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Abstract

Zero-inflated ordered probit (ZIOP ) and middle-inflated ordered probit (MIOP ) models

are finding increasing favour in the discrete choice literature. Both models consist of a mix-

ture of binary and single ordered probit equations, the combination of which accounts for an

“excessive”build-up of observations in a given choice category. We propose generalisations

to these models —which collapse to their ZIOP/MIOP counterparts under a set of simple

parameter restrictions —with respect to the inflation process. The appropriateness and im-

plications of our generalisations are demonstrated by using two key empirical applications

from the economics and political science literatures. Likelihood ratio (LR) and Lagrange

multiplier (LM) specification tests lead us to support the newly proposed generalised models

over the ZIOP/MIOP ones, and suggest a role for these new models in modelling zero- and

middle-inflation processes.
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I Introduction and motivation

Recent advances in discrete choice modelling have witnessed the development of so-called

inflated ordered probit models. These draw inspiration from the suite of hurdle and double-

hurdle models for continuous and count outcome variables - developed to address an excess

of zero observations (Cragg 1971, Mullahey 1986, Lambert 1992, Heilbron 1994, Mullahey

1997) - and are typically motivated by the fact that in many ordered choice situations, a

large proportion of empirical observations fall into a single particular choice category which

appears “inflated”relative to the others. Significantly, the importance of not accounting for

such category inflation is underlined by the fact that it can lead to mis-specification, biased

estimates, incorrect inference and erroneous policy advice.

Such models have been applied in fields such as economics, political science, and medical

statistics, and can be divided into two main variants. First, the zero-inflated ordered pro-

bit (ZIOP ) model, in which an excess of observations is observed at one end of the choice

spectrum. The popularity of the ZIOP modeling framework is reflected in its recent incor-

poration into mainstream statistical software (e.g., STATA 15, Limdep/NLogit), and has

been used to explain a variety of phenomena including: the willingness to pay for renewable

energy (Akcura 2015); conflict events (Bagozzi et al. 2015); sports participation (Downward

et al. 2011); car sharing (Habib et al. 2012); smoking participation (Harris and Zhao 2007,

Gurmu and Dagne 2012); the demand for physical and mental health treatment in the US

(Meyerhoefer and Zuvekas 2010); depression and labour market outcomes including absen-

teeism (Peng et al. 2013); vehicle injury severity (Jiang et al. 2013); and visits to museums

and historical sites (Falk and Katz-Gerro 2016).

The second variant is the more recently developedmiddle-inflated ordered probit (MIOP )

model, which is characterized by a middle outcome being inflated. This type of model has

been used to investigate: attitudes towards EU membership (Bagozzi and Mukherjee 2012);

monetary policy decisions (Brooks et al. 2012); voters’ left-right perception of political

parties in Japan (Miwa 2015); community level environmental policy (Zirogiannis et al.

2015); and attitudes towards immigration (Bagozzi et al. 2014).
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This paper proposes generalizations to these models that preserve the ordering of out-

comes whilst still explicitly accounting for the maintained inflation process. In a setting with

J categorical outcomes, instead of having a single ‘splitting equation’(see Harris and Zhao

2007), our generalizations require J—1 of these to be estimated. We demonstrate that these

generalised models collapse to their associated ZIOP and MIOP counterparts under cer-

tain linear parameter restrictions, such that all of the parameter vectors of the J—1 splitting

equations are equal. The models are then applied to the data and specifications used in the

original contributions of Harris and Zhao (2007) and Bagozzi and Mukherjee (2012). We

first revisit the work of Harris and Zhao (2007) - the original paper on the ZIOP model -

which explores tobacco consumption behavior at the individual level. Attention then turns

to the seminal work of Bagozzi and Mukherjee (2012), who use aMIOP framework to model

the presence of “face-saving”middle-category responses in a commonly studied Eurobarom-

eter survey question (European Commission 2002a,b), which measures attitudes towards

European Union (EU) membership in EU candidate countries. LR and LM tests favor the

generalised models in both applications. This finding, we propose, is important, particularly

when recalling that Harris and Zhao (2007) and Bagozzi and Mukherjee (2012) claim to have

demonstrated the superiority of the ZIOP and MIOP approaches over the OP one. This

paper thus establishes that further improvements can be realized by increasing the flexibility

of the ZIOP and MIOP models. Moreover, although our applications use survey data, the

statistical framework developed above is applicable to other types of ordered response data

where category inflation is hypothesized.

By way of contextualising our contribution, we note that our focus is on inflation in a

single categorical outcome deriving from multiple sources. However, category inflation need

not be characterised by only one of the outcome categories being inflated. Here, Greene,

Harris, and Hollingsworth (2015) estimate a discrete ordered model of self-assessed health in

which two outcomes are subject to category inflation. Related work by Cai, Xia, and Zhou

(2018) explores the consequences of ‘generalized’category inflation for multinomial, ordinal,

Poisson, and zero-truncated Poisson outcomes and allow for inflation in multiple categories
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from a single source;1 however, unlike our contribution, no testing framework is proposed.

In sum we contribute to the literature in several important ways. Building on the growing

trend of discrete choice models with category inflation, we suggest a generalization to the

inflation process. This both lends itself to a specification test of such models and adds to a

new strand of inflated ordered probit models, that are likely to have widespread applicability

across the social and related sciences.2 For example, theMIOP application focuses on a type

of survey question where the response options range from feeling negative to positive about

an issue, such that a middle category captures feelings of neutrality or indifference. Such

questions are commonplace in questionnaires, which suggests there is potentially considerable

scope for the analysis of such data using our proposed models. We now say more about the

motivation underlying our methodological approach.

Accounting for the presence of category inflation in an ordered setting raises salient

issues regarding how it should be modelled. To motivate our analysis, a useful first step is to

consider that even if a categorical ordered outcome is characterised by a considerable amount

of observations relative to all others, a ZIOP or MIOP modelling approach may not be

warranted. Instead, a standard ordered probit model may be suffi cient, in that any category

can be ‘inflated’through adjustment of the relevant threshold parameters.3 Adopting such

a modelling strategy would amount to explicitly assuming that all model categories are

generated by a single data generation process (DGP ).

This highlights a defining feature of the ZIOP and MIOP modelling approach: a prior

assumption that inflation in a given category is generated by two distinct DGP s. It also

leads to a second equally important characteristic of ZIOP and MIOP modelling that is

commonly overlooked in the literature: namely, a given category need not exhibit a build-up

of observations to warrant using an ZIOP or MIOP approach. All that is required is a

1The ZIOP model (Harris and Zhao 2007) was initial proposed as a “zero-inflation” extension of the
zero-inflated Poisson model (Lambert 1992).

2We have made the Gauss code used to estimate all generalised models and specification tests in this
paper publicly available. For the MIOP model go to:
https://drive.google.com/drive/folders/1V8JSWUlAeINuoAUQhZ_jji00jE_qHfXw?usp=sharing
Estimation code for the ZIOP model can be found here:
https://drive.google.com/drive/folders/1Wb3CcUU254PBo-OOs_-hsnJG9idh-lbB?usp=sharing
3We are grateful to a referee for pointing this out.
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belief that one of the observed categories is generated by two distinct DGP s. This need not

manifest itself in a noticeable spike in the number observations for a given category, or to

cite Harris and Zhao (2007) in the context of the ZIOP , “...an excess of zero observations”

(p.1074). In this regard whilst an empirical build-up of observations in a given category may

lead researchers to suspect that a ZIOP orMIOP modelling approach is appropriate, their

application should be strictly hypothesis driven; in turn this will have significant implications

for the choice of the model’s exclusion restrictions.

Our starting point is to assume that a ZIOP orMIOP modelling approach is warranted

where the data are assumed to be generated by two DGP s. However, this assumption

motivates two important questions. First, can category inflation be the product of more than

two DGP s, and if so, how can this be modelled? Second, if the inflated category is generated

by more than two DGP s, is it possible to test if using a ZIOP or MIOP approach is too

restrictive? Our contribution explicitly addresses these questions by developing a framework

that maintains the ordering of categorical outcomes, accounts for the presence of category

inflation with N > 2 DGP s, and nests the ZIOP and MIOP as a special case under

certain parameter restrictions. This latter feature is particularly significant. The DGP s

which comprise the ZIOP and MIOP are captured by latent equations. As these processes

are unobserved by the researcher, a valid question relates to whether the process driving the

category inflation is correctly specified. The extant literature provides no suffi cient guidance

here. Our generalizations can be used as specification tests of the ZIOP andMIOP models,

by permitting us to determine if using a ZIOP or a MIOP model is overly restrictive.

Just as significantly, our generalised frameworks represent attractive natural extensions to

the ZIOP and MIOP models in their own right.4 If the MIOP were to additionally

incorporate categorical outcomes at the ends of the choice spectrum, the ZIOP could be

viewed as a ‘special case’ of the MIOP ; the same would apply applies to its respective

generalisations. Here, our decision to present zero- and middle- inflated models separately

4Gillman et al. (2013) develop a framework based on a very specific case of the generalisedMIOP model
proposed here: the three outcome case with particular regard to monetary policy. No attempt is made by
Gillman et al. (2013) to generalise the model to J outcomes. Further, the possibility that the model can be
applied in a ZIOP setting is completely overlooked.
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follows a convention that is already established in the empirical literature.

II Generalized Inflated Ordered Probit Models

An inflated ordered probit modelling strategy is appropriate where the response variable

of interest is categorical and ordered, and in the extant literature is characterized by the

combination of a single binary equation - often termed a “splitting equation”- with a single

ordered probit (OP ) “outcome equation”. The combination of these allows the empirical

regularity of a build-up observations in a given category to arise from two distinct data

generating processes (DGP s). For a discrete ordered variable with J outcomes, a ZIOP

approach is appropriate where a build-up of observations occurs at either end of the choice

spectrum, such that for j = 0, 1, 2, .., J − 1 ordered categories, the build-up is witnessed

in either category ‘zero’ (j = 0) or category j = J-1. The MIOP approach is a natural

extension to the ZIOP framework, allowing for category inflation associated with a build-up

of observations in one of the middle categories - that is, one of the j = 1, 2, ..., J-2, outcomes.

In what follows we extend these models, maintaining a single ordered probit (OP ) outcome

equation, but introducing J-1 binary splitting equations, as opposed to a single one. As

demonstrated below, this innovation implies that for the generalized versions, the build-

up of observations in the inflated category arises due to J distinct DGP s, instead of merely

two. This distinction in the inflation process turns out to be very important for the empirical

applications.

Consider a discrete random variable y that assumes the discrete ordered values of y ∈

0, 1, ..., J−1, where we note that for ease of comparison, our notation throughout is consistent

with that used in Harris and Zhao (2007). A standard OP approach would map a single

latent variable to the observed outcome y via so-called boundary parameters, with the latent

variable being related to a set of covariates. Let r denote a binary variable indicating the

split between regimes 0 and 1. r is related to a latent variable r∗ via the mapping: r = 1

for r∗ > 0 and r = 0 for r∗ ≤ 0. The latent variable r∗ represents the propensity to be in
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regime 1 and is defined as

r∗ = x′β + ε, (1)

where x is a kx vector of covariates that determine the choice between the two regimes, β a

vector of unknown coeffi cients, and ε a standard-normally distributed error term. Accord-

ingly, the probability of being in regime 1 is given by

Pr(r = 1 |x) = Pr(r∗ > 0|x) = Φ(x′β), (2)

where Φ(.) is the cumulative distribution function (CDF) of the univariate standard normal

distribution. Outcomes in regime 1 are represented by a discrete variable ỹ (ỹ = 0, 1, ..., J − 1)

that is generated by an OP model via a second underlying latent variable ỹ∗

ỹ∗ = z′γ + u, (3)

with z being a kz vector of explanatory variables with unknown weights γ, and u a standard

normal error term. Under the assumption that ε and u identically and independently follow

standard Gaussian distributions, the full probabilities for y are

Pr(y) =

 Pr (y = 0 |z,x) = Pr (r = 0|x) + Pr(r = 1, ỹ = 0|z,x)

Pr (y = j |z,x) = Pr (r = 1|x) Pr (ỹ = j |z,x) , (j = 1, ..., J − 1)
(4)

which, by independence of ε and u is given by

Pr(y) =



Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ (x′β) Φ (µ0 − z′γ)

Pr (y = j |z,x) = Φ (x′β)

 Φ
(
µj − z′γ

)
−Φ

(
µj−1 − z′γ

)
 , (j = 1, ..., J − 2)

Pr (y = J − 1 |z,x) = Φ (x′β)
[
1− Φ

(
µJ−2 − z′γ

)]
.

(5)

The framework depicted in expression (5) is the ZIOP model. Here, the probability that

a zero observation has been inflated is captured by a combination of the probability of zero

7



from the OP process plus the probability of zero from the splitting equation. This central

feature of the model also holds when the model is extended to allow for correlated errors,

viz.,

Pr(y) =



Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ2(x
′β, µ0 − z′γ;−ρ)

Pr (y = j |z,x) =

 Φ2

(
x′β, µj − z′γ;−ρ

)
−Φ2

(
x′β, µj−1 − z′γ;−ρ

)
 , (j = 1, ..., J − 2)

Pr (y = J − 1 |z,x) = Φ2

(
x′β, z′γ − µJ−2; ρ

)
.

(6)

where ρ is the correlation coeffi cient (−1 ≤ ρ ≤ 1), and Φ2 denotes the CDF of the bivariate

normal distribution. We refer to the correlated model in (6) as the ZIOPC.

Given this assumed form for the probabilities and an independent and identically dis-

tributed sample of size i = 1, . . . , N from the population on (yi, z,x), this, and all other

models derived below satisfy all of the usual regularity conditions for maximum likelihood

estimation. In estimation, to ensure the required ordering of the boundary parameters we

specify them as

µj = µj−1 + exp
(
ξj
)
, j = 1, 2, ..., J − 1 (7)

where µ0 is freely estimated (Greene and Hensher 2010). The full parameter set θ =(
γ
′
,β
′
,µ′, ρ

)′
of the model can be consistently and effi ciently estimated using the log-

likelihood function

` (θ) =
N∑
i=1

J−1∑
j=0

hij ln [Pr (yi = j |z,x,θ )] , (8)

where (8) the indicator function hij is

hij =

 1 if individual i chooses outcome j

0 otherwise.
(i = 1, ..., N ; j = 0, 1, ..., J − 1). (9)

In our empirical applications the common sandwich estimator (White 1982) is used to com-

pute standard errors of parameters.5 Standard errors of secondary estimated quantities,

5CHECK MODEL TYPE THIS QUOTE APPLIES TO. As stated in Greene and Hensher (2010),
page 31, ‘. . . in almost any case, the sandwich estimator provides an appropriate asymptotic covariance matrix
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such as partial effects and summary probabilities are estimated using the delta method. All

subsequent models differ only with respect to the probabilities entering the likelihood and

the contents of θ. Both latent equations are estimated simultaneously and not sequentially,

such that only the joint outcome of the two DGP s captured by (5) is observed. Such a latent

class model is an example of a partial observability one (also see Poirier (1980) where this

concept is applied in the context of a bivariate probit model) involving two latent equations.6

Diagrammatically, the ZIOP model is illustrated in the left hand panel of Figure 1,

and comprises the binary probit ‘splitting equation’, which comprises regimes r = 0 and

r = 1; and an ordered probit (OP) model comprising J categorical outcomes labelled

y = 0, 1, 2, ...J—1. In many empirical applications, the splitting equation is treated as

distinguishing between individuals who are willing to participate (r = 1) or not (r = 0)

in the consumption of a good, typically a social bad. Non-participation decisions may be

governed by factors such as health concerns, religious beliefs, ethical considerations, or soci-

etal norms, but not the price of the good or income constraints. Many real-world examples

reflect such behavior: consider decisions not to consume drugs and recreational substances

such as alcohol, tobacco, and cannabis. However, non-consumption may still arise if individ-

uals who are are prepared to consume the good in regime r = 1 are unable to do so because

of income or price constraints. Zero consumption of the good is thus driven by a mixture of

non-participants, and participants who are unable to consume.

Now consider the latent class model depicted on the right side of Figure 1, which comprises

a single OP model comprising J categorical outcomes labelled y = 0, 1, 2, ...J—1, and J—

1 splitting equations: here, for each j > 0 category in the OP model, the individual is

‘tempered’towards choosing the zero outcome by a category-specific splitting equation. We

refer to this econometric model as the “generalized ZIOP”(hereafter GZIOP model). As

with ZIOP estimation, all equations in this model are unobserved by the researcher and

estimated simultaneously. The observed data is generated due to the joint outcome of J

for an estimator that is biased in an unknown direction’.
6The ZIOP model satisfies all of the usual regularity conditions for maximum likelihood estimation and,

accordingly, all the usual well-behaved properties of the maximum likelihood estimator follow (Harris and
Zhou, 2007). The GZIOP also meets these criteria. This also applies where a middle category is inflated.
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DGP s, namely the sum of J—1 binary probit equations and a single OP one; this contrasts

with the ZIOP model, which is characterised by twoDGP s. In what follows, we demonstrate

that the GZIOP model still embodies the important attribute of zero-inflation and collapses

to the ZIOP under a certain set of parameter restrictions.

The J—1 splitting equations of the GZIOP have the form

r∗j = x′βj + εj, (10)

which allow for the aforementioned differentiated tempering effects across the j = 1, 2, ..., J−

1 outcome equation propensities. The associated observability criteria is now given by

yj = ỹrj (11)

Under independence, generalizing the ZIOP in this manner yields the GZIOP model

which has probabilities of the form

Pr(y) =


Pr (y = 0 |z,x) =

 Pr (ỹ = 0|z)

+ Pr (ỹ = j|z) Pr (rj = 0|ỹ = j,x)

 , j = 1, ..., J − 1

Pr (y = j |z,x) = Pr (ỹ = j|z) Pr (rj = 1|ỹ = j,x) , j > 0

(12)

such that

Pr(y) =



Pr (y = 0 |z,x) =


Φ (µ0 − z′γ) +

J−2∑
j=1

 Φ
(
µj − z′γ

)
−Φ

(
µj−1 − z′γ

)
Φ

(
−x′βj

)
+
[
1− Φ

(
µJ−2 − z′γ

)]
Φ
(
−x′βJ−1

)
Pr (y = j |z,x) =

[
Φ
(
µj − z′γ

)
− Φ

(
µj−1 − z′γ

)]
Φ
(
x′βj

)
, j = 1, ..., J − 2

Pr (y = J − 1 |z,x) =
[
1− Φ

(
µJ−2 − z′γ

)]
Φ
(
x′βJ−1

)
(13)

which embodies the required zero-inflation due to the terms Pr (ỹ = j|z) Pr (rj = 0|ỹ = j,x)

for j = 1, ..., J − 1. Zero-inflation is also maintained under the likely scenario of correlated
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errors, where joint probabilities now become

Pr (y) =



Pr (y = 0 |z,x) =


Φ (µ0 − z′γ) +

J−2∑
j=1

 Φ2

(
µj − z′γ,− x′βj; ρj

)
−Φ2

(
µj−1 − z′γ;− x′βj; ρj

)


+Φ2

(
z′γ − µJ−2,−x′βJ−1; ρJ−1

)
Pr (y = j |z,x) = Φ2

(
µj − z′γ,x′βj; ρj

)
− Φ2

(
µj−1 − z′γ,x′βj; ρj

)
, j = 1, ..., J − 2

Pr (y = J − 1 |z,x) = Φ2

(
z′γ−µJ−2,x′βJ−1; ρJ−1

)
(14)

The correlated ZIOP model defined by the set of equations in (14) is referred to as the

GZIOPC. Unlike the ZIOPC the model is characterized by J—1 correlation coeffi cients

denoted ρj ∀ j = 1, 2, 3...J—1. One could allow for a more complex correlation structure

amongst all of the stochastic elements of the generalised variants. The generalisation in (14)

allows for correlations between the stochastic elements relating to the inflation and outcome

equations; this follows the approach taken in the original literature. However, it would also

be possible to allow for correlations across the splitting equations in the generalised variants.

Whilst theoretically this poses no additional issues (apart from more complicated expressions

for the probabilities), this is arguably not appropriate here. This is because the correlations

across inflation equations would necessarily correspond to different individuals. Thus there

is less a priori expectation that these should be related, as compared to those equations

relating to the same individual.

Using the model of the equations in (14) we now show that the generalized ZIOP variants

outlined above collapse to their original counterparts under a set of simple linear parameter

restrictions. This implies that the model on the right side of Figure 1 nests the model depicted

on the left. In the generalised model(s) identification requires the data to identify J—1

splitting equations as opposed to a single one. One implication of this model characteristic

is that compared to the non-generalised model variants, the choice of exclusion restrictions

assumes a more prominent role, as several splitting equations require identification instead

of one. More generally, behavioral identification in our generalised models requires that

there are no empty sets of individuals in expression (3) that are pushed towards an inflated

11



outcome for each of the model’s J—1 splitting equations. This issue is revisited when the

finite sample properties of our models are explored in Section IV.

In both of our empirical applications, no evidence of identification issues are found to be

present. A possible generalisation of the model could entail different sets of variables in the

various splitting equations, although the original ZIOP model would no longer be nested. In

general, weak identification is likely to be evidenced by instances of model non-convergence

and/or estimated model probabilities close to zero. As Greene, Rose, and Hensher (2015)

note in the context of a latent class ordered choice model: “Signature features of a model

that has been over-fit will be exceedingly small estimates of the class probabilities, wild

values of the structural parameters and huge estimated standard errors.”(p.719).

Consider imposing the linear set of restrictions that β1 = β2 = · · · = βJ−1 and ρ1 =

ρ2 = · · · = ρJ−1 on (14). This yields

Pr (y = 0 |z,x) =


Φ (µ0 − z′γ) +

J−2∑
j=1

 Φ2

(
µj − z′γ,− x′β; ρ

)
−Φ2

(
µj−1 − z′γ;− x′β; ρ

)


+Φ2

(
z′γ − µJ−2,−x′β; ρ

)
Pr (y = j |z,x) = Φ2

(
µj − z′γ,x′β; ρ

)
− Φ2

(
µj−1 − z′γ,x′β; ρ

)
, j = 1, ..., J − 2

Pr (y = J − 1 |z,x) = Φ2

(
z′γ−µJ−2,x′β; ρ

)
(15)

where we note that while the expressions for Pr (y = j |z,x) and Pr (y = J − 1 |z,x) immedi-

ately collapse to those in expression (6), the Pr (y = 0) expression in (15) can be constructed

using 1 minus the sum of the Pr (y = J − 1 |z,x) and all Pr(y = j |z,x), ∀ j = 1, 2, ...J − 2

terms to give

Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ2 (x′β,µ0 − z′γ;−ρ) . (16)

This also yields the result in (6), and is straightforward to verify. Using (15) and (16) yields

Pr (y = 0) = 1−

Pr(y=j ∀ j=1,2,...J−2)︷ ︸︸ ︷
J−2∑
j=1

[
Φ2

(
µj − z′γ,x′β;−ρ

)
− Φ2

(
µj−1 − z′γ,x′β;−ρ

)]
−

Pr(y=J−1)︷ ︸︸ ︷
Φ2

(
z′γ−µJ−2,x′β; ρ

)
(17)
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which can be expanded as follows

Pr (y = 0) = 1−



[Φ2 (µ1 − z′γ,x′β;−ρ)− Φ2 (µ0 − z′γ,x′β;−ρ)]

+ [Φ2 (µ2 − z′γ,x′β;−ρ)− Φ2 (µ1 − z′γ,x′β;−ρ)]

+ [Φ2 (µ3 − z′γ,x′β;−ρ)− Φ2 (µ2 − z′γ,x′β;−ρ)]

...

+
[
Φ2

(
µJ−2 − z′γ,x′β;−ρ

)
− Φ2

(
µJ−3 − z′γ,x′β;−ρ

)]
+
[
Φ(x′β)− Φ

(
µJ−2 − z′γ,x′β; ρ

)]



(18)

After cancelling terms and algebraic manipulation, it can be verified that

Pr (y = 0) = [1− Φ (x′β)] + Φ2 (µ0 − z′γ,x′β;−ρ) . (19)

Substituting (19) into (15) results inGZIOPC probabilities that are identical to the ZIOPC

probabilities in expression (5). That is, the GZIOPC collapses to —and therefore nests —

the ZIOPC. Further, setting ρ = 0 in (19) yields probabilities that are identical to the

ZIOP probabilities in expression (5), viz.

Pr (y = 0) = [1− Φ (x′β)] + Φ(x′β)Φ (µ0 − z′γ) . (20)

The GZIOPC also collapses to the ZIOP , albeit under the alternative set of parameter

restrictions β1 = β2 = β3... = βJ−1 and ρj = 0 ∀ j = 1, 2, ...J−1. Lastly, imposing the latter

set of restrictions implicitly reduces the GZIOPC model to its uncorrelated counterpart in

(13), the GZIOP . The sets of parameter restrictions described above provide tests of: (i)

the more flexible functional form of the GZIOPC model versus the simpler nested forms

of the usual ZIOPC and ZIOP models; and (ii) the GZIOP versus the ZIOP model. A

noteworthy property of the generalised variant proposed here is that it is not constrained

by the “parallel regression”assumption inherent in the ordered probit, ZIOP and ZIOPC

models; this also applies to models with middle-inflation, which we now discuss.

Building on the ZIOP model, two contributions —Bagozzi and Mukherjee (2012) and
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Brooks et al. (2012) —independently suggested the middle-inflated ordered probit (MIOP )

model to allow for inflation in an arbitrary middle category.7 Whilst each of these contribu-

tions restricts the analysis to three categorical outcomes, our modelling framework applies

to instances where J > 3; in keeping with our discussion of the ZIOP model and its gener-

alisation, the presence of j = 0, 1, 2, ...J—1 categories is also considered . Diagrammatically,

the MIOP this is depicted on the left hand side of Figure 2. It comprises a single splitting

equation and an OP model, both of which are unobserved by the researcher. Here, m denotes

an inflated middle category, which can assume any of the values in the set j ∈ {1, 2...J − 2};

the splitting equation now distinguishes between observational units in the inflated middle

category (r = 0) and those in all other categories (r = 1).

Following logic analogous to that used for the GZIOP , we can generalize the MIOP .

Here, we stress that due to its similarity with the zero-inflation case, a formal exposition

of the MIOPC and its relationship to the GMIOPC is given in Appendix B; the same

principles apply. The generalised model (hereafter GMIOP ) is illustrated in the right-hand

panel of Figure 2: it shows that for any given propensity towards a given category j 6= m in

the OP equation, there is a movement towards the inflated middle category, m. Naturally,

the MIOP and its generalisation are related in an analogous way to that of the ZIOP and

the GZIOP , and we can also consider model variants with correlated errors which we label

MIOPC and GMIOPC. This means that the model depicted on the right of Figure 2

can nest the model depicted on the left under appropriate parameter restrictions. Testing

the restrictions associated with these model variants entails testing (i) the more flexible

functional form of the GMIOPC model versus the simpler nested forms of the MIOPC

and MIOP models and (ii) the GMIOP versus the MIOP model. As with the GZIOP

model, theGMIOP is still an inflated ordered probit model. The ordering of outcomes is still

preserved, middle-inflation arises due to J—1 distinct DGP s as opposed to just one, and all

(latent) equations in the model are estimated simultaneously. Appendix C also establishes

7Bagozzi and Mukherjee (2012) were the first to use the term ‘middle-inflated’. Brooks et al. (2012) refer
to their model merely as an ‘inflated ordered probit’. In this contribution we use the former nomenclature,
and suggest that the term inflated ordered probit (IOP ) model may be better viewed as encompassing both
the ZIOP and the MIOP model classes.
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that our proposed generalisations are coherent and demonstrates that our models neither

nest, nor are nested by the generalised ordered probit (‘GOP’) model (Terza 1985).

To test the hypotheses associated with the various sets of parameter restrictions described

above for our inflated models, two approaches are used. First, we use the standard LR test.

Second, an LM test is proposed.8 This is an appealing specification test for the ZIOPC and

MIOPC models versus their generalized alternatives, as it only requires estimation of the

simpler nested models. It involves evaluation of the score vector of the more general model

evaluated at parameter values under the null hypothesis (i.e., at the ZIOPC or MIOPC

ones). For instance, testing betweenGZIOPC versus ZIOPC models yields an LM statistic

is given by

LMZIOPC = (∇β,∇γ,∇µ0,∇ξ,∇ρ)′
[
I
(
θ̂R

)]−1
(∇β,∇γ,∇µ0,∇ξ,∇ρ) ∼ χ2q (21)

which is evaluated at the relevant parameter restrictions as defined by the appropriate null

hypothesis. Under H0, LMZIOPC will be a chi-squared variate where q denotes the appropri-

ate number of parameter restrictions. If the alternative model is the uncorrelated generalised

version, one would omit the relevant partition of the score vector (∇ρ). As is common prac-

tice, the outer product of gradients (OPGs) is used to estimate the inverse of the variance

of the score vector,
[
I
(
θ̂R

)]−1
(Greene 2012). For the zero-inflated and middle-inflated

approaches, derivations of the score vectors for the LM test can be found in Appendices A

and B, respectively. Reassuringly, the results of the LR and LM tests are very similar in

all of our empirical applications, suggesting that the log-likelihood function is well-behaved,

and further, that standard asymptotic theory performs well.

Finally, it is also possible to consider subsets of a given generalised model as the model

under the alternative and adapt the LM test appropriately. This would likely increase

power in that particular direction. For example, only subsets of parameters may vary. In

the absence of any prior information, such an approach is not recommended, as such tests

8Our testing framework focuses on instances where one inflated model nests another. In relation to the
problem of zero-inflation in the Poisson counts literature, Wilson (2015) argues that the widespread practice
of using the Vuong test as a test of zero inflation in a non-nested setting is erroneous.
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would invariably be based on mis-specified alternative models that would likely adversely

affect the test performance.

III Data

To explore the performance of our generalizations and testing framework, we consider two

key empirical examples from the literature. Each uses an inflated ordered probit approach

to model responses in a large-scale survey data set. Our GZIOP application re-visits the

original contribution of Harris and Zhao (2007). Their health economics based application

analyzes the determinants of participating in tobacco consumption. A zero-inflated appli-

cation is deemed appropriate in that zero tobacco consumption may be construed as being

determined by two DGP s: non-participation due to, for example, health and legal concerns;

and further, non-participation due to being at a corner solution associated with a standard

consumer demand problem, whereby individuals will not smoke if the price rises above a cer-

tain threshold, or income falls below a certain threshold. Their data is drawn from the 1995,

1998 and 2001 surveys of the Australian National Drug Strategy Household Survey (ND-

SHS, 2001), and comprises a total of over 40, 000 respondents. Removal of missing values

leads to an estimation sample of 28, 813 individuals. Information on individuals’consump-

tion of tobacco is available via a discrete variable measuring the intensity of consumption.

Specifically, respondents are asked: “How often do you now smoke cigarettes, pipes or other

tobacco products?”, where the responses take the form of one of the following choices: not

at all (y = 0); smoking less frequently than daily (y = 1); smoking daily with less than 20

cigarettes per day (y = 2); and smoking daily with 20 or more cigarettes per day (y = 3). In

terms of consumption frequencies, 76% of observations are non smokers, 4% smoke weekly or

less, 13.8% smoke daily but less than 20 per day, and 6.2% smoke daily and consume more

than 20 cigarettes a day.

Covariates in the splitting (or “participation”) equation include factors relating to indi-

viduals’attitudes towards smoking and health concerns, and include variables that reflect

education levels and other standard socio-demographic variables such as income, marital
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status, age, gender and ethnic background. In the OP (or “outcome”) equation, covariates

include standard demand-schedule variables such as income and own- and cross-drug prices

(in the results presented below, Ln(PA/M/T ) refers to the natural log of the price of alcohol /

marijuana / tobacco, respectively), in addition to standard socio-demographic factors such

as those related to a respondent’s age, to capture any heterogeneity in consumption behav-

ior among smokers. The specification shares 13 common variables in the splitting and OP

equations, and is characterized by: N = 28, 813; J = 4; kx = 16; and kz = 18.

For the GMIOP attention turns to the work of Bagozzi and Mukherjee (2012), who use

aMIOP framework to analyze individual responses in a data set that explores respondents’

attitudes towards European Union (EU) membership in EU accession countries; significantly,

the data set in question has also been the subject of scrutiny in other contributions to the

political science literature (Gabel 1998; Carey 2002; Elgün and Tillman 2007). When asked

about their attitudes towards joining the EU, respondents choose from one of three alterna-

tives: a bad thing; neither good nor bad ; or a good thing. The associated response frequencies

for these are 10.83%, 33.07% and 56.10%, respectively. The authors hypothesize that the

middle category contains responses from two distinct sources: “informed”respondents with

good knowledge of the impact of EU membership; and “uninformed”respondents, who select

neither good nor bad as a “face-saving measure”. This results in middle category inflation,

warranting a MIOP approach. Here, we emphasize the hypothesis driven nature of cate-

gory inflation in this application: in keeping with the discussion in Section I the inflated

category is not characterised by an excess of middle category observations relative to other

categories. A fourth ‘do not know’category is treated as being a “neither good nor bad”

response by Bagozzi and Mukherjee (2012) which is common in the literature. The authors

report that their findings remain unchanged when “do not know” responses are dropped

from estimations. The model thus comprises a splitting equation which captures the impact

of covariates on the likelihood that respondents are either informed or uninformed; and an

outcome equation (OP ) which estimates the impact of a second variable set on the proba-

bilities of observing each ordered survey response category, which is estimated conditional

on the respondent being informed. The specification shares 8 common variables in the two
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equations, and is characterized by: N = 9, 113; J = 3; kx = 12; and kz = 16.

The splitting equation covariates capture if a respondent is knowledgeable about the

EU and its impact. Variables specific to this equation measure: How often a respondent

watches the news (media); the extent of an individual’s knowledge of the EU based on

a subset of true-false questions asked as part of the survey (‘True EU knowledge’); and

whether or not respondents were aware of their country’s bid for EU membership (‘EU-bid

knowledge’). The common variables that appear in the splitting equation are: An ordinal

measure coded as 1 if the respondent reports discussing politics with friends as “never”, 2 if

“occasionally,”and as 3 if “frequently”(‘discuss politics’); a geographical location dummy

(‘rural’); a gender dummy coded as 1 for female on the basis that women are less likely

to support EU membership as they are more vulnerable to the costs of integration that

occur when states join the EU (‘female’); age (‘age’); whether the individual is studying at

a college or university (‘student’); and indicator variables for educational attainment (‘educ

high’, ‘educ high-mid’, ‘educ low-mid’).

Variables exclusive to the outcome (OP ) equation comprise: an income measure to test

the hypothesis that individuals with higher incomes are more likely to view EU membership

in a positive way since they benefit from European integration (‘income’); variables that ac-

count for a respondent’s occupational status (‘professional’; ‘executive’; ‘manual’; ‘farmer’);

whether or not they are unemployed (‘unemployed’); and variables capturing the extent to

which domestic political institutions are trusted (‘political trust’), and if respondents are

xenophobic (xenophobia). However, prior to conducting estimations on both datasets, the

performance of our proposed models is explored using Monte Carlo (MC ) experiments.

IV Finite sample performance

To ascertain finite sample performance of our tests, we consider a range of Monte Carlo

(MC) experiments. These experiments are based on the same data and specifications of the

ZIOP andMIOP models considered in Harris and Zhao (2007) and Bagozzi and Mukherjee

(2012); such that sample sizes for each are N = 28, 813 and 9, 113, respectively. The number
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of repetitions was set to 2, 000, where all simulation ‘noise’ had effectively settled after

1, 000 repetitions. The results are in Table 1. Panel A presents the empirical size of the

tests, and the first column identifies the true DGP and the respective degrees of freedom for

each test (df). For each DGP , three tests —each between a generalised model and a null,

non-generalised one —are performed.

Panel A presents results for the zero-inflated application, and tests between: GZIOP

vs ZIOP ; GZIOPC vs ZIOPC; and GZIOPC vs ZIOP, with J = 3 outcomes. Row

1 has a ZIOP DGP with df = 13, 14, 15, respectively. At nominal 5% size, we see that

all empirical sizes are very close to this, even when the null model is the ZIOPC. Row 2

repeats the exercise, but for a true DGP of ZIOPC. Here the empirical size is again very

close to the nominal one (at 5.8%). The tests also have good ‘power’in correctly rejecting

the uncorrelated versions of the model (38% and 49%, respectively). Row 3 considers the

implications of extending the choice set to a larger number of outcomes, one of which is now

relatively sparsely populated; as can be seen, the empirical sizes remain very close to the

nominal ones.

As rejection of the null models may reflect other forms of model mis-specification, we

also generate under ordered probit and parallel regression (Brant 1990) models. These

quasi-power experiments reflect likely forms of serious model mis-specification encountered

with our type of data. The OP model is based on an equation of the form of expression (3).

For the parallel regression model, the data is generated by multiple γj vectors generated by

independent binary models for all observed values of j. The results are presented in rows 4

and 5, respectively. All tests have good general ‘power’(24%—36%) against the OP DGP.

Against the parallel regression model, all tests similarly exhibited reasonable ‘power’ (at

around 14%).

To complement the zero-inflated experiments in Panel A of Table 1, we also considered a

variant of the GZIOP model with no tempering for one of the outcomes.9 Such a model does

not collapse to the null ZIOP model under any set of simple linear parameter restrictions.

In experiments, this model variant failed to converge in nearly 50% of instances. When

9The splitting equation corresponding to the j = 3 outcome was removed.
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convergence was achieved, the LM test rejected the null model in 100% of instances, and

the estimated tempering probabilities of the true zero amount were very close to zero. Clear

evidence of model mis-specification in the tempering equation of the non-tempered outcome

presented itself in the form of very large coeffi cients and extremely high standard errors.

These findings add to the evidence that the LM test performs well as a general specification

test: they suggest that model failure in estimation would also indicate a mis-specified model,

as would obtaining tempering probabilities in the splitting equations that are very close to

zero.

Panel B of Table 1 presents similar results for the middle-inflated experiments and tests:

GMIOP vs MIOP ; GMIOPC vs MIOPC; and GMIOPC vs MIOP . Row 6 corresponds

to a MIOP DGP and is based on the full sample (N = 9, 113) and has J = 3. Here, all

empirical sizes are very close to nominal ones. Row 7 considers a MIOPC DGP. At 6%,

empirical size is again very close to the nominal one. These tests have reasonable ‘power’

at picking-up the mis-specified uncorrelated model, with rejection probabilities of around

18% and 24%. The effect of reducing the df is explored here in row 8, where the MIOP

is re-estimated and statistically insignificant variables are removed. This respectively yields

df = 7, 8, 9; again, all tests are correctly sized.

As our tests are all asymptotic, the implications for their properties of estimating using

a smaller sample are also explored. This is achieved by taking the (already) relatively small

sample in the MIOP example and randomly removing 50% of the observations, yielding

N = 4, 556. The re-sized sample marginally worsens the performance of the tests, with all

of them being slightly over-sized at around 7%—8%. Finally, quasi-power experiments were

once again performed by generating under an OP model and parallel regressions (rows 9 and

10). Again, all tests behave exceptionally well as general specification ones, as indicated by

high rejection probabilities of up to nearly 80% in some instances. In summary, for both the

zero-inflated and middle inflated experiments, all LM tests appear correctly sized, and typ-

ically have good ‘power’in identifying mis-specified models. Finally, we note that rejection

of uncorrelated versions, may simply be a sign of a mis-specified correlated model.
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Power experiments

Using the observed data, we also conducted power experiments based on the null models

of ZIOP and MIOP versus their generalised forms. In all experiments our approach is

characterised by taking the estimated value of β in each null model, setting βj = β ∀ j

in the corresponding generalised set-up, and perturbing a single parameter β0 in a single

splitting equation by successively larger increments. For brevity, we only report power runs

for the non-correlated DGPs and their associated LM tests. The power analysis results are

shown in Panels A (ZIOP ) and B (MIOP ) of Figure 3, and cover experiments performed

using alternative df and sample size.

In the ZIOP experiments two curves are charted, both of which utilize the full data sam-

ple: one corresponds to J=3 categorical outcomes (df=13); and another to J=4 (df=26).

The curve corresponding to the higher df has uniformly higher power, where we note that in-

creasing the number of categorical outcomes from three to four is responsible for the increase

in df . Whilst relatively larger parameter perturbations are required to induce rejections un-

der J=3, both tests have the ‘usual’shaped power curves and our analysis suggests both

tests have good power.

For the MIOP experiments, which are all characteried by J = 3 categories, we initially

focus on two experiments that use the full sample but which are differentiated by dropping

insignificant variables from the splitting equations. This has the impact of reducing the df

from df = 12 to df = 7. Panel B shows that the difference in df has no discernible effect on

power and is arguably to be expected given the nature of our peturbations: specifically, in

each MIOP experiment the single perturbed parameter differs from only a single estimated

parameter. This is unlike the ZIOP experiments in Panel A, where each experiment is

distinguished by a different number of splitting equations: in the d = 26 experiment, there

are three such equations, and the single perturbed parameter thus differs from two single

estimated parameters; however, in the d = 13 experiment, the presence of only two splitting

equations means that the single perturbed parameter differs from only a single estimated pa-

rameter. One might have anticipated greater differences in power gains here, given the large

difference in df in the ZIOP experiments; when the df is smaller, model failure associated
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with a single parameter could be interpreted as being more severe.10

Finally, we also conducted experiments with a small sample size (small N , df = 12) under

the null of MIOP . With the reduced sample, a reduction in power is observed relative to

other MIOP experiments, in that relatively larger parameter perturbations are required to

lead to model rejection. Despite the relative reduction in power, we note that all MIOP

tests have the ‘usual’shaped power curves, and like the ZIOP experiments, exhibit good

power. Significantly, our results demonstrate that the ability of the tests to identify ZIOP

(MIOP ) model mis-specification in the direction of the GZIOP (GMIOP ) one(s) is an

increasing function of both the number and size of perturbations from the null. The ability

to identify model mis-specification also responds to changes in the df of the test and the

sample size. Differences in the way that the df are obtained may have effects on the power

of the tests. However, as with all MC experiments, the results may be dependent upon the

particular experiments considered. We now turn to model estimation.

V Estimation

As noted above, such zero-inflated models are examples of latent class models which exhibit

partial observability: observationally equivalent outcomes can arise from distinctDGP s. For

example, in Harris and Zhao (2007) an individual makes a participation decision, and for

participants, a consumption decision is made. The fact that consumption can still be zero

for some participants gives rise to zero-inflation.

To rationalise the GZIOP model, the ordered consumption levels would be driven by

an OP process and the propensity for zero-consumption corresponds to non-participation.

Significantly the theory of rational addiction (Becker and Murphy 1988) assumes that some

individuals are rational in going “cold-turkey”—that is, switching from positive consump-

tion levels —as captured by the latent ordered probit equation —to zero, as captured by the

j=1,2,J-1 binary equations. To accommodate this requires that corresponding to each posi-
10Although not reported here, significant power gains also occurred in cases where (i) a full, single vector

was perturbed and (ii) all vectors were perturbed. Both of these alternative scenarios showed comparatively
higher power compared to the single-parameter experiment. This is because the single parameter experiment
represents the scenario where the test is most likely not to perform well, as it is closest to the null.
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tive consumption level is a separate binary equation which splits individuals into two types:

those remaining at their inherent consumption level, and ‘quitters’who are “pushed” to-

wards zero. The GZIOPC model developed above allows for this possibility. The is nothing

that imply that all members have the propensity to quit. In essence, one is testing whether a

single equation —in Harris and Zhao (2007) representing participation —is suffi ciently general

to represent all of the types of zero that could arise.

It is informative to consider the behavioral assumptions required for model identifica-

tion. The ZIOP model is only identified if the inflated category observed in the empirical

data is composed of two types of observations. In the smoking application, these respective

observations correspond to the non-smokers associated with the inflation equation in expres-

sion (1), and infrequent smokers associated with the consumption equation in expression

(3). The identification of the generalised model is somewhat stricter. The inflated category

observed in the data is instead composed of individuals with an inherent consumption level

of zero in the consumption equation in (3), and J-1 distinct groups of smokers with positive

inherent consumption levels in (3), who are “pushed”towards zero consumption by the J-1

splitting equations given by (10). Behavioral identification in the GZIOP therefore requires

that there are no empty sets of individuals in expression (3) that are pushed towards zero-

consumption via (10), for all j ≥ 1. In our empirical application this is attributable to

factors such as health status, medical considerations, income, and wealth. Here, it is reason-

able to expect that if the total population from which the sample is drawn is characterised

by no empty sets of individuals, the use of large scale datasets - as used in our empirical

applications - will mitigate the problem of failing to identify all of these sets of individuals,

especially when J − 1 is large. In practice, the presence of empty sets may manifest itself in

the form of one or more of the r∗j splitting equations being characterised by negligible temper-

ing probabilities. That is, the model will appear to be ‘weakly identified’. Significantly, our

empirical applications exhibit little evidence of this form of weak identification, in that all

of the estimated tempering probabilities associated with the J-1 splitting equations diverge

from zero. We also note that if evidence of such empty sets is found, the generalised model

may be re-specified by omitting the affected r∗j splitting equations, and re-estimating with-
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out them. Whilst the resulting specification will still be an inflated model, it will no longer

be ‘generalised’, in that the standard ZIOP (and MIOP ) model will no longer be nested.

This would consequently mean that that our proposed LR and LM tests are inappropriate.

Whilst not the focus of this paper, the possibility of refining the GZIOP (or GMIOP ) in

the way described above suggests that the generalised class of inflated model developed in

this contribution forms part of a much broader model class for analysing category inflation.

Table 2 reports the results of the LM tests. All of the ZIOP variants are overwhelmingly

rejected in favour of the GZIOP models. Moreover, the GZIOP is rejected in favour of

its correlated variant, the GZIOPC. In addition to the LM tests, Table 2 reports the

corresponding LR tests, which closely mirror the LM ones. We stress here that rejection

does not necessarily imply that the generalised variant is “correct”: it is possible to reject

a false model against many alternatives, even if none of the alternative models are correct

(Davidson and MacKinnon 1987). Our findings are also re-visited in the Monte Carlo section

in Section IV, in which a number of experiments are performed. Our findings indicate that

LM tests are correctly sized, and have good power in identifying mis-specified models. The

closeness of the LR and LM test statistics suggests that in the case of the present application,

the log-likelihood function is well-behaved and standard asymptotic theory performs well.

Given the evidence to support the presence of correlated errors, Table 3 presents the

GZIOPC and ZIOPC output equation parameters for comparison purposes. Doing so

enables us to directly compare how model inference changes as a result of using a generalised

model instead of its nested equivalent. With respect to the ρ’s, although they are all negative

and strongly significant across specifications, some noteworthy differences in size do arise.

More importantly however, are differences across the structural parameters. While income

is positive across both specifications, it is more significant in the GZIOPC model, as well

as being over twice the size. Whilst this implies a standard demand function result with

tobacco consumption increasing with income levels, it also indicates a more powerful effect

for income in the generalised model. In contrast, cross-drug prices corresponding to alcohol,

marijuana, and tobacco all have noticeably smaller parameters in the GZIOPC than for the

ZIOPC. This suggests that individuals’demand for tobacco is less responsive to changes in
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drug prices than previously estimated. Other variables are similar in size and significance.

Of particular interest is a comparison of the parameter estimates in the single splitting

equation of the ZIOPC, as compared to estimates associated with its generalized variant

GZIOPC. These estimates are presented in Table 4. For the GZIOPC we witness some

very large changes across j = 1, 2 and 3 as compared to ZIOPC; here, we recall that

implicitly the restriction of the latter is that these are all equal across j.

It is interesting to put an economic interpretation on these differences. Consider the

ZIOPC and GZIOPC results: Ln(income) has a small (−0.067) but significant effect in

the ZIOPC model. The negative effect found here implies that higher income individu-

als are associated with a higher propensity for zero (i.e.., non-consumption) arising from

the splitting equation. Harris and Zhao (2007) argue that income, being a proxy for so-

cial status/class, will be negatively correlated with smoking participation rates. As with

the ZIOPC, negative (positive) coeffi cients in the GZIOPC splitting equations are also

associated with higher (lower) probabilities of tempering towards zero consumption. For

the GZIOPC, Ln(income) is insignificant and positive for j = 1 (0.067), highly significant,

negative and slightly smaller for j = 2 (−0.075), and highly significant and smaller still

for j = 3 (−0.181); similar results, not reported here, also arise when the related models

with independent errors are compared. Qualitatively similar results are in fact found for all

splitting equation and outcome equation variables. For those individuals with an underlying

propensity for low amounts of smoking (j = 1), the insignificant coeffi cient means that higher

income individuals are more likely to remain at this underlying propensity. This could imply

that for higher income earners, there is less social stigma associated with “social (infrequent)

smoking”. However, for higher underlying intensity levels (j = 2, 3) the fact that the income

effect becomes negative and increasingly pronounced as j increases implies that for higher

underlying intensity levels, increasing income is now associated with an increasing probabil-

ity of these individuals tempering this intensity down to zero consumption. In general, the

large and significant negative tempering effects in the j = 3 equation could also imply that

these factors are associated with individuals going “cold turkey”, that is, moving frequently

between high and zero consumption levels.
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Some variables that are statistically insignificant in the single ZIOPC splitting equa-

tions are highly significant in the GZIOPC ones. For example, the dummy variable that

corresponds to whether an individual’s highest level of education is Year 12 has no effect in

the ZIOPC model, but for the GZIOPC exerts a strong positive effect for j = 3. Estima-

tion using the ZIOPC can therefore be viewed as leading to splitting equation estimates

that mask large Year 12 effect variations across the j = 1, 2, 3 categories in the GZIOPC.

More generally, just because the effect of a splitting equation variable may be zero in a

non-generalised model, it does not mean that the effect might not be significantly felt across

one or more of the j = 1, 2...J categories in a generalised version. Conversely, it follows

that where we observe high levels of significance for a variable - consider the effect of having

a degree in the ZIOPC, it does not mean that such effects will be felt across all of the

j = 1, 2, 3 categories.

In general, there appears to be considerable variability in the coeffi cients corresponding

to a given covariate in the j = 1, 2, 3 splitting equations in the GZIOPC model. This

differential effect is typically more pronounced in the j = 3 equation. These findings contrast

with those for the single-splitting equation ZIOPC model. In many cases such differences

can have non-negligible ramifications with respect to the channels through which different

variables impact on smoking behavior, and the associated policy implications.

Table 5 presents a selection of overall partial effects for the correlated model variants eval-

uated at sample means. Consider the effect of Ln(Income): The ZIOPC model indicates

that income has a positive effect on the overall probability of observed zero consumption,

operating primarily through the “non-participation”effect. In contrast, the GZIOPC in-

dicates that income has no effect overall on the probability of observed zero consumption -

whereby social class effects and standard demand analysis effects seemingly work in opposite

directions to each other, thereby cancelling each other out. For the ZIOPC, income has an

effect on all j = 0, 1, 2 outcomes, but only for high consumers in the generalized variant.

Own price effects in the ZIOPC model, Ln(PT ), appear large on zero consumption, with

a one-unit increase leading to a 14 percentage point (pp) increased chance of this. For the

GZIOPC the corresponding figure is over 16.4pp. For high (j = 3) consumption levels the
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comparable figures are −8.5pp and 10.1pp, respectively. On the other hand, the effect of

being married is fairly consistent across the two approaches (indeed, almost identical across

j = 1 and 2).

To further investigate the consequences of estimating the mis-specified ZIOP and ZIOPC

models, Table 6 presents a series of estimated probabilities averaged over all individuals,

in which the extent to which non-participatory effects contribute to decision outcomes is

quantified (reassuringly, the overall probabilities for all model variants match the observed

sample means in the dataset). Such effects are obtained by estimating the probabilities

solely associated with the underlying OP component of the respective models. These prob-

abilities effectively “purge”, or “net out”, any inflation effects. For the correlated versions,

the estimated OP parameters were used to estimate these in isolation from the inflation

equation(s) - essentially setting the correlation coeffi cients to zero. Accordingly, we estimate

the amount of zero-inflation in the model - Amount (Zero-inflation) - as the difference be-

tween the overall predicted probability of zero consumption and the corresponding purged

amount. This quantity is then used to calculate the proportion of overall zero consumption

that is attributable to the effects of model inflation. Expressed as a percentage, we denote

this quantity Amount(%).

As Table 6 shows, the purged probabilities differ substantially for the GZIOP and ZIOP

models, especially for higher consumption levels. Moreover, whilst the GZIOP suggests

some nearly 50% of the zero observations can be attributed to zero-inflation, this figure is

just over 45% for the ZIOP . By comparison, the correlated models both suggest greater

levels of zero-inflation, with the generalized variant indicating a relatively higher contribution

to overall zero consumption (72% versus 63%). These findings point to the non-generalized

models underestimating the degree of overall model inflation.

V.1 MIOP application: Eurobarometer survey data

One could envisage this as a sequential process: an individual makes a decision to be informed

or not about the EU. Then, conditional on being informed, individuals express their attitude
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towards EU membership. For the case of the GMIOP , one could also envisage individuals

as having an underlying propensity for a particular attitude towards EU membership, which

could then be tempered by the extent to which they choose to be informed. As in the case of

theMIOP , these inherent choices would be tempered towards the face-saving inflated option

of neither good nor bad. Moreover individuals with an inherent propensity for believing EU

membership to be a bad thing might need a “bigger push” than those with an inherent

propensity for believing EU membership is a good thing (or vice versa), to move them away

from their inherent propensities towards neither good nor bad.

Table 7 presents the LM and LR test results. For both tests, the MIOP model is

rejected in favour of the GMIOP and GMIOPC, and we observe that the GMIOP is

rejected in favor of the GMIOPC. However, unlike the zero-inflated application in Section

??, the non-generalized models are not unanimously rejected by both tests in favour of their

corresponding generalized variants at conventional (5%) levels of significance. Specifically,

the LM test of the MIOPC versus the GMIOPC fails to reject the former at the 5% level,

although it is still possible to reject at the 10% level. It is possible that the tests against

the GMIOP model are picking-up model mis-specification due to erroneously ignoring the

correlation; see Section IV. While this result supports Bagozzi and Mukherjee (2012), the

GMIOPC results do suggest the possible presence of an asymmetry with respect to the

source of the middle-inflation. As with the ZIOP application, the similarities between

the LR and LM test statistics are indicative of a well-behaved log-likelihood function and

standard asymptotic theory performing well.

The output equation parameters for the correlated models are presented in Table 9. The

GMIOPC model has parameter estimates that are typically similar in sign, significance and

magnitude to theMIOPC. One noteworthy difference relates to the educational attainment

variables, for which the Educ low-mid becomes statistically significant in the generalized

model.

Table 9 presents the coeffi cient estimates for the MIOPC and GZIOPC models. Based

on the statistical significance of the coeffi cients in the tempering equations, face-saving effects

for the GMIOPC appear to derive overwhelmingly from only one of its tempering equations:
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The j = 2 equation associated with a propensity to view the EU as a good thing. Such

a finding is significant: It reveals an asymmetry, where respondents with an underlying

propensity to select a bad thing in the outcome equation are markedly less inclined to resort to

face-saving measures. We also observe that virtually all coeffi cients in the j = 2 equation for

the GMIOPC have similar sized coeffi cients and significance levels to the splitting equation

coeffi cients reported in Bagozzi and Mukherjee (2012), which here are presented as the

MIOPC. Similar interpretations to the original contribution therefore apply.

The overall partial effects for the MIOPC and GMIOPC models are given in Table 10.

The reported effects across all specifications are similar, being comparable in magnitude,

direction of effect and significance levels. There are a few exceptions to this. For example,

higher education-level effects appear more pronounced in the GMIOPC model for outcomes

j = 1, 2 whereas the effects of EU-bid knowledge (j = 1, 2) are comparatively stronger in

the MIOPC model. Overall these results align with the findings in Table 9, where face-

saving effects in the GMIOPC model derive from the j = 2 tempering equation: There are

essentially no significant drivers of face-saving behavior in the j = 0 tempering equation,

which appears to be redundant. Here, the GMIOPC can be viewed as being characterised

by having only a single ‘viable’tempering equation. This may account for why the LM test

for the MIOPC model - which by construction has a single tempering equation - was not

rejected. In this regard, despite there being very little to choose between with respect to

the GZIOPC and the MIOPC models, there is a benefit to estimating the former model

in that it helps to uncover asymmetries which the single-equation splitting equation of the

MIOPC may, by construction, mask.

Model summary probabilities are given in Table 11. Irrespective of model variant, the

overall probabilities are virtually identical to the sample proportions. It is useful to pin-

down the extent to which face-saving behavior impacts on respondents’choices. The overall

probabilities associated with the underlying OP component of each model are again cal-

culated alongside the corresponding probabilities “purged”of inflation effects. As was the

case under zero inflation, for the correlated versions the implied independent OP is used in

these calculations. Once more, the difference between the overall j = 1 probabilities and
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these purged ones, are denoted Amount (Middle-inflation), which can be interpreted as the

amount of middle category inflation due to face-saving behavior.

Turning to the Amount(%) statistic, of the total responses to the neither good nor bad

outcome, some 33% of these can be attributed to face-saving responses for the MIOP

model, a figure that rises to around 53% for the GMIOP model. These percentages rise

for the correlated versions, to 43% and 54%, respectively. As was found with the tobacco

consumption application in Section ??, the extent of overall model inflation in the non-

generalized models is underestimated relative to the generalized models. In the case of the

present application these differences are sizable, and, based on the results in Tables 9 to 10,

are associated with movement away from the j = 2 tempering equation.

VI Conclusions and discussion

As these new models collapse to their nested ZIOP/MIOP counterparts under a set of

simple parameter restrictions, it is possible to use standard testing paradigms to test for

these. We derive the appropriate Lagrange multiplier (LM) tests, which can be used without

having to estimate the more general model (c.f., the likelihood ratio (LR) test, for example).

Using empirical applications from two key contributions from this literature we find that the

tests generally fail dramatically in the case of the ZIOP model, but provide mixed results

for the MIOP one. Hence we provide potentially superior alternatives to the established

zero- and middle-inflated ordered probit models; we name these new models, respectively, the

generalized zero-inflated ordered probit (GZIOP ) and the generalized middle-inflated ordered

probit (GMIOP ). These models have non-negligible implications for model results. This,

we argue, may have far-reaching policy implications depending on the application in hand.

This paper proposes generalisations to the increasingly popular ZIOP andMIOP models

which allow for tempering from each underlying OP outcome towards the inflated one. We

demonstrate that each generalized variant collapses to its associated ZIOP andMIOP form

under certain linear parameter restrictions, such that all of the parameter vectors of the now

J − 1 splitting equations are equal. For both the ZIOP and MIOP models, only a single
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splitting equation requires estimation, whereas the generalized versions each estimate J − 1

of these. The equality of βj ensures that the model collapses to the ZIOP/MIOP . The

models are then applied to the data and specifications used in the original contributions of

Harris and Zhao (2007) and Bagozzi and Mukherjee (2012). LR and LM tests favor the

generalised models in both applications. This finding, we propose, is important, particularly

when recalling that Harris and Zhao (2007) and Bagozzi and Mukherjee (2012) claim to have

demonstrated the superiority of the ZIOP and MIOP approaches over the OP one. This

paper has established that further improvements can be realized by increasing the flexibility

of the ZIOP and MIOP models.

In addition to future work applying our proposed generalized models to other empirical

settings, our suggested modelling approach raises salient issues which merit further explo-

ration. Consider the cigarette consumption example: it may be the case that tempering is

characterised not by a simple binary decision - as captured by each of the J − 1 splitting

equations —but a movement down from high levels of tobacco consumption to lower levels,

which may, or may not, include zero. Although it is possible to amend the basic set-up of

our generalised models to accommodate this kind of behaviour, doing so would represent

a move towards a latent class-type set-up that would require even stricter conditions for

identification. Most significantly however, amending our proposed generalisations in such

a way would yield models that no longer constitute generalisations of the original models

proposed by Harris and Zhao (2007) and Bagozzi and Mukherjee (2012), which are the focus

of the current contribution. However, as zero- and middle-inflated models have been used

effectively to model behavior in a wide array of social, economic, and political settings, the

possibility of using these suggested innovations in similar settings represents an interesting

avenue for future research.
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Figure 3: Empirical power curves for the ZIOP (Panel A) and MIOP (Panel B) models
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Table 1: Monte Carlo rejection probabilities
Panel A Rejection probability

True model
GZIOP
vs.

ZIOP

GZIOPC
vs.

ZIOPC

GZIOPC
vs.

ZIOP
Notes

1.ZIOP (df = 13, 14, 15) 0.053 0.058 0.056 J = 3; N = 28, 813; kx = 16; kz = 18
2.ZIOPC (df = 13, 14, 15) 0.381 0.058 0.489 J = 3; N = 28, 813; kx = 16; kz = 18
3.ZIOP (df = 26, 28, 29) 0.059 0.061 0.063 J = 4; N = 28, 813; kx = 16; kz = 18
4.OP (df = 13, 14, 15) 0.252 0.358 0.239 J = 3; N = 28, 813; kx = 16; kz = 18
5.Parallel (df = 13, 14, 15) 0.141 0.140 0.144 J = 3; N = 28, 813; kx = 16; kz = 18

Panel B Rejection probability

True model
GMIOP
vs.

MIOP

GMIOPC
vs.

MIOPC

GMIOPC
vs.

MIOP
Notes

6.MIOP (df = 12, 13, 14) 0.057 0.061 0.062 J = 3; N = 9, 113; kx = 12; kz = 16
7.MIOPC (df = 12, 13, 14) 0.181 0.061 0.241 J = 3; N = 9, 113; kx = 12; kz = 16
8.MIOP (df = 7, 8, 9) 0.056 0.055 0.053 J = 3; N = 9, 113; kx =?; kz =?
9.MIOP (df = 12, 13, 14) 0.076 0.077 0.0795 J = 3; N =?; kx = 12; kz = 16
10.OP (df = 12, 13, 14) 0.484 0.788 0.657 J = 3; N = 9, 113; kx = 12; kz = 16
11.Parallel (df = 12, 13, 14) 0.253 0.677 0.503 J = 3; N = 9, 113; kx = 12; kz = 16
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Table 2: Specification test results: competing ZIOP models

Model
LM Test
statistic

df p-value
LR Test
statistic

p-value

ZIOP vs GZIOP 194 32 4.27E − 25 178 3.56E − 22
ZIOPC vs GZIOPC 207 34 1.68E − 26 202 9.09E − 26
ZIOP vs GZIOPC 221 35 7.29E − 29 212 3.33E − 27
GZIOPvs GZIOPC 27 3 5.89E − 06 34 1.98E − 07
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Table 3: Estimates of the output equation parameters for ZIOPC and GZIOPC
ZIOPC GZIOPC

Ln (Income) 0.041 (0.022)∗ 0.101 (0.023)∗∗∗

Male 0.027 (0.04) −0.013 (0.042)
Married −0.012 (0.057) 0.014 (0.049)
Pre-school 0.028 (0.054) 0.091 (0.063)
Capital −0.088 (0.035)∗∗ −0.047 (0.037)
Work −0.227 (0.054)∗∗∗ −0.26 (0.065)∗∗∗

Unemployed 0.071 (0.078) 0.118 (0.085)
Study −0.602 (0.073)∗∗∗ −0.619 (0.085)∗∗∗

English-speaking 0.121 (0.073)∗ 0.114 (0.078)
Degree −0.759 (0.078)∗∗∗ −0.728 (0.075)∗∗∗

Diploma −0.217 (0.047)∗∗∗ −0.279 (0.052)∗∗∗

Year 12 −0.332 (0.049)∗∗∗ −0.376 (0.052)∗∗∗

School −0.437 (0.082)∗∗∗ −0.435 (0.099)∗∗∗

Ln(PA) −1.49 (0.363)∗∗∗ −1.033 (0.272)∗∗∗

Ln(PM) 0.028 (0.052) 0.013 (0.037)
Ln(PT ) −0.739 (0.096)∗∗∗ −0.518 (0.081)∗∗∗

Age 1.185 (0.055)∗∗∗ 0.957 (0.064)∗∗∗

Age2 −1.084 (0.057)∗∗∗ −0.743 (0.077)∗∗∗

µ0 −8.844 (1.753)∗∗∗ −5.595 (1.377)∗∗∗

µ1 −8.577 (1.752)∗∗∗ −5.335 (1.376)∗∗∗

µ2 −7.509 (1.743)∗∗∗ −3.908 (1.373)∗∗∗

ρ −0.424 (0.136)∗∗∗ − −
ρ1 − − −0.857 (0.274)∗∗∗

ρ2 − − −0.647 (0.138)∗∗∗

ρ3 − − −0.831 (0.178)∗∗∗

` (θ) −21, 623 −21, 522

Robust standard errors in parentheses.∗∗∗, ∗∗ and ∗ denote significance
at 1%, 5% and 10% level respectively.
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Table 7: Specification test results: competing MIOP models

Model
LM Test
statistic

df p-value
LR Test
statistic

p-value

MIOP vs GMIOP 32.1 12 0.001 39.3 0.000
MIOPC vs GMIOPC 20.4 13 0.086 26.2 0.016
MIOP vs GMIOPC 37.0 14 0.001 46.0 0.000
GMIOP vs GMIOPC 9.5 2 0.009 6.7 0.035
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Table 8: Estimates of the output equation parameters for MIOPC and GMIOPC

MIOPC GMIOPC
Rural 0.028 (0.022) 0.043 (0.029)
Female 0.091 (0.037) 0.126 (0.056)
Age −0.001 (0.001) 0.001 (0.002)
Student 0.165 (0.085)∗ 0.229 (0.129)∗∗

Educ high 0.102 (0.066) −0.106 (0.111)
Educ high-mid 0.059 (0.074) −0.010 (0.136)
Educ low-mid 0.027 (0.050) −0.208 (0.094)∗∗

Political trust 0.847 (0.051)∗∗∗ 0.861 (0.059)∗∗∗

Xenophobia −0.528 (0.049)∗∗∗ −0.547 (0.054)∗∗∗

Discuss politics −0.029 (0.026) −0.021 (0.037)
Professional −0.089 (0.072) −0.084 (0.072)
Executive 0.115 (0.102) 0.118 (0.102)
Manual −0.124 (0.045)∗∗∗ −0.126 (0.046)∗∗∗

Farmer −0.043 (0.081) −0.060 (0.084)
Unemployed 0.108 (0.054)∗∗ 0.111 (0.055)∗∗

Income 0.067 (0.007)∗∗∗ 0.070 (0.007)∗∗∗

µ0 −0.616 (0.115)∗∗∗ −0.405 (0.113)∗∗∗

µ1 0.138 (0.123) 0.131 (0.110)
ρ −0.744 (0.162)∗∗∗ − −
ρ1 − − 0.231 (0.277)
ρ2 − − −0.685 (0.188)∗∗∗

` (θ) −7, 921.7745 −7, 908.6544
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Table 9: Estimates of the splitting equation parameters for MIOPC and GMIOPC

MIOPC GMIOPC
j = 0 j = 2

Rural −0.082 (0.036)∗∗ 0.018 (0.087) −0.111 (0.047)∗∗

Female −0.332 (0.073)∗∗∗ 0.079 (0.164) −0.403 (0.096)∗∗∗

Age −0.006 (0.002)∗∗∗ 0.006 (0.005) −0.008 (0.003)∗∗∗

Student −0.309 (0.149)∗∗ 1.093 (7.817) −0.421 (0.176)∗∗

Educ high −0.199 (0.123)∗ −1.123 (1.069) 0.094 (0.192)∗∗∗

Educ high-mid −0.449 (0.131)∗∗∗ −0.639 (1.030) −0.384 (0.179)∗∗

Educ low-mid −0.434 (0.095)∗∗∗ −1.200 (1.078) −0.134 (0.131)
Constant 0.586 (0.207)∗∗∗ 2.033 (1.469) 0.565 (0.252)∗∗

Discuss politics 0.187 (0.048)∗∗∗ 0.104 (0.114) 0.178 (0.059)∗∗∗

EU-bid knowledge 0.398 (0.091)∗∗∗ −0.153 (0.291) 0.408 (0.098)∗∗∗

True EU knowledge 0.126 (0.019)∗∗∗ −0.021 (0.032) 0.129 (0.022)∗∗∗

Media 0.044 (0.024)∗ −0.139 (0.087) 0.057 (0.025)∗∗
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Table 10: Overall partial effects MIOPC and GMIOPC
MIOPC GMIOPC

Common variables j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

Rural −0.005 0.012 −0.007 −0.006 0.014 −0.008
(0.004) (0.006)∗∗ (0.006) (0.004) (0.006)∗∗ (0.007)

Female −0.015 0.052 −0.036 −0.017 0.054 −0.037
(0.006)∗∗ (0.01)∗∗∗ (0.011)∗∗∗ (0.006)∗∗∗ (0.01)∗∗∗ (0.011)∗∗∗

Age 8.8e− 05 0.001 −0.001 1.6e− 04 0.001 −0.001
(1.9e− 04) (2.8e− 04)∗∗∗ (3.6e− 04)∗∗∗ (2.1e− 04) (3.8e− 04)∗∗∗ (4.3e− 04)∗∗∗

Student −0.028 0.035 −0.007 −0.025 0.032 −0.007
(0.014)∗ (0.023) (0.027) (0.022) (0.034) (0.03)

Educ high −0.017 0.023 −0.006 −0.025 0.042 −0.018
(0.011) (0.02) (0.022) (0.013)∗ (0.024)∗ (0.024)

Educ high-mid −0.01 0.081 −0.071 −0.016 0.099 −0.083
(0.013) (0.019)∗∗∗ (0.023)∗∗∗ (0.015) (0.026)∗∗∗ (0.026)∗∗∗

Educ low-mid −0.005 0.083 −0.079 −0.011 0.105 −0.094
(0.009) (0.014)∗∗∗ (0.016)∗∗∗ (0.011) (0.018)∗∗∗ (0.018)∗∗∗

Discuss 0.005 −0.033 0.028 0.008 −0.037 0.03

(0.004) (0.007)∗∗∗ (0.008)∗∗∗ (0.005) (0.008)∗∗∗ (0.008)∗∗∗

Outcome equation only variables
Political trust −0.142 −0.144 0.285 −0.137 −0.162 0.299

(0.008)∗∗∗ (0.011)∗∗∗ (0.016)∗∗∗ (0.009)∗∗∗ (0.017)∗∗∗ (0.018)∗∗∗

Xenophobia 0.088 0.09 −0.178 0.089 0.105 −0.194
(0.009)∗∗∗ (0.01)∗∗∗ (0.018)∗∗∗ (0.01)∗∗∗ (0.012)∗∗∗ (0.019)∗∗∗

Professional 0.015 0.015 −0.03 0.012 0.015 −0.027
(0.013) (0.012) (0.025) (0.012) (0.014) (0.026)

Executive −0.019 −0.02 0.039 −0.017 −0.02 0.037

(0.016) (0.016) (0.032) (0.015) (0.018) (0.033)

Manual 0.021 0.021 −0.042 0.020 0.024 −0.044
(0.007)∗∗∗ (0.008)∗∗∗ (0.015)∗∗∗ (0.007)∗∗∗ (0.009)∗∗∗ (0.016)∗∗∗

Farmer 0.007 0.007 −0.015 0.009 0.011 −0.02
(0.015) (0.016) (0.031) (0.016) (0.018) (0.033)

Unemployed −0.018 −0.018 0.036 −0.017 −0.02 0.037

(0.009)∗∗ (0.009)∗∗ (0.017)∗∗ (0.009)∗∗ (0.01)∗∗ (0.019)∗∗

Income −0.011 −0.011 0.023 −0.011 −0.013 0.024

(0.001)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗

Splitting equation only variables
EU-bid knowledge 4.6e− 05 −0.081 0.081 0.006 −0.071 0.065

(1.3e− 04) (0.017)∗∗∗ (0.017)∗∗∗ (0.013) (0.018)∗∗∗ (0.016)∗∗∗

True EU knowledge 1.5e− 05 −0.025 0.025 −0.001 −0.022 0.024

(3.9e− 05) (0.003)∗∗∗ (0.003)∗∗∗ (0.002) (0.003)∗∗∗ (0.003)∗∗∗

Media 5.2e− 06 −0.009 0.009 −0.005 −0.005 0.011

(1.5e− 05) (0.005)∗ (0.005)∗ (0.003) (0.005) (0.005)∗∗
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Online Appendix

A Lagrange multiplier (LM) test of the ZIOPC model(s)

A highly appealing specification test for the ZIOPC models versus their generalized alter-

natives is the LM test, as this only requires estimation of the simpler nested models. This

involves evaluation of the score vector of the more general model evaluated at parameter

values under the null (i.e., at ZIOPC ones). Here we present the score for the case of

correlated errors. As noted above, the GZIOPC model of equation (14) can form the basis

of an LM test of the GZIOPC versus the ZIOP and ZIOPC models. The former is tested

using H0 : βj = β and ρj = 0,∀j and the latter by H0 : βj = β and ρj = ρ, ∀j.

Using the matrix version of the general result for bivariate normal distributions that

∂Φ2 (a, b; ρ)

∂a
= φ (a) Φ

(
b− ρa√
1− ρ2

)
, (A.1)

where Φ2 (a, b; ρ) denotes the standardized bivariate normal cumulative density function

(CDF), we can define the following quantities of interest. First, define Φ+
b,j as

Φ+
b,j = Φ

(µj − z′γ)− ρj (−x′βj)√
1− ρ2j

− Φ

(µj−1 − z′γ)− ρj (−x′βj)√
1− ρ2j

 (A.2)

for j = 1, . . . , J − 2 and

Φ+
b,J−1 = Φ

(z′γ−µJ−2)− ρJ−1 (x′βJ−1)√
1− ρ2J−1

 (A.3)

for j = J − 1; and then Φ−b,j as

Φ−b,j = Φ

(µj − z′γ)+ ρj
(
x′βj

)√
1− ρ2j

− Φ

(µj−1 − z′γ)+ ρj
(
x′βj

)√
1− ρ2j

 (A.4)
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for j = 1, . . . , J − 2 and

Φ−b,J−1 = Φ

(z′γ−µJ−2)+ ρJ−1
(
−x′βJ−1

)√
1− ρ2J−1

 (A.5)

for j = J − 1. Labelling the probabilities of the GZIOPC model PGZIOPC , and using

expressions (A.2) to (A.5), the score with respect to the elements of β can be written as

∂` (θ)

∂βj
=


∑
yi=0

−xφ
(
−x′βj

)
Φ+
b,j +

∑
yi=0

−xφ
(
−x′βJ−1

)
Φ−b,J−1+

yi=J−2∑
yi>0

xφ
(
x′βj

)
Φ−b,j +

∑
yi=J−1

xφ
(
x′βJ−1

)
Φ+
b,J−1

÷ PGZIOPC
j=yi

(A.6)

for βj, j = 1, . . . , J − 1. Similarly, defining φ+a,j as

φ+a,j = φ
(
µj − z′γ

)
Φ

(−x′βj)− ρj (µj − z′γ)√
1− ρ2j

−φ (µj−1 − z′γ)Φ

(−x′βj)− ρj (µj−1 − z′γ)√
1− ρ2j


(A.7)

for j = 1, . . . , J − 2 and

φ+a,J−1 = φ
(
z′γ−µJ−2

)
Φ

x′βJ−1 − ρJ−1 (z′γ−µJ−2)√
1− ρ2J−1

 (A.8)

for j = J − 1; and then φ−a,j as

φ−a,j = φ
(
µj − z′γ

)
Φ

x′βj + ρj
(
µj − z′γ

)√
1− ρ2j

−φ (µj−1 − z′γ)Φ

x′βj + ρj
(
µj−1 − z′γ

)√
1− ρ2j


(A.9)

for j = 1, . . . , J − 2 and

φ−a,J−1 = φ
(
z′γ−µJ−2

)
Φ

(−x′βJ−1)+ ρJ−1
(
z′γ−µJ−2

)√
1− ρ2J−1

 (A.10)

for j = J − 1 permits us to write the score with respect to γ as
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∂` (θ)

∂γ
=



∑
yi=0

[
−zφ (µ0 − z′γ) +

J−2∑
j=1

−zφ+a,,j + zφ−a,J−1

]
+

yi=J−2∑
yi>0

[
−zφ−a,,j

]
× 1 [yi = j] +∑

yi=J−1
zφ+a,J−1


÷ PGZIOPC

j=yi
. (A.11)

As stated in Section II the required ordering of the boundary parameters is ensured by

specifying them as

µj = µj−1 + exp
(
ξj
)
, j = 1, 2, ...J − 2 (A.12)

where µ0 is freely estimated (Greene and Hensher 2010). Accordingly, the associated scores

with respect to µ0, ξ1, ξ2, . . . ξJ−2 are given by,

∂` (θ)

∂µ0
=

[∑
yi=0

φ (µ0 − z′γ) + φ+a,,j − φ−a,J−1

]
÷ PGZIOPC

j=0 (A.13)

+

[
yi=J−2∑
yi>0

[
φ−a,,j

]
× 1 [yi = j]

]
÷ PGZIOPC

j=yi

−
[ ∑
yi=J−1

φ+a,J−1

]
÷ PGZIOPC

j=J−1

∂` (θ)

∂ξ1
=

∑
yi=0


∑

j=1 exp (ξ1)φ (µ1 − z′γ) Φ

(
x′β1+ρj(µ1−z′γ)√

1−ρ21

)
+∑J−2

j=2 exp (ξ1)φ
+
a,,j − exp (ξ1)φ

−
a,J−1


÷ PGZIOPC

j=0 (A.14)

+

[∑
yi=1

exp (ξ1)φ (µ1 − z′γ) Φ

(
x′βj + ρj (µ1 − z′γ)√

1− ρ21

)]
÷ PGZIOPC

j=1

+

[
yi=J−2∑
yi>1

exp (ξ1)φ
−
a,,j

]
÷ PGZIOPC

j=y +

[ ∑
yi=J−1

− exp (ξ1)φ
+
a,J−1

]
÷ PGZIOPC

j=J
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∂` (θ)

∂ξ2
=

∑
yi=0


∑

j=2 exp (ξ2)φ (µ2 − z′γ) Φ

(
x′β2+ρ2(µ2−z′γ)√

1−ρ22

)
+
∑J−2

j=2 exp (ξ2)φ
+
a,,j − exp (ξ2)φ

−
a,J−1


÷ PGZIOPC

j=yi
(A.15)

+

[∑
yi=2

exp (ξ2)φ (µ2 − z′γ) Φ

(
x′β2 + ρ2 (µ2 − z′γ)√

1− ρ22

)]
÷ PGZIOPC

j=2

+

[
yi=J−2∑
yi>2

exp (ξ2)φ
−
a,,j

]
÷ PGZIOPC

j=y +

[ ∑
yi=J−1

− exp (ξ2)φ
+
a,J−1

]
÷ PGZIOPC

j=J−1

...

∂` (θ)

∂ξJ−1
=

[ ∑
yi=J−1

− exp
(
ξJ−1

)
φ+a,J−1

]
÷ PGZIOPC

j=J−1 (A.16)

Finally, the derivatives of the elements of ρ ∀j = 1, 2, ...J − 2 are given by

∂` (θ)

∂ρj
=

[∑
yi=0

[
φ2
(
µj − z′γ,− x′βj; ρ1

)
− φ2

(
µj−1 − z′γ,− x′βj; ρj

)]]
÷ PGZIOPC

j=0 (A.17)

+

[∑
yi=j

−
[
φ2
(
µj − z′γ,x′βj;−ρ1

)
− φ2

(
µj−1 − z′γ,x′βj;−ρj

)]]
÷ PGZIOPC

j=yi

whereas for ρJ−1 we have

∂` (θ)

∂ρJ−1
=

[∑
yi=0

−φ2
(
z′γ − µJ−2,− x′βJ−1;−ρJ−1

)]
÷ PGZIOPC

j=0 (A.18)

+

[∑
J−1

φ2
(
z′γ − µJ−2,x′βJ−1; ρJ−1

)]
÷ PGZIOPC

j=J−1

In estimation we ensure a well-defined ρj, j = 1, . . . , J − 1, such that for −1 < ρj < 1

we use the hyperbolic tangent function transformation, ρj = tanh ρ∗j , where ρ
∗
j is freely

estimated. If such a transformation is followed, then the above derivatives for ρ need to

be multiplied by ∂ tanh ρ∗j
/
ρ∗j = 1− tanh2 ρ∗j . Using all of the above quantities, the LM

statistic is given by

LMZIOP
correlated = (∇β,∇γ,∇µ0,∇ξ,∇ρ)′

[
I
(
θ̂R

)]−1
(∇β,∇γ,∇µ0,∇ξ,∇ρ) (A.19)
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which is evaluated at the relevant parameter restrictions as defined by the appropriate null

hypothesis. Under H0, LMZIOP
correlated ∼ χ2q, where q is the number of parameter restrictions

under the appropriate H0. If the alternative model is the uncorrelated generalised version,

one would omit the relevant partition of the score vector (∇ρ). As is common practice, we

use the outer product of gradients (OPGs) to estimate the inverse of the variance of the

score vector,
[
I
(
θ̂R

)]−1
(Greene 2012).

B The GeneralizedMiddle-Inflated Ordered Probit Model

(GMIOP )

As noted, two contributions - Bagozzi and Mukherjee (2012) and Brooks et al. (2012)

- independently proposed the middle-inflated ordered probit (MIOP ) model to allow for

inflation in any arbitrary category. Bagozzi and Mukherjee (2012) were the first to use the

term ‘middle-inflated’. Brooks et al. (2012) refer to their model merely as an ‘inflated ordered

probit’. We use the former nomenclature, and suggest that the term inflated ordered probit

(IOP ) model may be better viewed as encompassing both the ZIOP and theMIOP model

classes. In keeping with Section II, we develop the GMIOP framework in the context of J

outcomes. Whilst in both original MIOP contributions the empirical analysis is restricted

to three outcomes, the model developed in this section naturally also applies to instances

where J > 3.

Consider again an OP model as a starting point, where each individual i has an unob-

served underlying propensity

y∗ = z′γ + η (B.1)

such that y∗ translates into observed outcomes y via the usual OP form. We now assume

that a middle category y ∈ {1, 2...J − 2} is associated with an “excess of observations”

and/or they can be hypothesised to have arisen from two distinct data generating processes.

Label this category m. Again, define r∗ as an underlying latent variable that represents an

overall propensity to choose the inflated category m over any other, which translates into an
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“observed”binary outcome. Let this be a linear (in the parameters, β) function of observed

characteristics xi and a standard normal random error term ε

r∗ = x′β + ε. (B.2)

Again, a two-regime scenario arises where for observations in regime r = 0, the inflated

outcome is observed; but for those in r = 1, any of the possible outcomes in the choice set

j = {0, 1, 2...J−2, J−1} - including the inflated category m —can be observed. Accordingly,

overall MIOP probabilities under the assumption of independent errors are given by

Pr(yi) =


Pr (y = 0 |xi, zi ) = Φ (x′iβ)× Φ (µ0 − z′iγ)

Pr (y = j |xi, zi ) = Φ (x′iβ)× [Φ (µ1 − z′iγ)− Φ (µ0 − z′iγ)] +M

Pr (y = J − 1 |xi, zi ) = Φ (x′iβ)×
[
1− Φ

(
µJ−2 − z′iγ

)] (B.3)

whereas for correlated errors we have that

Pr(yi) =


Pr (y = 0 |xi, zi ) = Φ2 (µ0 − z′iγ,x′iβ;−ρ)

Pr (y = j |xi, zi ) = Φ2 (µ1 − z′iγ,x′iβ;−ρ)− Φ2 (µ0 − z′iγ,x′iβ;−ρ) +M

Pr (y = J − 1 |xi, zi ) = Φ2

(
x′iβ, z

′
iγ−µJ−2; ρ

)
(B.4)

where M = 0 if y 6= m and

M = Φ (−x′iβ)

iff y = m. This implies that for the model with independent errors,

Pr (y = m |xi, zi ) = Φ (x′iβ)× [Φ (µ1 − z′iγ)− Φ (µ0 − z′iγ)] + 1− Φ (x′iβ) (B.5)

and for the case of correlated errors

Pr (y = m |xi, zi ) = Φ2 (µ1 − z′iγ,x′iβ;−ρ)− Φ2 (µ0 − z′iγ,x′iβ;−ρ) + 1− Φ (x′iβ) (B.6)

In such a way, the probability of a single, middle category has again been inflated. Diagram-
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matically, this is depicted on the left hand side of Figure 2, where we again emphasize that

m can assume any of the values in the set j ∈ {1, 2...J − 2}. As in the case of the ZIOP ,

we reiterate that the model is estimated simultaneously.

Following logic analogous to that used in Section II, we generalize the inflation process

for m. This is illustrated in the right-hand panel of Figure 2: For any given propensity

towards a given category j 6= m in the outcome equation, there is a movement towards an

inflated middle category, m.

Let these propensities towardsm be determined, respectively, by J−1 splitting equations

- each corresponding to a non-inflated category, namely

r∗j 6=m = x′βj + εj (B.7)

such that the probability of a movement towards the inflated middle category, m, is given

by

Pr(rj 6=m = 0) = Φ
(
−x′βj

)
(B.8)

Under independence and standard normality, the overall probabilities for non-inflated out-

comes are

Pr(yi) =



Pr (y = 0 |xi, zi ) = Φ (µ0 − z′iγ)× Φ (x′iβ0)

Pr
(
y = j̃ |xi, zi

)
=
[
Φ
(
µj̃ − z′iγ

)
− Φ

(
µj̃−1 − z′iγ

)]
× Φ

(
x′iβj̃

)

Pr (y = m |xi, zi ) =



[
Φ (µm − z′iγ)− Φ

(
µm−1 − z′iγ

)]
+Φ (µ0 − z′iγ)× Φ (−x′iβ0)︸ ︷︷ ︸

a

+
∑
j̃

[
Φ
(
µj̃ − z′iγ

)
− Φ

(
µj̃−1 − z′iγ

)]
× Φ

(
−x′iβj̃

)
︸ ︷︷ ︸

b

+
[
1− Φ

(
µJ−2 − z′iγ

)]
× Φ

(
−x′iβJ−1

)︸ ︷︷ ︸
c

Pr (y = J − 1 |xi, zi ) =
[
1− Φ

(
µJ−2 − z′iγ

)]
× Φ

(
x′iβJ−1

)

.

(B.9)

where j̃ includes all middle categories excluding the inflated one. Inflation in category m
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is still allowed for by the additional terms of a, b and c in equation (B.9). Expression (B.9)

is the generalized middle-inflated ordered probit (GMIOP ) model. Relaxing the assump-

tion of independent errors leads to the correlated generalized middle-inflated ordered probit

(GMIOPC) model of

Pr(yi) =



Pr (y = 0 |xi, zi ) = Φ2(µ0 − z′iγ,x′iβ0;−ρ0)

Pr
(
y = j̃ |xi, zi

)
= Φ2

(
µj̃ − z′iγ,x′iβj̃;−ρj̃

)
− Φ2

(
µj̃−1 − z′iγ,x′iβj̃;−ρj̃

)

Pr (y = m |xi, zi ) =



[
Φ (µm − z′iγ)− Φ

(
µm−1 − z′iγ

)]
+Φ2 (µ0 − z′iγ,− x′iβ0; ρ0)︸ ︷︷ ︸

a

+
J−2∑
j̃=1

 Φ2

(
µj̃ − z′iγ,− x′iβj̃; ρj̃

)
−Φ2

(
µj̃−1 − z′iγ,− x′iβj̃; ρj̃

)


︸ ︷︷ ︸
b

+Φ2

(
z′iγ−µJ−2,−x′iβJ−1;−ρJ−1

)
︸ ︷︷ ︸

c

Pr (y = J − 1 |xi, zi ) = Φ2

(
z′iγ − µJ−2,x′iβJ−1; ρJ−1

)
(B.10)

As in (B.9), inflation arises in category m due to the additional terms of a, b and c. The

model is characterized by J − 1 correlation coeffi cients ρj ∀ j 6= m, which correspond to all

categories apart from the middle-inflated one. Specifically, these encompass the categories at

each end of the choice spectrum, for which we have ρ0 and ρJ−1; and all of the j̃ non-inflated

middle categories, namely ρj̃ ∀ j̃.

As in Section (II), consider imposing the linear set of restrictions that β0 = βj̃ = βJ−1 =

β and ρ0 = ρj̃ = ρJ−1 = ρ on equation (B.10); setting β0 = βj̃ = βJ−1 = β implies that the
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tempering propensities for all of the J − 1 splitting equations are identical. This yields

Pr(yi) =



Pr (y = 0 |xi, zi ) = Φ2(µ0 − z′iγ,x′iβ;−ρ)

Pr
(
y = j̃ |xi, zi

)
= Φ2

(
µj̃ − z′iγ,x′iβ;−ρ

)
− Φ2

(
µj̃−1 − z′iγ,x′iβ;−ρ

)

Pr (y = m |xi, zi ) =



[
Φ (µm − z′iγ)− Φ

(
µm−1 − z′iγ

)]
+Φ2 (µ0 − z′iγ,− x′iβ; ρ)︸ ︷︷ ︸

a

+
∑
j̃

 Φ2

(
µj̃ − z′iγ,− x′iβ; ρ

)
−Φ2

(
µj̃−1 − z′iγ,− x′iβ; ρ

)


︸ ︷︷ ︸
b

+Φ2

(
z′iγ−µJ−2,−x′iβ;−ρ

)︸ ︷︷ ︸
c

Pr (y = J − 1 |xi, zi ) = Φ2

(
z′iγ − µJ−2,x′iβ; ρ

)
(B.11)

where the expressions for Pr (y = 0 |z,x), Pr
(
y = j̃ |z,x

)
and Pr (y = J − 1 |z,x) immedi-

ately collapse to those in the MIOPC, given in expression (B.4). We stress here that the

Pr
(
y = j̃ |z,x

)
are equivalent to cases of Pr (y = j |z,x) ∀j = 1, 2, ...J − 2 where M = 0.

Using (B.4), subtracting these terms from one yields

Pr (y = m) = Φ2 (µm − z′iγ,x′β;−ρ)− Φ2

(
µm−1 − z′iγ,x′β;−ρ

)
+ 1− Φ (x′β) (B.12)

That is, the GMIOPC collapses to and therefore nests theMIOPC. Further, setting ρ = 0

in (B.12) yields probabilities that are identical to the MIOP probabilities in expression

(B.6), viz.

Pr (y = m |xi, zi ) = Φ (x′iβ)× [Φ (µ1 − z′iγ)− Φ (µ0 − z′iγ)] + 1− Φ (x′iβ) (B.13)

The GMIOPC also collapses to the MIOP , albeit under the alternative set of parameter

restrictions β1 = β2 = β3... = βJ−1 and ρj = 0 ∀ j = 0, j̃, J − 1. Applying the latter

set of restrictions implicitly reduces the GMIOPC model to the GMIOP . Equivalently,

imposing the parameter restrictions β0 = βj̃ = βJ−1 on the GMIOP model leads it to nest

56



the MIOP resulting in GMIOP probabilities that are identical to the MIOP probabilities

in (B.3). Diagrammatically, this means that the model depicted on the right of Figure 2

nests the model depicted on the left. Testing the parameter restrictions associated with these

model variants entails testing (i) the more flexible functional form of the GMIOPC model

versus the simpler nested forms of the MIOPC and MIOP models and (ii) the GMIOP

versus the MIOP model.

Diagrammatically, this is depicted on the left hand side of Figure 2, where we again

emphasize that m can assume any of the values in the set j ∈ {1, 2...J−2}. As in the case of

the ZIOP , we reiterate that the model is estimated simultaneously. Diagrammatically, this

means that the model depicted on the right of Figure 2 nests the model depicted on the left.

Testing the parameter restrictions associated with these model variants entails testing (i)

the more flexible functional form of the GMIOPC model versus the simpler nested forms of

the MIOPC and MIOP models and (ii) the GMIOP versus the MIOP model. As with

the GZIOP model, the GMIOP is still an inflated ordered probit model. The ordering

of outcomes is still preserved, and middle-inflation arises due to J − 1 distinct DGP s, as

opposed to just one.

As with the GZIOP model, the GMIOP is still an inflated ordered probit model. The

ordering of outcomes is still preserved, and middle-inflation arises due to J−1 distinctDGP s,

as opposed to just one. Further, as with the GZIOP , a straightforward test of hypotheses

can be undertaken using a standard LR test or LM tests. As the GMIOPC score vector

closely follows that for the GZIOPC, it is presented in Appendix B.1.

B.1 MIOP score vector

To aid notation and to coincide with our empirical application in section V.1, we assume

that J = 3, and label the ordered choices as j = 0, 1, 2 (negative, indifferent, positive),

where j = 1 is the hypothesized inflated category. Here the explicit form of the GMIOPC
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probabilities will be

Pr (yi) =



0 = Φ2 (µ0 − z′γ,x′β0;−ρ0)

1 =


Φ (µ0 + exp (ξ1)− z′γ)− Φ (µ0 − z′γ)

+Φ2 (µ0 − z′γ,−x′β0; ρ0)

+Φ2 (z′γ−µ0 − exp (ξ1) ,−x′β2;−ρ2)

2 = Φ2 (z′γ−µ0 − exp (ξ1) ,x
′β2; ρ2)

. (B.14)

The score with respect to γ (∇γ) will be

∂` (θ)

∂γ
=



∑
yi=0

[
−zφ (µ0 − z′γ)× Φ

(
x′β0+ρ0(µ0−z′γ)√

1−ρ20

)]
+

∑
yi=1


(−zφ (µ0 + exp (ξ1)− z′γ) + zφ (µ0 − z′γ)) +

−zφ (µ0 − z′γ)× Φ

(
(−x′β0)−ρ0(µ0−z′γ)√

1−ρ20

)
+

zφ (z′γ−µ0 − exp (ξ1))× Φ

(
(−x′β2)+ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)
+

∑
yi=J−1

[
zφ (z′γ−µ0 − exp (ξ1))× Φ

(
x′β2−ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)]


÷PGMIOPC

j=yi
.

(B.15)

And for the boundary parameters, ∇µ0,∇ξ1

∇µ0 =



∑
yi=0

[
φ (µ0 − z′γ)× Φ

(
x′β0+ρ0(µ0−z′γ)√

1−ρ20

)]
+

∑
yi=1


φ (µ0 + exp (ξ1)− z′γ)− φ (µ0 − z′γ) +

φ (µ0 − z′γ)× Φ

(
(−x′β0)−ρ0(µ0−z′γ)√

1−ρ20

)
+

φ (z′γ−µ0 − exp (ξ1))× Φ

(
(−x′β2)+ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)
+

∑
yi=J−1

[
φ (z′γ−µ0 − exp (ξ1))× Φ

(
x′β2−ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)]


÷ PGMIOPC

j=yi
.

(B.16)
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and

∇ξ1 =


∑
yi=1

 exp (ξ1)φ (µ0 + exp (ξ1)− z′γ) +

(− exp (ξ1))φ (z′γ−µ0 − exp (ξ1))× Φ

(
(−x′β2)+ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)
+

∑
yi=J−1

[
(− exp (ξ1))φ (z′γ−µ0 − exp (ξ1))× Φ

(
x′β2−ρ2(z′γ−µ0−exp(ξ1))√

1−ρ22

)]
÷PGMIOPC

j=yi
.

(B.17)

The score with respect to β0 (∇β0) and β2 (∇β2) will respectively be

∇β0 =


∑
yi=0

[
xφ (x′β0)× Φ

(
(µ0−z′γ)+ρ0(x′β0)√

1−ρ20

)]
+∑

yi=1

[
−xφ (−x′β0)× Φ

(
(µ0−z′γ)−ρ0(−x′β0)√

1−ρ20

)
+

]
÷ PGMIOPC

j=yi
(B.18)

and

∇β1 =


∑
yi=1

[
−xφ (−x′β2)× Φ

(
(z′γ−µ1)+ρ2(−x′β2)√

1−ρ22

)]
∑

yi=J−1

[
xφ (−x′β2)× Φ

(
(z′γ−µ1)−ρ2(x′β2)√

1−ρ22

)]
÷ PGMIOPC

j=yi
(B.19)

Deriving the score vector for the LM test is again, straightforward. Define: POP
j as

the standard OP probabilities implied by equation (3); PMIOP
j as those for the MIOP in

expression (B.3); PGMIOP
j as those for the GMIOP model of expression (B.9); and finally,

P 0 as the tempering equation probability of Φ (x′β0), P
J−1 as the tempering equation prob-

ability of Φ
(
x′βJ−1

)
, and P j̃ as the tempering equation probabilities of Φ

(
x′βj̃

)
, where j̃

captures all middle outcomes that are not inflated.

As with the case of the GZIOP , we maintain the necessary ordering of the boundary

parameters by specifying them as µj = µj−1 + exp
(
ξj
)
, where µ0 is freely estimated, and

where for ease of notation, we assume that J = 3. The elements of the score vector are given
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by

∂` (θ)

∂γ
=



∑
yi=0

−zµ̃−1P 0

+
∑
yi=1

(
−zµ̃0 − zµ̃−1 (1− P 0) + zµ̃1 (1− P 2)

)
+
∑
yi=2

zµ̃1P
2

÷ P
GMIOP
j=yi

(B.20)

∂` (θ)

∂µ0
=

[∑
yi=0

µ̃−1P
0

]
÷ PGMIOP

j=0 + (B.21)[∑
yi=1

µ̃0 + µ̃0
(
1− P 0

)
− µ̃1

(
1− P 2

)]
÷ PGMIOP

j=0 +[∑
yi=1

−µ̃1P 2
]
÷ PGMIOP

j=2

∂` (θ)

∂ξ
=

[∑
yi=1

exp (ξ) µ̃1 − exp (ξ) µ̃1
(
1− P 2

)]
÷ PGMIOP

j=1 + (B.22)[∑
yi=2

− exp (ξ) µ̃1P
2

]
÷ PGMIOP

j=2

∂` (θ)

∂β0
=

[∑
yi=0

xφ (x′β0)P
OP
j=0

]
÷ PGMIOP

j=0 + (B.23)[∑
yi=1

−xφ (x′β0)× POP
j=0

]
÷ PGMIOP

j=1

∂` (θ)

∂β2
=

[∑
yi=1

−xφ (x′β0)P
OP
j=2

]
÷ PGMIOP

j=1 + (B.24)[∑
yi=2

xφ (x′β2)× POP
j=2

]
÷ PGMIOP

j=2

As with the GZIOP , in estimation we ensure a well-defined ρj, j = 1, . . . , J − 1, such

that ρj ∈ (−1, 1) where we use the hyperbolic tangent function transformation, ρj = tanh ρ∗j ,
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where ρ∗j is freely estimated. Following such a transformation the above derivatives for ρ

require multiplication by ∂ tanh ρ∗j
/
ρ∗j = 1− tanh2 ρ∗j . Using all of the above quantities, the

LM statistic is given by

LMMIOP
correlated = (∇β,∇γ,∇µ0,∇ξ,∇ρ)′

[
I
(
θ̂R

)]−1
(∇β,∇γ,∇µ0,∇ξ,∇ρ) (B.25)

which is evaluated at the relevant parameter restrictions as defined by the appropriate null

hypothesis. Under H0, LMMIOP
correlated ∼ χ2q, where q is the number of parameter restrictions

under the appropriate H0. Again,
[
I
(
θ̂R

)]−1
is estimated as before, and one would remove

∇ρ where the uncorrelated generalised variant is the alternative model.

C Model coherency and identification

Accordingly, it is important to ascertain whether the proposed discrete choice model gen-

eralisations are, what is often termed in the literature, “coherent”or “logically consistent”

(see for instance Maddala 1983, Ch.5). This entails ensuring that the model’s parameters are

uniquely identified and the associated probabilities are well-defined and sum to unity. For

expositional clarity we demonstrate this using the GZIOP model with uncorrelated errors,

noting that extensions to the GMIOP and with correlated errors can also be demonstrated.

Lastly, we demonstrate that the generalised ordered probit (‘GOP’) models of Terza (1985)

and Pudney and Shields (2000), which as arguably characterised by incoherency (Greene,

Harris, Hollingsworth, and Weterings 2014), neither nest, nor are nested by the GOP.

C.1 Unique identification

Ensuring that the parameters are uniquely identified is akin to ensuring that the model

cannot simultaneously generate more than one value of y simultaneously. In this respect,

if one can simulate the dependent variable, then this suggests that the model is, indeed,

coherent (implying that the parameters are uniquely identified). Here, consider simulating

along the lines of the sequencing suggested in the model descriptions above:
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1. Consider the ỹ∗ = z′γ+u equation.With known γ and boundary parameters µ, “first

stage” ỹ values can be straightforwardly simulated by simply simulating u from an

assumed N (0, 1) distribution by the usual relationship between the simulated ỹ∗ and

µ.

2. This uniquely places an individual in one, and only one, of the j = 0, ..., J − 1 ỹ

outcomes.

3. Individuals in the ỹ = 0 category are allocated to observed y = 0.

4. For individuals falling uniquely into the ỹ = 1 category one can simulate their observed

outcome by consideration of r∗j=1 = x′βj=1 + εj=1 :

(a) With known βj=1 it is straightforward to simulate r
∗
j=1 by simulating εj=1, again

from an assumed N (0, 1) distribution.

(b) The position of the simulated index r∗j=1 with respect to 0, uniquely simulates

rj=1; rj=1 = 1
(
r∗j=1 > 0

)
.

(c) With ỹ = 1 and rj=1 in hand, yj=1 is uniquely determined by the observability

criteria defined above, here explicitly, yj=1 = ỹrj=1.

5. Similarly, for all individuals uniquely falling into the ỹ = 2 category, observed yj=2 =

ỹrj=2, with rj=2 being determined as above by 1
(
r∗j=2 > 0

)
.

6. And so on, for all other j ≥ 3.

7. Equivalently, y0 can be also be simulated as

1 (z′γ + u < µ0) +
∑J−1

j=1
1
([
µj−1 < z

′γ + u < µj
] [
x′βj + εj < 0

])
with the usual convention of µJ−1 = ∞. As all components of this are mutually ex-

clusive, this uniquely maps on to a single value for all observed y (similar expressions

apply for the remaining j).
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Thus although there is nothing in the model to prevent the “existence”of several of the rj

variables “being equal to one”, apart from the one corresponding to the uniquely determined

ỹj value, all others are redundant. The reason for this, follows from the more general latent

class models (of which, our approach, is a special case, as described in the text), in which

individuals can only be in any one particular class (at a given point in time), therefore

behaviours in all other classes simply do not exist. In this way, our approach mirrors that

of the standard latent class approach.

C.2 Well-defined probabilities

We now explore if our proposed models have well-defined probabilities. Significantly, it is

straightforward to show that model probabilities all lie within the unit circle and sum to

unity. For ease of exposition consider the GZIOP with J = 3. Here we have that

P0 = Φ (µ0 − z′γ) + [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) + Φ (z′γ−µ1) Φ (−x′β2)

P1 = [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)

P2 = Φ (z′γ−µ1) Φ (x′β2)
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So
∑

j Pj is

= Φ (µ0 − z′γ) + [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) + Φ (z′γ−µ1) Φ (−x′β2)

+ [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)

+Φ (z′γ−µ1) Φ (x′β2)

= Φ (µ0 − z′γ)

+ [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] [1− Φ (x′β1)] + [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)

+Φ (z′γ−µ1) [1− Φ (x′β2)] + Φ (z′γ−µ1) Φ (x′β2)

= Φ (µ0 − z′γ) +

[Φ (µ1 − z′γ)− Φ (µ0 − z′γ)]− [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)

+ [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)

+Φ (z′γ−µ1)− Φ (z′γ−µ1) Φ (x′β2) + Φ (z′γ−µ1) Φ (x′β2)

= Φ (µ0 − z′γ)

+ [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)]

+Φ (z′γ−µ1)

= 1

Finally, it is evident that all individual outcome probabilities must lie in the unit circle:

they are all composed of positive, or sums of positive, components (due to the Φ (.) transfor-

mation) and therefore are all positive. And as the sum across j has been above shown to sum

to unity, then the individual ones are definitionally in the (0, 1) space, and are accordingly

well-defined.

C.3 Comparison/equivalence with a standard Generalised Ordered

Probit (GOP ) model

The literature on discrete choice is characterised by a number of contributions which pro-

pose generalisations of the ordered probit model. A well-known and popular approach is
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found in the generalised ordered probit (‘GOP’) models of Terza (1985) and Pudney and

Shields (2000), in which the threshold parameters are allowed to vary. Here, Greene, Harris,

Hollingsworth, and Weterings (2014) argue that because the ordering of the thresholds are

not enforced in these models, the predicted probabilities can lie outside of the range of zero

and one. As demonstrated above, our proposed generalisations do not suffer from this form

of incoherency. However, of related interest is whether under certain parameter restrictions,

our model either nests, or is nested, by the GOP. Put another way, it be the case that our

proposed extensions to the ZIOP and MIOP models, and their generalizations are simply

re-parameterizations of the more usual generalised ordered probit (GOP ) model. We now

explose, and subsequently discount this possibility using the example of a GZIOP model.

In its most usual form, the boundary parameters in a GOP model would be specified as

(REFS)

µi0 = x′iδ0

µi1 = µi0 + exp (x′iδ1)

...

so that, in particular, P0 in a GOP would be

Pi0 = Φ (x′iδ0 − z′iγ)

so compared to the same for the GZIOP means that equity would imply that

Φ (x′iδ0 − z′iγ) = Φ (µ0 − z′γ) +

[Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) +

Φ (z′γ−µ1) Φ (−x′β2)

clearly there are no obvious restrictions under which this condition would hold. On this

basis, one would conclude that the proposed new models are not simple re-parameterisations
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of a GOP model.

D Hit-and-miss tables

To evaluate the predictive performance of our models we construct hit—and—miss tables,

which provide information about the proportion of correct predictions. This involves cross-

tabulating the predictions of a given model obtained using the maximum probability rule,

viz.,

ŷi = m if P̂im = max(P̂i0, P̂i1, P̂i2, ..., P̂iJ−1) (D.1)

against the observed outcomes in a J×J contingency table, where P̂ij denotes the predicted

probability of outcome j arising for respondent i. The proportion of correct predictions will

be given by the sum of all J diagonal elements divided by the total number of observations

N , that is

CP =
1

N

N∑
i=1

1 (ŷi = yi) (D.2)

Analgously, for each j = 0, 1, 2, ..., J—1 this will be obtained by dividing the number of

correct predictions within each category by the total number of predictions for that category.

We note here that both of our empirical applications are characterised by one outcome

dominating all others: in the ZIOP application 76% of observations are non-smokers; for

the MIOP application, 56% of respondents answered that joining the EU is a ‘good thing’.

Expression (D.2) is therefore adjusted to accommodate the possibility that a high percentage

of correct predictions given by (D.2) does not necessarily mean that a statistical model has

a good prediction performance. This methodological approach is due to Merton (1981) and

Henriksson and Merton (1981), and mitigates the problem of what the authors refer to as

a ‘stopped-clock’strategy when evaluating forecasts. In our example, this translates to the

traditional ‘hit and miss’approach arguably placing too much weight on the most heavily

chosen outcome.

Here, we follow Kim, Mizen, and Chevapatrakul (2008) and Rosa (2009), who adapt the

above approach to give a more reliable criterion of predictive ability when one categorical
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outcome dominates all others in a discrete ordered setting. Following the maximum prob-

ability rule in (D.1), let be the proportion of the correct predictions made by ŷi when the

true state is given by yi = j be calculated using

CP ∗j =
1
N

∑N
i=1 1 (ŷi = j) 1 (yi = j)
1
N

∑N
i=1 1 (yi = j)

. (D.3)

The more reliable criterion is given by

CP ∗ =
1

J − 1

[
J−1∑
j=0

CPj − 1

]
(D.4)

where following Section II, J = 0, 1, 2....J − 1 is the number of categorical outcomes. The

measure lies between —1/J—1 and 1: a value of —1/J—1 ≤ CP < 0 implies a forecasting

performance worse than the stopped—clock strategy; ; a value of CP = 1 suggests zero

predictability, which is consistent with the ‘stopped clock’ strategy; a value of CP = 1

implies a perfect forecasting model, which is consistent with CPj = 1, ∀ j = 0, 1, 2, ...J − 1.

Tables D.1 and D.2 present summary measures for the respective ZIOP and MIOP

applications from hit—and—miss tables both within sample and for a 10% ‘hold-out’sample.

In all both cases, the results suggest the generalised models out-perform the other models,

although there is some disagreement between the correlated and independent variants.
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