series, and (2) for three-month windows to represent the northern winter season where 36 

snow cover may cause decorrelation. These simulations show that small deformation rates are 37 

most adversely affected by residual noise.  In some extreme cases, the recovered trends can be 38 

contrary to the signal (i.e., indicating uplift when there is simulated subsidence). We 39 

demonstrate through simulations that the 𝑟-number can be used to pre-determine the 40 

reliability of SBAS network design, indicating the 𝑟-values between ~0.8 and ~0.9 are 41 

optimal. 𝑟-numbers less than ~0.3 can deliver erroneous rates in the presence of noise 42 

commensurate with the magnitude of deformation. Finally, the influence of data gaps is not as 43 

significant compared to other factors such as a change in the number of interferograms used, 44 

although the blocks of “winter” gaps in the SBAS network show a larger effect on the rates 45 

than gaps at random intervals across the simulated time series. 46 

47 
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1. Introduction and motivation 48 

Interferometric synthetic aperture radar (InSAR) has been demonstrated to be a powerful tool 49 

for measuring the Earth’s land-surface deformation owing to its high spatial and temporal 50 

resolution, wide spatial coverage, and ability to acquire data remotely (e.g., Hooper, 2008). 51 

However, InSAR measurements are contaminated by various error and noise sources, such as 52 

those caused by digital elevation models (DEMs), atmospheric signal path delay, orbital 53 

errors (ramps), temporal decorrelation, and other noise sources (e.g., Lee et al., 2012; Murray 54 

et al., 2019). Multi-temporal InSAR (MT-InSAR) methods were proposed to reduce these 55 

error and noise sources (e.g., Hooper, 2008). These methods work by analyzing a network of 56 

multiple acquisitions to derive the deformation time series and thus deformation rate (e.g., 57 

Shanker et al., 2011).  58 

MT-InSAR methods can be classified into two principal categories, comprising the 59 

persistent scatterer (PS) method (e.g., Ferretti et al., 2001; Hooper et al., 2007; Hooper et al., 60 

2004) and the small baseline subset (SBAS) method (e.g., Berardino et al., 2002; Cavalié et 61 

al., 2007; Hetland et al., 2012; López-Quiroz et al., 2009; Lundgren et al., 2001; Schmidt & 62 

Bürgmann, 2003; Usai, 2003). SBAS is among the most commonly used methods that makes 63 

use of a network of interferograms from which temporal and perpendicular baselines are 64 

limited in time and length to reduce the effects of geometric decorrelation (e.g., Crosetto et 65 

al., 2016; Shanker et al., 2011; Zebker & Villasenor, 1992). This also incorporates an 66 

approach to connect multiple SBASs that results in an increase in temporal and spatial 67 

sampling (Berardino et al., 2002). The SBAS method has been used to measure land 68 

deformation of various magnitudes, ranging from mm/yr (e.g., Elliott et al., 2010; Furuya et 69 

al., 2007; Jiang et al., 2011; Schmidt & Bürgmann, 2003) to cm/yr (e.g., Amelung et al., 70 

1999; Cavalié et al., 2013; Chaussard et al., 2014; Lee et al., 2012) or even tens of cm/yr (e.g., 71 

Chaussard et al., 2014; López-Quiroz et al., 2009; Motagh et al., 2007; Short et al., 2011).  72 
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InSAR data are degraded by various error and noise sources. The error caused by 73 

DEM uncertainty can be reduced by a number of methods correcting for interferograms (e.g., 74 

Berardino et al., 2002; Bombrun et al., 2009) or deformation time series  (e.g., Fattahi & 75 

Amelung, 2013; Pepe et al., 2011). In order to reduce the effect of satellite orbital errors 76 

(ramps), polynomial models based on network-sense (Biggs et al., 2007; Cavalié et al., 2008; 77 

Jolivet et al., 2012; Lin et al., 2010) or GPS data (e.g., Neely et al., 2020; Tong et al., 2013) 78 

can be used. A number of methods can be applied to correct atmosphere phase errors utilizing 79 

the stacking method (e.g., Biggs et al., 2007; Tymofyeyeva & Fialko, 2015), using local data 80 

assimilation, e.g., local atmospheric data (e.g., Delacourt et al., 1998) or zenith total delay 81 

(ZTD) computed from GPS data (e.g., Williams et al., 1998; Yu, Li, & Penna, 2018; Yu et al., 82 

2017), utilizing global or regional atmospheric models (e.g., Doin et al., 2009; Jolivet et al., 83 

2011), or integrating a global atmospheric model and GPS data to an atmospheric correction 84 

model (e.g., Yu, Li, Penna, et al., 2018). Although these methods can be used to cope with 85 

different errors and noise in InSAR measurements, they cannot be conducted perfectly, which 86 

leads to remaining or residual errors and noise. Additionally, because of scheduling or other 87 

technical issues, SAR images are not always regularly captured, or in other cases, blocks of 88 

images acquired during extended periods (e.g., winter snowfall) may be omitted from 89 

processing due to very low coherence, both of which may have a detrimental influence on the 90 

estimated time series (e.g., Kim et al., 2015; Kohlhase et al., 2003). 91 

In InSAR SBAS data processing, pairs of scenes are chosen to form interferograms 92 

from which an interferogram network is built in such a way to reduce decorrelation noise 93 

through minimizing their time spans, and differences in look angle and squint angle (Hooper 94 

et al., 2012). Coherent pixels to which a specific SBAS approach are applied can subsequently 95 

be selected based on specific criteria, e.g., amplitude dispersion, spatial coherence, spectral 96 

coherence or their combination (Crosetto et al., 2016). Different proposed SBAS approaches 97 
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are therefore based on thresholds that are, to a lesser or greater extent, different depending on 98 

various factors, e.g., applications, data availability or the critical baseline, which in turn 99 

depends on the wavelength of the radar sensor, spatial resolution and incidence angle (Gatelli 100 

et al., 1994; Zebker & Villasenor, 1992). 101 

The temporal baseline threshold has been chosen varying from months to years (e.g., 102 

Lanari et al., 2007; López-Quiroz et al., 2009), while the perpendicular baseline threshold has 103 

been chosen ranging between hundreds of meters and over one thousand meters (e.g., 104 

Berardino et al., 2002; Chaussard et al., 2014). The SBAS network thresholds are used with 105 

the aim of maximizing the number of InSAR interferograms while minimizing their temporal 106 

and spatial decorrelation, as well as reducing the computation time and data burden. Baseline 107 

thresholds and pixel selection criteria used in several main SBAS approaches are listed in 108 

Table 1. The question then arises as to whether there is some more objective means by which 109 

to select these thresholds, which we consider herein. In this study, we deal with thresholds 110 

used to select InSAR image pairs with an assumption that all pixels are of relatively high 111 

coherence so as to be considered for SBAS processing. 112 

We also consider the configuration of the SBAS network during our simulations. The 113 

so-called network “optimization” problem has been applied to geodetic (surveying) networks, 114 

which is traditionally divided among zero-, first-, second- and third-order problems (e.g., 115 

Grafarend & Sansò, 1985). The zero-order design (ZOD) is adopted for designing a reference 116 

system, thus is also called “datum problem” (Teunissen, 1985). In the first-order design 117 

(FOD), a network configuration is adopted by choosing the “optimal” locations of points in a 118 

geodetic network that result in small changes in the positions of the preliminary chosen 119 

network points (Berné & Baselga, 2004; Koch, 1985). The objective of second-order design 120 

(SOD) is to select “optimal” weights for the sometimes-different observations in which three 121 

approaches can be utilized, including (𝑖) direct approximation of the criterion matrix, (𝑖𝑖) 122 
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iterative approximation of the criterion matrix, and (𝑖𝑖𝑖) direct approximation of the inverse 123 

criterion matrix (Schmitt, 1985a). By applying SOD, one seeks a network with high precision 124 

(Amiri-Simkooei, 2004). In the third-order design, an existing network is improved, extended 125 

or densified by introducing new points and/or additional measurements (Schmitt, 1985b). 126 

This is also called the densification problem and can be understood to be a mixture of FOD 127 

and SOD. A combined design, introduced by Vaníček and Krakiwsky (1986), refers to the 128 

case where FOD and SOD problems are solved simultaneously. 129 

In the experiments presented here, we use a time series of simulated InSAR data for 130 

which we have control on the amount of error and residual noise introduced. We then 131 

investigate the following parameters to determine what effect they have on InSAR-derived 132 

rates of [simulated] land deformation. Our overarching aim is to find an “optimal” network of 133 

interferograms that results in reduced data processing time. We assess 1) the influence of 134 

residual errors and noise on SBAS-derived rates and the root mean square (RMS) of the 135 

difference between simulated and SBAS-derived deformation time series for different 136 

scenarios of the signal to noise ratio (SNR), 2) the effect of data gaps (i.e., missing scene 137 

acquisitions) for both random and the three-month “winter” cases, and 3) the use of 138 

redundancy numbers from geodetic network theory to design an “optimal” SBAS network. 139 

140 

141 

142 

143 

144 

145 

146 

147 
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Table 1. Summary of the main SBAS approaches 148 

Reference Interferogram 

selection thresholds 

Pixel selection 

criterion 

Berardino et al. (2002) Perpendicular baseline (130 m) Coherence 

Mora et al. (2003) Perpendicular baseline (24 m) Coherence 

Schmidt and Bürgmann 

(2003) 

Perpendicular baseline (200 m) Coherence 

Lanari et al. (2004) Perpendicular baseline (130 m) Coherence 

Hooper (2008) Perpendicular baseline 

Temporal baseline 

Doppler baseline 

Amplitude and phase stability 

López-Quiroz et al. (2009) Perpendicular baseline (500 m) 

Temporal baseline (9 months) 

Coherence 

Goel and Adam (2014) Perpendicular baseline (150 m) 

Temporal baseline (150 days) 

Statistical homogeneity test 

 149 

2. InSAR SBAS algorithm used for this experiment 150 

In summary, SBAS starts by forming an interferogram network using temporal and 151 

perpendicular baseline thresholds, followed by selecting coherent pixels in which noise is 152 

assumed to be negligible. Phase unwrapping is another step implemented in SBAS that can be 153 

carried out either before or after pixel selection, depending on the implementation strategy 154 

(Gong et al., 2016). The inversion step is subsequently implemented to convert small baseline 155 

interferograms phase differences to a time series of displacements at the acquisition times. 156 

With 𝑚 interferograms generated from (𝑛 + 1) InSAR images, the inversion equation can be 157 

written as (Berardino et al., 2002): 158 
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 𝑨𝝓 = 𝜹𝝓 (1) 

where 𝑨 is the design matrix of size 𝑚 × 𝑛, 𝝓 is the vector of 𝑛 (unknown) time series phase 159 

displacements of InSAR images at a pixel, 𝜹𝝓 is the vector of 𝑚 (known) phase differences 160 

between each small baseline interferogram. In the SBAS approach applied in these 161 

simulations, the interferogram phase measurements can be expressed as (Agram et al., 2012; 162 

Gong et al., 2016): 163 

 

 

 

𝛿𝜙𝑖𝑗 = 𝜙𝑗 − 𝜙𝑖 =∑𝛿𝜑𝑛

𝑗−1

𝑛=𝑖

 (2) 

where 𝛿𝜙𝑖𝑗 is the interferogram phase connecting 𝑖𝑡ℎ and 𝑗𝑡ℎ images, 𝜙𝑖 and 𝜙𝑗 are the phase 164 

values at 𝑖𝑡ℎ and 𝑗𝑡ℎ acquisitions, respectively, 𝛿𝜑𝑛 is the pixel phase increment between 𝑛𝑡ℎ 165 

and (𝑛 + 1)𝑡ℎ images. Equation (2) is utilized with an assumption of linear deformation 166 

between acquisitions that are adjacent in time (Berardino et al., 2002). 167 

In SBAS data processing, a network is formed by choosing interferometric pairs with 168 

short temporal and perpendicular baselines limited by user-prescribed thresholds, and this 169 

controls the structure of the design matrix 𝑨 in Equation (1). With the above assumption of 170 

(𝑛 + 1) InSAR images, the possible number of interferometric pairs (𝑚) satisfies (Berardino 171 

et al., 2002): 172 

 
𝑛 + 1

2
≤ 𝑚 ≤

𝑛(𝑛 + 1)

2
 (3) 

For each pixel selected, Equation (1) is applied to convert the phase difference from 173 

interferograms in the chosen network to the phase time series of displacements according to 174 

InSAR acquired times by applying least-squares (LS) (Schmidt & Bürgmann, 2003), singular 175 

value decomposition (SVD) (Berardino et al., 2002), or minimization of the L1-norm 176 
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(Lauknes et al., 2011). In most SBAS approaches, the design matrix 𝑨 is fixed to be used in 177 

the inversion step for all selected pixels. This is an advantage in terms of convenience and 178 

reduced processing time, but may suffer from decorrelation, particularly in vegetated or snow-179 

covered areas where many pixels may decorrelate, so that there are large gaps in the spatial 180 

distribution of its products, e.g., a velocity map (Sowter et al., 2013). Methods using a flexible 181 

design matrix 𝑨, e.g., the intermittent SBAS method (Sowter et al., 2013), have been 182 

proposed as a solution. In this simulation, however, we use a fixed-size 𝑨 matrix. 183 

184 

3. Network design used in geodesy185 

Geodetic surveying network “optimization” aims at finding a geometric configuration and a 186 

set of observations of sufficient precision to satisfy the desired positional quality criteria with 187 

lower financial and logistical costs (e.g., Kuang, 1993). The quality of a geodetic network is 188 

defined by the criteria of precision, reliability and economy (i.e., cost) of the network 189 

(Schmitt, 1985a). In geodetic network design, one seeks to minimize the objective function of 190 

economy and/or maximize that of precision or reliability of the network (e.g., Amiri-191 

Simkooei, 2004). 192 

The observational precision and network geometry are two crucial factors that 193 

influence the precision of a geodetic network. The variance-covariance (VCV) matrix is 194 

normally adopted to represent the network’s precision. With the assumption of a minimum 195 

constraint, the VCV matrix is expressed as (e.g., Kuang, 1996). 196 

𝑪𝑥 = 𝜎0
2 [(𝑨𝑇𝑷𝑨+ 𝑫𝑫𝑇)−1 −𝑯(𝑯𝑇𝑫𝑫𝑇𝑯)−1𝑯𝑇] (4)
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where 𝜎0
2 is the a priori variance factor, 𝑨 and 𝑷 are the design and weight matrices of 197 

observations, 𝑫 and 𝑯 are the minimum and inner constraint datum information matrices, 198 

respectively. 199 

The reliability of geodetic networks, as defined classically by Baarda (1968), is the 200 

ability of a network to detect and resist against gross errors in observations. It is further 201 

divided into internal and external reliability as follows. 202 

1) The internal reliability is defined as the ability of a network to detect gross errors, referring 203 

to the lower bounds of detectable gross errors (aka. the minimum detectable bias, MDB) that 204 

is expressed as (e.g., Baarda, 1968): 205 

 ∇0𝑙𝑖 =
𝛿0𝜎𝑙𝑖

√𝑟𝑖
 (5) 

where 𝛿0 is the lower bound for the non-centrality parameter, 𝜎𝑙𝑖 and 𝑟𝑖 are the standard 206 

deviation and the redundancy or 𝑟-number of the ith observation, respectively. The 𝑟-numbers 207 

of the observations are the diagonal elements of the matrix 𝑹 that are expressed as (e.g., 208 

Amiri-Simkooei et al., 2012): 209 

 𝑹 = 𝑰 − 𝑨(𝑨𝑇𝑷𝑨)−1𝑨𝑇𝑷 (6) 

where 𝑰 is the identity matrix. 210 

2) The external reliability refers to the maximum effect of an undetectable gross error (𝛻0𝑙𝑖) 211 

on the estimates of unknown parameters as: 212 

 ∇0,𝑖�̂� = (𝑨𝑇𝑷𝑨)−1𝑨𝑇𝑷∇0,𝑖𝑙 (7) 

The internal reliability criterion is generally used as the measure for an “optimal” 213 

design of geodetic networks aiming at high reliability (Amiri-Simkooei, 2001), as shown in 214 

Equation (6). In this paper, we examine the redundancy number (𝑟-number) as a diagnostic 215 

metric to determine the likely effectiveness of the SBAS network design and verify this with 216 
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simulation experiments. Specifically, for a given SBAS network with a corresponding design 217 

matrix 𝑨 as shown in Equation (1), the 𝑟-number is computed using Equation (6) with the 218 

weights 𝑷 of interferograms computed as the inverse of normalized (perpendicular and 219 

temporal) baseline lengths, which will be described in Section 4. 220 

 221 

4. Generation of simulated data 222 

A time series of independent pixels that are reasonably representative of the range of Earth 223 

deformations detected by InSAR are simulated, these being: mm/yr (e.g., Elliott et al., 2010; 224 

Furuya et al., 2007; Jiang et al., 2011; Schmidt & Bürgmann, 2003), cm/yr (e.g., Amelung et 225 

al., 1999; Cavalié et al., 2013; Chaussard et al., 2014; Lee et al., 2012), and tens of cm/yr 226 

(e.g., Chaussard et al., 2014; López-Quiroz et al., 2009; Motagh et al., 2007; Short et al., 227 

2011). Our simulated data cover a four-year time span with 11-day sampling interval that 228 

corresponds to 133 equally time-spaced InSAR images. The baseline history of these 133 229 

images, which is defined as the perpendicular baselines between images and the reference one 230 

(i.e., the first scene), is assumed to be within [-200, +200] m, which is approximately the 231 

order of modern SAR missions such as C-band Sentinel-1 (Yague-Martinez et al., 2016) or 232 

TerraSAR-X (TSX) (e.g., Chen et al., 2016; Lubitz et al., 2013). The simulated baseline 233 

history of 133 images is generated randomly with ranges between −200 m and +200 m with 234 

that of the first scene being fixed to be zero (so leaving 132), and are shown as a scatter plot 235 

in Figure 1. 236 
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Figure 1. Scatter plot of simulated perpendicular baseline history. Each black dot represents a 237 

SAR scene acquisition. 238 

239 

We take an interest in a land subsidence signal with both a linear trend and a 240 

superposed annual sinusoidal oscillation; all pixels are simulated to experience surface 241 

deformation in the SAR line of sight (LoS) with linear plus annual periodic terms, which are 242 

expressed as: 243 

𝑑𝑖,𝑗 = 𝑣𝑖𝑡𝑗 + 𝑎𝑖𝑠𝑖𝑛(2𝜋𝑡𝑗) (8) 

where 𝑑𝑖,𝑗 is the deformation of the 𝑖𝑡ℎ pixel at the 𝑗𝑡ℎ image with corresponding acquired244 

time 𝑡𝑗, 𝑣𝑖 and 𝑎𝑖 are the linear rate (velocity) and annual amplitude of the same pixel, 245 

respectively. We select this model form because time series analysis of other environmental 246 

phenomena do likewise (e.g., Davis et al., 2012; Didova et al., 2016). 247 

The linear rates are chosen as −2 mm/year, −20 mm/year and −100 mm/year over 248 

the four-year period, which are representative of Earth deformation rates measured by InSAR 249 

(e.g., Cavalié et al., 2013; Chaussard et al., 2014; Elliott et al., 2010). The sinusoidal annual 250 

amplitude of Earth surface deformation has been drawn from the literature, which can range 251 
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from the order of millimeters to centimeters (e.g., Baldi et al., 2009; Bock et al., 2012; Davis 252 

et al., 2012; Dzurisin et al., 2009; Murray & Lohman, 2018; Osmanoǧlu et al., 2011). For 253 

example, Osmanoǧlu et al. (2011) report annual amplitudes of GNSS stations ranging from 254 

several millimeters up to ~2.6 centimeters. Murray and Lohman (2018) found seasonal 255 

amplitudes up to ~5 centimeters in California detected by InSAR and peak-to-peak 256 

amplitudes of ~6 centimeters from GNSS in the Amazon Basin (cf. 257 

http://geodesy.unr.edu/NGLStationPages/stations/NAUS.sta).  258 

While there can be large annual signals in various parts of the world, we simulate 259 

more conservative cases of simulated deformation signal with pairs of signal parameters of 260 

linear rate plus annual amplitudes that are shown in Table 2. We then apply a Monte Carlo 261 

simulation (e.g., Kroese et al., 2014) with 1,000 pixels for each scenario. The number of 262 

tested pixels is chosen to avoid prohibitive computation times for the simulation experiments. 263 

The deformation time series of the 1,000 pixels are then computed for the 133 equally spaced 264 

11-day acquisition times using Equation (8), and are termed herein the “simulated 265 

deformation time series”. These are considered to be the “true” or noise-free signal, and will 266 

be used to validate the SBAS InSAR data processing results later in this paper. 267 

 268 

Table 2. The three cases of simulated signals showing linear rates and annual amplitudes used 269 

for experiments in Sections 5-7 270 

Signal case Linear rate 

[mm/yr] 

Annual amplitude 

[mm] 

1 −2 2 

2 −20 5 

3 −100 10 

http://geodesy.unr.edu/NGLStationPages/stations/NAUS.sta
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With 133 InSAR images, the maximum possible number of interferograms is 8,778 271 

(Equation (3)). These 8,778 noise-free interferograms are then computed based on this 272 

simulated deformation SAR time series: the phase difference of an interferogram connecting 273 

𝑖𝑡ℎ and 𝑗𝑡ℎ images is computed by subtracting the simulated time series value at 𝑖𝑡ℎ time from 274 

that at 𝑗𝑡ℎ time. 275 

The simulated residual errors and noise, herein called the “residual interferogram 276 

noise”, are then added to the noise-free interferograms. Three sets of assumed 8,778 Gaussian 277 

noise values with zero mean are generated for each of the 1,000 pixels and bounded within 278 

[−2;+2] mm, [−5;+5] and [−10;+10] mm, which correspond to standard deviations of 279 

approximately ±0.5 mm, ±1.5 mm and ±3.0 mm, respectively (Table 3). Specifically, for 280 

each pixel, we first generate 8,778 random samples of a Gaussian distribution with a zero 281 

mean and a standard deviation of one. These are subsequently rescaled so that their ranges lie 282 

exactly within the bounds set in Table 3. We acknowledge that the residual errors and noise in 283 

real SAR data may not be Gaussian with zero mean because they originate from a variety of 284 

sources (e.g., DEM error, orbital ramp, atmospheric delay, etc). However, we would only ever 285 

be able to postulate the actual statistical distribution of real InSAR data errors, so instead 286 

make the simple assumption of Gaussian zero mean for our simulations. 287 

Table 3. Simulated noise with various ranges and standard deviations 288 

Noise case Range 

[mm] 

Standard deviation 

[mm] 

A [−2;+2]  ±0.5 

B [−5;+5]  ±1.5 

C [−10;+10]  ±3.0 

 289 
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The simulated residual interferogram noise is generated in such a way that longer 290 

baseline lengths are assigned with noise of higher magnitude. Additionally, they have 291 

different ranges with the temporal baselines being from ~0.03 year to ~3.97 years, whilst the 292 

perpendicular baselines being between −376 meters and 400 meters. Therefore, they are first 293 

“normalized" by dividing all elements by the maximum value: 294 

𝑛𝑜𝑟𝑚_𝑏𝑡𝑒𝑚𝑝𝑖 =
𝑏𝑡𝑒𝑚𝑝𝑖

𝑚𝑎𝑥(𝑏𝑡𝑒𝑚𝑝)

𝑛𝑜𝑟𝑚_𝑏𝑝𝑒𝑟𝑝𝑖 =
𝑎𝑏𝑠(𝑏𝑝𝑒𝑟𝑝𝑖)

𝑚𝑎𝑥[𝑎𝑏𝑠(𝑏𝑝𝑒𝑟𝑝)]

(9) 

where 𝑛𝑜𝑟𝑚_𝑏𝑡𝑒𝑚𝑝𝑖 and 𝑛𝑜𝑟𝑚_𝑏𝑝𝑒𝑟𝑝𝑖 are the “normalized” temporal and perpendicular 295 

baselines of the 𝑖𝑡ℎ interferogram, respectively which correspond to their values before296 

“normalization” 𝑏𝑡𝑒𝑚𝑝 and 𝑏𝑝𝑒𝑟𝑝, 𝑎𝑏𝑠(. ) and 𝑚𝑎𝑥(. ) indicate the absolute and maximum 297 

values, respectively. 298 

By this “normalization”, the normalized temporal and perpendicular baselines will 299 

have ranges between ~0 and 1. The normalized baseline lengths of all interferograms are then 300 

computed with the 𝑖𝑡ℎ interferogram being:301 

𝑛𝑜𝑟𝑚_𝑏𝑠𝑙𝑛𝑖 = √𝑛𝑜𝑟𝑚_𝑏𝑡𝑒𝑚𝑝𝑖
2 + 𝑛𝑜𝑟𝑚_𝑏𝑝𝑒𝑟𝑝𝑖

2 (10) 

The normalized baseline lengths computed from Equation (10) are then used to assign 302 

the residual interferogram noise. Specifically, for each pixel with corresponding noise set of 303 

8,778 samples, the noise is assigned to interferograms by a way that an interferogram with a 304 

longer normalized baseline length will be assigned with noise of larger magnitude. We 305 

acknowledge that the influences of temporal and perpendicular baselines on interferometric 306 

noise are different. While the influence of perpendicular baselines can be quantified via their 307 

relationship with DEM error (e.g., Lee et al., 2012), the influence of temporal baselines is 308 

more sophisticated, which is dependent on the change of atmosphere and target environment 309 
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over time (Zebker et al., 1997; Zebker & Villasenor, 1992). Here, for the sake of simplicity, 310 

we assume the two types of baseline are equal in terms of their weights in calculating 311 

normalized baselines using Equation (10). 312 

 313 

5. Disruptive influences of residual noise and network configuration 314 

In order to assess the influence of residual noise and small baseline network configuration on 315 

SBAS-derived land deformation rates, various interferogram networks were formed through 316 

the use of different thresholds for the temporal baselines. Here, for the sake of simplicity 317 

initially, we restrict the perpendicular baseline length to 200 m and only vary the temporal 318 

baseline. Table 4 shows the temporal baseline thresholds that are applied with the resulting 319 

number of interferograms. 320 

We apply the SBAS approach to subsets of our simulated noisy interferograms (Table 321 

4) using the GIAnT software package (Agram et al., 2013; Agram et al., 2012). GIAnT 322 

incorporates most of the SBAS-based data processing approaches mentioned in the 323 

Introduction, including the “traditional” SBAS (e.g., Berardino et al., 2002; Cavalié et al., 324 

2007; Schmidt & Bürgmann, 2003; Usai, 2003), the new SBAS (NSBAS) (Doin et al., 2011; 325 

López-Quiroz et al., 2009), and the Multiscale InSAR Time-Series (MInTS) (Hetland et al., 326 

2012); cf. Table 1. Time series of deformation relative to the first-acquired SAR image time 327 

for each of the 1,000 test pixels are generated assuming that there is no deformation in the 328 

first acquisition. Both unweighted linear regression and unweighted LS are then applied to 329 

those SBAS time series in order to compute SBAS-derived linear rates and annual sinusoids, 330 

which are then compared with our simulated parameters listed in Table 2. The RMS of the 331 

difference between simulated deformation time series (the “true” signal) and SBAS-derived 332 

deformation time series is also computed in order to test dependence on the number of 333 

interferograms chosen. 334 
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Table 4. List of networks tested in this study based on various temporal baseline thresholds. 335 

The perpendicular baseline threshold is set fixed at 200 m (Figure 1). 336 

Temporal baseline 

threshold [days] 

Number of 

interferograms 

22 263 

33 376 

44 498 

55 621 

66 745 

77 863 

88 986 

 337 

5.1. Influences on simulated linear signals 338 

We first examine a signal where Equation (8) is adopted solely with the linear rate 339 

components of −2 mm/yr, −20 mm/yr and −100 mm/yr (Table 2). Figure 2 shows results 340 

from different combinations of simulated deformation rates and residual interferogram error 341 

and noise. Here, the assumed simulated linear rates are considered as the “true” rates to which 342 

the SBAS-derived rates are compared and the differences between them are herein termed the 343 

“errors in rate determination”. The SBAS rates are derived by fitting a linear regression to the 344 

corresponding deformation time series, then the errors in rate determination are calculated. 345 

The errors are shown in Figure 2, and are the same in both magnitude and sign among all 346 

three simulated linear rate cases from Table 2. Generally, the larger simulated residual 347 

interferogram noise (i.e., [−10;+10] mm vs. [−5;+5] mm vs. [−2; +2] mm) leads to larger 348 

errors in the rate determination (cf. blue, green and black plotlines in Figure 2), whereas an 349 
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increase in the number of chosen interferograms (by choosing a larger temporal baseline 350 

threshold) can reduce this error.  351 

Additionally, while their trends are in an agreement for the cases of larger signal rates 352 

(i.e., −20 mm/yr and −100 mm/yr, Figure 2, middle and right), contradictory trends exist in 353 

the cases of small deformation (i.e., −2 mm/year, Figure 2, left), particularly when networks 354 

of fewer interferograms are used together with higher residual noise of [−5;+5] mm and 355 

[−10;+10] mm. Importantly, the SBAS-derived deformation trends are affected by not only 356 

the magnitude of noise, but also its relation to the signal size (see Figure 2, left), thus low 357 

SNR is more likely to result in incorrect or even contradictory trend estimates. In essence, 358 

small deformation rates in the presence of proportionally large noise may lead to spurious 359 

results, which become exacerbated in the presence of significant data gaps. 360 

Figure 2. Comparison of rates computed by unweighted linear fit from combinations of 361 

different deformation signals. From left to right are simulated linear rate cases 1 to 3 (Table 2) 362 

contaminated by simulated residual interferogram noise. Black, green and blue polylines are 363 

SBAS derived rates computed from simulated data with simulated noise cases A to C, 364 

respectively (Table 3). Red horizontal lines represent the simulated rates. The black dashed 365 

box in the left panel is used to contrast between positive and negative rates that indicates 366 

contradictory trends. 367 

368 
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The “errors in rate determination” are next compared for the networks listed in Table 4 369 

and shown in Figure 3 for four example pixels. Within a specific network and pixel, the 370 

retrieved rate errors are identical when the same residual noise is applied regardless of the 371 

signal rates. In other words, if a specific network chosen from Table 4 with corresponding 372 

interferogram noise set is applied, then its error in rate determination will not depend on the 373 

magnitude of simulated rate (cf. blue, orange and yellow bars in Figure 3). This is attributable 374 

to SBAS using the LS principle (Schmidt & Bürgmann, 2003) or the SVD method (Berardino 375 

et al., 2002). The results computed from applying the LS principle depend on redundant 376 

interferograms, together with residual interferogram error and noise that in turn depends on 377 

the configuration of the network (Berardino et al., 2002). The SBAS network configuration is 378 

specified by the design matrix 𝑨 as per Equation (1). Both the LS principle and SVD method 379 

result in the same InSAR-derived rates, except that the latter can cope with disconnected 380 

subsets of interferogram networks, whereas the former cannot (Berardino et al., 2002; Gong et 381 

al., 2016). Consequently, the same error in rate determination will result if the same residual 382 

noise is applied to a network regardless of the deformation rate. 383 

 384 
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Figure 3. Comparison of rate errors computed from different networks for four example 385 

pixels. The top, center and bottom rows correspond to simulated noise cases A, B and C 386 

(Table 3). Note the different scale on the y-axis for each noise case. 387 

 388 

5.2. Influences on non-linear signals 389 

We next examine the signal combining both a linear trend and sinusoidal annual terms. As 390 

mentioned in Section 4, we apply pairs of signal parameters of linear rate plus annual 391 

amplitude, which are −2 mm/yr plus 2 mm, −20 mm/yr plus 5 mm, and −100 mm/yr plus 392 

10 mm (Equation (8)) as listed in Table 2. Via this simulation, we will test the influence of 393 

non-linearity of signal on unweighted linear fit rates, which are derived by fitting a linear 394 

regression to the SBAS-derived deformation time series. 395 

Like the previous test of a linear signal only, the simulated deformation time series is 396 

generated by first applying Equation (8) for all 1,000 pixels prior to forming 8,778 noise-free 397 

interferograms and applying simulated residual interferogram noise. The networks shown in 398 

Table 4 are then applied in sequence to select corresponding stacks of interferograms, which 399 

are then utilized with the SBAS method. Both the unweighted linear fit and unweighted LS 400 

methods are subsequently adopted to derive linear rates and annual amplitudes. Additionally, 401 

the RMSs between simulated and SBAS-derived time series are calculated. 402 

Figure 4 shows unweighted linear-fit rates computed using the linear rates from Table 403 

2 and the simulated noise in Table 3. These results in Figure 4 reflect the influence of signal 404 
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non-linearity on linear-fit rates through biases in rate errors, particularly the case of large 405 

annual amplitudes, i.e., strongly non-linear, (cf. Figure 4 between red lines and coloured 406 

polylines). This is due to the inappropriate functional model used here to derive the linear 407 

rates, i.e., linear regression, which is applied to linear plus annual simulated signal. 408 

409 

Figure 4. Comparison of unweighted linear-fit rates from linear plus annual signals. From left 410 

to right are simulated signal cases 1 to 3 (Table 2) contaminated by various simulated residual 411 

interferogram noise. Black, green and blue polylines indicate the results computed from 412 

simulated data with noise cases A, B and C (Table 3). Red horizontal lines represent the 413 

simulated rates. The black dashed box in the left panel used to contrast between positive and 414 

negative rates that indicates contradictory trends in some cases. 415 

416 

The simulated signal function is known (Equation (8)), so we adopt this for estimating 417 

both rates and annual amplitudes utilizing unweighted LS (Figure 5). The results indicate 418 

similar behavior as that in the case of solely linear signals (cf. Figure 5 (top) with Figure 2) 419 

and those with biases removed (cf. Figure 5 (top) and Figure 4). Again, this is attributable to 420 

the SBAS method in which the results computed depend on the configuration of the network 421 

and residual interferogram noise but not the deformation rate. Also, it is due to the more 422 

appropriate functional model used to obtain the linear rates where the influence of the signal 423 
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non-linearity cancel out. It is therefore an important warning that a suitable function should be 424 

utilized to calculate linear rates in case the Earth’s surface experiences non-linear 425 

deformation, particularly in strongly non-linear cases. 426 

In the case of applying LS estimation with an appropriate function, not only the linear 427 

rate, but also its accompanying parameters, e.g., the annual amplitude in this study, will be 428 

obtained. This is shown in Figure 5 (bottom), where the computed annual amplitudes indicate 429 

that more interferograms in the SBAS network result in more accurate LS estimation of the 430 

annual amplitude. In addition, the errors in those computed parameters are dependent on the 431 

SBAS network configuration and residual interferogram noise, but not the signal magnitude. 432 

 433 

   

   

Figure 5. Comparison of unweighted LS rates (top panel) and annual amplitudes (bottom 434 

panel) computed from linear plus annual signals. From left to right correspond to simulated 435 

signal cases 1 to 3 (Table 2) contaminated by various simulated residual interferogram noise. 436 
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Black, green and blue polylines indicate the results computed from simulated data with noise 437 

cases A, B and C (Table 3). Red horizontal lines represent the simulated rates or annual 438 

amplitudes. The black dashed box in the top-left panel used to contrast between positive and 439 

negative rates that indicates contradictory trends in some cases. 440 

 441 

6. Influence of data gaps on SBAS-derived rates 442 

In this Section, we study the influence of SAR data gaps on SBAS-retrieved rates. This is 443 

motivated by the likelihood of irregular temporal sampling of SAR data due to scheduling or 444 

other technical issues, such as decorrelation during winter snow cover. We now conduct 445 

simulations with a network of 986 interferograms formed by applying a temporal baseline 446 

threshold of 88 days (∼ 3 months, Table 4), with two scenarios of data gaps. In the first 447 

scenario, missing images are due to technical and/or scheduling issues, which are considered 448 

random, and, in the second scenario, missing images are chosen in the northern winter season 449 

which are assumed to have low coherence due to extreme weather. 450 

 451 

6.1. Random data gaps 452 

In this Sub-section, we assume there are, in turn, 5%, 10%, ..., 50% of acquisitions missing 453 

from our simulated time series. First, missing images are randomly chosen. Interferograms 454 

having connections with those missing images are subsequently identified and eliminated 455 

from the original list of 986 interferograms. Figure 6 compares the network without gaps and 456 

those corresponding to various amount of gaps in percentage from 5% to 50% with an 457 

increment of 5%. 458 

 459 
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Figure 6. Comparison of the interferogram network gaps in percentage. Gray lines indicate 460 

InSAR interferograms connecting images denoted by black dots. Red dots indicate missing 461 

images (i.e., gaps). The number under each network refers to the number of interferograms. 462 

 463 

Here, we use the same linear plus annual signals as those used in Section 5.2 464 

according to simulated signal cases shown in Table 2. For each network shown in Figure 6, 465 



Confidential manuscript submitted to: Remote Sensing of Environment 

25 

the SBAS approach in GIAnT is applied to all 1,000 pixels in which the deformation time 466 

series at each pixel is derived. The unweighted LS is then applied to calculate the deformation 467 

rates and the RMSs of the difference between simulated and SBAS-derived time series are 468 

then calculated. 469 

Figure 7 compares SBAS-derived unweighted LS rates between the SBAS network 470 

with no gaps and those of different percentages of data gaps. Figure 8 shows the 471 

corresponding RMSs of the difference between simulated and SBAS-derived deformation 472 

time series. These RMSs are the same for all three cases of linear plus annual signal (Table 2). 473 

Figure 7 and Figure 8 confirm that data gaps have an effect on the retrieved rates and RMSs 474 

with a noticeably larger influence in cases of higher gap percentages, particularly the 50% 475 

case. Contradictory trends are obtained for some pixels the case of large residual 476 

interferogram noise and low magnitude rates (Figure 7, left). This is likely caused by a weak 477 

SBAS network configuration (see Figure 6 with the 50% gaps case). 478 

479 

Figure 7. Comparison of unweighted LS rates computed from linear plus annual signals 480 

between the interferogram network of no gaps and those with randomly chosen gaps of 481 

various percentages. From left to right correspond to simulated signal cases 1 to 3 (Table 2) 482 

contaminated by various simulated residual interferogram noise. Black, green and blue 483 

polylines indicate the results computed from simulated data with noise cases A, B and C 484 
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(Table 3). Red horizontal lines represent the simulated rates. The black dashed box in the left 485 

panel used to contrast between positive and negative rates that indicates contradictory trends 486 

in some cases. 487 

 488 

  

Figure 8. Comparison of the RMSs of the difference between simulated and SBAS-derived 489 

deformation time series of all pixels between the SBAS interferogram network of no gap and 490 

those with random gaps. Black, green and blue polylines indicate the results computed from 491 

simulated data with noise cases A, B and C (Table 3). 492 

 493 

The influence of random data gaps on the errors in rate determination and the RMSs of 494 

the difference between simulated and SBAS-derived deformation time series is caused by a 495 

reduction in the number of interferograms when the percentage of gaps increases. However, a 496 

reduction in interferograms in the SBAS network can be caused by random data gaps (Figures 497 

7 and 8) or by changing the temporal baseline thresholds (as shown in Section 5). We 498 

compare errors resulting from fewer interferograms in a SBAS network due to (1) random 499 

gaps and (2) temporal baseline thresholds in Figure 9 (cf. blue and green polylines). This 500 

demonstrates the role of the network configuration, where a network may have the same 501 
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number of interferograms, but will have higher errors depending on which interferograms are 502 

selected. 503 

The random gap scenario results in more redundant interferograms, making the 504 

network more robust, especially in the case of noisier time series (Figure 9, right plots). 505 

Therefore, in this case of randomly selected data gaps, mixed interferograms covering both 506 

short and long time spans makes the network more robust in recovering the deformation 507 

signal compared to the case of no gaps in which only short-time interferograms are chosen, 508 

which are limited by the threshold.   509 

 510 
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Figure 9. The influence of the change in number of interferograms chosen by various 511 

temporal baseline thresholds (blue) and due to random data gaps (green) on SBAS-derived 512 

unweighted LS rates. From top to bottom: simulated signal cases 1, 2 and 3 (Table 2). From 513 

left to right: residual interferogram noise cases A to C (Table 3). Black dashed boxes in the 514 

top panel used to contrast between positive and negative rates that indicates contradictory 515 

trends in some cases. 516 

 517 

6.2. “Winter” data gaps 518 

The previous test on data gaps in Section 6.1 is based on the fact that SAR data is missing 519 

sometime due to technical and/or scheduling issues, which we consider random. There is an 520 

alternative situation where there may be “user-defined” data gaps in which data missing is due 521 

to, e.g., very low coherence caused, for instance, by snow cover. We term this situation 522 

“winter data gaps” where all images acquired in the winter season (we use December to 523 

February for the Northern Hemisphere) are removed (Figure 10). 524 

The results of this simulation experiment are shown in Figure 11. We compute 525 

unweighted LS rates and RMSs of the difference between simulated and SBAS-derived 526 

deformation time series for networks with no gaps, random data gaps and “winter data gaps”, 527 

with the latter two having the same number of images. To avoid a disconnection in the SBAS 528 

network, we apply a network of 1,340 interferograms formed by applying a temporal baseline 529 
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threshold of 121 days (~4 months), instead of ~3 months as in Section 6.1, and a 530 

perpendicular baseline threshold of 200 meters.  531 

532 

Figure 10. Interferogram networks without (left) and with (middle, right) missing images. The 533 

number of missing images is 34 out of 133 corresponding to about 25%, which are selected 534 

randomly (middle) and in the northern winter season (right). The networks are formed using a 535 

temporal baseline threshold of ~4 months and a perpendicular baseline threshold of 200 536 

meters. Gray lines indicate interferograms, with images denoted by black dots. Red dots 537 

indicate missing images (i.e., gaps). The number under each network refers to the number of 538 

interferograms.  539 

Figure 11 compares unweighted LS rates for each network with RMSs between 540 

simulated and SBAS-derived deformation time series shown in Figure 12.  Figure 10 shows 541 

the number of missing images is the same between the two cases of data gaps, which is 34 out 542 

of 133, and, though the missing images are selected differently, the number of interferograms 543 

linking the remaining images are nearly the same; 750 for random gaps and 744 winter gaps. 544 

However, the influence of these two different data gap cases are distinct with the “winter” 545 

gaps having a larger influence, as confirmed by both retrieved rates in Figure 11 and RMSs in 546 

Figure 12. 547 

This is caused by the strength of the network configuration, which is more robust with 548 

interferograms at regular intervals in the random gaps network but with “blocks” of gaps in 549 
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the “winter” case, leading to a less robust network (cf. Figure 10 (middle) and (right)). This 550 

alerts users that, in addition to the effect of fewer interferograms and gap percentages, the 551 

strength of network configuration is another factor influencing the SBAS results, in which one 552 

should try to design a SBAS network that does not contain long gaps in the time series.  553 

554 

Figure 11. Comparison of unweighted LS rates computed from linear plus annual signals 555 

according to interferogram networks with no gaps, random gaps and “winter” gaps. The 556 

networks adopt a temporal baseline threshold of ~4 months and a perpendicular baseline 557 

threshold of 200 meters. From left to right are simulated signal cases 1 to 3 (Table 2). Black, 558 

green and blue polylines indicate the results computed from simulated data with noise cases 559 

A, B, and C (Table 3). Red horizontal lines represent the simulated rate. 560 

561 



Confidential manuscript submitted to: Remote Sensing of Environment 

31 

 

Figure 12. Comparison of the RMSs of the difference between simulated and SBAS-derived 562 

deformation time series for all pixels between the interferogram networks of no gaps and 563 

those with randomly chosen gaps and “winter” gaps corresponding to ~25% missing images. 564 

Black, green and blue polylines indicate the results computed from simulated data with noise 565 

cases A, B and C (Table 3). 566 

 567 

7. Optimal design of InSAR SBAS networks using redundancy numbers 568 

As has been demonstrated in Section 5, a spurious deformation trend (uplift instead of 569 

simulated subsidence) can be retrieved by applying SBAS, particularly in the case of small 570 

deformation in relation to large residual error and noise (i.e., a low SNR). By using more 571 

interferograms, the rate error can be decreased as the redundancy in the network is increased. 572 

However, an increased number of interferograms will also result in a higher computational 573 

burden. In this Section, “optimal” network design from geodesy is adopted for InSAR based 574 

on redundancy or 𝑟-numbers (Section 3). The motivation here is to investigate the relation 575 

between RMSs of the difference between simulated and SBAS-derived deformation time 576 

series, number of selected interferograms and the redundancy number. 577 

Here, we test interferogram networks determined by combinations of temporal 578 

baseline thresholds, from one month to four years long, with a one-month increment, and 579 

perpendicular baseline thresholds of 100 meters, 200 meters and 300 meters. As a result, 144 580 

networks are formed with the minimum and maximum number of interferograms being 251 581 

and 8,778, respectively. Equation (6) is then applied to each of these networks to compute the 582 

𝑟-numbers. 583 

The reliability matrix 𝑹 computed from Equation (6) contains the 𝑟-numbers located 584 

on its diagonal (𝑟𝑖). The objective of this optimization is to maximize these 𝑟-numbers by 585 

using their minimum value to represent the reliability of a network so that the 𝑟-numbers of 586 
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all measurements in that network are larger or equal to this minimum value. The 𝑟-number of 587 

a network is thus defined as: 588 

 𝑟 = 𝑚𝑖𝑛(𝑟𝑖) (11) 

 589 

The SBAS method was then applied to derive deformation time series for all 1,000 590 

pixels, again using GIAnT. We examine the same linear plus annual signals as those tested in 591 

Sections 5.1 and 6 (Table 2). The unweighted LS method is then utilized to derive SBAS-592 

retrieved rates and the RMSs of the difference between simulated and SBAS-derived 593 

deformation time series are calculated. 594 

The dependence of computed 𝑟-numbers and SBAS-retrieved annual rates on the 595 

number of selected interferograms are shown in Figure 13, where the change in SBAS-596 

derived unweighted LS rates presents the same patterns among the three cases (Table 2) of 597 

simulated signals. Furthermore, the higher the 𝑟-number, the closer the agreement between 598 

simulated and SBAS-retrieved rates. The two rates are, in particular, nearly identical when the 599 

𝑟-numbers are greater than ~0.9. 600 

 601 

   

Figure 13. The dependence of the 𝑟-numbers and SBAS-derived unweighted LS rates for 602 

1,000 pixels on the number of chosen interferograms with various linear plus annual signals. 603 

From left to right are simulated signal cases 1 to 3 (Table 2). Black, green and blue polylines 604 
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show the results for noise cases A, B and C (Table 3). Red horizontal lines represent the 605 

simulated rates. 606 

607 

The dependence of the RMSs of the difference between simulated and SBAS-retrieved 608 

deformation time series on the number of chosen interferograms are shown in Figure 14 (left) 609 

for all three cases of simulated noise (Table 3). The 𝑟-number increases as the number of 610 

interferograms increases, constrained by temporal baseline thresholds, and a reduction in the 611 

RMSs. The RMSs decrease from a small 𝑟-number until ~0.8, after which the change 612 

becomes negligible. 613 

We then apply 1/10 RMS as a trade-off value to identify the “optimal” 𝑟-number in 614 

which a network with a minimal number of interferograms selected and with all RMSs 615 

smaller than 1/10 noise range, which are 0.2 mm, 0.5 mm and 1.0 mm for the simulated 616 

residual interferogram noise ranges shown in Table 3. Recall that the RMSs are dependent on 617 

the SBAS network and residual interferogram noise but not signal magnitude (Figure 3). 618 

Thus, Figure 14 indicates an “optimal” 𝑟-number being ~0.86 for a SBAS network of 1,911 619 

interferograms, suggesting 𝑟-numbers between ~0.8 and ~0.9 to be a suitable range for the 620 

“optimal” design of SBAS networks. 621 

The efficiency of the obtained “optimal” 𝑟-numbers are confirmed by not only the 622 

RMS trade-off, but also the computation time as shown in Figure 14 (right), where the 623 

network of 1,911 interferograms (for the “optimal” 𝑟-number) runs for less than four minutes 624 

compared to nearly 20 minutes for the largest network of 8,778 interferograms. This shows 625 

efficiency in processing time for the SBAS inversion step only. In reality, SBAS data 626 

processing with a full workflow, which comprises additional steps of interferogram formation 627 

and error correction (e.g., DEM, orbital and atmospheric errors) the time difference between 628 
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processing all 8,778 interferograms and the optimal 1,911 interferograms can be substantial. 629 

Additionally, this “optimal” design of SBAS networks keeps the number of interferograms to 630 

a minimum, which limits the disk storage space required. 631 

 632 

  

Figure 14. (left): Comparison of the change in the 𝑟-numbers and the RMSs of the difference 633 

between simulated and SBAS-derived deformation time series. Black, green and blue 634 

polylines indicate the results computed from simulated data with noise cases A, B and C 635 

(Table 3). Dashed lines indicate the “optimal” 𝑟-numbers corresponding to the networks with 636 

smallest amount of interferograms chosen with all RMSs being smaller than the chosen trade-637 

off values of 1/10 of the residual interferogram noise (Table 3). (right): Comparison of the 638 

change in the 𝑟-numbers according to SBAS network interferogram numbers and computation 639 

time. 640 

 641 

Figure 15 shows an example of the SBAS-derived deformation time series of a pixel 642 

compared with a simulated linear plus annual signal of −2 mm/yr plus 2 mm (i.e., the 643 

simulated signal case 1 in Table 2) according to selected cases of computed 𝑟-number of 644 

~0.2, ~0.8 and ~0.9. The results of applying residual noise cases A, B, and C (Table 3) are 645 

shown in Figure 15. In all cases, the results corresponding to the computed 𝑟-numbers of 646 

~0.8 and ~0.9 show close agreement with the simulated signal. In contrast, however, large 647 
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differences between simulated and SBAS-derived deformation time series are shown in the 648 

case when the 𝑟-number is ~0.2 (251 interferograms), particularly in the case of large 649 

residual interferogram noise (i.e., bounded within [−10;+10] mm) where the difference in 650 

both its trend (i.e., deformation or uplift) and magnitude is shown (cf. Figure 15 (right) 651 

between the blue and red polylines). 652 

Figure 15 shows that if the 𝑟-number is too small (< 0.2), spurious or even 653 

contradictory rates can result, as was shown similarly in Section 5. Therefore, caution must be 654 

exercised when using InSAR to detect small rates of deformation in the presence of large 655 

noise (low SNR). This is where the redundancy number may be of assistance in gauging the 656 

reliability of the estimated rates. This also shows that, though the reliability of a network is 657 

relevant to its ability to detect and resist against gross errors, in this specific case of InSAR 658 

SBAS networks, a good agreement between the 𝑟-numbers and errors in rate determination is 659 

present that is useful for “optimal” design of InSAR SBAS networks. 660 

 661 

   

Figure 15. An example of simulated and SBAS-derived deformation time series of simulated 662 

signal of linear rate plus annual amplitude of −2 mm/yr plus 2 mm (simulated signal case 1 in 663 

Table 2) contaminated by residual interferogram noise cases A (left), B (middle) and C (right) 664 

as listed in Table 3. The results are computed from applying various SBAS interferogram 665 

networks corresponding to computed 𝑟-numbers of ~0.2 (251 interferograms, blue polylines), 666 
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~0.8 (1,571 interferograms, green polylines), and ~0.9 (2,330 interferograms, black 667 

polylines), respectively. Red polylines indicate the simulated deformation time series. The 668 

blue line in the right panel shows the extreme case where spurious uplift is indicated, whereas 669 

subsidence is simulated. 670 

 671 

8. Conclusions 672 

This study has used simulated Gaussian noise with zero mean applied to interferograms 673 

computed from simulated linear and annual sinusoidal trends to demonstrate the effects of 674 

interferometric noise on InSAR SBAS derived deformation. This extends to how different 675 

SBAS network configurations may influence the estimated deformation rates. Different 676 

simulated rates are tested (Table 2), including the addition of annual periodic amplitudes so as 677 

to represent a range of real SAR data. A Monte Carlo simulation with 1,000 pixels for each 678 

scenario was adopted. Firstly, we investigated the linear deformation signal, finding that the 679 

SBAS linear-fit deformation trends were sensitive to both the magnitude of interferometric 680 

noise and signal size. The unweighted linear-fit rate error was the same in both magnitude and 681 

size for all rates if the same residual noise is applied to a given network. The trend may 682 

become contradictory for small magnitude deformation where, for example a -2 mm/yr rate 683 

could be estimated from the SBAS least squares or SVD method as a spurious uplift. This 684 

contradictory result was shown when small temporal thresholds of 33 days or less were used, 685 

which resulted in a less robust SBAS network configuration with fewer interferograms. 686 

When we tested the linear plus annual periodic signal with interferometric noise, the 687 

linear-fit rates were biased in the linear rate (from the 1,000 pixels) compared to the simulated 688 

rate. Alternatively, when we estimated the rates using a more suitable periodic functional 689 

model, rather than just linear regression in the presence of non-linear terms, the estimated 690 
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rates were not biased. This demonstrates the potential for errors to be introduced by using 691 

simple linear regression when non-linear deformation may also be occurring. 692 

Because one of the strengths of the SBAS method is to provide redundant small 693 

interferogram baselines (in space and time), we simulated the effect of missing SAR 694 

acquisitions in the time series. We presumed that these gaps in the time series would be (1) 695 

random that may be due to satellite mission scheduling issues, or (2) blocks of missing 696 

interferograms over, for example, a northern winter with snow covered ground that causes 697 

decorrelation. Our simulation results indicate that “winter” gaps causes a larger error in the 698 

estimated rates and in the RMSs of the differences between simulated and SBAS-derived 699 

deformation time series than for random gaps resulting from missed acquisitions. However, 700 

the RMS for both random gaps and no gaps were mostly 1 mm, while the winter gaps RMS 701 

was generally <2 mm, suggesting that random gaps have little influence. This is highlighted 702 

when random gaps are compared to temporal threshold limits, showing that for the same 703 

number of interferograms, limiting temporal thresholds can cause errors of up to 6 mm/yr 704 

with noisy simulated data, compared to ~3 mm/yr for random gaps when using similar 705 

interferogram numbers. This suggests that it is the configuration of the SBAS network that is 706 

more important, to the point that caution should be exercised when reducing the temporal 707 

baseline to increase the coherence of the interferograms, because the trade-off may be a 708 

geometrically weak SBAS network that is vulnerable to incorrect rate estimation in the 709 

presence of noisy data and non-linear deformation. 710 

We ran an additional simulation investigating whether redundancy numbers from 711 

geodetic theory could be adapted to design an optimal SBAS network. The simulation results 712 

suggest that 𝑟-values between ~0.8 and ~0.9 indicated a robust SBAS network design, and 713 

that including more interferograms beyond this provided little improvement in the accuracy of 714 

the rate estimation. 715 
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We conclude finally that SBAS network design can be critical to correctly estimate 716 

deformation rates, particularly in the case of low signal to noise ratios, and where the 717 

deformation may be non-linear. Notably, we found an alarming artifact in a couple of 718 

different simulation scenarios, where uplift was indicated by the SBAS rather than true 719 

simulated subsidence. It therefore appears that the configuration (network design) is more 720 

important than simply the number of interferograms used, which is important given any limits 721 

on computing resources. For this reason, we recommend the use of redundancy numbers to 722 

help optimize SBAS network design.   723 
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List of Figure Captions 1055 

 1056 

Figure 1. Scatter plot of simulated perpendicular baseline history. Each black dot represents a 1057 

SAR scene acquisition. 1058 

 1059 

Figure 2. Comparison of rates computed by unweighted linear fit from combinations of 1060 

different deformation signals. From left to right are simulated linear rate cases 1 to 3 (Table 2) 1061 

contaminated by simulated residual interferogram noise. Black, green and blue polylines are 1062 

SBAS derived rates computed from simulated data with simulated noise cases A to C, 1063 

respectively (Table 3). Red horizontal lines represent the simulated rates. The black dashed 1064 

box in the left panel is used to contrast between positive and negative rates that indicates 1065 

contradictory trends. 1066 

 1067 

Figure 3. Comparison of rate errors computed from different networks for four example 1068 

pixels. The top, center and bottom rows correspond to simulated noise cases A, B and C 1069 

(Table 3). Note the different scale on the y-axis for each noise case. 1070 

 1071 

Figure 4. Comparison of unweighted linear-fit rates from linear plus annual signals. From left 1072 

to right are simulated signal cases 1 to 3 (Table 2) contaminated by various simulated residual 1073 

interferogram noise. Black, green and blue polylines indicate the results computed from 1074 

simulated data with noise cases A, B and C (Table 3). Red horizontal lines represent the 1075 

simulated rates. The black dashed box in the left panel used to contrast between positive and 1076 

negative rates that indicates contradictory trends in some cases. 1077 

 1078 



Confidential manuscript submitted to: Remote Sensing of Environment 

46 

 

Figure 5. Comparison of unweighted LS rates (top panel) and annual amplitudes (bottom 1079 

panel) computed from linear plus annual signals. From left to right correspond to simulated 1080 

signal cases 1 to 3 (Table 2) contaminated by various simulated residual interferogram noise. 1081 

Black, green and blue polylines indicate the results computed from simulated data with noise 1082 

cases A, B and C (Table 3). Red horizontal lines represent the simulated rates or annual 1083 

amplitudes. The black dashed box in the top-left panel used to contrast between positive and 1084 

negative rates that indicates contradictory trends in some cases. 1085 

 1086 

Figure 6. Comparison of the interferogram network gaps in percentage. Gray lines indicate 1087 

InSAR interferograms connecting images denoted by black dots. Red dots indicate missing 1088 

images (i.e., gaps). The number under each network refers to the number of interferograms. 1089 

 1090 

Figure 7. Comparison of unweighted LS rates computed from linear plus annual signals 1091 

between the interferogram network of no gaps and those with randomly chosen gaps of 1092 

various percentages. From left to right correspond to simulated signal cases 1 to 3 (Table 2) 1093 

contaminated by various simulated residual interferogram noise. Black, green and blue 1094 

polylines indicate the results computed from simulated data with noise cases A, B and C 1095 

(Table 3). Red horizontal lines represent the simulated rates. The black dashed box in the left 1096 

panel used to contrast between positive and negative rates that indicates contradictory trends 1097 

in some cases. 1098 

 1099 

Figure 8. Comparison of the RMSs of the difference between simulated and SBAS-derived 1100 

deformation time series of all pixels between the SBAS interferogram network of no gap and 1101 

those with random gaps. Black, green and blue polylines indicate the results computed from 1102 

simulated data with noise cases A, B and C (Table 3). 1103 
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 1104 

Figure 9. The influence of the change in number of interferograms chosen by various 1105 

temporal baseline thresholds (blue) and due to random data gaps (green) on SBAS-derived 1106 

unweighted LS rates. From top to bottom: simulated signal cases A, B and C (Table 2). From 1107 

left to right: residual interferogram noise cases 1 to 3 (Table 3). Black dashed boxes in the top 1108 

panel used to contrast between positive and negative rates that indicates contradictory trends 1109 

in some cases. 1110 

 1111 

Figure 10. Interferogram networks without (left) and with (middle, right) missing images. The 1112 

number of missing images is 34 out of 133 corresponding to about 25%, which are selected 1113 

randomly (middle) and in the northern winter season (right). The networks are formed using a 1114 

temporal baseline threshold of ~4 months and a perpendicular baseline threshold of 200 1115 

meters. Gray lines indicate interferograms, with images denoted by black dots. Red dots 1116 

indicate missing images (i.e., gaps). The number under each network refers to the number of 1117 

interferograms. 1118 

 1119 

Figure 11. Comparison of unweighted LS rates computed from linear plus annual signals 1120 

according to interferogram networks with no gaps, random gaps and “winter” gaps. The 1121 

networks adopt a temporal baseline threshold of ~4 months and a perpendicular baseline 1122 

threshold of 200 meters. From left to right are simulated signal cases 1 to 3 (Table 2). Black, 1123 

green and blue polylines indicate the results computed from simulated data with noise cases 1124 

A, B, and C (Table 3). Red horizontal lines represent the simulated rate. 1125 

 1126 

Figure 12. Comparison of the RMSs of the difference between simulated and SBAS-derived 1127 

deformation time series for all pixels between the interferogram networks of no gaps and 1128 
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those with randomly chosen gaps and “winter” gaps corresponding to ~25% missing images. 1129 

Black, green and blue polylines indicate the results computed from simulated data with noise 1130 

cases A, B and C (Table 3). 1131 

 1132 

Figure 13. The dependence of the 𝑟-numbers and SBAS-derived unweighted LS rates for 1133 

1,000 pixels on the number of chosen interferograms with various linear plus annual signals. 1134 

From left to right are simulated signal cases 1 to 3 (Table 2). Black, green and blue polylines 1135 

show the results for noise cases A, B and C (Table 3). Red horizontal lines represent the 1136 

simulated rates. 1137 

 1138 

Figure 14. (left): Comparison of the change in the 𝑟-numbers and the RMSs of the difference 1139 

between simulated and SBAS-derived deformation time series. Black, green and blue 1140 

polylines indicate the results computed from simulated data with noise cases A, B and C 1141 

(Table 3). Dashed lines indicate the “optimal” 𝑟-numbers corresponding to the networks with 1142 

smallest amount of interferograms chosen with all RMSs being smaller than the chosen trade-1143 

off values of 1/10 of the residual interferogram noise (Table 3). (right): Comparison of the 1144 

change in the 𝑟-numbers according to SBAS network interferogram numbers and computation 1145 

time. 1146 

 1147 

Figure 15. An example of simulated and SBAS-derived deformation time series of simulated 1148 

signal of linear rate plus annual amplitude of −2 mm/yr plus 2 mm (simulated signal case 1 in 1149 

Table 2) contaminated by residual interferogram noise cases A (left), B (middle) and C (right) 1150 

as listed in Table 3. The results are computed from applying various SBAS interferogram 1151 

networks corresponding to computed 𝑟-numbers of ~0.2 (251 interferograms, blue polylines), 1152 
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~0.8 (1,571 interferograms, green polylines), and ~0.9 (2,330 interferograms, black 1153 

polylines), respectively. Red polylines indicate the simulated deformation time series. The 1154 

blue line in the right panel shows the extreme case where spurious uplift is indicated, whereas 1155 

subsidence is simulated. 1156 
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