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Graphene fragments spanning a wide range of size and shape were studied computationally using
the Debye scattering equation. The calculated diffraction patterns were analyzed using the Scherrer
equation to infer the fragment size, L,. Comparison with the known fragment sizes reveals a strong
affine relationship between L, and the Scherrer quantity A/(Bcos#). To preserve this relationship,
we propose modifying the Scherrer equation to include an empirical additive constant. Our approach
solves the well-known problem of size-dependence in the shape factor and yields a universal expres-
sion by defining L, as the square-root of the fragment area. The relationship between observed
diffraction peak positions and unit cell parameters is also discussed.

I. INTRODUCTION

The determination of layer size is an important task
for the characterisation of many classes of carbon ma-
terials such as carbon blacks, glassy carbon, graphite,
and graphene. While Raman spectroscopy is a popular
non-destructive technique for layer size determination [1],
the most accurate bulk values are obtained from powders
using X-ray diffraction. Analysis of diffraction patterns
involves the use of the Scherrer equation,

K\
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which connects the width, B, and position, €, of a diffrac-
tion peak to the physical size of the crystallite, L, via the
wavelength, A, and a dimensionless constant, K. While
there is no unique choice, the (002) peak is commonly
used to determine the crystallite size in the prismatic di-
rection (L.), while the (10) and (11) peaks are popular
choices to determine size in the basal plane (L,).

The most important parameter in the Scherrer equa-
tion is the quantity K, also known as the shape factor.
In 1918, Scherrer [2] derived a general value of K'=0.94,
while the first derivation of a shape factor specific for
carbon was by Warren in 1941 [3], who proposed using
K=1.84 for L,. This value, which was calculated us-
ing rhombus-shaped fragments, remains in common use.
Another widely-used shape factor is K=0.89, which was
derived by WL Bragg [4] and first used for carbon L.
values by Biscoe & Warren [5]. In later work, Warren
and Bodenstein [6] performed analysis on circular frag-
ments and proposed K=1.77 for L,. The choice of K
was again revisited in 2004 by Iwashita et al. [7] who
performed inter-laboratory tests and suggested a single
universal value of K=1 for all crystallite directions. In a
separate article, Warren and Bodenstein [8] also reported
a further complexity whereby the L, shape-factor is size-
dependent, varying from 1.1 up to 2.0. This leads to a cir-
cular argument whereby K depends on L,, which in turn
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depends on K. This problem was recently examined by
Fujimoto [9], Dopita et al. [10] who used the Debye scat-
tering equation [11] to study stacked graphitic layers of
varying size and shape. Both studies noted a significant
size-dependence for small fragments with L, < 100 A.

Another complexity in using the Scherrer equation is
the meaning of the quantity L. While it is unambiguous
how to define L., this being simply the number of layers
multiplied by the interlayer spacing, the definition of L,
is more problematic. The original 1941 paper by Warren
defines L, in an opaque manner via the formula
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where by and by are the hexagonal in-plane reciprocal
lattice vectors, N1 and Ny are the number of unit-cells in
real space and G is a unit-vector parallel to the reflection
of interest. In their 1966 article, Warren and Bodenstein
note that Eq. 2 is equivalent to the definition L, = Na X
\/3/2 where Na is the side-length of a 60° rhombus. In
the same article, they introduce a new definition of L,
for a circular fragment, defining it as the ratio of the
area to the diameter, yielding the expression L, = R X
/2, where R is the radius of the fragment. Another
measure of layer size was proposed by Diamond [12] who
introduced the expression L, = 1.768v/N, where N is
the number of atoms in the layer. In 2002, Ruland and
Smarsly [13] proposed a completely general definition of
L, employing a series of integrals involving distributions
of chord lengths, while a recent study by Puech et al. [14]
defined L, as the diameter of circular fragments.

In this work we revisit the Scherrer equation using a
large set of graphene fragments of varying shape and size.
Using the Debye scattering equation and an intuitive
area-based definition of L,, we identify a strong affine
correlation between L, and the quantity A/(B cos8) de-
fined in Eq. 1. Based on this observation, we introduce a
modified Scherrer equation which includes a small addi-
tive constant. This new form eliminates almost all of the
size-dependence, is independent of the diffraction peak,
and works equally well for a variety of regular polygons.




II. METHODOLOGY

Following in the spirit of Diamond [12], we define L,
using the area of a graphene fragment, via the expression:

L, = area (3)

This form is easy to interpret: for a square fragment L,
is just the side length, while for other regular shapes a
simple relationship can be determined. For example, a
circle of diameter D has L, = D x /7/2 = 0.89D while
a 60° rhombus of side-length D has L, = D x (3/4)"/* ~
0.93D. Using these geometric factors, it is straightfor-
ward to convert common literature values of the Scher-
rer shape factor to their Eq. 3 equivalents: K=1.84 for
a rhombus becomes 1.98, while K=1.77 for a circle be-
comes 2.00. Assuming a graphene lattice parameter of
2.46 A, Eq. 3 can also be written in the equivalent form
L, = 1.618/N where N is the number of atoms and L,
is in angstroms. With this expression, fragments of ar-
bitrary shape can be easily categorized without recourse
to complicated definitions.

Ideal graphene fragments of varying shape (circular,
hexagonal, square, rhombus and elliptical; see Fig. 1)
and size (L, ~ 25690 A) were generated by tiling a
two-dimensional unit cell of length 2.46 A, internal an-
gle 120°, and containing two carbon atoms at fractional
coordinates (%, %) and (%, %) No attempt was made
to introduce curvature, dislocations, or to minimise the
energy of the structure. The eccentricity of the ellipses
is defined as ¢ = /1 —b?/a?, where a and b are the
semi-major and semi-minor axes, respectively. For the
rhombus, a and b are defined as the long and short di-
agonals, respectively, while the regular polygons all have
an eccentricity of zero.

FIG. 1. The six types of graphene fragments used to calculate
diffraction patterns. All have L, ~ 48 A according to Eq. 3.
The elliptical fragments have eccentricities of 0.92 and 0.6.
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FIG. 2. Sample diffraction pattern (circle; L,=70 A) indicat-
ing the four peaks used. The background (dashed line) is a
straight line linking the appropriate minima on either side of
the peak, while 8 and B correspond to the peak position and
full-width-half-maximum from background, respectively.

The atom positions were used in the Debye scatter-
ing equation to generate diffraction patterns. The Debye
scattering equation for a monoatomic unit cell is

Y& sin Qr;;
Q) =F@7%Y >~ (4)
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where [ is the scattered intensity, f is the atomic form
factor [15], N is the number of atoms, and r;; the scalar

distance between the i*" and j* atoms. Q is given by
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where Q is the scattering vector, A is the incident X-ray
wavelength, and € is the diffraction angle. We note that
these patterns have no instrumental broadening, whereas
analysis of experimentally collected patterns must ac-
count for any broadening induced by the diffractometer
[16]. To simplify the Debye scattering equation for com-
putation, instead of calculating every individual bond,
the bonds are histogrammed into bins. The intensity can
also be normalised to the scattering per atom. In this
case, the Debye scattering equation can be expressed [17]
as
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where 7 is the interatomic length represented by the
bin, ny is the number of bonds in the k'™ bin, Npins i
the number of bins, and N is the number of atoms. With
sufficiently narrow bins, the simplified Debye diffraction
equation significantly reduces computation time with lit-
tle loss in diffraction intensity accuracy.
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FIG. 3. Numerical data (solid circles) for all six shapes demonstrating an affine relationship between L, and computed values of
/(B cos 8) extracted from calculated diffraction patterns. The data is well-fitted by a straight line extending out to L, ~ 690 A.
Data for the (30) peak shows the same trend but is omitted for clarity.

Diffraction patterns were generated using Eq. 6 over
a @ range of 1-20 A~! with a step size of 0.0005 A~!
and bin intervals of 0.01 A. Further reduction of the bin
intervals had no substantive effect on the peak width or
intensity. These patterns were converted to a conven-
tional 26 axis by setting A = 0.7093 A, the wavelength of
molybdenum Ka radiation. This allows for the analysis
of the (21) and (30) diffraction peaks, which are not nor-
mally accessible using copper Ka radiation. An example
diffraction pattern is given in Fig. 2.

The (10), (11), (21), and (30) diffraction peaks of the
graphene fragments were analysed to determine the fac-
tor A/(B cos#) in the Scherrer equation. The process for
determining B and @ is illustrated in the inset of Fig. 2.
The value of 6 is taken as the position of the peak max-
imum, while B is the full-width-half-maximum relative
to a background indicated by the dashed line. The back-
ground was determined for each peak of interest, and was
set as a straight line from the two appropriate minima
to the left and right of the peak. Diffraction pattern
generation and parameter extraction was carried out in
MATLAB, and the numerical analysis was performed us-
ing gnuplot.

III. RESULTS

The results that form the basis of our analysis are sum-
marized in Fig. 3. Solid circles indicate data calculated
from the diffraction patterns, while the lines are straight-
line regression fits to data for each peak; for clarity, data
for the (30) peak is not shown. The correlation in all
24 data sets is excellent and the linearity extends to the
limit of the data at L, ~ 690 A. Mathematically, this
indicates that L, and A/(Bcosf) are well-described by
an affine (y = ma + ¢) relation. The values of m and ¢
for all peak and shape combinations are summarized in
Table I. The uncertainties are of order 0.01 for m and

TABLE I. Gradient, m, and y-intercept, ¢, of the regression
fits as summarized in Fig. 3. The gradient is dimensionless,
while ¢ has units of angstroms. Shapes are listed in order of
increasing eccentricity.

™Mip Mi11 M21 M3p| Cio  C11 C21 €30
Circle 198 196 2.04 197 —20 —-10 —20 -—-14
Hexagon 1.97 195 2.03 2.00| —-17 —-11 -—-18 -15
Square 1.98 2.01 2.09 2.00| -19 -12 -21 -16
Ellipse-0.6 | 1.98 198 2.03 197 —19 —-10 —19 -13
Rhombus 2.15 2.01 2.15 2.14| -25 —-11 -22 -19
Ellipse-0.92| 2.18 2.09 2.20 2.19| —21 —14 —23 -16




1 A for ¢. Importantly, the data indicates that there is a
statistically significant non-zero y-intercept for all shapes
and peaks, with ¢ varying between —10 and —25 A. The
Table also shows that the gradient is close to two for
most situations, with only the irregular shapes showing
any appreciable deviation.

The constant ¢ in the affine relationship provides an el-
egant explanation for why multiple studies have observed
a size-dependence in the shape factor. Specifically, the
variation in K with L, observed by Warren & Boden-
stein [8] and others [9, 10] can be reproduced by fitting
the data in Fig. 3 with Eq. 1 to explicitly solve for K
for each value of L,. In the absence of the parameter c,
the shape factor K neccessarily varies with L, as shown
in Fig. 4, which shows the variation in K with L, for
the circle and rhombus; K is of order unity for small
values of L, and increases monotonically to a value of
approximately two for large fragments. This is precisely
the variation seen in the literature and is a consequence
of the affine parameter ¢ having a negative value. Also
shown in Fig. 4 are the asymptotic limits for the two well-
known literature values of K (1.77 for a circle and 1.84
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FIG. 4. Analysis of the data in Fig. 3 using a strict application
of Eq. 1. The well-known size-dependency effect [8-10] is
reproduced. Equivalent values for the shape factors using our
definition of L, (Eq. 3) are shown as black lines.
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FIG. 5. Same data as Fig. 3, except grouped by peak instead
of shape. The dashed line is an affine fit to the data for
circles. All plotted data falls onto this line, except for the
more eccentric ellipse. The inset in panel (a) highlights this
behaviour. For clarity, data for the rhombus is not shown.

for a rhombus). In both cases K has been converted to
its equivalent values according to our definition of L, in
Eqg. 3. For large values of L,, our analysis reproduces the
literature results, confirming the validity of our simulated
diffraction approach.

The merit of our area-based definition of L, is demon-
strated in Fig. 5. Here we replot the data in Fig. 3, this
time grouping by peak. It can be seen that the data
for the regular polygons and the low-eccentricity ellipse
effectively lie on a universal line, with only the highly ec-
centric ellipse showing any significant deviation. Data for
the rhombus (not shown) lies midway between these two
groups. The (21) and (30) peaks exhibit the exact same
behaviour, showing that these trends are not specific to
any particular layer shape or peak. Close inspection of
Table I reveals the same trends seen in Fig. 5 in the form
of clustering of m and c¢ for each peak. Prior to select-
ing Eq. 3 as our definition of L,, we also explored an
alternative form, L, = 4 x area/perimeter, which is con-
ceptually similar to the definition for circles by Warren &
Bodenstein [6]. Although we still observed an affine rela-
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FIG. 6. Average gradient of the affine fit as a function of
eccentricity for the six shapes. Averages are computed using
all four peaks in Table I, and the standard-error-in-the-mean
is similar to the size of the filled circles. The dashed line is
a piecewise continuous function (constant of two linked to a
quadratic) to guide the eye.

tionship for all shapes and peaks, there was considerable
spread in the m and c values, and the data for different
shapes did not coincide on a universal line.

The universal behaviour for regular shapes seen in
Fig. 5 can be usefully understood by comparing the ec-
centricity to the average gradient for each shape as com-
puted using the data for the four peaks in Table I. The
data in Fig. 6 shows that a average gradient of two ap-
plies for a wide range of shapes. Ounly for the rhombus
and the more eccentric ellipse does the gradient begin to
deviate, and even then, the trend is monotonic. As noted
earlier, the literature values of K=1.84 for the rhombus
and K=1.77 for the circle are equivalent to 1.98 and 2.00
with our area-based definition. This convergence of val-
ues provides ample justification for proposing a revised
Scherrer equation for L, of the form:

A
!

La_KBcosG+c (™)
where K'=2 and c is a constant to be determined. Fit-
ting simultaneously to the three regular polygons (circle,
hexagon, square) yields a value of —16 A, similar to the
values of ¢ in Table I.

While one could conceive of a Scherrer equation with
values of K’ and c specific to each peak, from a practical
point of view it is preferable to use K'=2 and ¢c=—16 A
for all situations. To quantify the error that this intro-
duces, we reanalyzed our data using Eq. 7 and compared
each predicted value of L, to the actual value for the
fragment. The percentage error for each shape and size
is shown in Fig. 7(a) for the (10) peak. Even though the
values of K’ and c¢ are not optimized to any particular
peak or shape, the error introduced by Eq. 7 is never
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FIG. 7. Error associated with Eq. 7 and the recommended
values of K'=2 and c=—16 A. Panel (a) shows the error in
L, for the (10) peaks spanning all fragment sizes and shapes.
Panel (b) shows the mean error (dots) and range of errors
(bars) for each peak. Panel (c) shows the average value of the
absolute error for all data of each peak.

greater than 15%, and for large fragments with uniform
shape is typically only a few percent.

The scatter of the entire data set in Fig. 7(a) is sum-
marized in a single data-point for the (10) peak in panel
(b). The bars indicate the range of the error about the
mean, where all the data in panel (a) is utilized. The
remaining data-points in panel (b) show that the trends
for the other three peaks resemble the (10) peak, with
a similar range of errors and a mean close to zero. The
average of the absolute errors provides a useful metric to
evaluate the accuracy of Eq. 7. Panel (c) shows that the
mean absolute error is only a few percent. Note that for
typical diffraction measurements using copper Ka radi-
ation, the most important two peaks are the (10) and
(11), for which the mean error in panel (b) is just —1.2%
and 42.8%, respectively.

To put these numbers into perspective, the size-
dependence implicit in the conventional Scherrer equa-
tion introduces an effective uncertainty of nearly 100%
due to the variation of K between 1.1 and 2.0. Fur-
thermore, there is considerable variation in the literature
regarding the appropriate choice of K, to which is added
an ambiguous definition of L,. As shown by Warren &
Bodenstein [8], the choice of diffraction peak can also al-
ter K by around 30%. All of these problems are resolved
with our area-based definition of L, together with the use
of an additive constant in the Scherrer equation. While
we don’t have a physical explanation for why this modi-



fication is so successful, the empirical support for such a
term is strong. Due to the negative additive constant, our
proposed modification will necessarily fail for extremely
small values of A\/(B cosf). The onset of breakdown can
be seen in Fig. 7(a) where the affine relationship begins
to change for the smallest L, values of 25 A and below
this value we do not recommend the use of our coeffi-
cients. In practice, we do not expect this lower limit to
be a significant issue, as genuine graphitic structures with
L, below 30 A have not been found, and in the words of
Ref. [14], “will probably never be”.

In summary, we have studied 2D graphene fragments
of various shapes and sizes by analysing simulated X-
ray diffraction patterns. The layer size of the graphene
fragments varied between 25 and 690 A and was defined
as the square-root of the area. For all diffraction peaks
over the entire size-range, a strong affine relationship was
found between L, and the Scherrer quantity /(B cos#).
Deviations in the gradient correlate with an increase in
the eccentricity of the fragment. To preserve this affine
relationship, we modify the Scherrer equation to include
an emprical additive constant. Fitting to the principal
peaks of the regular shapes yields the expression L, =
2)\/(B cos ) — 16, where the layer size is in angstroms.

Our analysis also provides an explanation for a size-
dependency problem reported in the literature for the
conventional Scherrer equation, which assumes ¢=0.
Futhermore, the area-based definition of L, is easy to
interpret, improving on previous approaches that were
either algebraically complex or shape-specific. It also
results in universal behaviour whereby data for regular
shapes falls on a common line.

The simplicity of our computational approach suggests
other areas where a similar approach can be applied.
For example, it would be valuable to revisit the data
of Fujimoto [9] and Dopita et al. [10] to test whether an
affine relationship exists for L. in their stacked graphitic
layer systems. It would also be straightforward to study
curvature by bending the graphene layers cylindrically
or by introducing pentagons and/or heptagons. Aside
from carbon, there are also many other analogous 2D
and layered-2D materials such as boron nitride, phos-
phorene, and MoSs, where a robust measure of L, would
be valuable.
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APPENDIX

It has been shown by Warren [3], and noted by Fuji-
moto [9] and Dopita et al. [10], that the position of the

peak maximum of an (hk) reflection and the position of
the same reflection calculated from crystallographic pa-
rameters do not exactly coincide. Although this does not
affect our calculations of L, in any meaningful way, the
differences should be taken into account when calculating
unit cell parameters, especially for small layer sizes. The
shift in peak position can be represented by

UX

A(sin0) = sin Opax. — sinOcryst. = —
(sin ) = sin . — sin Ogryst T

(8)

where A is the wavelength, U and V are empirical param-
eters and the position of the peak maximum and crys-
tallographic peak are given by sinfya.x. and sinferyet.,
respectively. Values of U and V for each of the shapes
and reflections are listed in Table II, where L, in Eqn. 8
is calculated from the corresponding values in Table I.
In an experimental setting the shape will not be known,
and hence it is preferable to calculate the layer size using
Eqn. 7 with K’=2 and ¢=—16 A. Fitting simultaneously
to the (10), (11), and (21) peaks of the three regular poly-
gons, yields U=0.156 and V=9.9 A. These values allow
for the accurate determination of unit cell parameters for
carbons over a wide range of layer size.
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FIG. 8. Shift in the position of the (11) peak maximum (solid
line in inset) with respect to the position of the reflection cal-
culated with crystallographic parameters (dashed line in in-
set). All peaks and shapes show the same relationship. L, was
calculated from the diffraction data using Eqn. 7 with K'=2
and ¢=—16 A. The continuous line represents a fit through
the data for the regular shapes.



TABLE II. Values of U and V, as defined in Eqn. 8, of the
regression fits outlined in Fig. 8. The value of L, used in the
regression was calculated using Eqn. 7 with the corresponding
values from Table I. U is dimensionless, while V' has units of
angstroms. Shapes are listed in order of increasing eccentric-
ity.

Upo Uin U Uso | Vio Vii Var Vag
Circle 0.161 0.145 0.160 0.146| 16.0 2.9 10.2 4.8
Square 0.155 0.149 0.159 0.143| 13.0 6.0 10.0 4.6
Hexagon 0.155 0.146 0.156 0.143| 13.2 5.2 10.5 5.1
Ellipse-0.6 | 0.153 0.146 0.155 0.145| 12.1 4.0 84 4.3
Rhombus 0.142 0.146 0.151 0.133| 14.3 3.6 6.6 8.1
Ellipse-0.92| 0.160 0.124 0.141 0.153| 149 7.6 12.1 7.0
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