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ABSTRACT

Classical continuum models have been used to predict the thermal conductivity of
fluid mixtures for over a century; however, it is reported that real mixtures, including
gases mixtures and nanofluids, exhibit thermal conductivities outside these bounds. While
effects such as particle geometry and structural arrangement are well investigated, simul-
taneous diffusion and thermal diffusion effects, as well as their resulting time dependence,
remain relatively unexplored. This thesis analyses these phenomena and explores the link
between microscopic and macroscopic definitions of heat transfer. It also attempts to
better define what is an anomalous thermal conductivity, and what are the limits of per-
formance with nanotechnology/nanofluids.

The hard-sphere model is used throughout the thesis in order to simulate fluid mix-
tures. This is the simplest molecular model which includes the effects of molecular
size, thus its results are fundamental and have wide application. The model has an ac-
curate micro-to-macroscale description available via kinetic theory and exact results for
the model can also be obtained efficiently using equilibrium and non-equilibrium event-
driven molecular dynamics. These methods are applied here to determine the most useful
microscopic definition of the thermal conductivity and to compare binary hard-sphere
thermal conductivity values against the classical continuum bounds. It is conclusively
shown that even this simple system can greatly exceed classical predictions.

Real gas mixtures which display this “anomalous” behaviour are predicted using di-
mensional analysis and this behaviour is confirmed in helium-hydrogen systems using
data from the literature. Further comparison with experimental data shows that the hard-
sphere model is strongly predictive for gas mixtures.

The hard-sphere model also predicts a dramatic transient thermal conductivity in-
crease which has not yet been captured by experiment or previously reported. In or-
der to investigate the magnitude and timescale of potential transient effects, a fully-
coupled kinetic theory and hydrodynamic model is created which is able to solve for
the time-evolution of hard-sphere systems in an efficient manner. This simulation method
is found to agree strongly with exact molecular dynamics simulation in the case of mono-
component hard-sphere systems, even under extreme flows such as thermally induced
shock-waves. Finally, this thesis presents a novel algorithm for calculating the free en-

ergy of molecular systems.
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CHAPTER
ONE

INTRODUCTION

Heat management is becoming ever more critical as technology continues to advance
and nowhere is this more important than in microelectronics where high power densities
(W m~3) place limits on new designs. For example, AMD’s recently released Epyc CPUs
have a peak output of 180 W of heat over 756 mm? of die (238 kW m~2). In comparison,
industrial fired heaters have a design flux of < 40 kW m~2, thus managing and trans-
porting the heat produced by modern CPUs requires improved heat management systems
which could benefit from novel heat transfer materials. Water and air are the most com-
mon heat transfer fluids in use presently as they are cheap to obtain and safe to use. Water
also has a high heat capacity for its molecular weight as well as a useful low viscosity and
favourable melting/boiling points which make it suitable for most general heat transfer
applications; however, like most fluids, water has a relatively low thermal conductivity
when compared with other materials. For example, as shown in Fig. 1.1, copper has
a thermal conductivity which is approximately 650 times greater than water. There are
many ways of potentially increasing the heat transfer capabilities of a heat management
system, such as modifying the flow geometry to increase heat transfer area or adjusting
the flow regime to promote convective transport; however, if the thermal conductivity of
the heat transfer fluid itself can be increased, then heat transfer improves universally for
all geometries and flow regimes.

The field of nanofluids seeks to enhance the thermal conductivity of conventional heat
transfer fluids through the colloidal suspension of high-conductivity solid nanoparticles
which have diameters < 100 nm. There has been a great deal of interest in these nanopar-
ticle suspensions since it was reported that there is a large “anomalous” enhancement of
the thermal conductivity for low nanoparticle loadings. One of the first studies which
reported these enhancements was performed by Eastman et al [5] using copper nanoparti-
cles suspended in a base fluid of ethylene glycol. A thermal conductivity enhancement of

40% was reported for a nanoparticle volume fraction of just 0.3 vol% as shown in Fig. 1.2.

Since this study, a wide variety of nanoparticle and base fluid combinations have been

investigated [6] and many have shown large thermal conductivity enhancements. Exper-
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Figure 1.1: Chart showing the thermal conductivities of various materials near standard
conditions. Metallic materials are shown in red, non-metallic solids are shown in purple,
liquids are shown in blue, and gases are shown in green. The thermal conductivity of
helium and hydrogen as well as the liquid materials are approximately one order of mag-
nitude larger than air. In general the thermal conductivity of solid materials is 2-3 orders
of magnitude larger than gaseous and liquid materials. Diamond and carbon nanotubes
display the largest thermal conductivity of any quoted material and is several times larger
than the highest conductivity metallic materials. Thermal conductivity data is taken from
Refs. [1-4].

imental measurements have also generated substantial controversy [7], with confusion
over what results might be unsurprising and what might be deemed ‘“anomalous”. Even
the seminal results of Eastmann et al in Fig. 1.2 have ill-defined aspects as detailed in the
figure caption. Disagreements between different groups on the measured thermal con-
ductivity of particular nanofluids as well as some surprising results ultimately led to a
comprehensive study with double blind tests conducted as a collaboration between 71 au-
thors across 34 institutions [8]. The primary conclusion of this benchmark study is that no
anomalous behaviour was observed and the thermal conductivity is predicted by effective
medium theory [9].

The nanofluids controversy is reminiscent of thermal conductivity measurements in
the helium-hydrogen gas mixture. Early results in the 1960s [10, 11] showed a surpris-
ing minimum in the measured thermal conductivity as a function of mixture composi-
tion as shown in Fig 1.3. Such behaviour would be considered extremely anomalous in
the nanofluid community as it implies that the addition of a more thermally-conductive
component can actually make the resulting mixture more thermally insulating. Experi-
ments on this gas mixture were carried out with very different techniques (e.g. hot wire,
katharometer) and some studies displayed an additional controversial sharp dip at the lo-
cation of the minimum. This was later dismissed as two experimental errors by other

authors who could not reproduce the result [12, 13]; however, the minimum was repro-
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Figure 1.2: Thermal conductivity as a function of volume fraction of Cu nanoparti-
cles dispersed in ethylene glycol (left) and a transmission electron micrograph of copper
nanoparticles dispersed in ethylene glycol (right). Both figures are adapted from Ref. [5].
There is a remarkable 40 % thermal conductivity enhancement with the addition of just
0.3 vol% copper nanoparticles; however, this is also in the presence of <1% v/v thiogly-
colic acid which is used as a stabilising agent. Although the author described this as a
small addition, it is highly significant compared to the nanofluid volume fraction. Other
troubling aspects include a lack of repetition/error analysis and the effect of ageing of the
sample (“fresh” here is defined as < 2 days from formulation and “old” is defined as up to
two months from preparation). These uncertainties are characteristic of many published
experimental nanofluid results.

duced.
Both of these experimental examples highlight our lack of understanding as well as the

challenges in repeating measurements of thermal conductivity. Several questions remain:

1. What is a useful definition of an “anomalous” thermal conductivity?

2. Is “anomalous” thermal conductivity possible in general (and thus in nanofluids)?

and

3. Can we understand and/or predict “anomalous” thermal conductivity effects?

In searching for a useful definition of “anomalous” thermal conductivity, consensus in the
literature has focused on results outside the bounds given by the series k* and parallel &/l
limits of the thermal conductivity [9], which for a binary mixture are as follows,

1L (=) ¢

Sl + o k= (1= o)1 + ko, (1.0.1)

where ¢, is the volume fraction of component 2 in the mixture, and %k, and k, are the

pure component thermal conductivities of component 1 and component 2 respectively.
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Figure 1.3: Reduced thermal conductivity of hydrogen-helium gas mixtures as a function
of hydrogen mol fraction over 23.8-50 °C. The consensus is that a minimum is present, al-
though a sharp minimum around x5, ~ 0.15 which is reported by two references has been
dismissed as experimental error in later work [12]. The figure is adapted from Ref. [13]
where further details on the references are given.

These limits represent the extremes of a continuum description, i.e., two continuum ma-
terials of constant thermal conductivity with no interfacial effects cannot be arranged in
any way such that the combined thermal conductivity lies outside these bounds'. The
term “anomalous” is also commonly applied to thermal conductivities outside the bounds
given by effective medium theory for well-dispersed particles. These so-called Maxwell
bounds [14] are discussed in Chapter 2 and are narrower than the series/parallel limits.
Results outside the Maxwell bounds, and even the series-parallel bounds, have been re-
ported in the nanofluid literature and in an attempt to explain these measurements, several
additional mechanisms beyond pure conduction have been proposed; such as interfacial
particle layering, nanoparticle clustering, and Brownian motion. These are discussed in
detail in Chapter 3; however, the general consensus is that these mechanisms alone cannot
explain the observed trends and no predictive model for nanofluid thermal conductivity
is yet available. Indeed, these models all fail to explain the behaviour of the helium-
hydrogen gas mixture, thus some fundamental understanding is still missing.

The fact that the series-parallel model is unable to bound experimental results sug-
gests that molecular (non-continuum) effects are important. A molecular model is there-

fore most appropriate when attempting to simulate the behaviour of nanofluids to gain

IThe parallel case does assume an insulating barrier between the two phases; however, this only serves
to slightly widen the bounds and thus does not invalidate this statement.
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further insight. Molecular Dynamics (MD) simulation involves directly simulating the
motion of every molecule in a system and can be used to directly observe heat transfer
in model molecular systems; however, it is computationally expensive and it is therefore
difficult to simulate anything other than small systems over short times, e.g., a compu-
tationally large simulation of 10° molecules of air corresponds to a simulation box of
only 300 x 300 x 300 nm, while computationally-accessible simulation times are on
the order of < 1 ns. Heat conduction in mixtures such as nanofluids involves coupled
diffusion and heat conduction effects which might take seconds to come to steady state
and depend strongly on the geometry of the heat transfer device, thus MD is only used
here to explore fundamental properties of fluid mixtures but not their direct heat-transfer
performance. In order to simulate realistic heat-transfer devices, a multi-scale model is
developed which includes interactions at the molecular scale without incurring the cost
of a direct MD simulation. One successful theory for molecular transport is Enskog-
Chapman kinetic theory [15] (henceforth referred to as Enskog theory) which is a rela-
tively computationally-inexpensive approximation for calculating the transport properties
of single or multi-component hard-sphere fluids at equilibrium. In this thesis, this molec-
ular model is integrated into a hydrodynamic model in order to connect the molecular and
macroscopic scales and determine if truly “anomalous” thermal conductivity is possible,
and if it can be exploited in real applications.

The structure of the thesis is as follows. This thesis examines classical continuum
bounds of mixture thermal conductivity in Ch. 2 before reviewing experimental studies
which report thermal conductivity values, for fluid/fluid-solid mixtures, which lie outwith
these bounds in Ch. 3. In order to move beyond continuum theories, a molecular descrip-
tion is required. The hard-sphere model is used in order to model thermal conductivity
in mixtures in this thesis, thus an overview of this model is given in Ch. 4 along with
a outline of MD simulation. Ch. 5 gives a derivation of Enskog-kinetic theory which
is used in order to derive full multicomponent hydrodynamics for hard-sphere mixtures.
This complete hydrodynamic description is built upon in Ch. 6 which defines thermal
conductivity in fluid mixtures, taking into account molecular effects. In Chs. 7 and 8,
MD simulation and Enskog theory are used in order to investigate “anomalous” thermal
conductivity values for binary hard-sphere fluids where it is shown that it is possible for
hard-sphere mixtures to exhibit “anomalous” thermal conductivities. Ch. 9 then proceeds
to investigate whether or not these findings are reflected in real mixtures. A coupled hy-
drodynamic - kinetic theory model is presented in Ch. 10 which is designed to model the
detailed time-evolution of hard-sphere fluid systems with a view to modelling molecular
heat transfer in macroscopic devices.

Finally, Ch. 11 presents two novel methods for computing the free energy of hard-
sphere systems. High-precision estimates for both the solid and liquid free energies are
determined which are then used in order to accurately determine the hard-sphere fluid-

solid transition point.
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CHAPTER
TWO

CONTINUUM MODELS OF MIXTURE THERMAL
CONDUCTIVITY

Several continuum models have been used in the past in attempts to predict thermal
conductivity in fluid/fluid-solid mixtures, as well as to deem what is, or is not, “anoma-
lous” thermal conductivity behaviour regarding measurements which deviate from these
continuum predictions. These models have the advantage of relative simplicity and intu-
itiveness when compared to complete hydrodynamic descriptions of fluid mixtures; how-
ever, a common drawback of the models presented here is that they assume that a fluid is
completely stationary. This implicitly assumes that diffusion plays no part in the transfer
of energy and, therefore, that the only mechanism of heat transport is conduction. This is

demonstrably false for fluid mixtures and is discussed in much more detail in Ch. 6.

2.1 Series-parallel limits

This chapter begins by presenting an overview of the most basic and intuitive model
of thermal conductivity in mixtures: the series-parallel limits. Instead of predicting an
exact value for the thermal conductivity, the series-parallel model gives upper and lower
bounds for a given mixture based on two ideal material configurations. The configura-
tions which correspond to the series and parallel thermal conductivity limits are shown in
Fig. 2.1 where the direction of heat conduction through the system is labelled. Fig. 2.1(a)
shows two continuous mediums, with thermal conductivities k; and ks, arranged in series
relative to the direction of heat flow. This arrangement corresponds to the series limit
and represents the minimum possible thermal conductivity for a given continuum mix-
ture due to the fact that all heat is forced to travel through the lower thermal conductivity
medium. Fig. 2.1(b) shows the same two mediums arranged in parallel which represents
the maximum possible thermal conductivity. In this case there exists a “shortcut” for heat
conduction, unlike in the series arrangement, where heat can completely bypass the lower

thermal conductivity medium. The thermal conductivities in the series and parallel limits
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Heat flux

Figure 2.1: Four different configurations of two continuum materials with thermal con-
ductivities k; and k». (a) and (b) correspond to the series and parallel thermal conductivity
limits respectively. (c) and (d) correspond to the Maxwell thermal conductivity bounds.
If ky > ks then (c) corresponds to the lower Maxwell bound and (d) corresponds to the
upper bound. The red arrow represents the direction of heat flow through the systems.

[1] are given in Ch. 1 and are restated here as follows,

1 (1-¢2) ¢
SRS 7 ] El=(1—¢o)k k 2.1.1
where &+ and k!l are the series and parallel thermal conductivities respectively, k; is the

thermal conductivity of component ¢, and ¢; is the volume fraction of component .

One of the reasons that the series-parallel limits are so useful is that they give a clear
indicator of whether or not a continuum description is appropriate for a given mixture. If
any experimental measurements show a mixture with thermal conductivity outwith these
upper and lower bounds (assuming that all other properties are known accurately, i.e.
individual thermal conductivity values, volume fraction), it proves that this mixture is not
behaving as a stationary continuum. In this case another mechanism is contributing to
the mixture thermal conductivity other than pure conduction such as convection, thermal

diffusion, etc.
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2.2 Maxwell theory

Maxwell studied the thermal conductivity of solid-liquid mixtures in the 19th cen-
tury [2], performing early experiments on sub-millimetre sized solid particles evenly dis-
persed in a liquid. At the time, Maxwell created a theory in order to predict the thermal
conductivity of binary mixtures which performed well, producing bounds on the thermal
conductivity which are narrower than the series-parallel limits. Fig. 2.1(c) and Fig. 2.1(d)
show the material configurations which correspond to the Maxwell thermal conductivity
bounds which assume, in the first case, that one material is present purely in the form of
perfectly spherical particles which are dispersed in an infinite medium of the other mate-
rial and vice versa for the second bound. Like in the series-parallel limits, it is assumed
that all materials are stationary. A derivation of Maxwell theory is given here clearly

laying out the assumptions of the method.

2.2.1 Temperature profile around a single sphere

Consider a single sphere with thermal conductivity k;, located at the origin and sus-
pended in an infinite medium with thermal conductivity £, where conduction is the only
available method of heat transport. A uniform heat flux is imposed upon the system along
the z-direction. The equation for the temperature distribution in this system at steady-state

and with no generation or consumption of heat is given by the Laplace equation,
V2T =0, (2.2.1)

where 7' is the temperature. The Laplace equation can be written in spherical coordinates

as follows,
1o (,0 1 0 0 1 02
IR () A WVE S Cay (P ) A R S 222
r2or (T or > - r2sinf 00 (sm or ) * 72 sin? § 0> 0 ( )

where r is the distance from the point of origin, 6 is the polar angle measured from the
positive z-axis in the y-z plane, and ¢ is the azimuthal angle measured from the positive
x-axis in the x-y plane. This coordinate system is illustrated in Fig. 2.2. The system is
symmetric in the azimuthal direction, i.e. 9T/J¢ = 0. Therefore, Eq. (2.2.2) can be
simplified to

10 (,0 o[ 0.\
. (r ET) + e d 50 <sm9ET> =0. (2.2.3)

Eq. (2.2.3) has multiple solutions including 7" = 1, T = rcosf, and T" = cos 9/r2.

Assuming that these are the only relevant solutions, a general solution can be made up of
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S ]

Figure 2.2: Schematic diagram of a single sphere embedded in an infinite medium under
a temperature gradient. The red arrow labelled () represents the direction of heat flux
through the system which is parallel to the 2 axis, R represents the radius of the sphere,
is the polar angle measured from the positive z-axis in the y-z plane, and ¢ is the azimuthal
angle measured from the positive x-axis in the x-y plane.

a sum of these three terms, each with unknown constants,

6
Ty = Ag + Barcos + Co ", (2.2.4)
r

where o € [in, out] denotes the solution both inside and outside of the sphere. As the
distance from the sphere increases, the effect of the sphere on the temperature distribution
will decrease. Therefore, the temperature far away from the sphere, as r — oo, will
approach the temperature of the infinite medium under the imposed uniform heat flux,
Tow — To + (9F) _ =, where Tj is the temperature at z = —oo and (4%)__ is the linear
temperature gradient which arises within the infinite medium as a result of the heat flux
imposed on the system. Taking the limit 7 — oo of the general solution outside of the

sphere, the same functional form arises,

0

lim Ty = Aou + Bour cos 6+ M (2.25)
T—00 T

= Aout + Boutza (226)

where z = r cos 6 from trigonometry. Therefore A, = Ty and Boy = (%)m’ giving

dT 0
Tow =To+ | — rcosf + Coutﬂ, 2.2.7)
dz ) r2

where the third constant C,,, remains undetermined. Considering now the solution inside

the sphere,

cos
r2 ’

Tin = Ajp + Bircos + Ci, (2.2.8)
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as we approach the centre of the sphere, » — 0, the temperature 7" must remain finite.

This therefore means that Cj, = 0 as the third term is divided by » which leaves
T = Ain + Binr cos 6. (2.2.9)

The boundary conditions in this system are as follows,

Tin = Tout forr =R (2.2.10)
oT; T,
—kip—— = —kgy——t for r = R, (2.2.11)
or or

where R is the radius of the sphere. Eq. (2.2.10) states that there is no interfacial resistance
between the sphere and the surrounding medium and Eq. (2.2.11) states that the heat
flux out of the infinite medium is equal to the heat flux into the sphere. Inserting the
expressions for 7j, and T, into Eq. (2.2.10) gives
dr 0
A+ BnRcos =Ty + | — Rcosf + Coutﬂ. (2.2.12)
dz ) R?
As 6 can vary independently, this equality is only satisfied if the corresponding terms

containing cos 6, and not containing cos #, are equal to each other, i.e.

Ain =Tp (2.2.13)

dT Cou
Bin = (E) + (2.2.14)

The constant A;, is determined and the we have an expression for By, in terms of Cly.
The expressions for 7, and 7, are now substituted into the second boundary condition,
Eq. (2.2.11), giving

ar Cou
—kin Bin cos 0 = —kou ((E) . cosf — 2 Rgt CoS 0) , (2.2.15)
which can be simplified to
dr Cout
0By = — —2—, 2.2.16
< dz ) - R? ( )

where a new term 0 = ki, / ko, has been introduced. Again, an expression for By, in terms
of Cyy 1s produced. Combining Eq. (2.2.16) with Eq. (2.2.13) allows the determination

of the remaining unknown constants By, and Cl,, as follows,

dT Cout o dT Cout
(@), %) - (), % e
R*(1-4) (dT
Oout - (2 + (S) <E)Oo, (2218)
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which means, therefore, that

_/dr (1—10) [dT
wo= () s (). a2
3 dr
=505 (E)w (2.2.20)

Substituting the expressions for the constant terms, Aj,, Bin, Aow, Bou, and Coy into
Eq. (2.2.9) and Eq. (2.2.7) gives the complete temperature distribution for a sphere em-

bedded in an infinite medium under the influence of a linear temperature gradient,

dT R*(1—6) /dT
Tout = TO +z (E)OO + ZF (2 n (5) (&) N s (2221)
3 dr
Tin =14 -— ] 2.2.22
0+Z2+(5(dz)m (2:2:22)

where we have made use of the fact that cosf = z/r. This temperature distribution is

visualised in Fig. 2.3 for both high and low thermal conductivity spheres.

2.2.2 System of spheres

Instead of a sphere located at the origin, we now generalise Eq. (2.2.21) to a sphere ¢

located at position 7; in the system,

dT R (1—6) (dT
Tow="To+ =2 <E)OO + Z|T — T'z‘|3 (2 + 5) <E)O® ) (2.2.23)

where 7 = [z,y, 2] is the position vector that the temperature is measured at. We note
here that the temperature change caused by a single sphere ¢ over the background linear

temperature profile is

(2.2.24)

3 _
ATout,izz(dT) R (1-96)

dz ) Jr—r P (2+0)

Consider now an infinite medium that, instead of containing a single sphere, contains N
spheres. It is assumed that individual spheres do not interact with one another which
implies that the effect of the spheres on the outer temperature is purely the sum of their

individual changes from the underlying linear temperature profile (‘é—f) o0’

dT al
Tout = TO _I_ z (a) . + Z ATout,i (2.2.25)

YRS (1-6))\ [dT
—T0+z<1+z|r_m|3<2+6) (E)m' (2.2.26)

i
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</
v A
——

) w/ﬁ(
b / > \
|

Figure 2.3: Contour plot showing the Maxwell temperature profile around a single
sphere within an infinite medium under the influence of a linear temperature gradient
(Egs. (2.2.21) and (2.2.22)). The lines of contour represent the temperature going from
low (black) to high (light yellow). Light grey streamlines represent the direction of heat
flux through the system. (a) shows the temperature distribution for a high conductivity sur-
rounding medium and a low conductivity sphere. (b) shows the temperature distribution

for the opposite conditions, a high conductivity sphere surrounded by a low conductivity
infinite medium.

Z

It is also assumed that we are far enough away from the spheres r > r; that we are in the

.. 3 3 . .
limit |7 — 7;|” — |r|. In this case, the expression reduces to

R*(1-06)\ [dT
TOUt_TO+Z<1+NF(2—|—5)> (E)w’ (2.2.27)

where the sum over N spheres is replaced with a multiplication. Consider now a large
sphere centered at the origin which is large enough to contain all of the current smaller

spheres such that it has some volume fraction ¢ of spheres within it, i.e.

Vs N4nR%/3 NR}

(b_VL_ ATR3 /3 R3

(2.2.28)

where Vg is the total volume of the /N small spheres, V7, is the volume of the single large

sphere centered at the origin of the system, Rg is the radius of the small spheres, and R,
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is the radius of the large sphere. Eq. (2.2.28) can be rearranged to obtain an expression
for the large sphere radius, R? = N R% /¢, which will become useful later. The effective
thermal conductivity kg of the large sphere containing all smaller spheres is equal to the

original N-sphere suspension only if the following equality is correct,

3 (1 — ki“) dT

T=Totz |14 N8N F) ) (AT (2.2.29)
r3 <2+ ﬁ) dz )

kout

k
R? (1 - ki)

dT
=To+z |1+ —=>0—"X (—) : (2.2.30)
T kg dz
(2 + kout) oo

Substituting the expression for B3 into this equality and rearranging leads to

() (1-#)
- (2.2.31)

) G
ke  2+0+20(5—1)
kout_ 2+6_¢(§_1)’

(2.2.32)

where the final equation is Maxwell’s equation for the overall thermal conductivity of a
mixture as a function of the pure component thermal conductivities of both materials in

the mixture as well as the volume fraction of the dispersed material.

Alternating forms of Maxwell’s model are known as the Maxwell bounds and are
identical to thermal conductivity bounds derived by Hashin and Shtrikman [3, 4]. These
bounds are calculated by alternating the configuration of the materials in the system as
shown in Fig. 2.1. To calculate the first bound, one material is assumed to be the dispersed
phase and, the other, the continuous medium. Subsequently, for the second bound, the
continuous medium is now assumed to be the dispersed phase and the previous dispersed
phase is now assumed to be the continuous medium. Assuming that k;, > ko, the bounds

can be written as

248+20(0—1) 204+1+2(1—¢)(1—0)
’“°“t(2+5—¢(5—1)) S"”ESI‘“H‘(25+1—(1—¢)(1_5) ) (2:233)

These bounds always lie within the series-parallel bounds [1] and represent the narrowest
possible bounds which use only the pure thermal conductivities as well as the volume
fraction. Improvement on these bounds require additional knowledge about the structure

of the dispersed medium in the system.

As has been previously mentioned, these models are not strictly suited to solid-liquid
mixtures such as nanofluids, as well as other fluid mixtures, as they assume that the mix-
ture is stationary. Nevertheless, these models have been used throughout the literature
when initially evaluating experimental nanofluid thermal conductivity measurements. In

Ch. 3, these commonly used continuum models are compared with experimental measure-
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ments of thermal conductivity in mixtures in order to gives a sense of their applicability

and usefulness.
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CHAPTER
THREE

EXPERIMENTAL EVIDENCE FOR UNUSUAL
THERMAL CONDUCTIVITY

Thermal conductivity results which lie outwith the classical continuum bounds were
shown in gas mixtures in the 1960s [1, 2]. These studies show that helium-hydrogen gas
mixtures have a thermal conductivity which is below the series limit and which, at some
concentrations, is below either of the pure component thermal conductivity values. These
results are echoed by recent experimental studies of nanofluids which report markedly
enhanced thermal conductivities with the addition of small amounts of solid nanoparti-
cles, with some results lying outwith the classical bounds predicted by Maxwell and the
series-parallel model. This chapter examines various experimental methods of measuring
thermal conductivity in fluid/fluid-solid mixtures before reviewing experimental studies
which report unusual values of thermal conductivities in gas mixtures and nanofluids.
Finally, a number of theories which have been suggested in order to account for these

unexplained values are discussed.

3.1 Experimental thermal conductivity measurement tech-

niques

There are many thermal conductivity measurement techniques available when study-
ing fluid / fluid-solid mixtures, of which, the transient hot wire method is the most pop-
ular [3]. Generally speaking, these techniques fall into two categories: transient methods
and steady-state methods which differ significantly in the timescale over which thermal
conductivity measurements are taken. For example, when using the transient hot wire
method, previous studies have measured the thermal conductivity over the course of ap-
proximately 10 - 500 milliseconds [4]. This is a short time period relative to steady state
methods, such as the steady-state parallel plates method [5], which are not subject to any
time constraints and instead wait for a steady state heat flux or temperature gradient to
become established in the system. This section gives a detailed explanation of the most

popular measurement technique (transient hot wire method) as well as an overview of a
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Figure 3.1: A schematic diagram of the transient heated wire thermal conductivity mea-
surement technique. A side view and a top view of a vertical cylindrical cell are shown.
A platinum wire with radius R runs down the center of the cell which is charged with the
fluid of interest. An electrical pulse with a total power of () is sent down the wire. This
causes the wire to heat up and this heat is then conducted away from the wire through the
fluid. The speed at which heat is conducted away from the wire is measured and used in
order to determine the thermal conductivity of the fluid.

relatively theoretically simple steady-state measurement technique.

3.1.1 Transient heated wire

The transient heated wire method [6] operates by sending an electrical pulse through a
thin platinum wire which is submerged in the fluid of interest and measuring the temper-
ature response of the wire. A platinum wire is commonly used because of platinum’s ac-
curately known temperature/resistance relationship. This measured temperature response
is then fitted to an analytical solution of the Fourier equation. Fig. 3.1 shows a schematic
diagram of a transient hot wire experiment where the fluid of interest is contained within
a cylindrical chamber and a thin platinum wire is held in suspension and runs through
the middle of the chamber. After a voltage step is applied to the wire, the heat generated
due to the wire’s resistance will be conducted away from the wire and into the fluid as
shown by the red arrows. In theory, the rate at which heat is removed from the wire is
proportional to the thermal conductivity of the fluid. In practice, however, other effects
also influence the temperature profile of the wire such as convection and radiation which

must be accounted for.

When considering only the effects of conduction, the temperature of the fluid in the
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experiment will evolve according to the Fourier equation which is written as follow,

%—Z = aVT, (3.1.1)

where ¢ is the time, and o = k/pc, is the thermal diffusivity where k is the thermal
conductivity, p is the mass density, and c, is the specific heat capacity. The simplest
mathematical solution of the problem can be generated by assuming that the physical
properties (p, ¢,, and k) of the fluid are constant. It is also assumed that the entire system

is initially at a temperature 7y,
T(r,t) =To fort <0. (3.1.2)

In order to represent the heated wire, it is assumed that there is an infinitely thin line
source of heat at the center of the system which produces a constant heat flux () over the

entire length of the wire,
oT
lim (r—) = —i fort > 0. (3.1.3)

Far away from the wire (at r — o0) it is assumed that the temperature tends to the initial

temperature of the fluid 7} as follows,

lim T(r,t) =T, for ¢ > 0. (3.1.4)

r—00
The solution to the Fourier equation in this case is
oo
—¢g!
Q [e :

d
A7k g £

£

AT(r,t) = (3.1.5)

where AT = T(r,t) — Ty represents the deviation of the temperature profile from the
initial temperature, and the variable ¢ = ?/(4«t). For the purposes of a transient heated
wire experiment we are not interested in the temperature at an arbitrary point in the system
r, we are only concerned with the temperature of the wire. Assuming that the wire has a
radius of R, as well as assuming that the entire wire is at a uniform temperature of 7'( R, t)
equal to the temperature at the edge of the wire, means that the previous expression can

be modified to give an expression for the temperature of the wire over time as follows,

006*8/
:% e’ (3.1.6)

£

AT, (1)

where AT, (t) is the deviation of the wire temperature from the initial temperature and,

now, ¢ = R?/4at. Taking a series expansion of the integral at ¢ = 0 allows this equation
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Figure 3.2: Temperature rise AT as a function of log time In ¢ during an example transient
heated wire experiment. The graph shows region of linear temperature rise (Eq. (3.1.8))
which corresponds to the value () /4mk. Calculating this gradient for a given material and
applied heat flux () allows the calculation of the material thermal conductivity. The graph
shows the non-linear region which manifests at short times and also highlights the effect
of convection on the temperature rise at long times.

to be rewritten as follows,

AT, (t) = Q (—1n£—7+5—i+§+0(54)> , (3.1.7)
Ak 4 18

where v is Euler’s constant. It is then assumed that the experiment is performed over

a long time relative to the timescale of conduction ¢ > R?/4a. Experimental studies

attempt to match this assumption in practice by using platinum wires which are as thin

as possible (often micrometers in diameter). With this assumption, the solution to the

Fourier equation finally reduces to

Aﬂxﬂ:té%mt+0, (3.1.8)

where all of the terms in Eq. (3.1.7) have vanished apart from the term which is a loga-

rithmic function of &, and the constant C' is defined as follows,

4
0:£%m<§)—m (3.1.9)

Eq. (3.1.8) implies that the rise in the wire temperature is a linear function of In(¢)
and proportional to the thermal conductivity via the term @Q/(47k) where ) is known.
The thermal conductivity can therefore be extracted by determining the gradient of the
temperature rise with In(¢). This process is shown in Fig. 3.2 which shows an example
of a typical wire temperature profile as a function of In(¢) during a transient hot wire
experiment. The straight green line highlights the region of linear temperature increase

which is proportional to the thermal conductivity. Systematic deviations from the linear
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Figure 3.3: A schematic diagram of a steady-state thermal conductivity measurement
technique with the fluid of interest sealed in place between two metal plates. () represents
the heat flux through the equipment. 77, 75, and 73 represent three separate thermocouples
used for measuring the temperature of the metal plates at different locations. In an actual
experimental setup, there may be much more than three total thermocouples in order to
measure temperature values at different locations and obtain a final spatially averaged
value.

response occur for short and long times [4]. This is shown in Fig. 3.2 which highlights
the effects of additional heat transfer caused by natural convection currents setting up in
the system at large times.

Multiple corrections to this basic model have been derived [7] which account for ad-
ditional effects which influence the wire temperature such as the variable properties of
both the wire and the fluid as well as the Knudsen effect which becomes significant as the

density of the fluid becomes small.

3.1.2 Heated/guarded plates

Fig. 3.3 shows a schematic diagram of a steady-state thermal conductivity measure-
ment technique. This diagram most closely resembles a experimental setup which is
known as a “cut-bar apparatus” [5]; however, there are numerous steady-state techniques
which apply the same principals using different experimental configurations. In contrast
to transient thermal conductivity measurement techniques, such as the transient heated
wire method, this method does not seek to fit a mathematical solution to a the temperature
response of a given material. These methods seek to apply a known heat flux to a given
material and measure the resulting temperature gradient across the material. As shown in
Fig. 3.3, the cut-bar experiment consists of two parallel metal plates enclosing the fluid
of interest which is sealed between the plates. The sealant material is only necessary
in the event that the material of interest is a fluid. The sealant could be a rubber o-ring
for example or a silicon block. The thermal conductivity of the fluid is measured using

temperature measurements taken at various locations in the metal plates as shown by the
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thermocouples 7}, T5, and 75 in Fig. 3.3. In order to begin the experiment, the cell must
be charged with the fluid of interest and a thermal load is applied across the equipment.
The total heat flux () is measured using the known thermal conductivity of the metal plates

as follows,

o kplate Aplate ATl -2

Q AH172 Y

(3.1.10)

where kpjae is the thermal conductivity of the metal plate, Ay is the cross-sectional area
of the metal plate, AT} o = T7 — T is the measured temperature different between ther-
mocouples 1 and 2, and AH;_ is the distance between thermocouples 1 and 2. The ther-
mal conductivity of the fluid is then determined using the temperature difference across
the fluid cell while compensating for the heat which is transferred through the seal,

A Hgyi
_ Q AT::? - ksealAseal

Y
Aﬂuid

kg (3.1.11)
where A Hayiq is the distance across the fluid cell, ATquq = 15 — T35 is the measured
temperature difference across the fluid cell, kg, is the thermal conductivity of the sealant
material, Ay, is the cross-sectional area of the sealant, and Ag,yq is the cross-sectional
area of the fluid cell. In order to achieve accurate temperature difference measurements
across the fluid, in a real experiment the thermocouples should be placed on the surface

of the two metal plates unlike Fig. 3.3 where they are shown slightly inside the plates.

3.2 Experimental studies

If a mixture exhibits “anomalous” thermal conductivity which is outside of the clas-
sical bounds, this suggests that that mixture is not behaving as a continuum. If this is the
case then a molecular model is required in order to describe the behaviour of the mix-
ture. This section reviews studies which have investigated thermal conductivity in the
helium-hydrogen binary gas mixture as well as in nanofluid systems, many of which have

reported such behaviour.

3.2.1 The helium-hydrogen gas mixture

In the 1960s and 1970s, a number of studies were performed investigating thermal
conductivity in helium-hydrogen gas mixtures. Experimental data generated by these
studies are shown in Fig. 3.4 which presents the measured thermal conductivities which
were first displayed in Ch. 1; however, in this case, the series-parallel limits are also
presented. This research was spurred on by the presence of an apparent sharp minimum
in the thermal conductivity profile which was reported by Mukhopadhyay and Barua [9] as
well as Neal et al [1] as can be seen in Fig. 3.4. This sharp minimum was not reproduced

in other measurements performed by Shashkov et al [8] among others, as shown in the
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Figure 3.4: Reduced thermal conductivity of hydrogen-helium gas mixtures at tempera-
tures ranging from 23.8-50 °C. The shaded grey area bounded by two dashed black lines
represents the area bounded by the series-parallel thermal conductivity limits calculated
using the pure component thermal conductivity values. The measured thermal conduc-
tivity deviates significantly from the series-parallel thermal conductivity limits over the
entire mixture concentration range. The figure is adapted from Ref. [8] where further
details on the references are given.

figure, and was determined to be the result of experimental error [10]. However, it is
clear that a noticeable minimum is present in thermal conductivity profile. The measured
He-H, thermal conductivity deviates significantly from the series-parallel limits over the
entire range of mixture concentrations, suggesting that discussing models such as the
series-parallel limits in the context of fluids may not be particularly useful as it is possible
to break these limits even for a simple gas mixture. Fig. 3.4 also highlights the difficulty
in accurately measuring thermal conductivity in gas mixtures and repeating results.

A later study [10] investigated the potential for Enskog-kinetic theory to explain the
minimum in thermal conductivity profile. This study determined that shallow minima
in the thermal conductivity profile are possible for mixtures where the pure component
thermal conductivities are similar which is the case for helium-hydrogen. This feature
of Enskog-kinetic theory is promising and suggests that a hard-sphere model may be

successful in describing this mixture.

3.2.2 Solid-liquid mixtures / nanofluids

The obvious lack of applicability to gas mixtures also calls into question the use of
these continuum models in the context of nanofluid systems. The continuum bounds are

compared with experimental nanofluid thermal conductivity data in Fig. 3.5 which shows
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Figure 3.5: Thermal conductivity enhancement of a Copper - ethylene glycol suspen-
sion as a function of the volume fraction of copper ¢, [11]. This graph shows the
upper and lower thermal conductivity bounds as predicted by the series and parallel
limits (Egs. (2.1.1)) and the Maxwell (H-S) bounds (Egs. (2.2.33)) assuming a copper
thermal conductivity of 401 W m~! K~! and a ethylene glycol thermal conductivity of
0.258 W m~! K~!. The area contained within the Maxwell bounds is shaded grey. The
measured thermal conductivity is well within the series-parallel and the Maxwell bounds.

the series-parallel bounds, as well as the Maxwell bounds, along with the copper-ethylene
glycol nanofluid thermal conductivity measurements from Fig. 1.2. Note that the volume
fraction range studied here is much smaller than in Fig. 3.4. The continuum bounds are
calculated assuming a copper thermal conductivity of 401 W m~—! K~! and a ethylene gly-
col thermal conductivity of 0.258 W m~! K~!. The series-parallel limits, as well as the
narrower Maxwell model, effectively bound the measured thermal conductivity values for
this nanofluid mixture; however, the results still represent a large enhancement of approx-
imately 40 % above the base fluid conductivity for a nanoparticle volume fraction of only
0.3 %. This is the case for many nanofluid mixtures [12]; however, there are exceptions,
such as the systems shown in Fig. 3.6. This figure shows thermal conductivity results
for a water-iron oxide mixture as well as a water-fullerene mixture which exhibit ther-
mal conductivity values which are well above and well below the series-parallel bounds
respectively.

Other early studies of nanofluid mixtures also measured significant thermal conduc-
tivity enhancements [13—15] as well as a strong thermal conductivity dependence on
nanoparticle size which spawned a large amount of activity and interest in this field of
research. Studies initially focused on ceramic nanoparticles [5] which continued to yield
unusual thermal conductivity results and, later, studies were also performed on nanofluids

containing magnetic nanoparticles [16] under the influence of a magnetic field as well as
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Figure 3.6: Thermal conductivity enhancement of a iron oxide - water nanofluid (left)
as well as a fullerene - water nanofluid (right) as a function of the nanoparticle vol-
ume fraction taken from Ref. [12]. The upper and lower thermal conductivity bounds
as predicted by the series and parallel limits (Egs. (2.1.1)) and the Maxwell (H-S) bounds
(Egs. (2.2.33)) are shown. Both nanofluid mixtures exhibit thermal conductivity values
which are outwith the continuum bounds.

nanofluids containing carbon nanotubes.

At this point, the reported thermal conductivity behaviour of nanofluids was inconsis-
tent with regards to the magnitude of the enhancement relative to the base fluid thermal
conductivity, as well as the thermal conductivity dependence on particle size. These in-
consistent results could be caused by differences in the nanofluid synthesis process [17]
which includes differences both in how the nanoparticles are produced and characterised
and, also, how the nanoparticles are dispersed throughout the base fluid. Differences in
the nanofluid “age” (time since nanoparticle dispersion) were also found to effect the ther-
mal conductivity, as shown in Fig. 3.5. Also concerning, as shown in this figure, is the
significant effect of adding a nanoparticle stabilising agent (acid) which is not standard

and not included in the calculation of the series-parallel limits.

In order to clear up these inconsistencies and lay a firm foundation of experimen-
tal data on which to test various theories which could explain the nanofluid conductivity
enhancement, a large international nanofluid property benchmark study [17] was com-
missioned in 2009. This study did not reach any conclusions on the effect of particle size;
however, it did determine that all measured thermal conductivities were not anomalous
and were within the Maxwell bounds for the studied set of nanofluids. The study also
concluded that systematic differences between the thermal conductivity measurements
were present for separate experimental techniques. This is shown in Fig. 3.7 where it
is clear from the data that both the mean measured value and the measurement uncer-
tainty differ significantly between measurement techniques. These systematic variations
suggest that the understanding of how particular nanofluid mixtures interact with certain

measurement techniques is incomplete.

It is important to note that classical models, such as the series-parallel bounds and

Maxwell’s model, predict that the only variable that will affect the thermal conductivity
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Figure 3.7: Thermal conductivity of two separate materials as measured by separate
institutions. The top graph shows thermal conductivity measurements of de-ionised wa-
ter while the bottom graph shows measurements for a nanofluid of 31 vol% 22 nm sil-
ica nanoparticles in water with a small amount of sodium sulphate added as a stabiliser.
In the case of de-ionised water the shaded red band shows the known range of thermal
conductivity from 20-30 °C. Several thermal conductivity measurement techniques were
used by different institutions. Red markers represent measurements taken using a com-
mercial KD2 thermal properties analyser from Decagon which utilises the transient hot
wire method. Blue markers represent custom made transient hot wire measurement ex-
periments, green markers represent steady-state parallel plate experiments, and purple
markers represent all other measurement techniques. Solid black lines show the sam-
ple average measurement and dashed black lines show =4 one standard deviation. Solid
coloured lines represent the average measurement for the corresponding measurement
technique. Graphs are taken from Ref. [17].

of a mixture of two materials is the mixture volume fraction. Both of these models predict
that variables such as the particle size of the suspended medium will have no effect on the
degree of the thermal conductivity enhancement. This contradicts several studies [11,
14] performed on nanofluids which have reported that nanoparticle size strongly affects
nanofluid thermal conductivity, suggesting that a continuum approach such as Maxwell’s

equation is not appropriate when discussing nanofluids. A recent study performed by
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Pryazhnikov et al in 2017 [18] even reported that there is no correlation between the
thermal conductivity of the nanoparticle material and the resulting thermal conductivity
of the nanofluid containing this material. The unsuitability of the continuum approach
means, therefore, that a molecular approach is required in order to characterise these

materials and accurately predict the properties of real nanofluids.

3.3 Proposed nanofluid enhancement mechanisms / ex-

planations

Various mechanisms have been proposed in the literature which attempt to explain
thermal conductivity enhancements in nanofluids. This section will review the most pop-
ular theories which includes the theory of Brownian motion; this theory suggests that
thermal conductivity enhancement could be caused by the random motion of nanopar-
ticles through the base fluid causing local disturbances and turbulence and, hence, en-
hancing heat transfer. Studies also suggest the idea that interfacial nanoparticle layering
could be responsible. In this case, it is suggested that base fluid particles could locally
order around a solid nanoparticle creating a dense fluid layer with a relatively high ther-
mal conductivity which would increase the overall conductivity of the fluid. The third
theory that is reviewed here is the idea of nanoparticle clustering. Here, it is suggested
that nanoparticles could spontaneously cluster and order themselves locally such that they
form high-conductivity solid “pathways” which could conduct heat quickly through the
base fluid.

3.3.1 Interparticle layering

Fig. 3.8 shows a possible representation of liquid layering near the surface of a nanopar-
ticle. A solid nanoparticle is represented here by the large orange sphere and the liquid
base fluid particles are represented by the smaller blue spheres. This figure shows a dense
ordered layer of liquid particles surrounding the nanoparticle which is approximately two
liquid particles in thickness. There is experimental evidence [19, 20] that liquid particles
organise into ordered layers when in contact with a solid surface. This experimental evi-
dence shows that a two-thick layer of water molecules in an ice-like structure appears at
the liquid solid interface as well as the fact that as the distance from the crystal surface
increases, the degree of fluid particle ordering decreases. Normal bulk fluid structure is
restored at a distance of greater than 4 liquid particle layers from the solid.

This ordered particle layer would have a thermal conductivity which is greater than
that of the bulk liquid as the increase in density would allow for faster, more efficient
heat transfer. Models have been created which extend the Maxwell model (Eq. (2.2.32))
in order for the effect of the ordered interfacial layer [21]. This model predicts that for

a nanofluid consisting of small nanoparticles with a diameter of < 10 nm with a inter-
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Figure 3.8: An illustration of an ordered interfacial layer of fluid particles around a single
solid nanoparticle. The nanoparticle is represented by the large orange sphere and the base
fluid particles are represented by the small blue spheres. The base fluid particles in contact
with the nanoparticle are densely packed and packed in a crystal-like manner and the base
fluid particles become less ordered as the distance from the nanoparticle increases.

facial liquid layer of > 2 nm there is potential for a thermal conductivity enhancement
which is more than eight times greater than the conventional Maxwell equation due to the
large relative volume increase of high-conductivity solid-like material. However, as the
radius of the nanoparticles increase and thickness of the interfacial layering decreases,
the potential enhancement rapidly decreases and experiments have shown that the inter-
facial liquid layer is only typically < 1 nm in thickness [19, 20]. It has also been shown
in Ref. [12] that, even for nanofluids containing small nanoparticles with a diameter of
~ 4 nm, interfacial layering of this thickness would be inconsequential to the thermal
conductivity enhancement in real systems. It is therefore unlikely that this mechanism is
solely responsible for the large enhancements observed in nanofluids which commonly

have nanoparticles which are ~ 30 nm in diameter.

3.3.2 Nanoparticle clustering

It has been suggested that nanoparticles, when dispersed through a base fluid, could
arrange themselves spontaneously into local nanoparticle clusters or a high conductivity
chain-like pathway through the base fluid. Fig. 3.9 shows a possible representation of
this effect. Assuming that the nanoparticle (large orange sphere) thermal conductivity is
greater than that of the base fluid (small blue spheres), it is easy to see how the over-
all effective thermal conductivity of nanofluids could be significantly enhanced as heat
can flow efficiently through the system from one high conductivity solid particle to the
next unhampered by the lower thermal conductivity base fluid. Nanoparticles in Fig. 3.9

are not optimally distributed for increased nanofluid thermal conductivity as there is one
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Figure 3.9: An illustration of one potential nanoparticle configuration within a base
fluid producing a chain-like high thermal conductivity pathway through the base fluid.
Nanoparticles are represented by the large orange spheres and base fluid particles are rep-
resented by the smaller blue spheres. The conduction of heat through one possible high
conductivity pathway is shown by the red arrow.

visible nanoparticle which does not form part of a conductive nanoparticle chain; how-
ever, arranging all nanoparticles so that they form part of a conductive chain which spans
the entire fluid would result in the nanofluid thermal conductivity tending to the parallel
conductivity limit. The mechanism of nanoparticle clustering in isolation, therefore, will
not cause a nanofluid to exhibit an anomalous thermal conductivity in the sense that it
is beyond the upper parallel limit. However, it should be noted that large enhancements
relative to the base fluid thermal conductivity are possible without producing anomalous
thermal conductivities as shown in Fig. 3.5. For example, the parallel limit thermal con-
ductivity for a copper-water nanofluid with a copper volume fraction of 1 % is ~ 7 times
greater than the pure water thermal conductivity. For a volume fraction of 0.5 %, itis ~ 4

times greater.

Studies involving magnetic particles under the influence of an external magnetic field
suggest that this mechanism has the potential to cause large increases in the thermal con-
ductivity of nanofluids [16, 22]. It has, however, been shown that the probability of these
nanoparticle configurations occurring consistently, and in a stable arrangement, is low
[23] casting doubt over whether this mechanism is solely responsible for thermal conduc-
tivity enhancement. A study by Karthikeyan et al [24], which microscopically observed
the formation of nanoparticle clusters, also showed that the measured thermal conduc-
tivity decreased as the nanofluid aged and the nanoparticles began to agglomerate. It is
clear that percolating, chain-like nanoparticle structures in nanofluids have the potential

to greatly increase heat transfer if it is possible for such structures to form consistently.
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3.3.3 Brownian motion / thermal diffusion

It has also been suggested that the thermal conductivity enhancement could be due to
Brownian motion of nanoparticles through the base fluid [12]. It has been proposed that
the motion of large nanoparticles could induce convection in the surrounding base fluid
particles when travelling through the fluid which could enhance heat transfer. Models of
nanofluids that have included the effects of Brownian motion have had successes when
compared with a small number of experimental measurements [25, 26]; however, studies
have shown that then speed of the Brownian motion of nanoparticles through the fluid
would be too slow relative to the direct flow of heat through the mixture to have any
measurable effect on the thermal conductivity [23].

In addition to the diffusion of nanoparticles through random motion, the influence of a
temperature gradient will also cause particles to diffuse due to thermal diffusion towards
either the hot or cold section of the fluid. Diffusing particles will carry heat as they travel,
hence increasing the total amount of heat transfer and increasing the effective thermal
conductivity. Eapen et al [12] show that, for typical nanofluid systems, thermal diffusion
coefficients are small and, therefore, the thermal conductivity enhancement correspond-
ing to thermal diffusion is several orders of magnitude less than the thermal conductivity
of the base fluid. This is in agreement with another study [27] which found that the ef-
fects of thermal diffusion had no significant effect on the observed thermal conductivity in
nanofluids. Ref. [12] states, however, that thermal diffusion, as well as mutual diffusion,
will have an indirect effect on thermal conductivity in nanofluids as these are the primary
mechanisms which control the aggregation of solid nanoparticles. Accurately character-
ising diffusion in nanofluids is therefore key to developing a complete model of nanofluid

thermal conductivity.
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CHAPTER
FOUR

THE HARD-SPHERE MODEL

It is clear from a review of gas mixture and nanofluid thermal conductivity in Ch. 3
that a molecular model is required in order to study the mechanics of how microscopic
motion scales up to macroscopic thermal transport and accurately predict the properties
of fluid/fluid-solid mixtures. The model must be simple such that it is computationally
efficient, as there is a large time and length scale! separation between the micro and
macroscopic scales, thus massive and long simulations must be run. Additionally, fol-
lowing a reductionist approach, if the chosen model is as simple as possible such that
removing one element causes phenomena of interest to disappear, then the fundamental
features which lead to those phenomena have been captured.

The simplest molecular model is the ideal gas which approximates molecules as point
particles; however, this model has trivial dynamics and simple mixing rules for all of
its physical properties. Thus there is no opportunity for anomalous conduction to arise.
Hard spheres are completely impenetrable perfect spheres which are completely charac-
terised by their diameter o and their mass m as illustrated in Fig. 4.1. The hard-sphere

interparticle potential is given by the following equation,

U 0 for |’rij’ Z Uij
ij - y (401)
oo for |r;;| < oy

where Uj; is the interparticle potential between particles i and j, 0;; = (0; + 0;)/2 is the
collision diameter between particles ¢ and j with diameters o; and o; respectively, and
|rij| = |r; — r;| is the distance between particles 7 and j with positions 7; and r; respec-
tively. Eq. (4.0.1) is also shown graphically in Fig. 4.1. Hard-spheres do not interact until
two spheres collide at which point they experience an impulsive force which causes them
to move apart. Excluded volume effects which are introduced by this model immediately
lead to a wealth of complex behaviour, when compared to the ideal gas model, includ-
ing a fluid-solid transition which is demonstrated in Fig. 4.2, and non-trivial density and

mixture effects [1]. The lack of any attractive forces this model means that other effects

!For example, 1 m® of water contains N ~ 10%° water molecules
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Figure 4.1: Interparticle potential U;; as a function of the distance between two hard-
spheres |r;;| = |r; — r;| for the hard-sphere model. o,; = (0; + 0;)/2 is the collision
diameter of two hard-sphere ¢ and j. The figure also shows an illustration of two hard-
spheres, highlighting the collision diameter along with the hard-sphere masses m,; and

mj.
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Figure 4.2: Hard-sphere phase diagram showing the compressibility Z as a function of
density p as calculated in Ch. 11. Data shown are for monocomponent hard-sphere MD
simulations containing 2916 spheres. Dashed black lines highlight the hard-sphere fluid-
solid transition zone. The densities where hard-sphere systems exist as a fluid and as a
solid are labelled.

such as a gas-liquid transition are not captured. Other commonly used particle potentials,
such as the Lennard-Jones [2] and the square-well potentials [3] do attempt to model the
attractive behaviour of real particles; however, one of the key benefits of the hard sphere
model is its relatively complete hydrodynamic description obtained by kinetic theory. No
other model has the same depth of predictive power, thus the hard sphere is ideal for inves-
tigating fundamental effects in thermal conduction with all the complexities of molecular
mass and size differences as well as the effects of mixtures (including mutual diffusion

and thermodiffusion).

Conventionally, in order to reduce the number of degrees of freedom when study-
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4.1. EVENT-DRIVEN MOLECULAR DYNAMICS

ing hard-sphere systems, analysis is performed in reduced units. Properties of any hard-
sphere systems will be a function of the system energy (which is purely a function of
temperature in the case of hard-spheres), the system density, and the paramters (mass and
diameter) of each hard-sphere species as shown in the following equation for a general

system property f,

(4.0.2)

p(IBIT o o2
ML2’p ’L’L"“’M’M"“’

where the units of values are shown in terms of the unit time scale 7, the unit length
scale L, and the unit mass scale M. kg is the Boltzmann constant. Hard-spheres have no
intrinsic energy scale, thus their temperature dependence remains trivial. It is therefore
possible to define the time in the system in terms of the temperature as shown in the

following set of equations,

2
L=o M = m, 7= N/%, 4.0.3)
B

where the unit mass and length scales in the system have been set to the hard-sphere

parameters of species 1. Defining the units of the system in this way means that Eq. (4.0.2)

\ 1 1 1
f % ’pa?,%‘ 7@7"'7% 7@7"‘ ) (4'04)
B 1 01 1 ma

where several terms have cancelled to 1. Performing dimensional analysis in this way

can be rewritten as,

shows that in a monocomponent hard-sphere system, the only variable which matters is
the reduced density pos. Properties of the system at other values of m; or T can be
calculated simply using the appropriate dimensional scaling. Furthermore, in a binary
mixture, as well as the reduced density, the only important variables are the mass ratios
mo/m; and diameter ratios o, /0y of the hard-sphere species. All results in this thesis are
reported in this set of reduced units.

The following section describes how to solve for the dynamics of the hard-sphere
model using event-driven molecular dynamics before proceeding to describe specific
methods which can be used in order to extract the thermal conductivity of hard-sphere ma-

terials. These techniques fall into one of two categories: equilibrium or non-equilibrium.

4.1 Event-driven molecular dynamics

Molecular dynamics simulation, in contrast to modelling a fluid as a continuous medium,
attempts to model a fluid as a collection of discrete particles. This involves solving for

the dynamics of a set of particles according to the chosen particle potential and starting
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from some initial state. Solving for the motion of particles in this way allows a detailed
record of the position and velocity of every particle over time to be generated which al-
lows for detailed analysis of the small scale molecular behaviour and mechanisms which

contribute to macroscopic behaviour.

In order to simulate systems of hard particles such as hard spheres and square wells
a simulation technique known as event-driven molecular dynamics is required. This sim-
ulation technique is similar to it’s counterpart, time-driven molecular dynamics, but fun-
damentally differs in the method used to resolve particle interactions. In the time driven
approach, time is divided up into many discrete time steps which are small relative to the
time over which a particle interaction takes place in order to properly resolve the dynam-
ics of the interaction. The evolution of particle positions and velocities are calculated by
integrating these values forward in time according to the current particle velocity and the
force exerted on the particle by the rest of the system. It quickly becomes obvious why
this method is incompatible with the hard-sphere model shown in Fig. 4.1 as the force

exerted on a particle (derivative of the potential) will be a delta spike at |7;;| = 0.

In order to overcome the challenge of handling impulsive forces and correctly resolve
particle interactions, event-driven molecular dynamics utilises a collision rule which ex-
presses the post-collision velocities of the two particles which are undergoing the collision
as a function of the pre-collision velocities. In order to derive the hard-sphere collision
rule, it is noted that in a fully elastic hard-sphere system, kinetic energy and momentum
are conserved over the course of a collision. The momentum and kinetic energy balances

of two fully elastic colliding hard-spheres is written as follows,

miv| + MoV = ml’vi + mg’U;, (411)

mi(v1)® + ma(v2)? = mq(v])? + ma(vh)?, 4.1.2)

where v, and v, are the pre-collision velocities of particles 1 and 2 respectively, and
v; and v are the restituted (post-collision) velocities of spheres 1 and 2 respectively.
Rearranging and combining these balance equations allows the restituted velocity to be

expressed as a function of the pre and post collision relative velocities

v, = v + % (V) — v12) (4.1.3)

1
where v, = v; — v/ is the restituted relative velocity, and p11o = mymy/(my +my) is the
relative mass. In hard-spheres this difference between the pre and post-collision relative
velocities is a function of the contact vector and the previous relative velocity and is given
by the rule of specular reflection where the velocity flips in the direction of collision as

follows,
Uiy — V12 = —2 (13 - V12) Pra, (4.1.4)
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where 715 is the unit vector representing the direction of the relative particle positions
at the moment of collision. Substituting this expression into Eq. (4.1.3) gives the hard-

sphere collision rules as follows,

2 p12 A

2 R .
2 ('1)12 . ’l"lg) T12. (415)

A /
(v12 - T12) T12, Vy = V2 +
my mg

vy =v —

After event handling, the next critical aspect of the event-driven molecular dynamics
technique is event detection [4]. In order to update particle velocities on collision, one
must first calculate when collisions will take place and advance the system to that point in
time. In order to do this, an event-driven simulation examines the positions and velocities
of each pair of spheres in order to determine, on their current trajectories and ignoring
other spheres, the time until they will next collide. At the point of collision, the distance
between two particles will be equal to the collision diameter of the particles which can be

written as follows,
|’I"1(t + Atc) — 7’2(t + Atc)| = 012, (416)

where At,. is the difference between the current time ¢ and the time that a collision will
occur. This equation is squared in order to remove the need to calculate the absolute value

of the relative position,
(11 (t + Ate) — 7ot 4+ At,)) = 02, (4.1.7)

The future position of a sphere in the simulation can be calculated by integrating forward

in time using the current particle velocity as follows,
ri(t + At) = ri(t) + vi () At. (4.1.8)
Substituting this equation into Eq. (4.1.7) gives
(r1a(t) + v12(t) At.)? = 0y, (4.1.9)

where the only remaining unknown is now the collision time At.. Expanding out the term
on the left hand side of Eq. (4.1.9) results in a quadratic in At,,

riy + 2(v1g - T12) At + VAL = 03y, (4.1.10)

where the brackets denoting time dependence have been removed as everything is evalu-
ated at the current time ¢. This equation can then be solved using the quadratic formula to

exactly calculate the collision time as follows,

—2(’012 : "“12) + \/4(1)12 : ""12)2 - 4'”%2(’“%2 - ‘7%2)

At, =
20%,

. (4.1.11)
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Figure 4.3: A schematic diagram of two hard-sphere particles (orange spheres) travelling
through space with velocities v; and v,. The direction of the spheres through space is
shown using arrows. Armed with the sphere velocities along with the current positions of
both spheres, it is possible to calculate the collision time At.. This is the time until these
two spheres will collide if they remain on their current trajectories and it can be calculated
exactly in event-driven molecular dynamics using the method outlined in Section 4.1.
Dashed circles represent the position of the spheres during collision when they are in
contact. Secondary arrows show the post-collision path of the spheres through space with
restituted velocities v} and v}, calculated using Eq. (4.1.5). Dashed circles also represent
the position of the spheres after some time travelling on their post-collision trajectory.

If this equation has no real roots, this means that the two spheres will not collide. One real
root means that the spheres will experience a glancing collision, and two real roots means
that the spheres will collide. In this case, the earliest root corresponds to the moment
that the spheres first come into contact and the second root corresponds to the moment
at which the spheres finish passing through each other. When calculating the collision
time in this way, care must be taken to ensure that the spheres are approaching each other
(v45 - 75 < 0) in order to ensure that the collision will take place on the future and not in
past according to the current trajectories of the spheres. Fig. 4.3 illustrates the complete
process of resolving a hard-sphere collision, showing two hard-sphere particles initially
with velocities v; and v,. The simulation is advanced to the point in time at which the
spheres will be in contact ¢ + At, (calculated using Eq. (4.1.10)) and the sphere velocities
are updated to the post collision values using the collision rules shown in Egs. (4.1.5).
An outline of the event-driven molecular dynamics algorithm [4] is shown in Fig. 4.4.
When performing a simulation, the positions and velocities of all particles are initialised
according to the desired simulation parameters such as density and temperature. Hard-
sphere mass and diameter values must then be assigned to each particle in line with the
mono or multi-component mixture which is to be simulated. After initialisation is com-
plete, the collision time is calculated for each pair of particles. It is then a matter of sorting
all potential collisions in order to determine which collision will occur first. After iden-
tifying the next collision, the simulation is advanced At, into the future to the point of

contact and the collision is resolved as shown in Fig. 4.3. Once the collision is resolved,
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Figure 4.4: A flowchart showing the core operations of the event-driven molecular dy-
namics algorithm beginning with the initialisation of the system according to the desired
system parameters such as temperature and density and subsequently resolving collisions
in chronological order as they arise.

the collision times for the colliding spheres must be updated according to their new posi-
tion and velocity values. At this point the shortest collision time is re-identified and the

process is repeated for as many events as is desired.

Eq. (4.1.10) highlights one of the advantages of event-driven simulation which is that
it is able to skip all free dynamics in the system while still resolving collisions. This is
especially impactful at low density values where the mean free time between collisions
is large. A further advantage of this method is that it is exact; both the time to the next
collision At., and the velocity changes during the collision, are calculated to machine
precision. Unlike time-driven simulation, results are not dependent on numerical param-
eters such as the time step size. All MD simulations reported in this thesis are performed

using an event-driven molecular dynamics simulation package named DynamO [5].
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Figure 4.5: Hard-sphere system state as a function of time. The red line represents mi-
croscopic fluctuations around equilibrium which is represented by the central horizontal
black line. The green lines show paths of relaxation of the macroscopic system towards
equilibrium. Even though the system microscopically fluctuates around equilibrium, on
average the system decays back to the equilibrium state. This figure is adapted from
Ref. [6].

4.2 Equilibrium measurements

Equilibrium molecular dynamics simulation is characterised by the fact that there is
no net flow of matter or energy into or out of the system. This means that when looking
at the system of particles on a macroscopic level, the system will come to equilibrium
and remain there. However, on a microscopic level, the properties of individual parti-
cles and local regions of the simulation will fluctuate around the mean value as particles
travel through the system and interact. On average, local fluctuations in the system will
decay back towards the equilibrium state as illustrated in Fig. 4.5. Local fluctuations in
the system tend to dissipate proportionally to local system gradients [6] which means that
recording the decay over time of these microscopic fluctuations provides a route to de-
termining the transport properties of the system using methods such as the Green-Kubo
[7, 8] relations. Equilibrium MD simulations in this thesis utilise the Einstein formu-
lations [1, 9, 10] of the Green-Kubo relationships as the original formulations are not
compatible with discontinuous particle potentials, such as the hard-sphere model, as the
expressions require the interparticle force. The computation is therefore challenging as

the hard-sphere force is impulsive.
The Einstein form of the Green-Kubo relations takes the general form of the following
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time correlation function as given in Refs. [1, 9, 10]

Lavan(t) = o We (OWor (1), (421

where 5 = 1/(kgT'), La,a,(t) is a transport coefficient such as the thermal conductivity
L., or the mutual diffusion coefficient L, and W,, and W, are the time integrals of
microscopic system fluxes. The mutual diffusion L,,, thermal diffusion L,,,, and thermal
conductivity L, coefficients are calculated using varying combinations of the time inte-
gral of the microscopic kinetic energy flux W, and the microscopic mass flux of species

a W, which are given by Ref. [1] as

t  Ng N
Wa = Z Z mkvatC — Wy Z mkvatc, (422)
Ate k k
t N 1 1
We=>_ (Z EmkVivatc + émiAV?vij> : (4.2.3)
At k

where At, is the interval between collisions which take place during the total simulation
time ¢, V; is the peculiar velocity of particle 7, w, is the mass fraction of species a, and

N, is the total number of spheres of species a

In order to mimic the behaviour of a bulk system as N — oo, periodic boundary con-
ditions are commonly used in equilibrium MD simulation. This boundary condition re-
sults in spheres exiting the simulation through one boundary and reentering the simulation
through the diametrically opposing boundary. However, this bulk approximation is tem-
porary. Fluctuations in the properties of one particle will spread out from that particle at
the speed of sound. As the simulation time extends beyond the sound wave traversal time,
the effects of individual particle fluctuations will begin to be felt by that same particle as
the effect loops back round through the periodic boundaries and causes a positive corre-
lation. Hence, when using a time-correlation function such as the Green-Kubo relations,
the correlation time must be limited in order to remove the effects of self-correlation.
The sound wave traversal time is calculated using the simulation box length and speed of

sound ¢ which is given by Ref. [1] for a hard-sphere system as follows,

skl (22° 0pZ
Y0 Tama \ 3 op )’

where Z = p/(T'p) is the compressibility, and z, is the mol fraction of species a. When

4.2.4)

C

estimating the sound wave traversal time for use with time correlation calculations in this
thesis, the compressibility Z is calculated using the BMCSL [11, 12] equation of state
(EOS).

59



CHAPTER 4. THE HARD-SPHERE MODEL

PBC

o3
//////Q////////
O
O
Q
Q

S/
=

PBC

Figure 4.6: A schematic 2-D representation of a multicomponent hard-sphere NEMD
simulation using the parallel heated walls algorithm in order to measure thermal conduc-
tivity. Two parallel smooth walls are placed at opposite ends of the simulation domain.
These walls are set to temperatures of 7.4 and 7Ty, as labelled, in order to induce a
temperature gradient across the simulation. The simulation is surrounded by periodic
boundary conditions on the boundaries which are not covered by the parallel walls.

4.3 Non-equilibrium techniques

In contrast to equilibrium methods, non-equilibrium (NEMD) techniques measure the
properties of molecular systems by imparting an external force on the system, forcing
it out of equilibrium, and then measuring the resulting response. In this sense NEMD
is more direct than equilibrium methods and more analogous to real life experimental
measurements. In order to measure the thermal conductivity using NEMD simulation, a
temperature gradient is imposed on the system which allows for the measurement of the
resulting heat flux. It is also possible to carry out this process in reverse and impose a
heat flux through the system and measure the resulting temperature gradient. This section
discusses the various methods of measuring thermal conductivity using NEMD as well as

the main differences of this method relative to equilibrium methods.

4.3.1 Heated walls

The NEMD parallel heated walls thermal conductivity measurement technique in-
duces a temperature gradient across a simulation using two parallel heated walls at either
end of a simulation as displayed in Fig. 4.6. As mentioned in Section 4.2, periodic bound-
ary conditions are used on some simulation boundaries in order to mimic the effect of an
infinite system. A new type of particle interaction is introduced into the simulation when
using this method as hard walls now cover two ends of the simulation. Instead of the
sphere reentering the simulation on the opposite side; spheres which collide with the

walls are reflected back into the simulation. In the case of heated walls, each collision
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also reassigns the kinetic energy of the particle according to Gaussian distribution with a
temperature equal to the temperature of the wall (T}, or T¢o1q)-

The energy imparted by the heated wall at 7' = Ty is slowly conducted through
the simulation, both through particles motion, as well as particle collisions. After being
transported to the opposite end of the simulation, this energy is then removed by the
corresponding wall at 7' = T(,q4. Over the course of a simulation, the total amount of
energy added to and removed from the simulation is recorded. This data can then be used
in order to determine the total energy flux through the simulation.

The imposed temperature gradient as well as the resultant heat flux through the system

are related to the thermal conductivity via Fourier’s law which can be written as
Q = kAT, (4.3.1)

where AT = T — Teod 18 the temperature difference between the two parallel heated

walls, and the heat flux is calculated as

Q= (4.3.2)

where [, [,, and [, are the lengths of the simulation in the z, y, and 2z dimensions re-
spectively, t is the total simulation time, and E is the total energy transferred through the
system. This could be taken as the total heat added Fyggeq, Or removed Eiemoved- In this

thesis, an average of the two values ( Eremoved + Fadded)/2 is used.

4.3.2 Energy exchange

As an alternative to the parallel heated walls method, a temperature gradient may
be imposed using multiple thermalising zones. This is known as the method of energy
exchange [13] and is illustrated in Fig. 4.7. This method utilises periodic boundary con-
ditions on all boundaries similar to equilibrium methods. The red and blue shaded areas
in Fig. 4.7 represent thermalising zones which modify the velocities of spheres which are
situated within them in order to set the temperature inside the zone to Tjo Or Toq. Sim-
ilar to the heated walls method (Fig. 4.6), a heat flux through the system will eventually
become established as heat conducts from the hot zone to the cold zone. The total energy
removed and added through the thermalising zones is recorded and the thermal conduc-
tivity can be calculated using Eq. (4.3.1). It is also possible to perform this measurement
in reverese, inducing a heat flux by adding a fixed amount of energy through the thermal-
ising zones over time and measuring the resulting temperature gradient. In this case, the
thermal conductivity is, again, calculated via Fourier’s law by relating the defined heat
flux and the resultant temperature gradient.

System properties measured using NEMD simulation will not be pure values calcu-

lated at a single temperature and density value as is the case in equilibrium MD. By
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Figure 4.7: A schematic 2-D representation of a multicomponent hard-sphere NEMD
simulation using the energy exchange algorithm in order to measure thermal conductivity.
The simulation is surrounded on all sides by periodic boundary conditions represented by
the label “PBC”. The simulation contains two thermalising zones represented by the red
and blue shaded areas of the diagram. Particles inside these zones are thermalised to
temperatures of 7 q and T} in order to induce a temperature gradient.

definition non-equilibrium methods require that the system is placed under an external
force which shifts the system away from the natural equilibrium state. In the case of ther-
mal conductivity measurement techniques, this involves inducing a temperature gradient
across the system which will not only cause the obvious variation in temperature over
the system, but it will also produce a density gradient over the system. This means that
any property measured using non-equilibrium techniques is an average of that particular
property taken at many different temperature and density values over the entire span of the
simulation. This effect can be minimised by using a small temperature gradient; however,
a small driving force will result in a low signal to noise ratio and potentially high uncer-
tainty in the calculated thermal conductivity. Other effects such as interfacial resistance
present at the walls in the parallel heated walls technique will significantly effect the mea-
sured thermal conductivity [14]. All NEMD simulations performed in this thesis utilise

the parallel heated walls method in order to measure hard-sphere thermal conductivity.
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CHAPTER
FIVE

KINETIC THEORY AND FULL MULTI-COMPONENT
HYDRODYNAMICS

The link between the macroscopic scale (where continuum hydrodynamics and heat
transfer are considered) and the microscopic scale (where molecular motion is consid-
ered) must be made to build our fundamental understanding of thermal conductivity. This
is also vital to ensure no effects are missed as heat transfer in mixtures is highly com-
plex, involving simultaneous thermodiffusion, diffusion, and conduction. Therefore, this
chapter derives the Enskog-Boltzmann equation and then uses it in order to derive the full
multi-component hydrodynamic equations for the conservation of mass, momentum, and
energy. Following this route provides a microscopic basis for all terms in the hydrody-
namic equations and also reveals all assumptions made along the way. To be absolutely
complete, the equations of kinetic theory are derived from the Liouville equation which
describes the time-evolution of an ensemble of systems inside phase-space. In order to
derive the Liouville equation, the conservation equation for a general conserved quantity

is first derived.

5.1 Reynolds transport theorem

The Reynolds transport theorem is a key result for the study of the time evolution
of any conserved quantity. With some hand-waving, it can be used to derive hydrody-
namic equations, but a more rigorous route uses it to derive the kinetic equations first.
Its derivation considers a multi-dimensional space with coordinates . Assume there is
some quantity A which is present in varying amounts over this space such that the density
pa(x,t) is a well defined concept. Examples of the property A include mass, momentum,
and energy in physical space or, more interestingly for kinetic theory, the count of physi-

cal systems in phase space. The total amount of the quantity N 4(t) within a volume V()
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whose shape and volume can change with time is defined as follows,

Na(t) = / palm, t) de. (5.1.1)

xzeV(t)

The limit of this integration states that the integral is performed over the range of x con-
tained within the time-dependent volume V' (¢). If we wish to consider the full time depen-
dence (total time derivative) of N4(t), care must be taken to include the time dependency
of the integral limits/volume as well as the time-dependence of the density itself. In order
to expose the time dependence of the limits explicitly, they are instead expressed using a

Heaviside step function,
Na(t) = [ Ovle toa(a.t) e, (5.12)
Va

where the integration is now over the whole space of @ and the step function © is defined

as

1 forx € V(t)
Oy (z,1) = . (5.1.3)
0 forx ¢ V(t)

Now that the integral limits are fixed, a total time derivative may move inside the volume

integral,
iN(t)_i/ (z, )0y (a,t)d (5.1.4)
g Nalt) =7 [ palz.)Ov(z, 1) d -
Va
:/ dpA(m?t)@y(.’B,t) —|—pA(.’B,t)d@V—(w’t) da;, (5.1.5)
dt dt
Va

where, on the second line, the product rule is applied to the time derivative. The variable
x is independent of time as it is always integrated over the whole space of x, thus the total
time derivative can be replaced by the partial time derivative as p4 and Oy are explicit

functions of time,

%NA(t) = / (WGV(CBJ) + pA(a:,t)%Va—im’t)) de. (5.1.6)
Va

The first term within the integral of Eq. (5.1.6) represents the change in N4(¢) due to

changes in the density within the volume V' (¢). The final term represents changes in N4

due to a change in the region contained within V/(¢). The value of the step function Oy

remains constant when within or outwith V'(¢), thus the value of Oy only changes at the

volume surface 0V (¢) which moves as the shape of V' (¢) changes. Like the Heaviside step

function, the derivative of ©y, must be a delta function which “selects” for the surface of
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V(t). The rate of change at this surface is proportional to the velocity of the surface
vy perpendicular to the surface of V(). Therefore, the final integral can be rewritten as

follows,

G = [ 282 e w0y dz+ [ pata )i @ o) - a0 do
Va YV

(5.1.7)

0 t

= / % dx + / palx, vy (x,t) - ny(x, t) de, (5.1.8)
zeV (1) TV (1)

where dy (x,t) is a delta function which selects for the surface of V' (¢), 6V (¢) is the

surface of V(t), and ny (x,t) is the surface normal pointing outward from V' (¢). In the

second line, the step and delta functions are removed and the limits of the integral are

changed to the volume and surface of V' (¢) respectively. The final term can be converted

to an integral over the volume using the divergence theorem,

d
&NA(t) = / (w + Vg - pa(z, t)'vv(zc,t)) de. (5.1.9)

xzeV (t)

This result is known as the general transport theorem and is particularly useful if the

volume V' (t) is defined to move at the velocity of the observed property, A, i.e., vy = T 4,

%NA(t) _ / W Ve pal@, )da(m 1) da. (5.1.10)
zeV(1)
In this case, the derivative has been changed to an uppercase D to distinguish that this is
now a material derivative, which tracks the change of property A over time while also
following the motion of the property A through space. If the property being observed is
conserved, then this material derivative must be zero DN /Dt = 0 as the velocity @ 4
tracks all movement of the property, i.e., A cannot pass through the boundary of V()
anymore. As this holds true for any arbitrary initial volume, the kernel of the integral

itself must be zero,

apA(w7 t)

5 = =V palz,t)xa(x,t). (5.1.11)

This is a general conservation equation for a conserved property A. It is possible to use
Eq. (5.1.11) to derive the hydrodynamic continuity equation by considering the conser-
vation of mass. The Navier-Stokes equation can be derived by examining the conserva-
tion of momentum; however, care must be taken when defining the momentum velocity,

T momentum»> Us€d 1n Eq. (5.1.11) as it is distinct from the mass velocity used in the continuity
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equation'. Eq. (5.1.11) forms the basis for the Liouville equation which is used in order
to derive the equations of kinetic theory in the following section. These equations will

then be used in order to derive the hydrodynamic conservation equations in Section 5.3.

5.2 Phase space and the Liouville equation

The Liouville equation is an application of the conservation equation to phase space
and is the starting point for the derivation of kinetic theory. Phase space is constructed
by creating a position vector, I' = {r, U}N, which is comprised of 3/V position variables
and 3NV velocity variables for all [V particles in a system. A particle, in this context, may
describe a single atom, functional group, or entire molecule depending on the molecu-
lar model used. As the system moves through time it will trace out a trajectory in 6NV
dimensional phase space.

The trajectory of a hard-sphere system through phase space is not continuous as col-
lisions between particles will result in instantaneous changes/jumps in velocity space due
to the discontinuous repulsive force; however, as no physical process exists which can
create or destroy one of these systems (i.e., time cannot end) the flow of any number of
these systems in phase space is conserved (see Fig. 5.1). While individual systems are
interesting, determining their individual motion through phase space is exactly equivalent
to solving the motion of the system via molecular dynamics. Our interest lies in the long-
time/average behaviour of the system (and simpler calculations), thus a statistically large
ensemble of hard-sphere systems in phase space is considered. This collection of systems
can be described by a distribution function f(I',¢) which represents the probability of
finding a hard-sphere system in the state of I" at time ¢. By construction, the distribution

function is normalised to one,

/f(I‘,t) dr = 1, (5.2.1)
v

where the integral represents a definite integral over the whole domain of I'.

The primary benefit of using a statistically large ensemble is that f is now a continuous
function over the accessible regions of phase space?, thus the mathematics of it are simpler
and open to further simplifying approximations. It should be noted that much (if not all)
of the discussion below still applies to a distribution function describing a single system
in phase space®.

As probability is conserved, the governing dynamic equation of the distribution func-

tion, f, is Reynolds Transport Theorem. Applying Eq. (5.1.11) yields the following ex-

"Momentum may be transferred/move without the transfer of mass, thus their velocities are different.
A classic example of this is the Newton’s cradle, where momentum travels “instantaneously” from one side
to another on impact without movement of the spheres.

2The inaccessible regions (where f = 0) are separated from the accessible regions by a discontinuity.

Sice., f(T') = 6 (T — Dyys(t)) where Ty 5(t) is the state of the single system at time ¢.
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Figure 5.1: An illustration of the flow of an ensemble of systems in phase space. In
deterministic systems, trajectories cannot cross as the same configuration must follow the
same path; however, they may converge and even join if dissipative forces are present in
the system (i.e., a bouncing ball in 1-D will eventually come to rest in the same location
regardless of the starting position). This implies that, in general, the density of systems in
phase space is not necessarily conserved but that the total number of systems is.

pression,

] a .. Y 9 o (F
Ef:_a_l"frz_;(”’”arif+avi'(Ef)) (5.2.2)
where the equation has been broken down into the contribution of each particle ¢ to the
overall dynamics via its velocity, v; = 7;, and forces, F; = m;v;. As the velocity and
position are independent variables, the velocity is removed from the position derivative
without approximation.

At this stage, several simplifying approximations are made. First, all forces are as-
sumed to be time-independent and only a function of the particle variables. A pairwise
approximation then allows us to break the total force on a particle into a sum of pairwise

contributions,

N

F,(T)=) F;(T,Ty),
j=1
ji

where the sum excludes self-interactions and Fj; is the force between particle ¢ and j. In
molecular systems, the inter-particle forces are only a function of position and, therefore,

the force terms can be removed from the velocity derivatives of Eq. (5.2.2). Applying
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these changes yields the following expression,

of s, o NFy 0f
E__; Ui-ari+j:1mi.a_w
JF#i
N N
= of 4 0 4 0
= Zzl v; - ari+jlz+1Fm- [mi v, m; 8_'0]] f), (5.2.3)

where the second line simplifies the sum on the particle interaction term by collecting
terms using the identity Fj; = —F}; which arises from Newton’s third law of motion'.
This result is known as the Liouville equation, but it is not particularly useful in this form
as it still describes the motion of the full system, thus it is no simpler than direct molecular
dynamics simulation.
In order to reduce the number of particles considered, a reduced distribution function
of n < N particles is now defined by integrating out /N — n particles,
f(Ty,....T t):——lXL—:/jKFl.“ Ty,t) ATy ... dTy. (5.2.4)
e (N—n)!w o "

The purpose of the factorial terms is simply to give convenient normalisations of the
reduced distribution functions. For example, the one-particle distribution f*) normalises

to the total particle count,

/ﬂ%ﬁnmwﬂHzN. (5.2.5)
v

This normalisation implies the ensemble average mass density p(r,t) can be derived by

applying the velocity integral and multiplying by the hard-sphere mass m,

Q/mfm@hﬂmh:Mnﬂ. (5.2.6)
vr

This also allows other interesting hydrodynamic properties to be extracted, such as the

ensemble average flow momentum

/m'vl fOTy, ) doy = p(r, u(r,t), (5.2.7)
VI

where u(r,t) is the ensemble average velocity. Thus this normalisation allows us to
access hydrodynamic properties from the reduced distribution function, yet a clear path

to computing these distribution functions is still missing.

Every action has an equal and opposite reaction.
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5.2.1 BBGKY Heirarchy

The single particle distribution function is obviously of great interest as it allows us to
access useful hydrodynamic properties of the system. Therefore, an equation which can
be solved for the reduced distribution functions, and in particular ), must be generated.
In order to achieve this, an integration over the n + 1th to the Nth particle variables of the
Liouville equation (Eq. (5.2.3)) followed by a multiplication by the normalisation factor

of Eq. (5.2.4) is performed yielding the following expression,

N of

(N—=n)l ) Ot
v

o 0
N =) /Z( +ZE] { , mjla—vj]f> dT,,; ... dTy.

Jj=i+1 Vi

SodT, ...y

(5.2.8)

The integration is in independent variables, thus it can pass through the time derivative

and reduce the distribution function on the left hand side of Eq. (5.2.4), as follows,

NI af _of™
(N —n)! / gt Wnin Al = =7,

vr

This is also true for all terms on the right-hand side where ¢ < n. Considering the
position derivative term when ¢ > n, if the integration of r; is performed first, it will undo
the derivative and leave the distribution function f evaluated at the limits of 7;. In infinite
systems the distribution function f must tend to zero at the limits r; = +oo for there to
be a finite probability, and in periodic systems the value of f must be symmetric at the
periodic boundaries thus these terms are zero for all systems of interest. It is clear that for
integrals such as Eq. (5.2.7) to converge, the distribution must go to zero at the extreme
values of the velocity as well, thus the velocity derivative terms on the same line go to
zero if the v; integral is carried out first (we can ignore the force term for the velocity
integral as it assumed to only be a function of position). All that remains to be considered

are the force terms for j > n where the state of the derivation so far is summarised as

0
e (n)
m] 8UJ:|>f

1 0
ov;
EETIP I

follows,

Y0 n
%}Z(w‘ +ZFw [ ;!
=1

j=i+1

it dTy. (5.2.9)

As all particles of the same type are indistinguishable, the sum over terms j = n + 1 to

j = N in Eq. (5.2.9) can be replaced with a factor (/N — n) multiplied by any one of these
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remaining terms. The n + 1th term is chosen and the normalisations cancel completely as
follows,

ofm & 0 < 1 0 9
_Z/EnJrl .o ”*”dI‘nH- (5.2.10)

This set of equations is known as the BBGKY hierarchy and expresses the time evolution
of the n-particle distribution function via its dependency on the n + 1-particle distribution
function. As stated previously, the single particle distribution function f(!) is the most
important equation to us in this set and is obtained by substituting a value of n = 1 into
Eq. (5.2.10),

afm afm F, 0f®

_U .
ot Yo, my  Ovy

dT,, (5.2.11)

In order to solve for f (1) one must know the value of f ). however, as these equations
stand this requires knowledge of f), f . and so on. To solve this equation, the de-
pendency of the f(™) equation on the f(™*1) distribution must be broken, thus the "+
term, known as the interaction term or collision integral in hard sphere systems is consid-

ered in the following section.

5.2.2 Collision integral

In hard spheres, forces are impulsive and, therefore, the velocity derivative in the
interaction term of Eq. (5.2.11) is complex. Careful reasoning allows the derivation of the
interaction operator by its action on properties. This is an exact but involved derivation [1,

2], thus only the result is presented here.

F 0
-2 o dFQ_U // v - ""12‘( (”“1;”1:"“1‘1‘0?‘127’02:75)
1

my
v12-7P12<0

— f(2) ('I"l, V1,71 — 0'72'12, V2, t)) d’f’lgd’vlg, (5212)

where o is the hard sphere diameter, d is the dimensionality, 715 = r; — 75 is the relative
position, and v, = v; — v is the relative velocity of hard-spheres 1 and 2. The restituted
velocities v} and v}, are given by the hard-sphere collision rules shown in Eq. (4.1.5). The
term outside the parenthesis in Eq. (5.2.12) represents an integration over the surface of
a sphere. The first term inside the parenthesis shows the particles (with velocity values
already equal to v} and v)}) which will collide in order to enter the current distribution.

The second (negative) term shows the particles which are already members of the current
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Figure 5.2: A physical representation of the collision integral showing a single snapshot
of the integration over all values of 75 and v5. The sphere shown has a relative veloc-
ity and position of vy and 715 respectively. The collision “path” of the two spheres is
extruded (red column) from the particle. The column originates from the cross sectional
area on the surface of the particle which, upon collision, will give the particle a new post
collision velocity of v{. This corresponds to the second term inside the parenthesis in
Eq. (5.2.12) which makes sense as this collision reduces the probability of a single parti-
cle having the original velocity v; based on the probability of two particles having these
pre-collision characteristics.

distribution but will collide and exit as shown in Fig. 5.2.

One approach to “closing” the BBGKY hierarchy at some convenient level is to ex-

press the £+ term in terms of f(™). Formally, this can be expressed as follows,

fO(Ty, Ty, t) = (T, Ty) fY(T, 1) f (T, 1), (5.2.13)

where x(I'q, I'y) is the two particle correlation function. The actual approximation comes
in how the y term is implemented. The simplest choice is to assume molecular chaos as
Boltzmann did such that the two particles are uncorrelated, i.e. Y ~ 1. Often x is made a

simple function of density to ensure the correct pressure is obtained at moderate densities.

Boltzmann assumes that all particles in the system are point-particles with no volume
which interact at a distance of |r;;| = 0. Substituting these assumptions into Eq. (5.2.12)

gives the Boltzmann equation collision integral as

F 0
ﬁ ) f dFQ - 0 // |’012 T12|< (’I" Ulv )f(l)(ra 'l);,t)
(%1

ma
v12-712<0

— f(l) (T’, vy, t)f(l) ('r, V2, t)) d’f‘lgd’vlg (5214)

This Boltzmann assumptions are only valid for dilute gases. Enskog [3] semi-empirically
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modified the Boltzmann equation in order to account for the finite particle size of colliding
hard-spheres and the invalid assumption of molecular chaos for dense gases. Finite parti-
cle size is accounted for by reintroducing the collision distance (as shown in Eq. (5.2.12))
where particles collide at a distance |r15| = o. This is important because, upon collision,
momentum and energy are transferred instantaneously from one hard-sphere to another
over the distance o and at high densities, this becomes the dominant method of momen-
tum and energy transfer. The assumption of molecular chaos also breaks down at high
densities as collisions between hard-sphere pairs become increasingly correlated as pairs
of hard-spheres which are close to each other will collide with each other more frequently
than with hard-spheres which are far away. Enskog theory [3] accounts for the increase
in collision frequency by setting the factor y(I';, I'z) in Eq. (5.2.13) to the equilibrium
value of the radial distribution function of two hard-spheres at the point of contact be-
tween the spheres, i.e. when |r;;| = o. Substituting Eq. (5.2.13) into Eq. (5.2.12) using
the updated x value gives the expression for the Enskog version of the single-particle
mono-component hard-sphere collision integral

F; 0 _ . .
£ f(2) dI‘Q = O'd 1 // ‘1)12 . 7“12’ <X f(l) (T'l, ’Ui, t)f(l) (T'l + oTy19, ’Ué, t)

my 8’01
v12-712<0

_ Xf(l)(ﬁ, ’Ul,t)f(l)(ﬁ — 0719, fUQ,t)) dripodvy  (5.2.15)

5.2.3 Multi-component systems

The expressions that have been derived so far are valid for monocomponent hard-
sphere systems; however, we are interested in thermal transport in mixtures. In order to
proceed and eventually derive the hydrodynamic conservation equations for multicompo-
nent systems, we must extend Eq. (5.2.15) to consider collisions between hard-spheres
of different sizes. If we consider a S-species hard sphere fluid, there are now S coupled
single particle distribution functions corresponding to each species a = 1,2, ...,.5, each

characterised by a mass m, and diameter o,,

S

of o N L)
= v, - = T (1), (5.2.16)
ot or oy ( >

where, instead of the probability of finding any hard-sphere, fél) represents the probability

of finding a hard-sphere of species a at position r with velocity v, at time t. T, represents
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the collision integral between two species a and b and is defined as follows,

(fa 7fb =
ﬂ ‘Uab rab’ <Xab(lr' T+ Urab) fa(rv vm t) fb('f’ + O-ablf'aba vl/;7 t)

Vab Pap<0

- Xab(ra r— O-'f’ab) fa(’ra Vg, t) fb(r - O-ab’f'aby Vy, t)) d’f'abdvab (5217)

where Y, present in the monocomponent collision integral (Eq. (5.2.15)) is replaced with
Xab (7o, Tp) as the radial distribution function is now a function of the individual hard-

sphere species parameters.

5.3 Hydrodynamic equations

Now that the complete set of multicomponent single particle distribution functions
have been derived along with the multicomponent Enskog version of the hard-sphere
collision integral, these equations are now used to derive the full multicomponent hy-
drodynamic equations for the conservation of mass, momentum, and energy. In order
to streamline the following sections, the symbol f will now be used to refer to the sin-
gle particle distribution function (previously f()). The conservation equations, i.e. the
continuity equation, the momentum equation, and the energy equation are obtained by
multiplying Eq. (5.2.16) by those respective quantities, m,, m,v,, and %mavg for species
a, integrating the resulting equation with respect to v,, and summing over all species
a=1,2,...,5.

5.3.1 Continuity equation

Multiplying Eq. (5.2.16) by the species a mass m, and integrating over the velocity

v, gives

/ afad’ua - /mava : fadva /maz,];b fa»fb dva (531)

The mass of species a is invariant over any collision as no mass is ever transferred from

particle a to particle b. Therefore the collision term will be equal to 0

S
[ e > Tl i)dwa = (532)
b=1

Both m, and v, are independent of position and time which means that these variables

can be taken inside of any position or time derivatives. This also means that position and
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time derivatives can be moved in and out of integrals with respect to v, leading to

0 0 omy
a/mafad'va - _5 : /mavafadva _'_/fava ' a_rdvaa (533)

where the product rule has been used in order to expand the right hand side of the ex-
pression. The term containing the position derivative of the species a mass 9m,/0r = 0
as the mass of an individual component is independent of position. The remaining term
on the right hand side of Eq. (5.3.3) is rewritten in terms of the mass-averaged velocity
by introducing the peculiar velocity V), of a species a which is the velocity of species a

relative to the mass averaged velocity defined as follows,
Va(r,t) = va — u(r,t), (5.3.4)

where the peculiar velocity V,(r, t) depends on position because of the fact that the mass

averaged velocity u(r, t) is also a function of position. This leads to

0 0 0
a/mafadva =5 /maufad'va o /mavafad'va. (5.3.5)

Similar to how we defined the monocomponent ensemble average mass density in Eq. (5.2.6),

the ensemble average species mass density p, is defined here as

/ Mafa Vs = pa(r,t). (5.3.6)

Applying this definition to Eq. (5.3.5) gives the species continuity equation

dpa
ot

= -V (pou+J,), (5.3.7)

where J, represents the motion of species a relative to the bulk flow p,u, known as the

diffusive flux of species a and defined as follows,

Jo(r,t) = / Mo Vo fadv,. (5.3.8)

Eq. (5.3.7) allows us to calculate the time evolution of each individual species density in
a hard-sphere system. It is also possible to derive the overall mass continuity equation by
summing Eq. (5.3.7) over all speciesa = 1,2, ..., N,

dp

=V, (53.9)

where the total mass density p is defined as the sum of all species mass densities,

S

P= Pa (5.3.10)

a=1
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In the overall continuity equation, the diffusive fluxes of individual species are no longer
present as the fluxes sum to zero » | J, = 0 as can be seen by combining the definition of

the diffusive mass flux

Ja
U =t 7%, (5.3.11)

with the definition of the mass averaged velocity

S
1
U=— patly. (5.3.12)
P a=1

5.3.2 Momentum equation

Deriving the momentum continuity equation begins in a similar manner to the deriva-
tion of the mass continuity equation. Multiplying Eq. (5.2.16) by the species a momentum

m,v, and integrating over the velocity v,, gives

) 0 >
/mavaafadva = — /mavava . Efadva — /mava bz:; Tav(fa, fo)dve. (5.3.13)

Again, making use of the fact that m, and v, are independent of both time and position,
and following an identical procedure to the first stages of Section 5.3.1 allows Eq. (5.3.13)

to be manipulated into the following form,

) 0 >
a/mavafadva - _a_r'/mavavafadva_/mava;%b(faufb)dva- (5314)

In this case, the collision integral is non-zero when integrated with respect to v, as, at
the moment of collision, momentum is transferred instantaneously from one hard-sphere
to the corresponding colliding hard-sphere over the collision distance o,,. Therefore,
unlike the continuity equation (Eq. (5.3.7)), the collisional term will form part of the final
momentum conservation equation. Substituting the definition of the peculiar velocity V),
into Eq. (5.3.14) gives

0 0
a/maufadva—i—a/mavafadva -

— 3 . /mau’u,fad’ua — 23 . /mauvafad’va — 2 . /mav&‘;afadva
or or or

S S
= [ oY Talfe o, = [ mV0 3" Talfa fi)don. 6315
b=1 b=1

Because of the fact that the total momentum in the system is conserved, we can determine
that the mass-averaged velocity w is invariant over collisions as this value is simply the

sum of individual species momentums divided by the overall density which is also a
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conserved value. Therefore we see that the term,

S
/ maw S T fur f)dv, = 0, (5.3.16)
b=1

as both the mass of species a (as discussed in Section 5.3.1) and w are collisionally in-
variant. The terms containing the ensemble average value of the peculiar velocity V,, also

vanish,

/vafadva = 07 (5317)

as the average of the deviation from the average is 0. This is not true for terms containing
the ensemble average value of the peculiar velocity multiplied by itself (e.g. V, -V, or

V.V.) which remain part of the final equation and can not be dismissed in this way.

Cancelling these terms, substituting the definitions of the ensemble average mass den-
sity (Eq. (5.3.6)) and summing Eq. (5.3.15) over all species ¢ = 1,2,..., N gives the
momentum continuity equation as follows,

d(pu)

_— = — . — P ..1
Y V.puu—-V - P, (5.3.18)

where we have introduced the pressure tensor P which is defined as follows,

P =P"+ P, (5.3.19)
S
PF=>" / Mo Vo Ve fadva, (5.3.20)
a=1
S S
VP =3 [mVa Y Talhu i) dva (5.321)
a=1 b=1

where P* and PY are the kinetic and collisional components of the pressure tensor re-
spectively. Setting out the equations for the pressure tensor in this way highlights the two
mechanisms by which pressure contributes to momentum transport. Firstly, consider a
hard-sphere moving with velocity v, from its current position to a new position without
colliding with any other hard-spheres. This sphere has transported its momentum m,v,
over that same distance. This method of momentum transport is referred to as kinetic
and is captured by Eq. (5.3.20), the kinetic component of the pressure tensor. The sec-
ond method of momentum transport is via hard-sphere collisions where, at the moment of
collision, the velocities of each sphere are updated while their respective positions remain
constant causing a transfer of momentum over the corresponding collision distance. This

mechanism is captured in the collisional component of the pressure tensor, Eq. (5.3.21).
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5.3.3 Energy equation

Multiplying the species a single particle distribution function, Eq. (5.2.16), by the

species a kinetic energy %mavg and integrating over the velocity v, gives

1 0 1 0 1 5
- 27 - _ - 2 L . - 2
/2mavaatfadva /2ma'va’va 8?‘fadv“ /2ma'va bgl 7ab(fa7fb)dva'
(5.3.22)

As was the case when deriving the momentum conservation equation, the collisional term
is non-zero when integrated with respect to v, as kinetic energy is transferred from one
hard-sphere to another on collision. Therefore, like the momentum equation Eq. (5.3.18),
the collisional term will form part of the final energy conservation equation. Utilising
the fact that m, and v, are independent of time and position and using the product rule
to expand the right hand side of Eq. (5.3.22) (as in Sections 5.3.1 and 5.3.2) as well as
inserting the definition of the peculiar velocity! V, allows Eq. (5.3.22) to be rewritten as

follows,
@ 1 2 a 1 2 _
&/imau fadva + &/imavafad'va -
8 1 2 a ]' 2
~ / 5Mat uf,dv, — pre / §mavaufadva
S R N ERYD Sy ATAAY
or Qma o ValalUg 2ma ab:1 ab\Ja> Jb)AVa

9 S
S / VYo fadv, -t — / mava;m( for fo)dve - w, (5.3.23)

where all terms containing the ensemble average peculiar velocity have been removed

according to Eq. (5.3.17) and, similar to Eq. (5.3.16), the collisional term,

S
/ %mau2 > Tar(far fr)dvg =0, (5.3.24)
b=1

is also zero as both the mass-averaged velocity u and the species a mass m,, are invariant
over collision as discussed in Sections 5.3.1 and 5.3.2.
We define the temperature 7' as the peculiar kinetic energy, the hard-sphere kinetic

energy relative to any underlying bulk motion of the system given by the mass-averaged

1

(V(L+u)'(V(1,+u):vH,'V(z+QV(L'u+’UI'u
(va+u)2(va+u)ZVa'Vava+2va'uva+u~uva+va-Vau+2va-uu+u-uu
=V2V, +2u-V,V, +u*V, + Viu+2V, - uu + u’u
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velocity u,

3 1

5nkBT = / 5mav%; fadv,, (5.3.25)
where n is the ensemble average number density, and kg is the Boltzmann constant. Ap-
plying the definition of the temperature as well as the ensemble average mass density
(Eq. (5.3.6)) and summing Eq. (5.3.23) over all species a = 1,2, ...,.S gives the energy

equation as

9(pe)
ot

=—V-peu—-V-J,—-V-(P- u), (5.3.26)

where we have identified and extracted the pressure tensor P as well as defining the total

specific energy e

1 3nkgT
w? + 2B (5.3.27)

2 2 p

as the sum of the specific kinetic and specific internal energy. We also define a new term

known as the diffusive heat flux J, through,

Jo=Jr+J7, (5.3.28)
51
J(f = Z/Emavivafadva; (5.3.29)
agl 1 .
V- Jt;ll = Z / imavg Zﬁb(fa; fb)dvau (5330)
a=1 b=1

where J, 5 and J ;’ are the kinetic and collisional components of the heat flux respectively.
Similar to the kinetic and collisional contributions to the pressure tensor P, we see that the
heat flux J, describes two mechanisms by which heat is transported. One is the motion of
a non-colliding particle through the system with kinetic energy m,v? and the second is the

instantaneous transfer of kinetic energy from hard-sphere to hard-sphere upon collision.

5.4 Closing the hydrodynamic equations

So far we have derived the mass Eq. (5.3.7), momentum Eq. (5.3.18), and energy
Eq. (5.3.26) conservation equations which describe the time-evolution of a hard-sphere
fluid. However, at the moment, the diffusive fluxes (the diffusive mass flux J,, the pres-
sure tensor P, and the heat flux J,) are not in a convenient form as they are all in terms of
the distribution function f, which is unknown. The conservation equations are closed by
writing these diffusive fluxes in terms of the state variables and their gradients, i.e. VT,
Vu. In this thesis we assume straightforward linear closures; however, there is choice

available when closing these phenomenological equations, utilising higher order gradi-
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ent terms is known as Burnett or super-Burnett hydrodynamics [4]. Any disagreement
between these models and kinetic theory may be the result of this choice and will be

discussed later.

In order to derive the linear phenomenological equations, the first step is deriving the
total entropy production [5] in terms of a general entropy balance equation which can be

written as follows,

9(ps)
ot

= -V psu—V-Js+ 5.4.1)

where s is the specific entropy, J is the entropy flux, and (2 is the entropy production.

The total entropy time derivative is given by Gibb’s equation [6] as follows,

ds dw 1
T = — = Ava 54.2
TR T by, +pzajﬂv (5.4.2)

where W = 3nkgT/2p is the specific internal energy, and p is the isotropic pressure. It
follows from the total energy conservation equation shown in Eq. (5.3.26) that the internal

energy conservation equation is as follows,

dv

P = -V .-J,—P:Vu, (5.4.3)
where : denotes the double dot product of two tensors. Substituting this equation allows
Eq. (5.4.2) to be written as,

d(ps) 1 1
o=V opsu— Vo d, - T Vet o Zuav J., (5.4.4)

where use has been made of the fact that the pressure tensor P can be rewritten in terms

of a scalar hydrostatic piece pl and a symmetric viscous tensor piece T as follows,
P=pl+rT, (5.4.5)
as well as the fact that,
Vu:1=V-u. (5.4.6)

Comparing Eq. (5.4.4) with Eq. (5.4.1) shows that the entropy flux can be written in terms

of the diffusive mass flux and the heat flux as follows,

1
. (Jq = MaJa> , (5.4.7)
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and the total entropy production can be written as follows,

1 1 pay 1
Q= -3, VT — = ;Ja TV (?) — T V. (5.4.8)

5.4.1 Defining the heat flux

There is choice involved in the definition of the heat flux J,. It is possible to rewrite
the expression for the entropy production shown in Eq. (5.4.8) in several different forms
by extracting terms which are proportional to the temperature gradient V7' from the chem-
ical potential ,. De Groot [6] outlines three separate forms of the entropy production
equation, the first of which is shown in Eq. (5.4.8). The second makes use of the follow-

ing thermodynamic relationship,

v (%) — Vi, — %VT, (5.4.9)

which allows Eq. (5.4.8) to be rewritten as,

1 1 1
Q= _ﬁJ‘; VT — T z@: Jo Vi, — 7T Vu, (5.4.10)

where the term which is separated from the concentration driving force is now included

in a new definition of the heat flux J ; which is defined as follows,

Jy=Jdy =Y pade=TJ.,. (5.4.11)

The third and final form of the entropy production detailed by Ref. [6] is obtained using

the following relationship,

YAV (%) — Ve — %VT, (5.4.12)

where V represents a derivative taken at constant temperature, and h, is the partial

specific enthalpy of species a. Eq. (5.4.8) can now be rewritten as

1 1 1
0= _ﬁJé/,VT_T;Ja.VTMa—TT : Vu, (5.4.13)

where, again, a new definition of the heat flux J, é’ 1s obtained which is defined as follows,

T/ =J,=> hoda. (5.4.14)

Erpenbeck [7] terms these various forms of the heat flux (J,, J. é, and Jé’ ), as well as the
corresponding force terms and any transport coefficients which are subsequently derived

29 ¢

from these expressions, as the “mainstream”, “prime”, and “double-prime” versions. The
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values of J,, J;, and J// differ in terms of the respective contribution of diffusion to the
heat flux. These differing forms of the flux terms can be more useful than others in certain
applications, for example, it is inconvenient to calculate the “prime” transport coefficients
with methods such as the Green-Kubo relations as it necessitates defining Planck’s con-
stant whereas the “mainstream” and “double-prime” coefficients do not [7]. In principal
there are infinitely many degrees to which terms containing the temperature gradient VI’
can be separated from the concentration driving force term 7'V (u,/T') thereby altering the
definition of the heat flux as part of the total entropy production. This thesis will consider
the “mainstream” version of the heat flux as well as the resulting transport coefficients as

detailed in the following section.

5.4.2 Phenomenological equations

The definition of the pressure tensor for a hard-sphere fluid is given in Ref. [7] as

follows,
T 2
P:p1—77<Vu+(Vu) ) + ((3) 77—773) (V-u)l, (5.4.15)

where p is the isotropic pressure, 7 is the shear viscosity, AT denotes the transpose of a
tensor A, 7p is the bulk viscosity, d is the dimensionality, and 1 is the identity matrix.
The isotropic pressure p is calculated using an equation of state where, in this thesis,
the BMCSL equation of state [8, 9] is used. In addition to the pressure term, two stress
terms are present which contain the velocity gradients. Note that linear closures are used.
Transport coefficients (shear 7 and bulk 7np viscosity) then relate the magnitude of the
velocity gradients to the behaviour of the system. These transport coefficients themselves,
as well those present in the equations of J, and J,;, contain a large amount of depth as they
include a full state dependence; they are functions of the mixture concentration, density,
and temperature via Enskog theory.

The diffusive flux J, of species a is given by Ref. [6] as follows,

Jo==Y LaTV (2) - Ljf:“ VT, (5.4.16)
b

where L, is the mutual diffusion coefficient of species a through species b, j, is the
chemical potential of species b, and L,,, is the thermal diffusion coefficient of species a.

The diffusive heat flux J, is also given by Ref. [6] as follows,

a L’U/U,
J, = —;LWTV ("?) — AV, (5.4.17)

where L, is the phenomenological thermal conductivity. We note that Eq. (5.4.16) and
Eq. (5.4.17) predict that mass will diffuse through the system as the result of a gradient in

temperature. Note that both equations, like Eq. (5.4.15), contain only linear closures. The
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chemical potential, like the isotropic pressure, is calculated using the BMCSL equation
of state. In the context of fluid mixtures, the phenomenological thermal conductivity L,
present in Eq. (5.4.17) is not what should be discussed when comparing to experimentally
observed thermal conductivity values. This is discussed in more depth in Ch. 6.
Expressing the diffusive fluxes in terms of a series of system gradients allows cor-
responding transport coefficients to be predicted using Enskog theory [3, 10, 11] which
assumes that the time evolution of the distribution function f will depend purely on the
macroscopic quantities of the system, i.e. the species densities p; o g, the average veloc-
ity u, and the temperature 7'. A perturbation expansion [4] (Chapman-Enskog expansion)
is then applied to the distribution function f, in order to express it in increasing powers

of the system gradients,

fa(F(M p1,2 ,,,,, S, W, T) = fio}(rth p1,2 ,,,,, S, W, T)+
:u’f(£”<raapl,2 ..... S7U7T> +N2f(£2](Fa7p1,2 ,,,,, SuuvT) + o (5418)

where the dependence of the distribution function on time ¢ is replaced with a depen-
dence on density, velocity, and temperature, f,(I's,t) = fo(Ta,p12. s,u,T), and p is
an expansion parameter representing the order of magnitude of any gradients of the state
variables and is used to collect and equate terms of equal orders of magnitude. For exam-
ple, f(gl] represents the first order solution to the distribution function with respect to one
system gradient, and fio] represents the undisturbed solution given that there are no gra-
dients present in the system. In practice, only the first order term fé” is solved for. This
expansion is applied to Eq. (5.2.16) for the set of single particle distribution functions as
well as the conservation equations Eq. (5.3.7), Eq. (5.3.18), and Eq. (5.3.26). Expanded
terms that are of a common order of O(u) with common gradients are then compared
in order to generate expressions for the transport coefficients. The method commonly
used in order to calculate the actual transport coefficient values, and the method used in
this thesis, is to expand these expressions using Sonine polynomials [12]. Third order

polynomials are typically used in this work when predicting values using Enskog theory.
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CHAPTER
SIX

MICRO TO MACROSCOPIC THERMAL
CONDUCTIVITY

Deriving the full multicomponent hydrodynamic equations for the conservation of
mass, momentum, and energy in Ch. 5 has laid the foundations for a detailed discussion
of heat transfer in fluid mixtures. As seen in Eq. (5.4.17), heat transport in these mixtures
will be a complex story of simultaneous diffusion and conduction. The effects of both of
these mechanisms must therefore be characterised and understood in order to accurately
predict the properties of real systems.

It is already clear from the experimental results shown in Ch. 3 that continuum mod-
els such as the series-parallel thermal conductivity limits as well as the Maxwell and
Hamilton-Crosser models are unable to describe the full range of behaviour reported in
nanofluids and gas mixtures (especially gas mixtures such as Hy-He). Phenomena such
as minimums in the thermal conductivity profile, as shown in Fig. 3.4, as well as conduc-
tivity dependence on nanoparticle size are not captured by these models. We therefore
turn to the phenomenological expressions for the heat and mass flux defined in Ch. 5 in
order to generate a complete description of multicomponent heat transfer in fluids which

includes molecular effects such as thermal diffusion.

6.1 Phenomenological thermal conductivity L.,

Eq. (5.4.16) shows that, in a multicomponent hard-sphere fluid, a temperature gradi-
ent VT will cause species to diffuse through the system according to the corresponding
thermal diffusion coefficient L,,. This effect is known as thermophoresis or the Soret ef-
fect [1]. The related effect of a transfer of heat due to a gradient in concentration, shown
in Eq. (5.4.17), is known as the Dufour effect. Previously in Section 5.4.1, this thesis
discussed the ambiguity in the definition of the heat flux. Another level of ambiguity in
the definition of the conductivity is added for fluid mixtures as a result of thermodiffu-
sion which means that there is no one unique definition of the “thermal conductivity” in
mixtures for all moments in time. Instead, there is a time dependent effective thermal

conductivity which will have an initial value, corresponding to a time when the system
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>0 O o
069 QoS

Figure 6.1: A multicomponent hard-sphere fluid at (a) the onset of heat transfer and
(b) at steady-state conditions. As (a) shows a system at the onset of heat transfer, the
system is still homogeneous and shows no concentration gradients. However, in (b),
thermal diffusion has taken place, as shown by the coloured arrows, which has caused a
concentration gradient to be established. These system shown in (b) corresponds to the
steady-state thermal conductivity .

is homogeneous, which is “enhanced” by the presence of thermal diffusion. This homo-
geneous state corresponds to the system shown in Fig. 6.1(a) which is a snapshot of a
multicomponent hard-sphere system under the influence of a temperature gradient before
any conduction or diffusion has occurred. At the moment that a temperature gradient is
established thermal diffusion will take place causing a flow of heat due to the diffusion
of mass through the system. As diffusion continues, concentration gradients will appear
in the system as shown in Fig. 6.1(b) and after a long time the system will reach an equi-

librium state where diffusion caused by concentration gradients > L., TV (%) exactly
b

counteracts diffusion as a result of the temperature gradient L—J‘iu V T and net diffusion in
the system goes to zero. At this point, without the heat transfer contribution of diffusion,
the thermal conductivity has decayed to the final value A [1, 2] corresponding to a system

where there is zero diffusion of mass J,; ¢ = 0. In this thesis, this value is referred to

as the steady-state thermal conductivity. As the difference between the phenomenological
value and the steady-state value originates purely from the diffusion of mass through the
system, the phenomenological thermal conductivity L, is always greater than the steady-
state thermal conductivity A [1]; the diffusion of mass through the system never detracts

from the overall heat transfer.

A relatively small number of nanofluid studies report values which lie outwith the
series-parallel limits [1]. However, when looking at the phenomenological thermal con-

ductivity L,,, Enskog theory predicts that it is possible for even simple, low density hard
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Figure 6.2: Thermal conductivity as a function of the mol fraction of species 2. The
phenomenological thermal conductivity L., is predicted for a binary hard sphere mixture
using Enskog theory. In this case, the hard-sphere species have masses of m; = 1 and
me = 8 and diameters of o3 = 1 and o, = 2. The system is assumed to be at low
density (n = 10~®) where Enskog theory is most valid. The series and parallel limits are
calculated using the pure component thermal conductivities of species 1 and 2. At low
volume fractions L, greatly outperforms the parallel mode thermal conductivity and even
produces a maximum which is greater than either pure component thermal conductivity.

sphere systems to exhibit L, values well outside these limits as shown in Fig. 6.2. This
figure shows Enskog theory predictions of the phenomenological thermal conductivity as
a function of concentration for a low density binary hard sphere fluid with species diam-
eters of 0y = 1 and 02 = 2 and species masses of m; = 1 and my, = 8. The system
exhibits L., values which are well above not only the upper parallel limit, but also the

maximum pure component thermal conductivity value.

If the large thermal conductivity enhancements shown in Fig. 6.2 for hard-sphere mix-
tures were to translate to solid-liquid mixtures, it could potentially explain large thermal
conductivity measurements such as those reported in nanofluid systems. However, in the
context of real heat transfer applications, values of the pure phenomenological thermal
conductivity, such as the results shown in Fig. 6.2, are likely to be irrelevant as a system
only exhibits this thermal conductivity in the zero-time limit ¢ — O when there are zero
gradients in the state variables and any transfer of heat necessitates a temperature gradi-
ent in the system. Although this temperature gradient may be small, any deviation from
a completely undisturbed system will result in a departure from the phenomenological
thermal conductivity and an eventual decay to the steady-state value. Even if it were pos-
sible to access the zero-time thermal conductivity experimentally, it is not obvious that
the “mainstream” definition of L, is useful when comparing to real systems. As detailed

in Section 5.4.1, the phenomenological thermal conductivity is commonly defined in two
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other manners (“prime” and “double-prime”’) which are given in Ref. [3] as follows,

L = Luw =2 ptaLua + ) Y HattvLas, (6.1.1)
a a b

Ly =L =2 heLua+ Y > halyLa, (6.1.2)
a a b

where L/

uu’

and L/ are the “prime”, and “double-prime” versions of the phenomenolog-
ical thermal conductivity respectively. These values differ from the “mainstream” value

of L,, due to a different transfer of heat due to diffusion.

6.2 Steady-state thermal conductivity \

It is desirable to define an experimentally accessible thermal conductivity value which
is independent of the choice of flux. This section shows a derivation of a thermal conduc-
tivity value which accomplishes both of these aims and is referred to as the steady-state
thermal conductivity with the symbol A. In order to derive a general expression for the
steady-state thermal conductivity A of an S-component mixture, the equations for the
mass fluxes J, and energy flux J,, which were shown originally in Eqs. 5.4.16 and 5.4.17

respectively, are restated here in a modified form as follows,

J=D X +UX,, 6.2.1)
J,=U X + L,X,. 6.2.2)

In this case, D is a .S x S matrix containing all mutual and self diffusion coefficients, and

U is a vector containing the S thermal diffusion coefficients defined as

Ly Lis ... Lig Loy
D= L:Ql b ) . and U= L:” (6.2.3)
L.s1 Lss L;LS
respectively, X, = —%VT is the temperature driving force, X is a vector containing the

concentration driving forces for all species a = 1,2, ..., .S,

=1V (%) Ji
_TV (&2 J

X = _ (%) . and J= |7 (6.2.4)
~TV (%) Is

is a vector containing the diffusive flux terms for each species J; 5 g. As stated previ-

.....

ously, A corresponds to the thermal conductivity in a system where heat transfer has been

occurring for a long time and thermal diffusion has completed resulting in zero diffusive
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flux J172

to be expressed in terms of the temperature driving force X, as follows

s = 0. Setting J = 0 in Eq. (6.2.1) allows the concentration driving force X

.....

X=-(D"-U)X,. (6.2.5)

Substituting this expression into Eq. (6.2.2) gives an equation for the heat flux J,, in terms

of the temperature gradient only,

J, = —% (Luu—U-(D7'-U)) VT. (6.2.6)

The steady-state thermal conductivity A and the energy flux J, are related by Fourier’s

law of conduction J, = —AV'T" which implicitly defines A as follows,

1
A== (Lw—U-(D"-U)). (6.2.7)
For a S-component mixture, the Onsager relationships [4] can be written in the fol-

lowing form,

S
> L =0, (6.2.8)
b=1

S
> L =0, (6.2.9)
a=1

which states that every row and column of D are linearly dependent on the S — 1 other
rows and columns of D respectively. As there are only S — 1 linearly independent rows
and columns, the S x S diffusion matrix D has rank S — 1 and is therefore singular and
uninvertible. Instead, the generalised inverse [5] of D is utilised in order to solve for \ as

shown in the following equation,

A= % (Luu —U - (D*-U)), (6.2.10)

where * denotes a generalised inverse. It is clear from Eq. (6.2.10) that, in a mono-
component fluid where the effects of thermal diffusion are not present, the steady-state

and phenomenological thermal conductivities are related simply as A = L, /T

6.2.1 Binary derivation

This thesis focuses primarily on binary systems; hence, a derivation of A\ for binary
mixtures is shown here using a singular value decomposition (SVD) in order to determine

the generalised inverse of the diffusion matrix D ™. For a binary mixture, D is defined as
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follows,

Lll
L21

and can simplified using the Onsager relationship shown in Eq. (6.2.8) to

D

Lll
_Lll

L
2 (6.2.11)
L22
L
e (6.2.12)
Lll

Performing a SVD on D allows this matrix to be factorised into three separate matrices
as follows,

D =GXF7, (6.2.13)
where G and F' are S x S unitary matrices and X is a S x S diagonal matrix where
the diagonal terms are known as the singular values. Carrying out the SVD allows the
generalised inverse D to subsequently be calculated as shown in Ref. [5] through,

DT =FXTGT, (6.2.14)
where the matrix 3% is calculated by replacing all non zero diagonal entries of X with

their inverse. Performing a SVD on the diffusion matrix D determines the values of G,
3, and F' to be,

1 1 for, o] [&2 21"
D= |V V3 o V2 oVE| (6.2.15)
V2 V2 V2 V2

where the singular values of D are 2L, and 0'. The generalised inverse is now calculated
Eq. (6.2.14) as follows,

(=1 1] [ o] [=t ]

Dt =|v? Jf] [an ”{5 Vf] : (6.2.16)
RvziivA B AU B kv
[ 1 —1

Dt = 4511 4L111]_ (6.2.17)
L4L11  4Ln

For binary mixtures the matrix of thermal diffusion coefficients U is defined as

(6.2.18)

'Due to the nature of the Onsager relationships, the diffusion matrix D for any S-component mixture
will always have one singular value which is equal to 0.
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which can be simplified by applying the Onsager relationship shown in Eq. (6.2.9) to

U— |t (6.2.19)
=1 2.

Substituting the final expressions for D and U, shown in Eq. (6.2.17) and Eq. (6.2.19)
respectively, into Eq. (6.2.10) gives the final expression for the steady state thermal con-

ductivity in binary mixtures as

1 L2
A=—(L,, —=“). 22
7 ( w Ln) (6.2.20)

It is not necessary to go through the process of determining the generalised inverse in
order to derive the steady-state thermal conductivity expression for binary mixtures as
shown in Appendix B which showcases a method for deriving A\ using only algebraic
manipulation. Eq. (6.2.10) can be used in order to derive the expression for A for any S
component mixture. As an interesting aside, the S = 3 component steady-state thermal

conductivity can be written as follows,

1 ( L Lkl = 2Ll L + L22L31> | 6221)

A==
T Ly1 Loy — L3,

Expressions for A quickly become intractable beyond this number of components S = 4+.

In order to shows that the steady-state thermal conductivity is independent of the

choice of “mainstream”, “prime”, or “double-prime” fluxes, the expressions for the “prime”

and “double-prime” diffusion coefficients are shown here as they are given in Ref. [3],

L., = La L', = L, (6.2.22)
Ly =Lua— Y iLie Ly =L~y holLua, (6.2.23)
b b

where the mutual diffusion coefficients are equal regardless of the choice of flux. It is
easy to show, by substituting these expressions along with Egs. (6.1.1) and (6.1.2) into
Eq. (6.2.20), that

A=)\ =\ (6.2.24)

As A is valid in the steady-state limit, it is likely that this thermal conductivity defi-
nition is more experimentally relevant than L,,,. This is especially true for measurement
techniques such as the parallel heated plates method which is detailed in Section 3.1.2 as
this method measures the thermal conductivity after the experiment has come to steady-
state, hence allowing temperature and concentration gradients across the fluid to become
established. This relevance is less obvious in the case of transient thermal conductiv-

ity measurement techniques such as the transient hot wire method which is outlined in
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Figure 6.3: Thermal conductivity as a function of the volume fraction of species 2 ¢s.
The steady-state thermal conductivity A is predicted using Enskog theory for a low density
binary hard sphere mixture with a number density of n = 107® with a diameter ratio
of oy, /ope = 289/260 and mass ratio of my,/mye = 1/2. The series-parallel limits
are calculated using the pure component thermal conductivities of the two hard-sphere
species. A is less than the series mode thermal conductivity over the entire concentration
range culminating in a minimum which is lower than either of the pure component thermal
conductivity values.

Section 3.1.1. This method commonly measures the thermal conductivity over short
timescales which are of the order of 10 ms < 100 ms [6]. It is not clear from the equations
that have been derived so far over what timescale the thermal conductivity of a mixture
decays from the phenomenological value to the steady state value and therefore what defi-
nition is the most useful. The decay time will depend on the relative strength and speed of
conduction and the opposing mechanisms of mutual and thermal diffusion as well as other
factors such as the specific measurement technique and the size of the fluid cell. If the
effective thermal conductivity decays quickly to the steady-state value, over the course
of nanoseconds for example, then even in the transient hot wire setup, the steady-state
thermal conductivity will be the most experimentally relevant. However, if the rate of
decay of the thermal conductivity is slow relative to the timescale of the experiment, then
other thermal conductivity definitions which include the effects of diffusion may be more
appropriate.

Fig. 6.3 shows a comparison of the predictions of Eq. (6.2.20) for the binary helium-
hydrogen mixture with experimental data which was previously shown in Fig. 3.4. The
transport coefficients are calculated using Enskog theory at low density (n = 10~%) using
a hard sphere diameter ratio of oy, /oy = 289/260 and mass ratio of my, /my. = 1/2.
The He-H, diameter ratio is calculated using values of the kinetic diameter given in
Ref. [7] which are estimated using diffusion measurements. In this case, A predictions

capture the form of the thermal conductivity measurements which lie outwith the series-
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parallel bounds as well as the reported minimum which falls below the pure component
helium thermal conductivity. Here, A underpredicts the pure component hydrogen ther-
mal conductivity suggesting that the He-H, diameter ratio used here and estimated using
diffusion measurements is not appropriate for use when calculating the mixture thermal
conductivity. Fig. 6.3 suggests that A is a much more useful predictor of the mixture
thermal conductivity than the series-parallel bounds. The experimental measurements re-
ported in Fig. 6.3 used various measurement techniques including steady-state methods
and transient methods such as the transient hot wire method suggesting that A is a relevant
definition of the thermal conductivity at relatively short times. However, it is not possible
to make a firm statement regarding the exact timescale over which \ is relevant as the

exact measurement times are not mentioned in the experimental studies.

6.3 Initial thermal conductivity )\;

This section details a further definition of the thermal conductivity, similar to a defini-
tion given by Eapen [1], which gives the thermal conductivity at short times where there
are no gradients in the concentration due to thermal diffusion but after gradients in the

temperature are present. Consider the heat flux J, which is written as follows,

Jq:—ZLuaTV(%) - L;“VT. 6.3.1)

Use is made of the thermodynamic relationship shown in Eq. (5.4.12) which allows a term
which is proportional to the temperature gradient to be separated from the the concentra-
tion driving force. Applying Eq. (5.4.12) to Eq. (6.3.1) allows the heat flux to be written

as,

ha L’U/LL
Jo==Y Lu (MO —~ TVT) ~ VT, (6.3.2)

where is it assumed that the derivative of the chemical potential at constant temperature
is zero. In order to examine what this means in practice, the expression for the ideal gas

chemical potential is shown here. It is given in Ref. [3] as follows,

a k k k
Ha _ Sk In(2rh?) — In(mg) — 0% In(ksT) + — In(z4p), (6.3.3)

T 2my, Mg Mg My

where 27h is Planck’s constant. Inserting the ideal gas pressure expression p = nkgT’
allows the temperature dependence of the chemical potential to be extracted as
Ha 3]{;B

b () (6.3.4)
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Taking the derivative of Eq. (6.3.4) gives

Ha 3kg ha
v <?> = g VT = VT (6.3.5)
where use has been made of the chain rule identity VIn(T) = T7'VT, and h, =
3kgT/(2m,) is the ideal gas partial specific enthalpy which coincides with Eq. (5.4.12).
The extra terms which are not explicitly detailed correspond to those contained within the
the constant temperature derivative term Vo, in Eq. (6.3.2). These consist of several
constant terms which vanish when differentiated as well as one term which is a complex
function of concentration. Assuming that Vrp, = 0, as in Eq. (6.3.2), therefore assumes
that there is no species concentration gradient in the system, i.e. Vx, = 0. The expression
for the partial specific enthalpy in hard sphere systems is slightly different to the ideal gas
case and is given in Ref. [3] as follows,

3T

ha
2my,

+ pug, (6.3.6)

where v, is the specific volume of species a which can be written as follows,

()
Oma ) py

Vg = ~ LT 6.3.7)
(5%)

where V' is the volume. It is possible to include the effects of pressure volume work on

the hard-sphere enthalpy by approximating p and v, using a hard-sphere equation of state.

Grouping together terms in Eq. (6.3.2) allows the heat flux to be written as follows,

1
Jy=—= (Luu - haLua> VT, (6.3.8)

which can be compared with Fourier’s law to yield new definition of the thermal conduc-

tivity which is as follows,

1
A\ = = (LW — Z haLua) . (6.3.9)

Finally, for a binary mixture, Eq. (6.3.9) can be rewritten as follows,

1

by using the Onsager relation given in Eq. (6.2.9). As mentioned previously, this thermal
conductivity definition applies when there is a temperature gradient in the system but no
gradient in concentration and is referred to as the initial thermal conductivity throughout
this thesis. This definition may have relevance for systems undergoing rapid changes in

temperature where the temperature equilibrates rapidly relative to the concentration. In
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such a system, a temperature gradient would become established, thus promoting heat
transfer, but would reverse fast enough such that concentration gradients would not form.
As heat transfer in real systems necessitates a temperature gradient, this definition may
represent a value which is close to the maximum experimentally attainable mixture ther-
mal conductivity.

If this thermal conductivity definition is relevant over experimental timescales, it may
play a part in helping to explaining nanofluids studies which have reported systematic
differences in the thermal conductivity when using different measuring techniques [8]
even though individual measurement techniques had low uncertainties and were consis-
tent with other measurements using the same technique. Large potential enhancements in
the initial thermal conductivity A\; could help to explain these systematic deviations as dif-
ferent thermal conductivity measurement techniques take place over different timescales
and may access the enhanced initial value to different extents.

Fig. 6.2 and Fig. 6.3 demonstrate that it is possible for the phenomenological as well
as the steady-state thermal conductivity of hard-sphere mixtures to lie outwith the series-
parallel bounds. The following chapters further investigate these phenomena in an effort
to determine which other hard-sphere mixtures, as well as real mixtures, display this

“anomalous” behaviour.
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CHAPTER
SEVEN

INVESTIGATING ANOMALOUS THERMAL
CONDUCTIVITY DEHANCEMENT

This chapter has been published as a Rapid Communication in Physical Review E (see
Appendix C). Authors: Craig Moir, Leo Lue, Julian D. Gale, Paolo Raiteri, and Marcus
N. Bannerman

A small number of nanofluid experimental results remain outside the classical contin-
uum bounds, such as the reported dehancements below the series limit for fullerene-water
suspensions reported by Ref. [1] and shown in Fig. 3.6. Hence, the question still remains;
are results outside these bounds correct and, if so, what are the underlying mechanisms?
Ch. 3 presents several physical mechanisms which have been proposed in an effort to ra-
tionalise the behaviour of these systems; however, there is as-yet no unifying framework
for predicting/explaining the thermal performance of nanofluid mixtures. Some of the
confusion in interpreting thermal conductivity arises from the different manners in which
it can be defined. The most natural macroscopic/experimental definition arises from ap-
plying a temperature gradient, V', across a system and measuring the resultant heat flux,
J,. The “observed” non-equilibrium thermal conductivity Ay is then defined through the

following expression,
(Jg) = —AwVT, (7.0.1)

where the brackets (- - - ) indicate the implicit averaging over time and volume this ap-
proach entails. The first hurdle of this chapter is to establish that the macroscopic (\y)
and microscopic (\) definitions of the thermal conductivity are equivalent at steady state.

The definition of the steady-state thermal conductivity A presented in Eq. (6.2.20) is
distinct from Ay as it is not averaged over the non-equilibrium conditions of a system
undergoing conduction but is instead evaluated at a single temperature, concentration,
and density. Fig. 6.3 demonstrates that the steady-state thermal conductivity of hard-
sphere mixtures can not only lie outside the series and parallel bounds set by their pure
component values, but can lie beyond even the pure component fluid values which is in
agreement with experimental measurements of the helium-hydrogen gas mixture. This

chapter presents results from Enskog theory as well as equilibrium and non-equilibrium
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MD simulations which further investigate potential anomalous behaviour in the steady-
state thermal conductivity for binary hard-sphere fluids. The MD simulations verify that
Enskog theory can accurately predict non-equilibrium thermal conductivities at low den-
sities and this theory is applied to explore the model parameter space. Only certain mass
and size ratios are found to exhibit conductivity enhancements above the parallel bounds
and dehancement below the series bounds. It is demonstrated that thermal conductivities

outside the series/parallel bounds are a fundamental feature of even simple fluids.

In principle, atomistic NEMD simulations can be used to directly measure the heat
flux J, through a system’s boundaries to obtain the “observed” non-equilibrium thermal
conductivity, Ay. Equilibrium simulations can then be used to measure A for compar-
ison, as well as to elucidate any underlying mechanisms behind “anomalous” behavior.
Unfortunately, large and long-duration non-equilibrium simulations are required to di-
rectly study heat conduction in nanofluids [2], and so only a limited range of molecular
models and techniques are computationally accessible using this method. Due to these
limitations, previous simulation work has primarily focused on equilibrium simulations
of nanofluids at fixed size and mass asymmetries between the fluid molecule and nanopar-
ticle [3—8] with only a few studies at larger asymmetries (e.g., [9, 10]). As equilibrium
molecular simulations are conducted at a single temperature and concentration, Eq. 7.0.1
cannot be used, thus the equivalence between Ay and A cannot be conclusively estab-
lished.

NEMD simulations of binary hard-sphere mixtures, consisting of spheres of diameter
o1 and mass m, and spheres of diameter o, and mass m,, confined between two smooth
parallel walls (see Fig. 7.1) are performed using DynamO [11]. Although the hard-sphere
model is simple, it qualitatively captures the fundamental effects of density, molecular
size, and mass on the transport coefficients in gases [9]. This paper explores conditions
close to the ideal gas limit for simplicity (and to avoid crystallisation as o5/0; becomes
large); however, the results obtained in this limit are fundamental to the behaviour of all

fluids and comparison against experiments on gas mixtures can be made.

The first aim of this work is to establish an equivalence of the observed, Ay, and
steady-state, A, thermal conductivities. This is conducted using a hard-sphere mass ra-
tio of mo/m; = 2 corresponding to a He-Hs mixture with the approximate size ratio
o9/01 = 260/289, obtained from diffusion measurements [12]. A constant reduced pres-
sure of po?/(kpT) = 0.01 (where kg is the Boltzmann constant) is used and is set by
adjusting the system density. This reduced pressure value corresponds to a packing frac-
tion of approximately 0.005 over the studied mol fraction, x5. Once the equivalence of
A and Ay is confirmed in this system, a systematic exploration for ‘“anomalous” thermal
conductivities is carried out over the mass and size ratio parameter space using kinetic

theory.
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/
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Figure 7.1: A schematic of the system configuration used for the simulations reported
here which use a hard-sphere model consisting of two species with diameters o; and o9,
and masses m; and ms respectively. For NEMD simulations, two walls are inserted into
the simulation and a 10% temperature gradient is imposed via velocity reassignment on
collision with the wall [13]. The total number of spheres N and aspect ratio !l /I* of the
simulation are varied to explore the effects of system size at a constant density/pressure.

N\

7.1 Simulation method

Parallel smooth walls are located at both ends of the simulation domain as illustrated
in Fig. 7.1 with periodic conditions on all other boundaries. On collision with the wall, the
normal component of a sphere’s velocity is reassigned to a Maxwell-Boltzmann distribu-
tion [13] at a defined temperature. The heat flux is then measured through the following
expression, (J,) = (Q)Il/(I*+)2, where (Q) is the time-averaged rate of energy trans-
ferred to the simulation during sphere impacts with the walls averaged over both walls.
This equation for the heat flux is identical to Eq. (4.3.2); here, instead of defining the sim-
ulation lengths in terms of the three spacial dimension (L,, L,, and L), the lengths are
defined in terms of whether they are parallel (I!') or perpendicular (/1) to the direction of
heat flux. The two walls have different temperatures set to 95% and 105% of the system
temperature 7'. This value is a trade-off between inducing a sufficiently large heat flux
(compared to thermal fluctuations) and inducing unwanted inhomogeneity in the system.

An example of the inhomogeneity induced by the heat flux is given in Fig. 7.2. The
temperature, number density, and concentration plots appear approximately linear. It is
clear to see the effects of thermophoresis in the concentration profiles. These inhomo-
geneities make equating Ay and A suspicious as A is only evaluated at a single repre-
sentative concentration, temperature, and density, whereas NEMD simulations measure
an average thermal conductivity across the system as temperature, density, and concen-
tration varies. Boundary layers with high thermal resistance also exist very close to the
heated walls and induce a significant system-size dependence in the NEMD results.

To explore this system-size dependence, the wall temperatures are held fixed while
the aspect ratio [/l /I and system size are varied with the number of spheres ranging from
N = 5000 up to N = 102400. Each simulation is initialised in an FCC crystal lattice and
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Figure 7.2: The profiles of (a) temperature, kg7, (b) number density, n, and (c) species
mol fraction, z,, as a function of distance between the two heated walls, rll for a single
representative simulation. This system has a mass ratio of my/m; = 2, a size ratio of
0y/01 = 0.899654, N = 102400 spheres, and an aspect ratio of [l /I = 50. All values are
reduced by the average values for the system, which are kp T = 1, n ~ po}/(kpT) =
0.01, and (1 — ;) = T2 = 0.6. Error bars represent the standard deviation across 10
simulations and are smaller than the marker size for the temperature and number density
fields. Solid lines are linear fits provided as a guide to the eye.

equilibrated for 1000 N collisions before a further production run of 10000 N collisions
to collect data. This procedure is repeated ten times at each state point and average values
between the production runs are collected while the errors of the average measurements

are estimated using the standard deviation of values between each production run.

7.2 Enskog theory comparison with MDD

A system-size dependence calculation for the mol fraction, x5 = 0.8, in the He-H,
system is reported in Fig. 7.3. The figure demonstrates that the aspect ratio of a system
is relatively unimportant and that the system length in the direction of conduction, !,
dominates the system-size effects (due to the boundary layer resistance near the walls).
To estimate the infinite system-size (near-zero thermal gradient) value of the thermal con-
ductivity, linear extrapolation is applied to systems with the three largest aspect ratios
(11 /1*+ = 10, 25, and 50). This procedure yields a lower-bound for the thermal conduc-
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Figure 7.3: The observed thermal conductivity Ay obtained from NEMD simulations
as a function of the distance between the walls ¢, /Il from binary hard-sphere systems
with varying numbers of spheres and aspect ratios at a mol fraction of x5 = 0.8 for
amy/my = 2, 09/o; = 0.899654, and po}/(kpT) = 0.01. A linear fit to the data
points obtained using an aspect ratio of 10, 25, and 50 (dashed line) is used to extrapolate
to infinite system size and approaches the value of \ predicted by Enskog theory (solid
line).

tivity as the gradient of the system-size dependence monotonically increases with system
size. The extrapolated A\ value is in excellent agreement with the equilibrium thermal
conductivity A from Enskog theory evaluated at the average conditions of the system.

The above procedure is repeated over a range of mol fractions and the final infinite-
system extrapolated results are reported in Fig. 7.4. This system exhibits thermal conduc-
tivities that are far outside the predictions of classical approaches such as Maxwell theory
or the limits of series and parallel resistance. In accordance with the experimental results
for He-Hy [14-16], the system displays a minimum in the thermal conductivity below
both the pure fluid thermal conductivities. This conclusively demonstrates that “anoma-
lous” thermal conductivities are not only possible but a fundamental feature of simple
molecular fluids such as the binary hard-sphere gas.

To further validate the Enskog and NEMD results, equilibrium simulations with N =
32000 spheres in a cubic system are equilibrated for 1000 N events before being run for
a further 100000 N events to calculate L,,, L,1, and Li; for this system. The Einstein
form of the Green-Kubo relations [17, 18] is used with the first 15 mean free times of
the correlation discarded to avoid ballistic motion and a maximum correlation time of
50 mean free times used to avoid correlations from the periodic boundary conditions.
This is beyond the sound wave traversal time of the system; however, as the density is
so low, correlations from the boundary conditions take much longer to establish than in
higher density systems. The excellent agreement in Fig. 7.4 between Enskog theory and

equilibrium MD completes the verification of the anomalous dehancement reported and
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Figure 7.4: The extrapolated infinite system-size NEMD, Ay, (triangles) and equilibrium
steady-state, \(MP) (square) thermal conductivities as a function of the non-unit species
mol fraction x,. Parallel (dotted line) and series (dashed line) limits bound the region of
classical/continuum values (shaded). The Enskog theory predictions for the steady-state
conductivity, \(¥), (solid line) are in excellent agreement with the simulation results. A
slight apparent overestimation arises from the remaining system-size dependence of our
NEMD results.

the use of Enskog theory to further study hard-sphere systems at low densities.

7.3 Mapping the dehancement

The full parameter space of the binary hard-sphere model is explored using Enskog
theory to determine the extent of the anomalous behavior. Fig. 7.5 maps the maxi-
mum possible departure from the series or parallel bounds achievable by varying the
mol fraction of the system for a particular mass and size ratio. A reduced pressure of
po3/(kpT) = 1077, corresponding to packing fractions below 0.044 for this parameter
space, is used in these calculations to reveal the symmetry of the map in the ideal gas limit
which is otherwise prevented by pure species 2 freezing (which occurs at a size ratio of
09/01 2 4.87 for po? (kg T') = 0.01; however, this change makes little difference to the
results below this boundary). Anomalous enhancement above the parallel bounds is found

at extreme mass-ratios with size-ratios near unity. Reductions below the series bounds are
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Figure 7.5: A contour map of steady-state thermal conductivities outside the series
(dashed) and parallel (solid) bounds as a function of mass and size ratio. The contours de-
note the increase/decrease of the thermal conductivity relative to the parallel/series bound
at the concentration of maximum deviation. A cross indicates the maximum decrease of
the steady-state thermal conductivity which occurs at msy/my ~ 59.6 and 05 /01 ~ 0.102.
A dotted line indicates where mass scales with molecular volume, assuming a constant
density.

also found for smaller but heavier spheres. Surprisingly, a maximum achievable reduction
in thermal conductivity is found which is & 40% below the series limit (see the cross in
Fig. 7.5). The bulk of the anomalous parameter space lies in the larger-but-lighter region
of the map; however, the region of anomalous reduction approaches the line where the

species 2 mass scales with its volume which is the experimentally relevant region.

To explore the experimental relevance of the results, the kinetic diameter and molec-
ular mass ratios for combinations of the noble gases, along with nitrogen and hydrogen
gas, are plotted in Fig. 7.6. The map indicates that several real mixtures may exhibit
anomalous dehancements; however, care should be taken to verify this as the Enskog the-
ory expressions used here do not take into account the additional degrees of freedom of
diatomic gases and in general are not capable of quantitatively predicting the behaviour
of real gases, only general trends. It is expected that more complex molecules can exhibit
more extreme effective size and mass ratios, although the anomalous enhancement region
probably remains inaccessible and the applicability of the hard-sphere model is dubious

in this limit.
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Figure 7.6: As described in Fig. 7.5 but focused on the parameter space relevant for the
noble gases, hydrogen, and nitrogen. Kinetic diameters are taken from Ref. [19-21]

7.4 Conclusions and future work

This chapter examines the thermal conductivity of a binary hard-sphere mixture with
hard-sphere parameters corresponding to the helium-hydrogen gas mixture. The thermal
conductivity is measured using 3 techniques: NEMD simulation using the parallel heated
walls method, equilibrium MD, and Enskog theory. The methods are found to be in strong
agreement with each other. It is possible for the observed thermal conductivity of binary
hard-spheres to exhibit values which lie outside the limits of series-parallel resistance,
in agreement with experimental results on He-H, systems. These “anomalous” results
are present even in the ideal gas limit, which implies that they cannot be explained by
any structural/clustering effect such as those which are prevalent in the nanofluid litera-
ture. To better understand results in nanofluids, liquid densities can be explored using the
techniques outlined here; however, the binary hard-sphere model has two serious short-
comings: an ideal-gas heat capacity and the absence of a gas-liquid transition. Future
work should explore adding internal degrees of freedom to the spheres to account for
varying heat capacity which will allow a better parameterisation of real fluids. Attractive
systems, such as square-wells, may also be used to explore liquid systems which do not
have strong density-pressure dependencies, and the comparison at pressures where the

nanoparticle forms a crystalline phase should be explored.
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CHAPTER
EIGHT

INVESTIGATING ANOMALOUS THERMAL
CONDUCTIVITY ENHANCEMENT

In Ch. 7 it is demonstrated that it is possible for the steady-state thermal conductivity
A of binary hard-sphere fluids to exhibit values which lie outwith (both above and below)
the series-parallel limits. The chapter concluded by mapping the maximum potential
thermal conductivity dehancement over the hard-sphere mixture mass and diameter ratio
parameter space. Proceeding on from the steady-state thermal conductivity, this chapter
will focus on the transient thermal conductivity enhancement which is possible in binary
hard-sphere mixtures. As discussed in Ch. 6, at the onset of heat transfer the combination
of the effects of thermophoresis and conventional thermal conduction leads to a temporary
increase in the effective thermal conductivity which will decay to the steady-state value
as the temperature driving force behind thermal diffusion is eventually balanced by the

resulting concentration driving force.

The chapter investigates the behaviour of the initial thermal conductivity )\; in binary
hard-sphere systems, which is given in Eq. (6.3.10), and maps out the area in hard-sphere
mixture parameter space where the greatest potential enhancement above the parallel ther-
mal conductivity limit is possible. This chapter will also map the potential increase in the
initial thermal conductivity relative to the steady-state value. This will show the locations
in hard-sphere mixture parameter space where the maximum potential percentage de-
crease in the thermal conductivity is predicted to occur over the course of the decay from
the initial value at the onset of heat transfer ¢ — 0 to the steady-state value ¢ — oo. This is
the most relevant graph if the intent were to create a real world heat-transfer device which
attempted to exploit this transient thermal conductivity increase by “switching” from a
highly conductive heat transfer medium to a relatively insulating medium, by potentially
reversing the direction of the temperature gradient. This map also shows which material
mixtures would potentially be most useful when attempting to measure and detect this
transient thermal conductivity increase owing to large relative enhancements in the con-
ductivity. This chapter will also show the mixture concentrations at which the maximum

thermal conductivity enhancements occur.
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Figure 8.1: Thermal conductivity as a function of mixture mol fraction for a binary hard-
sphere mixture with a mass ratio of my/m; = 5 and a diameter ratio of 0y/0; = 0.5.
These results assume a reduced number density of no? = 1078, The Enskog theory pre-
dictions of the phenomenological thermal conductivity L., (red dotted line), the initial
thermal conductivity A; (solid orange line), as well as the steady-state thermal conduc-
tivity A (dashed blue line) are shown. The series-parallel thermal conductivity limits are
represented by the dashed black lines.

8.1 [Initial thermal conductivity enhancement

A graph of the thermal conductivity of a binary hard-sphere system (predicted by
Enskog theory) as a function of mixture concentration is shown in Fig. 8.1 highlighting
the potential enhancement above the upper parallel thermal conductivity limit which is
possible in hard-sphere systems. The mixture showcased in this graph has a mass and
size ratio of msy/m; = 5 and 0y/01 = 0.5 respectively. For this particular system, the
steady-state thermal conductivity is below the series conductivity limit over the entire
mixture concentration space. The initial and phenomenological values also exhibit values
which are below the series bound; however, for certain concentrations, these values are
significantly above the parallel limit. The maximum enhancement of phenomenological
value relative to the parallel limit (L,,,/ kY is larger than the maximum enhancement of
the initial thermal conductivity A; /k!l. This is expected, as discussed in Ch. 6, as the initial
thermal conductivity assumes that there is no concentration gradients in the system. The
peak enhancement for both definitions of the thermal conductivity occur at 5 ~ 0.15.

Fig. 8.2 maps the maximum enhancement of the initial thermal conductivity above the
parallel limit (A;/k!l) for binary mixtures over varying mass ratios ms/m; and size ra-
tios 05 /0. The value of the initial thermal conductivities are calculated via Enskog theory
using the corresponding mass and size ratios and assuming a reduced number density of
no? = 1078, The graph is not rotationally symmetric as the inverse mass and size ratios

are not equivalent. For example, a binary mixture of spheres with oy = 1 and g9 = 0.01
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Figure 8.2: A contour map showing the maximum initial thermal conductivity enhance-
ment above the parallel limit as a function of the hard-sphere mass my/m; and diameter
09 /01 ratio. The contours represent the maximum value of the initial thermal conductivity
relative to the parallel mode thermal conductivity (A7(z2)/kl (xg))max at the correspond-
ing mixture concentration. The dotted line indicates where mass scales with hard-sphere
volume assuming a constant particle density. The shaded grey area shows where no en-
hancement above the parallel thermal conductivity limit is possible. A black cross repre-
sents the state point corresponding to Fig. 8.1.

(02/01 = 0.01) has a lower packing fraction than a mixture with 0y = 1 and 05 = 100
(02/01 = 100). However, the low number density means that maximum packing fraction
for this parameter space is approximately 0.005 which is well below the liquid-solid tran-
sition point of approximately 0.5 meaning that Enskog theory remains applicable. Enskog
theory is solved here using 3rd order Sonine polynomials. The dotted line represents the
points on the map where the mass ratio scales as the cube of the diameter ratio as would
be intuitively expected from a real-life composite particle which has a constant density.
The values plotted on the graph represent the maximum value of \;/k!l as a function of
mixture concentration for a given mass and size ratio (corresponding to approximately
9 = 0.15 1in Fig. 8.1).

Enskog theory predicts that no enhancement of \; above the parallel thermal conduc-
tivity limit is possible when both hard-sphere masses are approximately equal (ms/m; =~
1). This is true for all hard-sphere diameter ratios examined here. As the diameter ratio

approaches unity (0o/0; — 1), a smaller mass ratio is required in order to begin to see a
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Figure 8.3: A contour map showing the mixture mol fraction x5, which corresponds
to the maximum initial thermal conductivity enhancement above the parallel limit
(Ar(z2)/ k”(@))max as a function of the hard-sphere mass my/m; and diameter oy/0;
ratio. The shaded grey area shows where no enhancement above the parallel thermal
conductivity limit is possible.

thermal conductivity enhancement. As the hard-sphere mass ratio deviates from unity the
potential initial thermal conductivity enhancement increases The dotted line represent-
ing constant density scaling of the hard-sphere mass shows that enhancement above the
parallel limit is possible for particles following this rule at a mass and diameter ratio of
me/my = (02/ 01)3 ~ 100. There does not appear to be a limit to the theoretical thermal
conductivity enhancement which is possible in binary hard-sphere mixtures with increas-
ingly large mass ratios. However, in reality there is obviously a limit to the possible mass

ratio of different particles in fluid mixtures.

The maximum initial thermal conductivity enhancement values which are shown in
Fig. 8.2 occur at varying mixture concentrations throughout the mass and diameter ratio
parameter space. Fig. 8.3 shows the hard-sphere mixture mol fraction (left) at which the
maximum thermal conductivity enhancement occurs in Fig. 8.2. Near a unity mass ratio
ms/my & 1, the mixture mol fraction corresponding to the maximum initial thermal
conductivity enhancement is approximately zo = 0.5. As the mass ratio increases, the
mol fraction of the heavier (my/m; > 1) species drops to very small concentrations. The
inverse behaviour is reflected in the graph and as at the hard-sphere mass ratio decreases
mo/my < 1 where the mol fraction of the lighter species increases as the mass ratio
decreases. Upon inspection, this behaviour corresponds to the fact that, where a maximum
is present in L,,,, above the pure species values, this maximum occurs at a mass fraction of
wy = we = 0.5. This is demonstrated in Fig. 8.3(right) which shows that, in general, the
maximum initial thermal conductivity enhancement occurs at a mass of fraction of 0.5.
The only exception to this appears to be in cases near to the boundary where enhancements

of A; begin to appear (\;/k!l = 1). Here, the value of the mass fraction corresponding to
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the maximum enhancement deviates slightly from 0.5.

8.2 Enhancement relative to the steady-state value

Looking at the thermal conductivity enhancement relative to the series-parallel limits
is helpful in identifying interesting effects which may not be intuitively expected from a
mixture. However, it has been established in this chapter, as well as Ch. 7, that although
the initial and steady-state hard-sphere thermal conductivities remain within the series-
parallel bounds over large swathes of the binary mixture parameter space, the series and
parallel limits can both be easily broken and have no bearing on thermal conductivity in
mixtures. The thermal conductivity enhancement which is most relevant is not the en-
hancement relative to the series-parallel thermal conductivity limits, but the enhancement
relative to the corresponding steady-state thermal conductivity for a given mixture.

The goal of this section is to characterise the initial thermal conductivity enhance-
ment above the parallel conductivity limit for a range of hard-sphere gas mixtures. This
will inform material choice when attempting to experimentally study transient thermal
conductivity enhancement in the future, or create a heat transfer device which attempts
to exploit this enhancement. A theoretical heat transfer device may seek to exploit the
short-term transient thermal conductivity increase for a one-time, quick transfer of heat
before leaving the fluid to reach steady-state, therefore lowering the thermal conductiv-
ity. Extending this concept, a device may seek to alter the geometry of the system, or
otherwise reverse the direction of heat transfer, in order to maintain a small concentration
gradient and facilitate the maximum amount of thermal diffusion. Such a process could
dynamically change the thermal conductivity by halting the oscillation of the heat transfer
direction and allowing thermal diffusion to complete, thus letting the mixture reach steady
state.

Fig. 8.4 shows the maximum enhancement in the initial thermal conductivity relative
to the steady-state thermal conductivity over the binary hard-sphere mass and diameter
ratio parameter space. The initial and steady-state thermal conductivities are calculated
via Enskog theory using a 3rd order Sonine polynomial. The graph shows that, like in
Fig. 8.2, as the hard-sphere mass ratio deviates from unity the potential enhancement
increases and as the diameter of the heavier species increases, the maximum possible
enhancement decreases. This rate of decrease is small when the diameter of the heavier
species is small relative to the lighter species, but accelerates when the diameter of the
two species become similar. This is to be expected because, as we saw from Ch. 7,
the largest dehancements in the steady-state thermal conductivity below the series limit
are possible when using mixtures of one particle with particles which are both heavier
and smaller (and vice versa). This is combined with the fact that, as shown in Fig. 8.2,
binary mixtures generally exhibit larger enhancements of \; above the parallel limit when

spheres are mixed with other heavier yet smaller spheres.
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Figure 8.4: A contour map showing the maximum initial thermal conductivity enhance-

ment above the steady-state thermal conductivity (A;(z2)/A(22)),,., as a function of the

hard-sphere mass ms/m; and diameter o5 /0y ratio calculated via Enskog theory. The
dotted line indicates where mass scales with hard-sphere volume assuming a constant
particle density.

Fig. 8.5 shows the mol fraction (left) and mass fraction (right) of species 2 at which the
maximum enhancement of the initial thermal conductivity above the steady state thermal
conductivity occurs, mapped over the binary hard-sphere parameter space. Comparing the
graphs to Fig. 8.4 shows that, as the maximum potential enhancement increases, the mol
fraction of the heavier species decreases substantially, similar to the behaviour shown in
Fig. 8.3. Fig. 8.5 also shows, again, that as the maximum potential enhancement increases,
the mass fraction at which the maximum enhancement occurs tends towards 0.5. As the
potential initial thermal conductivity decreases, the mol fraction of the heavier species at

which the maximum potential enhancement occurs increases.

This chapter concludes in a similar manner to Ch. 7 by overlaying the the estimated
position of actual gas mixtures on the thermal conductivity enhancement map shown in
Fig. 8.4. The position of binary mixture combinations of the noble gases, hydrogen, and
nitrogen are highlighted in Fig. 8.6. The size ratios are calculated in the same way as in
Ch. 7 using data from Ref. [1-3]. Most of the gas mixtures shown here have relatively
modest mass and size ratios and, therefore, the maximum thermal conductivity enhance-

ment above the steady-state value is (A;/\) < 2. However, the value of the mass

max

114



8.2. ENHANCEMENT RELATIVE TO THE STEADY-STATE VALUE

10°

103

10t

mg/ml

101

10734

10_5 T LB ELR AL | LA RLL | LB LR AL | LI B R LL)
1072 107! 109 10t 102 1072 107! 100 10! 102

02 / 01 (op) / o1
Figure 8.5: A contour map showing the mixture mol fraction x, which corresponds

to the maximum initial thermal conductivity enhancement above the parallel limit
(Ar(z2)/A(x2)) ., as a function of the hard-sphere mass my/m; and diameter o5 /0 ratio.

ratio becomes more extreme for mixtures of heavy atoms such as xenon and krypton with
atoms and molecules that are light such as helium and hydrogen. The binary mixture
with the largest enhancement above the steady-state value, which is shown here, is Xe-Hs
which has a mass ratio of my./my, ~ 131/2 and has a maximum enhancement value
of (A\1/A),.x ~ 8 which is almost an order of magnitude enhancement in the thermal
conductivity at short times. These gases are widely available and therefore this mixture,
along with others highlighted in Fig. 8.6, may represents an effective means of experi-
mentally detecting short time thermal conductivity enhancements in future studies as a
large thermal conductivity enhancement would be most easily detectable by experiment.
However, the ease with which enhancements may be detected experimentally will also
depend on the speed with which the thermal conductivity decays from the initial value \;
to the steady-state value A\. The current theory does not give any insight into this timescale
which will be influenced by many factors including the specific parameters of the mixture,
the overall temperature difference, and how the temperature difference is applied to the
system as well as the overall size of the system. In an attempt to fully describe all of the
complex interactions present in a realistic system, a full coupled hydrodynamic-kinetic

theory model is presented in Ch. 10.

This analysis in Fig. 8.6 assumes that the equivalent hard-sphere diameter values for
the noble gases, hydrogen, and nitrogen, which are quoted from Refs. [1-3] and mea-
sured originally using diffusion measurements, are valid for use when predicting thermal
conductivity values using Enskog theory. This assumption relies on the theory that the
quoted gases behave in a hard-sphere-like manner in across these two different transport
processes. This assumption is tested in Ch. 9 which seeks to fit new values of the equiva-

lent hard-sphere diameter for these gases using existing experimental thermal conductivity
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Figure 8.6: As described in Fig. 8.4 but plotted over a narrower section of the hard-sphere
parameter space in order to highlight the estimated locations of the noble gases, hydrogen,
and nitrogen on the plot. As in Fig. 7.5 the kinetic diameters values for the gases are taken
from Refs. [1-3]

measurements.

8.3 Conclusions and future work

This chapter examines the initial enhanced thermal conductivity of binary hard-sphere
mixtures with varying hard-sphere parameters. Values of the initial thermal conductivity
are determined relative to both the parallel mode conductivity, and the steady-state value.
Enskog theory predicts that it is possible for the initial enhanced thermal conductivity to
exhibit values which are well above the steady-state and parallel conductivities. The pri-
mary predictor of the potential enhancement is the species mass ratio. Similar to Ch. 7,
estimated kinetic diameters from literature are used in order to predict real gas mixtures
which could exhibit large values of the initial thermal conductivity. This analysis predicts
that mixtures with large mass ratios, such as hydrogen-xenon and krypton-helium mix-
tures, would exhibit values of the initial thermal conductivity which are approximately ten
times larger than the corresponding steady-state value for certain mixture concentrations.

Future research should take the form of experimental studies, or detailed computational
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modelling, in order to determine if the initial thermal conductivity is accessible in real
systems. Experimentally, this would take the form of a campaign of experimental mea-
surements which take place over varying timescales in order to check for changes in the
measured thermal conductivity as a function of measurement time. In theory, if the mea-
surement time is short enough such that thermal diffusion enhances the effective thermal
conductivity, the measured thermal conductivity should increase as the measurement time
decreases. Alternatively, detailed molecular simulations could be performed in order to
determine the full time-evolution of fluid mixtures during heat transfer at short times, giv-
ing insight into the timescale over which thermal diffusion completes in realistic systems
and, therefore, the times at which significant enhancements in the effective thermal con-
ductivity are possible. Ch. 10 showcases a coupled hydrodynamic-kinetic theory model

which is designed for this purpose.
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CHAPTER

NINE

FITTING ENSKOG THEORY TO REAL SYSTEMS

As shown in Ch. 7, Enskog theory predicts that it is possible for binary hard-sphere
gas systems to exhibit values of the steady-state thermal conductivity A which are out-
with the series-parallel limits for certain hard-sphere mass ratios my/m; and diameter
ratios oy /0. Comparison of these hard-sphere parameters with the estimated molecular
mass and kinetic diameters of real materials, as shown in Fig. 7.6, predicts that a number
of real binary gas mixtures such as Hydrogen-Helium, Krypton-Nitrogen, and Argon-
Nitrogen will have steady-state thermal conductivity values, at certain mixture concentra-

tions, which are below the series limit.

The goal of this chapter is to examine whether the anomalous thermal conductivity
predictions for certain binary hard-sphere gas mixtures are reflected in experimental mea-
surements of gases with similar parameters. More broadly, this will give insight into
whether the hard-sphere model is appropriate when attempting to predict thermal con-
ductivity behaviour in gas mixtures. Initial attempts to predict the thermal conductivity
of the He-H, gas mixture, using equivalent hard-sphere diameters calculated using dif-
fusion measurements, are shown in Fig. 6.3. These results were promising and appeared
to capture the general form of the thermal conductivity profile; however, they ultimately
failed to predict the correct thermal conductivity ratio of the two pure components. This
suggests that kinetic diameters estimated via diffusion experiments may not be entirely
appropriate when calculating thermal conductivities using Enskog theory. Therefore, this
chapter will initially use experimental thermal conductivity data in order to fit new values
of the the kinetic diameter for various gases. These values are then compared with litera-
ture data. Fitted kinetic diameter values are then used, in conjunction with Enskog theory,
to predict the mixture thermal conductivity of three separate binary gas systems and these
Enskog predictions are compared against experimental data. Finally, the values of the
kinetic diameter which are estimated in this chapter are used in order to briefly explore
whether ternary hard-sphere gas mixtures display anomalous values of the steady-state

thermal conductivity.
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CHAPTER 9. FITTING ENSKOG THEORY TO REAL SYSTEMS

9.1 Predicting the kinetic diameter

In order to model a real particle (from a single atom to an entire molecule) as a hard
sphere, an equivalent value for both the mass and the diameter of that particle is required
for use with the equations of Enskog theory [1]. The molar masses of elements are well
known and widely available and it is possible to calculate the mass of a single particle
simply by dividing the molar mass by Avagardro’s constant m = M /Ac where m is the
mass of an individual particle, M is the molar mass of the particle, and Aq is Avagadro’s
constant. The diameters of individual atoms and molecules are not as easily determined
and are subject to different definitions. However, it is possible to calculate the equivalent
hard sphere diameter of a particle by fitting the measured thermal conductivity to the

reduced thermal conductivity calculated using Enskog theory as is detailed in this section.

The reduced hard-sphere thermal conductivity is given in Ref. [2] as follows,

k
= ——, 9.1.1)
(M) 2 ks
mo? o
where k£ is the thermal conductivity, the symbol * signifies a reduced value, kg is the
Boltzmann constant, 7" is the temperature, m is the hard-sphere mass, and o is the hard-
sphere diameter. In this thesis, for the value of the \*, the reduced thermal conductivity
in the limit of 0 density ) is used. This value can be calculated using kinetic theory and

is given in Refs. [3, 4] as follows,

1
kg (kT2
Ao = 1.02513- kB (B—) . 9.1.2)

6402 \ mm

In order to estimate the kinetic diameter of a given material, we can rearrange Eq. (9.1.1)

for the reduced thermal conductivity for the hard-sphere diameter o

o= \/A— (kB—> kg. 9.1.3)
A m

This equation allows the calculation of an equivalent hard-sphere diameter for any sub-

stance given the thermal conductivity, the temperature at which the thermal conductivity
was measured, and the mass of one molecule (or atom) of that substance. In order to
demonstrate this fitting process, an example calculation of the equivalent hard-sphere di-
ameter of a neon atom is shown here. For neon, the molar mass is given as My, = 20.1797

which means that the mass of an individual neon atom can be calculated as follows,

My,  0.02018 kg mol™*

Ao 6.02x 108 mol T 39X 1077 kg. 9.1.4)

MmyNe =

The thermal conductivity of Neon is given in Ref. [5] as 0.0787 W m~! K1 at 600 K.
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Table 9.1: Equivalent hard-sphere diameters for several materials calculated using ex-
perimentally measured thermal conductivity values. Experimental thermal conductivity
values are quoted along with the temperature at which the experiment was performed.
Reference values from literature, calculated using diffusion measurements, are shown for
comparison.

Thermal Kinetic
Name T K  conductivity X 10*3% diameter pm Reference pm

Hydrogen Hy, 423.25 237.85 [6] 228 289 [7]
Nitrogen Ny 303.15 25.59 [8] 331 364 [7]
Helium He  423.25 202.02 [6] 208 260 [9]
Neon Ne 600 78.7 [5] 243 275 [10]
Argon Ar  363.15 20.976 [11] 350 340 [10]
Krypton Kr  303.15 9.621 [8] 411 360 [10]
Krypton Kr  363.15 11.137[11] 399 360 [10]
Xenon Xe 600 10.4 [5] 418 396 [10]

Substituting these values, along with mye, into Eq. (9.1.3) gives

1
0.67619 /1.38 x 102 . 600\ ®
.= 1.38 x 10-2, 9.15
oN \/0.0787 ( 3.3509 x 10-2 ) 8 ©-19)

where the neon kinetic diameter is finally calculated to be

ONe = 243 pm. (9.1.6)

The equivalent hard-sphere diameters for the noble gases, hydrogen, and nitrogen are
calculated in the same manner using Eq. (9.1.3) and are shown in Table. 9.1. Experimental
thermal conductivity data are taken from Refs. [5, 6, 8, 11]. The quoted experimental
thermal conductivity values are all measured at a pressure of approximately 1 atm and
at temperatures above 300 K. Calculated kinetic diameters are listed against values from
literature calculated using diffusion measurements from Refs. [7, 9, 10]. In the case
of the noble gases (excluding Helium), the calculated kinetic diameters agree with the
literature values. The agreement is weaker for Helium as well as hydrogen. In these
cases, the kinetic diameter values calculated in this section are approximately 20 % lower
than literature values. This difference likely contributes to the disagreement between the
experimental and predicted thermal conductivity profiles apparent in Fig. 6.3 for He-H,
mixtures. Finally, in the case of nitrogen, the value calculated here is approximately 10 %

below the literature value.
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9.2 Enskog comparison

The calculated kinetic diameters shown in Table 9.1 are used in order to predict the
thermal conductivity vs concentration profiles of three binary gas mixtures using Enskog
theory. The estimated mixture thermal conductivities are compared with experimental
measurements to determine whether the behaviour of these gas mixtures is well described
by the hard-sphere model. In order to compare experimental thermal conductivity mea-
surements with the predictions of Enskog theory, the experimental mixture thermal con-
ductivity values are converted to reduced units using the size and mass values of one of
the components according to Eq. (9.1.1) which is restated in a slightly modified form for

clarity

km
1
kgT 2 ks
'rnlo'lE o1

where k,, is the mixture thermal conductivity value, 7' is the temperature at which the

k. =

m

5 9.2.1)

thermal conductivity measurement was performed, and m, and o, represent the mass and
diameter values respectively of the chosen reducing species. The species which is chosen
to be the reducing species is unimportant. Enskog theory predictions which are shown
in this section are calculated using Sth order Sonine polynomials and assuming a reduced
number density of no? = 1075, It is expected that the pure component thermal conductiv-
ity values, predicted by Enskog theory, should fit exactly (as is seen in Fig. 9.1, Fig. 9.2,
and Fig. 9.3) as the equivalent hard-sphere diameters of these species were initially fit

using these pure component measurements.

9.2.1 Mixture 1: Helium-Hydrogen

Thermal conductivity predictions of Enskog theory as a function of mixture concen-
tration for the helium-hydrogen gas mixture are shown in Fig. 9.1 alongside the results
of experimental measurements performed by Shashkov et al [6, 12]. The hard-sphere
mass and size ratios used are my./my, = 4/2, and oy /oy, = 208/228 (taken from
Table 9.1) respectively. This figure shows the Enskog theory predictions of three separate
definitions of the thermal conductivity; the phenomenological thermal conductivity L,,,,
the initial thermal conductivity );, and the steady-state thermal conductivity A. As noted
in Ch. 3, the thermal conductivity of this gas mixture lies outwith the series-parallel con-
ductivity bounds. The steady-state thermal conductivity profile for this system, predicted
by Enskog theory, agrees strongly with the the experimental measurements and predicts
a minimum at approximately ry. = 0.8 which is of a similar magnitude to the experi-
mental minimum. There is a deviation of the Enskog predictions from the experimental
measurements at ry. = 0.5 which is large relative to the agreement in the rest of the data.
Additional data in this concentration range would be useful in order to determine if this is

an anomaly or whether it is indicative of a larger trend of deviation from Enskog theory.
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Figure 9.1: Reduced thermal conductivity as a function of helium mol fraction for a
hydrogen-helium binary gas mixture. The hollow black circular symbols represent exper-
imental thermal conductivity measurements performed by Shashkov et al [6]. The graph
shows the Enskog theory predictions of the phenomenological thermal conductivity L,
(red dotted line), initial thermal conductivity A\; (orange dashed line), and steady-state
thermal conductivity A (blue solid line). The hard-sphere mass and diameter ratios used
in order to calculate the Enskog values are my./my, = 4/2, and oge/op, = 208/228
(taken from Table 9.1). The thin dashed black lines represent the series-parallel thermal
conductivity limits. Experimental measurements were performed at atmospheric pressure
and 423.15 K.

It is clear from Fig. 9.1 that the steady-state thermal conductivity is the correct def-
inition to compare to experiments in this case, suggesting that the measurements were
performed over a long enough time scale such that the transient increases in the total heat
transport caused by thermal diffusion are irrelevant. Unfortunately, Refs. [6, 12] give
no information about the timescale of the experiments which were performed. It is also
clear that the hard-sphere model is a completely appropriate model to used when predict-
ing the thermal conductivity behaviour of He-H; mixtures at atmospheric pressure and
T ~ 400 K.

It is interesting to look at the profiles of both the phenomenological thermal conduc-
tivity L, and the initial thermal conductivity ;. Both of these thermal conductivity
profiles exhibit a maximum as a function mixture concentration which is above either of
the pure component values. The predicted maximum in L, is far greater than in A\; and
the maximum for each profile occurs at a different concentration where the maximum in
Ly, occurs at approximately xy. = 0.25 while the maximum in \; occurs at approxi-
mately zy. = 0.1. This suggests that the timescale over which heat transfer takes place

affects the concentration at which the maximum potential effective thermal conductivity
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Figure 9.2: Reduced thermal conductivity as a function of argon mol fraction for a
krypton-argon binary gas mixture. The hollow black circular symbols represent exper-
imental thermal conductivity measurements reported by Refs. [11, 13]. The graph shows
the Enskog theory predictions of the phenomenological thermal conductivity L, (red
dotted line), initial thermal conductivity A\; (orange dashed line), and steady-state thermal
conductivity A (blue solid line). The hard-sphere mass and diameter ratios used in order
to calculate the Enskog values are ma,/my, = 39.9/83.8, and o, /ox, = 350/399 (taken
from Table 9.1). The thin dashed black lines represent the series-parallel thermal conduc-
tivity limits calculated using the pure component thermal conductivities. Experimental
measurements were performed at atmospheric pressure and 303.15 K.

increase can be realised.

9.2.2 Mixture 2: Argon-Krypton

Fig. 9.2 shows thermal conductivity predictions of Enskog theory as a function of ar-
gon mol fraction for an argon-krypton gas mixture. Predictions are shown alongside the
results of experimental measurements performed by Saxena et al [13] and Gambhuir et
al [11]. The values of the equivalent hard-sphere mass and size ratios used to model the
gas mixture are ma,/mg, = 39.9/83.8, and o, /ox, = 350/399 (taken from Table 9.1).
The predicted steady-state and initial thermal conductivity values are within the series-
parallel bounds while the predicted phenomenological value is above the slightly above
the parallel-limit. The experimental measurements are in reasonable agreement with the
steady-state thermal conductivity predictions; however, this definition of the thermal con-
ductivity consistently underpredicts the experimental values across the entire concentra-
tion space. Although the experimental values are consistently greater than A\, most do not
deviate above the predicted initial thermal conductivity A;. This fact supports the theory

that A\; could form an upper limit to the thermal conductivity of a mixture which is ac-
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cessible at short timescales. It is important to note, however, that this small disagreement
could be due to a number of other factors such as inaccurate fitting of the equivalent hard-
sphere diameter or the potential that this mixture, at these experimental conditions, is not
well described by the hard-sphere model. No information is given on the timescale over
which the experimental measurements, reported in Fig. 9.2, are performed.

Fig. 7.6 initially predicted that the maximum dehancement of the steady-state thermal
conductivity from the series conductivity limit is A\/k+ =~ 0.98. Utilising the kinetic
diameter values calculated using thermal conductivity data in this chapter, Enskog theory
predicts that the \ is almost identical to the series limit over the entire concentration space
Akt a 1. This value is close to the previous prediction; however, the experimental
values never drop below the series-limit in Fig. 9.2, suggesting that the kinetic diameter
values calculated in this thesis, using thermal conductivity data, provide a more accurate

model of gas mixture thermal conductivity.

9.2.3 Mixture 3: Krypton-Nitrogen

Enskog theory thermal conductivity predictions for a krypton-nitrogen gas mixture
are shown in Fig. 9.3 alongside experimental results from the same gas mixture reported
by Barua [8]. This gas mixture was modelled using equivalent hard-sphere mass and
size ratios of mg,/mn, = 83.8/28.0, and ok,/on, = 411/331 (taken from Table 9.1).
As is the case in Fig. 9.2, the Enskog predictions of the steady-state and initial thermal
conductivities lie largely within the series-parallel bounds, while the phenomenological
value shows a significant increase above the parallel limit, and even the pure component
nitrogen thermal conductivity. The experimental thermal conductivity values are largely
bounded by the steady-state and initial Enksog predictions; however, the experimental
values do not appear to be accurately predicted by either definition. Again, this may
suggest that the experiment was carried out over a timescale short enough to measure the
transient increase in thermal transport caused by thermal diffusion. No information is
given in Ref. [8] about the timescale of the method used.

Fig. 7.6 initially predicted that the dehancement at the point of maximum deviation
from the series conductivity limit in this mixture, based on kinetic diameter values taken
from literature, would be approximately \/k* ~ 0.95. This is approximately the same de-
hancement as is observed in the case of a Helium-Hydrogen mixture as shown in Fig. 9.1.
However, when fitting the kinetic diameter value using Eq. (9.1.3), utilising experimental
thermal conductivity data, the new fitted kinetic diameters shown in Table 9.1 produce
a mixture thermal conductivity profile which exhibits no dehancement below the series
thermal conductivity limit. This is, however, in agreement with the experimental mea-
surements which also show no dehancement below the series limit. The discrepancy
between the kinetic diameter of Nitrogen N, taken from literature, and the value calcu-
lated in this chapter using thermal conductivity measurements, suggests that this molecule

is not behaving in a consistently hard-sphere-like manner across different transport pro-
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Figure 9.3: Reduced thermal conductivity as a function of krypton mol fraction for a
krypton-nitrogen binary gas mixture. The hollow black circular symbols represent exper-
imental thermal conductivity measurements reported by Barua [8]. The graph shows the
Enskog theory predictions of the phenomenological thermal conductivity L., (red dotted
line), initial thermal conductivity A; (orange dashed line), and steady-state thermal con-
ductivity A (blue solid line). The hard-sphere mass and diameter ratios used in order to
calculate the Enskog values are my,/my, = 83.8/28.0, and ok,/on, = 411/331 (taken
from Table 9.1). The thin dashed black lines represent the series-parallel thermal conduc-
tivity limits calculated using the pure component thermal conductivities. Experimental
measurements were performed at atmospheric pressure and 363.15 K.

cesses. This makes intuitive sense as N is a diatomic molecule. Fig. 9.3 suggests that
the diameter calculated using thermal conductivity data is more more appropriate for use

when predicting the thermal conductivity of a mixture containing this molecule.

9.3 Dehancement in ternary mixtures

So far, this thesis has investigated thermal conductivity behaviour in binary mixtures.
This section will briefly step into the world of ternary mixtures and explore whether it
may be possible to elicit a larger thermal conductivity dehancement below the series limit
by adding a third component. Mapping the potential dehancement of ternary mixtures in
a similar manner to Chapters 7 and 8 would result in a large parameter space to search
over and difficulties representing the data in a communicable manner. Therefore, this
section will focus on one particular ternary mixture of neon, helium, and hydrogen, using

parameters taken from Table 9.1, in order to study ternary dehancement.

A hydrogen-helium-neon ternary gas mixture is modelled as a ternary hard-sphere
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Figure 9.4: Steady-state thermal conductivity A as a function of mixture concentration
for a ternary gas mixture consisting of hydrogen Hs, helium He, and neon Ne. The ther-
mal conductivity value is calculated using Enskog theory. The value represented by the
colour is the ratio of the steady-state thermal conductivity to the series value \/k*. The
hard-sphere parameters for each component for use with kinetic theory are taken from
Table 9.1. The red cross represents the location on the graph with the minimum thermal
conductivity relative to the series bound. The bottom, left, and right axes represent the
mol fractions of hydrogen, helium, and neon respectively.

mixtures using the following parameters,

mp, = 2.0u Mye = 4.0u mye = 20.2u (9.3.1)
on, = 228 pm OHe = 208 pm ONe = 243 pm, (9.3.2)

where the equivalent hard-sphere diameter values are taken from Table. 9.1. This section
investigates whether it is possible for this ternary gas mixture to exhibit a greater reduction
of the steady-state thermal conductivity below the series limit value than is possible in any
of the three potential binary gas mixtures of the same components. Fig. 9.4 contains two
ternary plots showing (left) the steady-state thermal conductivity relative to the series
thermal conductivity bound \/k* and (right) the absolute predicted steady-state thermal
conductivity A as a function of the mixture concentration. Thermal conductivity values
are predicted by Enskog theory using a 3rd order Sonine polynomial.

Fig. 9.1 corresponds to the top right edge (zn. = 0) of both ternary plots. Fig. 9.4
shows that it is possible for a third material (Ne in this case) to be added to a binary
mixture (Hs-He) and produce a resulting mixture where the steady-state thermal con-
ductivity A is reduced further below the series-bound than was possible than with the
previous two components alone. The maximum steady-state dehancement below the

series limit in the He-H, binary mixture is (/\ / kL) ~ 0.944, whereas in this

min,Ha-He
ternary mixture, the maximum dehancement (denoted by the red cross in Fig. 9.4) is
()\ / kL) min Hy-HoNe ™ 0.931. However, although it is possible to produce a slightly greater

dehancement in the case of the H,-He-Ne ternary mixture, this change is small relative to
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the low absolute thermal conductivity of neon relative to both helium and hydrogen. This
means that it is no longer possible to reduce the thermal conductivity below the pure com-
ponent values as is possible in the binary H,-He mixture as shown in Fig. 9.1. Neon has a
much smaller thermal conductivity than either hydrogen or helium and any combination

of the three components will have a greater conductivity.

9.4 Conclusions and future work

This chapter presents a method of calculating the equivalent hard-sphere diameter of
the atoms and molecules of any material using experimental thermal conductivity mea-
surements of the bulk material in combination with kinetic theory. In principle it is not
necessary to use thermal conductivity data, it is equally possible to carry out this cal-
culation using any other transport property such as viscosity or diffusion measurements.
Equivalent hard-sphere diameters are calculated for the noble gases as well as hydrogen
H; and nitrogen Ny and are shown in Table 9.1. These values are compared with literature
values calculated using diffusion measurements. In general the values agree strongly with
most of the noble gas results agreeing to within approximately 10 % and the measure-
ments for the diatomic molecules as well as helium in agreement to within approximately
20 %.

The chapter goes on to utilise the newly calculated kinetic diameter values in order
to predict the thermal conductivity profiles of certain binary gas mixtures. Comparisons
between experimentally measured thermal conductivities, taken from literature, and the
predicted values using Enskog theory are shown for binary mixtures of Hydrogen and
Helium (H2-He), Argon and Krypton (Ar-Kr), and Argon and Nitrogen (Kr-Ns). Enskog
theory is used in order to predict three separate definitions of the thermal conductivity; the
phenomenological L,,, the initial \;, and the steady-state A values. The Enskog predic-
tions for the Hy-He thermal conductivity agree strongly with experimental measurements
and accurately capture the thermal conductivity minimum which is shown through ex-
periment. In the case of the Kr-Ny and Ar-Kr mixtures, the Enskog steady-state thermal
conductivity predictions do not agree as strongly with the experimental data; however,
the experimental data appears to be bounded by the initial and steady-state thermal con-
ductivity values as predicted by Enskog theory. This disagreement could be the result
of a number of factors such as inaccurate estimates of the kinetic diameter; however, this
could also be a result of the fact that the experimental measurements were carried out over
a short timescale such that the measured thermal conductivity included the effects of the
transient heat transfer increases due to thermal diffusion. If this is the case, carrying out
the experiment over a longer timescale would lead to experimental measurements which
were closer to the steady-state values. Unfortunately, the experimental literature does not
record the length of time over which the experimental measurement was taken. Addi-

tional experimental studies, carried out over small, varying amounts of time, are required
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in order to clarify the short timescales over which additional heat transfer due to thermal
diffusion will be significant in these systems.

Efforts should be made to fit effective hard-sphere diameters to solid-liquid mixtures
such as nanofluids in an attempt to correlate diffusion effects and potential enhancements
in the initial thermal conductivity \; to experimentally observed increases in the thermal
conductivity relative to the Maxwell bounds. This approach may not be as accurately pre-
dictive as for gas systems, as shown in this chapter; however, there is evidence, such as
the study performed by Pryazhnikov et al in 2017 [14], that diffusion effects (as opposed
to the increased conductive power of solid nanoparticles) in nanofluids could be responsi-
ble for an increase in thermal conductivity. This study reported that for mixtures of SiOs,
Al;O3, TiO,, ZrO,, CuO, and diamond nanoparticles with base fluids of water, ethylene
glycol, and engine oil, there was no correlation between the thermal conductivity of the
nanoparticles and the thermal conductivity of the resulting nanofluid mixture. There was,
however, a dependence of nanofluid thermal conductivity on nanoparticle size and density
as predicted by the hard-sphere model.

Finally, this chapter explored potential thermal conductivity dehancement in ternary
mixtures by modelling a ternary mixture of hydrogen, helium, and neon using the equiv-
alent hard-sphere diameters listed in Table 9.1. Enskog theory predicts that it is possible
for this ternary mixtures to exhibit steady-state thermal conductivity values, relative to the
corresponding series thermal conductivity limit ()\ / k:L), which are lower than for any of
the potential binary combinations of the same gases. In the case of the Ho-He-Ne mixture,
this increased dehancement is small relative to the low thermal conductivity of pure neon;
however, this demonstrates that increasing number of mixture components can have com-
pounding effects on effective mixture thermal conductivities. Investigating the effects of
adding additional atoms or molecules with similar parameters (as opposed to the large
size and mass differences introduced by neon) such as deuterium or tritium in the case of
helium and hydrogen may yield relatively interesting thermal conductivity dehancement

and enhancement effects.
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CHAPTER
TEN

HYDRODYNAMIC SIMULATIONS OF TRANSIENT
EFFECTS

A major flaw with the definition of the initial thermal conductivity A; is that it gives
no indication of the timescale over which thermal diffusion completes and, therefore, the
time taken for the effective thermal conductivity to decay to the steady-state value. If
thermal diffusion in a mixture takes place over a long period of time, the effective thermal
conductivity will also remain enhanced for a long period as diffusing particles transport
heat. If this time period is long enough, then this effect may be measurable by experi-
ment and potentially exploitable in novel heat transfer devices. If, however, concentration
gradients establish themselves rapidly, the enhanced thermal conductivity may be present
for such a short period of time that it is extremely difficult to measure. Furthermore, the
temperature gradient will not evolve independently, the path of a fluid mixture towards
steady-state under the influence of a temperature gradient is complex and will involve
simultaneous heat and mass diffusion. This means that, in reality, conditions within a
mixture which is under the influence of a temperature gradient will not exactly mimic the
conditions assumed in the derivation of A; (zero concentration gradient), as any gradient
in the temperature will immediately result in a gradient in the concentration due to the
thermophoresis effect. It is therefore desirable to determine the full evolution of both the
temperature and mixture concentrations of a mixture undergoing heat transfer in order to
determine the time taken for mixture concentration gradients to become established and,
in addition, the actual time-averaged effective thermal conductivity which is observed
over different timescales.

A molecular model, such as MD simulation, is required in order to capture all of the
complex interactions present during heat transfer through fluid mixtures. However, sim-
ulating a realistic system with a view to comparing results with experimental measure-
ments, or designing novel heat transfer devices involving multicomponent fluid flow in
a complex geometry, would be prohibitively computationally expensive for conventional
molecular simulation techniques as it would require many millions of particles to be rep-
resentative of a real system. This chapter introduces a coupled hydrodynamic-kinetic

theory model which overcomes this computational cost and allow the simulation of fluid
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flow through realistically sized complex geometries in a timely manner.

This chapter first derives the finite volume method as a means of discretising the mass,
momentum, and energy continuity equations which are derived in Ch. 5. It then moves
on to describe the method of solving the hydrodynamic equations, showing the method
of dividing the simulation space into discrete finite volume cells, the method of storing
the information on individual hydrodynamic fields, and the method of time-integrating
the equations. This chapter then shows the results of various hydrodynamic simulations
which are performed in order to validate the model by comparing the results with direct
MD simulations of an identical system. In the first instance, this validation is performed
for a monocomponent hard-sphere fluid, showing that the hydrodynamic simulation and
the MD simulation between two heated walls reach the same steady state conditions. The
hydrodynamic code is then validated against MD in the transient regime by checking that
the response of the system to a change in a wall temperature at the system boundary is con-
sistent across both simulation techniques. Following on from monocomponent systems,
results of the hydrodynamic code are then compared against MD for multicomponent
systems.

Finally, this chapter lays out potential future research questions which could be ad-
dressed using this model. The potential future work outlined in this chapter includes one
specific method for determining the time dependence of the effective thermal conductiv-
ity enhancement in hard-sphere mixtures which involves oscillating wall temperatures in

order to facilitate perpetual thermophoretic motion.

10.1 Finite Volume Method

The finite volume method [1] is used to discretise differential equations in order to
obtain a numerical solution. The desired simulation domain is split into multiple indi-
vidual finite volumes, allowing a given differential equation to be approximated across
the domain. It is possible to use other methods when discretising and solving differential
equations such as the finite difference method or finite element method. The advantage
of the finite volume method in the context of fluid dynamics simulations is that the flux
terms are evaluated at the boundary between finite volume cells. This has the effect of
implicitly enforcing conservation which is beneficial as we are modelling the evolution of
conserved quantities. This is not guaranteed when using the conventional finite difference
method as gradients in the material properties are evaluated at the center of finite volume
cells. This derivation of the finite volume method begins by referring back to the gen-
eral conservation equation derived in Ch. 5 in order to illustrate the method for a general
property A. The conservation equation for a property A is given in Eq. (5.1.11) and is

restated here in a slightly modified form as follows,

0
apA(az,t) = —Vm : pA(a:,t)d:A(a:,t) + @A(w,t) (1011)
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Figure 10.1: A schematic illustration of a individual finite volume cell which is indexed
1 and is represented by the shaded area. The cell has a total volume v; which contains the
quantity A such that the density p4 of A varies over the volume space. The volume is
bounded by the volume surface dv; and the vector n represents the unit vector normal to
the surface of the volume.

where a generation term @ 4 (¢, t) is now included. This term is not included in the original
equation but is included here for generality. pa(x,t) is the density of A at a position x

and time ¢, and & 4 (, t) is the velocity of the property A at position x and time ¢.

The overall simulation domain contains multiple finite volumes, each with a volume
v; where ; represents the finite volume cell index. An illustration of an example finite
volume is shown in Fig. 10.1 which has a total volume v; and contains the property A at
different densities which vary over the volume. The volume is surrounded by a surface
dv; and every point on the surface is associated with a unit vector nn which is the vector
normal to the surface at that point. Eq. (10.1.1) is now integrated over a finite volume v;

giving

%///”‘(w?t) da = —// Vo - pal@, t)za(z,1) dw+///c1>A(a;,t) dz  (10.1.2)

TEV; TEV; TEV;

where v; is the volume of the finite volume and the time derivative has been removed
from the volume integral as the two variables are independent. The integration is carried
out on the accumulation and generation terms in order to give volume averaged values of
those terms and the divergence theorem is used in order to convert the convective term to

a surface integral. The resulting equation is as follows,

0 _

viapz‘hi(t) = — # pA(QZ‘, t)dzA(w, t) -ndx + Uiq)A7i(t) (1013)
rEHv;

where dv; represents the surface of the finite volume, 7 is the unit vector normal to the

surface, and p4;(t) and ® 4 ;(¢) represent the averaged values of the density of A and the

generation of A respectively over the ith finite volume v;. The surface integral can be
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written as a sum of the fluxes at each of the surfaces of the volume

# pA(m,t):i:A(m,t) ‘ndx = Z ASﬁA7S(t)CITZA7S(t) ‘N (1014)

TEov; 5€0v;

where Aj is the area of the volume surface which the property A is flowing through, and
pas(t) and T 4 4(t) are the values of the density and velocity of A respectively, averaged
over the same section of the volume surface s. Arranging a series of finite volumes in a
ordered mesh within a solution geometry allows a solution to a partial differential equation
to be calculated at those discrete locations. In the case of a mesh consisting of uniform

rectangular cells, as shown in Fig. 10.3, this expression can be written as follows,

. R _ 1 - 1
# palx, t)xa(x,t) ndr = ZAj (pA(r + EA]',{:)CBAJ’(T + EAj,t)

xEY; Jer

— palr = 58, Dy (r — A, t)) (10.1.5)
where r = {x,y, z} is the position vector of the finite volume cell in spacial coordinates
(assuming the simulation is 3 dimensional), and A; is the mesh spacing between finite
volumes in the corresponding dimension.

This formulation of finite volume discretisation is used in this thesis to solve for the
time evolution of the mass, momentum, and energy conservation equations which are
derived in Ch. 5. As can be seen from Eq. (10.1.5), in this method, the flux which leaves
through the surface of one finite volume will enter another volume thus conserving the

total amount of A which in this case is mass, momentum, and energy.

10.2 Hydrodynamic model implementation

The central aim of the method is to model the evolution of three conserved quantities,
the species mass densities p; o, g, the momentum pu, and the total energy pe. The hy-
drodynamic equations which are derived in Ch. 5 and which govern the evolution of these

quantities are as follows,

aap; = V- (peu+J,), (10.2.1)
a(§:> — V. (puu+ P), (10.2.2)
8((50:) =—-V-(peu+J;,+P-u). (10.2.3)

The conservation equations have been restated in a form which matches Eq. (10.1.1)
(where terms containing V have been grouped together) and is therefore convenient

for finite volume simulation. In this case, none of the conservation equations contain
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Figure 10.2: Diagram of a uniform rectangular finite volume grid highlighting two cells
with index ¢ and ¢ + 1. These individual finite volume cells contain a value of a general
property A which is assigned the corresponding index. The boundary between the two
cells is said to be located at index i + 1/2. The distance between the center of the two
cells 7 and 7 + 1 is labelled A,.

a generation term as was shown in the general derivation of the finite volume method
(Eq. (10.1.1)). The expressions for J,, J, and P, which are given in Ch. 5, are also
restated here as follows,

_ o\ Lau
Ja—;LabTV(T> VT, (10.2.4)
P=pl—n (Vu + (Vu)T> + ((3) n— 773) (V-u)l, (10.2.5)
J,= =3 LTV (%) - L;f‘ VT (10.2.6)

The values of the cell-averaged species density p,, velocity u, and energy e are stored at
the center of each finite volume cell. The transport coefficients such as the thermal diffu-
sion coefficients and viscosity values are calculated for each cell using the corresponding
species densities and temperature. As shown in Eq. (10.1.5), the terms on the right hand
side of Eq (10.2.1), Eq (10.2.2), and Eq (10.2.3) must be evaluated at the boundaries of
the finite volume cells where they can be used in order to integrate the simulation forward
in time. In order to evaluate variables at the cell boundaries, values are linearly interpo-
lated using the values at the center of neighbouring cells. This process is shown in the

following equation,

A+ A

5 (10.2.7)

Aip1yo =

where a general property A is evaluated at the boundary between two cells (¢ and 7 + 1).
The indexing scheme and locations corresponding to the the indexes i, i+1/2, and i+1 are
illustrated in Fig. 10.2. For a uniform rectangular mesh, the linear interpolation reduces
to the arithmetic average of the value of A at the center of the two neighbouring cells. The
diffusive fluxes shown in Eq. (10.2.4), Eq. (10.2.5), and Eq. (10.2.6) require the gradients

135



CHAPTER 10. HYDRODYNAMIC SIMULATIONS OF TRANSIENT EFFECTS

/ Boundaries \

o 1 2 3 C-1 C

C+1

Figure 10.3: Diagram of a 1 dimensional finite volume simulation containing C' regular
rectangular cells labelled 1 to C. The location of the simulation boundaries are labelled
and highlighted by dashed black lines. The cells labelled O and C' + 1 are the “bound-
ary cells” within which properties are modified in order to enforce the desired boundary
conditions.

of the chemical potential V (1, /T"), mass-averaged velocity Vu, and the temperature VT’
in order to be calculated. These values are calculated at the cell boundaries by taking a
central difference numerical derivative as follows,

9 Ai1 — A

g == (10.2.8)

where A, is the distance between the center of neighbouring cells in the x direction. The
simulation is integrated forward in time using the forward Euler method which can be

written as follows,

Ai(t+ At) = Ay(t) + At%Ai(t), (10.2.9)

where the ¢ is the current time, and At is the chosen timestep.

10.3 Boundary conditions

The conservation equations only apply within the simulation domain and cease to be
valid at the simulation boundary. Therefore, in order to remain consistent, we extend the
domain beyond the desired boundary and then apply constraints on the boundary cells in
order to yield the desired boundary conditions. This is shown in Fig. 10.3 which shows
a one-dimensional finite volume grid consisting of C' + 2 total cells. The cells labelled 0
and C' + 1 are fictitious boundary cells which lie outside of the domain of interest and are
constrained in order to enforce the boundary conditions on the C' other cells.

For a system containing S species, there are S + 2 independent variables consisting

of the S different mass densities p; o g as well at the mass averaged velocity w and the

temperature 7. We therefore require S + 2 constraining equations in order to solve for
the S + 2 unknown independent variables in the boundary cell at every timestep.

The temperature boundary condition is implemented simply by fixing the value using
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the following temperature Dirichlet boundary condition,
T ="1Tc, (10.3.1)

where the value of the temperature at the boundary is fixed at a value of 7¢, and g denotes
a property at the simulation boundary. The simulation boundary refers to the boundary
between the fictitious boundary cell and the simulation domain as shown in Fig. 10.3.
Note that, in reality, the value of Ty is constrained by altering the value at the center of
the fictitious boundary cell such that linear interpolation will yield the desired value of
Tg. This is the case for all boundary conditions. Next, in order to ensure that there is zero
flow of mass into or out of the simulation, and to ensure that the total mass of each species
is conserved, each individual species velocity at the boundary is set using a no-slip and

no-penetration boundary condition as follows,
U, =0 for all speciesa = 1,2, ..., S. (10.3.2)

Setting the individual species velocities to O at the boundary results in the overall mass

averaged velocity also being equal to O,
ug = 0. (10.3.3)

If the simulation only considers one species then these statements are equivalent. So far,
the temperature and mass averaged velocity at the boundary are constrained and, now,
the .S boundary density values must be constrained also. This is done using a simultane-
ous pressure-tensor-equality and zero-diffusion boundary condition. The first of these is

extracted by examining the momentum equation at the boundary which is as follows,

d(ppus)

Substituting the value of the velocity at the boundary, using the no-slip/no-penetration
boundary condition, means that the convective momentum term V - pgugug = 0. As
the boundary velocity is fixed, the term containing the time derivative will also vanish
Jd(ppug)/0t = 0. This results in a condition of zero gradient in the pressure tensor at the

boundary
V.-PF;=0. (10.3.5)

Although the boundary velocity is set to zero (and hence the time derivative is zero), the
spacial derivative of the boundary velocity can be non-zero as the value of the velocity
within the simulation varies as the simulation proceeds. In a completely stationary sim-

ulation, this boundary condition results in a condition of zero-gradient in the isotropic
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pressure as follows,
V.-pg =0. (10.3.6)

In a mobile system, this condition shows that an isotropic pressure gradient must be es-
tablished which counteracts any viscous forces caused by velocity gradients near to the
boundary. Gradients are calculated by taking a central difference numerical derivative
utilising the fictitious boundary cell. In a simulation containing S = 1 species, these 3
(S + 2) conditions are enough to fully specify the boundary cell.

The individual species velocities are a sum of the total mass averaged velocities and
the individual diffusive flux of that species. When simulating S = 1 species, the diffusive
flux is 0; however, this is not true for systems containing more than one species S =
2+-. In this case we must also constrain the diffusion of species through the boundary as

follows,

Jop =0 for all speciesa = 1,2, ..., 5, (10.3.7)
in order to ensure that there is no loss or gain of mass through the system boundaries. The
equation for the diffusive flux at the boundary is written as,

Hb B LauB
J,p=— g LuypgTgV | = | — —— V5. 10.3.8
B - bB 1B ( TB ) TB B ( )

Substituting the condition of zero-diffusion results in additional constraining equations at
the boundary where the density and temperature values at the simulation boundary must
be set such that the rate of mutual diffusion and the rate of thermal diffusion are balanced
resulting in zero net diffusion through the boundary. This is shown in the follow equation,

Lau
Y LusTaV(522) = 22y, (10.3.9)
b Ty Ty

For a simulation consisting of S species, this boundary condition results in S additional
constraining equations for the boundary cell. In addition to the 3 constraining equations
that we have previously found, this means that we have a total of S + 3 constraining
equations for a system of S + 2 independent variables resulting in an overconstrained

system. However, as was seen in Ch. 5, the S boundary fluxes sum to 0 as follows,
> Jup=0, (10.3.10)

which means that we only need to ensure that S — 1 species boundary fluxes are equal to
0 in order to ensure that all boundary fluxes are, in fact, equal to 0, i.e., in a simulation
with S = 2 species, it is only required to solve the diffusion boundary condition for the
first species in order to fully specify the fluid properties at the boundary. The mutual
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diffusion and thermal diffusion coefficients, as well as the species chemical potentials,
are functions of temperature and density and the temperature is already constrained as
per the previous temperature boundary condition. In this case, there is one unique set
of S boundary density values which will satisfy the single pressure equality boundary
condition as well as the S — 1 zero-diffusion boundary conditions. Practically, in order to

solve for the boundary conditions in this model, the following objective function,

S—1
> | Japl + V- Pyl (10.3.11)

is minimised at every timestep.

10.4 Model validation

In order to validate the accuracy of the coupled hydrodynamic-kinetic theory model,
results for hard-sphere fluids between two heated walls are compared with the results of
MD simulations of identical systems. Comparisons of the two simulation techniques are
shown in both the steady-state and the non-steady-state regimes. The simulation technique
is evaluated by comparing the easily observable fluid properties of the mass density and
the temperature over the length of the simulation.

System properties such as the temperature are easily available when using the hydro-
dynamic model as they are explicitly solved for using the energy conservation equation.
However, when performing MD simulations, local values of the temperature, which make
up the overall temperature profile, are not explicitly available and must be extracted man-
ually using the known particle positions and velocities. A plug-in was written for the
DynamO [2] simulation package which calculates the local density and temperature val-
ues within predefined bins in the simulation. In order to define the bins, the simulation is
divided into some number of equal lengths along the axis parallel to heat transfer which

in this case is the x-axis. The temperature is then calculated using the following equation,

N(z,t)
1
T(z,t) = ——— 2 10.4.1
(ZE: ) 3kaN($,t) ; m;vy, ( )

where T'(z, t) is the temperature within the local bin at position x and time ¢, and N (z, t)
is the number of particles inside the same bin at time ¢. The density is calculated in a

similar manner as follows,

1 N(x,t)
p(z,t) = - ; m;, (10.4.2)

where p(x,t) is the mass density within the local bin at position = and time ¢, and V' is

the volume of the local bin. Hence, the results of three-dimensional MD simulations are
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averaged over the two dimensions which are perpendicular to heat transfer and can be

compared with one-dimensional hydrodynamic simulations

10.4.1 Steady-state regime

MD simulations of both monocomponent and multicomponent hard-sphere fluids at
total number densities of n = (.1 are performed. Parallel heated walls are placed at
either end of the simulation in the x-dimension. The walls are set to temperatures of
Teoia = 1.0 and T}, = 1.2. Simulations contain a total of N = 10000 hard-spheres which
are initialised in an FCC lattice and are ran until the density and temperature profiles reach
steady-state. The MD simulation box has an aspect ratio of [,,/l, = l,,/l, = 20 where [,,
l., and [, are the lengths of the simulation in the x, y, and z dimensions respectively.

A one-dimensional simulation is then performed on a hard-sphere fluid with identical
sphere parameters and the same density using the coupled hydrodynamic-kinetic theory
model which is described in this chapter. The boundary temperatures in the hydrodynamic
simulation are also set to Tioq = 1.0 and 7, = 1.2. The hydrodynamic simulation is
split into 100 separate finite volume cells. The hydrodynamic simulation is then also ran

until it reaches steady-state and the results are compared.

Monocomponent system

The comparison between the monocomponent steady-state MD simulations and hy-
drodynamic simulation is shown in Fig. 10.4. Simulations are performed using hard
spheres with a mass m = 1 and a diameter ¢ = 1. In the hydrodynamic model every
cell is initialised with a density of n = 0.1, a velocity u, = 0, and a temperature of
T = 1 and the simulation was ran using a timestep of At = (0.1. The hydrodynamic
model was ran for a total time of {yp = 10000. The MD simulations are ran for a total of
6 x 107 events which corresponds to an approximate total time of typ = 12000. The MD
results for the local temperature and density in each bin are averaged over 100 separate
MD simulations and the error bars on the MD results represent the standard deviation
over these simulations. Fig. 10.4 shows strong agreement between the temperature and
density profiles of both simulation techniques. The temperature profile is approximately
linear between the two boundary temperatures in both simulation methods. There is a
small amount of spacial oscillation in the density profile for the hydrodynamic simula-
tion; however, the hydrodynamic density profile closely matches the MD density profile

which are both slightly non-linear.

Multicomponent system

Fig. 10.5 shows a comparison between the steady-state temperature and density pro-
files for a binary hard-sphere mixture with a diameter ratio of o5/0; = 0.5 and a mass

ratio of my/m; = 0.125. The system has a total number density of n = 0.1 and equal mol
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Figure 10.4: Temperature and density as a function of the distance between two heated
walls for a monocomponent hard-sphere mixture. The heated walls are at temperatures
of Thoy = 1.2 and T¢pq = 1.0. The system is simulated using both MD (red line) and
the coupled hydrodynamic-kinetic theory model (blue hollow circles). The density and
temperature profiles are measured once the system has reached steady-state. The local
temperature and density values for the MD simulation are averaged over 100 separate
simulations and the error bars represent the standard deviation over those simulations.

fractions of both species (1 = 0.5 and 2 = 0.5). All cells in the hydrodynamic model
are initialised with species number densities of n; = ny = 0.05, velocities of u, = 0, and
temperatures of 7" = 1. The simulation is ran using a timestep of A¢ = 0.1 and is ran
for a total time of typ = 10000. Again, the MD simulations are ran for a total of 6 x 107
events corresponding to an approximate total time of ¢yp = 12000 and results are aver-
aged over 100 separate simulations. As in Fig. 10.4, the MD simulation predicts a linear
temperature profile between the hot and cold wall temperatures. However, in this case the
hydrodynamic model predicts a temperature profile which has a noticeably shallower gra-
dient. Both models predict a differences in the concentration gradients of the two species
as the result of thermal diffusion. However, the hydrodynamic model predicts a much
more extreme separation of the concentration gradients, as well as significant spacial os-
cillation in the number density profile of species 1. The hydrodynamic and MD methods
of simulation show significant disagreement in the case of multicomponent fluids and it
is clear that more work must be done in order to ensure that the implementation of the

hydrodynamic model is correct for multicomponent fluids.
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Figure 10.5: Temperature and species densities as a function of the distance between
two heated walls for a multicomponent hard-sphere mixture. The heated walls are at
temperatures of Ty, = 1.2 and T¢qq¢ = 1.0. The system is simulated using both MD and
the coupled hydrodynamic-kinetic theory model. In the case of the temperature profile,
the MD results are represented by red lines and the hydrodynamic results are represented
by hollow blue circles. In the case of the species densities, the MD results for species
1 and 2 are given by red and orange lines respectively and the hydrodynamic results for
species 1 and 2 are given by hollow blue and green circles respectively. The density and
temperature profiles are measured once the system has reached steady-state. The local
temperature and density values for the MD simulation are averaged over 100 separate
simulations and the error bars represent the standard deviation over those simulations.

10.4.2 Transient regime

The ultimate goal of the hydrodynamic model is to simulate systems of hard-spheres
in the transient regime as this is where it is possible for thermophoresis to cause large
enhancements in the effective thermal conductivity of mixtures. In order to validate that
the hydrodynamic model accurately captures the behaviour of hard-sphere fluids in the
transient regime, MD and hydrodynamic simulations are performed which are similar
to the validation simulations shown in Fig. 10.4, but, instead of focusing on the steady
state solution, the focus is now on the agreement between the models at the onset of
heat transfer. Parallel heated walls are located at either end of the simulation in the z-
dimension; however, in this case, there is no temperature difference between the plates
until time ¢ = 0, when the temperature of one of the walls changes instantly. Temperature

and density profiles of the MD and hydrodynamic simulations are then compared in the
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moments after the change in wall temperature as the system is heading towards a new

non-equilibrium steady state.

Monocomponent system

Monocomponent hard-spheres are simulated for a total reduced time of ¢ = 4000 us-
ing MD and the hydrodynamic model. MD simulation are performed using N = 10000
hard-spheres at a number density of n = 0.1 and are performed in a simulation box with
an aspect ratio of l,,/l, = [, /l, = 20. Hard-spheres are initialised in a FCC lattice with
2 parallel heated walls at +7, /2. Unlike the method used when trying to measure the
steady-state conditions inside the simulation, the walls are both initially set to a reduced
temperature of 7y,; = 1. The MD simulation is then equilibrated using the unheated
walls for 200NV events. At this point ({ = 0) the temperature of one of the walls is set
to Thot = 1.2 while the other remains at 1., = 1.0. The simulation is divided in the
x-direction into 25 bins where local temperatures and density values are calculated at
different times over the course of a simulation using Eq. (10.4.1) and Eq. (10.4.2). The
simulation is then restarted and is ran for 40 reduced time units. During this run, every
4 reduced time units, the calculated temperature and density values in each local bin are
cumulatively summed. This cumulative sum is used in order to calculate time averaged
temperature and density values for this particular 40 time unit window of the simulation.
In addition to this time averaging, a total of 2000 separate MD simulations are performed
and results are averaged over all simulations. The standard deviation in the local MD
properties is calculated by taking the standard deviation over the 2000 separate MD sim-
ulations. When comparing to the hydrodynamic model, local time-averaged temperature
and density values are compared to the equivalent hydrodynamic values at the average
time over which the time-average is calculated. For example, local values which are av-
eraged over the first 40 reduced time units (from ¢ = 0 to ¢ = 40) are compared to values
from the hydrodynamic model at a reduced time of ¢ = 20. This process is then repeated
by restarting the simulation and running for the proceeding 40 reduced time units. This is
repeated up to a total simulation time of typ = 4000.

All cells in the hydrodynamic simulation are initialised with number densities of
n = 0.1, velocities of u, = 0, and temperatures of 7' = 1. The temperatures at the
simulation boundaries are set to 1.,y = 1 and T}, = 1.2 from the start as there is no
need for equilibration when using a hydrodynamic approach. The simulation is ran us-
ing a timestep of At = 0.01 and is ran for a total time of typ = 4000. Data is stored
periodically for comparison with MD.

Fig. 10.6 shows a comparison between the results of the hydrodynamic and the MD
hard-sphere simulation at five separate points in time. The graphs show the evolution of
the temperature and density profiles from a time shortly after the temperature gradient
was applied at t = 20 to ¢t = 1220. The graphs in the left column show the temperature

profile in the simulation over time while the graphs in the right column show the evolution
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Figure 10.6: Temperature and density as a function of the distance between two heated
walls for a monocomponent hard-sphere fluid at five points in time during a simulation
(t = 20,t = 140, t = 300, t = 620, and t = 1220). The fluid is initially homogeneous
with a density of n = 0.1 and a temperature of 7" = 1 where both heated walls are at
temperatures of 7' = 1. At time ¢ = 0 the temperature of one wall is changed to T}, = 1.2
while the other wall remains at T;,q = 1. This system is simulated using both MD and
the coupled hydrodynamic-kinetic theory model. The MD results are represented by red
lines where the error bars represent the standard deviation of the local temperature or
density calculated over 2000 separate MD simulations. The hydrodynamic model results
are represented by hollow blue circles. Key features of the graphs such as the observed
shockwave caused by the initial temperature change are labelled.

of the density profile over time. The first row of graphs show the simulation profiles at
t = 20. At this point, the results of both the hydrodynamic and the MD simulations
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show that the hot wall has began to influence the simulation; the temperature of the fluid
beside the hot wall has risen accordingly and as a result, the fluid density near the hot
wall has dropped. Although the MD and hydrodynamic data broadly agree after this time,
there are significant differences. The sharp density “spike” shown in the hydrodynamic
simulation is not present to the same degree in the MD data. This density spike is a
density shockwave travelling across the simulations induced by the sudden temperature
change at the hot wall. The disagreement here is probably caused by the fact that the
MD data is averaged over a long time relative to the speed of the shockwave while the
hydrodynamic simulation represents an exact snapshot of the system at that point in time.
If the shockwave travels fast relative to the time window over which the local MD density
values are averaged, then the density spike will be spread over a larger length and appear
artificially elongated compared to reality. The MD simulation also appears to lag behind
the hydrodynamic simulation slightly in terms of the initial temperature increase near to
the hot wall.

The second row of graphs in Fig. 10.6 show the temperature and density profiles at
t = 140 in both simulation methods. The temperature and density profiles continue
to evolve as heat is transported across the system from the hot wall. The shockwave
travelling across the system is still clearly visible in both the density and temperature
profiles as it travelling at the speed of sound towards the cold wall at the opposite end
of the simulation. The agreement between the MD and hydrodynamic profiles is strong
and the shockwave can be seen in both the MD and the hydrodynamic simulations. The
hydrodynamic model accurately captures the rise of the fluid temperature near to the wall.
The travelling temperature shockwave is also captured; although, MD data results show
the shockwave as a shallower and wider temperature spike. As mentioned previously, this
could be due to the fact that the local MD data is time-averaged over the period of time
from ¢t = 120 to ¢t = 160 as opposed to the hydrodynamic data which is not. The MD and
hydrodynamic density profiles show similar behaviour. The decrease in density near to
the hot wall in the MD simulation is captured by the hydrodynamic model; however, the
height of the density shockwave is significantly larger in the hydrodynamic results than
in the case of MD. Noticeable spacial oscillations also present in the density profile after
this time. This was also noted in Section 10.4.1 and likely represents a numerical issue

with the model implementation.

The temperature and density profiles at ¢ = 300 are shown in the third row of Fig. 10.6.
At this point in time, the shockwave travelling through the hard-sphere system has reached
the cold wall in the simulation and has reflected back, now travelling back through the
simulation towards the hot wall. The agreement between the local density and temperature
value for the MD and hydrodynamic simulations at this point in time is strong. The width
and height of the shockwave in the MD results is captured accurately in the hydrodynamic
simulation for both the temperature and density profiles. The continuing increase and

decrease of the local temperature and density values respectively near to the heated wall
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continues to be well captured by the hydrodynamic model; although, the MD results still
appear to lag slightly behind the hydrodynamic results.

The final two rows of Fig. 10.6 show the MD - hydrodynamic comparison at { =
620 and t = 1220. Att = 620, the results of the hydrodynamic simulation are still
in agreement with the MD results. At this point the shockwave has come into contact
with both heated walls multiple times and has noticeably dissipated. This is reflected
in both simulation methods. By ¢ = 1220 the shockwave has all but disappeared from
the simulation and the agreement between the simulation methods remains strong as the
temperature and density profiles continue to evolve towards steady-state conditions.

This set of simulations demonstrates that the coupled hydrodynamic-kinetic theory
model, which is presented in this chapter, accurately describes the time-evolution of hard-
sphere fluids. For the system presented in this section, the short time results of the hydro-
dynamic model and MD, recorded moments after a large temperature gradient is imposed
on a system, are in strong agreement. Even “extreme” phenomena such as shockwaves
travelling through the system at the speed of sound are captured. This agreement is main-
tained at relatively long times as the system evolves towards steady-state.

Simulations of a multicomponent hard-sphere fluids in the transient regime are not
performed in this thesis as a result of the fact that, at steady-state conditions, the MD and

hydrodynamic results were not in agreement.

10.5 Conclusions and future Work

This chapter presents a coupled hydrodynamic - kinetic theory which solves the hard-
sphere mass, momentum, and energy conservation equations, using Enskog theory in
order to solve for the transport coefficients. The model is validated by comparing the sim-
ulation results with the results of direct NEMD simulation using DynamO [2]. Firstly, the
results of the hydrodynamic model and MD are compared for a monocomponent hard-
sphere fluid situated between two parallel heated walls at steady-state conditions. It is
shown that there is agreement between the steady-state temperature and density profiles
calculated using the two methods. Secondly, steady-state comparisons for a multicompo-
nent hard-sphere fluid are performed. The results of the hydrodynamic model and MD
simulation are shown to disagree significantly. In the future, work must be carried out to
check that the model implementation is correct in order to determine if this is a theoretical
error, or an error in calculation.

Relatively short simulations of monocomponent hard-spheres are then performed to
validate the results of the hydrodynamic model in the transient regime. Temperature and
density profiles, in the moments after a temperature gradient is imposed on the system,
are calculated using MD and the hydrodynamic model. The results of the two methods
are compared at different points in time during the simulations. At short times, after

the temperature gradient is initially applied, and when the system is changing rapidly,
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the two simulation methods agree strongly. The hydrodynamic model even describes
the behaviour of shockwaves travelling across the system as a result of the initial large
temperature change. At relatively long times, after initial shockwaves have dissipated
and the system is evolving slowly towards steady-state conditions, the results of the two
simulation methods continue to agree.

This chapter shows that a hydrodynamic description is valid for molecular systems
which contain an extremely small number of particles. MD simulations which are per-
formed in this chapter contain only N = 10000 hard-spheres and, yet, results shows that
the behaviour of this model is well described by the coupled hydrodynamic - kinetic the-
ory model. An interesting research question which could be investigated using this model
is: At what number of particles does a molecular hard-sphere system cease to behave
hydrodynamically?

The success of this model could call into question the use of other simulation tech-
niques where the system of interest is well-described by the hard-sphere model. A wealth
of simulation techniques are used in order to capture molecular effects, such as MD, di-
rect simulation Monte Carlo [3] (DSMC), and lattice-Boltzmann [4]. This chapter shows
that conventional hydrodynamics, in combination with a complete hard-sphere model, is
a computationally efficient method of simulating hard-sphere behaviour.

In the future this model could also be used in order to simulate the transient heated
wire experiment for gas mixtures (monocomponent or multicomponent gases). As dis-
cussed in Ch. 3, experimental measurements at short times are not fully understood and
are often ignored in the final thermal conductivity calculation. Performing hard-sphere
simulations of heat transfer in gases may give insight into the non-linear form of the wire
temperature profile at short times and may, therefore, allow for more accurate measure-
ments of gas thermal conductivity.

It was also mentioned, in Ch. 5, that higher order closures are available for the hy-
drodynamic equations. Formalising these equations in this way is known as Burnett or
super-Burnett hydrodynamics. The results of this chapter strongly suggest that straight-
forward linear closures, which were used in this thesis, accurately capture the behaviour
of hard-sphere systems (at least in the monocomponent case) and that there is, therefore,

no need to utilise higher order gradients in the state variables.

10.5.1 Frequency-dependent thermal conductivity

The ultimate goal of the hydrodynamic - kinetic theory model, presented in this thesis,
is to determine the timescale over which thermal diffusion effects in multicomponent
fluids will significantly enhance the effective thermal conductivity. Determining this value
will give an idea of how fast experimental measurements, using techniques such as the
transient hot wire method, will need to be performed in order to access this enhanced
thermal conductivity. This section showcases a method which could be used in order to

gain insight into this value.
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The enhanced initial thermal conductivity ); in multicomponent mixtures is valid
for a system undergoing rapid changes in temperature. It is possible to create such a
system through simulation by using heated walls at the boundaries which have oscillating
temperatures. The analytical solution for the average temperature of a stationary material
with constant density p, specific heat capacity c,, and thermal conductivity % located
between two heated walls located at = 4= b with oscillating temperatures given by T =

To + Asin (wt) is developed in Appendix A and is given here as follows,

T(t) = 26T, + V2A (6_2% - 62’“’) sin (% — wt) + 2 cos (% — wt) sin (2kb)
S e2rb 4 e=2kb 4 2 cos (2kb)

, (10.5.1)

where Kk = \/w/—204, a = k/pc,, w is the frequency of the heated wall temperature os-
cillation, and A is the amplitude of the heated wall temperature oscillation. Performing
a simulation of a multicomponent hard-sphere fluid using the coupled hydrodynamic -
kinetic theory model with identical oscillating temperature boundary conditions will al-
low an effective thermal conductivity to be fit to the resulting temperature profile using
Eq. (10.5.1). Theoretically, as the frequency of the temperature oscillations is increased,
and the system undergoes more rapid changes in temperature, the hard-sphere system
should tend towards the state of zero concentration gradient, corresponding to the initial
thermal conductivity ;. The rate of increase of the fitted effective thermal conductivity
could give insight into the timescale which is required in order to access the enhanced

thermal conductivity experimentally.
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CHAPTER
ELEVEN

NOVEL METHOD FOR HARD-SPHERE FREE ENERGY
DETERMINATION

This chapter is completed in collaboration with Dr. Leo Lue. In particular, Dr. Lue
provided assistance with deriving the relationship between the tether cell collision rate
and the system entropy, as well as with the equivalence of the tethered and untethered
systems. Craig Moir is responsible for performing all MD simulations and data analysis
as well as writing the chapter.

Free energy dictates the equilibrium properties of a material, including its phase tran-
sitions. For fluids, thermodynamic integration with respect to the system density can be
used to accurately determine the system free energy with respect to the ideal gas state.
This can be easily implemented with either MD or Monte Carlo (MC) methods; however,
for solids which are separated by a transition from the fluid state, thermodynamic integra-
tion cannot be directly used to obtain the free energy with respect to the ideal gas state as
there is no continuous path between these states. Consequently, other methods must be
employed.

Hoover and Ree originally introduced the single occupancy (SO) cell model [1] to
demonstrate the existence of a first-order melting transition for hard sphere systems and
quantitatively determined the fluid and solid coexistence densities. In the SO model,
space is partitioned into cells based on Voronoi polyhedra created from the sites of the
crystal lattice under investigation (e.g., face-centered cubic) and the center of each sphere
is required to remain in its respective cell. This model lowers the entropy of the low
density state and forces it to remain ordered. This reduction in fluid entropy softens the
freezing transition into a continuous pressure change which means that the crystalline SO
state can then be connected to the ideal gas state. Thus the free energy of the unmodified
hard-sphere crystal can be determined using this method. Woodcock [2, 3] used MD to
simulate the SO model to determine the entropy of the face-centered cubic, body-centered
cubic, and hexagonal close-packed structures of hard sphere systems.

A variation of this method was later proposed by Speedy [4] where spheres are instead
restricted to remain within a set distance from their respective lattice sites, rather than
within Voronoi polyhedra (i.e., they are tethered to a lattice). This tether particle model

(TPM) uses spherical square-wells as the tether potential which allows the more efficient
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simulation of cell collisions and simplifies the theoretical analysis. This basic approach
has been generalised to arbitrarily shaped particles and implemented using an event-driven
MD algorithm [5]. This bounding cell MD algorithm was successfully used to accurately
calculate the free energy of different crystal phases, as well glassy states, of hard sphere

systems.

Many other approaches use a tethering potential to tie particles to a tether lattice in
order to determine the free energy of the untethered crystal systems. In the Einstein crys-
tal approach [6, 7], particles are tethered to sites on a perfect lattice using a harmonic
potential. The stiffness of the potential can be continuously adjusted, which is used in
order to relate the system back to a perfect Einstein crystal which has an exactly known
free energy. This continuous transformation between the system and the perfect Einstein
crystal can be used to compute the free energy of system. Other, more elaborate methods
that involve the use of tethers have been developed in order to efficiently calculate the
free energy, such as the self-referential methods of Sweatman et al [8-10], the Schilling-
Schmid algorithm [11], and the interface pinning method [12]. These are compared and
reviewed by Sweatman [13]. More generally, tether models can be considered as con-
fining the motion of the system to a particular region in phase space. Typically only the
positional degrees of freedom are tethered; however, restricted velocity dynamics have

also been employed [14, 15] and may be considered a form of tethering.

In this chapter, the tether model of Speedy [4] is revisited and a novel approach for
calculating free energy in any state, including fluids, glasses, or crystals, is derived. As
a demonstration of the efficiency of the approach, new high accuracy free energy calcu-
lations for the hard sphere crystal are performed and the fluid-solid transition conditions
are determined. In Section 11.1, the collision statistics and thermodynamics of Speedy
tethering model are described, including the ideal tether model, where the spheres do
not interact with each other, and its relationship to the standard ideal gas model. It is
demonstrated that the tether model provides a continuous path between the fluid and solid
phases, avoiding a first order phase transition, for certain ranges of the tether length. In
Section 11.2, the collision rates of tethered systems, both with other spheres and with the
tethering potential that keeps the spheres within their cells, are related to the geometry
of phase space. In particular, these collision rates are directly related to the surface areas
of the region of phase space that is accessible by the system. These relations are used to
develop a method to compute the free energy of hard sphere systems via an integration in
tether length. These methods are used, in Section 11.3, to determine the free energy of
hard sphere systems at various densities within the fluid and solid phases. The calculated
free energies are then used to predict the fluid-solid coexistence point for hard-spheres.
These calculations are all found to agree well with those previously given in the litera-
ture. Finally, the key conclusions of this chapter are given in Section 11.5, along with a

discussion of directions for future work.
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Figure 11.1: Schematic diagram of a two-dimensional tethered particle system in three
different states: The “ideal” TPM (left) has particles tethered such that no particle-particle
interactions can occur. The TPM fluid (middle) allows interactions and the conventional
fluid (right) is simply the limit of infinite tether length. Black circles represent particles
with diameter o and black crosses represent the position of the particle centers. Dashed,
shaded circles represent the confining tether cells with radius »t whose centers are indi-
cated with black diamonds.

TPM “ideal gas”

11.1 Tethered systems

This work considers a system of hard sphere particles where a square-well tether po-
tential is used which is equal to zero within a spherical region around the tether point and
infinitely large outside this region. This forces the center of each particle to remain within
a tether “cell” and is precisely the model introduced by Speedy [4]. A schematic repre-
sentation of this system is presented in Fig. 11.1. For later derivations, it is convenient
to consider that the tether length 7, allows each particle center in the system to explore a
tether volume V7. This allows the definition of a tether packing fraction ¢t = pVr (where
p = N/V is the particle number density), which may take values greater than one if tether
volumes overlap, as depicted in Fig. 11.1. Throughout this chapter, the number density is

referred to by the symbol p in order to avoid conflict with other variables.

At sufficiently low densities, where the cells are separated by more than a particle
diameter o, particles cannot interact with each other. This implies there is a minimum
density pr for particle interactions which is easily calculated if the tether lattice’s ar-
rangement known. For example, for particles tethered to a face-centered cubic (FCC)

lattice, it is given by the following expression,

6op\ 3
PCo® = max | 0, [21/6 - (—T) ] . (11.1.1)
k) 7T

The max function prevents negative densities when tether cells become close-packed (i.e.
o > Vor /6). An equivalent minimum tether radius at which interactions will occur can
also be defined,

r?%cg*l = max (0, [25/2/) 03}_1/3 - 1/2> : (11.1.2)

For p < prp (or equivalently rp < rr) there are no particle-particle collisions, only
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tether collisions. The system thus corresponds to an “ideal” state, where the particles are
independent of each other and the pressure p is given by the ideal gas law (i.e. Sp = p. It
should be noted that the system is not ergodic in this limit unless the system is thermalized
(i.e., with a stochastic thermostat).

The “ideal” TPM differs from the standard ideal gas system for /V particles in a vol-
ume V/, as each particle can only explore a restricted volume V7 and the particles are dis-
tinguishable. The difference between the entropy of the “ideal” tethered particle model

549 and a conventional ideal gas S is then given by the following expression,

(ideal) _ (i) - o7
1dea — 12 = —_— '_
St S kg In G kg In <N.NN) (11.1.3)
where Q(Tideal) and Q0#) are the configurational partition functions for the “ideal” TPM and
the conventional ideal gas, respectively, and identified separately as follows,

VN

AN, V) = — AV, V) =14 (11.1.4)

Comparing the expressions, a factor of N! is missing in the TPM system as particles
are assigned to a particular cell, thus there is no permutation of the particle ordering for
each configuration. In periodic systems, care must be taken in how the tether volume,
Vo, interacts with its periodic images but this complexity is avoided here by considering
relatively short tether lengths relative to the system size.

In all cases, the entropy of the low-density “ideal” tether state is decreased by the
presence of the tether when compared to the untethered system. This effect persists at
moderate values of the tether length rp > 7y, or density p > pro, where particle-
particle interactions take place and which is referred to here as the tether “fluid” state.
At high densities, or as rr becomes large, the system is dominated by particle-particle
collisions and the tether cell collisions become exceedingly rare. In the crystalline limit,
the effect of the tether potential disappears almost entirely well before 77 — oo (assuming
the crystal state of the untethered model prevents diffusion); therefore, the effect of the
tether potential is to decrease the entropy (and thus the stability) of the fluid state over
the crystalline state which is unaffected by the presence of the tether. This presents an
interesting opportunity to construct a continuous thermodynamic path between the ideal

tether state and the crystalline state.

11.1.1 Fluid-solid transition in the tethered particle model

To illustrate the influence of the tether potential, calculations are performed for sys-
tems of NV hard spheres at constant absolute temperature 7" with diameter o and mass
m using DynamO [16]. As results are presented in reduced units, the only parameters

in which the system has a non-trivial dependence are the reduced density po® and the
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Figure 11.2: The compressibility factor Z as a function of reduced density po? for hard
sphere TPM systems with ¢ = 0.1 (blue), ¢t = 0.2 (orange), ¢t = 0.5 (green), and
¢r = 1 (red). Data are shown for simulations containing N = 2916 spheres and are
only run above p > pro. Black circles represent conventional (untethered) hard sphere
simulations. The solid black line indicates ideal compressibility. Dashed black lines
highlight the untethered hard-sphere fluid-solid transition zone. The standard deviation in
pressure measurements are smaller than the symbol size.

reduced tether length /0. Simulations use an Andersen thermostat to provide thermal-
isation; however, the only effect is to improve sampling as rp approaches 71, and the
results are equivalent to systems without the thermostat once system size effects are taken
into account. The thermostat mean free time is controlled to be approximately 1% of
the total event count, which was chosen as it is a small additional computational cost of

processing the thermostat events while increasing the equilibration rate.

The variation of the compressibility of the TPM as a function of density is shown in
Fig. 11.2 for different values of ¢ in comparison to the conventional hard-sphere system
(i.e. with no tethering) and that of an ideal gas where 7/ = 1. Simulations are not run
below the minimum interaction density pr for each corresponding value of ¢r, and it is
clear that the compressibility factor is equal to the ideal value at this point. At moderate
densities where p > pr, the smaller tether volumes restrict the motion of the particles
and thus reduce the particle-particle collision rate which is directly proportional to the
system pressure. It also is clear that at higher densities, above the crystal transition, that
all systems converge to the conventional hard sphere crystal system, highlighting their

equivalence in this limit.

For the untethered hard sphere system, there is a first order transition from a fluid

phase to a solid phase as highlighted in Fig. 11.2. As expected, the simulations display
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Figure 11.3: An illustration of the reduced density po?® and tether packing fractions
¢t at which the tethered hard-sphere system enters various “phases”. The crosses (red)
indicate the upper density where a N = 2916 system run for 2 x 10% events had more
than 100 tether events. The dashed line (red) is added as a guide to the eye to indicate that
the systems above this density have crystalized on the tether lattice and particles cannot
interact with their tether anymore. The point at ¢ = 0 is exact and equal to the FCC close
packing density po® = v/2. The lower solid curve (blue) indicates when the tether length
prevents inter-particle interactions, thus it denotes the “ideal” tether state. The grey area
is a guide to the eye and indicates where first-order transitions are observed numerically.

a metastable fluid branch due to the finite size and duration of the simulations; however,
as ¢r decreases the system appears to approach an extension of the crystalline branch
with no indication of a first-order transition appearing for ¢r ~ 0.5 and lower. This is
confirmed by examining the density derivative of the pressure which remains positive for
¢r = 0.5 and lower values. Thus, for sufficiently small values of ¢, there appears to
be a continuous thermodynamic path between the high-density hard-sphere solid and the
“ideal” tether model limit. This thermodynamic path can be easily understood in terms
of a phase diagram for the tether model system, and an illustration of this type of path
is given by path 1 in Fig. 11.3. Thermodynamic integration along this path can be used
to establish the entropy (and thus free energy) of the crystalline state with respect to the
ideal tether model, as given in Eq. (11.1.3).

The phase diagram of Fig. 11.3 indicates the approximate crystal region where tether
events are so rare (in this case less than 107 tether events per event) that the system
closely approximates the hard sphere crystal. The exact boundary of the ideal tether state
is shown as a solid blue curve in Fig. 11.3, and it is immediately apparent that the ideal and
crystalline states can be continuously connected using thermodynamic integration along

a second path using tether length as the variable (see path 2 in Fig. 11.3).
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11.1.2 Thermodynamic integration

In general, the entropy of an untethered model fluid at any density can be obtained via

thermodynamic integration with reference to the ideal gas state,

S(p) _ SGg) (p> pdp’ /
Nky  Nkg _/0 7[2(/))—1}. (11.1.5)

Thus, determining the thermodynamics of hard-sphere fluids can be reduced to determin-
ing their pressure-density relationship. This relationship between the entropy and the
pressure is only valid for bulk systems in equilibrium. Consequently, straightforward
thermodynamic integration cannot be used reliably across first order phase transitions to
access the crystal state; however, this type of integration is applicable to path 1 of Fig. 11.3
with the addition of the difference in entropy of the ideal states (Eq. (11.1.3)),

(ig) / N
St(p) _ S (p) B /p Ci)_/(:[ZT (p/) —1]+In (ngb_T) . (11.1.6)
PT,0

Nkg Nkg NN

The thermodynamic integration is chosen to begin at pr o, where particles begin to interact
(i.e. Eq. (11.1.1)), as the integral is zero below this density. The only approximation
required to determine the crystal state free energies of the untethered system is to assume

the equivalence to the tethered system at sufficiently high densities,

polslinﬂST(,o) — S(p). (11.1.7)
The above limit is approximately satisfied when the collision rate with the cell boundary
nearly vanishes; in this work, this is taken to be where tether events are less than 1 in
107 of the total events, which is denoted by the red dashed line in Fig. 11.3. Normal
thermodynamic integration in the untethered crystal system is then applied in order to
integrate up or down the solid curve from that reference point to determine all crystal

state free-energies.

11.2 Phase space geometry

The configurational phase space I' = {7y, 7, ...,7y} of a hard sphere system is
schematically depicted in Fig. 11.4(a). Excluded volume interactions between the spheres
will prohibit the system from being within regions in phase space where spheres overlap
(depicted by the dark area in Fig. 11.4), thus confining the trajectory of the system to
within an “accessible” region (white area in Fig. 11.4(a)). The hypervolume 2 of this
accessible phase space is directly related to the entropy of the system by the Boltzmann-
Planck equation S = kg In €. The boundary between the allowed and disallowed regions
of phase space (depicted by the red line in Fig. 11.4) corresponds to two spheres being in

contact with each other and this boundary has an associated hypersurface area ..
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(a) (b) (c)

®

Figure 11.4: A schematic depiction of configurational phase space for (a) a hard sphere
system, (b) a tightly tethered hard sphere system, and (c) a loosely tethered hard sphere
system. The dark grey areas are regions of phase space that are disallowed due to sphere-
sphere overlaps while the white areas correspond to the phase space volume accessible to
the system. The interaction surfaces that bound the accessible region are highlighted in
blue for the tether potential while inter-particle interaction surfaces are highlighted in red.

A hard sphere system evolving through time traces a straight line through phase space
as there are no forces between collisions. Collisions between spheres correspond to the
trajectory intersecting a point on the phase space boundary where the colliding pair of
spheres are in contact; the trajectory will then reflect from the boundary and continue to
travel in a straight line until it encounters another boundary in phase space. The process

is then repeated.

When a square-well tether potential is applied, the accessible region of phase space
becomes an intersection of the N tether volumes and the accessible volume of the un-
tethered system. An illustration of two systems with different tether lengths is given in
Figs. 11.4(b) and (c). The tether restricts the motion of the system and the system trajec-
tory can now potentially reflect off the tether boundary (see the blue line in Figs. 11.4(b)
and (c)). For short enough tether lengths, the system can only interact with the tether (see
Fig. 11.4(b)); however, at longer tether lengths, portions of the sphere-sphere collision
boundary will intrude into the accessible region (see Fig. 11.4(c)). If the exposed hyper-
surface area of the tether potential (see the blue line in Fig. 11.4(c)) can be measured,
it can be numerically “extruded” by varying the tether length, and thus the accessible
volume can be measured. The following details the specifics of this approach, and how

collision rates might be linked to hypersurface areas in phase space.

11.2.1 Collision rates and hypersurface areas in phase space

If the system is ergodic, the hypersurface area of the various boundaries that confine
the system to a particular region of phase space are directly related to the rate at which
the system collides with the boundary. In this case, the expression for the collision rate A/

that the system makes with a section of the phase space boundary of area . can be written
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as follows,
N = po 2 (T - hy), (11.2.1)

where Ny, is a unit vector that is normal to the surface pointing outward from the accessible
phase space volume, and pq, is the number density of systems in phase space. As only one
system is considered here, po = 1/€. This leads to the first main result of this section:

5 N

= — . 11.2.2
Q (' ng) ( .

The ratio of the hypersurface area to the accessible phase space volume is directly related
to the collision rate of the system with this hypersurface, divided by the mean velocity of
its approach to this hypersurface. Therefore, the various collision rates give an indication
of the relative exposed hypersurface areas of each type of event (i.e. collision between

spheres or collision between a sphere and its tether potential).

To determine the accessible volume ()1 of phase space for the tethered model, the
hypersurface area .1 associated with the tether interactions can be extruded by moving
it slightly outwards in a direction normal to the hypersurface (i.e. parallel to ny,, ). Due
to the spherical nature of the tether potential used in this study, this extrusion is easily

achieved by increasing the tether length by an infinitesimal distance dry:
dQT = ZT dTT. (1123)

This relation holds true as the tether potential hypersurface can only be accessed by the
system if it appears in the accessible phase space volume of the untethered model (see
Fig. 11.4) which then becomes the accessible region of the tethered model upon extrusion.
A change of variables then directly relates this change in accessible volume to the change
in the entropy of the system,
- .
k3'dSy = dInQp = =~drp = #dw. (11.2.4)
QT <P : IIZT>
A straightforward integration yields the entropy change of a tethered system with a change
in tether length,

T

ST (TT72) — ST (TTJ) = kB<F . ﬁET>1/ ’ dTTNT- (1125)

T

The system is assumed to be at constant temperature so that the “velocity” I of the system
through phase space is given by the Maxwell-Boltzmann distribution. This implies that

the velocities of the each of the spheres are independent of each other and also given by
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the Maxwell-Boltzmann distribution,
f(v) = (@2mBm) 32 e m/

As each individual tether acts separately on a single particle, the surface of phase space
associated with it is parallel to the degrees of freedom (dimensions) that correspond to
the other particles. Therefore, during an intersection with a tether hypersurface other
particles do not contribute to I" - ny, and only the velocity of the confined particle is
relevant. Additionally, only its component that is normal to the surface contributes, and
consequently, the average phase trajectory velocity into the tether boundary is given as

follows,
(I'-hy,) = (v-n) =27 Fm) Y2 (11.2.6)

Combining this with Eq. (11.2.5) leads to the result that entropy changes as a function of
tether length can be determined by simply monitoring the tether collision rate during a

series of simulations at varying tether lengths.

To reconnect the tethered system to the untethered system for the purpose of comput-
ing its entropy there are two equivalences which can be utilised. The first arises in the
crystalline state where the untethered system is confined to a phase space volume which
is relatively localised around the tether lattice due to the immobilisation of the particles.
In this case, a system with a sufficiently long tether has an entropy which is identical to

the untethered system as it will explore the same accessible phase space volume.

Combining Eq. (11.2.6) and (11.2.5) gives the following expression,

4mors o0 .

S= lim Sr(rr)=kpN In ( 3”) + kB(27r5m)1/2/ drp Np,  (11.2.7)
rT—>00 10

where the integration has been shifted to start at the onset of particle interactions for

computational efficiency. The practical usefulness of this expression depends on the tether

event rate approaching zero (i.e., N7 — 0) at some finite value of 7 so that the integral

can be truncated which is not the case for fluid systems.

The method can be adapted for use in the fluid state through the second equivalence:
both the tethered and untethered models will have identical interparticle exclusions in
phase space, thus contribution to the entropy is identical in the limit of infinite tether

length,

S 569 _ i (ST (rp) — Slidead (TT)) . (11.2.8)

rT—00

Applying Eq. (11.2.5) twice, for the tethered and ideal tethered system, gives the follow-
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Figure 11.5: The variation of the tether event rate A7 as a function of the tether length
rp/o for an N = 2916 hard sphere system tethered to an FCC lattice at a reduced density
of (a) po® = 0.5 and (b) po® = 1.2. The (blue) dashed line represents the reduced ideal
tether event rate of Eq. (11.2.10). In (a), the grey shaded area between the ideal event
rate and the measured tether event rate shows the integral of Eq. (11.2.9) used to calculate
the entropy of fluid systems. The shaded area below the measured cell event rate in (b)
shows the integral of Eq. (11.2.7) used when calculating the solid entropy. The vertical

red dashed line shows the minimum cell radius 71 at which it is possible for particles to
interact as given by Eq. (11.1.2).

ing identity,

S — 59 — ky (271 fm) /2 / drp (/\'/T - N}"de“”) , (11.2.9)
7,0
where the lower bound of the integral is 71 as below this value, the kernel of the integral

is zero. The ideal rate of tether events ./\'/’}ideal) can also be obtained via straightforward
kinetic arguments,

4N

rr

(27 Bm) 2N = (11.2.10)

Thus Eq. (11.2.7) provides a thermodynamic integration path for crystalline state points
while Eq. (11.2.9) provides a path for fluid state points.

Whether Eqgs. (11.2.7) or (11.2.9) are practically useful depends on how quickly the
integrals converge. To explore this, simulation results for the tether collision rate are

presented in Fig. 11.5 for a fluid system and a crystal system. It is found that both integrals
converge remarkably quickly.
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11.3 Calculation of the entropy

In this section, we present estimates for the entropy of hard sphere systems using the
two methods which are described in the previous sections. In the first, MD simulations
are run at constant ¢ and the sphere density is varied; this is referred to as method 1. In
the second approach, simulations are run at constant density with varying tether lengths;
this is referred to as method 2. All simulations were initialized in an FCC grid, and the
tether cell for each particle was centered on the FCC lattice site for that particle. The
tether cells are spherical with radius rr (¢r = 4mpri/3). Simulations were run using
N = 500, 864, 1372, 2048, and 2916 particles, and simulations were performed 10 times
in order to estimate the standard deviation in the compressibility measurements. The size
dependence of the calculated results are examined, and these results are compared with
values from the literature. Finally, the free energy estimates are used to determine the

fluid-solid coexistence point.

11.3.1 Method 1

For method 1, simulations were performed at 4 separate cell volume fractions ¢t =
0.1, 0.2, 0.5, and 1.0. Each cell volume fraction ¢ corresponds to a different final density
value at which the system ceases interacting with the tether cells. Simulations were per-
formed at 200 separate densities spaced evenly from pr o (¢r) to a value at which particles
collide with the tether cells with a negligible frequency and the system is equivalent to
the conventional hard-sphere system. This final cell collision rate was verified after the
simulations were completed. Measurements of the density at which the tether event frac-
tion falls below 107 are given in Fig. 11.3. The maximum densities used in this chapter
are po® = 1.21, 1.18, 1.13, and 1.06, corresponding to values of ¢r = 0.1, 0.2, 0.5, and
1.0, respectively. Simulations were initially equilibrated for 10000V collisions before a
production run of 3 x 108 events.

The entropy is calculated using Eq. (11.1.6) where the integration is performed using
the trapezoidal rule and the individual entropy values obtained using this method are
shown in Table 11.1. In each entropy calculation, there were no collisions with the tether
cells at the maximum density value in any of the 10 individual simulations verifying that
the tether cells no longer have any influence over the system. The calculated entropy of
the TPM system at this density is therefore equal to the entropy of the non-tethered hard
sphere system (see Eq. (11.1.7)).

Figure 11.6 shows the calculated entropy at a density of po® = 1.13 (¢ = 0.2) as
a function of 1/N, showing a significant size dependence. Final entropy values were
obtained via linear interpolation to infinite system size against 1/N as shown. The ex-
trapolated infinite size entropy values using this method are shown in Table 11.4 as well
as reference values for comparison. No values for the hard sphere entropy were found

in the literature at these densities. Here, comparison values are calculated by integrating
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Table 11.1: Calculated entropy (S — S®))/(Nkp) for different values of N for constant
tether cell volume fraction integration (method 1).

N po® =1.06 po® =1.13 po® =1.18 po® =1.21

500 —5.15503(19) (16) —6.69344(20) (
864 —5.15981(12) —5.99971(13) —6.69753(15) —7.17538(11)
1372 —5.16218(10) —6.00206(09) —6.69983(10)  —7.179(5)
2048 —5.16369(09) —6.00342(08) —6.70099(08) —7.17898(05)
2016 —5.16461(09) —6.00424(07) —6.70186(07) —7.17983(04)
0o —5.16652(08) —6.00608(04) —6.70356(07) —7.18161(06)

—5.99523(16 —T7.17123(18)

—6.69001 Linear fit

—6.69254 = Finite V
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Figure 11.6: Entropy as a function of particle number N calculated using simulations
with a tether cell volume fraction of ¢ = 0.2. This entropy value corresponds to a hard
sphere density of po® = 1.13. Black circles show the entropy calculated using simulations
with N = 500, 864, 1372, 2048, and 2916 hard spheres. The red line shows a linear fit to
the data using last squares minimization. The red circle shows the extrapolated N — oo
entropy value.

along the solid branch using

S(p) _ S(pref) /p dp/ /
Nkg  Nkg  J,, 1 2, (1130

where pps is the density of the reference state and S(prr) is the entropy of the reference
state. In this case, the averaged value of S(p.)/(Nkg) = 4.9590 £ 0.0002 at pero® =
1.04086, as given by Pieprzyk et al [17], is used. The hard-sphere solid equation of state
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is estimated using a modification of the equation of state proposed by Speedy [18]

3 1
Zsolia = ot — + AeBUW) L PO 4 B (11.3.2)
- 1 2

where w = p/pep (With pe,0® = /2 the FCC close packing density) is a reduced number
density, and the coefficients have been determined [17] tobe ¢; = 1, ¢co = 3/2, A =
0.061622, B = 6.151, C = 3.8437 x 107°, D = 27.72 and £ = —0.49541. Entropy
values agree with the corresponding reference values, although the values are outwith
each others error bands. The entropy values calculated in this work are also consistently

lower than their corresponding reference values.

11.3.2 Method 2

Proceeding now to method 2 (constant sphere density p with varying tether length
rr), simulations were performed at density values of po® = 0.5, 1.04086, 1.15, and 1.2.
Simulations were run at 200 separate tether lengths spaced evenly from ry to a tether
radius at which the tether collision rate is observed to decay exponentially towards 0 in
the case of a hard sphere solid, or the collision rate of the ideal TPM in the case of a hard
sphere fluid. The maximum values of rr used here are 71 m.x /o = 2.5, 0.55, 0.4, and 0.3,
corresponding to po® = 0.5, 1.04086, 1.15, and 1.2, respectively.

For low values of the cell radius v — 71, where spheres primarily interact with
the cells, the system must be thermalised in order to achieve a cell collision rate which
is equal to the ideal collision rate. If the system is in the ideal TPM state, and is not
thermalised, then spheres will perpetually reflect off two opposing edges of the spherical
cell on a fixed path according to the initially assigned velocity and will never sample the
entire available space as there is no influence of separate spheres which could change
their trajectory. All simulations are thermalised using an Andersen thermostat [19] at a
temperature of 7' = 1 with a fraction of 0.01 thermalising events. Simulations are initially
run for 1000V equilibration events before a production run of 10® events.

The difference between the measured cell collision rate and the ideal TPM collision
rate is shown in In Fig. 11.7. Note that there remains a small fraction of tether events in
the system and, therefore, the entropy of the TMP system at this tether radius is not equal
to the entropy of the conventional, non-tethered hard-sphere system. The two collision
appear to approach each other approximately exponentially. Therefore, the entropy in
the limit that 1 — oo is estimated by fitting an exponential equation to the collision
rate (blue line in Fig. 11.7). These entropy corrections AS.,,; are shown in Table 11.3.
Figure 11.9 shows the calculated entropy at a density of po® = 1.15 as a function of 1/N.
As in the first method, the entropy value at infinite system size N — oo is obtained using
linear interpolation with 1/N. All entropy values calculated using this method are shown
in Table 11.2. The entropy at a density of po® = 0.5 was calculated using Eq. (11.2.9),

and entropy values at densities of po® = 1.04086, 1.15, and 1.2 were calculated using
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Figure 11.7: Deviation of tether event rate
from the ideal tether event rate as a func-
tion of the cell radius for a hard sphere sys-
tem at po® = 0.5 with N = 2916 spheres
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Figure 11.8: Tether event rate as a func-
tion of the cell radius for a hard sphere sys-
tem at po® = 1.15 (hollow circles) with

N = 2916 spheres. The solid line is an ex-
ponential fit to the final 10% rr/o £ 0.25
of the tether event rate data. This fit is used

to estimate the integral of Eq. (11.2.7) as
rT — OCQ.

(hollow circles). The solid line is an expo-
nential fit to the event rates at rp/o > 1.4.

This fit is used to estimate the integral of
Eq. (11.2.9) as rr — oc.

Eq. (11.2.7). Integration was performed using the trapezoidal rule.

Table 11.4 shows the entropy values at infinite system size alongside reference values
taken from literature for comparison. At the fluid density value po® = 0.5, the calculated
entropy value of (S — S08))/(Nkg) = 0.15298 + 0.00006 is in good agreement with the
value reported by Schilling and Schmid [11] of (S — S@®))/(Nkg) = 0.152 4 0.002. At
the commonly used density value of po® = 1.04086, the entropy is in agreement with
the value given by Ref. [17]; however, the values are outside their respective uncertainty
bounds. At a density of po® = 1.15, the calculated entropy is in good agreement with

the value reported by Vega and Noya [20] and is well within the reported uncertainty. No
literature value for comparison at a density value of po® = 1.2 was found; therefore, a
reference was calculated by integrating along the solid branch as described above. In this

case the calculated entropy is in agreement with the reference; however, the values lie
slightly outwith their respective uncertainty bounds.

Thermodynamic integration along the solid branch is used in order to collapse all of

the calculated solid entropy values onto a single density value of po® = 1.04086 and

take an overall average. The entropy is calculated at a single density with Eq. (11.3.1)
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Table 11.2: Calculated entropy S/(kgT") for different values of N for constant density,
varying tether radius integration (method 2).

N  po®=0.5 pod=1.04086 po®=1.15 pod =1.2

500  0.1439(6)  —4.9427(5)  —6.2551(5)  —6.9987(5)
864  0.1476(6)  —4.9489(6)  —6.2621(5)  —7.0059(6)
1372 0.1496(6)  —4.9526(4)  —6.2660(4)  —7.0091(6)
2048 0.1507(6)  —4.9542(4)  —6.2680(6)  —7.0117(4)
2016 0.1515(5) —4.95563(32) —6.2691(5)  —7.0128(4)
0o  0.15298(6) —4.95816(16) —6.27208(12) —7.01576(18)
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= g
€2 £
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Figure 11.9: Entropy as a function of particle number /N for systems at a density of
po? = 0.5 (left) and po® = 1.15 (right). Black circles show the entropy calculated using
simulations with N = 500, 864, 1372, 2048, and 2916 hard spheres. The red line shows a
linear fit to the data using last squares minimization. The red circle shows the extrapolated
N — oo entropy value.

using the values quoted in Table 11.4 as the references values (.t and S(prr)). The
solid phase compressiblity is estimated using Eq. (11.3.2). The entropy calculated at
po® = 0.5 is omitted from the average value, as it is not in the solid phase. The point at
po® = 1.06 was also excluded, as it is still influenced by the first order fluid-solid phase
transition, as shown in Fig. 11.2. The overall average entropy value is calculated to be
(S — 80)/(Nkg) = —4.95803 4 0.00005 at po® = 1.04086.

Figure 11.10 shows the deviation of the calculated solid entropy values calculated in
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Table 11.3: Calculated entropy for different values of /N for constant density, varying
tether length integration (method 2) showing the entropy calculated with and without
including the correction calculated by integrating the exponential fit to the data to rp —

.

N po’ Su/(Nkp) AScon/(Nkp)  Stor/(Nkp)
200 0.5 0.1516(4) —0.0078(5) 0.1439(6)
864 0.5 0.15531(35) —0.0077(5) 0.1476(6)
1372 0.5 0.1572(4) —0.0075(4) 0.1496(6)
2048 0.5 0.1584(4) —0.0077(4) 0.1507(6)
2916 0.5 0.1591(4) —0.0076(4) 0.1515(5)
500 1.04086 —4.94789(27) 0.0052(5) —4.9427(5)
864 1.04086 —4.95196(28) 0.0031(6) —4.9489(6)
1372 1.04086 —4.95432(30) 0.00174(23) —4.9526(4)
2048 1.04086 —4.95545(28)  0.00128(23) —4.9542(4)
2916 1.04086 —4.95638(29) 0.00076(13) —4.95563(32)
200 1.15 —6.26027(34) 0.0052(4) —6.2551(5)
864 1.15 —6.26518(31) 0.0031(4) —6.2621(5)
1372 1.15 —6.26779(27)  0.00181(33) —6.2660(4)
2048 1.15 —6.26947(34) 0.0014(5) —6.2680(6)
2916 1.15 —6.26999(30)  0.00092(34) —6.2691(5)
500 1.2 —7.00417(34) 0.0055(4) —6.9987(5)
864 1.2 —7.00914(32) 0.0033(5) —7.0059(6)
1372 1.2 —7.01141(32) 0.0023(5) —7.0091(6)
2048 1.2 —7.01296(28)  0.00123(31) —7.0117(4)
2916 1.2 —7.01384(29)  0.00101(31) —7.0128(4)

this work, as well as values from literature, from the solid entropy calculated via thermo-
dynamic integration (see Eq. (11.3.1)) along the solid branch using the average entropy
value calculated in this work as the reference entropy value. The entropy calculated at a
density of po® = 1.06 (¢ = 1.0) is an outlier when compared to other entropy values
calculated in this work which cluster relatively close to the the reference solid branch
values (AS = 0). This could be due to the fact that ¢ is large enough for the first order
fluid solid transition to still have a significant effect on this system. Entropy values at all
other density values in this work appear to closely follow the solid entropy branch as pre-
dicted by Eq. (11.3.2) [17]. Entropy values at po® = 1.099975 and po?® = 1.15 given by

Vega and Noya [20] agree closely with the predictions using thermodynamic integration.
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Table 11.4: Extrapolated entropy values for the hard sphere system for various number
densities. Entropies are calculated using the two methods described in this work: density
integration with constant tether cell volume fraction (method 1) and tether length inte-
gration at constant density (method 2). Values are compared to reference values from
literature. The symbol T denotes a case where no literature comparison could be found. In
this case the reference value is given by thermodynamic integration along the solid branch
using Eq. (11.3.1) using the reference free energy given by Pierpzyk et al. [17]. During
the integration, solid compressiblities are estimated using Eq. (11.3.2).

pod (S —SU9)/(Nkg) Reference

Method 1
1.06 —5.16652(8) —5.16886(20)
1.13 —6.00608(4) —6.00686(20) '
1.18 —6.70356(7) —6.70432(20) '
1.21 —7.18161(6) —7.18249(20) *
Method 2
0.5 0.15298(6) 0.152(2) [11]
1.04086  —4.95816(16)  —4.9590(2) [17]
1.15 —6.27208(12) —6.273(2) [20]
1.2 —7.01576(18) —7.01699(20) *

A number of studies report hard-sphere entropy values at a density of po? = 1.04086 as
shown in Fig. 11.10. These values [20-23] agree to within their uncertainty values, how-
ever they lie well outwith the values (both directly calculated and averaged) in this work

relative to their uncertainty.

11.4 Fluid-solid coexistence

The hard-sphere coexistence point is calculated using thermodynamic integration along
with the condition of equal chemical potential y and pressure p [7]. For monocomponent
hard sphere systems, the chemical potential ;» may be written in terms of the entropy, .5,

and compressibility factor Z, which are both functions of the number density p

S(p) = S%¥(p)
N k’B

Bu = pule — +Z(p) — 1. (11.4.1)

Equation (11.3.1) is used to integrate down the solid curve using Eq. (11.3.2) in or-
der to predict the solid compressibility. The average entropy of (S — SU®)/(Nkg) =
—4.95803 + 0.00005 at po® = 1.04086 calculated in this work is taken as the reference
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Figure 11.10: Deviation of entropy values calculated in this chapter, along with literature
values [20-23], from the entropy calculated with Eq. (11.3.1) using the average entropy
value of (S — SU®))/(Nkg) = —4.95803 4 0.00005 at po® = 1.04086 as the reference
value and integrating up or down the solid curve using Eq. (11.3.2) in order to predict the
solid entropy.

point for the integration. In order to obtain the fluid entropy and calculate the fluid chem-
ical potential, a modified version of the hard-sphere fluid EOS originally produced by
Kolafa, Labik, and Malijevsky [24] is used. It is given by Pieprzyk et al. [17] as

g = 1 + 42 + 622 4+ 2.36476842° — 0.86985512* + 1.10628032° — 1.1014221°

+0.666058662" — 0.03633432% — 0.209651642'° + 0.105555692* — 0.00872380x%2
(11.4.2)

where z = (/(1—(), and ¢ = 7po? /6 is the sphere packing fraction is used. Figure 11.11
shows chemical potential as a function of pressure for the hard-sphere system in the vicin-
ity of the coexistence point. The standard deviation in the coexistence chemical potential
0 (u/Nkg) and coexistence pressure predictions dp are estimated by assuming that the
fluid and solid chemical potential curves are linear around the coexistence point. This
assumption allows the standard deviations to be written in terms of the derivatives of the

fluid and solid chemical potential curves at the coexistence point as

dpefiuid
_ dp
on = (W w) 05re (11.4.3)
dp dp
op = : 0.5 11.4.4
P = | T — g | OO (11.4.4)
dp dp
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Figure 11.11: Chemical potential as a function of pressure showing the predicted hard-
sphere fluid-solid coexistence point predicted in this work as well as the predictions from
(1) Pieprzyk et al. [17] (2) Vega and Noya [20], (3) Usinov [25], (4) Frenkel and Smit [7].

where 0 S;r is the standard deviation in the reference entropy value used in Eq. (11.3.1),
dpquia/dp is the derivative of the fluid chemical potential with respect to pressure evalu-
ated at the coexistence point, and dyu1qa/dp is the derivative of the solid chemical poten-
tial with respect to pressure evaluated at the coexistence point. The coexistence pressure
is calculated to be Bpeoexo® = 11.56164 £ 0.00047 and the coexistence chemical potential
is calculated to be S (ftcoex — p1®)) = 16.06559 & 0.00050. This leads to fluid and solid
coexistence density estimates of 0.93912 and 1.03745, respectively.

By substituting the equation for the solid hard-sphere compressibility given in Eq. (11.3.2)
into Eq. (11.3.1), carrying out the integration and using the final values for the entropy
at the reference density ((S — 1) /(Nkp) = —4.95803 £ 0.00005 at po® = 1.04086)
calculated in this chapter, the following expression for the hard-sphere solid entropy can

be generated,

S(p)
NkB

2 3 . .
= c1 + czlog (p) + 3log (\/_ - p) +3log (p + E) + ¢3 Ei(cap) + 5 Ei(cop)

(11.4.5)

where ¢; = —2.69381, ¢ = —2.80694, c3 = —3.01404 x 10°, ¢, = —24.3082, ¢5 =
—153.668, cg = —6.14405, and Bi(z) = — [~ dt e/t is the exponential integral.

11.5 Conclusions and future work

In this work, the behaviour of the tether particle model, first introduced by Speedy [4],

is examined in detail. The variation of the compressibility factor with density is shown
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for tethered particles systems with different tether lengths. For the standard hard sphere
system, and for tethered system with sufficiently large tethers, a first order transition is
present between the liquid and solid phases which weakens and vanishes with decreasing
tether length. Therefore, for sufficiently short tether lengths, there is a continuous ther-
modynamic path between the fluid and solid states. At very low densities, where tether
cells are spaced too far apart to interact, the tether system will reach an “ideal” state for
which the free energy is known exactly with respect to the standard ideal gas state. At suf-
ficiently high densities, which occur in the solid phase, sphere-sphere collisions prevent
the tether interactions and the tether system becomes indistinguishable from the conven-
tional hard sphere system. Therefore, thermodynamic integration can be directly used on
MD simulations of the TPM for sufficiently short tether lengths in order to compute the
free energy of solid hard sphere systems. This method is shown to give highly precise
estimates of the free energy as well as for the fluid-solid coexistence point.

By considering the tethered hard sphere system from the perspective of its motion
through phase space, a separate relation can be derived for the entropy of the system in
terms of collision rate of spheres with the confining tether cells. By integrating the sphere
collision rate, it is possible to directly determine the entropy of the system with respect to
the ideal TPM. This is found to be an efficient method for calculating the entropy of hard
sphere systems in any state.

Calculations of the hard-sphere entropy at several densities are presented using both
integration methods which agree with existing estimates in the literature. The hard-sphere
fluid-solid transition is determined to be at a reduced pressure of Bpo® = 11.56164 +
0.00047 which corresponds to a reduced chemical potential at transition of 3 (u — u(ig)) =
16.06559 4 0.00050. The reduced fluid and solid transition densities are estimated to be
po® = 0.93912, and po? = 1.03745 respectively.

While the scope of this chapter has been limited to monocomponent systems, the
expressions presented here can easily be extended to any multicomponent, discontinuous
potential system. Additionally, the tethering potential was considered to act only on single
spheres, confining them to be located within a spherical cell; however, this is only one
example of a tethering potential and many other alternatives could be implemented. For
example, the tethering potential might act between pairs of spheres in order to keep them
within a set distance from one another. This type of tethering simulation could be used in
order to obtain the potential of mean force between particles or collections of particles,
such as polymer chains. Another example is to confine a group of spheres to within a
certain cell. This would allow the calculation of the entropy penalty of clustering spheres

to form aggregates.
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CHAPTER
TWELVE

CONCLUSIONS

Anomalous thermal conductivity is typically defined as a measured thermal conduc-
tivity value which lies outside of either the series-parallel bound or the upper and lower
Maxwell bounds which are shown in Ch. 2. The thermal conductivity of nanofluid mix-
tures largely remain within these bounds; however, certain gas mixtures exhibit thermal
conductivity values which are well outside of these classical bounds. In order to study
thermal conductivity in fluid mixtures, this thesis models fluid particles as hard-spheres.
Enskog kinetic theory is derived in Ch. 5 which is then used in order to derive the full
multicomponent hydrodynamic equations for the conservation of mass, momentum, and
energy in hard-sphere mixtures.

Deriving multicomponent hydrodynamics in this way demonstrates that there is no
one unique definition of the “thermal conductivity” for fluid mixtures due to the effects
of thermal diffusion. This thesis primarily discusses two definitions of the thermal con-
ductivity which are; the initial thermal conductivity A\; which assumes that there are no
concentration gradients in the system, and the steady-state thermal conductivity A\ which
is relevant in the steady-state limit when there is zero diffusive flux of mass through
the system. The initial thermal conductivity is greater than the steady-state value which
means that there is potential for enhanced “thermal conductivities” at short times during
heat transfer.

The thermal conductivity of a binary hard-sphere fluid is measured using NEMD sim-
ulation and the parallel heated walls measurement technique. It is found that the steady-
state thermal conductivity predictions of Enskog theory strongly agree with the measured
thermal conductivity values using NEMD. Enskog theory predicts that it is possible for
both the initial and the steady-state thermal conductivity to lie outwith the series and
parallel thermal conductivity limits for certain hard-sphere mixtures. This suggests that
using classical bounds (such as the Maxwell bounds or the series-parallel limits) as a cri-
teria for what is considered an “anomalous” thermal conductivity is not useful as these
bounds can be broken for even simple hard-sphere fluids. Estimated kinetic diameters
which are taken from literature are used in order to predict real gas mixtures which could

exhibit thermal conductivity values outwith the series-parallel limits. It is predicted that it
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is possible for several binary gas mixtures including helium-hydrogen, and krypton-argon
to exhibit steady-state thermal conductivity values which are below the series limit for
certain mixture concentrations. Enskog theory is then used in order to map the potential
enhancement of the initial thermal conductivity above both the parallel thermal conduc-
tivity limit as well as the steady-state value for binary hard-sphere mixtures. It is possible
for the initial thermal conductivity to lie well above the parallel limit and the steady-state
value. The main predictor of the potential initial thermal conductivity enhancement is
the mass ratio of the two hard-sphere species. Estimated kinetic diameters are then used,
again, to predict real gas mixtures which could exhibit large values of the initial enhanced
thermal conductivity. It is predicted that it is possible for binary gas mixtures with large
differences in the molar mass, such as hydrogen-xenon and krypton-helium, to exhibit
large values of the initial thermal conductivity which are approximately ten times larger

than the steady-state value.

Estimated values of the kinetic diameters which are taken from literature are calcu-
lated from diffusion measurements and it is demonstrated that Enskog theory predictions
of the pure component thermal conductivity values which use these values as the equiva-
lent hard-sphere diameters are not in agreement with experimental measurements. Equiv-
alent hard-sphere diameters for hydrogen and nitrogen, as well as the noble gases are,
therefore, estimated in Ch. 9 by fitting experimental thermal conductivity measurements
from literature to kinetic theory. Enskog theory is used, in conjunction with the newly
calculated kinetic diameters, in order to predict the mixture thermal conductivities of bi-
nary mixtures of helium-hydrogen, krypton-nitrogen, and krypton-argon at a range of
mixture concentrations. These predictions are then compared with experimental mea-
surements taken from literature. In the case of the helium-hydrogen mixture, the Enskog
theory steady-state thermal conductivity predictions are in strong agreement with exper-
imental measurements. This suggests that the behaviour of this particular gas mixture is
well described by the hard-sphere model and, also, that this experimental measurement
was taken over a sufficiently long time such that the effects of thermal diffusion on the
effective thermal conductivity were small. In the case of the krypton-nitrogen and argon-
krypton mixtures, the agreement between Enskog steady-state predictions and literature
measurements is not as strong; however, the experimental measurements are bounded by
the steady-state and enhanced initial values of the thermal conductivity. This suggests
that the timescale which these measurements were taken over may have been short such
that the measured effective thermal conductivity was enhanced by thermal diffusion. This
disagreement, however, could be due to a number of reasons. The hard-sphere model may
not be an appropriate model to describe these gas mixtures at these experimental condi-
tions. In addition, inaccurate pure component thermal conductivity measurements could

lead inaccurate estimates of the equivalent hard-sphere diameters of these components.

A coupled hydrodynamic - kinetic theory model is presented which can be used in

order to simulate heat transfer in multicomponent hard-sphere systems. When simulating
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realistic systems, this method is much less computationally expensive than other molec-
ular simulations techniques such as molecular dynamics. This model could be used to
determine the timescale over which thermal diffusion takes place and, therefore, the time
over which the effective thermal conductivity decreases from the enhanced initial value to
the steady-state value for hard-sphere fluids. This model is validated against direct NEMD
simulations of heat transfer in hard-sphere systems between two parallel heated walls.
The steady-state temperature and density profiles calculated separately, using the hydro-
dynamic model and MD, are compared for a monocomponent and a multicomponent
hard-sphere fluid at steady-state conditions. Results of the two methods for the mono-
component fluid strongly agree; however, results for the multicomponent fluid disagree
significantly. Additional work is required in order to verify that the model implementa-
tion is correct for multicomponent systems. Results of hydrodynamic and MD simulation
are then compared for a monocomponent system in the transient regime, moments after
a large temperature gradient is imposed across the simulation. It is shown that the hy-
drodynamic model accurately predicts the behaviour of monocomponent hard-spheres in
the transient regime as the system settles towards steady-state conditions. The hydrody-
namic model is able to capture complex behaviour such as shockwaves caused by initial
temperature changes travelling through the system at the speed of sound and reflecting
off the simulation boundaries. The initial success of this coupled hydrodynamic-kinetic
theory model represents a promising new area of research whereby realistically sized
fluid systems may be simulated with a view to measuring, and potentially exploiting,
non-steady-state effects in mono and multicomponent systems.

Finally, this thesis presents two novel methods for computing the free energy of hard-
sphere systems. Both methods are based on a tether model which confines particles to a
particular volume in space. Calculations of the hard-sphere free energy at several density
values are presented which agree with existing estimates in the literature. Utilising the
free energy estimates, the hard-sphere fluid-solid transition is then determined to be at a
reduced pressure of Spo3 = 11.56164 4-0.00047. This corresponds to a reduced chemical
potential value at transition of /3 (u — u(ig)) = 16.06559 £ 0.00050, a reduced fluid tran-
sition density of po® = 0.93912, and a reduced solid transition density of po? = 1.03745.
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APPENDIX
A

OSCILLATING WALL TEMPERATURE ANALYTICAL
SOLUTION

Consider a stationary material with a constant density, specific heat capacity, and ther-
mal conductivity located between two walls which are at « £ b. The temperature at both
walls is given by 7' = Asin(wt) where A is the amplitude of the wall temperature oscil-
lation, omega is the temperature oscillation frequency, and ¢ is the time. The temperature

distribution will be governed by the heat equation

%—f = aV2T (A.0.1)

where o = k/pC,, is the thermal diffusidivity, & is the thermal conductivity, p is the

density, and C), is the specific heat capacity. The boundary conditions in this system are

B.C.1 atx =b T = Asin(wt) = AS {*'} fort >0 (A.0.2)
or

B.C.2 atx =0 — =0. (A.0.3)
oz

We are interested in the behaviour of the system at steady-state, therefore an initial con-

dition for the system is not needed.

An oscillatory solution for the system temperature is assumed of the form
T(z,t) =S {T"(x)e™"} (A.0.4)

where T is a complex function of z so that T'(z, t) will differ from T'(b, t) in both ampli-
tude and phase. This solution is substituted into Eq. (A.0.1) to obtain

2t
ST (z)iwe™' } = oS {8§—$§x)em} (A.0.5)

It is possible to simplify this equation by making use of the fact that, if S {z1a} = S {z2a}

where z; and z, are two complex quantities and a is an arbitrary complex quantity, the
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21 = z. Eq. (A.0.5) therefore becomes a second order differential equation in temperature

OTi(z) <iﬂ

e ) T'(x) = 0.

«

This form of differential equation has a standard solution
T (z) = C’le\/mx + C’ge’\/mx,
which, using the fact that v/i = 5 (1 + 1), can be rewritten as
Tt (x) = Cye"1H)7 4 Cher+DT, (A.0.6)

where k = y/w/2a. We must now apply the boundary conditions of the system in order to
determine the constants C; and Cs. Applying B.C. 2, the zero condition of zero-gradient

gives

0= 01/{ (1 + Z) en(1+i)0 _ 02,{ (1 + ’L) 6—n(l+i)0
Cik (1 +14) = Cor (1 +1)
01 — 02.

We find that the constants C; and C are equal. Eq. (A.0.6) is therefore redefined in terms

of a single constant C's = C| = (5
TH(z) = Cy (e"H)7 4 emn(FDT) (A.0.7)

Applying the wall temperature boundary condition, Eq. (A.0.2), allows us to determine

the constant Cy

A=C, (en(1+z’)b + e—n(m)b)
A

er(1+i)b + e—r(1+i)b’

03:

which, when plugged in to Eq. (A.0.7), gives the final expression for 7'f

en(1+i)m 4 e—H(1+i)JZ

T _
T (x) =4 er(1+i)b 1 o—r(1+i)b

Plugging this expression into Eq. (A.0.4) gives the final expression for the system tem-

perature distribution

k(14i)z —k(14i)z
A € +e iwt
T(Iy t) = AS { er(1+i)b + e—r(1+4)b }

As this equation stands here, it will result in negative temperatures in the system. This

178



is obviously not possible but can be easily rectified by shifting the solution by a constant

temperature value 7§

Kk(140)z —k(1+i)z
T@¢y5Q+A%{e e 2w}

er(1+i)b + e—r(1+1)b

This does not affect the rest of the solution as this value is completely independant. It is
possible to represent this equation in terms of a completely real numerator and denomi-
nator, and thus remove the imaginary sign &, by multiplying by the exponential complex

conjugate and simplifying

K(1+3)z —r(14i)z k(1—i)b —k(1—i)b
B ~ e +e e +e iwt
T(x,t) =To+ AS { (em(lJri)b T e r(1Hib er(—0)b 1 o—r(-0)b ) ©

;

en(:p—l—b)em(gp—b) + en(m—b)em(m—l—b)
—k(x—b) ,—ik(z+b —k(x+b) ,—ik(z—b
=Ty + AS +62(b e ~(+)+»6 e )em
e2rb €—2mb + 62mb + 6—25b

\
( en(z-{—b)ei(n(x—b)—i—wt) 4 en(x—b)ei(n(x-l—b)—&—wt)
+ e—n(m—b)ei(—n($+b)+wt) + e—m(ac—i—b)ei(—m(ac—b)-i-wt)

e2rb 4 e=2kb 4+ 2 cos (2kb)

\

@) gin (k (2 — b) + wt) + "= sin (k (x + b) + wt)

+ e @V gin (—pg (x4 b) + wt) + e @) sin (—k (2 — b) + wt)
e2rb + =260 4 2 cos (2kD)

—Ty+ A

(A.0.8)

This expression for 7' is integrated with respect to x in order to determine the aver-
age temperature in the system over time. This involves recursively integrating the terms
present in the numerator of the previous equation. It is thankfully not necessary to in-
volve the denominator in the integration as it is not a function of x. This integration is

performed here term by term.

1st term

The first term in the numerator of Eq. A.0.8 is
/e”(”b) sin (k (x — b) + wt) dz

where the integral with respect to = is shown. Part of the exponential term can be separated

from the integral as it is independant of position.

et / e sin (kr — kb + wt) dx
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Using integration by parts recursively (where the constant term ¢ has been removed for

simplicity) eventually allows the integral to be expressed in terms of itself

RT

/em sin (kx — kb + wt) do = — sin (kx — kb + wt)—/ €™ cos (kx — kb + wt) dx

= sin (kx — Kb+ wt) — (e_ cos (kxr — kb + wt) + /e’“ sin (kz — kb + wt) dx)
K K
6I€CL’

= — (sin (kx — kb + wt) — cos (kx — kb + wt)) — /e”z sin (kx — kb + wt) dz,
K

where the final line implicitly defines the complete indefinite integral as

/e”(”b) sin (k (x — b) + wt)dz =
en(a:—‘rb)

2K

(sin (kz — kb + wt) — cos (kx — Kb+ wt)).

Collapsing the sum of trignometric terms using the fact that sin (z) — cos (z) =

—v/2sin (% — x) gives

_e’{(x'i'b) T
/e"(”b) sin (k (x — b) + wt)de = o sin (Z — KT + Kb — Wt> ;
K

and applying the integration limits gives the final integral as
b
/ " @ sin (k (2 — b) + wt) da

b
_eplath) o b
= Sln<——/£x+/ib—wt>

\/§l€ 4 b
=i (5 o) = sin (T 20— )
= Sl | — — Wt ) — s | — RO — W
V2K 4 V2K 4

1 ob - <7r > . (T
= —— (—e™sin | — —wt ] +sin (—+2mb—wt>)
\/§/§< 4 4

The process of integrating the 2nd, 3rd, and 4th terms of Eq. (A.0.8) is very similar to
the 1st term which is described in detail above. Integrating these terms gives

2nd term

b
/ "=V sin (k (x4 ) + wt) do =
—b
1 T T
—— [ —=sin [ — — 2xb — wt) + e b gin (— — wt))
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3rd term

b
/ e @) gin (—k (x4 b) + wt) dz =
b

4th term

b
/ e @) gin (—k (z — b) + wt) dz =

b
1 —okb - <7r > ) <7r
—— (e™sin|{ — —wt) —sin | — — 2kb — wt))
\/§/§; ( 4 4

Summing all the integrated terms together and inserting them back into Eq. (A.0.8)
gives the expression for the average temperature in the oscillating wall temperature system

as a function of time

T(t) = BT+
V2A (e7% — ) sin (T — wt) + sin (T + 2kb — wt) — sin (T — 2kb — wt)
K e2rb 4 e=2kb 4+ 2 cos (2kb)

where the trivial integration of the constant temperature “shift” 7 has also been carried
out. This equation can be further simplified using one final trigonometric identity to given

the final expression as.

) \/EA (e72 — ) sin (T — wt) + 2 cos (X — wt) sin (2kb) (A.0.9)

T(t) = 20T
(t) ot e2rb 4 e=2kb 4+ 2 cos (2kb)
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APPENDIX

B

ALTERNATIVE A DERIVATION FOR BINARY
MIXTURES

The steady-state thermal conductivity A is derived in Ch. 6 in the general case for an
S-component mixture and also specifically for binary mixtures. This derivation method
utilises the generalised inverse in order to handle the singular diffusion matrix D. This
appendix showcases the fact that it is not necessary to use the generalised inverse in order
to derive an expression for A. An expression for the steady-state thermal conductivity in
binary mixtures is derived in a separate manner. The equations for the mass .J, and energy
J, flux in mixtures are given originally in Eqs. (5.4.16) and (5.4.17) respectively and are

restated here,

o Ho Lua
J, — Zb: LTV <T> - 4V, (B.0.1)
Jy =3 LTV (%) - L;:“ VT, (B.0.2)

where L, is the mutual diffusion coefficient of species a through species b, 1" is the tem-
perature, /i, is the chemical potential of species a, L., is the thermal diffusion coefficient
of species a, and L, is the phenomenological thermal conductivity. As discussed in

Ch. 6, for a binary mixture the Onsager relationships state that

Ly = —Lnp, (B.0.3)

These relationships are used in order to produce the simplest possible expression for \ in
terms of the lowest number of variables. We expand the sum in Eq. (B.0.1) for a binary
mixture and substitute in the corresponding Onsager relationships so that the expression
is a function of three independent transport coefficients, L., L,1, and Li;. We also set

the value of diffusive mass flux to J, = 0, as stated in Ch. 6, as we are looking for the
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thermal conductivity at steady-state conditions,

. iy (&%2
0 LHTV(T + LTV (5 ALV (B.0.5)

The mutual diffusion coefficient L, is now factored out of the chemical potential terms
and the equation is rearranged in order to express the gradient in the chemical potentials

in terms of the temperature gradient,

o — 1 Ly
= T. B.0.6
v ( T ) ItV (8.0.6)

A similar set of operations are performed on Eq. (B.0.2), the sum over all species is
expanded for a binary mixture and the Onsager relations are applied in order to express

the heat flux in terms of only one thermal diffusion coefficient L,

Luu
T

Jy= LTV (%) +La TV (£2) -

T. B.0.7
- Vv (B.0.7)

This, again, allows us to factor out the lone diffusion coefficient L,; and combine the

chemical potentials of species 1 and 2 inside the V operator,

Mo — Luu
J,=LnT — VT. B.0.8
We notice that this equation contains the term V (%) which we have previously de-
rived a relationship for in Eq. (B.0.6). Substituting this relationship into the previous
equation removes the dependence on chemical potential gradients and gives the heat flux

J, in term of the temperature gradient only,

Lul Luu
=L, T—VT-— T B.O.
Jq ul L11T2v T \% ) ( 09)
1 L?
=~ (L, -2 vT. B.0.10
T ( LH) v ( )

At this point we have converged with the original derivation method as this expression for
the heat flux is identical to the value derived in Ch. 6. The steady-state thermal conduc-
tivity A is now extracted in the same manner as in Ch. 6 by relating to the energy flux J,

via Fourier’s Law,
Jy = —AVT, (B.0.11)

which implicitly defines the steady-state thermal conductivity A as

1 L2
A== Ly — =4, B.0.12
7 (B 1) 0.2
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Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity
of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the
series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid
values. The MD simulations verify that revised Enskog theory can accurately predict nonequilibrium thermal
conductivities at low densities and this theory is applied to explore the model parameter space. Only certain
mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement
below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas
mixtures and a review of the literature confirms the existence of mixture thermal conductivity below the series
bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The
results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous
thermal conductivities outside the series and parallel bounds as this Rapid Communication demonstrates they

are a fundamental feature of even simple fluids.

DOI: 10.1103/PhysRevE.99.030102

There has been a great deal of interest in increasing
the transport rate of heat through fluids by the addition of
nanometer-sized solid particles. Initial experiments on these
nanosuspensions demonstrated significant enhancements of
the thermal conductivity [1]; however, later measurements
on other mixtures generated substantial controversy [2], with
confusion over what results might be “unsurprising” and what
might be deemed ‘“anomalous.” Disagreements in reported
values led to a comprehensive benchmark study with double
blind tests conducted between several institutions [3]. The
primary conclusion was that the vast majority of the reported
“enhancement” effects lie within the continuum bounds given
by the series A and parallel A limits of the thermal conduc-
tivity [4], which for a binary mixture are

%=1—¢2+¢_2’
A Al Ao

M= (1= g)r1 + ¢ 20, )

where ¢, is the volume fraction of component 2 in the
mixture, and A; and A, are the fluid thermal conductivities
for pure 1 and pure 2, respectively.

A small number of experimental results still remain outside
these conventional bounds, such as the reported dehancements
below the series limit for fullerene-water suspensions [5].
Hence, the question still remains: Are results outside these
bounds correct and, if so, what are the underlying mecha-
nisms? Several physical mechanisms have been proposed in
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an effort to rationalize the behavior of these systems [4]; how-
ever, there is as yet no unifying framework for predicting and
explaining the thermal performance of nanofluid mixtures. To
be able to understand these results, a deeper understanding
of thermal conductivity and its underlying molecular mecha-
nisms is required.

Some of the confusion in interpreting thermal conductivity
arises from the different manners in which it can be defined.
The most natural macroscopic and experimental definition
arises from applying a temperature gradient V7T across a
system and measuring the resultant heat flux J,. The “ob-
served” nonequilibrium thermal conductivity Ay is then de-
fined through the following expression,

(Jg) = =N VT, 3)

where the brackets (- - -) indicate the implicit averaging over
time and volume this approach entails.

In contrast, when considering hydrodynamic models it is
natural to decompose the heat flux J, into contributions from
thermal and mass diffusion of the individual species; however,
this separation of these two effects is not unique and an
arbitrary number of definitions of the thermal conductivity can
be generated. The so-called mainstream, prime, and double
prime definitions [6,7] are the most common choices. The
mainstream definition is used here as it is convenient for
molecular dynamics simulations and is given below for binary
systems,

J, = —T"'L,VT — LMITV(“I+’“), (4)

where L,, is the mainstream thermal conductivity, L, is the
mainstream thermal diffusivity of species 1, and w; is the

©2019 American Physical Society
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chemical potential of species 1. One possible resolution to the
ambiguity in the definition of L, is to assume local steady-
state conditions (zero mass flux) [4,8] to yield the following
expression,

J; =T (L — Ly, L") VT = —AVT, 3)

where L;; is the mutual diffusion coefficient of species 1
through itself and the final equality implicitly defines the
“steady-state” thermal conductivity A. The value of A is inde-
pendent of the choice of mainstream, prime, or double prime
fluxes; however, it is still distinct from Ay as it is not averaged
over the nonequilibrium conditions of a system undergoing
conduction but is instead evaluated at a single temperature,
concentration, and density [9]. The first hurdle of this Rapid
Communication is to establish that the macroscopic (Ay) and
microscopic (A) definitions of the thermal conductivity are
equivalent at steady state.

In principle, atomistic nonequilibrium molecular dynamics
(NEMD) simulations can be used to directly measure the
heat flux J, through a system’s boundaries to obtain the “ob-
served” nonequilibrium thermal conductivity Ay. Equilibrium
simulations can then be used to measure A for comparison,
as well as to elucidate any underlying mechanisms behind
“anomalous” behavior. Unfortunately, large and long-duration
nonequilibrium simulations are required to directly study heat
conduction in nanofluids [10], and so only a limited range of
molecular models and techniques is computationally accessi-
ble using this method. Due to these limitations, previous simu-
lation work has primarily focused on equilibrium simulations
of nanofluids at fixed size and mass asymmetries between
the fluid molecule and nanoparticle [7,11-15] with only a
few studies at larger asymmetries (e.g., Refs. [8,16]). As
equilibrium molecular simulations are conducted at a single
temperature and concentration, Eq. (3) cannot be used, thus
the equivalence between Ay and A cannot be conclusively
established.

In this Rapid Communication, NEMD simulations of bi-
nary hard-sphere mixtures, consisting of spheres of diameter
o1 and mass m; and spheres of diameter o, and mass m;,
confined between two smooth parallel walls (see Fig. 1), are
performed using the DYNAMO [17] event-driven molecular
simulation package. The hard-sphere model is both compu-
tationally accessible and well described by revised Enskog
theory [7,18,19] which can be used to yield accurate predic-
tions of A at low densities [16]. Although the hard-sphere
model is simple, it qualitatively captures the fundamental
effects of density, molecular size, and mass on the transport
coefficients in gases. This Rapid Communication explores
conditions close to the ideal gas limit for simplicity (and to
avoid crystallization as 0, /o] becomes large); however, the re-
sults obtained in this limit are fundamental to the behavior of
all fluids and comparison against experiments on gas mixtures
can be made. This limit is also particularly interesting as the
current discussion in nanofluids echoes previous controversy
over reported dehancements in the thermal conductivity of
He-H, gas mixtures [20]. Although the source of the original
controversy (a sharp minimum in conductivity with concen-
tration) was later shown to be unrepeatable [21,22], a shal-
lower minimum still remains and demonstrates that thermal
conductivity can lie outside the series and parallel bounds

1.05T

FIG. 1. A schematic of the system configuration used for the
simulations reported here which use a hard-sphere model consisting
of two species with diameters o, and o0,, and masses m; and m,
respectively. For NEMD simulations, two walls are inserted into the
simulation and a 10% temperature gradient is imposed via velocity
reassignment on collision with the wall [24]. The total number of
spheres N and aspect ratio I!//+ of the simulation are varied to
explore the effects of system size at a constant density and pressure.

and even beyond the pure fluid values. If this is correct, then
it implies that such minima are also possible for nanofluid
systems which are the subject of some controversy even today.

The first aim of this Rapid Communication is to estab-
lish an equivalence of the observed, Ay, and steady-state,
A, thermal conductivities. This is conducted using a hard-
sphere mass ratio of my/m; = 2 corresponding to a He-H,
mixture with the approximate size ratio o, /0] = 260/289, ob-
tained from diffusion measurements [23]. A constant reduced
pressure of po/(kpT) = 0.01 (where kg is the Boltzmann
constant) is used and is set by adjusting the system density.
This reduced pressure value corresponds to a packing fraction
of approximately 0.005 over the studied mole fraction x,.
Once the equivalence of A and Ay is confirmed in this system,
a systematic exploration for “anomalous” thermal conductivi-
ties is carried out over the mass and size ratio parameter space
using kinetic theory.

Parallel smooth walls are located at both ends of the simu-
lation domain as illustrated in Fig. 1 with periodic conditions
on all other boundaries. On collision with the wall, the normal
component of a sphere’s velocity is reassigned to a Maxwell-
Boltzmann distribution [24] at a defined temperature. The
heat flux is then measured through the following expression,
(J,) = (Q)/(1+)?, where (Q) is the time-averaged rate of
energy transferred to the simulation during sphere impacts
with the walls averaged over both walls. The two walls have
different temperatures set to 95% and 105% of the system
temperature 7. This value is a trade-off between inducing a
sufficiently large heat flux (compared to thermal fluctuations)
and inducing inhomogeneity in the system.

An example of the inhomogeneity induced by the heat
flux is given in Fig. 2. The temperature, number density, and
concentration plots appear approximately linear. It is clear to
see the effects of thermophoresis in the concentration profiles.
These inhomogeneities make equating Ay and A suspicious
as X is only evaluated at a single representative concentra-
tion, temperature, and density, whereas NEMD simulations
measure an average thermal conductivity across the system
as temperature, density, and concentration varies. Boundary
layers with high thermal resistance also exist very close to the
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FIG. 2. The profiles of (a) temperature kg7", (b) number density
n, and (c) species mole fraction x; as a function of distance between
the two heated walls r! for a single representative simulation. This
system has a mass ratio of my/m; = 2, a size ratio of o,/0) =
0.899 654, N = 102400 spheres, and an aspect ratio of /! /[+ = 50.
All values are reduced by the average values for the system, which
are kT =1, i~ po}/(kgT) = 0.01, and (1 — %) = X, = 0.6. Er-
ror bars represent the standard deviation across ten simulations and
are smaller than the marker size for the temperature and number
density fields. Solid lines are linear fits provided as a guide to the
eye.

heated walls and induce a significant system-size dependence
in the NEMD results.

To explore this system-size dependence, the wall temper-
atures are held fixed while the aspect ratio I /I* and system
size are varied with the number of spheres ranging from N =
5000 up to N = 102400. Each simulation is initialized in an
fcc crystal lattice and equilibrated for 1000N collisions before
a further production run of 10 000N collisions to collect data.
This procedure is repeated ten times at each state point and av-
erage values between the production runs are collected while
the errors of the average measurements are estimated using
the standard deviation of values between each production run.
Results are reported here in reduced units, with o the unit of
length, m; the unit of mass, and kg7 the unit of energy.

A system-size dependence calculation for the mole fraction
x; = 0.8 in the He-H; system is reported in Fig. 3. The figure
demonstrates that the aspect ratio of a system is relatively
unimportant and that the system length in the direction of
conduction /! dominates the system-size effects (due to the
boundary layer resistance near the walls). To estimate the in-
finite system-size (near-zero thermal gradient) value of the
thermal conductivity, linear extrapolation is applied to sys-
tems with the three largest aspect ratios (I /I = 10, 25, and
50). This procedure yields a lower bound for the thermal
conductivity as the gradient of the system-size dependence
monotonically increases with system size. The extrapolated
An value is in excellent agreement with the equilibrium ther-
mal conductivity A from revised Enskog theory evaluated at
the average conditions of the system.

0.6 % O it =504
== o it =25

057 O it =107
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\
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0.000 0005 0010 0015
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FIG. 3. The observed thermal conductivity Ay obtained from
NEMD simulations as a function of the distance between the walls
o1/l from binary hard-sphere systems with varying numbers of
spheres and aspect ratios at a mole fraction of x, = 0.8 for a
my/m; =2, 0,/01 = 0.899 654, and pof/(kBT) = 0.01. A linear fit
to the data points obtained using an aspect ratio of 10, 25, and
50 (dashed line) is used to extrapolate to infinite system size and
approaches the value of A predicted by revised Enskog theory (solid
line).

The above procedure is repeated over a range of mole
fractions and the final infinite-system extrapolated results are
reported in Fig. 4. This system exhibits thermal conductivities
that are far outside the predictions of continuum approaches
such as Maxwell theory or the limits of series and parallel
resistance. In accordance with the experimental results for
He-H, [20-22], the system displays a minimum in the thermal
conductivity below both the pure fluid thermal conductivities.
This conclusively demonstrates that anomalous thermal con-
ductivities are not only possible but a fundamental feature of
simple molecular fluids such as the binary hard-sphere gas.

0.70 T————
0.68 - -

0.66 1
. 0.64

0.62 A

0.60 4

T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
T2

FIG. 4. The extrapolated infinite system-size NEMD Ay (trian-
gles) and equilibrium steady-state AMP (square) thermal conductiv-
ities as a function of the nonunit species mole fraction x,. Parallel
(dotted line) and series (dashed line) limits bound the region of
continuum values (shaded). The revised Enskog theory predictions
for the steady-state conductivity A®) (solid line) are in excellent
agreement with the simulation results. A slight apparent overestima-
tion arises from the remaining system-size dependence of our NEMD
results.
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FIG. 5. A contour map of steady-state thermal conductivities
outside the series (dashed) and parallel (solid) bounds as a function
of mass and size ratio. The contours denote the increase and decrease
of the thermal conductivity relative to the parallel and series bound
at the concentration of maximum deviation. A cross indicates the
maximum decrease of the steady-state thermal conductivity which
oceurs at m,/m; ~ 59.6 and 0,/0; ~ 0.102. A dotted line indicates
where mass scales with molecular volume, assuming a constant
density.

To further validate the Enskog and NEMD results, equilib-
rium simulations with N = 32 000 spheres in a cubic system
are equilibrated for 1000N events before being run for a
further 100 000N events to calculate L,,, L,;, and Ly; for
this system. The Einstein form of the Green-Kubo relations
[25,26] is used with the first 15 mean free times of the
correlation discarded to avoid ballistic motion and a maximum
correlation time of 50 mean free times used to avoid correla-
tions from the periodic boundary conditions. This is beyond
the sound wave traversal time of the system; however, as the
density is so low, correlations from the boundary conditions
take much longer to establish than in higher density systems.
The excellent agreement in Fig. 4 between revised Enskog
theory and the equilibrium molecular dynamics completes the
verification of the anomalous dehancement reported and the
use of revised Enskog theory to further study the system at
low densities.

The full parameter space of the binary hard sphere model is
explored using revised Enskog theory to determine the extent
of the anomalous behavior. Figure 5 maps the maximum
possible departure from series or parallel bounds achievable
by varying the mole fraction of the system for a particular
mass and size ratio. A reduced pressure of po}/(kgT) =
1077, corresponding to packing fractions below 0.044 for
this parameter space, is used in these calculations to reveal
the symmetry of the map in the ideal gas limit which is
otherwise prevented by pure species 2 freezing [which occurs
at a size ratio of 02/01 2> 4.87 for po} /(kgT) = 0.01; how-
ever, this change makes little difference to the results below
this boundary]. Anomalous enhancement above the parallel
bounds is found at extreme mass ratios with size ratios near
unity. Reductions below the series bounds are also found
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FIG. 6. As described in Fig. 5 but focused on the parameter
space relevant for the noble gases, hydrogen, and nitrogen. Kinetic
diameters are taken from Refs. [27-29].

for smaller but heavier spheres. Surprisingly, a maximum
achievable reduction in thermal conductivity is found which
is & 40% below the series limit (see the cross in Fig. 5). The
bulk of the anomalous parameter space lies in the larger-but-
lighter region of the map; however, the region of anomalous
reduction approaches the line where the species 2 mass scales
with its volume which is the experimentally relevant region.

To explore the experimental relevance of the results, the
kinetic diameter and molecular mass ratios for combinations
of the noble gases, along with nitrogen and hydrogen gas, are
plotted in Fig. 6. The map indicates that several real mixtures
may exhibit anomalous dehancements; however, care should
be taken to verify this as the Enskog theory expressions
used here do not take into account the additional degrees of
freedom of diatomic gases and in general are not capable
of quantitatively predicting the behavior of real gases, only
general trends. It is expected that more complex molecules
can exhibit more extreme effective size and mass ratios, al-
though the anomalous enhancement region probably remains
inaccessible and the applicability of the hard-sphere model is
dubious in this limit.

In conclusion, the observed thermal conductivity of binary
hard spheres can exhibit values which lie outside the limits of
series-parallel resistance, in agreement with experimental re-
sults on He-H; systems. These anomalous results are present
even in the ideal gas limit, which implies that they cannot
be explained by any structural or clustering effect such as
those which are prevalent in the nanofluid literature. To better
understand results in nanofluids, liquid densities can be ex-
plored using the techniques outlined here; however, the binary
hard-sphere model has two serious shortcomings: an ideal-gas
heat capacity and the absence of a gas-liquid transition. Future
work will explore adding internal degrees of freedom to the
spheres to account for varying heat capacity which will allow
a better parametrization of real fluids. Attractive systems, such
as square wells, may also be used to explore liquid systems
which do not have strong density-pressure dependences, and
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the comparison at pressures where the nanoparticle forms a
crystalline phase will be explored. Finally, work on a mul-
tiscale modeling approach using kinetic theory to provide
phenomenological closures to a hydrodynamic description is
underway to allow fluid dynamics simulations of nanofluidic
devices where transient effects may dominate over steady-
state conduction.
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