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Abstract

We present an integral-based approach for high-resolution regional recovery of the gravitational
field in this article. We derive rigorous remove-compute-restore integral estimators relating the
line-of-sight gravitational acceleration to an arbitrary order radial derivative of the gravitational
potential. The integral estimators are composed of three terms, i.e., the truncated integration,
the low-frequency line-of-sight gravitational acceleration, and the high-frequency truncation er-
ror (effect of the distant zones). We test the accuracy of the integral transformations and of the
integral estimators in a closed-loop simulation over the Montes Jura region on the nearside of
the Moon. In this way, we determine optimal sizes of integration radii and grid discretisation.
In addition, we investigate the performance of the regional integral inversion with synthetic and
realistic GRAIL observations. We demonstrate that the regional inversion results of the dis-
turbing gravitational potential and its first order radial derivative in the Montes Jura mountain
range are less contaminated by high-frequency noise than the global spherical harmonic models.

Keywords: Integral transformation, Green’s function, Truncation error, Spherical cap,
Satellite-to-satellite tracking, Doppler tracking, Inverse problem

Introduction

The gravitational field of the Moon has been mapped by several missions, such as the Soviet
Luna (Akim, 1966), Lunar Orbiter (Muller and Sjogren, 1968), Apollo 15 and 16 sub-satellites
(Sjogren et al., 1974), Clementine (Zuber et al., 1994), Lunar Prospector (Konopliv et al., 1998,
2001), SELenological and ENgineering Explorer (SELENE) (Namiki et al., 2009), and most
recently by Gravity Recovery And Interior Laboratory (GRAIL) (Zuber et al., 2013). Analyses
of tracking observations have led to numerous gravitational field models (GFMs); see (Konopliv
et al., 2013, 2014; Lemoine et al., 2013, 2014; Klinger et al., 2014; Wirnsberger et al., 2019)
and the references therein. The earlier missions only mapped GFMs on the nearside, but inter-
satellite tracking on SELENE and GRAIL has now permitted global GFMs. The most recent
spherical harmonic expansions from GRAIL are available up to degree 1500, which makes the
lunar gravitational field the most detailed among all planetary bodies.

Any global GFM representations prior to the SELENE and GRAIL missions required strong
regularisation (e.g., Floberghagen et al., 1999; Floberghagen, 2002) that resulted in undesirable
smoothing in the GFM over the nearside. As a consequence, regional approaches have been
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applied to attempt to improve lunar GFMs over the nearside (Sugano and Heki, 2004; Goossens
et al., 2005a,b; Han, 2008; Han et al., 2009, 2011). Besides the most recent GFMs do not suffer
from heterogeneous data coverage, improvements by local methods are still possible, as shown by
Goossens et al. (2012, 2014) over the South Pole-Aitken basin on the farside. Regional modelling
may also be attractive for practical reasons. For example, high-resolution GFMs in a desired
area may be obtained by using moderately powered computers, whereas supercomputers are
necessary for a high-resolution global spherical harmonic parametrisation.

In this article, we develop a new method for inverting the GRAIL inter-satellite tracking
measurements and determine the gravitational potential and its radial derivative over a region
on the Moon. Our approach has several noteworthy aspects: (1) the gravitational potential
and its functionals are parametrised in space domain, as opposed to the spectral parametri-
sation used by the GRAIL project, (2) the Line-of-Sight (LoS) gravitational acceleration is
formed by inter-satellite tracking and orbit data and directly used as observable, as opposed to
inter-satellite range-rate used with numerical force integration, (3) the regional method allows
regularisation that can be optimized and be region-specific, as opposed to the uniform global
power law constraint (e.g., Kaula, 1966) used in the existing global solutions, and (4) the de-
veloped mathematical apparatus is general because it converts an arbitrary order derivative of
the gravitational potential onto the LoS gravitational acceleration. We present new gravita-
tional field solutions with the equivalent resolution (corresponding to degree 1400) to the latest
development by the NASA’s GRAIL project (e.g., Zuber et al., 2013). Our solutions are the
first high-resolution GRAIL gravitational field solutions processed independently by the users
outside from the NASA GRAIL team.

We acknowledge numerous existing regional modelling methods (e.g., Rummel, 1980; Barriot
and Balmino, 1992; Thalhammer, 1994; Freeden et al., 2002; Garcia, 2002; Novák, 2007; Schmidt
et al., 2007; Bentel et al., 2013; Gruber et al., 2014; Eshagh and Šprlák, 2016). These are relevant
to regional analysis approaches for satellite tracking observations of Earth-orbiting satellites,
such as the CHAllenging Mini-satellite Payload (CHAMP) (Reigber et al., 2002) and Gravity
Recovery And Climate Experiment (GRACE) (Tapley et al., 2004), and of satellites that orbited
other planets. However, lunar gravitational field determination from GRAIL is more challenging,
because we aim for high-resolution regional fields (corresponding to degree 1400) from spacecraft
orbiting at altitudes from 10 km to 90 km above the Moon’s surface.

1. Preliminaries

1.1. Nomenclature and reference frames

The reference frame is the planetocentric Cartesian coordinate system. It is defined by the
origin O at the centre of mass of the Moon and the orthonormal base vectors ex (pointing to
the intersection of the prime meridian with the equator), ey (pointing such that the frame is
right-handed), and ez (pointing in the direction of the spin axis), see Fig. 1. The position vector
x of an arbitrary point is:

x = x(r,Ω) = x(r,Ω) ex + y(r,Ω) ey + z(r,Ω) ez , (1)

where (x, y, z) are the planetocentric Cartesian coordinates. As a spherical geometry is exploited
extensively in this article, we prefer to use planetocentric spherical coordinates as variables.
These are given by the planetocentric radius r and the angular planetocentric spherical direction
Ω = (ϕ, λ), which substitutes the spherical latitude ϕ and the longitude λ.

We also specify the local North-oriented reference frame (LNORF). This is given by a moving
origin and the orthonormal right-handed basis composed of vectors er (pointing radially out-
ward), eϕ (pointing to the North), and eλ (pointing to the West); see Fig. 1. The base vectors
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Figure 1: Illustration of reference frames and coordinates. O is the origin of the planetocentric Cartesian reference
frame. The point P is an evaluation point and the point Q represents an integration point. PN stands for the
lunar North pole.

(er, eϕ, eλ) change with the angular planetocentric spherical direction Ω and are related to the
planetocentric Cartesian base vectors (ex, ey, ez) as (Simmonds, 1994, p. 57):

er(Ω) = cosϕ cosλ ex + cosϕ sinλ ey + sinϕ ez , (2)

eϕ(Ω) = − sinϕ cosλ ex − sinϕ sinλ ey + cosϕ ez , (3)

eλ(Ω) = sinλ ex − cosλ ey . (4)

We distinguish two basic types of points; see Fig. 1: 1) We evaluate gravitational field
quantities at a computation point, designated by the spherical triplet (r,Ω); 2) An integration
point defines the position of a surface integration element defined by the planetocentric spherical
coordinates (R,Ω′). The symbol R stands for the radius of the Brillouin sphere, which fully
encloses all gravitating masses of an attracting body (e.g., Sansò and Sideris, 2013, Sect. 3.2).

Two substitutions are used throughout this article:

t = t(r,R) =
R

r
, r ≥ R , (5)

u = u(Ω,Ω′) = cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos(λ′ − λ) . (6)

The symbol ψ represents the spherical distance between the computational point and the in-
tegration element. The two substitutions of Eqs. (5) and (6) are often complemented by the
direct/forward azimuth α, which is measured clockwise from North; see Fig. 1.
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1.2. Radial boundary-value problem and its analytical solution

The disturbing gravitational potential T = W − U , where W is the actual gravity potential
and U is the normal gravity potential, is a fundamental scalar quantity of the gravitational field.
The radial boundary-value problem (BVP) aims at determining T on the surface of and outside
the Brillouin sphere; T thus fulfils Laplace’s equation. The boundary condition T k, i.e., the k-th
order radial derivative of T , is continuous on the Brillouin sphere. In addition, the regularity
condition is valid at infinity. Mathematically, we can formulate the radial BVP as:

∇2T (r,Ω) = 0 , ∀ r > R , (7)

T k(r,Ω) =
∂kT (r,Ω)

∂rk
, ∀r = R , (8)

lim
r→∞

T (r,Ω) = 0 . (9)

The values of k in Eq. (8) are restricted to non-negative integers, i.e., k ∈ Z∗. These specify
the boundary conditions that can be expanded in terms of spherical harmonics as:

T k(R,Ω) =

∞∑
n=0

T kn (R,Ω) , (10)

with the corresponding n-th degree spherical harmonic:

T kn (R,Ω) = (−1)k
GM

ak+1

( a
R

)n+k+1 (n+ k)!

n!

+n∑
m=−n

∆C̄n,m Ȳn,m(Ω) , (11)

where G stands for the universal gravitational constant, M is the mass of the gravitating body,
a represents the major semi-axis of the reference ellipsoid, ∆C̄n,m is the 4π fully normalised
spherical harmonic coefficient of degree n and order m (reduced by the corresponding coefficient
of the normal gravitational field), and Ȳn,m is the 4π normalised spherical harmonic.

An analytical solution of the radial BVP of Eqs. (7)-(9) can be found in the form of the
integral transformation:

T (r,Ω) = (−1)k
Rk

4π

∫
Ω′
T k(R,Ω′) Hk(t, u) dΩ′ . (12)

The boundary condition T k is weighted by the integral kernel (Green’s function) Hk, which is
isotropic, i.e., it depends only on the spherical distance ψ, and given the value of t. The integral
kernel can be defined compactly by the spectral relation:

Hk(t, u) =
∞∑
n=0

tn+1 (2n+ 1) n!

(n+ k)!
Pn,0(u) , (13)

where Pn,0 is the un-normalised associated Legendre function of the first kind (also known as
the Legendre polynomial of n-th degree).

Solutions to the radial BVP of Eqs. (7)-(9) represent the Abel-Poisson integral for k = 0
(Kellogg, 1929, pp. 240-242) and the extended Hotine integral for k = 1 (Hotine, 1969, Chap. 29).
Martinec (2003) provided the analytical solution for the vertical-vertical gradiometric BVP that
corresponds to k = 2. In addition, Šprlák and Novák (2016) found the analytical solution for
the vertical-vertical-vertical gravitational curvature BVP being consistent with k = 3. Spatial
forms of the isotropic kernels for these radial BVPs have also been provided, see Appendix A.
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1.3. GRAIL mission observables

GRAIL (Zuber et al., 2013) was launched on 10 September 2011. It consisted of two and
almost identical spacecraft called Ebb (GRAIL–A) and Flow (GRAIL–B). They arrived at and
started orbiting the Moon on 31 December 2011 and 1 January 2012, respectively.

Mapping the lunar gravitational field by GRAIL was performed in two phases. The Primary
Mission started on 1 March 2012 and ended on 29 May 2012. The satellites orbited at an
average altitude of ∼55 km above the lunar surface and their separation varied from 80 km to
220 km. The Extended Mission began on 30 August 2012 and terminated on 14 December 2012.
Tracking data were collected at an average altitude of ∼20 km and as low as ∼11 km, with an
inter-satellite distance of 30 km and 75 km, towards the end of the mission.

The GRAIL observables were collected by the Deep Space Network (DSN) and the Lunar
Gravity Ranging System (LGRS). The DSN provided the one-way X band and the two-way S
band Doppler tracking data. These were processed and transformed into the positions of Ebb
and Flow in the planetocentric Cartesian reference system by NASA (cf. Eq. (1)). In addition,
the velocity and acceleration vectors were obtained by differentiating the planetocentric position
with respect to time, i.e.:

ẋ = ẋ(r,Ω) = ẋ(r,Ω) ex + ẏ(r,Ω) ey + ż(r,Ω) ez , (14)

ẍ = ẍ(r,Ω) = ẍ(r,Ω) ex + ÿ(r,Ω) ey + z̈(r,Ω) ez . (15)

The LGRS exploited the Ka-band microwave ranging between the two GRAIL satellites. Its
measurements resulted in a time series of the inter-satellite range ρ, range-rate ρ̇, and range-
acceleration ρ̈ (Hajela, 1979; Rummel, 1980):

ρ = ρ(r1,Ω1, r2,Ω2) =
∣∣x(r2,Ω2)− x(r1,Ω1)

∣∣ , (16)

ρ̇ = ρ̇(r1,Ω1, r2,Ω2) =
[
ẋ(r2,Ω2)− ẋ(r1,Ω1)

]
· b , (17)

ρ̈ = ρ̈(r1,Ω1, r2,Ω2) =
[
ẍ(r2,Ω2)− ẍ(r1,Ω1)

]
· b +

∣∣ẋ(r2,Ω2)− ẋ(r1,Ω1)
∣∣2 − ρ̇2

ρ
. (18)

Here, the subscripts 1 and 2 distinguish the Ebb and Flow spacecraft, respectively. The symbol
b stands for the unit inter-satellite LoS vector, defined as:

b =
x(r2,Ω2)− x(r1,Ω1)

ρ
= bx ex + by ey + bz ez , (19)

with bx = bx(r1,Ω1, r2,Ω2) = (x2 − x1)/ρ, by = by(r1,Ω1, r2,Ω2) = (y2 − y1)/ρ, and bz =
bz(r1,Ω1, r2,Ω2) = (z2 − z1)/ρ being the components of b in the planetocentric Cartesian refer-
ence frame.

The DSN and LGRS measurements have to be related to the disturbing gravitational po-
tential T to perform any modelling. The required mathematical connection provides the LoS
disturbing gravitational acceleration, i.e., the difference of the disturbing gravitational gradients
projected onto the LoS (e.g., Hajela, 1979; Rummel, 1980; Garcia, 2002; Keller and Sharifi,
2005):

[
∇T (r2,Ω2)−∇T (r1,Ω1)

]
· b = ρ̈−

∣∣ẋ(r2,Ω2)− ẋ(r1,Ω1)
∣∣2 − ρ̇2

ρ

−
[
∇U(r2,Ω2)−∇U(r1,Ω1)

]
· b . (20)
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The last term on the right-hand side of Eq. (20) is the effect of the normal (reference) gravita-
tional field.

Han (2013) derived an identical formulation, but replaced the second term on the right-
hand side of our Eq. (20) with the inter-satellite velocity vectors. He also provided an error
analysis of computing LoS gravitational acceleration considering range acceleration measurement
noise, orbital state vector error, misalignment error, effects of non-conservative forces and time-
variable gravitational acceleration. He found that the range acceleration measurement noise is
the dominant error source in LoS gravitational acceleration at high frequencies (> 0.01 Hz that
corresponds to the spherical harmonic degree greater than ∼100). In the subsequent sections,
we present a method of inverting LoS gravitational acceleration computed after Han (2013) and
results from actual GRAIL range acceleration and orbital state vector data.

2. Mathematical model for inverting LoS gravitational acceleration

2.1. Integral transformations

We show the mathematical link between the LoS disturbing gravitational acceleration and
the radial derivatives of the disturbing gravitational potential. For this purpose, we rewrite the
differential operator on the left-hand side of Eq. (20) as follows (e.g., Šprlák and Novák, 2014):

δ
[
∇ •

]
· b = δ

[
br

∂

∂r
+ bϕ

1

r

∂

∂ϕ
− bλ

1

r cosϕ

∂

∂λ

]

=
1

R
δ

[
− br t2

∂

∂t
+
(
bϕ cosα − bλ sinα

)
t
√

1− u2
∂

∂u

]
, (21)

where δ represents the difference of the same function at two different locations (r1,Ω1) and
(r2,Ω2). The function, to which the gradient (nabla) operator is applied, is substituted by the
bullet on the left-hand side of Eq. (21). We omit the bullet symbol on the right-hand side, as
the action of the partial derivatives on the function is implicit.

Equation (21) specifies the LoS gravitational differential operator in the LNORF. The unit
inter-satellite LoS vector and the gradient operator in this reference frame are (e.g., Casotto and
Fantino, 2009):

b = br er + bϕ eϕ + bλ eλ, ∇ =
∂

∂r
er +

1

r

∂

∂ϕ
eϕ −

1

r cosϕ
eλ . (22)

The components of b in the LNORF, i.e., the scalars br = br(r1,Ω1, r2,Ω2), bϕ = bϕ(r1,Ω1, r2,Ω2),
and bλ = bλ(r1,Ω1, r2,Ω2), differ from their counterparts (bx, by, bz) in the planetocentric Carte-
sian coordinate system. The transformation between the components (bx, by, bz) and (br, bϕ, bλ)
can be found by substituting bi → ei, i ∈ {x, y, z}, and bµ → eµ, µ ∈ {r, ϕ, λ}, in Eqs. (2)-(4).
We also note that the orientation of the LNORFs at Ebb and Flow is not identical. Therefore,
the components (br, bϕ, bλ) have to be computed separately for each of the GRAIL satellites.

The expression after the first equality in Eq. (21) defines the differential operator of the
LoS gravitational acceleration in terms of the planetocentric spherical coordinates (r,Ω). This
form is of utility when working with spherical harmonic expansions. For the GFM by integral
transformations, representation in terms of the variables (t, u, α), given by the last expression
of Eq. (21), is more suitable. Applying this form of the differential operator to the analytical
solution of the radial BVP of Eq. (12), we obtain:

δ
[
∇T (r,Ω)

]
· b = (−1)k

Rk

4π

∫
Ω′
T k(R,Ω′) δ

[
∇Hk(t, u)

]
· b dΩ′
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= (−1)k
Rk−1

4π

∫
Ω′
T k(R,Ω′) δ

[
br Htk(t, u) +

(
bϕ cosα− bλ sinα

)
Huk(t, u)

]
dΩ′ . (23)

The last equation represents the mathematical relationship between the LoS disturbing gravi-
tational acceleration and the radial derivatives of the disturbing gravitational potential.

The resulting sub-integral kernel δ
[
∇Hk

]
·b is a complicated mathematical function of three

points, i.e., the two GRAIL spacecraft (r1,Ω1), (r2,Ω2), and the integration point (R,Ω′). We
can decompose the sub-integral kernel into three independent parts. The kernels Htk and Huk
represent the first, isotropic, part and read:

Htk(t, u) = −t2 ∂
∂t
Hk(t, u) = −

∞∑
n=0

tn+2 (2n+ 1)(n+ 1) n!

(n+ k)!
Pn,0(u) , (24)

Huk(t, u) = t
√

1− u2
∂

∂u
Hk(t, u) =

∞∑
n=1

tn+2 (2n+ 1) n!

(n+ k)!
Pn,1(u) . (25)

The spatial (closed) forms of the isotropic kernel functions and their limiting values for k =
0, 1, 2, 3 are listed in Appendix A.

The second, non-isotropic (i.e., azimuth-dependent) part of the sub-integral kernel δ
[
∇Hk

]
·b

originates from the trigonometric functions of α, which are (e.g., Chauvenet, 1875, pp. 151-154):

cosα =
1√

1− u2

[
sinϕ′ cosϕ− cosϕ′ sinϕ cos(λ′ − λ)

]
, (26)

sinα =
1√

1− u2
cosϕ′ sin(λ′ − λ) . (27)

The third, heterogeneous (i.e., position-dependent) part is attributed to the unit inter-satellite
LoS vector components (br, bϕ, bλ).

The sub-integral kernel δ
[
∇H0

]
· b is depicted in Fig. 2 as an example of its complicated

spatial behaviour. We selected one representative formation of the two GRAIL satellites from
the Extended Mission that defines the locations of the computational points. Here, the plane-
tocentric spherical coordinates of Ebb are r1 ≈ 1753544.3 m, ϕ1 ≈ 44.31◦, λ1 ≈ 320.27◦, while
those of Flow are r2 ≈ 1753688.3 m, ϕ2 ≈ 46.08◦, λ2 ≈ 320.25◦. The sub-integral kernel func-
tion was computed in the area ϕ′ ∈ [42◦, 48◦] and λ′ ∈ [−53◦,−27◦] with the equiangular steps
∆ϕ′ = ∆λ′ = 0.01◦. This fine spatial resolution was chosen simply for illustrative purposes in
Fig. 2. We employed the isotropic kernels Ht0 and Hu0 by the spatial forms of Eqs. (A.5) and
(A.11) in the calculations.

Figure 2 reveals the azimuthal dependence of the kernel δ
[
∇H0

]
· b. The most pronounced

values occur in the along-track direction, which almost coincides with the direction of the spher-
ical latitude. The kernel values are zero at the locations of Ebb and Flow. The local extrema
can be found in the distance of few tenths of arc-degrees from the computational points. The
kernel values then decrease or increase to zero when increasing the distance from Ebb and Flow.
We can also see that the magnitudes of the sub-integral kernel are reduced in the cross-track
(longitude) direction.

Similar spatial behaviour can be observed for the GRAIL satellites at higher altitudes, e.g.,
such as for the Primary Mission, but the corresponding kernel is much smoother. The sub-
integral kernel functions for the higher-order radial derivatives of the disturbing gravitational
potential are also characterised by lower spatial gradients. In particular, their zero crossings
occur further from the computation points. These cases are not plotted here.
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Figure 2: Spatial behaviour of the sub-integral kernel δ
[
∇H0

]
· b. The kernel values are dimensionless as they

were divided by the radius of the Brillouin sphere R = 1738528 m. Positions of Ebb and Flow are shown by the
lower and upper crosses. The black solid line indicates the zero values of the sub-integral kernel function.

2.2. Spherical harmonic representation of truncation errors

The BVP-based integral transformation of Eq. (23) assumes that the radial derivatives of
the disturbing gravitational potential are known continuously over the whole Brillouin sphere
(i.e., the full spatial angle Ω′). In practical calculations, however, the input data cover only
limited geographical areas, which leads to a truncated integration (e.g., Molodensky et al., 1962;
Novák et al., 2001) and hence a truncation error. Spatially restricted integrals are nevertheless
favourable for solving inverse problems because they are numerically more stable (e.g., Tenzer
and Novák, 2008). Accurate gravitational field modelling by truncated integration requires
quantifying this neglected far-zone part, i.e., the truncation error. In this section, we derive
efficient formulas for the numerical evaluation of the truncation errors from global GFM.

The truncated integration at the computation point is performed in the domain Ω′0 defined
by α ∈ [0◦, 180◦] and ψ ∈ [0◦, ψ0], where ψ0 is the size of a spherical cap surrounding each
computation point. It results in the contribution of the near zones. The integration in the
complementary domain Ω′−Ω′0, with α ∈ [0◦, 180◦] and ψ ∈ (ψ0, 180◦], represents the truncation
error or the effect of the far zones.

The situation becomes more complex for the LoS disturbing gravitational acceleration via
Eq. (23), as follows. Evaluation of this functional involves two GRAIL satellites and thus
two computation points. Therefore, the same-sized spherical caps centred on Ebb and Flow
specify two (overlapping) domains Ω′1 and Ω′2 and their far-zone complements Ω′ − Ω′1 and
Ω′ − Ω′2. This leads to the spatial (integral) representation of the truncation error for the
integral transformation of Eq. (23) in the form:{
δ
[
∇T (r,Ω)

]
· b
}

Ω′−Ω′1
Ω′−Ω′2

= (−1)k
Rk−1

4π

{∫
Ω′−Ω′2

T k(R,Ω′)
[
br2 Htk(t2, u2) +

(
bϕ2 cosα2 − bλ2 sinα2

)
Huk(t2, u2)

]
dΩ′

8



−
∫

Ω′−Ω′1

T k(R,Ω′)
[
br1 Htk(t1, u1) +

(
bϕ1 cosα1 − bλ1 sinα1

)
Huk(t1, u1)

]
dΩ′

}

= (−1)k
Rk−1

4π

∫
Ω′
T k(R,Ω′) δ

[
br ∆Htk(t, u, u0)

+
(
bϕ cosα− bλ sinα

)
∆Huk(t, u, u0)

]
dΩ′ . (28)

The two independent integrals after the first equality are performed over the far zones Ω′−Ω′1
and Ω′ − Ω′2. The formulation in terms of the difference operator δ on the right-hand-side of
Eq. (28) is possible by introducing the isotropic error kernels ∆Htk and ∆Huk , when only one
integral over the full spatial angle Ω′ is restored. The isotropic error kernels are:

∆Htk(t, u, u0) =

{
0 , u0 ≤ u ≤ 1

Htk(t, u) , −1 ≤ u < u0

=
∞∑
n=0

2n+ 1

2
Qt,kn (t, u0) Pn,0(u) , (29)

∆Huk(t, u, u0) =

{
0 , u0 ≤ u ≤ 1

Huk(t, u) , −1 ≤ u < u0

=

∞∑
n=1

2n+ 1

2
Qu,kn (t, u0) Pn,1(u) , (30)

where u0 = cosψ0. In the spatial form, these represent discontinuous functions that are identical
to Htk and Huk , except for ψ ∈ [0◦, ψ0] when they are zero. In the spectral form, the isotropic
error kernels represent Legendre series (e.g., Hobson, 1965, Chap. 7) with the basis functions
Pn,0 and Pn,1, see also Eqs. (24) and (25).

The coefficients Qt,kn and Qu,kn of these series expansions, also termed truncation error coef-
ficients in the geodetic literature (e.g., Molodensky et al., 1962), are:

Qt,kn (t, u0) =

∫ +1

−1
∆Htk(t, u, u0) Pn,0(u) du =

∫ u0

−1
Htk(t, u) Pn,0(u) du

= −t2 ∂

∂t
Qkn(t, u0) , n ≥ 0 , (31)

Qu,kn (t, u0) =
1

n(n+ 1)

∫ +1

−1
∆Huk(t, u, u0) Pn,1(u) du =

1

n(n+ 1)

∫ u0

−1
Huk(t, u) Pn,1(u) du

= t

[√
1− u2

0

n(n+ 1)
Hk(t, u0) Pn,1(u0) +Qkn(t, u0)

]
, n > 0 . (32)

Equation (31) follows from the orthogonality relations
∫ +1
−1 Pn,0(u) Pm,0(u) du = 2

2n+1 and the
definition of the isotropic kernel Htk by Eq. (24). The formula (32) results from an equivalent

orthogonality relation
∫ +1
−1 Pn,1(u) Pm,1(u) du = 2n(n+1)

2n+1 together with Eq. (25) for the isotropic
kernel Huk and integration by parts.

The right-hand-sides of Eqs. (31) and (32) show that Qt,kn and Qu,kn are related to another set

of coefficients Qkn. In other words, the problem of determining Qt,kn and Qu,kn reduces to finding
a formulation only for Qkn. This simplifies practical calculations because the truncation error
coefficients Qkn correspond to the original analytical solutions of the radial BVP, see Eq. (12).
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With the help of the isotropic kernel Hk defined by Eq. (13), we obtain:

Qkn(t, u0) =

∫ u0

−1
Hk(t, u) Pn,0(u) du =

∞∑
m=0

tm+1 (2m+ 1) m!

(m+ k)!
en,m(u0) , n ≥ 0 . (33)

The functions en,m =
∫ u0
−1 Pn,0(u) Pm,0(u) du are known as Paul’s coefficients (Paul, 1973).

Based on the type of isotropic kernel (spectral or spatial), we distinguish two approaches for

calculating Qkn, Qt,kn , and Qu,kn . In case of the spectral isotropic kernels, we directly exploit the
right-hand-sides of Eq. (31)-(33) within the limited spectral band m ∈ [Nmin, Nmax]. For the

spatial isotropic kernels, the coefficients Qt,kn and Qu,kn can be determined from the recursions
of Qkn. Recurrences for Q0

n, i.e., for the Abel-Poison integral, can be found in (Pavlis, 1991). In
addition, Jekeli (1979) and Pavlis (1991) derived recurrence relations for the truncation error
coefficients Q1

n, i.e., for the Hotine (1969) integral. Truncation error coefficients for Qkn with
k ≥ 2 can be obtained by the procedure described in (Sünkel, 1981).

Having now defined the isotropic error kernels and the truncation error coefficients, we can
find the spherical harmonic expansion of the truncation error. First, we insert the spectral forms
of ∆Htk and ∆Huk by Eqs. (29) and (30) into the last integral of Eq. (28). Next, assuming absolute
convergence of these series, we change the order of integrations and summations. This operation
gives three global integrals (e.g., Heiskanen and Moritz, 1967; Hagiwara, 1972; Thalhammer,
1994):

2n+ 1

4π

∫
Ω′
T k(R,Ω′) Pn,0(u) dΩ′ = T kn (R,Ω) , (34)

2n+ 1

4π

∫
Ω′
T k(R,Ω′) Pn,1(u) cosα dΩ′ =

∂T kn (R,Ω)

∂ϕ
, (35)

2n+ 1

4π

∫
Ω′
T k(R,Ω′) Pn,1(u) sinα dΩ′ =

1

cosϕ

∂T kn (R,Ω)

∂λ
. (36)

Finally, by exploiting the right-hand-sides of Eqs. (34)-(36), we arrive at the expansion:{
δ
[
∇T (r,Ω)

]
· b
}

Ω′−Ω′1
Ω′−Ω′2

= (−1)k
Rk−1

2
δ

[
br

∞∑
n=0

Qt,kn (t, u0) T kn (R,Ω)

+bϕ

∞∑
n=1

Qu,kn (t, u0)
∂

∂ϕ
T kn (R,Ω)− bλ

∞∑
n=1

Qu,kn (t, u0)
1

cosϕ

∂

∂λ
T kn (R,Ω)

]
. (37)

To understand some basic properties of the truncation error by Eq. (37), we investigated
the behaviour of the coefficients Qt,0n and Qu,0n . These were computed for the spatial isotropic
kernels Ht0 and Hu0 of Eqs. (A.5) and (A.11) with R = 1738528 m and r = 1753600 m. The
spherical radius R defines the lunar Brillouin sphere employed in this article, see Sect. 3. The
spherical radius r corresponds to the satellite altitude of ∼15 km above the Brillouin sphere, in
consistency with the investigations of the sub-integral kernel in Fig. 2. We also considered three
integration radii ψ0 = 1◦, 5◦, and 10◦.

Examples of the truncation error coefficients as a function of spherical harmonic degree
n ∈ [0, 360] are illustrated in Fig. 3. The magnitudes of the coefficients are largest for low degrees
and thus affect the size of the truncation error most. By increasing the spherical harmonic degree,
the coefficient values oscillate around zero (and tend to zero for n → ∞). The magnitudes of
Qt,0n and Qu,0n , and therefore the size of the truncation error, are more pronounced for smaller
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Figure 3: Truncation error coefficients: a) Qt,0
n and b) Qu,0

n for the integration radii ψ0 = 1◦ (black), 5◦ (blue),
and 10◦ (red).

integration radii. Another parameter affecting the amplitudes of the truncation error coefficients
is the spherical radius r or, equivalently, the satellite altitude, which exemplifies the complexity
of the truncation error synthesis by Eq. (37).

2.3. Integral estimator linearisation

We now establish a linear mathematical model between the LoS disturbing gravitational
acceleration and the radial derivatives of the disturbing gravitational potential. For this purpose,
we initially formulate the remove-compute-restore (RCR) estimator. In general, this estimator
decomposes any integral transformation in both the spatial and the spectral domains (e.g., Rapp
and Rummel, 1975; Sansò and Sideris, 2013).

The spatial decomposition means splitting the integral transformation of Eq. (23) into the
effects of the near zones and the truncation errors, see Sect. 2.2. The spectral decomposition
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divides the infinite spherical harmonic spectrum of the boundary condition T k, see Eqs. (10)
and (11), into two parts: 1) the low-frequency part n ∈ [0, N ] and 2) the high-frequency part
n ∈ [N + 1,∞), where N is the maximum spherical harmonic degree of the low-frequency part.
These two operations provide the LoS disturbing gravitational acceleration in the following form:

δ
[
∇T (r,Ω)

]
· b

= (−1)k
Rk−1

4π

{∫
Ω′2

∞∑
n=N+1

T kn (R,Ω′)
[
br2 Htk(t2, u2) +

(
bϕ2 cosα2 − bλ2 sinα2

)
Huk(t2, u2)

]
dΩ′

−
∫

Ω′1

∞∑
n=N+1

T kn (R,Ω′)
[
br1 Htk(t1, u1) +

(
bϕ1 cosα1 − bλ1 sinα1

)
Huk(t1, u1)

]
dΩ′

}

+
1

R
δ

[
− br

N∑
n=0

tn+2(n+ 1) Tn(R,Ω) + bϕ

N∑
n=1

tn+2 ∂

∂ϕ
Tn(R,Ω)

−bλ
N∑
n=1

tn+2 1

cosϕ

∂

∂λ
Tn(R,Ω)

]

+(−1)k
Rk−1

2
δ

[
br

∞∑
n=N+1

Qt,kn (t, u0) T kn (R,Ω) + bϕ

∞∑
n=N+1

Qu,kn (t, u0)
∂

∂ϕ
T kn (R,Ω)

−bλ
∞∑

n=N+1

Qu,kn (t, u0)
1

cosϕ

∂

∂λ
T kn (R,Ω)

]
. (38)

Equation (38) represents a complicated expression that originates from the general character
of the LoS disturbing gravitational acceleration. When neglecting the difference operator δ, it
degenerates into:

• the negative gravity disturbance (for br = 1, bϕ = bλ = 0) ,

• the South-North component of the vertical deflection (for bϕ = 1, br = bλ = 0) ,

• the East-West component of the vertical deflection (for bλ = 1, br = bϕ = 0) ,

• the total vertical deflection vector (for bϕ = bλ = 1, br = 0) ,

• the total disturbance gravity vector (for br = bϕ = bλ = 1) .

Thus, the mathematical apparatus in this article envelopes not only satellite observations, but
also geodetic quantities collected by gravimetric, astronomic, and positioning instruments (e.g.,
Torge, 1989; Grafarend et al., 2006; Forsberg and Olesen, 2010; Timmen, 2010; Torge and Müller,
2012).

Being mathematically equivalent with the integral transformation of Eq. (23), the RCR
estimator of Eq. (38) comprises three different terms. These are distinguished by the three
pairs of large brackets. The first (integral) term on the right-hand-side represents the high-
frequency part of the near zone LoS disturbing gravitational acceleration. The second (spherical
harmonic synthesis) term is the low-frequency LoS disturbing gravitational acceleration. The
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third (spherical harmonic synthesis) term is the truncation error in the spectral band n ∈
[N + 1,∞), see Eq. (37). We acknowledge that numerous alternatives to the RCR estimator of
Eq. (38) can be derived by modifying the isotropic kernels Htk and Huk (e.g., Jekeli, 1981; Vańıček
and Featherstone, 1998; Evans and Featherstone, 2000; Sjöberg, 2003; Sjöberg and Featherstone,
2004; Šprlák, 2010).

The above three-term separation leads to the desired linear model (e.g., Grafarend, 2006,
Sect. 2.1):

l = y − y1 − yk2 = Ak xk + ε . (39)

The vector xk substitutes the values of the radial derivatives of the disturbing gravitational
potential. The design matrix Ak is composed of the sub-integral kernel values, including the
term in front of the curly bracket in Eq. (38). The symbol ε stands for the error vector and we
assume that the errors are Gaussian with zero mean.

The observation vector l on the left-hand-side of Eq. (39) is determined by the LoS disturbing
gravitational acceleration vector y, which is reduced by its low-frequency and the high-frequency
truncation error counterparts y1 and yk2 . This subtraction is possible because the vectors y1 and
y2 can be synthesised from an already-available global GFM and thus are a priori known. In
practical computations, the vector yk2 , i.e., the high-frequency truncation error is neglected. We
emphasise, however, that this is only permitted by “optimally” selecting the size of the spherical
cap ψ0 and the maximum spherical harmonic degree of the low-frequency part N . On Earth,
this is often done by comparisons with GPS-levelling data, so the “optimisation” is really only
empirical.

3. Numerical experiments

In this Section, we perform synthetic tests of the upward continuation (direct problem), i.e.,
we validate the integral transformation of Eq. (23) and investigate the accuracy of the RCR
estimator by Eq. (38). Next, we assess the performance of the downward continuation (inverse
problem) and invert actual GRAIL observations to obtain high-resolution regional GFMs. In this
presentation, we restrict the numerical experiments to k = 0 and 1 for brevity. The corresponding
quantities, i.e., the disturbing gravitational potential T 0 and its first radial derivative T 1, are
used in regional studies (e.g., Sugano and Heki, 2004; Goossens et al., 2014; Tenzer et al., 2018).

Throughout these numerical experiments, the normal gravitational field of the Moon was
generated by an equipotential spheroid. It is defined by four parameters: the major semi-axis a
= 1737325.0 m, the minor semi-axis b = 1736789.0 m, the planetocentric gravitational constant
GM = 4902.8×109 m3 s−2, and the angular velocity ω = 2.6617×10−6 rad s−1 as determined
by Ardalan and Karimi (2014).

The LoS disturbing gravitational accelerations depend on the positions of the two GRAIL
satellites and are irregular double-point values. On the other hand, values of T 0 and T 1 are
located at the centres of the integration elements and form equiangular grids on the Brillouin
sphere. We have strictly followed the notion of the Brillouin sphere, because our mathematical
apparatus is based upon the analytical solution of Laplace’s equation, see Sect. 1.2.

The numerical experiments were carried out in the north-western part of the nearside of
the Moon. The area covers the Montes Jura mountain range, see Fig. 4c. We distinguished
between the computational area (bounded by ϕ ∈ [40◦, 50◦] and λ ∈ [−45◦,−35◦]) and data
areas (extending each side of the computational area by integration radii). The characteristics
of the topography and of the gravitational field are summarised by descriptive statistics in Tab. 1
and are mapped in Figs. 4, 5a and 5b. The adopted radius of the Brillouin sphere R = 1738528
m was determined from the maximum topographic height of 1128 m within the computational
area.
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Quantity Unit Discretisation Min. Max. Mean Std. dev.

T 0 m2 s−2 9/70◦ -8.464 5.376 0.009 1.496

T 1 mGal 9/70◦ -106.869 123.443 -0.175 23.945

H m 9/140◦ -4756 1128 -1495 864

Table 1: Statistics of T 0, T 1, and H (spherical height referred to the sphere of radius 1737400 m) in the
computation area. T 0 and T 1 were synthesised between degrees 200-700 from GL1500E (Konopliv et al., 2014)
on the Brillouin sphere (R = 1738528 m).

315˚ 320˚ 325˚
40˚

45˚

50˚

−4 −3 −2 −1 0 1

km

Figure 4: Map of LOLA topographic heights in the computation area.

3.1. Synthetic tests on the direct problem

3.1.1. Integral transformation

In the first numerical experiment, we checked the correctness of the integral formula by
Eq. (23). Namely, we numerically tested the upward continuation of T 0 and T 1 onto the LoS
disturbing gravitational acceleration.

First, we synthesised equiangular global grids of T 0 and T 1 from the lunar global GFM
GL1500E (Konopliv et al., 2014) on the surface of the Brillouin sphere for the computation area
(R = 1738528 m). We performed the spherical harmonic synthesis between spherical harmonic
degrees 200-700. We restricted the upper bound of the spectral band, because GL1500E grav-
itational field is dominated by noise beyond degree ∼700 (e.g., Konopliv et al., 2014; Lemoine
et al., 2014), see below. The regular grids were calculated with the discretisations of 9/35◦ and
9/70◦. The former discretisation corresponds to the maximum spatial resolution at degree n
=700, while the latter discretisation represents a geometric refinement by one half. The statistics
of the equiangular global grids are in Tab. 2.

Second, the LoS disturbing gravitational acceleration was computed from GL1500E (Kono-
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Quantity (Mission) Unit Discretisation Min. Max. Mean Std. dev.

T 0 m2 s−2 9/35◦ -46.613 61.002 0.000 2.883

9/70◦ -55.715 58.879 0.000 2.883

T 1 mGal 9/35◦ -1425.295 1286.996 -0.026 50.779

9/70◦ -1376.300 1567.109 -0.026 50.779

δ
[
∇T (r,Ω)

]
· b (PM) mGal - -868.288 712.334 0.345 95.104

δ
[
∇T (r,Ω)

]
· b (XM2) mGal - -6852.993 6370.529 7.444 1329.310

Table 2: Statistics of the equiangular global grids of T 0 and T 1 (evaluated globally), and of the LoS disturbing
gravitational acceleration δ

[
∇T (r,Ω)

]
· b (evaluated in the computation area).

pliv et al., 2014) in the spectral band n = 200-700 at the positions of Ebb and Flow. Their
orbits are available at the GRAIL SPICE data archive, see https://naif.jpl.nasa.gov/pub/

naif/pds/data/grail-l-spice-6-v1.0/grlsp_1000/. We considered only satellite locations
within the computational area formed by two orbital datasets: 1) 3696 points of the GRAIL
PM, and 2) 3251 points of the GRAIL EM between the period from 27 October 2012 until 14
December 2012 (XM2). The statistics of the two LoS datasets are listed in Tab. 2.

These two datasets differ significantly by the average altitudes of Ebb and Flow above the
Brillouin sphere. The average altitudes are ∼54 km for PM and ∼21 km for XM2, and span from
∼13 km to ∼88 km. This allowed us to test the integral transformation of Eq. (23) for quite
different geometric/orbital configurations. Orbits from the GRAIL EM between the period from
30 August 2012 until 26 October 2012 (XM1) were not taken into account in the simulation,
because these represent an intermediate geometric scenario between PM and XM2.

Thirdly, the global equiangular grids of T 0 and T 1 were upward continued by the integral
transformation of Eq. (23). This upward continuation was performed with the spatial forms of
the isotropic kernels by Eqs. (A.5), (A.6), (A.11), and (A.12).

Mission Unit Discretisation Min. Max. Mean Std. dev.

PM µGal 9/35◦ -0.015 0.016 0.000 0.002

nGal 9/70◦ 0.003 0.022 0.008 0.004

XM2 µGal 9/35◦ -55.687 52.325 -0.011 5.402

nGal 9/70◦ -2.294 1.771 0.002 0.173

Table 3: Statistics of the differences between the LoS disturbing gravitational acceleration computed by the
numerical integration of T 0 and by spherical harmonic synthesis.

Finally, we compared the values of the LoS disturbing gravitational acceleration computed
by numerical integration with those from spherical harmonic synthesis. Descriptive statistics of
the differences are presented in Table 3 when integrating over the global grids of T 0. Similar
statistical values were also obtained when continuing T 1, but are not presented in Table 3 as
the conclusions remain the same.

The numerical performance of the upward continuation differs among the two datasets.
The PM dataset (with higher average altitude) is characterised by smaller standard deviations
as compared to the results for the XM2 (with much lower satellite altitudes). The distinction
originates from the behaviour of the sub-integral kernel, see Fig. 2. This kernel function possesses
a high spatial gradient towards Ebb and Flow located at low orbits, while it is smoother for
increasing altitudes of the GRAIL satellites. Numerical evaluation of the integral transformation
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of Eq. (23) performs better for smoother functions.
Approximation of the sub-integral kernel can be enhanced by refining the spatial resolution

of equiangular grids; see Tab. 3. This may be applied when solving the direct problem, e.g.,
by a finer sampling of the original grid. For the inverse problem, however, the higher spatial
resolution leads to more unknowns. This, in particular, is undesirable for the GRAIL mission,
because the number of observations is limited and may be even less than twice the amount of
unknowns for the discretisation of 9/70◦, see Sects. 3.2 and 3.3, leading to underdetermined or
poorly conditioned normal equations.

To exploit the integral formula in Eq. (23) for calculations with real data, its performance has
to be confronted with simulated observation errors. The noise of the GRAIL LoS gravitational
acceleration may be defined by the power spectral density (PSD) Q. The mean values of Q are
∼4 µGal2 Hz−1 (for the PM) (Han, 2013) and ∼100 µGal2 Hz−1 (for EM). Assuming the noise
is Gaussian with zero mean, Q can be related to the noise standard deviation σ and the data
sampling in the time domain ∆t as follows:

σ = π

√
Q

2∆t
. (40)

This last expression gives estimates of the noise standard deviations of 2 µGal (for the PM)
and 15 µGal (for EM) for the corresponding data sampling rates of 5 s and 2 s. As a rule of
thumb, performance of a gravitational field modelling approach should be about an order better
than the noise level. This requirement is fulfilled for the PM and XM2 datasets by employing the
discretisation of 9/70◦. Such spatial resolution is a trade-off between accurate approximation of
the integral transformation of Eq. (23) and data redundancy and was therefore employed in the
numerical experiments below.

3.1.2. Synthetic remove-compute-restore test

In this numerical experiment, we investigate the precision of the RCR estimator by Eq. (38).
The spatially limited integration over the residual grids with the sampling of 9/70◦ was carried
out with the spherical cap ψ0 = 5◦. The high-resolution truncation error was synthesised from
GL1500E between degrees n = 200-700 at the positions of Ebb and Flow independently for T 0

and T 1.
The contributions of the limited integration domain and of the truncation error were added

and compared with their “true” counterparts from the global integration (Section 3.1.1). For
both quantities T 0 and T 1, we found comparable standard deviations reaching ∼ 0.1 µGal
for PM and ∼0.9 µGal for XM2. Thus, the corresponding RCR estimators are applicable for
gravitational field modelling as they meet the performance requirement stated above.

Similar numerical experiments were repeated for smaller integration radii ψ0 = 1◦ and 3◦.
For these, we observed a significant increase of the standard deviations exceeding the perfor-
mance criterion. We attribute the degradation of the numerical accuracy to neglect of spherical
harmonic terms beyond degree 700 when synthesising the truncation error, i.e., an omission
error. This is indicated by the behaviour of the truncation error coefficients, see Fig. 3. For
smaller integration radii, these oscillate slowly and possess much higher amplitudes. Conse-
quently, higher-degree spherical harmonic terms are important when evaluating the truncation
error.

3.2. Synthetic inversion of LoS disturbing gravitational acceleration

The purpose of this numerical experiment is to investigate the performance of the downward
continuation for the synthetic lunar gravitational field. We calculated design matrices Ak by the
spatial forms of the isotropic kernels with the integration radii ψ0 = 5◦ (for T 0) and 7◦ (for T 1).
We found these spherical cap sizes preferable, because the magnitudes of the high-frequency
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part (N > 199) of the truncation errors were below the performance requirement of GRAIL
noise and thus may have been neglected.

The observation vectors l comprised 56111 and 80374 entries for T 0 and T 1, respectively.
The unknown vectors xk originated from discretising the Brillouin sphere by the spacing of
9/70◦ in the data areas and were given by 32232 (for k = 0) and 47188 (for k = 1) values.
The recovered grids of T 0 and T 1 were evaluated only in the smaller computational area. This
limitation was necessary because estimates close to the boundaries of the data areas did not
exactly fulfil the linear mathematical model (due the spherical caps extending beyond the data
areas) and were affected by systematic errors.

Least-squares estimates of T 0 and T 1 can be found for the discretised overdetermined equa-
tion systems as:

x̂k = (AT
k P Ak)

−1 AT
k P l , (41)

where P is the weight matrix. To prove this assertion, we exploited the design matrices specified
above. In addition, we calculated Ak without considering any truncated spherical caps around
the computation points (cf. Xu, 1998; Eshagh, 2011; Kingdon and Vańıček, 2011; Shen et al.,
2012). We set the elements of the weight matrix to (2 µGal)−2 for the PM and (15 µGal)−2 for
the EM throughout the numerical experiments.

We found that reasonable least-squares solutions could be obtained for the design matrices
with the spherical caps, while the least-squares estimates were useless when neglecting cap sizes.
We emphasise that the least-squares solutions were found for the non-perturbed observation
vectors calculated by the upward continuation. Such poor performance can be explained by the
condition numbers of the normal matrices AT

kPAk. For the spherical cap scenario, the condition
numbers reached ∼ 1010. This is five orders lower than the threshold of ∼ 1015 for the loss of
all significant digits in double precision arithmetic. The normal matrices could be still inverted
and the least-squares estimates appeared feasible. Without considering the cap sizes, however,
the least-squares method completely failed, as the condition numbers were greater than ∼ 1020.
Thus, considering a spherical cap may partially stabilise the system of normal equations.

In reality, the observation vector l is affected by perturbations, e.g., due to data noise or
rounding errors. In addition, the linear mathematical model may not be exact, e.g., due to
approximation errors. In such cases, we cannot find any reasonable least-squares estimate and
the inverse problem is indeed ill-posed.

Numerous methods have been developed for solving ill-posed problems; see (e.g., Bouman,
1998; Hansen, 1998; Xu, 1998; Koch and Kusche, 2002; Xu et al., 2006; Xu, 2009; Freeden
and Nashed, 2018) and the references therein. We employed Tikhonov-Phillips regularisation
providing the estimate of xk as (Phillips, 1962; Tikhonov, 1963a,b):

x̂kT = (AT
k P Ak + γ2 I)−1 AT

k P l , (42)

with γ2 being the regularisation parameter. In general, regularised estimates are biased. We
determined the regularisation bias (standard deviation of which was about an order lower than
that of xk throughout the numerical experiments) by the formula (Shen et al., 2012):

b̂k = −γ2(AT
k P Ak + γ2 I)−1 x̂kT , (43)

that led to the bias-corrected regularised estimates of the form:

x̂kBC = x̂kT − b̂k . (44)

Probably the most crucial parameter of the regularisation is γ2, which was computed by
the L-curve criterion (Miller, 1970). All regularisations were performed by the MATLAB pack-
age Regularisation Tools (Hansen, 2007), which factorises the design matrix by singular value
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decomposition.
The synthetic observation vectors l were represented by the LoS disturbing gravitational

acceleration between degrees n = 200-700 synthesised from GL1500E. The values of l were
contaminated by Gaussian noise with zero mean and standard deviations of 2 µGal for the PM
and 15 µGal for the EM. These white noise characteristics are close to the stochastic properties
of the real GRAIL observations (e.g., Konopliv et al., 2014; Lemoine et al., 2014).

The statistics of l and of the white noise in the data area for T 0 are presented in Table 4. It
can be seen that the extrema of the high-degree LoS disturbing gravitational accelerations reach
several mGals for the EM and are smaller by about an order for the PM. The relative noise,
i.e., the ratio of the standard deviation of the white noise to that of the signal, reaches ∼2.9%
for PM, ∼2.3% for XM1, and ∼1.5% for XM2.

Quantity (Mission) Min. Max. Mean Std. dev.

l (PM) -868.288 755.462 -0.008 68.128

l (XM1) -5296.752 6049.590 -0.669 629.371

l (XM2) -7547.333 6989.405 -0.730 964.769

ε (PM) -7.544 7.424 0.011 1.995

ε (XM1) -58.067 58.952 -0.022 14.968

ε (XM2) -62.396 59.714 0.132 14.952

Table 4: Statistics (in µGal) of the observation vector l and the white noise in the data area for T 0. The values
of l were synthesised from GL1500E between degrees 200-700.

Quantity Unit Min. Max. Mean Std. dev.

T 0 m2 s−2 -8.464 5.376 0.009 1.496

∆T 0 -1.686 1.403 -0.021 0.363

T 1 mGal -106.869 123.443 -0.175 23.945

∆T 1 -37.232 36.662 0.116 7.783

Table 5: Statistics of the true values (synthesised from GL1500E) and the differences between the inversion
estimates and the true values (designated by ∆T k, k = 0, 1).

The statistics of the synthetic downward continuation in the computational area are sum-
marised in Table 5. The disturbing gravitational potential and its first radial derivative can be
recovered with accuracies reaching 0.363 m2 s−2 and 7.783 mGal. This corresponds to 24% and
33% of the respective signal variations. The maps of the true values, estimates and their differ-
ences are illustrated in Fig. 5. We observe that the shapes of all features are preserved within
the computation area (red dashed box), proving the performance of the simulated inversion.
The differences are higher beyond the computation area, some circular features, such as those
with the centres at ϕ = 53◦, λ = −43.5◦ or ϕ = 49◦, λ = −34.5◦, could still be recovered.

3.3. Inversion of GRAIL LoS disturbing gravitational acceleration

The aim of this numerical experiment is the regional recovery of T 0 and T 1 from realistic
GRAIL measurements. For the recovery of the static gravitational field, the real observables have
to be corrected by non-conservative and time-variable forces. In addition, the LoS disturbing
gravitational acceleration from the GRAIL DSN and LGRS data maybe significantly biased.
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Figure 5: Maps of: a) T 0 synthesised from GL1500E, b) T 1 synthesised from GL1500E, c) T 0 calculated by
inversion, d) T 1 calculated by inversion, e) ∆T 0, and f) ∆T 1. All quantities represent high-frequency part of the
gravitational field between degrees 200-700. The red dashed line bounds the computation area.

The bias originates from the second term on the right-hand-side of Eq. (20), termed as the
orbital correction term.

The non-conservative forces, the time-variable forces and the orbital correction term bias
are prominent only in the low frequencies (e.g., Han, 2013). These effects could be removed by
appropriate high-pass filtering of GRAIL LoS disturbing gravitational acceleration in the time
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domain. The cut-off frequency f of the high-pass filter could be selected based on the maximum
spherical harmonic degree of the low-frequency part N of the RCR estimator, see Eq. (38).
This is permitted by the approximate relationship between the frequency f and the spherical
harmonic degree n (e.g., McKenzie and Nimmo, 1997):

n ≈ 2πf(R+H)

v
, (45)

where H is the average altitude of the twin satellites and v is their average speed.
However, a gravitational signal available as a time series and filtered within the frequency

band f ∈ [f1, f2] does not match exactly with the gravitational signal in the spherical har-
monic band n ∈ [N1, N2], where N1 and N2 are calculated by Eq. (45). This inconsistency is
investigated by Cai et al. (2013).

To address the characteristics of the GRAIL observables, we calculated the static LoS dis-
turbing gravitational acceleration using the following procedure:

1. The GRAIL DSN and LGRS data were extracted from the SPICE archive and divided
into daily arcs. We preserved only those daily time series when at least one sub-satellite
point of the GRAIL twin satellites occurred in the data areas.

2. The preserved daily time series were combined to form continuous 2-7 days arc segments.
The GRAIL LoS disturbing gravitational acceleration was calculated from the DSN and
LGRS by Eq. (20).

3. Power spectral density was estimated by Welch’s method for each segment and visually
inspected. The segments were subdivided if the PSD reached greater values than the noise
(i.e., ∼2 µGal Hz−1/2 for the PM and ∼15 µGal Hz−1/2 for EM), e.g., due to outliers or
the angular momentum dump manoeuvres (e.g., Konopliv et al., 2013). In total, 36 arc
sub-segments were formed: 15 for the PM and 21 for EM.

4. A high-pass Butterworth filter of 8th-degree was applied to the GRAIL LoS disturbing
gravitational acceleration in each sub-segment. We selected the cut-off (minimum) fre-
quency of 0.02 Hz of the high-pass filter, because the time-variable and conservative forces
are below the noise level of GRAIL LoS gravitational acceleration beyond this frequency
(Han, 2013).

5. The modelled LoS disturbing gravitational acceleration was calculated from GL1500E. The
computation was performed at each of the locations of the 36 sub-segments by spherical
harmonic synthesis; see the second term on the right-hand side in Eq. (38), between degrees
0-700.

6. The modelled LoS disturbing gravitational acceleration in each sub-segment was low-pass
filtered by an eighth-degree Butterworth filter with the cut-off (maximum) frequency of
0.02 Hz. This low-pass filtering is complementary to the high-pass filtering in Step 4.

7. The corresponding high-pass and low-pass filtered LoS disturbing gravitational accelera-
tions were added. In this way, we obtained combined full-band LoS disturbing gravitational
accelerations and extracted only those within the data area.

8. To get the final GRAIL observation vector l, we reduced the combined full-band LoS
gravitational accelerations in the data area by its low-frequency part. The low-degree
spherical harmonic contribution was synthesised from GL1500E in the band n = 0-199.

The performance of the combination procedure was validated by a closed-loop test. We syn-
thesised the true LoS disturbing gravitational acceleration along all segments and applied the
low-pass and high-pass Butterworth filters. The corresponding low-pass and high-pass filtered
values were added and compared with the true ones. The differences reached at most 10−5 µGal
that is negligible with respect to the GRAIL noise level.
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The inversion was carried out in the same way as discussed for the simulated scenario (Section
3.2). However, we evaluated the inversion estimates of T 0 and T 1 with those from a topograph-
ically implied global GFM. Such a model can be taken as a proxy, because the observed lunar
gravitational field and the one inferred by the lunar topography (and crust) are highly correlated
beyond spherical harmonic degree 150 (e.g., Konopliv et al., 2014; Lemoine et al., 2014).

The topographically implied global GFM was determined by the forward modelling approach
(Šprlák et al., 2018) with a constant density of 2550 kg m−3 for the lunar crust. More complex
3D crustal density distributions, such as radially and laterally variable, were tested and we
did not find any contradictory conclusions to those made from a constant density. We also
synthesised T 0 and T 1 from GRAIL-derived global GFMs with the highest available resolutions.
Namely, we used GL1500E (available up to degree 1500, but exploited up to degree 1400) and
GRGM1200A (available up to degree 1200) (Lemoine et al., 2014), and compared them with
their topographically inferred counterparts.

The maps of T 0 and their differences with respect to those from the inversion, GL1500E,
and GRGM1200A are depicted in Fig. 6. The differences for the inversion are less than 15%
of the signal within the computation area, i.e., inside the red dashed box in Fig. 6b. The
estimates outside the computation area are more erroneous and eventually unrealistic, because
the mathematical model is not fulfilled there as the spherical caps extend beyond the data areas.

Figures 6c and 6d show the performance of GL1500E and GRGM1200A models up to degrees
1400 and 1200. The values of T 0 from GL1500E possess high-frequency noise and the differences
extend beyond those for the inversion. High-frequency noise is also present in GRGM1200A,
but this model appears to perform “better” than GL1500E. This could be explained by the
application of the decreasing power law in GRGM1200A, as compared to the constant power
law constraint used in GL1500E. The noise levels for GL1500E and GRGM1200A also differ due
to the maximum harmonic degree of the respective syntheses.

The high-frequency noise of GL1500E and GRGM1200A is attenuated by truncating the
spherical harmonic syntheses at degree 700, see Figs. 6e and 6f. The differences for both models
are almost identical at this (spectral and spatial) resolution, which demonstrates their compara-
ble performance. The magnitudes of the differences also show that GL1500E and GRGM1200A
are closer to the topographically inferred global GFM than the estimates from our regional
inversion.

Figure 7 illustrates maps of T 1 (from the topographically inferred global GFM) and its
respective differences with the inversion, GL1500E and GRGM1200A. We observe similar per-
formance among the three global GFMs and the inversion as in Fig. 6. However, the relative
errors (i.e., the ratio of the magnitudes of the differences to those of the signal) are higher as
compared to those for T 0. For example, the differences for the inversion are about 30% of the
signal amplitudes within the computation area (see Fig. 7b), while a similar comparison showed
less than 15% for T 0, see Fig. 6b. This behaviour can be explained by the stronger sensitivity
of T 1 to higher-frequencies of the gravitational field that also amplifies errors or noise.

We also investigated the equiangular grids from the inversion and the three global GFMs in
the spectral domain. That is, we calculated the local degree variances by 2D Fourier transform
and azimuthal averaging (Flury, 2006) from the six grids in the computation area. The local
signal spectra for T 0 are depicted in Fig. 8 and are almost identical up to degree∼360. Above this
degree, the signal of the inversion grid (red) slightly decreases, but stays approximately parallel
to the topographically inferred one (black) even for high degrees. GL1500E (solid green) and
GRGM1200A (solid blue) spectra of the high-resolution grids depart from the topographically
inferred one above degree ∼450 and the distinctions are significant beyond degree 600. The
spectra for the lower resolution grids from GL1500E (dashed green) and GRGM1200A (dashed
blue) follow its topographical equivalent to degree ∼600. The lack of the power for the lower
resolution grids is evident beyond this degree and magnitudes decrease below the one for the
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Figure 6: Maps of: a) the topographically implied T 0 (between degrees 200-1400) and its differences with respect to
b) inversion, c) GL1500E (between degrees 200-1400), d) GRGM1200A (between degrees 200-1200), e) GL1500E
(between degrees 200-700), and f) GRGM1200A (between degrees 200-700). The red dashed line bounds the
computation area.

inversion grid at ∼720.
Overall, the results for our localised inversion method show some reasonable performance.

The mutual agreement between two GRAIL global GFMs up to degree ∼500 are rather expected
because they exploit the same mathematical apparatus of spherical harmonic basis functions
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Figure 7: Same as in Fig. 6, but for T 1.

for representing gravitational fields and the identical approaches of numerical force integration
for analysing the inter-satellite ranging measurements. On the other hand, our approach is
truly independent from the existing GRAIL solutions in terms of the spatial (not spectral)
parametrisation of gravitational fields and the use of LoS gravitational acceleration as observable.
Finally, there are some other inconsistencies arising from the comparison with the topography-
inferred global GFM. For example, point values were synthesised from the topography-inferred
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Figure 8: Local degree variances for the grids of T 0 calculated by the topographically inferred GGFM between
degrees 200-1400 (black), inversion (red), GL1500E between degrees 200-1400 (solid green), GRGM1200A between
degrees 200-1200 (solid blue), GL1500E between degrees 200-700 (dashed green), and GRGM1200A between
degrees 200-700 (dashed blue).

global GFM, while integral inversion provided averages over individual cells. However, rigorous
evaluation of either point or mean values by integral inversion is a more complex subject (Huang,
2002) that is out of the scopes of this study.

Summary and Conclusions

An independent approach for regional recovery of the lunar gravitational field from GRAIL-
sensed inter-satellite-tracking observables was presented in this article. We derived integral
transformations relating the line-of-sight (LoS) disturbing gravitational acceleration to an arbitrary-
order radial derivative of the disturbing gravitational potential (Eq. (23)). We expressed the
truncation error (the neglected effect of the far zones beyond a spherical cap centred on each
computation point) of the LoS disturbing gravitational acceleration by a spherical harmonic
expansion of Eq. (37). For practical calculations, we formulated remove-compute-restore esti-
mators to transform an arbitrary-order radial derivative of the disturbing gravitational potential
onto the LoS disturbing gravitational acceleration (Eq. (38)). Such mathematical apparatus is
not only restricted to the lunar GRAIL mission, but also can be exploited for GRACE and
GRACE-FO.

Numerical experiments were conducted to investigate the performance of the integral es-
timators when solving upward and downward continuation problems for the high-resolution
lunar gravitational field. The presented experiments were restricted to the disturbing gravi-
tational potential and its first radial derivative for the sake of brevity, though they may hold
for other relations in the Meissl scheme (Meissl, 1971; Rummel and van Gelderen, 1995). We
tested the accuracy of the integral estimators for the maximum spherical harmonic degree of
the low-frequency part of the lunar gravitational field N = 199. Optimal integration radii and
discretisation intervals were found empirically, for which the GRAIL noise level dominated the
accuracy of the integral estimators. Finally, we tested the performance of the integral inver-
sion with synthetic and realistic GRAIL observations. The realistic regional gravitational fields

24



and those of GL1500E and GRGM1200A were validated with the topography-implied global
gravitational field model, acknowledging the underlying assumptions of a constant crustal den-
sity and no isostatic compensation. We demonstrated that the new regional solutions are less
contaminated by high-frequency noise than the existing global gravitational field solutions.
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Appendix A. Spatial forms of isotropic kernels

We summarise the spatial (closed, analytical) forms of the isotropic kernels in this Appendix.
We restrict to the values of k = 0, 1, 2, 3, and use the substitution g = g(t, u) =

√
1− 2tu+ t2.

The spatial forms can be derived by decomposing the degree-dependent terms of the correspond-
ing spectral relations into partial fractions. Each partial fraction is an infinite series, the closed
form of which is found by summation rules given in, e.g., (Pick et al., 1973; Martinec, 2003;
Šprlák and Novák, 2014).

The spatial forms of the isotropic kernels for the radial BVP represented by the spectral
relation of Eq. (13) read (Heiskanen and Moritz, 1967; Hotine, 1969; Martinec, 2003; Šprlák and
Novák, 2016):

H0(t, u) =
t(1− t2)

g3
, (A.1)

H1(t, u) =
2t

g
− ln

(
g + t− u

1− u

)
, (A.2)

H2(t, u) =
3

t
(g − 1) +

(
3u

t
− 1

)
ln

(
g + t− u

1− u

)
, (A.3)

H3(t, u) =
1

4t

{
7g − 12− 15u(g − 1)

t
− 1

t

[
2t(t− 6u)− 5(1− 3u2)

]
ln

(
1 + u

g − t+ u

)}
. (A.4)

The Abel-Poisson kernel is defined by Eq. (A.1) and the extended Hotine kernel (Hotine, 1969)
is given by Eq. (A.2). Equation (A.3) is the isotropic kernel of the vertical-vertical gradiomet-
ric BVP (Martinec, 2003). The isotropic kernel of the vertical-vertical-vertical gravitational
curvature BVP is given by Eq. (A.4).

The isotropic kernels Htk, k = 0, 1, 2, 3, are required for the integral transformations of the
radial disturbing gravitational potential derivatives onto the LoS gravitational acceleration, see
Eq. (24). Their closed forms read as:

Ht0(t, u) = − t
2

g3

[
1 + 3t(u− 2t) +

6t2(t− u)2

g2

]
, (A.5)

Ht1(t, u) = − t
2(1− t2)

g3
, (A.6)
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Ht2(t, u) = 3(g − 1)− 2t2

g
+ 3y ln

(
1 + u

g − t+ u

)
, (A.7)

Ht3(t, u) =
1

2t

[
t(g − 6) + 15u(1− g) +

[
5 + 3u(2t− 5u)

]
ln

(
1 + u

g − t+ u

)]
. (A.8)

The isotropic kernels in Eqs. (A.5)-(A.8) are always bounded for u ∈ [−1, 1] and t < 1. In
particular, we can find the following limits when the computation point and the integration
point coincide (i.e., u = 1):

Ht0(t, 1) = − t
2(1 + 3t)

(1− t)3
, Ht1(t, 1) = − t

2(1 + t)

(1− t)2
, Ht2(t, 1) =

t(t− 3)

1− t
+ 3 ln

(
1
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)
,

Ht3(t, 1) =
1

2
(10− t) +

1

t
(3t− 5) ln

(
1

1− t

)
. (A.9)

For u = −1 (i.e., at the anti-computational point), we obtain bounded limiting values:

Ht0(t,−1) = − t
2(1− 3t)

(1 + t)3
, Ht1(t,−1) = − t

2(1− t)
(1 + t)2
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)
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1

2
(10 + t) +

1

t
(3t+ 5) ln

(
1

1 + t

)
. (A.10)

Also, the isotropic kernels in Eq. (25) are necessary when transforming the radial disturbing
gravitational potential derivatives onto the LoS gravitational acceleration. Their analytical
expressions are of the form:

Hu0(t, u) =
3t3
√
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Equations (A.11)-(A.14) represent bounded functions for u ∈ [−1, 1] and t < 1, with the limiting
values at u = ±1:

Huk(t, 1) = Huk(t,−1) = 0 , k = 0, 1, 2, 3. (A.15)
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vertical. Bulletin Géodésique 106:453-466. doi: https://doi.org/10.1007/BF02522052.

Hajela DP (1979) Tests for the recovery of 5◦ mean gravity anomalies in local areas from
ATS 6/GEOS 3 satellite to satellite range–rate observations. Journal of Geophysical Research
84:6884-6890. doi: https://doi.org/10.1029/JB084iB12p06884.

Han S-C (2008) Improved regional gravity fields on the Moon from Lunar Prospector tracking
data by means of localized spherical harmonic functions. Journal of Geophysical Research 113:
E11012. doi: https://doi.org/10.1029/2008JE003166.

Han S-C (2013) Determination and localized analysis of intersatellite line of sight gravity differ-
ence: Results from the GRAIL primary mission. Journal of Geophysical Research – Planets
118:2323-2337. doi: https://doi.org/10.1002/2013JE004402.

28



Han S-C, Mazarico E, Rowlands D, Lemoine F, Goossens S (2011) New analysis of Lunar
Prospector radio tracking data brings the nearside gravity field of the Moon with an unprece-
dented resolution. Icarus 215: 455-459. doi: https://doi.org/10.1016/j.icarus.2011.07.020.

Han S-C, Mazarico E, Lemoine F (2009) Improved nearside gravity field of the Moon
by localizing the power law constraint. Geophysical Research Letters 36:L11203. doi:
https://doi.org/10.1029/2009GL038556.

Hansen PC (1998) Rank-deficient and discrete ill-posed problems. SIAM Monographs on Math-
ematical Modeling and Computation. Philadelphia, U.S.A., 247 pp.

Hansen PC (2007) Regularization Tools version 4.0 for Matlab 7.3. Numerical Algorithms 46:189-
194. doi: https://doi.org/10.1007/s11075-007-9136-9.

Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco, U.S.A., 364
pp.

Hobson EW (1965) The theory of spherical and ellipsoidal harmonics. Chelsea Publishing Com-
pany, New York, U.S.A., 500 pp.

Hotine M (1969) Mathematical geodesy. Environmental Science Services Administration, Mono-
graph No. 2, US Department of Commerce, Washington DC, U.S.A., 416 pp.

Huang J (2002) Computational methods for the discrete downward continuation of the Earth
gravity and effects of lateral topographical mass density variation on gravity and the geoid.
Technical Report No. 16, Department of Geodesy and Geomatics Engineering, University of
New Bruinswick, Fredericton, Canada, 141 pp.

Jekeli C (1979) Global accuracy estimates of point and mean undulation differences obtained
from gravity disturbances, gravity anomalies and potential coefficients. Report No. 288, De-
partment of Geodetic Science and Surveying, The Ohio State University, Columbus, U.S.A.,
41 pp.

Jekeli C (1981) Modifying Stokes’ function to reduce the error of geoid un-
dulation computations. Journal of Geophysical Research 86:6985-6990. doi:
https://doi.org/10.1029/JB086iB08p06985.

Kaula WM (1966) Theory of satellite geodesy: Applications of satellite to Geodesy. Dover
Publications, Inc., New York, U.S.A., 124 pp.

Keller W, Sharifi MA (2005) Satellite gradiometry using a satellite pair. Journal of Geodesy
78:544-557. doi: https://doi.org/10.1007/s00190-004-0426-x.

Kellogg OD (1929) Foundations of potential theory. Verlag von Julius Springer, Berlin, Germany,
384 pp.
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