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Abstract Some methods for analysing mineral prospectivity, especially the Weights of Evidence technique, re-1

quire the predictor variables to be binary values. When the original evidence data are numerical values, such as2

geochemical indices, they can be converted to binary values by thresholding. When the evidence layer is a spatial3

feature such as a geological fault system, it can be converted to a binary predictor by buffering at a suitable4

cutoff distance. This paper reviews methods for selecting the best threshold or cutoff value, and compares their5

performance. The review covers techniques which are well-known in prospectivity analysis as well as unfamiliar6

techniques borrowed from other literature. Methods include maximisation of the estimated contrast, Studentised7

contrast, χ2 test statistic, Youden criterion, statistical likelihood, Akman-Raftery criterion, and curvature of the8

capture-efficiency curve. We identify connections between the different methods, and we highlight a common tech-9

nical error in their application. Simulation experiments indicate that the Youden criterion has the best performance10

for selection of the threshold or cutoff value, assuming that a simple binary threshold relationship truly holds. If11

the relationship between predictor and prospectivity is more complicated, then the likelihood method is the most12

easily adaptable. The weights-of-evidence contrast performs poorly overall. These conclusions are supported by13

our analysis of data from the Murchison goldfields, Western Australia. We also propose a bootstrap method for14

calculating standard errors and confidence intervals for the location of the threshold.15

Article Highlights16

– Reviews methods for converting a predictor to binary values for use in prospectivity analysis17

– Recommends the Youden criterion as the best-performing criterion for selecting the threshold level18

– Exposes weaknesses and errors in current practice19
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INTRODUCTION22

In many techniques for mineral prospectivity analysis, especially Weights of Evidence (WofE), the predictor vari-23

ables are required to be binary (0 or 1) values (Agterberg 1992; Agterberg et al. 1993; Bonham-Carter et al.24

1990). Geological survey data of other kinds can be used, provided they are first converted to binary values by25

thresholding (Goodacre et al. 1993). If the original evidence layer is a geochemical or geophysical variable, such as26

an isotope abundance ratio, magnetic field anomaly or gravitational field strength, the analyst chooses a thresh-27

old above which the value is labelled as anomalous. If the original evidence is a spatial feature, such as a fault28

system, the analyst will often choose a cutoff distance to define a buffer around the feature. We shall use the term29

‘threshold’ in either case.30

The crucial step is to choose the best value of the threshold. This can be quite difficult in practice (J. Liu and31

Cheng 2019, p. 1039). A poor choice of threshold can be costly, leading to poor prediction, wasted exploration32

effort, and failure to identify important predictor variables.33

Several methods for selecting the threshold are commonly used in prospectivity analysis. They include choosing34

the threshold value which maximises the WofE contrast (Goodacre et al. 1993, pp. 291–292; Bonham-Carter 1995,35

pp. 321–322), the Studentised contrast (Bonham-Carter 1995, p. 325), the chi-squared test statistic (Bonham-36

Carter and Agterberg 1990), the Youden criterion (Chen and Wu 2019; Ruopp et al. 2008), or the curvature of the37

capture-efficiency curve (Porwal et al. 2010). The prospectivity literature contains only limited discussion about38

the relative performance of these methods (Ford et al. 2016; Yeomans 2018, Chapter 7) and there does not seem to39

be a consensus about the best method. There are also some concerns that, for example, the Studentised contrast40

may be unreliable when the number of deposits is small (Goodacre et al. 1993, pp. 291, 295).41

Threshold selection is an instance of change-point estimation, a classical and widely-studied problem in statis-42

tical theory (Basseville and Nikiforov 1993; Chernoff and Rubin 1956; Page 1957; Pons 2018; Zacks 1983). The43

statistical literature on this problem suggests that the WofE contrast would perform poorly as a criterion for44

threshold selection, because the contrast is an estimate of effect size rather than of evidence for the threshold.45

The change-point literature offers some other promising methods for threshold selection, including cumulative46

sum (CUSUM) methods (Basseville and Nikiforov 1993, Chapter 2), profile likelihood (Galun and Trifonov 1982;47

Murphy and van der Vaart 2000; Kutoyants 1998, Chapter 5, pp. 183–224) and the method of Akman and Raftery48

(1986). The existence of so many different competing methods is unusual; statistical theory usually identifies a sin-49

gle method as being “optimal”, but the optimality theory is not applicable in this context, because prospectivity is50

not a differentiable function of the predictor. Furthermore, in prospectivity analysis the number of known deposits51

may be quite small, so that asymptotic statistical theory does not apply. Consequently, these alternative methods52

are not guaranteed to have better practical performance than the currently popular methods listed above.53

In this paper we give an overview of all the methods of threshold selection listed above, and evaluate their54

performance on real and simulated data. We go into detail about each method, identify connections between them,55

and draw attention to common technical errors. We present graphical diagnostics which may reveal numerical56

quirks of the data and assist the analyst to reject geologically implausible results. We highlight the central role of57

the capture-efficiency curve and offer new insights about it. We also show how to calculate standard errors and58

confidence intervals for the threshold using bootstrap techniques.59

Our main findings are as follows. The method of threshold selection based on maximising the WofE contrast60

is highly unreliable and should be avoided. Threshold selection using the Studentised contrast t has adequate61

performance. The Youden criterion stands out as having the best performance. These findings assume that a62

simple binary threshold relationship truly holds (which can be checked by inspecting the shape of the capture-63

efficiency curve). If the relationship between predictor and prospectivity is more complicated, the maximum profile64

likelihood method is the most suitable.65

Despite their very different origins, we find that all the methods mentioned above are mathematically related, so66

they should not be regarded as independent sources of evidence; in particular, the Akman-Raftery and chi-squared67

statistics are mathematically equivalent, and the Youden criterion is equivalent to a CUSUM index.68

Typically, the survey data will comprise many predictors (evidence layers). In the WofE approach, each variable69

is examined separately to determine its merit and suitability as a predictor, and to select the single best threshold70

value for that variable. This is different from other approaches such as CART, random forest and isolation forest71

methods (Breiman et al. 1984; Chen and Wu 2019) which use a decision tree of threshold rules that are optimized72

by considering all the predictors at once. The task of selecting correct thresholds is even more challenging in73

these multivariate approaches. For simplicity, and because WofE is so popular, we shall broadly follow the WofE74

approach and consider only one predictor at a time. However, our conclusions are also relevant to other techniques75

for mineral prospectivity analysis.76
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When many predictor variables are available, the geologist must decide which of the variables have an effect77

on prospectivity. Statistical tests of significance are often used. There are connections between significance tests78

and the criteria employed to select the threshold (Bonham-Carter 1995; Bonham-Carter and Agterberg 1990). The79

Youden criterion, which we found to have the best performance for selecting thresholds, is closely related to the80

Kolmogorov-Smirnov test (Conover 1999, pp. 295–301) which is known to have good performance and is calibrated81

for any sample size (i.e. for any number of deposits). Consequently, we recommend using the Kolmogorov-Smirnov82

test for significance testing.83

The paper is organised as follows. First we briefly review terms and notation for binary predictors. Then84

we define the problem of choosing a threshold value for a numerical (“greyscale”) predictor, define notation, and85

introduce two example datasets. The next five sections describe different classes of methods in detail: those based on86

the estimated WofE contrast and Studentised contrast; one based on the χ2 test statistic; ones based on the capture-87

efficiency curve; and methods borrowed from the change-point literature. The next section exposes mathematical88

connections between the different methods. Then we discuss statistical significance tests. We report on a simulation89

experiment and on analysis of data from the Murchison goldfields, Yilgarn craton, Western Australia. A further90

section describes bootstrap methods for calculating standard errors and confidence intervals for the threshold. The91

final section discusses further aspects of performance, model mis-specification and generalisations. Appendices92

provide mathematical details.93

BINARY PREDICTORS94

Thresholding converts numerical (“greyscale”) predictor values into binary predictor values, for use in prospectivity95

analysis techniques that require binary inputs. This paper is concerned only with the thresholding step, and not96

with the prospectivity analysis.97

However, many threshold selection techniques involve prospectivity analysis: they consider every possible98

threshold value in turn, perform a prospectivity analysis using that threshold, and select the threshold value99

which gives the best result. In order to describe these techniques, we must first define terms and notation for100

prospectivity using a binary predictor.101

The general scenario is sketched in Figure 1. There is a survey region S in two-dimensional space, within which102

we have identified an areal feature or subregion B that is believed to be prospective. The binary predictor takes103

the value 1 inside B, and the value 0 outside B. The spatial pattern of known locations of mineral deposits is also104

mapped.105
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Fig. 1 Sketch of setup for prospectivity analysis once a threshold has been selected. The survey region S (rectangular frame) contains
an areal feature B (shaded), believed to be prospective for deposits (blue crosses). The feature B has area aB and contains nB deposits.
The complementary region B (the unshaded part of the survey region outside the prospective feature) has area aB and contains nB
deposits.



4 Baddeley et al.

For quantitative analysis of prospectivity, the survey region is divided into grid cells of equal area. To simplify106

the discussion and the equations, we assume throughout this paper that grid cell area is negligible1 compared to107

the area of the study region. The appendix Non-negligible Grid Cell Size gives the more complicated formulae108

that apply when grid cell area cannot be ignored.109

In each grid cell, the survey records the value of the predictor, and records whether or not there are any110

(known) mineral deposits in the cell. Overall there are n grid cells that contain deposit locations; amongst them111

are nB grid cells containing deposits lying inside feature B, and nB grid cells containing deposits lying outside B.112

The total area of all grid cells, the area of the domain S, is denoted by a; the area of B is denoted aB and the113

area of its complement is aB .114

The data listed above are enough to perform prospectivity analysis using the binary predictor. The most
familiar of these methods is WofE (Agterberg 1992; Agterberg and Bonham-Carter 1999; Agterberg et al. 1993;
Agterberg and Cheng 2002; Carranza 2004; Bonham-Carter 1995, Chapter 9; Agterberg 2014, Chapter 5). Under
our assumption that cell areas are negligible, the estimated weights of evidence are W+ = ln(nB/aB)− ln(n/a) for
cells inside B, and W− = ln(nB/aB) − ln(n/a) for cells outside B, where ln denotes the natural logarithm. The
WofE contrast is

Ĉ = W+ −W− = ln
nB
aB
− ln

nB
aB

= ln

(
nB/aB
nB/aB

)
= ln

(
nB/nB
aB/aB

)
. (1)

(For non-negligible cell area, the corresponding formula is given in the appendix Non-negligible Grid Cell Size115

as equation (41).) It is instructive to notice that nB/aB is the observed average density of mineral deposit locations116

(deposits per unit area) inside the prospective region B, while nB/aB is the observed average density of deposits117

outside B. The calculated contrast Ĉ is the logarithm of the ratio of these two observed densities, or equivalently,118

it is the difference between the logarithms of the two observed densities. A calculated contrast value of Ĉ = +1119

means that the observed density of mineral deposit locations inside the prospective region B exceeds the density120

outside by a multiplicative factor of e+1 = 2.7. A calculated contrast value of Ĉ = 0 means that the observed121

densities of deposits inside and outside the prospective region are equal.122

For a single binary predictor, WofE is equivalent to logistic regression (Agterberg 1974; Schaeben 2014; Schaeben123

and Semmler 2016), and is also equivalent to maximum Poisson likelihood estimation and to maximum entropy124

modelling (Baddeley et al. 2010; Baddeley 2018; Baddeley et al. 2015, Chapter 9). Equivalence means that these125

techniques use different formulations but yield the same predictions.126

WofE has been applied to mineral prospectivity analysis for gold (Agterberg and Bonham-Carter 2005; Boleneus127

et al. 2001; Cassard et al. 2008; Cheng 2008; J. Harris et al. 2015; Zhang and Zhou 2015), copper (Carranza 2004;128

D. Harris et al. 2003; Wang et al. 2016), tungsten (Y. Liu et al. 2014; Yeomans 2018), magmatic nickel sulfide129

(Porwal et al. 2010) and Sn-Cu deposits (Cheng 2007). WofE has also been used to create maps of landslide130

susceptibility (Cervi et al. 2010; Neuhäuser and Terhorst 2007; Polykretis and Chalkias 2018) and ecological131

habitat quality (Gorney et al. 2011; Romero-Calcerrada et al. 2010; Romero-Calcerrada and Luque 2006).132

Modifications of WofE are described in Agterberg (2011); J. Liu and Cheng (2019). Comparative reviews of133

the performance of WofE and other methods are given by Ford et al. (2016) and Yeomans (2018, Chapter 7).134

THE THRESHOLDING PROBLEM135

In this section, we define the thresholding problem, discuss what information is required to select the best threshold,136

and introduce some notation that will be used throughout the paper. We also describe two datasets — one real137

and one synthetic — that will be used to motivate and illustrate the different thresholding methods.138

Murchison (Western Australia) Gold Survey139

The Murchison gold survey data, shown in Figure 2, were extracted from a regional survey (scale 1:500,000) of the140

Murchison goldfields area by the Geological Survey of Western Australia (GSWA). The figure shows the known141

locations of gold deposits and occurrences, and the known or inferred locations of geological faults, in a 330× 400142

kilometre rectangular study region.143

These data were first presented and analysed in Knox-Robinson and Groves (1997). Gold deposit and occurrence144

locations were obtained from a database compiled by the Geological Survey of Western Australia (Geological Survey145

1While we have assumed that grid cell area is negligible in order to simplify and clarify the equations, this assumption is also
pragmatically justifiable. If the survey region is 100 km across and grid cells are 100 metre squares, then there are a million grid cells,
each with an area fraction of 10−6, and our simplified equations are accurate to 4 decimal places.
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Fig. 2 Murchison gold data. Gold deposits (+) and major faults (—) in a survey region 330 by 400 km.

of Western Australia 1994); they include deposits of all sizes and are based on map surveys at a scale of 1:50,000146

or better (Knox-Robinson and Groves 1997). Fault locations were compiled by Watkins and Hickman (1990). The147

data were previously discussed in Groves et al. (2000), Foxall and Baddeley (2002), and Baddeley et al. (2015).148

Data were kindly provided by Dr Carl Knox-Robinson, and permission granted by Dr Tim Griffin, Geological149

Survey of Western Australia and by Dr Knox-Robinson.150

Although there exist more up-to-date versions of this survey, we use the original 1994 version for demonstration151

purposes because this is widely available, allowing comparison between different published analyses of the same152

data. Users of the R software environment can obtain the data from the open-source contributed package spatstat153

described in Baddeley et al. (2015) and accessible via www.spatstat.org.154

Figure 2 strongly suggests that proximity to faults is predictive for gold prospectivity. This is expected because155

crustal to lithospheric-scale faults and shear zones represent a first-order control on the location of orogenic gold156

deposits at a province scale. These major fluid pathways focus fluid migration along pressure gradients into dilation157

or damage zones in suitably-oriented, lower-order structures where gold may be deposited (Solomon and Groves158

1994). Orogenic gold deposits are found world-wide and throughout geological time (Goldfarb and Groves 2015;159

Groves et al. 2000; Groves and Santosh 2016; Robert et al. 2005).160

In order to apply mineral prospectivity techniques, we would first have to convert the faults into a binary161

variable, typically by creating a buffer around them. This process is discussed in the next section.162

Thresholding a Greyscale Predictor163

Goodacre et al. (1993) extended the WofE method to predictor variables that are real numbers (“greyscale val-164

ues”) instead of binary values. Examples of such predictors include isotope ratios, geochemical assay, magnetic or165

gravitational field strength, and distance from a fault system. The predictor is converted to a binary variable by166

thresholding. Threshold selection is discussed by Goodacre et al. (1993), Bonham-Carter (1995, Section 9.5, pp.167

319–325), Cheng (2004), and J. Liu and Cheng (2019).168
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The predictor is a spatial variable Z whose values are real numbers. That is, at any spatial location u in the169

survey region S, the value Z(u) of the predictor is a real number that can be extracted or calculated from data.170

The task is to find the “best” threshold value z to convert the numerical variable Z to a binary variable, where171

the definition of “best” is open to discussion.172

Figure 3 sketches this scenario. It shows a generic predictor Z which takes numerical values, depicted as a173

contour plot; alternatively Z could have been displayed as a greyscale pixel image. Thresholding effectively selects174

one of the contour levels, and the region below this contour level is designated as the prospective region B, to be175

interpreted as in Figure 1.176

Fig. 3 Thresholding of a numerical predictor such as a geochemical or geophysical variable. Thin lines are contours of the spatial
variable. One contour level (thick line) is selected as the optimal threshold.

If the original evidence layer is a geochemical variable, then Figure 3 represents contours of this variable.177

Thresholding has the effect of classifying each pixel as either “background” or “anomalous”. The “background”178

is the spread of geochemical assay values expected to be seen in non-mineralised Earth materials, and the upper179

limit of the background range is the “threshold” (Carranza 2009, pp. 9-10). Figure 3 illustrates the selection of180

one contour level as the optimal threshold.181

If the original evidence layer is a spatial feature such as a fault system, then the researcher may choose to182

define Z(u) as the shortest distance from the query location u to the feature. Distance values may be computed for183

each grid cell in a raster using the distance transform algorithm, or computed by vector geometry for any spatial184

location. Thresholding the distance variable at a particular threshold z is equivalent to creating a buffer of distance185

z around the original feature using GIS functionality (Cheng 2008, Figure 6). Buffers at different distances are186

contours of the distance function Z(u). For the Murchison data in Figure 2, for example, Figure 4 shows a 5 km187

buffer around the major faults. Other examples of distance predictors include distance from a moraine, distance188

from a relatively steep slope zone, and distance from a relatively thick glacial drift layer (Cheng 2004, Table 1).189

Once we have chosen a threshold level or threshold distance, the prospectivity analysis reduces to the situation190

sketched in Figure 1.191

For simplicity in the exposition, we shall assume throughout that smaller values of Z are more prospective than192

large values. For example, this is true for orogenic gold in the Yilgarn craton (containing the Murchison survey)193

when Z is taken to be the distance to the nearest large fault. By adopting a particular threshold value z we are194

specifying the region of high prospectivity B as the spatial region consisting of all grid cells or locations u where195

the value of Z is at or below the threshold, Z(u) ≤ z. The region of lower prospectivity B consists of all locations196

where Z(u) > z. In the particular case where Z(u) is the distance to a fault system, the prospective region is a197

buffer around the fault system, delimited by the contour at distance z around the faults.198

Thresholding is a necessary step in some techniques for prospectivity analysis (such as WofE) but it may also199

be desirable for pragmatic reasons, because it leads to predictive models which are very simple to apply, and which200

drastically reduce the search area. The distance function Z(u) could have been chosen simply because a buffer at201

a certain distance from the fault system is easy to delineate for exploration.202

Mineral prospectivity analyses are often based on a small number of known deposits, although this number203

depends on the size of the study region and the inclusion criteria for the study (for example, when considering gold204

deposits with a resource of at least one tonne total contained gold). It is important that the technique for selecting205

the threshold should still work when the number of deposits is small. We should be able to state the minimum206
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Fig. 4 Murchison gold data of Fig. 2 showing buffer at distance 5 km from the major faults.

number of deposits required for validity of the technique. For the thresholding methods described in this paper,207

the minimum required number of deposits is discussed in the following five sections (from THRESHOLD SE-208

LECTION USING WOFE CONTRAST to THRESHOLD SELECTION USING CHANGE-POINT209

ANALYSIS) and summarised in Table 10 of the Discussion.210

Synthetic Example211

We have also constructed a synthetic dataset that is superficially similar to the Murchison gold data, but has the212

virtue that the correct answer is known, so that the performance of threshold selection methods can be evaluated213

and compared.214

The synthetic data, shown in Figure 5, are constructed so that there are strong contrasting densities of deposits215

inside and outside a 2 km buffer zone around the fault lines. This provides a basis for evaluating the performance216

of threshold selection methods, under controlled conditions. A threshold method which performs optimally in this217

example should select a threshold close to 2 km(as we discuss below). Although the synthetic dataset is not very218

realistic, any methods which work for complex real-world data must surely be expected to perform well on this219

simple dataset.220

The linear features in the synthetic example are obtained from real data. A survey2 of copper deposits in221

Queensland, Australia comprised the spatial locations of known copper deposits and of observed lineaments which222

are mostly faults. We have discarded the copper deposit points and simplified the lineament pattern by randomly223

deleting a fraction of the lineaments. We created a buffer region, consisting of all spatial locations (grid cells) lying224

no further than 2 km from the nearest lineament, shown in the left panel of Figure 5. We then simulated a random225

spatial pattern of deposits (shown in the right panel of Figure 5), with an average density of 2 deposits per 100 km2
226

within the buffer, and 1 deposit per 100 km2 outside the buffer. For example, in a 100× 100 metre grid cell (area227

0.01 km2) inside the buffer the expected number of deposits inside the grid cell is number = density×grid cell area =228

(2/100)× 0.01 = 0.0002. Since the probability of more than one deposit is negligible, the probability that the grid229

2The original survey was compiled by Dr. Jonathan Huntington, CSIRO and has been analysed by Berman (1986) and others.
Coordinates were kindly provided to us by Dr. Mark Berman and Dr. Andy Green, CSIRO. The survey data are publicly available in
the R package spatstat (Baddeley et al. 2015; Baddeley and Turner 2005) as the dataset copper. The data in Figure 5 are supplied
in Online Resource 1.
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Fig. 5 Synthetic data example in a rectangle approximately 70 by 60 km. Left: Lineaments (—) and region of high prospectivity (grey
shading) defined as the buffer within 2 km of the nearest lineament. Right: Typical simulated outcome. Mineral deposits (+) generated
randomly with average density 2 deposits per 100 km2 inside the high prospectivity region and 1 deposit per 100 km2 outside.

cell contains a deposit is also equal to 0.0002. This synthetic model is typical of models that have been applied to230

the original dataset.231

There is a single correct value of the threshold in this synthetic scenario. The true probability of a deposit232

depends on whether a grid cell is within or beyond the 2 km threshold. Therefore, a threshold of 2 km must233

be chosen in order that any prospectivity method correctly predicts the probability of a deposit. Bonham-Carter234

(1995, p. 319) defines the “best” threshold as “[. . . ] the threshold that maximises the spatial association between235

the resulting binary map pattern and the point pattern [. . . ]”. According to this definition, the “best” threshold is236

also 2 km.237

The right panel of Figure 5 shows one dataset generated from this model, which we shall use to demonstrate238

the calculations and graphics. Since we know the correct threshold distance for this synthetic dataset is 2 km, we239

count nB = 34 deposit points inside the buffer and nB̄ = 14 points outside. The total area of the survey region is240

a = 4102 km2; the area inside the buffer is aB = 1294 km2, and outside the buffer aB = 4102− 1294 = 2808 km2.241

The estimated contrast value calculated according to equation (1) is Ĉ = ln 34/1294
14/2808 = ln 0.026

0.005 = 1.66. In this242

synthetic example, the “true” value of the contrast is the logarithm of the ratio of the “true” densities of deposit243

points inside and outside B, which is Ctrue = ln(0.02/0.01) = ln(2) = 0.69.244

Essential Data Required for Threshold Selection245

For any numerical predictor, the minimum information necessary to select the best threshold is contained in the246

two graphs shown in Figure 6, using the synthetic data as an illustrative example. The graphs show the cumulative247

number of deposits (left panel) and the cumulative area (right panel) as a function of the threshold value on the248

horizontal axis. For any candidate threshold value z, let n(z) be the number of grid cells with predictor value249

Z ≤ z which contain deposits, and a(z) the total area of all grid cells with Z ≤ z. (Strictly speaking the definition250

of a(z) should exclude any grid cells which contain data points, but we have assumed grid cells are small enough to251

allow us to neglect this discrepancy.) The left panel of Figure 6 shows the number of deposits n(z) plotted against252

the candidate threshold distance z. The right panel shows the area a(z) plotted against z. Other transformations253

of these graphs will be used to select the threshold, as described in the next two sections.254

The minimum data that need to be extracted from the mineral deposits are the predictor values z1, . . . , zn at255

these deposits, that is, zi = Z(xi) for each i, where x1, . . . , xn are the deposit locations. Table 1 summarises our256

mathematical notation for the main elements of the problem.257

Overview of Methods258

In the following sections, we discuss different criteria for selecting the threshold. These criteria are summarised259

in Table 2 and the equations defining them are listed. The notation for the Akman-Raftery and Youden criteria260
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Fig. 6 Essential data for selecting the best threshold in the synthetic data example of Figure 5. Left: the number n(z) of deposits
lying no further than distance z away from the nearest lineament, plotted against z. Right: the area a(z) of the buffer consisting of all
locations lying no further than distance z away from the nearest lineament, plotted against z. Dotted vertical lines show the correct
value of distance threshold, ztrue = 2 km.

Symbol Meaning
S survey region
a area of survey region
n total number of deposits
x1, . . . , xn spatial locations of deposits 1, 2, . . . , n
Z predictor variable (a function of spatial location)
u any spatial location
Z(u) value of predictor Z at location u
z any candidate value of threshold for the predictor
n(z) number of grid cells containing deposits where Z ≤ z
a(z) area of region of survey where Z ≤ z
s(z) area fraction s(z) = a(z)/a
ẑ selected (estimated) threshold value

Table 1 Summary of mathematical notation.

is not standard; we have chosen a more mnemonic notation. The performance of these criteria is summarised in261

Table 10 in the Discussion section.262

Symbol Meaning Equation

Ĉ(z) WofE contrast (2)
t(z) Studentised contrast (4)
X2(z) χ2 test statistic (6)
Y (z) Youden criterion (8)
lnL(z) profile log-likelihood (12)
AR(z) Akman-Raftery criterion (13)

Table 2 Notation for threshold selection criteria, and equation numbers for their definitions. Each criterion is expressed as a function
of the candidate threshold value z.

THRESHOLD SELECTION USING WOFE CONTRAST263

Threshold selection using the WofE contrast (with or without rescaling) is expounded by Bonham-Carter (1995,264

Section 9.5, pp. 319–325) and is widely used.265

In the original method, the threshold is selected by “progressively altering the threshold value to seek the266

greatest contrast” (Goodacre et al. 1993, pp. 291–292), that is, by choosing the threshold value which maximises267
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the WofE contrast (Bonham-Carter 1995, pp. 321–322; Agterberg 2014, p. 150). Recent examples include Cheng268

(2008, Section 7.2.3), Romero-Calcerrada and Luque (2006) and Romero-Calcerrada et al. (2010).269

As a function of the candidate threshold z, the estimated WofE contrast (1) is given by

Ĉ(z) = ln

(
n(z)

a(z)

/
n− n(z)

a− a(z)

)
= ln

n(z)

a(z)
− ln

n− n(z)

a− a(z)
, (2)

that is, in (1) we replace nB by n(z) and aB by a(z), so that nB = n−nB = n−n(z) and aB = a−aB = a−a(z),270

giving (2). This formula assumes grid cell area is negligible; the corresponding formula for non-negligible cell area271

is given in the appendix entitled Non-negligible grid cell size as equation (42).272

The left panel of Figure 7 shows a plot of the estimated contrast Ĉ(z) against the candidate threshold distance273

z for the synthetic data of Figure 5. The estimated threshold is ẑ = 7.68, which is a poor estimate of the correct274

threshold ztrue = 2 km. However, very close to the correct threshold value, the graph has a secondary peak, and275

this would have been selected if the range of distances z had been suitably restricted. In particular, to avoid276

instability associated with small counts, it may be appropriate to restrict z to the range where both the expected277

counts na(z)/a and n(1− a(z)/a) are greater than or equal to 5, as discussed below equation (20).278
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Fig. 7 Weights-of-evidence contrast (Left) and Studentised contrast (Right) plotted against candidate threshold distance, for the
synthetic data of Figure 5. Dotted vertical lines show the correct threshold, ztrue = 2 km. Dashed vertical lines show estimated
thresholds, ẑ = 7.68 km and ẑ = 1.50 km, respectively.

For efficiency this procedure can be streamlined. Although our algorithm has considered a finely spaced grid of279

candidate values z, this is not strictly necessary. The estimated contrast C(z) will be maximised at one of the values280

z1, . . . , zn which are the predictor values at the deposit locations (for example, the distances from each deposit281

location to the nearest fault), because the cumulative count n(z) is incremented only at these values (assuming282

a(z) is a strictly increasing function of z). Accordingly, a more efficient algorithm would involve computing only283

C(z1), . . . , C(zn) and determining which of these is greatest.284

We strongly recommend the use of graphical plots like Figure 7 as a tool for evaluating the evidence, identifying285

quirks of the data, and detecting nonsensical or geologically implausible results. If prior geological knowledge is286

available, then these graphs and numerical procedures can be restricted to the range of threshold values z which287

are geologically plausible.288

THRESHOLD SELECTION USING STUDENTISED CONTRAST289

The statistical performance of the contrast, as an index for selecting the threshold, becomes erratic at the extreme290

ends of the range of thresholds, because of sampling variability. It is natural to adjust for the sampling variability,291

as explained below.292
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Binary Predictor293

Returning for a moment to the context of a binary predictor, the estimated standard error of the WofE contrast
Ĉ is

se(Ĉ) =

√
1

nB
+

1

nB
. (3)

This is the asymptotic (large sample) formula for standard error, derived using the “delta method” or “propagation294

of error” (Lehmann 1999, Section 2.5, pp. 85–93; Wasserman 2004, Section 9.9, pp. 131–132; Rice 2006, Section 4.6,295

pp. 149–154) assuming independence of outcomes in each grid cell, and assuming cell areas are negligible. It is296

reasonably accurate when both the numbers nB and nB are greater than or equal to 5 (implying that the total297

number n must be at least 10). The formula (3) is valid for any feature B. See the appendix headed Non-negligible298

Grid Cell Size when grid cell areas are large.299

The “Studentised contrast” is the ratio of the contrast to its standard error, t = Ĉ/se(Ĉ) (Bonham-Carter300

1995, p. 325; Cheng 2008, Section 7.2.3; J. Liu and Cheng 2019; Cheng 2007; Porwal et al. 2010, Table 1, p. 187).301

A value of t greater than 2 can be considered large. Although the term “Studentised” is commonly used when a302

variable is divided by its standard error, it may be misleading here, because the rescaled variable t does not follow303

a Student’s t distribution in this context. This is discussed further in the section SIGNIFICANCE TESTS.304

For the synthetic data in the right panel of Figure 5, the deposit counts are nB = 34 and nB = 14, so305

the estimated standard error according to (3) is se(Ĉ) =
√

1/34 + 1/14 = 0.32. The “Studentised contrast” is306

t = Ĉ/se(Ĉ) = 1.66/0.32 = 5.19.307

Numerical Predictor308

For a numerical predictor Z as discussed in the section on THE THRESHOLDING PROBLEM, we consider
the Studentised contrast as a function of the candidate threshold value z,

t(z) =
Ĉ(z)

se(Ĉ(z))
, (4)

where the standard error (3) of the estimated contrast is

se(Ĉ(z)) =

√
1

n(z)
+

1

n− n(z)
. (5)

Again this assumes grid cell areas are negligible; see the appendix Non-negligible Grid Cell Size for the more309

general formula (44).310

The right panel of Figure 7 is a graph of the Studentised contrast t(z) for the synthetic data against the311

candidate threshold distance z. The estimated threshold obtained by maximising the Studentised contrast is312

ẑ = 1.50 km, which is a mediocre estimate of the correct threshold ztrue = 2 km, but is an improvement on the313

threshold chosen using the unadjusted contrast.314

THRESHOLD SELECTION USING THE χ2 STATISTIC315

Another way to evaluate the strength of evidence for a threshold is to use a statistical significance test. The χ2
316

test is described in the section SIGNIFICANCE TESTS. Bonham-Carter and Agterberg (1990) used the test317

statistic associated with the χ2 test as an alternative criterion for threshold selection. Statistical theory would318

suggest that this is desirable, because the χ2 test is valid for smaller samples (fewer deposits) than a test based on319

the Studentised contrast. This method has been demonstrated on data from the Yilgarn craton by Brown (2002)320

and Brown et al. (2002).321

As a function of the candidate threshold value z, the χ2 test statistic (equations (18) and (19)) is

X2(z) = n

(
n(z)
n − a(z)

a

)2

a(z)
a

(
1− a(z)

a

) , (6)



12 Baddeley et al.

while the signed square root (20) is

X(z) =
√
n

(
n(z)
n − a(z)

a

)
√

a(z)
a

(
1− a(z)

a

) . (7)

Note that these formulae do not assume that the grid cell area is negligible.322

Figure 8 shows the χ2 test statistic X2(z) plotted against candidate threshold distance for the synthetic data323

example. The estimated threshold obtained by maximising the χ2 test statistic is ẑ = 1.50 km, agreeing with the324

result from the statistic t. Again, this is a mediocre estimate.325
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Fig. 8 χ2 test statistic plotted against candidate threshold distance, for the synthetic data of Figure 5. Dotted vertical lines show the
correct threshold, ztrue = 2 km. Dashed vertical lines show estimated threshold ẑ = 1.50 km.

Values of X2(z) at each end of the graph are highly unreliable because the χ2 test is valid only when the326

expected count na(z)/a lies between 5 and n− 5, as discussed below equation (20).327

THRESHOLD SELECTION USING THE CAPTURE-EFFICIENCY CURVE328

This section reviews the role of the capture-efficiency curve, offering new insights and highlighting its central and329

unifying role in threshold selection.330

Principle331

The methods discussed in this section are based on comparing the distributions of predictor values at the deposit332

and non-deposit locations.333

Two standard statistical ways to perform this comparison are illustrated in Figure 9 for the synthetic data334

example. In the left panel, the two curves show the cumulative fraction F (z) = n(z)/n of deposits where the335

predictor value is less than or equal to a threshold value z, and the fraction of area G(z) = a(z)/a of all spatial336

locations where the predictor is less than or equal to the same threshold z, plotted against the candidate threshold337

value z. If deposits were randomly and homogeneously scattered, these two curves would agree, apart from sampling338

variation in the counts of deposits. These curves are the cumulative distribution functions of the predictor values339

for two populations, the deposit and non-deposit locations. That is, F (z) is the cumulative distribution function340

of the predictor value at a randomly-selected deposit, while G(z) is the cumulative distribution function of the341
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predictor value at a randomly-selected location in the study region. In the synthetic data example, the predictor342

is the distance to the nearest fault, so that F (z) is the cumulative distribution function of the distance from a343

randomly-selected deposit to the nearest fault, while G(z) is the cumulative distribution function of the distance344

from a randomly-selected spatial location to the nearest fault.345
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Fig. 9 Distributional comparisons, illustrated using the synthetic data example. Left: the fraction F (z) = n(z)/n of deposits at
or below threshold (thin solid line) and the fraction of area G(z) = a(z)/a at or below threshold (thick solid line), plotted against
candidate threshold value z. Dotted vertical line shows correct threshold ztrue = 2 km. Right: capture-efficiency curve. Thick solid
line is the fraction F (z) = n(z)/n of deposits at or below threshold plotted against fraction of area G(z) = a(z)/a. Dotted vertical line
shows area fraction G(ztrue) = 1296/4102 = 0.32 corresponding to the correct threshold ztrue. Diagonal dashed line would correspond
to complete agreement between F (z) and G(z), which would occur if deposits were uniformly scattered over the study region.

In the right panel of Figure 9, the single curve shows the fraction of deposits F (z) = n(z)/n plotted against the346

corresponding fraction of area G(z) = a(z)/a for various candidate values z of the threshold. If deposits were ran-347

domly and homogeneously scattered, this curve would agree with the diagonal straight line y = x apart from sam-348

pling variation. Such a curve has been reinvented many times and is variously known as a probability-probability349

(P–P) plot (Wilk and Gnanadesikan 1968), ROC curve (Krzanowski and Hand 2009; Nam and D’Agostino 2002),350

capture-efficiency curve (Porwal et al. 2010) or fitting-rate curve (Fabbri and Chung 2008). We shall use the351

term “capture-efficiency curve”, which is more widely recognised in mineral prospectivity analysis.3 The capture-352

efficiency curve and the ROC curve are indistinguishable if grid cell area is negligible, but they are slightly different353

otherwise.354

The capture-efficiency curve depicts the proportion of deposits captured by cumulative proportions of the study355

area. There are several important reasons for using this curve to select the threshold. The first reason is that the356

capture-efficiency curve removes spatial geometry effects. In the left panel of Figure 9, the shapes of the two curves357

depend on the spatial arrangement of the fault lines in Figure 5; the area a(z) of the buffer is not a simple function358

of the buffer distance z, because it depends on the spatial arrangement of the faults. In the right panel of Figure 9359

the effect of geometry is removed; a uniform distribution of deposits would correspond to the diagonal straight360

line in the right panel. Moreover, the capture-efficiency curve is unchanged even if the predictor is subjected to361

a transformation — for example, if distance-to-nearest-fault is replaced by the squared distance, square root of362

distance, or any increasing function of distance.363

The second reason for using the capture-efficiency curve is that, if a simple threshold exists, the curve will364

have an inverted “V” shape, and the position of the elbow corresponds to the threshold. This is discussed in the365

next sub-section. The point of significant inflexion, where the slope changes from steep to gentle, can be used as366

a threshold for separating high-prospectivity areas from low-prospectivity areas (Porwal et al. 2010).367

The capture-efficiency curve can also be interpreted as a cumulative distribution function in its own right,368

which has useful implications, explained in the appendix Capture-Efficiency Curve as a CDF.369

3D. Harris and Pan (1999) used a related measure of classification performance which they call exploration performance. Exploration is
viewed as the task of selecting the optimum threshold for allocating grid cells to the mineralized class, and it is assumed that all grid
cells classified by the system as mineralized are retained as ground for further exploration. Classification performance is measured
by the percentage of total grid cells that must be retained to ensure that different percentages of mineralized grid cells are retained
when various cutoff probabilities for mineralization are applied to neural network output.
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Relation to Threshold370

The capture-efficiency curve gives the clearest indication of existence of a threshold (Goodacre et al. 1993; Porwal371

et al. 2010) for the following reason.372

Suppose that the predictor variable Z does indeed have a threshold-like effect. That is, there is a true threshold373

value ztrue so that, in the region where Z ≤ ztrue, deposits are homogeneous with expected density µ1 deposits per374

unit area, while in the complementary region where Z > ztrue, deposits are homogeneous with expected density375

µ0 per unit area. If this true or correct threshold ztrue were chosen, the data would conform to a WofE model with376

true contrast Ctrue = ln(µ1/µ0).377

If this simple threshold model is true, then the capture-efficiency curve is expected to be linear on each side of378

the true threshold. That is, ignoring sampling variability, the capture-efficiency curve should consist of a straight379

line between the origin (0, 0) and the point P , and another straight line between P and the top corner (1, 1), where380

P has coordinates (a(ztrue)/a, n(ztrue)/n).381
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Fig. 10 Use of the capture-efficiency curve. Left: capture-efficiency curve (solid line) for synthetic data of Figure 5 and straight
line approximation (dashed line) on either side of the point of maximum change in slope (dotted vertical line). Right: diagram for
calculation (see text).

The synthetic data example conforms to this simple model, and its capture-efficiency curve (in the right panel382

of Figure 9) is approximately linear on each side of the true threshold value ztrue = 2 km. The left panel of383

Figure 10 shows the same capture-efficiency curve augmented by the two lines described above, using knowledge384

of the true threshold ztrue = 2 km.385

There is also a connection with estimation of the WofE contrast: the slopes of the initial and final segments of386

the capture-efficiency curve (or in general, the ROC curve) are the average densities of deposits on either side of387

the threshold. The logarithm of the ratio of these slopes is equal to Ĉ(zm), the estimate of the WofE contrast at388

the elbow point zm. We shall explain this in detail, referring to the right panel of Figure 10. For any point (x, y)389

on the capture-efficiency curve, consider the two straight lines joining (0, 0) to (x, y) and joining (x, y) to (1, 1) as390

illustrated in Figure 10. These lines have slope y/x and (1 − y)/(1 − x) respectively. The logarithm of the ratio391

of the two slopes is ln(y/x) − ln((1 − y)/(1 − x)). Since the point (x, y) lies on the capture-efficiency curve, its392

coordinates are x = a(z)/a and y = n(z)/n for the corresponding candidate threshold z, so the logarithm of the393

ratio of the two slopes is equal to (2), the estimated contrast Ĉ(z).394

It follows that a technique which selected the threshold z by maximising the ratio of the slopes of the two lines,395

as described above, would be equivalent to maximising the WofE contrast.396

Youden Criterion397

If deposits were uniformly scattered over the study region, then the fraction F (z) = n(z)/n of deposits below a398

certain threshold z would be approximately equal to the fraction G(z) = a(z)/a of study area below this threshold.399
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Discrepancies between the “observed” fraction F (z) and the “expected” fraction G(z) constitute evidence against400

uniform scattering.401

If the simple threshold model is true, as described in the previous section, then the estimated threshold ẑ can402

be obtained as the position of greatest discrepancy between the observed fraction F (z) and “expected” fraction403

G(z). This location can be identified in several ways. In the left panel of Figure 9, the threshold ẑ is the location404

where the two curves have the greatest vertical separation, that is, the location z where F (z)−G(z) is greatest.405

In the right panel of Figure 9, the threshold ẑ corresponds to the location where the capture-efficiency curve406

has the greatest vertical deviation from the diagonal line; the x coordinate of this location is the area fraction407

G(ẑ) = a(ẑ)/a and from this we can determine the estimated threshold value ẑ. A third, graphical technique for408

identifying the estimated threshold is described below (see Figure 12).409

The vertical deviation at a candidate threshold value z is

Y (z) = F (z)−G(z) =
n(z)

n
− a(z)

a
. (8)

The maximum positive vertical deviation is

Y = max
z
Y (z). (9)

Under the assumption that grid cell areas are negligible, Y is equivalent to the Youden index (Chen and Wu 2019;410

Ruopp et al. 2008; Youden 1950) of classifier performance, and we call (8) the Youden criterion.4 The general411

formula for Y (z), not assuming that grid cell area is negligible, is given in the appendix Non-negligible Grid412

Cell Size as equation (45).413

The Youden index was originally defined (Youden 1950) as a measure of optimal performance of a medical414

diagnostic classifier. As explained by Ruopp et al. (2008), suppose that a patient’s disease status were reported415

as positive (disease present) if the result of a biomedical assay returned a value lower than a specified cutoff, and416

otherwise were reported as negative (disease absent). Sensitivity (Se) and specificity (Sp) are the probabilities of417

correctly identifying diseased and non-diseased individuals, respectively. If equal importance is given to sensitivity418

and specificity, then the predictive power or discriminating ability of the technique can be measured by Se−(1−Sp)419

and the cutoff should be chosen to maximise this quantity. The maximised value is the Youden (1950) index.420

In prospectivity analysis, the analogous procedure (Chen and Wu 2019) is to label a grid cell as “prospective”421

when the value of the predictor variable Z is below a threshold z. The sensitivity Se is the probability of correctly422

identifying grid cells that contain deposits, that is, the probability that a grid cell which actually contains a deposit423

will be correctly labelled as prospective by this rule. Under our assumption that grid cell areas are negligible, the424

sensitivity is equal to n(z)/n = F (z), the fraction of deposit locations where the predictor is less than or equal425

to z. The specificity Sp is the probability of correctly identifying grid cells that do not contain a deposit, and is426

equal to the fraction 1−G(z) = [a−a(z)]/a of study area where the predictor value exceeds z. The discriminating427

power of the classifier, Se− (1− Sp), is equal to F (z)−G(z).428

Figure 11 shows the calculation of the Youden criterion for the synthetic data example. The left panel shows429

the two cumulative distribution functions F (z) = n(z)/n and G(z) = a(z)/a plotted against candidate threshold430

distance z. The right panel shows the Youden criterion Y (z) = F (z) − G(z) plotted against z. In this synthetic431

data example, the estimated threshold obtained by maximising the Youden criterion is z = 1.96 km, an excellent432

estimate of the true value ztrue = 2 km.433

In statistical terminology, the graph of the Youden criterion in the right panel of Figure 11 is a “control434

chart” (Shewhart 1983) of the CUSUM type (Page 1954) and these are known to perform well for estimation of435

change-point locations (Basseville and Nikiforov 1993, Chapter 2; Barnard 1959; Hinkley 1971).436

An alternative graphical technique for identifying the estimated threshold by the Youden method is sketched437

in Figure 12. Parallel lines with slope equal to 1 are drawn above the capture-efficiency curve, and displaced438

downward until a line touches the curve. The tangent point determines the selected threshold: from the tangent439

point we read off the horizontal coordinate, which is equal to the optimal area fraction, and this corresponds to440

the optimal threshold for the predictor.441

In the original definition of the Youden index as a measure of diagnostic performance, equal importance was442

given to sensitivity and specificity. In the context of mineral prospectivity, this corresponds to assigning a monetary443

figure to the cost of thoroughly exploring each 1% of survey area that is equal to the value of each 1% of existing444

mineral deposits. If a different cost-benefit ratio α had been used, so that the value of 1% of mineral deposits was445

equal to the cost of testing α% of the survey area, this would correspond to using parallel lines of slope α instead446

of slope 1 in Figure 12. A valuable insight from Figure 12 is that we would have selected the same threshold even447

if we had used parallel lines with some other slopes, because of the inverted “V” shape of the capture-efficiency448

4The Youden index is traditionally denoted by the letter J , but we have called it Y for a more mnemonic notation.
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Fig. 11 Youden criterion for the synthetic data of Figure 5. Left: cumulative fractions n(z)/n (thin curve) and a(z)/a (bold curve)
plotted against candidate threshold distance z. Right: Youden criterion Y (z) = n(z)/n− a(z)/a plotted against z. Vertical line shows
the correct threshold, ztrue = 2 km and the estimated threshold, ẑ = 1.96 km, which are visually indistinguishable.
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Fig. 12 Alternative graphical technique for the Youden method. The capture efficiency curve for the synthetic data is drawn. A line
with slope 1 (dashed) is moved down the graph until it intersects the capture efficiency curve. The tangent point corresponds to the
threshold that maximises the Youden criterion.

curve. That is, when the simple threshold model is true, the cost-benefit ratio is not very influential in choosing449

the threshold.450

Slope of Curve451

We have seen that, if the simple threshold model is true, the capture-efficiency curve is expected to be linear on452

each side of the threshold, and the threshold position can be discerned by any of the procedures described above.453

It would be more realistic to assume that the threshold model is not exactly true, but that there is nevertheless a454

large difference between the densities of deposit points occurring at low and high values of the predictor variable.455

In that case, one can exploit the fact that, at any position along the capture-efficiency curve, say the point456

(a(z)/a, n(z)/n), the slope of the curve is proportional to the probability of a deposit when the predictor value is457

equal to z (Baddeley et al. 2012; Goodacre et al. 1993; Porwal et al. 2010). It would then be appropriate to select458

the threshold by finding “the point of significant inflexion where the slope changes from steep to gentle” (Porwal459

et al. 2010, p. 193). However, the procedure to be used for finding the inflection point or for measuring changes of460

slope was not described in detail in the paper by Porwal et al. (2010).461
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A possible weakness of this method is that estimates of derivatives can be highly unstable, and some form of462

smoothing is required. Goodacre et al. (1993) used spline smoothing to estimate the local slope of the capture-463

efficiency curve. The closely related technique of Baddeley et al. (2012) used kernel smoothing.464

THRESHOLD SELECTION USING CHANGE-POINT ANALYSIS465

In statistical theory, an abrupt change in the characteristics of a signal is called a change-point (Basseville and466

Nikiforov 1993; Page 1957; Zacks 1983). Detection of abrupt change, and estimation of the location of the change-467

point, are challenging problems because they do not conform to the standard assumptions of differentiability that468

justify most statistical techniques.469

From the viewpoint of this literature, it would be expected that a procedure which estimates the change-470

point location by maximising the estimated contrast Ĉ would not perform well. The estimated contrast Ĉ(z) is471

an estimate of effect size, that is, an estimate of the magnitude of the change at z, rather than a measure of472

the evidence for a change at location z. Adjusting for the variability of Ĉ(z) could improve performance, so the473

Studentised contrast t(z) would be expected to perform better. As remarked above, the Youden criterion Y (z)474

would be expected to perform well, because it can be regarded as a control chart of CUSUM type, and these are475

known to perform well for estimation of change-point locations (Basseville and Nikiforov 1993, Chapter 2; Barnard476

1959; Hinkley 1971). For testing statistical significance of a change-point, it is important that the Youden criterion477

is associated with the Kolmogorov-Smirnov test (see the subsection on the Kolmogorov-Smirnov test in the478

section SIGNIFICANCE TESTS below).479

Profile Likelihood480

A common way to estimate the threshold ztrue would be to maximise the profile likelihood.481

Likelihood482

Likelihood (Fisher 1922) is a fundamental tool in statistical analysis. For a parametric statistical model, the483

likelihood is a function L(θ) of the model parameters θ; it is defined as the probability of observing the data that484

were actually observed, assuming the model is true with the specified parameter values. The likelihood function485

serves as a comparative measure of the support given by the data to different choices of the parameter values.486

One important use of the likelihood function is to estimate the model parameters from the data. In the method487

of maximum likelihood, after observing the data we select the parameter value which maximises the likelihood,488

that is, the parameter value which enjoys the greatest support given by the data.489

Expositions of likelihood can be found in Hogg and Craig (1970, Section 8.2), Rice (2006, Section 8.5), Lindsey490

(1996, Chapter 3), Severini (2000, Chapter 3), Kalbfleisch (1985, Chapters 9–10) and Murphy and van der Vaart491

(2000).492

In prospectivity analysis, the techniques of logistic regression and WofE are both applications of the method493

of maximum likelihood (Baddeley et al. 2010; Schaeben 2014). Furthermore, the hypothesis tests reviewed in the494

section on SIGNIFICANCE TESTS are all obtained from the likelihood.495

Maximising the likelihood is equivalent to maximising the logarithm of the likelihood, and it is usual to work496

with the log-likelihood for convenience. For further simplification, any terms in the log-likelihood equation that do497

not depend on the parameters can be removed because they do not affect the maximisation.498

For the simple threshold model, the observed data are the two curves depicted in Figure 6, and the log-
likelihood5 of the candidate threshold z and densities µ0, µ1 is

lnL(z, µ0, µ1) = n(z) lnµ1 + (n− n(z)) lnµ0 − a(z)µ1 − (a− a(z))µ0. (10)

The maximum likelihood estimate of the three parameters (z, µ0, µ1) would be obtained by finding the values of499

(z, µ0, µ1) which yield the maximum value of (10).500

5For a detailed derivation of this likelihood, see the appendix Likelihood Function for Threshold Model. For a different, more
intuitively accessible explanation, see Baddeley et al. (2015, pp. 132–135, 342–343).
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Profile Likelihood for the Threshold Model501

The profile likelihood method is a general technique for dealing with multiple parameters when one parameter is502

more “important” than the others. The profile likelihood is a function of the “important” parameter only, and is503

defined as the maximum value of likelihood over all possible values of the “less important” parameters.504

For the threshold model, the “important” parameter is the threshold value z. To apply profile likelihood to the
threshold model, for each candidate threshold value z we maximise the likelihood over all possible values of the
densities µ0, µ1. Using calculus the maximum is achieved when µ1 = n(z)/a(z) and µ0 = (n − n(z))/(a − a(z));
these are just the average densities of deposits per unit area inside and outside the buffer, as we might expect.
Substituting these into (10) we obtain the profile log-likelihood for a candidate threshold z,

lnL(z) = n(z) ln
n(z)

a(z)
+ (n− n(z)) ln

n− n(z)

a− a(z)
− n. (11)

Using (2) this is equivalent to

lnL(z) = n ln
n(z)

a(z)
− (n− n(z))Ĉ(z)− n. (12)

Maximising the profile log-likelihood over candidate threshold values z is equivalent to maximising the likelihood505

of the three parameters (z, µ0, µ1), enabling us to estimate the threshold by the method of maximum likelihood.506
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Fig. 13 Log-likelihood plotted against candidate threshold distance, for the synthetic data of Figure 5. Dotted vertical line shows
correct threshold, ztrue = 2 km. Dashed vertical line shows estimated threshold, ẑ = 1.96 km, virtually indistinguishable from the
correct value.

Figure 13 shows the application of likelihood methods to the threshold selection problem for the synthetic507

data. The profile log-likelihood lnL(z) from (12) is plotted against candidate threshold distance z. The estimated508

threshold, ẑ = 1.96 km, obtained by maximising the profile log-likelihood, delivers an excellent estimate of the509

correct value, z = 2 km. In particular, this method yields a better estimate than is obtained by maximising the510

Studentised contrast t.511

Although likelihood methods are theoretically optimal (i.e. they have the best possible statistical performance)512

in many contexts, they may not be optimal for the threshold model. The standard theory justifying maximum513

likelihood assumes that the likelihood is a differentiable function of the parameters. This is not true for the threshold514

model because the log-likelihood (10) or (12) is not differentiable as a function of the candidate threshold z. This515

has the important consequence that maximum likelihood is not necessarily the optimal method for estimating the516

threshold.517

Another important consequence is that standard errors and confidence intervals cannot be calculated in the518

usual way. In the section BOOTSTRAP STANDARD ERRORS AND CONFIDENCE INTERVALS519

below, however, we propose a bootstrap method for calculating standard errors and confidence intervals for the520

threshold location.521
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Other Statistical Approaches to Change-Point Estimation522

Since the method of maximum likelihood is not necessarily optimal for estimating a change-point, there is extensive523

literature aimed at finding better techniques (Basseville and Nikiforov 1993; Bhattacharya and Brockwell 1976;524

Bhattacharya and Johnson 1968; Chernoff and Zacks 1964; Darkhovsky 1976; Deshayes 1984; Galun and Trifonov525

1982; Gardner 1969; Hájek and Rényi 1955; Hinkley 1970, 1971; Kander and Zacks 1966; Pratt 1959; Sen and526

Srivastava 1975; Smith 1975; Zacks 1983). For surveys, see Basseville and Nikiforov (1993); Pons (2018).527

Thresholding is equivalent to estimating a change-point in probability density. Recall that the the capture-528

efficiency curve can be regarded as a cumulative distribution function. The slope of the capture-efficiency curve can529

therefore be regarded as a probability density function. If the capture-efficiency curve follows the ideal, inverted530

“V” shape, then its slope jumps abruptly from a high value to a low value, i.e. there is a change-point in the531

probability density.532

Techniques for estimating a change-point in a probability density go back at least as far as Chernoff and Rubin533

(1956) and Rubin (1961), and there is now extensive literature6 on this problem (Kutoyants 1998, Chapter 5, pp.534

183–224). Other literature, with possible relevance to prospectivity, includes models of a change-point plus gradual535

trend (Loader 1992), a change-point in discretised data (West and Ogden 1997), two change-points (Chernoyarov,536

Kutoyants, and Top 2018), change-points in waiting time (Commenges and Seal 1985), and smoothing-based537

estimates (Leonard 1978).538

Akman–Raftery Method539

Akman and Raftery (1986) and Raftery and Akman (1986) proposed another method for estimating a change-point540

in the probability density of a variable. For mathematical convenience, they assumed the variable ranges between 0541

and 1, the change-point is a value s lying strictly between 0 and 1, and that the probability density of the variable542

is constant on either side of the change-point.543

To apply the Akman-Raftery method to the thresholding problem, we must first transform the threshold value
z to the change-point coordinate s by setting s = s(z) = a(z)/a = G(z), the fraction of area of the survey
where the predictor value does not exceed the threshold z. Equivalently, s is the horizontal coordinate in the
capture-efficiency curve. Then the Akman-Raftery criterion is defined as7

AR(z) =
√
s(z)(1− s(z))

(
n(z)

s(z)
− n− n(z)

1− s(z)

)
=
√
a(z)(a− a(z))

(
n(z)

a(z)
− n− n(z)

a− a(z)

)
. (13)

The term in parentheses on the right hand side of (13) is the difference between the estimated densities of deposits544

in the regions above and below the putative threshold z. The standard error of this difference, under the null hy-545

pothesis that a threshold is absent, is equal to 1/
√
ns(z)(1− s(z)). That is, AR(z) is 1/

√
n times the standardised546

difference between estimated intensities above and below the putative threshold. This is a “standardised” rather547

than “Studentised” quantity because the standard error is based on the null hypothesis that a threshold is absent.548

The change-point is estimated by maximising |AR(z)|. However, when s = s(z) is close to 0 or 1, the sampling549

fluctuations in AR(z) become large. Accordingly Akman and Raftery (1986) stipulate that the maximum should550

be taken only for area fractions s in the range [s0, s1] with 0 < s0 < s1 < 1. For example, restricting to the range551

[0.1, 0.9] would mean that the candidate threshold z must lie between the 10th and 90th percentiles of the values552

of the predictor variable over the study region.553

This constraint is impractical in many applications to mineral prospectivity. If the predictor is distance to a554

map feature like a fault line or lithological boundary, it is not acceptable to exclude the smallest percentiles, as555

these correspond to the region where the effect of the feature is likely to be greatest. However, we shall study the556

effect of this constraint.557

In our discussion, the Akman-Raftery criterion is the quantity AR(z) defined in (13) which could be evaluated558

for any value of z, while the Akman-Raftery method (abbreviated ARM) is the procedure which maximises AR(z)559

subject to the constraint on z.560

For the synthetic data, Figure 14 shows the Akman-Raftery criterion AR(z) plotted against the candidate561

threshold distance z in the left panel, and plotted against area fraction s in the right panel. Oblique shading covers562

the predictor values which lie below the 10th percentile or above the 90th percentile of predictor values in the563

study region. In this example, the maximum value of AR(z) over all possible thresholds z is achieved at distance564

6For experts in statistics, we note that the central limit theorem does not apply to this problem: the asymptotic law of the log-likelihood
is a compound Poisson process, not a Gaussian process (Pflug 1983; Kutoyants 1998, eq. (5.3), p. 184).

7Akman and Raftery (1986) denoted their criterion by the letter Y , but we use AR for a more mnemonic notation.
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Fig. 14 Akman-Raftery criterion plotted against candidate threshold distance z (Left) and plotted against area fraction s (Right) for
the synthetic data of Figure 5. Dotted vertical line shows correct threshold, ztrue = 2 km (left panel) and corresponding correct area
fraction strue = 0.316 (right panel). Dashed vertical line shows estimated threshold, ẑ = 1.50 km (left panel) and corresponding area
fraction ŝ = 0.242 (right panel). Oblique shading covers predictor values below the 10th percentile or above the 90th percentile.

threshold z = 1.50 km corresponding to area fraction s = 0.242; this happens to lie between the 10th and 90th565

percentiles, so that if we had applied the Akman-Raftery constraint that s should lie between [s0, s1] = [0.1, 0.9],566

the outcome would have been identical. The Akman-Raftery estimated threshold ẑ = 1.50 km is equal to the567

estimates obtained by maximising the χ2 statistic or the Studentised contrast, which we described as a mediocre568

estimate of the true value 2 km.569

The theory developed by Akman and Raftery (1986) and Raftery and Akman (1986) has other important570

advantages, explained in the section SIGNIFICANCE TESTS below.571

MATHEMATICAL CONNECTIONS BETWEEN THE CRITERIA572

The threshold selection criteria described above are qualitatively similar to one another; they are all measures of
the discrepancy between the observed average densities of deposits above and below the threshold value. Indeed
we have been able to prove algebraically that some of them are directly related. The most striking relationship,
which we prove in the appendix Connections between the Threshold Criteria, is that

AR(z) =
√
n X(z). (14)

That is, the Akman-Raftery criterion AR(z) defined in (13) is proportional to the signed χ2 test statistic X(z)573

defined in (7). This means that maximising the Akman-Raftery criterion AR(z) over all possible thresholds,574

i.e., without constraints, would be equivalent to maximising the χ2 test statistic X2(z). However, the Akman-575

Raftery method constrains the range of candidate threshold values, so that the Akman-Raftery method is not576

quite equivalent to maximising X2(z) over all possible thresholds.577

The second relationship can be seen directly by comparing (7) and (8):

X(z) =
Y (z)

se0(Y (z))
, (15)

where

se0(Y (z)) =
√
s(z)(1− s(z))/n (16)

is the standard deviation of Y (z) under the null hypothesis that the density of deposits is uniform. That is, the578

signed χ2 statistic X(z) is a standardised version of the Youden criterion Y (z). See the appendix Connections579

between the Threshold Selection Criteria, subsection Relation between χ2 statistic and Youden criterion.580

This is a “standardised” rather than “Studentised” version because the standard error is calculated under the null581

model. The relationship (15) does not imply redundancy between X(z) and Y (z), but provides some insight.582
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Thirdly, there are qualitative similarities. The WofE contrast (2) is analogous to the Youden criterion (8) except583

for the use of the logarithm in (2). The statistic t in (4) is the Studentised version of the WofE contrast (2) while584

the signed χ2 statistic X(z) is the standardised version of the Youden criterion (8).585

The overall conclusion is that the different methods for threshold selection described here are not independent586

methodologies, despite their very different origins. In practice, these different methods cannot be relied upon to587

provide independent assessments of prospectivity.588

SIGNIFICANCE TESTS589

Often it is desired to conduct a statistical test of significance of a binary predictor, or a test for the existence of a590

threshold effect in a numerical predictor variable Z.591

Significance Test for a Binary Predictor592

First consider the scenario sketched in Figure 1 where a binary predictor is already given, and we wish to test593

whether the predictor has a statistically significant effect.594

The predictor has no effect if the WofE contrast is zero. To test whether the WofE contrast is statistically
significantly different from zero, Goodacre et al. (1993, p. 291) used the Studentised contrast

t =
Ĉ

se(Ĉ)
, (17)

and determined statistical significance by referring the value of t to a standard Normal distribution. For example,595

at the usual 5% level of significance, the contrast is declared to be significant if |t| > 1.96, or equivalently if596

|Ĉ| > 1.96 se(Ĉ). See also Cheng (2007, p. 321).597

The null hypothesis is that the predictor has no effect, so that the density of deposits is uniform over the598

survey area; the densities inside and outside the buffer are equal, so that the true contrast is zero. The alternative599

hypothesis is the two-sided alternative that the true contrast is not equal to zero.600

The test based on the statistic in equation (17) treats large positive and large negative values of t as being601

statistically significant. Negative values of t (or Ĉ) suggest that the feature B is antithetical to deposits, and602

that the complementary feature B is prospective. Attaching significance to negative values of contrast may be603

appropriate in some applications; in their study of seismicity, Goodacre et al. (1993, Table 2, p. 295) reported that604

some rock types had statistically significant negative values of contrast.605

However, in prospectivity analysis, features are usually selected for investigation because our domain knowledge606

suggests they are likely to be prospective. It is then appropriate to perform a “one-sided” or “one-tailed” test in607

which only large positive values of t are considered significant; the 5% critical value 1.96 is changed to 1.64, that608

is, the contrast is declared significant if t > 1.64 or equivalently Ĉ > 1.64 se(Ĉ). This is the familiar distinction609

between “two-tailed” and “one-tailed” tests (Conover 1999, pp. 78–79). The choice of test depends on the purpose,610

as discussed above. For brevity, we use two-tailed tests unless otherwise stated.611

It may be confusing that the test rule uses the critical points of the Normal distribution, while the test statistic612

is called “Studentised” and is denoted by the symbol t, suggesting that we should use the critical points of the613

Student’s t distribution. This would not be correct because the test statistic t in (17) does not have a Student’s614

t-distribution.8615

Goodacre et al. (1993, pp. 291, 295) point out that a test based on t is valid when the total number of deposits616

n is large, but would be inaccurate if either of the numbers nB or nB is “small”. For that eventuality they propose617

an alternative test based on the binomial distribution (Goodacre et al. 1993, pp. 295–296). The total number of618

deposits n is treated as fixed, and statistical significance is assessed by referring the observed count nB to the619

binomial distribution with n trials and success probability s = aB/a. This procedure is slightly more complicated,620

as it involves looking up a table or using software to compute the p-value. The binomial distribution can be621

approximated by the Normal distribution when ns and n(1 − s) are both greater than 10 (Carlton and Devore622

2014, p. 181), so we believe that the more refined test of Goodacre et al. (1993) is needed only when nB or nB is623

less than 10.624

8The technical requirements for the Student’s t distribution are not satisfied: in particular the numerator and denominator of (17) are
not independent variables.
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A closely-related test which may be more familiar is the χ2 (chi-squared) test of goodness-of-fit, based on the
test statistic

X2 =
∑ (observed− expected)2

expected
=

(nB − eB)2

eB
+

(nB − eB)2

eB
, (18)

where eB = (n/a)aB = n(aB/a) and eB = (n/a)aB = n(aB/a) are the expected counts in B and B, respectively,
when the deposits are randomly distributed with constant density. The test is performed by referring X2 to the
χ2 distribution with 1 degree of freedom (Hogg and Craig 1970, Section 10.2, pp. 308–316; Kendall and Stuart
1973, Chapter 30; Pearson 1900). A χ2 variable with one degree of freedom is equivalent to the square of a
standard Normal variable, so this particular χ2 goodness-of-fit test is equivalent to computing the signed square
root X = ±

√
X2 and referring X to the standard Normal distribution. In order to take the square root of X2, we

simplify equation (18) as explained in the appendix Connections between the Threshold Selection Criteria,
yielding

X2 = n

(
nB

n −
aB

a

)2
aB

a

(
1− aB

a

) , (19)

so that

X =
√
n

nB

n −
aB

a√
aB

a

(
1− aB

a

) . (20)

Note that X is a standardised version of the count nB . The contrast is declared statistically significant (i.e. different625

from zero) at the 5% significance level if |X| > 1.96. The one-tailed test would declare significance if X > 1.64.626

The χ2 test is also based on large-sample asymptotic theory and suffers from inaccuracy when the sample size627

(number of deposits) is small. The established rule of thumb is that both eB and eB should be at least 5 (Rice628

2006, p. 487; Hogg and Craig 1970, p. 309) implying that n should be at least 10.629

Statistical theory shows that the test with the best performance in large samples is the Likelihood Ratio Test,
based on the statistic

LRTS = 2
∑

observed× ln

(
observed

expected

)
= 2

(
nB ln

nB
aB

+ nB ln
nB
aB
− n ln

n

a

)
, (21)

which is referred to the χ2 distribution with 1 degree of freedom, so that the estimated contrast Ĉ is declared630

significant at the 5% level if LRTS > 1.962 = 3.84 (Kendall and Stuart 1973, eq. (30.6), p. 438). The Likelihood631

Ratio Test also depends on asymptotics but performs well, even in small samples (small numbers of deposits).632

For the WofE contrast method for estimating thresholds, the Studentised contrast statistic (17) is t = 1.66/0.32 =
5.19, which exceeds the 5% critical value 1.96 for the Normal distribution for the two-sided test. For the χ2 test,
the signed square root statistic (20) is

X =
√

48
34/48− 1294/4102√

(1294/4102)(1− 1294/4102)
= 5.86,

which exceeds 1.96. The Likelihood Ratio Test statistic (21) is

LRTS = 2(34 ln(34/1294) + 14 ln(14/2808)− 48 ln(48/4102)) = 31.12,

which far exceeds the 5% critical value 3.84 for the χ2 distribution with 1 degree of freedom. Such agreement633

between the outcomes of different hypothesis tests is expected in large samples (large numbers of deposits).634

All the significance tests described above perform well, and give similar outcomes, for the synthetic data set.635

More exotic tests, which have even better small-sample performance, are also available (Read and Cressie 1988).636

In summary, the customary test based on the Studentised contrast (17), referred to the standard Normal637

distribution, is valid provided the total number of deposits n is at least 30 and the expected numbers eB , eB both638

exceed 5. Otherwise, one should use the χ2 test based on (20), or the binomial test described by Goodacre et al.639

(1993, pp. 295–296), or the Likelihood Ratio Test using (21), or the tests described by Read and Cressie (1988).640

Our overall recommendation is to use the Likelihood Ratio Test.641

The χ2 test is widely used in exploration geoscience (Filzmosera et al. 2005; Garrett 1989; Ghannadpour and642

Hezarkhani 2016) with caveats (Ballantyne and Cornish 1979).643
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The Problem of “Peeking”644

An important caveat about statistical significance tests is that the test conditions must be fixed in advance; it is645

not valid to change the test procedure in the light of the observed data. The statistical significance tests described646

in the previous subsection, for testing whether a spatial feature B is prospective, are only valid when the feature647

B is known and fixed in advance. It would not be valid to perform the same test calculation several times with648

different choices of B, to select the most favorable test result, and then to judge statistical significance using the649

rules described above.650

In particular, if we construct a buffer around a fault system, select the optimal buffer distance by maximising651

the Studentised contrast t, and find that t(ẑ) for this optimised buffer exceeds 1.96, then this does not imply652

statistical significance at the 5% level. The test based on the statistic t assumes that the buffer distance was fixed653

in advance. Selecting the “optimal” buffer distance using the observed deposit location data would be a form of654

cheating, equivalent to selecting the best result among several test outcomes. This is more likely to achieve a655

spuriously significant outcome, that is, the probability of erroneously declaring “significance” is much greater than656

0.05, because of the multiple testing (“look elsewhere”) effect (Hochberg and Tamhane 1987; Hsu 1996; Shaffer657

1995). See Rice (2006, pp. 60, 321–324) and the XKCD cartoon on jellybean statistics (Anonymous 2011).658

Colleagues often ask us why this procedure should be condemned as an instance of “multiple” testing, when659

they have only performed a single hypothesis test calculation, using the optimised threshold value. Consider that,660

for each candidate threshold z, the value of the statistic t(z) could have been translated into a p-value (whether we661

compute it or not) associated with the hypothesis test for threshold z; larger values of t(z) correspond to smaller662

(i.e. more significant) p-values; consequently, by choosing the largest value of t(z) we have equivalently chosen the663

smallest p-value (most significant outcome) out of all the possible significance tests available.664

This is tantamount to performing many different statistical tests, each associated with a different value of z,665

but applying the standard of statistical significance that is appropriate for a single test. This is likely to produce666

spurious significant outcomes, since we will have multiple opportunities to reach the standard of significance for a667

single test.668

When the threshold ẑ is estimated from data, the correct critical value for a 5% significance test based on t(ẑ)669

is much larger than 1.96, and is more complicated to compute, even for large samples (large numbers of deposits).670

Kolmogorov-Smirnov Test671

The problem identified above is that we require a test for the existence of a threshold effect, where the threshold672

level z is not known in advance. The null hypothesis is that there is no threshold effect, prospectivity is uniform673

across the survey region, and the deposits are homogeneously randomly scattered. The alternative hypothesis is674

the simple threshold model, in which prospectivity is higher below the threshold than above the threshold, where675

the true threshold value ztrue is unknown and must be estimated from data. Such a test could be deployed to select676

the predictor variables to be used in the analysis, from amongst a list of candidate predictors.677

Effectively this is a test of significance of the disagreement between two curves, that is, a test of agreement or678

disagreement between cumulative distribution functions.679

The most famous test of this kind is the Kolmogorov-Smirnov (K–S) test (Conover 1999, pp. 295–301), which
uses a rescaled version of the maximum discrepancy between the curves F (z) and G(z). In our context, we use the
one-sided K–S test statistic, KS+, which is closely related to the Youden criterion Y defined in (9):

KS+ =
√
nY+, (22)

where n is the number of deposits, Y is the Youden criterion, and Y+ is its positive value, Y+ = Y if Y ≥ 0, and
Y+ = 0 if Y < 0. The K–S test declares the discrepancy to be significant if KS+ > cn, where cn is the critical
value of the test, which depends on the total number of deposits n. Reinterpreting Table 4.2 of Stephens (1986, p.
105) we get, for the 5% level of significance,

cn ≈ 1.224/(1 + 0.12/
√
n+ 0.11/n). (23)

The critical value cn is a slowly-increasing function of the number of deposits n, for example c5 = 1.14, c10 = 1.17,680

c100 = 1.21 and c∞ = 1.224. We emphasise that the K–S test does not require large numbers of deposits; the test681

can be performed for small n, using the appropriate critical value cn.682

For the synthetic data example in Figure 5, we have Y = 0.40 and n = 48 so that KS+ =
√

48 × 0.40 = 2.77683

and the 5% critical point is c48 = 1.20, so the test declares the discrepancy to be significant at the 5% level.684
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Other tests related to the capture-efficiency curve include the Anderson-Darling and Cramér-Von Mises tests,685

and the tests of Berman (1986). The Berman tests were motivated by problems in mineral exploration; Berman’s686

Z2 test is based on the area under the capture-efficiency curve. These other tests will be investigated further in a687

subsequent article.688

Akman-Raftery (Constrained Chi-Squared) Test689

The method of Akman and Raftery (1986) and Raftery and Akman (1986) also accounts for the effect of searching690

for the optimal threshold, enabling us to perform a statistical significance test for existence of a change-point.691

Akman and Raftery (1986) show that, if ẑ is the estimated change-point location obtained by the Akman-
Raftery method with area fractions s constrained to lie between s0 and s1, then a test of the hypothesis of no
change (i.e. equal densities on each side of the change-point) can be performed using the test statistic

d = (1/
√
n) |AR(ẑ)|, (24)

where n is the number of deposits. The statistic d is the standardised Akman-Raftery criterion maximised subject
to the constraint on area fractions. The approximate p-value is (Akman and Raftery 1986, p. 1586)

p ≈ 2

√
2

π
exp(−d2/2)(αd− α/d+ 1/d), (25)

where α = (1/2) ln(s1(1−s0)/(s0(1−s1))). For the synthetic data example with the constraints s0 = 0.1, s1 = 0.9,692

we get d = 6.2 and p = 9.5× 10−8 indicating strong evidence of a threshold.693

Since we have established in the appendix Connections between the Threshold Selection Criteria that694

the χ2 test statistic satisfies X(z) = AR(z)/
√
n, the results of Akman and Raftery give us a test, based on the χ2

695

test statistic, for the presence of a threshold. One simply replaces d by X(ẑ) in (25). That is, the signed square696

root of the χ2 test statistic, at the selected threshold, has the p-value given by (25) with d replaced by X(ẑ).697

Akman and Raftery (1986, p. 1587) also mention that their p-value formula (25) could be used to construct698

a confidence interval for the true threshold value, by “inversion” of the formula. To do this, we would consider699

d(z) = (1/
√
n) |AR(z)| as a function of z, evaluate p = p(z) for each d = d(z) according to (25), plot p(z) against700

z, and find the range of z values where the p-values exceed 0.05. However, (25) is accurate only for large n and701

large d, so this confidence interval is unlikely to be valid when the number of deposits is small.702

SIMULATION EXPERIMENTS703

Simulation experiments based on synthetic data were conducted in order to objectively evaluate and compare the704

performance of the different techniques. This cannot be done with real data, because the true threshold is not705

known. The simulation experiments involve a simple, ideal scenario where there is a single best threshold in the706

sense of Bonham-Carter (1995, p. 319). Performance of each technique is measured by its ability to identify this707

correct threshold.708

Experiment 1709

In this experiment we generated 10,000 simulated outcomes of the synthetic model described in subsection Syn-710

thetic Example of the section on THE THRESHOLDING PROBLEM. The prospective region is the buffer711

zone shown in the left panel of Figure 5. Deposit locations were generated randomly with an average density of712

0.02 and 0.01 points per km2 inside and outside the buffer, respectively. The right panel of Figure 5 shows a typical713

simulated outcome. The correct threshold distance is ztrue = 2 km. The prospective region B within distance 2714

km has area aB = 1294 km2, and its complement has area aB = 2809 km2. The expected number of deposits is715

0.02× 1294 = 25.9 inside B and 0.01× 2809 = 28.1 outside B, making an expected total of 54.0 deposits.716

For each simulated outcome, the threshold distance z was estimated by maximising the estimated contrast, the717

Studentised contrast, the log-likelihood, the Akman-Raftery criterion with constraints, the Youden criterion and718

the χ2 test statistic. We denote these methods by C, t, LL, ARM, Y, and X2, respectively.719

For the Akman-Raftery method (ARM), following their recommendation, we set s0 = 0.1, s1 = 0.9 so that720

solutions were constrained to lie between the first and ninth deciles of the predictor (i.e. of the predictor values721

at all locations in the study region), which are 0.609 km and 8.290 km respectively. This constraint prevents the722
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algorithm from choosing extreme values of the threshold, and confers a somewhat unfair or unrealistic advantage723

on the Akman-Raftery method in our comparison experiment.724

For each estimation method, the spread of 10,000 threshold values ẑ obtained by applying the method to725

the simulated patterns could be portrayed as a histogram. To simplify the results, we have used kernel density726

estimation, effectively smoothing the histogram. The left column of Figure 15 shows probability densities of the727

threshold values obtained from each estimation method. Probability densities were computed by Gaussian kernel728

density estimation (Silverman 1986; Wand and Jones 1995) with bandwidth selected by Silverman’s rule (Silverman729

1986, p. 48, eq. (3.31)), both implemented in the function density.default in the R system (R Development Core730

Team 2018).731
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Fig. 15 Performance of methods for selecting the threshold in Experiment 1. Kernel density estimates of the estimated threshold
(Left column) and the corresponding buffer area fraction (Right column). In the top row, thresholds were selected by methods C, t, and
X2, which maximise the estimated contrast, Studentised contrast, and the χ2 test statistic, respectively. In the bottom row, thresholds
were selected using methods LL, ARM, and Y, which maximise the log-likelihood, the Akman-Raftery criterion with constraints, and
the Youden criterion, respectively. Dotted vertical lines indicate the correct threshold, ztrue = 2 km (left column), and corresponding
area fraction, 0.32 (right column).
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To avoid misinterpretation, we emphasise that each curve in the left column of Figure 15 is a smoothed732

histogram of the threshold values selected by a given method applied to the 10,000 simulations. The horizontal733

axis represents the threshold value that was selected; the vertical axis represents the relative frequency with which734

this value was selected. While all curves have a peak near the correct threshold value, indicating that the selected735

thresholds are often close to the correct one, many of the curves also have a steep incline at the left, indicating736

that they have a substantial chance of erroneously selecting a threshold close to zero.737

In the top left panel of Figure 15, the curve for method C does not have a peak around 2 km, indicating that738

this method is unlikely to produce a threshold value ẑ close to the correct value ztrue = 2. Instead the curve has a739

steep incline at the left, and a substantial bump around 9 km. This method very often produces a value close to 0740

km, and frequently produces values around 9 km, which are both unacceptable. Areas under the density curve are741

probabilities; the area under the density bump around 9 km is 0.31, implying that in about 30% of all outcomes,742

method C would have selected a threshold between 6 and 12 km.743

The selected threshold values ẑ were also converted to fractions of survey area, â = a(ẑ)/a. That is, â is the744

fraction of survey area deemed to be prospective by the threshold selection procedure. As discussed previously,745

this transformation eliminates the effect of spatial structure, such as the spatial pattern of faults. Kernel estimates746

of probability densities of the area fractions â are shown in the right column of Figure 15.747

Table 3 shows objective performance measures for each method of threshold estimation. If the estimation error748

is e = ẑ − ztrue, then “bias” is the mean value of e, “median deviation” is the median of e, “SD” (standard749

deviation) is the standard deviation of e, “MAD” (mean absolute deviation) is the mean of the absolute value of750

e, “RMSE” is the root-mean-square of e (the square root of the mean of e2), and the last two rows indicate the751

fraction of outcomes where the absolute value of e exceeded 0.5 and 1, respectively. In statistical literature, overall752

performance is often evaluated using RMSE or MAD, while the other indices provide insight into the nature of753

the errors. Table 4 shows the corresponding performance measures on the scale of the area fractions.754

Methods
Performance measures C t X2 ARM LL Y

bias 0.94 -0.39 0.74 0.13 0.58 0.34
median deviation -1.82 -0.30 -0.27 -0.11 -0.06 0.03

SD 3.89 1.27 4.00 1.37 2.62 1.06
MAD 3.18 0.93 2.13 0.82 1.36 0.65

RMSE 4.01 1.33 4.07 2.68 2.68 1.11
P(|deviation| > 0.5) 0.93 0.55 0.64 0.48 0.53 0.38
P(|deviation| > 1) 0.90 0.38 0.50 0.26 0.36 0.19

Table 3 Performance of threshold estimation methods in Experiment 1, based on deviation between the estimated and true threshold
distances. Boldface numerals indicate the best performance in each row.

Methods
Performance measures C t X2 ARM LL Y

bias 0.008 -0.070 -0.012 0.004 0.031 0.041
median deviation -0.288 -0.044 -0.039 -0.017 -0.008 0.003

SD 0.399 0.171 0.286 0.164 0.226 0.129
MAD 0.361 0.136 0.205 0.108 0.151 0.086

RMSE 0.399 0.185 0.286 0.164 0.229 0.136
P(|deviation| > 0.05) 0.940 0.630 0.700 0.571 0.610 0.486
P(|deviation| > 0.1) 0.913 0.477 0.577 0.383 0.451 0.281

Table 4 Performance of threshold estimation methods in Experiment 1, based on deviation between the estimated and true area
fractions of the prospective region. Boldface text indicates best performance in each row.

The most striking result is that method C, based on maximising the WofE contrast, performs very poorly. The755

methods t and X2, based respectively on the Studentised contrast and the χ2 test statistic, perform much better756

than C, and frequently produce good estimates of the threshold. However, the steep inclines at the left of each757

panel in Figure 15 and the large values in the last two rows of Tables 3 and 4 indicate that t and X2 are also liable758

to produce a value close to zero km. In a single outcome (which a geologist would work with), these methods could759

well have chosen an unacceptably low value.760

Three methods which perform quite well are the profile log-likelihood LL, the Akman-Raftery (constrained761

chi-squared) method ARM, and the Youden method Y. These methods are very likely to produce a threshold value762

close to the correct value.763
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The Akman-Raftery method ARM includes the restriction that the threshold should lie between the 10th and764

90th percentiles of the predictor. The statistical performance of ARM is expected to be better than for X2, and765

this is borne out by the results in Tables 3 and 4 and Figure 15. The constraint has a substantial effect; ARM766

and X2 give different results in 37% of simulated realisations. The probability density plots in Figure 15 show the767

results for X2 in the top row, and for ARM in the bottom row; note the substantial bumps of probability mass768

near the endpoints for X2, and the truncation of the curves for ARM.769

This simulation experiment is just one instance of an infinite universe of possible spatial patterns of faults. The770

results in Table 3 and in the left column of Figure 15 depend very specifically on the spatial pattern of faults in771

Figure 5. Fortunately, this effect is eliminated if we measure performance on the scale of the area fractions, so that772

the simulation results in Table 4 and in the right column of Figure 15 can be extrapolated to predict performance773

in a wide range of real situations.774

Experiment 2775

Since performance is expected to depend on sample size (i.e. number of deposits), our second experiment is a776

modification of the first experiment, in which the expected sample size is reduced by a factor of 4 (i.e. each of777

the density values is reduced by a factor of 4). There is now an expected total number of 54/4 = 13.5 deposits;778

different simulated datasets will have different numbers of deposits, with an average of 13.5 deposits. The true779

contrast Ctrue and true threshold ztrue are the same as in Experiment 1.780

Figure 16 and Tables 5–6 show the corresponding results. The performance of all methods is degraded by the781

reduction in the amount of data, as we would expect. The threshold selection methods C and t, based respectively782

on the estimated contrast and the Studentised contrast, both perform substantially worse than they did in Ex-783

periment 1, with a much greater propensity to choose small threshold values. The Youden method Y has the best784

performance, closely followed by ARM, then the profile likelihood method, and then X2. We also found that ARM785

and X2 gave different results in 45% of simulations.786

Methods
Performance measures C t X2 ARM LL Y

bias 0.04 -0.43 1.38 0.65 1.23 0.79
median deviation -0.92 -0.75 -0.39 -0.13 -0.06 0.21

SD 2.28 1.58 4.38 2.10 3.56 1.76
MAD 1.92 1.30 2.89 1.50 2.26 1.28

RMSE 2.28 1.64 4.60 2.19 3.77 1.93
P(|deviation| > 0.5) 0.88 0.75 0.82 0.71 0.75 0.63
P(|deviation| > 1) 0.79 0.58 0.68 0.50 0.58 0.42

Table 5 Performance of threshold estimation methods in Experiment 2 (expected total number of deposits reduced from 54 to 13.5),
based on deviation between the estimated and true threshold distances. Boldface text indicates best performance in each row.

Methods
Performance measures C t X2 ARM LL Y

bias -0.031 -0.082 0.044 0.058 0.073 0.088
median deviation -0.140 -0.113 -0.057 -0.018 -0.008 0.029

SD 0.293 0.211 0.342 0.241 0.292 0.203
MAD 0.264 0.188 0.278 0.187 0.232 0.162

RMSE 0.295 0.226 0.345 0.248 0.302 0.220
P(|deviation| > 0.05) 0.910 0.810 0.861 0.784 0.811 0.721
P(|deviation| > 0.1) 0.843 0.681 0.766 0.631 0.680 0.538

Table 6 Performance of threshold estimation methods in Experiment 2, based on deviation between the estimated and true area
fractions of the prospective region.
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Fig. 16 Experiment 2 counterpart of Figure 15, that is, with the expected total number of deposits reduced from 54 to 13.5.
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ANALYSIS OF MURCHISON GOLD DATA787

Analysis Based on Full Dataset788

Our analysis uses the distance-to-nearest-fault as a predictor. Figure 17 shows the cumulative number of gold789

deposits plotted against distance from the nearest fault (left panel) and plotted against buffer area (right panel).790

These are the distribution comparison plots analogous to those in Figure 9, but their behaviour is quite different791

from those in the synthetic example. The plots in Figure 17 show evidence of three or possibly four segments792

having distinct slopes, decreasing with increasing distance. Some reasons for such behaviour are discussed in the793

DISCUSSION section, under What Happens if the Simple Threshold Model Does Not Hold?.794

Note that the left panel of Figure 17 has been truncated to a maximum distance of 15 km, which captures 95%795

of the deposits but only 40% of the survey area. This explains why the dashed cumulative curve in the left panel796

does not reach 100%.797

The first outcome of the analysis is that buffer distances larger than 10 km are largely irrelevant for the798

purpose of selecting a threshold. This is consistent with the findings of Groves et al. (2000, Fig. 8a, p. 22) that799

over 95% of large deposits (with > 1.5t Au production) in the Kalgoorlie Terrane are located within 5 km of800

regional-scale faults, and 95% of small deposits (≤ 1.5t Au) within 10km of regional scale faults. Bierlein et al.801

(2006, Fig. 10b, p. 119) showed that gold endowment falls to a very low level beyond 5–10 km from major faults802

in the Yilgarn Craton. Bierlein et al. (2008, Fig. 11, p. 74) found that 90% of gold production occurs within 10803

km from first, second and third order faults in the north to central Sierra Nevada Foothills (USA) Metamorphic804

Belt. Brown (2002) found that a statistically significant positive association between deposits and proximity to805

faults persisted up to 4 km distance in the Kalgoorlie Terrane. However, the geometry of the faults and shear806

zones in all of the abovementioned provinces shows that major faults are separated by 20 km at most, so that a807

distance-to-nearest-fault greater than 10 km is achieved only at locations which are remote from the fault system.808

It is not clear whether thresholding is appropriate for the Murchison data. Witt et al. (2013, Appendix, Table809

A1.58) found a gradual decrease in prospectivity with distance from faults, for the Murchison Domain, using810

different data which are more complete than those shown in Figure 2. Analysis may need to consider the size or811

endowment of each deposit; whereas very large gold deposits are likely to have been formed in response to large812

crustal disturbances, very small deposits may behave like “noise” in the analysis (Knox-Robinson and Groves 1997).813

For example, the spatial resolution of the predictor data may not be fine enough to support useful prediction of814

very small deposits. Furthermore, spatial patterns of known gold deposits are influenced by the spatially-varying815

intensity of survey effort. For the purposes of this paper, we set aside such considerations, and simply demonstrate816

application of the thresholding method, noting when the method provides warnings about its own applicability.817
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Fig. 17 Counterpart of Figure 9 for the Murchison gold survey data. Left: Cumulative fraction n(z)/n of gold deposits (solid lines)
and fraction a(z)/a of survey area (dashed lines) lying within a given distance z of the nearest major fault, plotted against candidate
threshold distance z. Right: Capture-efficiency curve; fraction of gold deposits against fraction of survey area, for different threshold
distances.
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Fig. 18 Weights-of-evidence contrast (Left) and Studentised contrast (Right) plotted against candidate threshold distance z for the
Murchison gold data. Vertical line in right panel shows estimated value of threshold, ẑ = 1.35 km.

In Figure 18 the WofE contrast (left panel) and the Studentised contrast (right panel) are plotted against the818

candidate threshold distance z for the Murchison data. The figure shows erratic behaviour for the WofE contrast,819

and reasonably stable behaviour with a clear maximum for the Studentised contrast. Again this indicates that the820

Studentised contrast is to be preferred over the WofE contrast. The estimated threshold using the Studentised821

contrast is ẑ = 1.35 km.822
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Fig. 19 Profile log-likelihood (Left), χ2 criterion (Middle) and Youden criterion (Right) plotted against candidate threshold distance
z for the Murchison gold data. Vertical lines show the estimated threshold and the position of a secondary peak. Shading (Middle)
shows the region excluded from consideration in the Akman-Raftery method.

Figure 19 shows the profile log-likelihood (12), χ2 statistic (6) and Youden criterion (8) plotted against the823

candidate threshold distance z, for the Murchison gold survey data. These graphs show evidence of two, or possibly824

three, local maxima for each criterion. The profile log-likelihood has a maximum at ẑ = 6.56 km and a secondary825

peak at z = 2.08 km. The χ2 statistic has a maximum at ẑ = 1.35 km and a secondary peak at z = 6.32 km. For826

the Youden method the estimated threshold is ẑ = 6.56 km and there is a secondary maximum of curvature at827

about z = 2.15 km. Again, some reasons for such behaviour are considered in the DISCUSSION section, under828

What Happens if the Simple Threshold Model Does Not Hold?.829

In the middle panel of Figure 19 the shading covers the region below the 10th percentile of the distance830

predictor; the 90th percentile lies beyond 15 km and is not shown. The main peak of the χ2 statistic at ẑ = 1.35831

km lies below the 10th percentile of distance values (2.16 km). The Akman-Raftery method ARM does not select832

this main peak; instead it selects the boundary value z = 2.16 km which maximises the statistic subject to the833

constraint.834
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The upper limit (90th percentile, 68 km) in the Akman-Raftery method is not objectionable, since a distance835

of more than 20 km is not geologically plausible (in terms of the understanding of gold mineralization as previously836

discussed).837

Table 7 summarises the results for the Murchison gold data, with ẑ indicating the selected distance threshold,838

and s(ẑ) the corresponding fraction of survey area.839

Primary Secondary
Method ẑ s(ẑ) ẑ s(ẑ)

t 1.35 0.066
X2 1.35 0.066 6.32 0.239

ARM 2.10 0.100 6.32 0.239
LL 6.56 0.246 2.08 0.097
Y 6.56 0.246 2.15 0.098

Table 7 Summary of estimates ẑ of distance threshold (in km), and corresponding fraction s(ẑ) of the survey area, using each method
applied to the Murchison gold survey data. Primary indicates the estimate obtained by maximising the criterion. Secondary is the
estimate associated with a smaller peak, if present.

Analysis Based on Restricted Dataset840

An important caveat about WofE, and most other mineral prospectivity techniques, is that the results depend841

on the survey region: different results can be obtained if the data are restricted to a smaller subset of the survey842

region.843

The left panel of Figure 17 highlights the fact that there are parts of the survey region where the distance-to-844

nearest-fault is far greater than it is for any deposit. It might be reasonable to restrict attention to a subset of the845

survey region where geological considerations predict that there is a good chance of encountering a gold deposit.846

One such calculation which is easy to perform is to restrict attention to a buffer around the fault system, of847

say 20 kilometres. The preceding formulae are altered only by restricting the distance values z to 0 ≤ z ≤ 20,848

and replacing the area a of the full survey region by the area a(20) of the buffer under consideration. Fractions of849

survey area s(z) are adjusted by the factor a/a(20) = 1.89.850
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Fig. 20 Capture-efficiency curve for the Murchison gold data within a 20 km buffer of the fault system.

Figure 20 shows the capture-efficiency curve for the Murchison data in the 20 km buffer. Figure 21 shows the851

WofE contrast Ĉ(z) and the Studentised contrast t(z) plotted against the candidate threshold distance value z.852

The WofE contrast value is maximised at unrealistically large distances and is not practicable. The Studentised853

contrast has a clear maximum at about ẑ = 1.35 km.854

Figure 22 shows the profile log-likelihood and the Youden criterion plotted against z. These both select ẑ = 6.32855

km as the optimal threshold, with a secondary peak at ẑ ≈ 1.5 km.856
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Fig. 21 Weights-of-evidence contrast (Left) and Studentised contrast (Right) plotted against candidate threshold distance z, for the
Murchison gold data within a 20 km buffer of the fault system. Vertical line in the right panel shows estimated threshold ẑ = 1.35 km.

0 5 10 15 20

−
18

40
−

18
20

−
18

00
−

17
80

−
17

60
−

17
40

Distance threshold z (km)

Lo
g 

lik
el

ih
oo

d 
l(z

)

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

Distance threshold z (km)

χ2  te
st

 s
ta

tis
tic

 X
2 (z

)

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Distance threshold z (km)

Yo
ud

en
 c

rit
er

io
n 

Y
(z

)

Fig. 22 Profile log-likelihood (Left), χ2 statistic (Middle) and Youden criterion (Right) plotted against candidate threshold distance
z, for the Murchison gold data within a 20 km buffer of the fault system. Vertical lines show the selected threshold and a secondary
peak. Shading (Middle) shows the region excluded from consideration in the Akman-Raftery method.

Primary Secondary
Method ẑ s(ẑ) ẑ s(ẑ)

t 1.29 0.119
X2 1.29 0.119 6.32 0.452

ARM 1.29 0.119 6.32 0.452
LL 6.32 0.452 2.06 0.182
Y 6.32 0.452 2.06 0.182

Table 8 Summary of estimates ẑ of distance threshold (in km), and corresponding fraction s(ẑ) of survey area, using each method
applied to the Murchison gold survey data within a 20 km buffer of the fault system.

In this subset of the data, the 10th percentile of distance is 1.07 km, and the χ2 and Akman-Raftery methods857

are in agreement.858

Estimated distance thresholds around 1 km seem reasonable for regional-scale faults, that is, faults with a strike859

length of between 10 and 100 km. These distances fall within the range (0.8 to 2.4 km) obtained using a variety860

of methods for crustal- and regional-scale faults in a study of orogenic gold deposits in the Kalgoorlie Terrane by861

Brown (2002, pp. 248–249 and Table 6.4, p. 252).862

Distances of 6 km are quite high for a regional-scale fault system, but would be consistent with the existence of863

(a) crustal-scale shear zones (large, complex fault systems consisting of multiple slip surfaces with ductile as well864

as brittle deformation); or (b) small unmapped local-scale secondary- and tertiary-scale faults associated with the865

regional faults which control the location of gold deposits; or (c) existence of regional-scale faults which were not866

detected in the data provided. Both (b) and (c) are plausible in the Yilgarn Craton which includes the Murchison867

goldfields.868
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BOOTSTRAP STANDARD ERRORS AND CONFIDENCE INTERVALS869

The uncertainty (lack of precision) of the estimated threshold is important in practice. Unfortunately, the familiar870

methods for determining standard errors and confidence intervals cannot be applied to the estimated thresholds871

calculated in this paper, because those methods are based on the Normal distribution, which is not appropriate872

here, as explained in the final paragraph of the subsection Profile Likelihood for the Threshold Model in873

the section THRESHOLD SELECTION USING CHANGE-POINT ANALYSIS.874

Bootstrap methods (Efron and Tibshirani 1993) can be used to compute standard errors and confidence intervals875

for any target quantity. They are particularly useful when the estimator of the target quantity is not Normally876

distributed. In essence, the variability of estimates of the target quantity is captured by repeating the estimation877

procedure with many randomised versions of the original data.878

In the “nonparametric” bootstrap, the original data are randomly resampled many times; the threshold estima-879

tion procedure is applied to these randomised data sets; and the spread of the resulting threshold estimates is used880

to calculate the standard error or confidence interval. In the “parametric” bootstrap, the simple threshold model881

is assumed to be true; simulated data are generated from the simple threshold model; the threshold estimation882

procedure is applied to these simulated data sets, and the resulting threshold estimates are used to calculate the883

standard error or confidence interval.884

Nonparametric bootstrap885

1. Record the predictor values zi = Z(xi) at the deposit locations x1, . . . , xn.886

2. Repeat the following procedure K times:887

(a) Generate a random dataset z†1, . . . , z
†
n of the same size as the original data, by “resampling” from888

the original data, that is by selecting a random sample of size n with replacement from amongst889

the values z1, . . . , zn.890

(b) Apply the threshold estimator to the random dataset, yielding an estimate of the threshold, ẑ.891

3. Collect the K threshold estimates ẑ(1), . . . , ẑ(K) computed by the previous step.892

4. For the bootstrap standard error, compute the empirical standard deviation of the ẑ values,

SE =
1

K − 1

K∑
k=1

(ẑ(k) − ẑ)2

where ẑ = 1
K

∑K
k=1 ẑ

(k) is the average estimated threshold. For a bootstrap 95% confidence interval,893

compute quantiles of the ẑ values as described below.894

The number of repetitions K depends on computer resources, but should typically be at least 10000.895

Since the distribution of estimates ẑ(k) is expected to be asymmetrical, we recommend computing an asymmetric896

confidence interval. The upper endpoint of this interval is computed as the 95th percentile of the bootstrap values897

ẑ(k) greater than the data estimate ẑ, and the lower endpoint is the 5th percentile of the values ẑ(k) smaller than898

the data estimate ẑ, yielding a 95% confidence interval.899

Parametric bootstrap900

1. Estimate the threshold z from the data.901

2. Compute the corresponding area fraction s = a(z)/a below the threshold and record the number m =902

n(z) of deposits below the threshold.903

3. Repeat the following procedure K times:904

(a) Generate m random numbers distributed uniformly between 0 and s, and n−m random numbers905

distributed uniformly between s and 1, yielding n random numbers s†1, . . . , s
†
n.906

(b) Back-transform the area fractions s†i to predictor values z†i using the graph of G(z) (for example907

the thin solid curve in the left panel of Figure 9). This yields a random dataset of predictor values908

z†1, . . . , z
†
n at the deposits.909

(c) Apply the threshold estimator to the random dataset z†1, . . . , z
†
n yielding an estimate of the threshold,910

ẑ.911

4. For the bootstrap standard error, compute the empirical standard deviation of the ẑ values. For a912

bootstrap CI, compute quantiles of the ẑ values, as described above for the nonparametric bootstrap.913

The parametric bootstrap is typically more accurate, provided the assumed model (in this case the simple914

threshold model) is true. The nonparametric bootstrap is more robust against violation of the model assumptions.915

Furthermore, the standard errors will provide a good summary of variability only if the distribution of the ẑ916
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values is reasonably symmetric. A pragmatic approach is to inspect the capture-efficiency curve to assess whether917

it follows the inverted “V” shape expected for the simple threshold model, shown in Figure 10. If so, then the918

parametric bootstrap can be used; if not, then the nonparametric bootstrap should be used. After calculation, any919

glaring discrepancy between the parametric and nonparametric bootstrap results would suggest that the simple920

threshold model does not hold.921

We applied the two bootstrap techniques to our example datasets, using 10,000 simulations for each calculation,922

and using the Youden criterion to select the threshold. Table 9 shows the estimates, bootstrap standard errors and923

confidence intervals.924

Dataset Threshold (km) Area Fraction (%)
Estimate Bootstrap Estimate Bootstrap

ẑ Method SE CI s(ẑ) Method SE CI
synthetic 1.96 non 0.26 1.27–2.37 31.6 non 3.9 20.7–36.8

par 0.23 1.58–2.70 par 3.2 25.6–41.3
Murchison 6.56 non 0.41 6.00–7.76 24.6 non 1.0 23.0–27.8

par 0.07 6.41–6.77 par 0.2 24.2–25.2
Murchison (< 20 km) 6.32 non 1.15 2.06–6.61 45.2 non 7.0 18.2–46.8

par 1.12 5.99–6.44 par 0.6 43.5–45.8

Table 9 Bootstrap standard errors and bootstrap 95% confidence intervals (non = nonparametric, par = parametric) calculated for
the example datasets using the Youden method to estimate the threshold.

For the synthetic data in the right panel of Figure 5, there is close agreement between the results from the925

nonparametric and parametric bootstrap methods. This is expected because the synthetic data were created926

according to the simple threshold model.927

For the Murchison gold survey data, the parametric bootstrap gives a smaller standard error and narrower928

confidence interval than the nonparametric bootstrap. Since the capture-efficiency curve suggests non-conformity929

to the simple threshold model, the parametric results may be discarded as over-optimistic. Similar comments apply930

to the restricted Murchison data.931

DISCUSSION932

What Happens if the Simple Threshold Model Does Not Hold?933

The methods of threshold selection described in this paper all assume a “simple threshold model”, in which934

density of gold deposits is constant inside a certain region, and constant outside the region, as discussed in the935

section on THRESHOLD SELECTION USING THE CAPTURE-EFFICIENCY CURVE, subsection936

Relation to Threshold. Clearly, the Murchison data do not conform to this simple model (Baddeley 2018) and937

it is important to understand how the different techniques will respond.938

Figure 23 sketches three different kinds of relationship between the predictor and prospectivity.9 The left column939

shows the simple threshold model; the middle column is an alternative “plateau” model in which prospectivity is940

highest when the predictor has a middling value; and the right column is a model in which prospectivity declines941

gradually as the predictor value increases. The top row depicts the relationship between the predictor value (on the942

horizontal axis) and the prospectivity (on the vertical axis). The bottom row is the corresponding capture-efficiency943

curve relating the cumulative fraction of deposits to the cumulative fraction of survey area.944

The “plateau” model involves two threshold positions, and the prospectivity is highest when the predictor945

value falls between these thresholds. This might apply when the predictor is a mechanical property such as the946

rheological strength of a host rock. Rocks with intermediate strength may allow some brittle fracturing, facilitating947

focused fluid flow, which is favourable for the formation of orogenic gold deposits. However, very weak rocks with948

extensive fracturing may allow fluids to disperse without focused fluid flow, while very strong rocks may not949

fracture at all.950

For predictors which represent angles, there cannot be a single threshold, for mathematical reasons. Two cuts951

are needed to divide a circle into pieces, so the simplest non-trivial model has two thresholds or breakpoints. The952

strike angles of faults and shear zones are examples of predictor variables where at least two thresholds may apply.953

Faults and shear zones within a particular range of orientations may be favorable for gold deposit formation (for954

9For a given value z of the predictor, the prospectivity ρ(z) is defined as the expected density of deposits per unit area amongst those
grid cells with predictor value equal to z.
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example because faults formed, or preferentially reactivated, in different epochs may be distinguished by their955

different orientations). Faults and shear zones that are favourably oriented to the regional-scale stress field may956

be reactivated to produce dilational zones, resulting in fluid influx and gold deposition (Groves et al. 2000). At957

a district scale (ca. 10 km), gold deposits are often located near jogs (deviations of ∼ 10◦ to 20◦) in the overall958

trend of crustal-scale faults (Groves et al. 2000).959

Change-point problems involving several change-points can easily be handled using maximum likelihood, but the960

other methods (Youden, Akman-Raftery and Studentised contrast) do not easily adapt to this setting. Techniques961

for applying maximum likelihood with multiple change-points include nonparametric maximum likelihood (Sager962

1982) and CART (Breiman et al. 1984).963

Multiple thresholds of a single predictor variable are discussed by J. Liu and Cheng (2019) in the context964

of hydrothermal Au deposits. Polykretis and Chalkias (2018, p. 258) deal with categorical predictors with many965

possible levels (e.g. rock type variable with many possible types) and propose merging the levels by grouping them966

according to the sign of the estimated contrast, before applying WofE.967

Gradual Decline in Prospectivity968

The right-hand column of Figure 23 sketches a gradual decline in prospectivity with increasing value of the969

predictor.970

One could argue that, in this situation, the data should not be subjected to thresholding, and WofE should971

not be applied; instead, a more general version of logistic regression should be applied. Here we simply consider972

what would happen if thresholding were inappropriately applied to such data.973

Assume that the density of deposits per unit area is a decreasing function ρ(z) of the predictor value z. That974

is, in grid cells with predictor value z, the density of deposits is ρ(z) deposits per unit area, where ρ(z) decreases975

as z increases. With some algebra (given in the appendix Derivation of Optimal Threshold for Gradual976

Decline in Prospectivity) it can be shown that the optimal threshold for the Youden method is the threshold977

ẑ at which ρ(ẑ) is equal to the average density of deposits over the study region.978
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Fig. 23 Three different types of relationship between the predictor and prospectivity. Top row: prospectivity as a function of predictor
value. Bottom row: capture-efficiency curve. Left column: simple threshold model. Middle column: plateau model. Right column:
gradual decline in prospectivity.



36 Baddeley et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

area fraction G(z) = a(z) a below threshold

fr
ac

tio
n  

F
(z

)=
n(

z)
n 

of
 d

ep
os

its
 b

el
ow

 th
re

sh
ol

d

Fig. 24 Synthetic example exhibiting gradual decline in prospectivity with distance. Left : faults and simulated deposit locations.
Right: capture-efficiency curve.

Figure 24 shows a synthetic example of gradually-declining prospectivity. It is based on the same spatial pattern979

of faults as the synthetic example in Figure 5, and the predictor variable Z is once again taken to be the distance980

to the fault pattern. However in this new example, the density of deposits declines exponentially with distance z,981

in the form ρ(z) = be−cz, where b is the constant density that would give an average of 200 deposits throughout982

the study region, and c = 1/5. This is equivalent to a logistic regression model (Baddeley 2018). The left panel of983

Figure 24 shows the fault pattern and the simulated deposit locations. The right panel shows the capture-efficiency984

curve.985

The left panel of Figure 25 shows the WofE contrast Ĉ(z) plotted against z. The threshold which maximises the986

contrast is 7.95 km. The contrast is generally increasing with the threshold value, which does not seem plausible,987

and the obtained threshold does not seem appropriate.988

The right panel of Figure 25 shows the Studentised contrast t(z) plotted against z. The threshold which989

maximises the Studentised contrast is 3.21 km.990
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Fig. 25 Weights-of-evidence contrast (Left) and Studentised contrast (Right) for the synthetic example in Figure 24.

Figure 26 shows the profile log-likelihood (left panel), the Akman-Raftery criterion (middle panel) and the991

Youden criterion (right panel), plotted against z. The selected threshold is 3.21 km in all three cases.992
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Fig. 26 Profile log-likelihood (Left), Akman-Raftery criterion (Middle) and Youden criterion (Right) for the synthetic example in
Figure 24.

The simulated pattern has 108 points, giving an average density of µ̂ = 108/4102 = 0.0263 deposits per square993

kilometre. Solving the equation ρ(z) = µ̂ gives a predicted optimal threshold of z = 3.08 km, reasonably close to994

the value obtained by the Youden method, the profile log-likelihood and the Akman-Raftery method.995
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Fig. 27 Effect of cost-benefit ratio on selection of threshold for the synthetic example in Figure 24. Dashed lines have slope equal to
cost-benefit ratio. Left : cost-benefit ratio equals 1. Selected threshold is 3.06 km. Right cost-benefit ratio equals 0.5. Selected threshold
is 9.32 km.

When prospectivity declines gradually as in this example, the cost-benefit ratio (exploration cost to exploitation996

benefit) becomes more important. The left panel of Figure 27 shows the application of the graphical procedure997

for maximising the Youden criterion using parallel lines of slope 1. The right panel shows the same procedure998

using parallel lines of slope 1/2, (i.e. assuming that the value of 1% of mineral deposits is equal to the cost of999

exploring 2% of survey area), which selects a different threshold of z = 8.26 km. This is quite different from the1000

behaviour observed in Figure 12. In this case the cost-benefit ratio does have a substantial influence on the choice1001

of threshold.1002

Overall Conclusion1003

Table 10 lists the threshold selection procedures studied in this paper, and summarises their performance. Ticks1004

and crosses represent good and bad performance, respectively. Selection Performance is performance of the threshold1005

selection procedure in estimating the threshold value. Reliability at Extremes is the reliability (inverse variance) of1006

the criterion near the ends of the range of possible values of the threshold. Significance Test indicates whether there1007

is a valid test of statistical significance for the presence of a threshold, directly linked to the criterion (validity1008
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means that the test does not violate the rule against cheating discussed in the subsection The Problem of1009

“Peeking” in the section on SIGNIFICANCE TESTS. Min number of deposits gives a rule of thumb estimate1010

of the minimum total number of deposits required for validity of the method. Robustness to failure of assumptions1011

indicates the ability of the technique to give acceptable results when the simple threshold model does not hold.1012

The rule of thumb for the minimum total number of deposits assumes that the number of deposits inside the1013

prospective region is at least twice the number outside the prospective region. Then the minimum total number of1014

deposits is equal to three times the minimum number outside the prospective region, and the latter is determined1015

by statistical rules for the various test procedures.1016

Selection Reliability Significance Min number Robustness to failure Adaptability to
Method Performance at extremes test of deposits of assumptions other models
C 77 7 30 7 7
t 3 7 30 3 7
X2 3 7 15 3 3
ARM 33 7 A-R 15 3 3
LL 33 3 15 33 333
Y 333 333 K-S 5 33 3

Table 10 Summary of methods for threshold selection reviewed in this paper, and their performance. Method abbreviations: C (WofE
contrast), t (Studentised contrast), X2 (χ2 statistic), ARM (Akman-Raftery criterion with constraints), LL (profile log-likelihood), and
Y (Youden criterion). For column abbreviations, see text.

In our investigations, the method which selects the threshold value by maximising the WofE contrast Ĉ had poor1017

performance, both on real data and in simulation experiments. The Studentised contrast t and the Akman-Raftery1018

criterion performed reasonably well, although they have erratic behaviour when the candidate threshold is close to1019

the smallest possible, or largest possible, threshold. The profile log-likelihood and Youden methods performed very1020

well, and the Youden method had the best overall performance. The Youden, Akman-Raftery and χ2 methods are1021

related (see the section MATHEMATICAL CONNECTIONS BETWEEN THE CRITERIA) in such1022

a way that the Youden method will almost always have the best performance of the three. We recommend the1023

Youden method because of its performance, its simplicity and because it can be used immediately to conduct a1024

(Kolmogorov-Smirnov) test for existence of a threshold. Where the capture-efficiency curve indicates there may1025

be more than one threshold, the profile log-likelihood is the most suitable.1026

WofE approaches have recently made the step from 2D to 3D modelling (Li et al. 2016; Payne et al. 2015;1027

Wang et al. 2015; Xiao et al. 2015; Yang et al. 2017). The methods proposed in this paper do not depend on the1028

spatial dimension, and could be applied to these 3D techniques.1029

Caveats1030

Our presentation has ignored numerous real-world complications, for lack of space.1031

The handling of missing data is important in real applications and is a major research field in statistical science1032

(Alison 2002; Dempster et al. 1977; Harrell 2001; Hosmer and Lemeshow 2000; Little and Rubin 2002; Schafer1033

1997; Vach 1994; van Buuren 2012). It is not possible to do justice to this issue in the space available, but all1034

the methods discussed here can be modified to handle missing data in the same way that is traditionally done for1035

WofE.1036

Sample bias, due to preferential sampling or non-uniform survey effort, affects the data analysis because it1037

affects the probability of detecting a deposit. The first two subsections above have discussed “misspecification”,1038

that is, the case where the real data do not obey the assumed model of a threshold relationship. One possible1039

cause for this is a sampling bias effect. If the sampling bias is known (for example if the amount of survey effort1040

in each region is known), then it can easily be accounted for in logistic regression (Baddeley 2018, p. 50, Baddeley1041

et al. 2015, p. 302, 304). Further discussion is postponed to another paper.1042

For the two datasets considered in the paper, sample density bias is not a great concern. The synthetic dataset1043

has been constructed artificially to follow an ideal threshold relationship. The Murchison dataset is regional in1044

scale, and the source of the data is Geological Survey mapping at 1:250,000 scale, so that only major features are1045

shown. Faults and shear zones were mapped using airborne magnetic survey data so the entire study area is likely1046

to have been covered with equal detail.1047

Our study does not apply to unordered categorical predictors, such as rock types which are not organised in1048

a sensible sequence. This is a different, and more challenging, problem because of the “peeking” fallacy (multiple1049
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testing effect) explained in the subsection The Problem of “Peeking” in the section on SIGNIFICANCE1050

TESTS.1051

Other complications include possible dependence between grid cells due to spatial clustering of deposits, the1052

different endowments of different deposits, and the physical size of the deposits.1053
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APPENDICES1353

Capture-Efficiency Curve as a CDF1354

In the section on THRESHOLD SELECTION USING THE CAPTURE-EFFICIENCY CURVE, sub-1355

section Principle, we mentioned that the capture-efficiency curve can be regarded as a cumulative distribution1356

function (cdf) in its own right. Here we clarify that comment.1357

A very subtle interpretation of the capture-efficiency curve used by statisticians is the “transformation to1358

uniformity” or “probability integral transformation” (Kendall and Stuart 1973, p. 459 ff.; Hogg and Craig 1970,1359

pp. 349–350). Suppose that the original predictor Z is replaced by a new predictor V , defined at each spatial1360

location u by V (u) = G(Z(u)) = a(Z(u))/a, which is the area fraction of spatial locations where the predictor1361

value does not exceed the value z. In words, at a given spatial location u, the value of V (u) is the fraction of area1362

of the survey region where the original predictor Z does not exceed the value Z(u) which it takes at u. If Z is1363

distance-to-nearest-fault, then V (u) is the area fraction occupied by the buffer at distance equal to the distance1364

from u to the faults, that is, the buffer whose boundary passes through the point u. Then the capture-efficiency1365

curve is the cumulative distribution function of the transformed predictor V at the deposit points, while the1366

diagonal line is the cumulative distribution function of V over all spatial locations in the survey region.1367

Likelihood Function for Threshold Model1368

This appendix provides elementary explanations for the appearance of the binomial probability distribution dis-1369

cussed in the section on SIGNIFICANCE TESTS, subsection Significance Test for a Binary Predictor,1370

and for the form of the likelihood function based on this distribution, and for the form of the likelihood discussed1371

in the section on THRESHOLD SELECTION USING CHANGE-POINT ANALYSIS, sub-subsection1372

Profile Likelihood for the Threshold Model, which results from the assumption that the grid cells are very small in1373

area relative to the survey region.1374

To simplify discussion, we assume that the geometry of the survey region S and of the prospective map feature1375

B are fixed and known in advance, while the mineral deposit locations are discovered during the survey. In the1376

notation of the section on BINARY PREDICTORS, the survey region has area a and the feature B has area1377

aB .1378

The survey process begins by dividing the survey region into N grid cells of equal area, then determining1379

whether each grid cell contains or does not contain a deposit. For our purposes the results of the survey are the1380

count nB of grid cells inside B which contain a deposit, and the count nB of grid cells outside B which contain a1381

deposit. The total number of grid cells containing deposits is n = nB + nB .1382

Uniform Prospectivity Model Using Binomial Probabilities1383

We first consider the simple model in which prospectivity is uniform over the entire survey region. Each grid
cell has the same probability p of containing a deposit. The outcomes in different grid cells are assumed to be
statistically independent. There are N grid cells altogether. Therefore the number n of grid cells containing a
deposit follows a binomial distribution on N trials with success probability p; the probability that exactly n grid
cells contain deposits is (

N

n

)
pn(1− p)N−n. (26)

The expected total number of grid cells which contain deposits is Np.1384

The same principle applies to the grid cells inside the feature B; the probability that exactly nB grid cells
inside B contain deposits is (

NB

nB

)
pnB (1− p)NB−nB , (27)

where NB = (aB/a)N is the number of grid cells that constitute the feature B. The expected number of grid cells1385

inside B that contain deposits is pNB = p(aB/a)N .1386

Again this applies to the grid cells outside B; the probability of obtaining nB grid cells outside B which contain
deposits is (

NB

nB

)
pnB (1− p)NB−nB , (28)



46 Baddeley et al.

where NB = (aB/a)N is the number of grid cells in B. The expected number of grid cells outside B that contain1387

deposits is pNB = (aB/a)pN .1388

Combining (27) and (28), the probability of obtaining nB cells with deposits inside B and nB cells with deposits
outside B is (

NB

nB

)
pnB (1− p)NB−nB

(
NB

nB

)
pnB (1− p)NB−nB

which simplifies to (
NB

nB

)(
NB

nB

)
pn(1− p)N−n. (29)

This combining is justified because individual grid cell outcomes, and hence outcomes in disjoint parts of the1389

survey region, are independent.1390

The likelihood function of the model is the probability (29) of observing the data (nB , nB), treated as a function
of the parameter p:

L(p) =

(
NB

nB

)(
NB

nB

)
pn(1− p)N−n.

Constant factors that do not depend on p can be omitted, so the likelihood would often be reported as

L(p) = pn(1− p)N−n. (30)

Simple Threshold Model Using Binomial Probabilities1391

In the simple threshold model we assume that prospectivity is higher inside the feature B. Each grid cell inside
B has probability pB of containing a deposit, while each grid cell outside B has a different probability pB of
containing a deposit, where pB < pB . We simply replace p by pB in equation (27) to find that the probability of
obtaining exactly nB cells with deposits inside B is(

NB

nB

)
pnB

B (1− pB)NB−nB . (31)

Replacing p by pB in equation (28), the probability of obtaining nB grid cells outside B which contain deposits is(
NB

nB

)
p
nB

B
(1− pB)NB−nB . (32)

Combining (31) and (32), the probability of obtaining nB cells containing deposits inside B and nB cells containing
deposits outside B is (

NB

nB

)
pnB

B (1− pB)NB−nB

(
NB

nB

)
p
nB

B
(1− pB)NB−nB .

The likelihood function for the simple threshold model is (again omitting constant factors)

L(pB , pB) = pnB

B (1− pB)NB−nBp
nB

B
(1− pB)NB−nB . (33)

The likelihood now has two arguments pB and pB representing the probabilities of a deposit for grid cells inside1392

and outside B, respectively. Notice that if the two probabilities were equal, pB = pB = p, then (33) would collapse1393

to (30).1394

Rescaling in Terms of Density1395

Since the grid cells are artificial (and in particular their size is an arbitrary choice) it is useful to rescale the1396

equations so that they depend as little as possible on the grid geometry. This can be done by using the average1397

density of deposits, µ, defined as the expected number per unit area.1398

In the uniform prospectivity model, the expected total number of grid cells that contain deposits is Np. The
average density is therefore µ = Np/a. Noting that the area of one grid cell is ε = a/N , we see that the average
density is equal to µ = p/ε. Equivalently, p = µε, that is, the probability of a deposit in any given cell is equal to
the average density of deposits times the area of the grid cell. Replacing p by µε in equation (30), and removing
constant factors, we get the likelihood

L(µ) = µn(1− µε)N−n. (34)

In the simple threshold model, we have two different densities inside and outside the feature B. Inside B,
the expected number of grid cells containing deposits is NBpB and the area is aB = NBε so the density is
µB = NBpB/aB = pB/ε. Outside B, the density is µB = pBNB/aB = pB/ε. Substituting into (33) we get the
likelihood

L(µB , µB) = µnB

B (1− εµB)NB−nBµ
nB

B
(1− εµB)NB−nB . (35)



Thresholding of predictors in prospectivity analysis 47

Small Grid Cells1399

Finally, we suppose that the grid cells are very small. Then N is very large, ε = a/N is very small. For the uniform
prospectivity model, in the likelihood (30) the term (1 − µε)N−n converges to the exponential exp(−µNε) =
exp(−µa) as N becomes large, giving the likelihood

L(µ) = µn exp(−µa).

For the simple threshold model, the likelihood (33) similarly converges to

L(µB , µB) = µnB

B µ
nB

B
exp(−µBaB − µBaB).

Taking logarithms, the log-likelihood for the null model of uniform prospectivity is

lnL(µ) = n lnµ− µa, (36)

and for the simple threshold model

lnL(µB , µB) = nB lnµB + nB lnµB − µBaB − µBaB . (37)

If the feature B is the region determined by thresholding a spatial predictor function Z(u) to have values less1400

than or equal to a threshold z, then aB = a(z) is the area of this region, nB = n(z) is the number of deposits with1401

predictor values less than or equal to z, and we have aB = a− aB and nB = n− nB = n− n(z), so that equation1402

(37) is translated into equation (10) of the paper.1403

Connections Between the Threshold Selection Criteria1404

In this appendix, we provide proofs of claims made in the sections SIGNIFICANCE TESTS and MATHE-1405

MATICAL CONNECTIONS BETWEEN THE CRITERIA regarding relationships between various of1406

the threshold selection criteria.1407

Forms of the χ2 Statistic1408

First we prove the claim in the section on SIGNIFICANCE TESTS that the general form of the χ2 statistic
(18) reduces to the special form (19) in this case. For any feature B, define eB = (n/a)aB = (aB/a)n and eB =
(n/a)aB = (aB/a)n, the expected counts in B and B, respectively, when the deposits are randomly distributed
with constant density. Then

nB − eB = (n− nB)− (n− eB) = −(nB − eB)

so that1409

X2 =
(nB − eB)2

eB
+

(nB − eB)2

eB
=

(nB − eB)2

eB
+

(nB − eB)2

eB
= (nB − eB)2

(
1

eB
+

1

eB

)
= (nB − eB)2 eB + eB

eBeB
=

n

eBeB
(nB − eB)2,

which is equivalent to (19).1410

Connection Between Akman-Raftery and χ2 Criteria1411

Next we prove the connection between AR(z) and X(z) stated in equation (14), in the section on MATHEMAT-1412

ICAL CONNECTIONS BETWEEN THE CRITERIA, and again in the section on SIGNIFICANCE1413

TESTS, subsection Akman-Raftery (Constrained χ2) Test.1414

For candidate threshold value z, let n(z) be the number of deposits below the threshold, a(z) the area of study1415

region below the threshold, n the total number of deposits, a the total area of study region. Define s(z) = a(z)/a,1416

the area fraction.1417
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Then from the definition (13) of the Akman-Raftery criterion,1418

AR(z) =
√
s(z)(1− s(z))

(
n(z)

s(z)
− n− n(z)

1− s(z)

)
=
√
s(z)(1− s(z))n(z)(1− s(z))− s(z)(n− n(z))

s(z)(1− s(z))

=
√
s(z)(1− s(z)) n(z)− ns(z)

s(z)(1− s(z))

= n
n(z)
n − s(z)√

s(z)(1− s(z))
=
√
nX(z).

This proves (14).1419

Relation Between χ2 Statistic and Youden Criterion1420

Here, we prove the claim, made in the section MATHEMATICAL CONNECTIONS BETWEEN THE1421

CRITERIA, that the χ2 statistic is the standardised version of the Youden criterion.1422

Under the null hypothesis that the density of deposits is uniform, if we treat the total number of deposits as1423

fixed, then for any threshold z the count n(z) follows a binomial distribution with n trials and success probability1424

p = a(z)/a = s(z). This distribution has variance np(1−p) = ns(z)(1− s(z)). Accordingly Y (z) = (n(z)/n)− s(z)1425

has variance s(z)(1 − s(z))/n so that the standard error of Y (z), under the null hypothesis of a uniform density1426

of deposits, is se0(Y (z)) =
√
s(z)(1− s(z))/n. Finally, inspecting (7) yields (15).1427

Derivation of Optimal Threshold for Gradual Decline in Prospectivity1428

This appendix provides the proof of the claim in the subsection Gradual Decline in Prospectivity of the1429

DISCUSSION that, if the prospectivity (i.e. the density of deposit points) is a decreasing function of the1430

predictor value, then the optimal threshold for the Youden criterion is the threshold at which that function equals1431

the average density of deposits over the survey region.1432

We define the prospectivity as the spatially-varying density (intensity) of deposit points considered as a function1433

λ(u) of spatial location u. In any given grid cell, the expected number of deposits is equal to λ(u)ε where u is the1434

location of the cell centre and ε > 0 is the cell area. See Baddeley (2018) for an explanation.1435

Assume first that the density of deposits depends only on the predictor Z. That is, we assume that λ(u)
depends on Z(u) through the relation λ(u) = ρ(Z(u)), where ρ is a nonnegative function. Several examples of the
relationship between predictor and prospectivity are shown in the top row of Figure 23; these are graphs of ρ(z)
against z. Assume further, as we did in subsection Gradual Decline in Prospectivity, that ρ(z) is a decreasing
function of z, such as those in the left and right columns of Figure 23. Then, G(z) is the spatial cumulative
distribution function of the predictor over the study region S, that is,

G(z) =
1

a

∫
S

1{Z(u) ≤ z}du,

where 1{Z(u) ≤ z} is the indicator function, equal to 1 if Z(u) ≤ z and equal to 0 otherwise. The expected total
number of deposits E[n] is equal to the integral of the intensity function,

E[n] =

∫
S

λ(u) du =

∫
S

ρ(Z(u)) du

This integral over the spatial domain S can be transformed into a one-dimensional integral

E[n] = a

∫ ∞
−∞

ρ(z) dG(z).

The cumulative distribution function of the values of Z at the deposit points, averaged over all random outcomes,
is

F̃ (z) =
a
∫ z

−∞ ρ(v) dG(v)

a
∫∞
−∞ ρ(v) dG(v)

=
1

µ

∫ z

−∞
ρ(v) dG(v), (38)
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where µ = E[n]/a is the average density of deposits over the whole domain, and v is the dummy variable of1436

integration.1437

The expected capture-efficiency curve is the graph of F̃ (z) against G(z) for all z; equivalently it is the graph

of the function s 7→ F̃ (G−1(s)) where G−1 is the inverse function of G. Assuming differentiability, the slope of the
expected capture-efficiency curve is

d

ds
F̃ (G−1(s)) =

F̃ ′(G−1(s))

G′(G−1(s))
.

But from (38) we have F̃ ′(z) = ρ(z)G′(z)/µ, so that the slope of the expected capture-efficiency curve at a given1438

area fraction s is equal to ρ(z)/µ, where z = G−1(s).1439

The Youden method selects the point on the capture-efficiency curve with slope equal to 1. Ignoring sampling1440

variability, that is, if we replace the observed capture-efficiency curve by the expected capture-efficiency curve, the1441

Youden method selects the point with slope ρ(z)/µ = 1, i.e., it selects the threshold value z for which ρ(z) = µ.1442

Non-negligible Grid Cell Size1443

Equations in the paper assume, for simplicity and clarity, that the area of a grid cell is negligible. To be precise,1444

if ε denotes the area of one grid cell, then we assume that nε, the total area of all cells containing deposits, can1445

be treated as zero. This appendix lists the modifications to these equations that are necessary when nε is not1446

negligible.1447

In equation (1), the revised formulae are1448

W+ = ln
nB

aB − εnB
− ln

n

a
(39)

W− = ln
nB

aB − εnB
− ln

n

a
(40)

Ĉ = ln
nB

aB − εnB
− ln

nB
aB − εnB

. (41)

Equation (2) becomes

Ĉ(z) = ln

(
n(z)

a(z)− εn(z)

/
n− n(z)

a− a(z)− ε(n− n(z))

)
. (42)

Equation (3) becomes

se(Ĉ) =

√
1

nB
+

1

nB
+

1

aB/ε− nB
+

1

aB/ε− nB
(43)

and equation (5) becomes

se(Ĉ(z)) =

√
1

n(z)
+

1

n− n(z)
+

1

a(z)/ε− n(z)
+

1

(a− a(z))/ε− (n− n(z))
. (44)

Equation (8) for the Youden criterion becomes

Y (z) =
n(z)

n
− a(z)− εn(z)

a− εn
. (45)

There are no changes in other equations, except that equation (12) does not hold. In the right panel of Figure 10,1449

the ROC curve should be used instead of the capture-efficiency curve.1450



Online Resource 1

for the article
Optimal thresholding of predictors in mineral prospectivity analysis

Baddeley et al. (2020)

This is a demonstration of our computer code for optimal thresholding of greyscale pre-
dictors that was used in the original article. The code and original data are provided in
auxiliary files.

This document was produced from the original script file OnlineResource1.Rnw by
applying the R command Sweave.

The original script file contains a mixture of R code and LATEX document source. The
Sweave command executes the R code and inserts the results into the relevant place in the
document.

To repeat the analysis, the reader can simply re-type all the R commands shown here.
Alternatively, use R CMD Stangle OnlineResource1.Rnw to extract the R commands
from this document into the file OnlineResource1.R. Then source("OnlineResource1.R")
will run all the commands.

1 Load the code

This code depends on the spatstat package:

> library(spatstat)
> library(spatstat.utils)

Load the special code:

> source("usercode.R")

Create a folder to store the generated graphics files (this also checks that we have the
necessary file permissions):

> if(!dir.exists("./pix-auto")) dir.create("./pix-auto")

2 Load data

2.1 Synthetic data

First, here are the synthetic data described in the paper:

Online resource Click here to
access/download;Manuscript;OnlineResource1.pdf

Click here to view linked References

https://www.editorialmanager.com/narr/download.aspx?id=72672&guid=ad3bb92a-2fc5-42ce-a881-c3f7e7920112&scheme=1
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https://www.editorialmanager.com/narr/viewRCResults.aspx?pdf=1&docID=2940&rev=3&fileID=72672&msid=830f75bd-e7c9-4c70-8ce9-79f1ff257bf0


> load("synthetic.rda")
> X

Planar point pattern: 48 points
window: rectangle = [-0.335, 70.11] x [100, 158.233] units

> L

planar line segment pattern: 30 line segments
window: rectangle = [-0.335, 70.11] x [100, 158.233] km

Here X is the (synthetic) spatial point pattern of deposits, and L is the spatial pattern of
fault lines.

> plot(L, main="synthetic data")
> plot(X, add=TRUE)

synthetic data

For the covariate Z we will use the distance-to-nearest-fault. This can be computed in the
spatstat package by either of the commands distmap or distfun with slightly different
behaviour (documented in the package).

> Z <- distmap(L)
> Z

real-valued pixel image
128 x 128 pixel array (ny, nx)
enclosing rectangle: [-0.335, 70.11] x [100, 158.23] km

> plot(Z)
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> contour(Z)

  Z

 2  2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2
 

 2 

 2 

 2 

 2 

 2 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 6 

 6 

 6 

 6  6 

 6 

 6 

 6 

 6 

 6 

 8 

 8 

 8 

 8 

 8
 

 10 

 1
0 

 1
2  1
4 

2.2 Murchison data

The Murchison gold data are included in the spatstat package.

> murchison

List of spatial objects

gold:

3



Planar point pattern: 255 points
window: rectangle = [352782.9, 682589.6] x [6699742, 7101484] metres

faults:
planar line segment pattern: 3252 line segments
window: rectangle = [352782.9, 682589.6] x [6699742, 7101484] metres

greenstone:
window: polygonal boundary
enclosing rectangle: [352782.9, 681699.6] x [6706467, 7100804] metres

In this case the dataset murchison is a list, containing the different spatial objects (gold
deposit pattern, fault pattern, and greenstone feature). The list elements can be extracted
individually using $:

> summary(murchison$gold)

Planar point pattern: 255 points
Average intensity 1.924569e-09 points per square metre

Coordinates are given to 1 decimal place
i.e. rounded to the nearest multiple of 0.1 metres

Window: rectangle = [352782.9, 682589.6] x [6699742, 7101484] metres
(329800 x 401700 metres)

Window area = 1.32497e+11 square metres
Unit of length: 1 metre

Alternatively, they can be accessed using the with operator, which is often neater:

> with(murchison, summary(gold))

Planar point pattern: 255 points
Average intensity 1.924569e-09 points per square metre

Coordinates are given to 1 decimal place
i.e. rounded to the nearest multiple of 0.1 metres

Window: rectangle = [352782.9, 682589.6] x [6699742, 7101484] metres
(329800 x 401700 metres)

Window area = 1.32497e+11 square metres
Unit of length: 1 metre

Let’s rescale all the Murchison data from metres to kilometres:

> mur <- solapply(murchison, rescale, s=1000, unitname="km")

and add the distance-to-nearest-fault covariate:

4



> mur$dfault <- distfun(mur$faults)

The new list mur contains the rescaled Murchison data and the derived covariate.

> plot(mur$faults, main="Murchison data")
> plot(mur$gold, add=TRUE, pch=3, col="blue")

Murchison data

3 Threshold selection

The command selectThresh defined in usercode.R selects the threshold automati-
cally. The user can specify the method.

For the synthetic data:

> selectThresh(X, Z, method="t")

Z
1.424575

> selectThresh(X, Z, method="Y")

Z
1.966457

The first result indicates that the threshold obtained by maximising the Studentised con-
trast t was 1.425 km. The second result indicates that the threshold obtained by maximising
the Youden criterion was 1.966 km.

The result of selectThresh can also be plotted to show the criterion as a function of
the threshold value:
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> b <- selectThresh(X, Z, method="Y")
> plot(b, main = "Simulated data, Youden criterion",
+ ylab = "Youden criterion Y(z)")
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For the Murchison data:

> b <- with(mur, selectThresh(gold, dfault, method="Y"))
> b

dfault
6.655075

> plot(b, main="Murchison data, Youden criterion",
+ ylab = "Youden criterion Y(z)")
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4 Bootstrap confidence intervals

The functions bootSE and bootCI defined in usercode.R compute (respectively) boot-
strap standard errors and bootstrap confidence intervals for the threshold, using the Youden
criterion. The usage of the two functions is very similar, so we only show the computation
for confidence intervals.

4.1 Synthetic data

For the synthetic data:

> bootCI(X, Z)

lo hi conf
z 1.2038740 2.2558028 0.949
s 0.1956055 0.3521729 0.949

The first row shows the nonparametric bootstrap confidence interval for the threshold
distance z in kilometres (true value 2 km). The second row shows the corresponding confi-
dence interval for the fraction of area s.

The parametric bootstrap confidence interval is:

> bootCI(X, Z, parametric=TRUE)

lo hi conf
z 1.592587 2.6448494 0.95
s 0.256665 0.4057007 0.95

In the section Bootstrap standard errors and confidence intervals of the main paper, we
suggested that the parametric bootstrap is typically more accurate, provided the assumed
model (for the simulated data, the simple threshold model) is true. Indeed, we see this to
be the case here as the nonparametric bootstrap distribution is bimodal, but the parametric
distribution is unimodal and asymmetric, as was also suggested in the main paper.

> bootDistN <- bootSIM(X, Z, nsim = 10000, parametric = FALSE)
> bootDistP <- bootSIM(X, Z, nsim = 10000, parametric = TRUE)

> maxz <- max(c(max(bootDistN$z), max(bootDistP$z)))

> with(bootDistN,
+ hist(z, main = "Nonparametric bootstrap distribution",
+ prob = TRUE,
+ xlab = "threshold distance (z)",
+ xlim = c(0, maxz)))
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Nonparametric bootstrap distribution
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> with(bootDistP,
+ hist(z, main = "Parametric bootstrap distribution",
+ prob = TRUE,
+ xlab = "threshold distance (z)",
+ xlim = c(0, maxz)))

Parametric bootstrap distribution
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4.2 Murchison gold data

For the Murchison gold data:

> with(mur, bootCI(gold, dfault))
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lo hi conf
z 5.9882296 7.7575571 0.95
s 0.2300171 0.2768555 0.95

> with(mur, bootCI(gold, dfault, parametric=TRUE))

lo hi conf
z 6.1756566 6.5136096 0.95
s 0.2352295 0.2457275 0.95

The parametric bootstrap confidence interval (obtained with the option parametric=TRUE)
is not reliable for the Murchison data because they do not seem to conform to the simple
threshold model. As pointed out in the main paper, the nonparametric bootstrap is more
robust against violation of the model assumptions, and we see below that that the nonpara-
metric bootstrap distribution is both unimodal and asymmetric.

> bootDistN <- with(mur,
+ bootSIM(gold, dfault, nsim = 10000,
+ parametric = FALSE))

> with(bootDistN,
+ hist(z, main = "Nonparametric bootstrap distribution",
+ prob = TRUE,
+ xlab = "threshold distance (z)"))
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Online Resource 2
Online supplement to

Optimal thresholding of predictors in mineral prospectivity analysis
by Baddeley et al. (2020)

The file OnlineResource1.pdf demonstrates how to calculate the threshold of the distance-to-
nearest-fault for the Murchison data and for synthetic data. In addition, the code calculates bootstrap
confidence intervals for the threshold based on the Youden criterion.

In this document, we show the results of carrying out the same analysis but with additional realizations
of the synthetic data. Using a fixed pattern of fault lines and fixed threshold distance, additional spatial
point patterns of deposits have been generated using the same simple threshold model used to
generate the synthetic data in Figure 5 of the main paper. The results below confirm that when
the simple threshold model applies, the parametric bootstrap yields more accurate and sensible
confidence intervals for the threshold distance. In addition, the following discussion outlines the
practical value of examining different realizations of synthetic data.

Geologists have only a single pattern of deposit points to estimate a threshold and classify an area into
prospective and non-prospective zones. Although geological features like faults, rock unit boundaries
and areas of favourable host rock determine the sites of gold deposition, the threshold estimate is very
dependent on the point pattern of the known deposits. It is important to recognize that this structural
framework of rock units, and geometry of faults and shear zones controls the potential location of gold
deposits and therefore the prospectivity. But our knowledge of the deposits and occurrences which
provide evidence for this prospectivity is incomplete and the precise location of deposits at the scale
of minor faults (a few kilometres or less) that they are associated with is random. There are two further
aspects to the randomness of the deposit pattern:

1. As additional exploration is carried out, new mineral occurrences and deposits are often discov-
ered so with time additional points are added to the pattern.

2. Generally, only gold deposits located within 300 m of the surface are discoverable by drilling
and geochemical exploration, yet orogenic gold deposits were originally formed at depths from
5 to at least 15 km. There is no reason to consider that the present-day surface zone is more or
less prospective, in terms of deposit numbers or gold content, than any other slice through the
upper crust. A complex network of faults and shear zones together with differential uplift and
erosion determined which depths at the time of gold mineralization are exposed at the surface
today. Consequently, the pattern of deposits we have discovered or can potentially discover is
the result of random processes within areas where the prospectivity is determined by a larger
scale framework of geodynamic events and processes and structural features.

Given that the pattern of deposits we observe is only one of many possible patterns, it makes sense
to examine the effect of alternative sets of random locations of deposits within the favourable zones
on our estimates of threshold distance. It should be noted though, that although the location of the
deposit points change in the simulations, the numbers and densities of deposits in the prospective
zones that define the optimal threshold remain the same as those described for the synthetic dataset
in the main text.

1
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Original synthetic data

Figure 1: Faults shown as solid lines, deposits as open circles.
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Figure 2: Youden criterion, showing the estimate of the threshold

For the nonparametric and parametric bootstrap, 95% confidence intervals are shown followed by the
corresponding bootstrap distributions.

Table 1: 95% nonparametric bootstrap confidence interval for the threshold estimate (z) and fraction
of area (s).

lo hi conf

z 1.24 2.93 0.95
s 0.20 0.44 0.95

Table 2: 95% parametric bootstrap confidence interval for the threshold estimate (z) and fraction of
area (s).

lo hi conf

z 1.59 2.50 0.95
s 0.26 0.39 0.95
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Nonparametric bootstrap distribution

threshold distance (z)
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Figure 3: Nonparametric bootstrap distribution of the threshold distance selected by the Youden
criterion.
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Figure 4: Parametric bootstrap distribution of the threshold distance selected by the Youden criterion.
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Realization 2

Figure 5: Faults shown as solid lines, deposits as open circles.
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Figure 6: Youden criterion, showing the estimate of the threshold

For the nonparametric and parametric bootstrap, 95% confidence intervals are shown followed by the
corresponding bootstrap distributions.

Table 3: 95% nonparametric bootstrap confidence interval for the threshold estimate (z) and fraction
of area (s).

lo hi conf

z 0.89 10.92 0.95
s 0.15 0.96 0.95

Table 4: 95% parametric bootstrap confidence interval for the threshold estimate (z) and fraction of
area (s).

lo hi conf

z 1.14 7.75 0.95
s 0.19 0.88 0.95
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Figure 7: Nonparametric bootstrap distribution of the threshold distance selected by the Youden
criterion.
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Figure 8: Parametric bootstrap distribution of the threshold distance selected by the Youden criterion.
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Realization 3

Figure 9: Faults shown as solid lines, deposits as open circles.
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Figure 10: Youden criterion, showing the estimate of the threshold

For the nonparametric and parametric bootstrap, 95% confidence intervals are shown followed by the
corresponding bootstrap distributions.

Table 5: 95% nonparametric bootstrap confidence interval for the threshold estimate (z) and fraction
of area (s).

lo hi conf

z 0.6 5.18 0.95
s 0.1 0.69 0.95

Table 6: 95% parametric bootstrap confidence interval for the threshold estimate (z) and fraction of
area (s).

lo hi conf

z 1.06 3.86 0.95
s 0.17 0.56 0.95

6



Nonparametric bootstrap distribution

threshold distance (z)

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

Figure 11: Nonparametric bootstrap distribution of the threshold distance selected by the Youden
criterion.
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Figure 12: Parametric bootstrap distribution of the threshold distance selected by the Youden criterion.
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Realization 4

Figure 13: Faults shown as solid lines, deposits as open circles.
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Figure 14: Youden criterion, showing the estimate of the threshold

For the nonparametric and parametric bootstrap, 95% confidence intervals are shown followed by the
corresponding bootstrap distributions.

Table 7: 95% nonparametric bootstrap confidence interval for the threshold estimate (z) and fraction
of area (s).

lo hi conf

z 0.91 1.92 0.95
s 0.15 0.30 0.94

Table 8: 95% parametric bootstrap confidence interval for the threshold estimate (z) and fraction of
area (s).

lo hi conf

z 1.09 3.57 0.95
s 0.18 0.52 0.95

8



Nonparametric bootstrap distribution

threshold distance (z)

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 15: Nonparametric bootstrap distribution of the threshold distance selected by the Youden
criterion.
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Figure 16: Parametric bootstrap distribution of the threshold distance selected by the Youden criterion.

9




