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cSchool of Earth and Planetary Sciences, Curtin University of Technology, GPO Box U1987, Perth, WA 6845,

Australia

Abstract

We employ Newton’s integral in the spectral domain to solve two geodetic/geophysical tasks

for the Moon. Firstly, we determine 3D bulk density distribution within the lunar crust (in-

verse problem). For this purpose, we develop a linear mathematical model that parameterises

the laterally variable density component by surface spherical harmonics. We exploit GL1500E

GRAIL gravitational field model and LOLA topography model to determine bulk density in

three types of function: 1) constant, 2) laterally variable, and 3) 3D spatially variable (assuming

a linear change in the radial direction). Secondly, we calculate lunar gravitational field models

inferred by these three crustal compositions (forward problem) up to spherical harmonic degree

2519 corresponding to a spatial resolution of ∼2.2 km at the lunar equator. Efficacy of these

models is assessed with respect to the GRAIL Level 2 gravitational field models. Our spatially

variable crustal model represents the best fit globally and also locally in highland areas. We

also test the performance of GRAIL models, recent and independent forward models, and our

new models against Level 1B GRAIL satellite-to-satellite tracking data focusing on evaluation

beyond Level 2 data (i.e., spherical harmonic degrees greater than 650). These medium- and

high-frequency signals from our models correlate with the Level 1B observations the best among

all global gravitational field models tested. Our high resolution geopotential model with the

optimized 3D crustal density variation should be an asset to future lunar lander navigation and

geophysical exploration.
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Introduction

Lunar gravitational field is useful for understanding the thermal evolution of the Moon (e.g.,

Laneuville et al., 2013), determining its lunar crustal and lithospheric structure (e.g., Wieczorek

et al., 2013; Han, 2013; Andrews–Hanna et al., 2014), constraining the size of the lunar core (e.g.,

Williams et al., 2014), explaining the origin of mascons (Muller and Sjogren, 1968) and sub-

surface processes in impact basins (e.g., Melosh et al., 2013; Neumann et al., 2015), improving

satellite orbits for topographic mapping by laser altimetry (e.g., Mazarico et al., 2018), and

navigating space vehicles (e.g., Miller, 2019).

Numerous gravitational field models have been developed by analysing tracking artificial

lunar satellites, such as the Soviet Luna (Akim, 1966), Lunar Orbiter (Muller and Sjogren,

1968), Apollo 15 and 16 subsatellites (Sjogren et al., 1974), Clementine (Zuber et al., 1994),

Lunar Prospector (Konopliv et al., 2001), SELenological and ENgineering Explorer (SELENE)

(Namiki et al., 2009), and Gravity Recovery And Interior Laboratory (GRAIL) (Zuber et al.,

2013). The most recent harmonic expansions from GRAIL significantly outperform the others

(e.g., Konopliv et al., 2014; Lemoine et al., 2014) and are available up to degrees 900, 1200,

or even 1500. Such spectral and spatial resolutions make the lunar gravitational field the most

detailed among all the bodies in the solar system including the Earth.

Alternatively, the lunar gravitational field can be determined by forward modelling that is

based on Newton’s (1687) integral for the gravitational potential (e.g., Wieczorek and Phillips,

1998; Featherstone et al., 2013; Hirt and Kuhn, 2017; Šprlák et al., 2018). Practically, one ex-

ploits any available information about both the bulk density distribution and geometry (specif-

ically topography) of the Moon. Forward models can be attractive, because they can provide

high-resolution gravitational field models free from empirical constraints, such as the power law

”Kaula’s rule” used in the GRAIL-derived global gravitational field models (GGFMs) starting

at degree 600 or 700 (Konopliv et al., 2014; Lemoine et al., 2014). In addition, the forward grav-

itational fields allow different density distributions to be considered, and thus, to test various

internal compositions of the Moon.

In this article, we apply our forward method (Šprlák et al., 2018) to determine GGFMs
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inferred by different lunar crustal compositions up to degree 2519 (spatial resolution of ∼2.2 km

at the lunar equator). Geometrically, the lunar crust is bounded by the high-resolution LOLA

topography (Smith et al., 2010) and a crust-mantle interface (Wieczorek et al., 2013). Several

regional (Liang et al., 2014; Jansen et al., 2017; Zhang et al., 2018; Zhao et al., 2019; Zhong et

al., 2019) or global (Wieczorek et al., 2013; Han, 2013; Besserer et al., 2014; Wahl and Oberst,

2019) density maps have already been provided from LOLA and GRAIL. Here, we calculate

independent bulk density for the lunar crust in three types of function: 1) a constant, 2) laterally

variable, and 3) 3D spatially variable (assuming a linear change in the radial direction). For this

purpose, we develop a global and fully spherical mathematical model that allows determining

the density from the knowledge of the outer gravitational field, i.e., geophysical inversion. We

parametrise the laterally variable density by surface spherical harmonics, i.e., in the spectral

domain by spherical harmonic coefficients. This is different from the previous studies estimating

density values directly in the spatial domain. Performance of the gravitational fields inferred by

these three crustal density models is tested with respect to a GRAIL-derived model and Level

1B range acceleration data.

1. Methods and data

1.1. Forward gravitational field modelling

Forward modelling may be employed in the spatial domain when the gravitational potential

and its functionals are calculated by discretising Newton’s integral and its higher-order spa-

tial derivatives. Alternatively, we may evaluate a spectrum of the gravitational potential. The

spectrum defines any gravitational field quantity that may be synthesised in the corresponding

convergence domain (i.e., outside the gravitating masses or so-called Brillouin sphere) by a har-

monic series. We prefer the spectral representation due to its practical advantages, as described

later.

The 4π fully normalised gravitational potential spherical harmonic (Stokes’s) coefficient C̄n,m

of degree n and order m is given by (e.g., Heiskanen and Moritz, 1967, Sect. 2.5):

C̄n,m =
1

RnM(2n + 1)

2π
∫

λ=0

π/2
∫

ϕ=−π/2

Ȳn,m

(

ϕ, λ
)

r2(ϕ,λ)
∫

r=r1(ϕ,λ)

ρ
(

r, ϕ, λ
)

rn+2 dr cosϕdϕdλ . (1)
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The symbol R stands for the radius of the Brillouin sphere, M is the total mass of the gravitating

body, and the triplet of the spherical coordinates is defined by the spherical radius r, spherical

latitude ϕ, and spherical longitude λ. The crustal masses of the bulk density ρ are limited

by the crust-mantle interface (indicated by the spherical radius r1) and the lunar topography

(specified by the spherical radius r2). The scalar 4π normalised spherical harmonics Ȳn,m are

(Abramowitz and Stegun, 1972, Sect. 8):

Ȳn,m

(

ϕ, λ
)

= P̄n,|m|

(

sinϕ
)

{

cosmλ , ∀m ≥ 0

sin |m|λ , ∀m < 0
, (2)

where P̄n,|m| are the 4π fully normalised associated Legendre functions of the first kind.

All gravitational field models in this article refer to the Brillouin sphere of radius R = 1748.2

km. We determined R by finding the maximum of the selenocentric spherical radius r2 from

LOLA, and rounding this value up to the nearest 50 metres. We follow the notion of the

Brillouin sphere encompassing all gravitating masses, because it guarantees the harmonicity of

the external gravitational field and the convergence of the related spherical harmonic series (e.g.,

Moritz, 1989, Chap. 6 and 7).

For practical calculations, Eq. (1) has to be discretised. Within this article, we calculate

gravitational potential spectra by the rigorous forward modelling approach, which was developed

and extensively tested by Šprlák et al. (2018).

1.2. Mathematical model for crustal density estimation

The starting point of our bulk density estimation method is a functional relationship for ρ.

We decompose the bulk density into a surface component and a radial part, i.e.:

ρ
(

r, ϕ, λ
)

= ρ
(

ϕ, λ
)

+ α
[

r2
(

ϕ, λ
)

− r
]

=

Nmax
∑

n,m

ρ̄n,m Ȳn,m

(

ϕ, λ
)

+ α
[

r2
(

ϕ, λ
)

− r
]

. (3)

The sign
∑Nmax

n,m substitutes for the double summation
∑Nmax

n=0

∑+n
m=−n. We have expanded the

surface part by the (surface) spherical harmonic series up to the maximum degree Nmax with
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the harmonic coefficients:

ρ̄n,m =
1

4π

2π
∫

λ=0

π/2
∫

ϕ=−π/2

ρ
(

ϕ, λ
)

Ȳn,m

(

ϕ, λ
)

cosϕdϕdλ . (4)

The symbol α in Eq. (3) is the (assumed linear) radial density gradient.

We now substitute for the density ρ in Eq. (1) by the right-hand side of Eq. (3). Because we

have enforced uniform convergence of the spherical harmonic expansion by using the Brillouin

sphere, we may change the order of summation and integration. By exploiting the rules of

integral calculus, we express two integrals over the variable r analytically in the form:

En

(

R,ϕ, λ
)

=
1

Rn

r2(ϕ,λ)
∫

r=r1(ϕ,λ)

rn+2 dr =
R3

n+ 3







[

r2
(

ϕ, λ
)

R

]n+3

−
[

r1
(

ϕ, λ
)

R

]n+3






, (5)

Fn

(

R,ϕ, λ
)

=
1

Rn

r2(ϕ,λ)
∫

r=r1(ϕ,λ)

[

r2
(

ϕ, λ
)

− r
]

rn+2 dr = R4







1

(n+ 3)(n + 4)

[

r2
(

ϕ, λ
)

R

]n+4

+

[

1

n+ 4
− r2

(

ϕ, λ
)

r1
(

ϕ, λ
)

(n+ 3)

][

r1
(

ϕ, λ
)

R

]n+4






. (6)

These mathematical operations and substitutions lead to:

C̄n,m =
1

M(2n+ 1)







Nmax
∑

n′,m′

ρ̄n′,m′

2π
∫

λ=0

π/2
∫

ϕ=−π/2

Ȳn,m

(

ϕ, λ
)

Ȳn′,m′

(

ϕ, λ
)

En

(

R,ϕ, λ
)

cosϕdϕdλ

+α

2π
∫

λ=0

π/2
∫

ϕ=−π/2

Ȳn,m

(

ϕ, λ
)

Fn

(

R,ϕ, λ
)

cosϕdϕdλ






. (7)

The last expression is the standard Gauss-Markov linear model (e.g., Grafarend, 2006,

Sect. 2.1):

l = Ax+ ǫ . (8)
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The observation vector l contains the spherical harmonic coefficients C̄n,m of the gravitational

potential. These are available from the lunar GGFMs that serve as ”observables” in our experi-

ments. The two integrals over the spherical coordinates ϕ and λ in Eq. (7) form the elements of

the design matrix A. These integrals are discretised and calculated numerically from available

grids of the lunar topography and the crust-mantle interface, see below. The vector x is com-

posed of the spherical harmonic coefficients ρ̄n′,m′ of the surface density and the linear density

gradient α. The symbol ǫ is the error vector and we assume that the errors are Gaussian with

zero mean.

The linear model of Eq. (8) envelopes three distinct bulk densities that we consider in our

experiments, see Sects. 2 and 3:

1) constant, when x =
[

ρ̄0,0
]

,

2) laterally variable, when x =
[

ρ̄n′,m′

]

, n′,m′ = 0, 1, . . . , Nmax ,

3) 3D spatially variable, when x =
[

ρ̄n′,m′ α
]

, n′,m′ = 0, 1, . . . , Nmax .

The density in Eq. (3) can be approximated by more complex functions of the radius r,

such as higher-order polynomials or an exponential function (e.g., Ramillien, 2002; Novák and

Grafarend, 2006; Besserer et al., 2014; Han et al., 2014). We derived and numerically tested

a quadratic vertical density gradient, but could not get any reasonable estimates. Also, we

considered application of an exponential density gradient. However, integrals of the exponential

function multiplied by the power functions of r (see the integrals of Eqs. (5) and (6)) cannot

be solved analytically. To overcome this, the exponential function is sometimes expressed by

a power series that results in a polynomial density expansion (Eshagh, 2009). As such, this

method suffers the same setbacks as the quadratic gradient.

1.3. LOLA lunar topography

We used the lunar topography provided by the Lunar Orbiter Laser Altimeter (LOLA)

(Smith et al., 2010). Namely, we exploited the global and regularly sampled LOLA heights with

the discretisation of 1/64◦, see http://pds-geosciences.wustl.edu/lro/lro-l-lola-3-rdr

-v1/lrolol 1xxx/data/lola gdr/cylindrical/pa/. The LOLA heights are referenced to the

sphere of radius 1737.4 km in the principal axis coordinate system, which is consistent with that

of GRAIL GGFMs.
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Initially, we calculated a smoother LOLA topography with sampling of 1/14◦ by the routine

blockmean from the Generic Mapping Tools (Wessel et al., 2013). The 1/14◦ grid was utilised

in the computation of the crustal densities and the crustal GGFMs up to the corresponding

spherical harmonic degree of 2519. However, our gravitational field models were visibly smoother

at high frequencies than GRAIL Level 1B observations, see Sect. 3.2. To describe the lunar

gravitational field most realistically, we finally used a more detailed LOLA grid with sampling

of 1/56◦ for both, density estimation and forward modelling, but our crustal GGFMs were still

calculated up to degree 2519.

1.4. GRAIL gravitational fields

We employed spherical harmonic parameterisations of the lunar gravitational field produced

by the NASA GRAIL team. Namely, we adopted GL1500E (Konopliv et al., 2014) for the

density estimation in Sect. 2 and for validation of our forward models in Sects. 3.1 and 3.2.

GRGM0900C and GRGM1200A (Lemoine et al., 2014) were included in the model comparison

in Sect. 3.2.

These three GRAIL models represent contemporary solutions (at the time of writing) de-

termined from the entire GRAIL mission. Their spherical harmonic coefficients refer to the

sphere of radius 1738 km, so were continued to the Brillouin sphere of radius R = 1748.2 km for

consistency with our forward modelling. These three gravitational field models are distinct in

the maximum spherical harmonic degree (indicated by their name), data pre-processing, data

weighting, power law constraint at high-frequencies, etc.

1.5. Other forward global gravitational field models

For the numerical investigations in Sect. 3.2, we also considered two independently computed

forward-modelled GGFMs by Hirt and Kuhn (2017) and Bucha et al. (2019) (herein abbreviated

by HK2160 and STU2160 to also indicate their maximum degrees). Both models use the finite-

amplitude method (Wieczorek and Phillips, 1998) and assume a constant density of 2500 kg

m−3 for the topographic (crustal) masses.

These two forward models differ by their geometry of the crustal masses. HK2160 is generated

by the masses between the sphere of radius 1738 km and the lunar shape model expanded up to

degree 2160 (Hirt and Kuhn, 2017). STU2160 used the same sphere, but the shape model was
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coarser and expanded only up to degree 720 (Bucha et al., 2019). We also note that STU2160

is a forward-modelled gravitational field determined by iterative downward continuation to a

Bjerhammar sphere of radius 1737.999 km.

1.6. Lunar crust-mantle boundary

We used an irregular (i.e., non-spherical) crust-mantle boundary r1 = r1(ϕ, λ) from the

GRAIL Crustal Thickness Archive (Wieczorek et al., 2013). We adopted the crustal thickness

model no. 3, which was estimated by GL0420A truncated beyond degree 310, with a crustal

porosity of 12%, mantle density of 3150 kg m−3, and a downward continuation filter of 0.5 at

degree 70. The crustal thickness model is available in terms of spherical harmonic coefficients

up to degree 310. We synthesised the corresponding crust-mantle boundary with equiangular

sampling of 1/56◦ so as to be consistent with the LOLA topography grid used in our computa-

tions.

2. Estimates of the lunar crustal density

2.1. Constant density

We begin our numerical experiments with the simplest approximation of a constant crustal

density. This is simplistic, but allows initial validation of the numerical set-up and restricting

the input parameters for further experiments with more complex density distributions.

We found least-squares estimates of the constant density by solving the overdetermined

equation system:

x̂ =
(

ATA
)−1

AT l . (9)

The observation vector l was composed of the coefficients C̄n,m between degrees 150-600 (in

total 338,701 entries). We chose this spectral band because the observed lunar gravitational

field and the one inferred by topography are highly correlated above degree 150 (e.g., Konopliv

et al., 2014; Lemoine et al., 2014), see also Fig. 3 herein. The elements of the design matrix A

were calculated by discretising the first integral in Eq. (7). Because the constant density is the

only unknown, the design matrix A degenerates into a column vector of the same size as the
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observation vector l. We obtained the density of 2540.6 ± 0.6 kg m−3. This estimate agrees

very well with 2544 kg m−3 by Han (2013) or 2550 kg m−3 by Wieczorek et al. (2013).

Numerous calculations (parameter sweeps) were performed to test how various parameters

and models (crust-mantle boundary, gravitational, and topography) contribute to the constant

density estimation. In particular, we found that:

• Density was significantly overestimated by smoothing the lunar topography. For example,

we obtained density estimates of ∼2700 kg m−3 when taking the LOLA grid with sampling

of 3/10◦ (corresponding to spherical harmonic degree 600).

• We obtained underestimated values by increasing the lower limit of the harmonic band

(e.g., Han, 2013). For example, we obtained densities of ∼2500 kg m−3 when considering

the coefficients C̄n,m between degrees 300-600. This is because higher degrees are more

sensitive to the upper parts of the lunar crust with higher porosity, and thus lower density.

• One may expect slightly higher values of density by decreasing the upper limit of the

harmonic band. For example, density increased by 2-3 kg m−3 by considering C̄n,m between

degrees 150-300. Lower harmonic degrees are more sensitive to the lower parts of the lunar

crust with lower porosity. This also explains why the values by Han (2013) and Wieczorek

et al. (2013), who employed the spectral bands 150-300 and 150-310, respectively, are

larger by ∼3 and ∼9 kg m−3 with respect to our estimate of 2540.6 ± 0.6 kg m−3.

• The most recent geometries of the crust-mantle boundary may affect the density by 1-2

kg m−3. We proved this assertion by considering all four crustal thickness models from

the GRAIL Crustal Thickness Archive in our calculations.

• The gravitational effect of mantle masses influences density estimate by ∼5 kg m−3. This

was found for constant mantle density of 3150 kg m−3. We chose the base of the mantle

at a radius of 380 km (Garcia et al., 2011), while the upper boundary of the mantle was

represented by the crust-mantle boundary described in Sect. 1.6.

• Density estimates from up-to-date and highest-resolution GRAIL-derived GGFMs were

almost identical. For example, we used C̄n,m from GRGM1200A (Lemoine et al., 2014)
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between degrees 150-600 and found that the density was different to that from GL1500E

by 0.001 kg m−3.

• These numerical experiments indicate that our mathematical model is most sensitive to

the spatial resolution of topography and to the spectral resolution of the GGFM. Other

parameters or alterations of models contribute few to several kg m−3 that is currently

negligible in constraining the lunar crustal density.

In the following, we keep our initial choice of the input parameters and models, i.e., we use

GL1500E between degrees 150-600, LOLA, and GL0420A crust-mantle boundary with equian-

gular sampling 1/56◦, and neglect the gravitational effect of the mantle.

2.2. Laterally variable density

We now consider a spatially variable density distribution that is a function of ϕ and λ. We

determined ρ̄n′,m′ , see Eq. (7), up to Nmax = 90 (spatial resolution of ∼61 km at the Brillouin

sphere) that reveals the finest structures of the lunar surface density as compared to the global

maps by (Wieczorek et al., 2013; Han, 2013; Besserer et al., 2014). The corresponding system

of linear equations was represented by 338,701 observables and 16,562 unknowns and is still

solvable by available computer resources.

We also tested higher-degree density expansions, for example, up to Nmax = 180 or 360.

However, as shown in Fig. 1, the power of the density signal for n > 90 is merely a few kg m−3

that is currently negligible in constraining the lunar crustal density based on GRAIL and LOLA

data.

The condition number of the normal matrix was ∼105. Its magnitude was relatively low

compared to the threshold of ∼1015 for the loss of all significant digits in double precision

arithmetic. The normal matrix could be still inverted and the least-squares solution of Eq. (9)

may eventually provide feasible results.

In contrast to our expectation, the signal power determined by least squares (black line in

Fig. 1) does not decrease monotonically with increasing harmonic degree for n > 4. Figure 2a

illustrates the corresponding spatial map of the laterally variable density. It can be seen that

high-frequency noise dominates over low-frequency density features. Thus, the least-squares
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Figure 1: Square root of degree variances from ρ̄n′,m′ . The density coefficients were estimated by least-squares
(black) and its regularised counterpart (blue) with the power law constraint 150/n (red).

solution of Eq. (9) does not provide any reasonable estimate of laterally variable lunar crustal

density.

To spatially constrain the laterally variable density, we added a regularisation matrix K to

the normal matrix and found solutions by (e.g., Bouman, 1998, p. 32):

x̂ =
(

ATA+K
)−1

AT l . (10)

We used diagonal K, whose non-zero elements were chosen such that the square root of degree

variance for ρ̄n′,m′ followed the power law 150/n; see the blue and red lines in Fig. 1. This power

law was empirically found from the density maps in Han (2013, Fig. 14a).

The coefficients ρ̄n′,m′ estimated by Eq. (10) resulted in the density map depicted in Fig. 2b.

The high-frequency noise was suppressed. The prominent features are seen with lateral density

varying by several 100 kg m−3. The density is the lowest (∼2200 kg m−3) in the Procellarum

KREEP Terrane and reaches the largest values (2700-2800 kg m−3) in the South-Pole Aitken

basin.

We compared our regularised solution with the one by Wieczorek et al. (2013), see Fig. 2c.

Blank regions can be identified in Fig. 2c over the lunar maria and low-elevation areas resurfaced

by basaltic lava flows. Here, the correlation between the observed and topography-inferred
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Figure 2: The laterally variable density maps determined by: a) least-squares of Eq. (9), b) regularised least-
squares of Eq. (10), c) Wieczorek et al. (2013), and d) Besserer et al. (2014). The densities in maps a) and b) were
synthesised up to Nmax = 90 at equiangular spacing of 2◦. The maps were generated in an orthographic projection
centred at ϕ = λ = 0◦ (left hemispheres), and at ϕ = 0◦, λ = 180◦ (right hemispheres). Left hemispheres depict
the nearside and right hemispheres depict the farside. Parallels and meridians are spaced at 30◦ intervals.
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gravitational field is reduced and estimated values may not be reliable. This also holds for

the estimates in the blank regions obtained by our method. For a consistent comparison, we

synthesised densities from ρ̄n′,m′ at the same grid points as in Fig. 2c. We truncated the series in

Eq. (3) at degree 15. This harmonic degree approximately corresponds to the angular diameter

of 12◦ used for the spherical cap analysis conducted by Wieczorek et al. (2013).

We found that our solution agreed with the one reported by Wieczorek et al. (2013). This

is supported by a high correlation coefficient of 0.90 and a standard deviation of differences of

±35 kg m−3. Our densities were slightly smoother at Nmax = 15, because the result of the

approach by Wieczorek et al. (2013) in the spectral domain does not exactly match with the

sharp spectral localisation at Nmax =15 used in our analysis. We emphasise, however, that our

solution is not restricted to degree 15. Our density map shows much finer details at Nmax = 90

than the one by Wieczorek et al. (2013); see Figs. 2b and 2c.

The results of this Section indicate that our density estimates appear realistic and com-

parable with those computed by other authors. Our solution in the form of ρ̄n′,m′ allows for

synthesising laterally variable density at arbitrary locations and with varying spectral (and spa-

tial) resolutions that may be advantageous to previous estimates by (e.g., Wieczorek et al., 2013;

Han, 2013; Besserer et al., 2014; Wahl and Oberst, 2019) performed purely in the spatial domain.

2.3. 3D spatially variable density

The density of the lunar crust increases with depth as porosity decreases (e.g., Wieczorek et

al., 2013; Han et al., 2014). Therefore, we extended our laterally variable density by a (global)

linear density gradient. The design matrix A was augmented by one column, see the second

integral over the angular spherical coordinates in Eq. (7), and the vector x contained one more

unknown parameter α.

We again added the regularisation matrix K to the normal matrix, because the least-squares

solution of Eq. (9) provided an impractical solution. The elements of K for ρ̄n′,m′ were identical

to those in Sect. 2.2. The element of K corresponding to α was set to the highest value that

still preserved the ρ̄0,0 coefficient from the estimate of the laterally variable density determined

in Sect. 2.2.

The regularised solution of Eq. (10) slightly changed the estimated laterally variable surface
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density by a few kg m−3. More importantly, we found the linear gradient α = 10.2 ± 1.5 kg

m−3 km−1. We emphasise that this global value is reliable in the areas where the observed and

topography-inferred gravitational field correlate the most, see Fig. 2c.

Besserer et al. (2014) considered even more complicated composition of the lunar crust. They

decomposed the density into the surface part and a radial part; see the expression after the first

equality in Eq. (3). Their radial part, represented by either a linear or an exponential gradient,

was also laterally variable. They used a planar approximation of the Moon and performed

localised multi-taper analysis with the spherical harmonic coefficients of GRGM900B (Lemoine

et al., 2014) between degrees 250-550.

Accordingly, we also incorporated the density decomposed into a laterally variable surface

part and laterally variable linear gradient. For this, we expanded the linear gradient into the

series of surface spherical harmonics
∑Nmax

n,m ᾱn,m Ȳn,m

(

ϕ, λ
)

, see Eq. (3). The mathematical

model was similar to Eq. (7), however, we changed α → ∑Nmax

n′′,m′′ ᾱn′′,m′′ and the second integral

over the angular spherical coordinates included spherical harmonics Ȳn′′,m′′

(

ϕ, λ
)

that augmented

the design matrix A. The vector x of the corresponding linear model, see Eq. (8), was composed

of the density coefficients and the linear gradient coefficients, i.e., x =
[

ρ̄n′,m′ ᾱn′′,m′′

]

, n′,m′ =

0, 1, . . . , Nmax; n
′′,m′′ = 0, 1, . . . , Nmax.

We used this adapted linear model to estimate coefficients ρ̄n′,m′ and ᾱn′′,m′′ up to Nmax = 6.

This degree approximately corresponds with the angular size of the spherical caps (diameter of

30◦) used in the analysis by Besserer et al. (2014). The observation vector l was formed by C̄n,m

between degrees 250-550. The application of least-squares was not feasible and its regularised

version was used instead. The diagonal elements of the K matrix were selected such that the

square root of degree variance from ρ̄n′,m′ was proportional to n−1 and that from ᾱn′′,m′′ was

proportional to
√
n. These power laws were found by spherical harmonic analysis of the spatial

maps of Fig. 1 in (Besserer et al., 2014).

We synthesised density values at the identical grid points as in Besserer et al. (2014) and

found that their spatial patterns were different from others; see Fig. 2d. In particular, our

densities were larger on the farside of the Moon. In this region, the correlation coefficient

between the two solutions was only 0.52, the standard deviation of differences reached ±88 kg

m−3, and the mean of differences was 132 kg m−3. We also observed that the values of the linear
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gradient from our solution were smaller by approximately one order of magnitude. Reasons for

inconsistent results for 3D density structure (i.e., laterally variable density and laterally variable

linear gradient) between Besserer et al. (2014) and ours are uncertain.

3. High-resolution crustal gravitational field models from variable densities and

their assessment

The three crustal density distributions generate distinct gravitational fields. In this Section,

we assess the efficacy of these three models with respect to a GRAIL-derived GGFM between

degrees 150-600. In addition, we compare GRAIL Level 2 GGFMs, the HK2160 and STU2160

forward models, and our crustal-density-inferred GGFMs with Level 1B (L1B) GRAIL data to

test their performance at high-degrees (n > 650).

3.1. Comparison with GRAIL Level 2 geopotential model GL1500E

We firstly assessed our crustal gravitational potential spectra in terms of the global corre-

lation, admittance, and the Bouguer correlation; see Fig. 3. In general, these spectral char-

acteristics are significantly reduced for degrees below 150. Geophysical processes that are not

associated with the topographic features, e.g., due to mantle heterogeneities and mare basalts,

are dominant at low spherical harmonic degrees and our model does not consider these. Also, the

three spectral characteristics gradually decrease above degree 600, because GL1500E is affected

by the GRAIL observation noise and the constant power law constraint.

The correlation spectrum between GL1500E and the gravitational field of the uniform crust

is depicted in Fig. 3a. The correlation spectra for the other density distributions are indistin-

guishable from this. The highest correlation values (close to unity) can be seen between degrees

150-600. This spectral range is in agreement with the one selected for the density estimation in

Sect. 2.

The admittance spectra are illustrated in Fig. 3b. The admittances (near-linearly) decrease

between degrees 150 and 600; those for the constant and laterally variable crustal density models

(black and blue curves) with nearly the same gradient (1.0 at degree 150 and 0.93 at degree

700). Among the three density distributions, the 3D spatially variable (red curve) provides the

admittance spectrum with the lowest slope and is the closest to unity, indicating the vertical
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Figure 3: Spectral measures of a) correlation, b) admittance, and c) Bouguer correlation between the GRAIL-only
GL1500E and our three forward GGFMs from our different density models: constant (black), laterally variable
(blue), and 3D spatially variable (red).
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Figure 4: Global maps of: a) the Bouguer radial gravitation, and b) the differences between the Bouguer
radial gravitations inferred by the 3D spatially variable and constant density crusts. The maps are generated in
orthographic projection centred at ϕ = λ = 0◦ (left hemispheres), and at ϕ = 0◦, λ = 180◦ (right hemispheres).
Left hemispheres depict the nearside and right hemispheres depict the farside. Parallels and meridians are spaced
at 30◦ intervals.

bulk density decrease (porosity increase) toward surface is favourably represented by our 3D

density distribution. The Bouguer correlation spectra behave similarly, i.e., they drop linearly

between degrees 150-600; see Fig. 3c, and the Bouguer anomalies from our 3D spatially variable

density are de-correlated better than those from the constant and laterally variable densities.

To exemplify the three density distributions in the spatial domain, we calculated the Bouguer

radial gravitation, i.e., the negative Bouguer gravity disturbance. This quantity was synthesised
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between degrees 150-600 on the Brillouin sphere with the equiangular step of 3/10◦.

Figure 4a shows the Bouguer radial gravitation from our geopotential model with the 3D

density that reaches a magnitude of 19 mGal and standard deviation of 2 mGal, see Table 1. We

can identify larger variations in the farside due to more rugged topography. On the other hand,

the Bouguer field is smoother over the nearside, especially over the flat low-elevated mare areas.

Compared to the constant density crustal model, the global extrema are reduced by several

mGal and the variations are lower by several percent. The radial gravitations generated by the

more complex density distributions indeed explain better the observed counterpart than those

from the constant density distribution.

Density Min. Max. Mean Std. dev.

C -19.51 18.69 0.01 2.19

L -18.91 15.06 0.01 2.03

S -18.99 14.10 0.01 2.03

L minus C -8.57 11.73 0.00 0.59

S minus C -9.04 11.43 0.00 0.60

L minus S -1.76 1.41 0.00 0.11

Table 1: Global statistics (in mGal) of the Bouguer radial gravitation from the constant (C), laterally variable
(L), and 3D spatially variable (S) density crusts and of their differences.

Area Density Min. Max. Mean Std. dev.

C -7.18 7.64 0.01 1.92

Nearside L -7.51 7.26 0.01 1.75

S -7.54 7.31 0.01 1.75

C -16.97 16.33 0.00 3.39

Farside L -15.54 14.22 0.00 2.99

S -14.62 14.14 0.00 2.98

C -14.61 13.61 0.00 2.91

Crisium L -11.49 12.76 -0.01 2.42

S -11.64 12.80 -0.01 2.43

Table 2: Statistics (in mGal) of the Bouguer radial gravitations from the constant (C), laterally variable (L), and
spatially variable (S) density of crust.

The differences between the Bouguer radial gravitations from the 3D spatially variable and

constant density crustal models are depicted in Fig. 4b. The largest deviations of greater than
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10 mGal in magnitude occur on the farside, but differences of several mGal can also be found

on the nearside. A similar spatial pattern can be observed when comparing the lateral den-

sity gravitational field with its constant-density counterpart. The gravitational fields from the

laterally and 3D spatially variable densities are very close and differ by less than 1.8 mGal in

magnitude globally, see Table 1.

Regional maps of the Bouguer gravitational fields are presented in Fig. 5 and the correspond-

ing statistics are summarised in Table 2. We selected two highland areas, one in the nearside

and another on the farside, where we expect the estimates of the laterally and 3D spatially

variable densities to be most reliable. Thus, the corresponding gravitational fields are supposed

to exhibit a better fit to GL1500E than that from the constant density. In addition, we chose

Mare Crisium because the Bouguer radial gravitations between the 3D spatially variable and

constant density crusts differ the most here among all mare regions; see Fig. 4b. We eventually

illustrate that the more complex density distributions provide realistic gravitational fields in this

mare area.

The local extrema are reduced for the 3D spatially variable density (right) as compared to

the constant one (left). The variations of Bouguer gravitational field are reduced by 9% in

the nearside highlands, 12% in the farside highlands, and 17% in Mare Crisium, see Table 2.

Equivalent to the global investigations, the laterally variable density GGFM is almost identical

with the one inferred by the 3D spatially variable density crust for the spectral range 150-600.

To better understand the performance of the three density distributions in these areas, we

also calculated (spherical cap) localised spectra (cf., Wieczorek and Simons, 2005). The spherical

cap windows of 20◦ radius were centred in the middle of the three regions and expanded in the

spherical harmonic bandwidth 0-20. Other cap sizes and maximum harmonic degrees of the

bandwidth were tested, but did not show any sensible difference.

Figure 6 presents the correlations (left) and admittances (right) in the three regions. The

Bouguer correlations are omitted from presentation here, because they quantified the three

density distributions identically to admittances, see Fig. 3. The correlations are very high,

reaching more than 0.99 over the whole spectrum in the nearside and farside highlands. In Mare

Crisium, the correlation is smaller between degrees 150-200 and is consistently above 0.975 for

n > 200. The correlations for the lateral (blue curves) and 3D spatial (red curves) density
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Figure 6: Spectral measures of localised gravitational fields in: a) the nearside highlands, b) the farside highlands,
and c) Mare Crisium. The three density distributions are constant (black), laterally variable (blue), and spatially
variable (red).

distributions are identical, while those for the uniform density (black curves) are only slightly

different.

The admittances discern among the three density distributions. The constant density crust
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results in admittances biased from unity. The constant density is underestimated (admittance

higher than unity) in the nearside highlands and overestimated (admittance lower than unity)

in the farside highlands and in Mare Crisium. On the other, the lateral changes of density

provide improved admittance (close to unity) in the three regions. In agreement with the global

admittances in Fig. 3, the localised counterparts have the same near-linear trend with increasing

harmonic degree for the constant and laterally variable crusts. By considering vertical density

variations, our 3D spatially variable crust resulted in most uniform admittance in the nearside

and farside highlands. On the other hand, the global linear change of density in the radial

direction overestimates the admittance in Mare Crisium in particular for n > 300.

3.2. Comparison with GRAIL Level 1B satellite-to-satellite tracking data

Finally, we tested the performance of our three lunar GGFMs beyond degree ∼650 using

GRAIL L1B range accelerations taken from https://pds-geosciences.wustl.edu/grail/gr

ail-l-lgrs-3-cdr-v1/grail 0101/level 1b/, as the ”true” values of line-of-sight gravitation

over the high-frequency band such as > 0.1 Hz (e.g., Han, 2013). We used data from the GRAIL

Extended Mission from November 30 2012 until December 4 2012 with a temporal sampling of

2 s. Geographically, this dataset covers the central nearside (λ ∈ [330◦, 30◦]) and the central

farside (λ ∈ [150◦, 210◦]) of the Moon.

We opted for this time series because the GRAIL satellites orbited at a lower altitude of 20

± 6.4 km above the LOLA reference sphere of radius 1737.4 km. The gravitational signal of

L1B range accelerations at these lower altitudes is sensitive to higher frequency features of the

lunar gravitational field. In addition, there were no data gaps during these five consecutive days

and no additional pre-processing of the time series, such as interpolation, was required.

For the comparisons, we employed three GRAIL models (GRGM0900C, GRGM1200A, and

GL1500E), the two forward models HK2160 and STU2160, and our model implied by the 3D

spatially variable density crust. For each model, we synthesised the line-of-sight gravitations

along the time series by the formula:

δ
[

∇V (r, ϕ, λ)
]

· b =
GM

R2

∞
∑

n=2

+n
∑

m=−n

C̄n,m δ

{

(

R

r

)n+2 [

− br (n+ 1) Ȳn,m(ϕ, λ)

22



+ bϕ
∂

∂ϕ
Ȳn,m(ϕ, λ) − bλ

1

cosϕ

∂

∂λ
Ȳn,m(ϕ, λ)

]

}

, (11)

where V is the gravitational potential, b is the unit inter-satellite line-of-sight vector with

components (br, bϕ, bλ), and G is the universal gravitational constant. The symbol δ represents

the difference of the same function at two different locations (r1, ϕ1, λ1) and (r2, ϕ2, λ2) of the

two GRAIL satellites. We truncated the infinite series in Eq. (11) at the respective maximum

degrees of the six tested models. Eventually, singularities may occur due to the terms 1/ cosϕ

and due to the derivative with respect to ϕ. We implemented the non-singular expressions

for the first spatial derivatives of the gravitational potential (e.g., Eshagh, 2008) to avoid this.

Moreover, to avoid any numerical problems in computing the associated Legendre functions of

the first kind, we incorporated the X-number formulation by Fukushima (2012).

The amplitude spectral densities for the L1B data and for the spherical harmonic GGFMs

assessed are depicted in Fig. 7a. The frequency f on the horizontal axis is related to the spherical

harmonic degree approximately as n = 2πrf/v. For the average spherical radius r = 1757.4

km and the average velocity v = 1700 m s−1 of the GRAIL twin-satellites, we obtain a simple

relationship n ≈ 6492f . Thus, the frequency range f ∈ [0.1 Hz, 0.25 Hz] in Fig. 7 corresponds

to n ∈ [650, 1623].

We observe that the amplitude spectral density is considerably lower for STU2160 (magenta

curve), due to the coarser topography (shape model) used in its construction (Sect. 1.5) that

leads to smoothing of the gravitational spectrum. All other spectra are close to each other up to

0.128 Hz. Above this frequency, the power of GRGM0900C (orange curve) deviates and drops

significantly at 0.138 Hz, which corresponds to its maximum harmonic degree of 900. The signal

for GRGM1200A (blue curve) weakens at 0.164 Hz and completely loses its power at 0.184 Hz

(n = 1200). The spectrum of GL1500E (green curve) is similar to that of L1B data up to

0.186 Hz, but starts degrading at 0.204 Hz, and completely drops at 0.23 Hz (n = 1500). On

the other hand, HK2160 (yellow curve) and our 3D spatially variable crust-inferred model (red

curve) do not show any degradation in power out to the Nyquist frequency of 0.25 Hz, because

they contain information up to degrees 2160 and 2519, respectively. These two forward models

start deviating above 0.216 Hz. Our model possesses higher power than HK2160 in these high

frequencies, probably because of the higher resolution topography grid in our analysis. Moreover,
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Figure 7: Spectral measures of line-of-sight gravitational accelerations: a) the amplitude spectral density and b)
coherence in the time period from November 30 2012 until December 4 2012.

our model (red curve) provides a better agreement with the raw L1B data (black curve).

Figure 7b illustrates the coherence spectra between the L1B data and the spherical harmonic

GGFMs. STU2160’s coherence (magenta curve) is seriously degraded and even oscillates. This

forward model does not explain the observed gravitational field properly over the depicted

frequency range, again most probably due to the use of a coarser topography grid. Among the

three GRAIL-only models, GL1500E has a high coherence of 0.8 at 0.184 Hz and 0.5 at 0.21 Hz.
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We suspect that GL1500E coherence is higher due to the less stringent power law constraint

(constant starting at n = 700) and relatively higher weights in the extended mission data, while

coherences for GRGM0900C and GRGM1200A are reduced as they employed a more aggressively

decreasing power law constraint (starting at n = 600). We also note that GRGM1200A performs

slightly worse than its predecessor GRGM0900C between the frequencies 0.1 Hz – 0.132 Hz,

probably due to different data weighting. The coherences for HK2160 and our model are the

highest and almost identical up to 0.19 Hz. However, our model correlates with L1B data better

than HK2160 between 0.19 Hz – 0.216 Hz. Coherences for GL1500E, HK2160, and for our

crustal model decrease above 0.212 Hz, where L1B data noise overwhelms gravitational signal.

Similar analysis was also performed for the models inferred by the constant and the laterally

variable density crustal compositions, but not depicted here. In summary, the corresponding

amplitude spectral densities and coherences were almost identical to those from the 3D spa-

tially variable density crust. Thus, the distinctions between our forward model and HK2160

at high-frequencies do not appear to originate from different density assumptions used in these

gravitational field models, but are caused most probably by different topographic resolutions.

Intuitively, a more detailed topography should be used in forward gravitational field modelling

to describe the high-frequency features.

Summary and conclusions

We employed Newton’s integral in the spectral domain and solved two geodetic/geophysical

tasks for the planetary body of the Moon. Firstly, we formulated a linear, global, and fully

spherical mathematical model for crustal density estimation. The observation vector was formed

by spherical harmonic coefficients of the gravitational potential, while the components of the

design matrix originated from the shape of the topography. We parametrised the laterally

variable density part by surface spherical harmonics that allow for various spectral and spatial

resolutions. We determined our constant, laterally variable, and 3D spatially variable bulk

densities within the lunar crust by using the GL1500E global gravitational field model and

LOLA topography. We showed that the constant and laterally variable densities agree with

those from previous estimates by other investigators.

Secondly, we used the three distinct crustal compositions for forward calculation of global
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gravitational field models up to degree 2519 (equivalent to a spatial resolution of ∼2.2 km at

the lunar equator). We showed that the gravitational field implied by the 3D spatially vari-

able density performs the best globally and also represents better agreement with the observed

geopotential fields in the nearside and farside highlands. In other regions, however, such as over

the lunar maria and low-elevated areas with basaltic lava infills, the gravitational field implied

by our 3D spatially variable density should be used with caution, and its simpler counterparts

may be preferred.

Finally, we compared six lunar gravitational field models with ”independent” Level 1B

GRAIL satellite-to-satellite tracking data. The high-frequency signal (a spatial resolution of

∼2 km) of our geopotential model was most consistent with the Level 1B data, while those from

GRAIL models weaken, e.g., due to the limited spectral resolution or power law constraints used

in their computation.

Our high resolution models with the optimized density variation could be useful for future

lunar lander navigation and geophysical exploration.
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