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A sequential Monte Carlo framework for noise
filtering in InSAR time series
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Abstract—This study proposes an alternative filtering tech-1

nique to improve interferometric synthetic aperture radar (In-2

SAR) time series by reducing residual noise while retaining the3

ground deformation signal. To this end, for the first time, a4

data-driven approach is introduced, which is based on Takens’s5

method within the sequential Monte Carlo framework, allowing6

for a model-free approach to filter noisy data. Both Kalman-7

based and particle filters are applied within this framework8

to investigate their impact on retrieving the signals. More9

specifically, particle filter (PF) and particle smoother (PaSm;10

to avoid confusion with persistent scatterers PS) are tested for11

their ability to deal with non-Gaussian noise. A synthetic test12

based on simulated InSAR time series, as well as a real test, are13

designed to investigate the capability of the proposed approach14

compared with spatio-temporal filtering of InSAR time series.15

Results indicate that PFs and more specifically PaSm perform16

better than other applied methods, as indicated by reduced errors17

in both tests. Two other variants of PF and adaptive unscented18

Kalman filter (AUKF) are presented and are found to be able to19

perform similarly to PaSm but with reduced computation time.20

The study suggests that PFs tested here could be applied in21

InSAR processing chains.22

Index Terms—InSAR, non-Gaussian noise, data-driven tech-23

nique, particle filter, sequential technique24

I. INTRODUCTION25

MONITORING deformation (primarily subsi-26

dence/uplift) of the Earth’s surface is important27

to understand its physical processes and the resulting28

hazards, e.g. earthquake, volcanoes, landslides, anthropogenic29

subsidence or uplift. Various techniques are employed to do30

this, but interferometric synthetic aperture radar (InSAR) has31

become a standard tool to undertake such studies by remotely32

sensing large areas at high spatial and temporal resolutions33

(e.g., [1]). In principle, InSAR uses two complex SAR images34

from repeat satellite passes to produce an interferogram over35

the common area. For a review of InSAR fundamentals see,36

e.g., [2].37

Individual interferograms are highly sensitive to various38

noise sources such as those attributed to spatial and temporal39

decorrelation [3], atmospheric (e.g., [2]), topographic effects,40

thermal noise and orbit errors (e.g., [4]). These can affect41

the sought-after deformation signal, both in the estimated42

velocities and the time-series. Advances in processing methods43

such as multi-temporal InSAR where multiple interferograms44
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are ‘stacked’ (e.g., [5]), persistent scatterers (PS; e.g., [6]), 1

small baseline subset (SBAS; [7]) and a combination of these 2

approaches [8] can help reduce the effects of noise on the 3

computed velocity, especially when a long time series with a 4

large number of SAR scenes are available. 5

For deformation time series of interest to investigate geo- 6

physical events, the noise in the estimated displacement may 7

be more problematic. The major source of noise in the InSAR 8

time series is the combination of tropospheric delay, which 9

comprise vertical stratification and turbulent components [2]. 10

The vertical stratification component can be estimated by its 11

relation with height (e.g., [9]), but the turbulent component is 12

variable in flat areas, so more difficult to determine [10]. 13

Various filtering methods are used at different stages of 14

InSAR processing. For example, the Goldstein filter [11] is 15

applied to the wrapped interferogram phase to reduce noise 16

and improve the unwrapping process. A filter parameter (α) 17

is implemented that can be set between zero and one; if 18

set to zero, no filtering is done, while a setting of one 19

will result in heavy filtering that is likely to significantly 20

change the structure of the interferogram [12]. [8] uses a 21

spectral filter on small baseline interferograms to assist in the 22

selection of slowly decorrelating filtered phase pixels used in 23

his combined SBAS and PS method. Spatio-temporal filtering 24

(STF) is used by [13] in the Stanford Method for Persistent 25

Scatters (StaMPS, see also [14]) on post-processed PS to 26

reduce temporal noise in the time series (mostly time- and 27

space-variable turbulent tropospheric noise, cf. [10]), and for 28

spatial noise relative to other PSs. Like all filters, this can 29

be set at different temporal and spatial scales, which will 30

tend to remove noise, but may also remove parts of the 31

sought-after deformation signal, particularly where the noise 32

and deformation display similar characteristics in time and/or 33

space [15]. 34

Here, we focus on reducing residual noise, with a view 35

to reducing processing and observation noise in the InSAR 36

time series. A number of methods have been used to estimate 37

this component (e.g., [16], [10]). The difficulty with applying 38

such filters is that they can remove most noise present but 39

at the cost of the geophysical signal of interest. Hence it is 40

a balance to ‘tune’ the filter so that its spatial and temporal 41

settings can be ‘optimal’ to remove as much noise as possible 42

while retaining the information of interest. Notably, the spatio- 43

temporal filtering employed in StaMPS assumes Gaussian 44

noise, yet geophysical signals of interest may be non-linear 45

in time, e.g., aseismic slip, or slow-moving landslides (see, 46

e.g., [14]). 47

The main objective of this study is, therefore, to test 48
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some alternative filters that may improve upon results from1

spatio-temporal filtering (e.g., available in StaMPS) to reduce2

the noise in InSAR time series. Different studies have been3

undertaken to improve the signal to noise ratio in InSAR4

signals, especially prior to the unwrapping process (see, e.g.,5

[11], [17]). These filters can generally be categorized into6

two groups, i.e., filtering in the spatial (e.g., [19], [20]) and7

frequency (e.g., [11], [21]) domains. These filters have been8

shown to be effective for smoothing as well as dealing with9

non-linear phase noises [22]. Nevertheless, there are a number10

of factors that degrade the performance of spatial and spectral11

filters. For example, multiple interferograms are required in12

most of these filters to better model noise, especially at-13

mospheric noise [23]. The methods also rely excessively on14

coherent pixel-wised data, which may not always be available15

(e.g., [24]). The spatio-temporal filters, despite being easier to16

apply due to their simplicity, can alter or remove the fringe17

structures in the signals [22]. A number of studies have been18

put forward to address this (see, e.g., [25], [26]). Furthermore,19

the Gaussian noise assumption is a fundamental principle in a20

large group of filters, which in reality may not always be the21

case (e.g., [27]).22

In order to address these problems, an alternative InSAR23

filtering approach is proposed here. The technique is based24

on a data-driven method, namely Takens’s filter [28], [29],25

[30]. Our proposed approach implements the Takens method26

for attractor reconstruction within the sequential Monte Carlo27

framework, allowing for a model-free approach to filter noisy28

data (e.g., [31]). Based on Takens’s theorem, equations un-29

derlying a model, which describe the time evolution of a30

system, e.g., land deformation time series, can be replaced31

by the information contained in the data. This, along with the32

implementation of Monte Carlo techniques such as Kalman33

filters (KFs) and particle filters (PFs) for updating the system34

based on the current data, allows the handling of noise in the35

observed data (e.g., [29]).36

Here, for the first time, we apply the Takens filter to reduce37

residual noise in InSAR data. Contrary to previous studies that38

used KF and PF techniques for phase unwrapping and/or noise39

reduction (e.g., [32], [33]), the Takens method relies only on40

data and avoids assumptions on the state-space model noises41

and can be computationally faster (e.g., [30]). To assess the42

performance of the Takens method, we tested it on synthetic43

and real data and compared with [13] spatio-temporal filtering44

(STF) which is usually applied to post-processed PS.45

II. METHODOLOGY46

The proposed filtering scheme comprises two steps in a47

sequential process, i.e., forecast then analysis, similar to data48

assimilation techniques (e.g., [34], [35]). Sequential methods49

do not require an adjoint (like variational methods) and are50

becoming increasingly popular because of their reasonable51

computational requirements as they do not need to record52

and use historical data. In the forecast step, the state esti-53

mate at time t (e.g., land deformation) and its corresponding54

probability density function (PDF) are forwarded in time to55

t + 1 using a state transition operator. Monte Carlo methods56

are commonly used in the forecast step (based on ensembles 1

or particles). These are then filtered in the analysis step 2

based on the likelihood of the observations (e.g., simulated 3

observations). Traditionally, a dynamical model is used in the 4

forecast step, however, a problem arises when a model is 5

not available. To address this, the Takens filter is applied to 6

form the state transition operator (see Section II-A). Various 7

filtering methods can then be used for the analysis step to 8

update forecast PDF such as Kalman (e.g., ensemble Kalman 9

filtering) or point-mass weight (e.g., PF). Here, three variants 10

of most commonly used sequential techniques, i.e., adaptive 11

unscented Kalman filter (AUKF), PF and particle smoother 12

(PaSm) are applied (see Sections II-B–II-C). We also test STF 13

[13] to assess the capability of the proposed filtering method. 14

The STF is ‘tuned’ to determine the ‘optimal’ settings for the 15

comparison. This includes applying different values for various 16

parameters used in the STF such as band-pass phase filters and 17

low-pass cutoff to reach the best performance compared to the 18

‘truth’. The corresponding outcomes are then used to evaluate 19

the proposed filtering scheme. 20

A. Takens’s filter 21

The Takens filter does not rely on a model and its corre- 22

sponding equations, which significantly decreases the compu- 23

tational burden with comparable outcomes with respect to a 24

standard case. The absence of a model in the InSAR time 25

series filtering process makes the Takens filter a potential 26

candidate to be used for forecasting. [29] showed that this filter 27

has a high capability for time series filtering in the presence 28

of various noises. The Takens method is used to reconstruct 29

the model, e.g., following the terminology of [30] shown by 30

f , for the forecast step with a local proxy f̃ . This is done 31

using a set of training data based on the InSAR time series to 32

represent the state of the system. The training data is obtained 33

from the delay vector as well as neighbouring grid points. The 34

delay vector x (at t) can be formed using the historical state 35

variables, e.g., d temporal delays of InSAR line of sight (LoS), 36

xo, following, 37

xt = [xo
t,x

o
t−1, . . . ,x

o
t−d]. (1) 38

39

Next, similar delay vectors located at the N nearest neighbors, 40

i.e., grid points located close to the point of interest (based on 41

Euclidean distance) within a set of training data, are derived 42

by, 43

x1
t = [xo1

t ,x
o1
t−1, . . . ,x

o1
t−d], 44

x2
t = [xo2

t ,x
o2
t−1, . . . ,x

o2
t−d], (2) 45

... 46

xNt = [xoN
t ,x

oN
t−1, . . . ,x

oN
t−d]. 47

48

Once delay vectors are calculated, a local model can be created 49

for the forecast step, i.e., to advance state from t to t+1 and 50

correspondingly xt to xt+1. The local model f̃ can then be 51

generated (in its simplest from) using a weighted average of 52

the training data according to 53

xt+1 = ω1γ
1x1
t+1 + ω2γ

2x2
t+1 + . . .+ ωNγ

NxNt+1, (3) 54
55
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with1

ωi =
e−(di/σ)

2∑N
j=1 e

−(dj/σ)2
, (4)2

3

where the distance between the jth neighbour of xt is indi-4

cated by di. σ is applied to control the contribution of each5

neighbour in the local model and it is called a bandwidth6

parameter (here σ = 2). γk, k = 1, · · · , N in Eq. (3) refers7

to the coherence factor, which is calculated as an absolute8

value of the correlation coefficient between two SAR scenes9

following10

γ1,2 =
||E(z1, z

∗
2)||√

E(||z1||2).E(||z2||2)
, (5)11

12

where z1 and z2 are the complex return for two SAR and E(.)13

represents the expectation function. The inclusion of coherence14

in the local model formulation decreases the effect of noisy15

observations with smaller γ. Afterwards, the forecast state16

xt+1 is updated in the next step based on Bayes’s rule [34].17

This is done to update the forecast state based on the current18

observations.19

As shown by [29], the availability of unpredictable noise20

components in the observed data is a common context for the21

application of the Kalman-Takens filter, which is able to handle22

observation noise using sequential forecast and update steps.23

Applying this method to the entire training data set reduces24

the observation noise in the training data which will improve25

future filtering and also provide better neighbours to improve26

forecasting (see, [36]). The application of the Kalman-Takens27

filter also allows for better quantification of the uncertainty28

in the state, e.g., through the state forecast covariance matrix,29

which will then be reduced using the update step (see Sections30

II-B–II-C). While delay coordinate embedding replaces the31

missing model, the Kalman (or particle) update offers a32

maximum likelihood estimate of the reconstructed state in the33

presence of noise. This combination of two filters, therefore,34

contains complementary strengths of the two.35

Three different methods from sequential Monte Carlo36

framework are used for the update step. These include AUKF37

([37]), PF ([38]), and PaSm ([39]). The Kalman-based and38

PFs are specifically selected due to their ability to deal with39

different types of noise. Where non-Gaussian noise exists, the40

particle approach is particularly well suited (e.g., [38]). These41

filters are based on point mass representations of probability42

densities, which generalise the traditional Kalman filter and43

do not rely on a Gaussian noise assumption.44

B. AUKF45

Adaptive unscented Kalman filter (AUKF) is based on46

the Monte Carlo scheme, which generates random variables47

and propagates them through a non-linear function using a48

deterministic sampling approach for producing 2L+ 1 sigma49

points with L being the dimension of the state as 1

x0
t = xt, (6) 2

xit = xt +
(√

(L+ λ)Pt

)
i

i = 1, . . . , L, (7) 3

xi+Lt = xt −
(√

(L+ λ)Pt

)
i

i = 1, . . . , L, (8) 4
5

where Pt represents the state covariance matrix. The associ- 6

ated weights to the sigma points are estimated by 7

w0
s =

λ

(L+ λ)
, (9) 8

w0
c =

λ

(L+ λ)
+ (1− α2 + β), (10) 9

wis =
1

2(L+ λ)
i = 1, . . . , 2L. (11) 10

11

λ is the scaling parameter with λ = α2(L+ β)− L. α (0–1) 12

controls the spread of the sigma points and β is usually set 13

to 0 ([40]). The generated sigma points are then integrated 14

with a model using the local proxy f̃ , created in the Kalman- 15

Takens filter to estimate the forecast state. Once done, the 16

forecast averages and corresponding covariance matrices are 17

calculated following [40], by 18

xft+1 =

2L∑
j=0

wj
sx
f,j
t+1, (12) 19

yft+1 =

2L∑
j=0

wj
sHxf,jt+1, (13) 20

21

where H is the observation operator that maps the model 22

states into the observation space to update state estimates. 23

Next, the analysis step is employed, which updates the forecast 24

state xft+1 using incoming observations yt+1 to calculate the 25

analysis state xat+1 based on the Kalman update equations, 26

xat+1 = xft+1 +K(yt+1 − yft+1), (14) 27
28

with K being the Kalmna gain and calculated according to 29

covariance matrices associated with the process (Qt) and 30

observation (Rt+1) (see more details in [40]). Critical to the 31

success of this method is the selection of the filter noise 32

covariance, and in particular the process noise covariance 33

matrix Q. [37] show that unscented Kalman filter performance 34

is highly dependent on Q, especially for non-linear problems. 35

Here, we use the method of [37] to adaptively estimate this 36

covariance matrix. The general idea of [37] is to use the 37

increment, εt = yt − yft , to estimate the noise covariance 38

at each time step, as per [37]. 39

C. Particle filter 40

Particle filter (PF) is also a sequential Monte Carlo method, 41

which represents the state PDF by a set of weighted particles 42

[38]. The state PDF is then decomposed as 43

P (xt|y1:t) ≈
M∑
i=1

ωitδ(xt − xit), (15) 44

45
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where {xit; i = 1 . . .M} (with M being the particle size) are1

the particles at time t, observations between time 1 and t are2

denoted by y1:t, ωit are the weights of the particles (normalised3

importance weight), and δ is the Dirac delta function. In the4

forecast step, PF just integrates the particles forward with the5

local proxy f̃ , exactly as AUKF, and their weights remain6

the same. In the analysis step, only the weights, and not the7

particles, are updated using8

ωit =
P (yt|xit|t−1)∑
j P (yt|x

j
t|t−1)

. (16)9

10

PaSm is also applied in a largely similar manner by propagat-11

ing particle members and their associated weights in the fore-12

cast step and updating the latter in the analysis step. The main13

difference between the two approaches is estimation of the14

state distribution. Contrary to PF, the distribution at a particular15

time is calculated in PaSm using all of the observations up to16

some later time. This results in using additional information17

(e.g., taking advantage of a few later observations), which18

leads to smoother estimates than PF and likely to a better19

performance, especially if state estimation at a particular time20

is not required instantly [39]. A forward-backward smoother21

is assumed here, which proceeds by making first a forward22

filtering pass to compute the filtered distribution at each time23

step, and then a backward smoothing pass to determine the24

smoothing distribution [41]. The distribution can be approxi-25

mated by26

P (xt|y1:T ) ≈
M∑
i=1

ωit|T δ(xt − xit), (17)27

28

with y1:T = {y1 . . .yT }, (T ≥ t + 1) and corresponding29

particle weights of30

ωit|T = ωit

[ M∑
j=1

ωjt+1|T
P (xjt+1|xit)∑N

k=1 ω
k
t P (x

j
t+1|xkt )

]
. (18)31

32

A resampling technique of systematic resampling ([42]) is33

applied to account for the so-called ‘degeneracy problem’ in34

which the weights of all particles become negligible except35

only for a very few, requiring a prohibitive number of particles36

to prevent the particles collapsing [38]. The method draws only37

one random number u1 ∼ U(0, 1/N) and the remaining N−138

numbers are then calculated from u1 as39

Ui = u1 +
(i− 1)

M
, i = 2 . . .M. (19)40

41

These are then used to select a new set of particles according to42

the multinomial distribution [38]. Figure 1 outlines a summary43

of the filtering framework and the applied filters for the InSAR44

noise reduction process in this study.45

III. EXPERIMENT SETUPS46

A. Synthetic data47

InSAR line of sight (LoS) phase observations and their48

associated errors are simulated following [23] and [18] with49

similar average properties to the TerraSar-X satellite mission50

[43]. The simulation is done over the Perth (Western Australia)51

Forecast step

xft+1

InSAR data
Takens method

xot

d temporal
delays

N nearest
neighbors

Proxy
model

Analysis step

PaSmAUKF PF

Start: xat

Finish: xat+1

Fig. 1: A schematic illustration of the filtering steps based
on the Takens method, as well as sequential techniques, i.e.,
AUKF, PF, and PaSm at every assimilation cycle.

metropolitan region with 11-day repeats from October 2012 to 1

October 2016 within the spatial extents 32.25oS to 31.65oS 2

and 115.60oE to 116.10oE with ∼30 m pixel size. Details 3

of the steps taken to generate synthetic data are described 4

in the supplementary materials. In summary, the process 5

includes introducing land subsidence using the point pressure 6

model, simulating topographic errors, atmospheric artefacts, 7

orbital errors, and temporal decorrelations as per [18], and 8

lastly creating interferograms. We then apply the 3D phase 9

unwrapping method in StaMPS small baseline MTI [14]. Once 10

the synthetic interferograms are produced, they are merged 11

and converted to deformation time-series. To this end, small 12

baseline subset (SBAS) is used with the spatial perpendicular 13

baselines less than 150 m and temporal baselines less than 14

100 days. The proposed filtering methods are then applied to 15

the simulated LoS data. These synthetic data are simpler than 16

real interferograms and do not include, e.g., nonlinear phase- 17

topography gradients and quadratic orbital ramps. Neverthe- 18

less, they can sufficiently reproduce the primary features of 19

InSAR data for testing the proposed filters. For an additional 20

analysis, real data will be considered in Section III-B. 21

B. Real data 22

The InSAR component of the real test data used 109 X- 23

band scenes (wavelength 3.1 cm) over Perth (Western Aus- 24

tralia) from the TerraSAR-X (TSX) satellite mission under the 25

German Aerospace Centre (DLR) science project LAN1499. 26

The scenes were acquired between October 2012 and October 27

2016, with a temporal resolution of 11 days but with some gaps 28

due to operational priorities for the satellite. The 109 scenes 29

were used to process 442 SBAS interferograms using the Doris 30

software [44] within StaMPS small baseline MTI processing 31

[14]. The slowly decorrelating filtered phase (SDFP) pixels 32

[8], were down-sampled to 30 m spatial resolution using the 33

procedure described in [14] to reduce the many millions of 34

SDFP pixels to a manageable dataset. Long-wavelength orbit 35

and ionospheric effects were accounted for via the estimation 36
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and removal of a phase ramp, which is suitable for the TSX1

scene extent of 30 × 50 km [14]. The LoS deformation time2

series was computed from the SBAS interferogram SDFP3

differences.4

The time series is filtered to reduce the residual noise using5

various filters including the proposed Takens approach. The6

results are then compared with GPS time series over the study7

period (October 2012 to October 2016), which is provided by8

Nevada Geodetic Laboratory (http://geodesy.unr.edu/) for the9

international GNSS service (IGS) station “PERT” in Perth.10

GPS data are used to assess the performance of the InSAR11

filters in the real test, albeit for a single site and not whole12

area.13

IV. RESULTS AND DISCUSSIONS14

A. Synthetic test15

An evaluation of the proposed filters, also compared to the16

existing method of STF, is assumed in this section. The main17

objective is to reduce the impact of noise by applying different18

filters and retrieve the artificially introduced subsidence signals19

from the simulated phase. To this end, all the filters are applied20

to the synthetic data using their ‘optimum’ configurations and21

their results are validated against the unperturbed data (the22

simulated “truth”). Figure 2 depicts the time series (at a single23

location) from the perturbed (red) and unperturbed (green) LoS24

deformation, as well as the results of each filter applied (blue).25

More time series comparisons over different points can also26

be found in the supplementary materials. Moreover, detailed27

results can be found in Table I, where maximum differences,28

RMSE, standard deviation (STD) and correlation coefficients29

are reported. In Table I, average results over the entire scene30

are presented. Figure 2 shows that the application of all the31

filters decreases the misfits with respect to the unperturbed32

displacements. The level of improvement, however, is different33

for different filters, as it can also be seen from the indicated34

average error for each case. These errors are calculated as35

the average of absolute differences between the filtered time36

series and the unperturbed time series. The particle filters,37

and particularly PaSm, achieve the ‘best’ results. We gauge38

‘best’ as the closest agreement with the simulated “truth”39

as determined by the lowest RMSE and highest correlation40

coefficient (cf. Table I). PaSm reduces RMSE from 10.30 mm41

in the perturbed data to 6.63 mm (a reduction of 36%).42

The weakest performance belongs to the STF based on both43

Figure 2 and Table I. The correlation between filtered and44

unperturbed (“truth”) time series for the STF is 0.57, smaller45

than PF (0.78) and PaSm (0.89). From Figure 2, in general,46

smoother time series are obtained from the AUKF, which is47

observed to better alleviate high-frequency noise than STF48

and PF. This resulted in smaller STD (6.17 mm) compared49

to STF (7.34 mm) and PF (6.81 mm). PaSm is found to better50

improve the time series, which contrary to other filters, do not51

rely on a Gaussian noise assumption. This allows the particle52

approaches to model the errors more realistically, leading to53

better performance especially for particle smoother, e.g., with54

the lowest RMSE (4.22 mm) and highest correlation (0.89).55

The most promising results among the three proposed filter56

variants also belong to PaSm, slightly better than PF, which 1

can be attributed to the applied forward-backward algorithm 2

allowing for using more information in the filtering process. 3

Spatial distributions of the displacement errors (i.e., the 4

misfit between the results and the simulated “truth”) based on 5

the simulated data are demonstrated in Figure 3. At each grid 6

point, the temporally averaged error (i.e. average of error time 7

series at each grid point) is calculated for all these filters, as 8

well as when no filter (noisy data) is applied. Smaller errors 9

are found from PF and PS, and to a lesser degree AUKF, 10

than STF. These can be inferred from the lower differences 11

over the entire area, which supports the previous results 12

indicating the superiority of the proposed methods. Another 13

major discrepancy among the STF errors maps with those of 14

new filters refers to a smoother spatial pattern in the latter 15

(cf. Figure 3). The smoother errors maps of PF, PaSm and 16

AUKF can be explained by the use of neighboring points in 17

reconstructing the model for the Takens approach. The proxy 18

model is constructed from N neighbour points, which means 19

implicit spatial smoothing is applied in the filter’s forecast 20

steps. Figure 3 also shows that the PaSm results in a smoother 21

spatial pattern and smoother error time series than PF due to 22

the former implementing the filtering followed by a smoothing 23

process (e.g., [45]), while the latter only applies filtering. 24

Larger errors can be found around the imposed deformation 25

source. Such larger error amplitudes are more pronounced in 26

the STF and AUKF ‘error’ maps, yet, much less than the error 27

map of noisy data. To better represent this, the filters’ RMSE 28

results at constant distances from the deformation source are 29

compared in Figure 4. For this purpose, RMSE values are 30

spatially interpolated to these radial distances using the nearest 31

neighbour approach. As the distance increases, the error values 32

for all filters decrease but this is more noticeable for STF, 33

which demonstrates the largest error close to the deformation 34

source. Again, PaSm and to a lesser degree PF hold the best 35

performance slightly better than AUKF and considerably better 36

than STF. Overall, similar to previous results, the particle 37

approaches (PF and PaSm) obtain ‘better’ results against the 38

other applied filters. 39

B. Real test 40

To further investigate the performance of the filters in a 41

more realistic scenario, their results from real InSAR data 42

from TerraSar-X are compared with GPS time series. This is 43

not an optimal evaluation as GPS data are subject to various 44

error sources, which can be different than those in InSAR 45

data. However, in the absence of reliable validation data, such 46

an evaluation may provide some insight into which filtering 47

method can better reflect the land displacements albeit at one 48

point. Figure 5 displays time series of InSAR data (red), GPS 49

(green), and filtered time series (blue). The comparison is done 50

over a GPS station between InSAR data filtered by various 51

methods and GPS time series (cf. Figure 5), which is converted 52

to LoS data based on the TerraSar-X satellite look and heading 53

angles (following Eq. (1) in [46]). The correlation values, i.e., 54

between each two time series are also indicated for each case. 55

Improvements can be seen for all the applied filters based on 56
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Fig. 2: InSAR time series at a randomly selected point (latitude −31.802o and longitude 115.885o) from different filtering
scenarios based on the synthetic data compared to the no filter results and the “truth”. Note that average errors between the
filtered times series and “truth” is indicated on each subfigure. The average error of noisy (unfiltered) data is 10.29 mm.

TABLE I: Summary of statistics derived from implementing different filters (with respect to ‘Truth’) on the simulated InSAR
time series (2012–2016 for all filters) and over the whole area. RMSE reduction is with respect to original data (i.e. no filter
applied).

Filter Max error (mm) RMSE (mm) STD (mm) Correlation RMSE reduction (%)

No filter 13.35 10.30 9.72 0.38 –

STF 12.08 8.56 7.34 0.57 17

AUKF 9.78 7.46 6.81 0.66 28

PF 9.35 7.11 6.17 0.78 31

PaSm 7.49 6.63 4.22 0.89 36

the better agreement between the filtered results and GPS data.1

Nevertheless, better results are provided by particle filters. In2

some time periods, e.g., after 2015, large misfits between the3

STF results and GPS observations exist. AUKF, PF and PaSm,4

on the other hand, provide better results (smaller differences5

to GPS), which shows their ability to better capture changes.6

However, larger correlation values are obtained between PF7

and PaSm results and GPS data. Overall, AUKF, PF, and PaSm8

time series indicate better agreement with the GPS data. The9

best performance is obtained from applying PaSm with 0.7410

correlation to GPS time series against 0.34 for STF, 0.53 for11

AUKF, and 0.69 for PF. These results agree with the synthetic12

experiment results, in which particle filters also performed13

better.14

V. CONCLUSION 1

An alternative InSAR noise filtering scheme was proposed 2

in this study, which comprises different steps including the 3

Takens method for attractor reconstruction, followed by the 4

sequential Monte Carlo framework, allowing for a model- 5

free approach to filter noisy data. The method has significant 6

benefits because of its capability to deal with non-Gaussian 7

noise. A synthetic test was designed based on the simulated 8

InSAR LoS phase data to investigate the capability of the 9

proposed approach compared with the spatio-temporal filtering 10

with the results indicating that the particle approaches (PF and 11

PaSm), and to a lesser degree AUKF, show a larger reduction 12

in residual noise, both temporally and spatially. Specifically, 13

PaSm successfully reduced RMSE by 34%, approximately 5%, 14

10%, and 15% better than PF, AUKF, and STF, respectively. 15

Moreover, Particle filters, especially PaSm appear to agree 16

better with GPS in a real test. The capability of PaSm and 17
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Fig. 3: Temporally averaged ‘error’ maps from different filter-
ing scenarios (mm). Error is the difference between the filtered
results and “truth” data.

Fig. 4: The filters’ average RMSE results at constant distances
from the simulated deformation source.

PF in dealing with non-Gaussian noise can explain their1

better performance, especially against the Kalman-based filter2

AUKF, however, for the PaSm, this was obtained at the3

expense of a heavier computational burden. PF, on the other4

hand, achieved the closest performance amongst other filters5

in a more efficient manner, e.g., in terms of processing time6

and complexity. The next alternative can be AUKF, which is7

highly capable of reducing noise using much less population8

size. These results suggest that the particle filters tested here9

using the Takens approach can offer alterative methods for10

dealing with noisy InSAR signals, which depends on the11

filters’ optimization.12
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