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We study the effect of human capital on CO2 emissions using the Chinese provincial panel over the period 1997–2016. 

Allowing for cross-sectional dependence and structural breaks, we find a negative association between human capital 

and CO2 emissions in the long run and attribute it to the influences from younger workers and workers with advanced 

human capital. In particular, our results suggest that a one-year increase in average schooling reduces CO2 emissions 

by 12 per cent. Using disaggregated emission dataset by energy sources and end emitters, we demonstrate this negative 

association is likely to manifest through technology effect and the improvement in energy efficiency. These 

manifestations are limited to production sector. Our finding suggests a promising avenue for abating greenhouse gases 

without impeding economic growth.  
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1. INTRODUCTION 

Investing in human capital has been shown to generate various benefits. For instance, human capital is 

conducive to labor productivity and facilitates economic growth (Schultz, 1961; Romer, 1990; Barro, 1991). It is also 

associated with many social externalities such as better health and lower crime participation, to name a few (see the 

survey of Sianesi and van Reenen, 2003). Yet, while these externalities have sparked growing attentions, the 

environmental benefits owing to human capital accumulation remains less understood.   

We attempt to fill this gap by studying the association between human capital and carbon dioxide (CO2) 

emissions for a panel of Chinese provinces over the period 1997–2016. China is an appealing context as it pledges to 

cut CO2 emissions ambitiously in the Paris Agreement and has been investing education rigorously since the 1990s 

(Naughton, 2007; UNFCCC, 2017).1  

Empirically, we estimate the long-run relationship between human capital and CO2 emissions. Our results 

suggest that human capital embodied in younger workers and workers with advanced human capital exerts a negative 

and significant effect on CO2 emissions. Our results, which account for cross-sectional dependence and structural 

breaks, reveal that a one-year increase in average schooling reduces CO2 emissions by 12 per cent. This result is driven 

by younger workers aged between 25 to 44 years old in which their one more schooling year is associated with 26.8 

per cent lower CO2 emissions. While these figures may appear large, our dataset demonstrates that it takes about ten 

years of efforts for China to attain one extra year of formal schooling.2 On another metric of human capital, we find 

that a one per cent increase in advanced human capital, which is proxied by the share of workers with a tertiary 

qualification, reduces CO2 emissions by 5.7 per cent.  

Our study relates and contributes to at least three strands of literature. The first strand is a set of emerging 

studies that address the nexus between human capital and energy consumption at the macro level (Salim et al., 2017; 

Shahbaz et al., 2019; Yao et al., 2019). These studies have consistently revealed a negative human capital–energy 

consumption association at either regional or country levels. Specifically, Yao et al. (2019) analyzed a panel of OECD 

economies over the period 1965–2014 and added that human capital reduces dirty energy consumption but increases 

clean energy consumption. This novel finding suggests that human capital accumulation may improve environmental 

quality through switching away from fossil fuel which is a primary cause of CO2 emissions.  

The second strand of related literature is constituted of several firm-level studies that attempt to understand 

whether and how human capital reshapes firms’ polluting behaviors (Blackman and Kildegaard, 2010; Gangadharan, 

2006; Lan and Munro, 2013; Cole et al., 2008). These studies generally reported a positive nexus between human 

 
1 Under the recent Paris Agreement, China has pledged to cut carbon intensity by 60 to 65 per cent from the 2005 level before 2030 (UNFCCC, 

2017). Using World Development dataset, we show this is a challenge task. Over the period 2000–2015, the carbon intensity decreases at annual 

rate of 1.49 per cent on average. However, to meet the lower bound of the target (60 per cent reduction from the 2005 level), carbon intensity must 
decrease at the rate of 4.2 per cent annually from 2016 onward. Assuming the pre-2014 trend maintains, it means China needs to come up a way to 

lower carbon intensity growth by another three percentage points.  When the upper bound target (65 per cent reduction) is pursed, the task becomes 

more pressing.  
2See the report of China Center for Human Capital and Labor Market Research (CHLR) retrieved from 

http://humancapital.cufe.edu.cn/en/Human_Capital_Index_Project.htm  

http://humancapital.cufe.edu.cn/en/Human_Capital_Index_Project.htm
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capital and environmental outcomes. A consensus of the underlying mechanisms is that firms with a higher stock of 

human capital are more likely to exhibit better environmental compliance and adopt cleaner production technology. 

The third set of studies, which are most closely related to ours, is an embryonic, and predominantly very 

recent, literature has directly associated human capital and several pollutants, including CO2 emissions. Using a cross-

sectional dataset of the U.S. states, Goetz et al (1998) documented that, conditional on income, population density and 

industrial composition, the states with better educated population appear to have cleaner ambient environment. Using 

the time series observations between 1978 and 2018 from China, Li and Ouyang (2019) found that human capital 

promotes CO2 emissions in the short run but reduces it in the long run. To address the potential nonlinear relationship 

between human capital and CO2 emissions, Yao et al. (2020) assembled a historical OECD panel over the period 

1870–2014, finding that human capital started to alleviate carbon emissions since the 1960s.  

We build, and improve, especially on this third set of studies in several important manners. Each of these 

studies provides estimates using either time series or cross-country dataset. We employ a panel of Chinese provinces 

over the period 1997–2016, which constitutes a more homogeneous panel. Our sample thus diminishes the unobserved 

differences that often plague cross-country studies (Madsen et al., 2018). Meanwhile, the context of China offers a 

unique advantage to our estimation. Exposure to pollution is believed to be endogenous as better educated cohorts 

may sort into regions with better environmental quality (Neidell, 2009; Graff Zivin and Neidell, 2012). While this 

self-selection process could be addressed through instrumental variable (IV), finding valid IV for human capital at the 

provincial level is notoriously difficult in a panel framework (Fleisher et al., 2010). Our panel largely exempts from 

this challenge as Hukou policy makes the internal migration, which could be induced by pollution, extremely costly.3  

Another innovation of our study is that we not only examine the association between the overall level of 

human capital, proxied by the number of total schooling years, and CO2 emissions, but also consider its distribution 

across different age cohorts. This strategy enables us to understand the underlying mechanisms through which human 

capital may affect CO2 emissions. Moreover, to capture the heterogeneous effects of human capital on CO2 emissions, 

we also break qualification, which is another proxy of human capital, into secondary and tertiary levels.4 This 

distinction is important because advanced human capital, usually obtained from tertiary education, is unlikely to exert 

the same effect on the environmental quality as basic human capital obtained from primary and secondary educations 

(Gemmell, 1996). The underlying explanation is that production-relevant skills are embodied in those individuals who 

have acquired advanced qualifications. Specifically, more educated workers imply that the cost of complying with 

more stringent environmental standards, such as through adopting cleaner production technologies, will be lower 

(Dasgupta et al., 2000; Lan and Munro, 2013; Yao et al., 2020).  

 
3 Hukou policy is officially called household registration system, which ties one’s accession to social welfare, like highly-subsidized education and 

medication, to his or her birth place. Although the stringency of Hukou has been relaxed over recent years, barriers to inter-provincial, permanent, 
migration remain prohibitively high (See Yao et al. 2018 for a detailed discussion). We acknowledge that China remains a developing country and 

an overwhelmingly share of migrant workers is motivated by economic opportunities rather than pursing better environment. To formally address 

this endogeneity issue, we have considered internal instruments and performed heterogeneous Granger causality test in sensitivity check section. 
4 We do not consider primary education as the variations of it are small throughout our sample period, possible due to radical implementation of 

Nine-Year Compulsory Education program since 1980s.  
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Our final contribution rests on investigating the mechanisms underlying the established human capital–CO2 

emissions nexus. While it is challenging at the macro level, we take the advantage of disaggregated emissions by 

energy sources and end emitters. Specifically, to examine whether technology effect attributed to human capital 

accumulation is at play, we use industrial CO2 emissions due to cement production process. Since the process 

emissions, by definition, have fully excluded the CO2 emissions accrued to energy consumption, the negative effect 

exerted by human capital could only be operating through technology effect (e.g. more environmentally-friendly 

production process).   

Our findings offer new insights to the policy circle. To date, conventional solutions like command-and-

control remain the fundamental tools for the Chinese government to control pollution. The outcomes, however, are 

achieved at the expense of substantial welfare loss (Zhang, 2017). Given China is an authoritarian state still riddled 

with red tape, the efficiency and effectiveness of those regulation-based tools are further constrained (Wang and 

Wheeler, 2005; Dean et al., 2009). The market-based policy instruments are expected to fill the void. However, 

available instruments like carbon tax and emission trading scheme (ETS) are still at an early stage and yet to be fully 

implemented, making their efforts on abating CO2 emissions marginal at best. With this backdrop, we suggest 

investing in human capital could be used to facilitate carbon reduction and to control other pollutions without distorting 

economic growth much. We do recognize that human capital accumulation is neither the necessarily only, nor the 

most important way for abating CO2 emissions. Nevertheless, we believe this study improves our understanding of 

social benefits associated with human capital accumulation, extending them to the perspective of environmental 

protection.  

The rest of this paper is organized as follows: Section 2 setups conceptual framework which guides our 

empirical investigation. Section 3 explains the dataset and econometric methods. Section 4 presents baseline results 

and section 5 performs sensitivity checks. We attempt to identify the potential mechanisms in section 6. The last 

section concludes and discusses policy implications.    

 

2. CONCEPTUAL FRAMEWORK AND EMPIRICAL MODEL  

2.1 Conceptual framework 

 To explore the association between human capital and CO2 emissions, we discuss the potential channels 

accrued to production and household sectors separately.5  

 In the production sector, human capital accumulation is expected to promote environmental quality because 

better-educated workers are conducive to both innovation and the diffusion of abatement technologies (Blackman and 

Kildegaard, 2010; Lan and Munro, 2013). Specifically, firms with higher human capital tend to be long-run oriented, 

emphasizing their sustainable development by exercising more stringent pollution controls. On the other hand, firms 

 
5 The conceptual discussion is similar to our preceding study using historical OECD panel (see Yao et al., 2020). To differ from that study, apart 
from using different dataset, we also construct a theoretical model that formally predicts the negative association between human capital and 

environmental quality.   
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managed by better-educated professionals tend to follow higher standards of social responsibility, making them less 

likely to violate external environmental regulations (Dasgupta et al., 2000; Gangadharan, 2006; Blackman and 

Kildegaard, 2010; Lan and Munro, 2013). 

In the household sector, better educated families tend to value the environment more and modify their 

behavior in ways that alleviate environmental impacts, such as greater use of recycling (Goetz et al., 1998; ESRC, 

2011). For instance, a survey of British households revealed that households with tertiary qualifications are 25 per 

cent more likely to adopt an environmentally-friendly lifestyle than those without such qualifications (ESRC, 2011). 

Meanwhile, both Broadstock et al. (2016) and Pachauri and Jiang (2008) observed that households with higher human 

capital are more likely to select appliances which are more energy efficient. Communities with higher human capital 

have also been more successful in organizing opposition to local polluters. Pargal and Wheeler (1996), for instance, 

found that in Indonesia, collective bargaining against water polluters was stronger in better-educated communities.  

In light of the above discussion, we formalize a theoretical model based on Graff Zivin and Neidell (2013).6 For a 

given level of production and consumption in an economy, we start with the pollution function below: 

0( ( ), ( , ), )SE f M A A HC E I   

where E is the pollution level; M refers to the mitigation effort, which is a function of environmental awareness A. 

Meanwhile, A is a function of ES and HC. ES captures the environmental signals like deteriorating air quality or serious 

environmental accidents; HC is the level of human capital. I0 is the reference pollution level for the given level of 

production and consumption. 

This pollution function states that how human capital affects pollution without changing the level of 

production and consumption of an economy. It shows that human capital HC and environmental signals ES are two 

components determining the environmental awareness of firms and households, which, in turn, affect their mitigation 

efforts against pollution.  

The qualitative relationship between human capital and pollution can be solved by taking the full derivative 

of the pollution function with respect to HC, yielding the following results:  

* * * S

S

dE dA

dA dHC

EdE E M E A A

dHC M A A HC E HC
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6 Graff Zivin and Neidell (2013) set up a model to demonstrate how pollution affects health which is an indispensable component of human capital 
(Le et al., 2003; Wößmann, 2003; Benos and Zotou, 2014). In this study, we seek to establish a complementary work which exploits the reverse 

linkage through the lens of environmental awareness as emphasized in Graff Zivin and Neidell (2013).  
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Intuitively, the sign of 
dE

dA
is negative, and the term 

dA

dHC
 is positive according to our previous discussion. 

At the macro level, the sign of  
dA

dH
remains positive.7 The change, if any, is that the effect is reinforced through non-

pecuniary externalities sustained by a larger stock of human capital (Sianesi and van Reenen, 2003). This is intuitive 

as more educated citizens would possess stronger bargaining power when demanding for environmental amenities. 

(Pargal and Wheeler, 1996; Sianesi and van Reenen, 2003; Ghanem and Zhang, 2014).  

To sum up, combining the positive signed 
dA

dHC
with the negative signed 

dE

dA
reaches to the conclusion 

that 
dE

dHC
is negative, suggesting human capital helps to alleviate pollution.  

While the conceptual model provides a clear prediction regarding the nexus between human capital and 

pollution, this model is silent on other variables which could potentially affect pollution. To address this issue, we rely 

on STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model (Dietz and Rosa, 

1997).  The model defines the reference pollution level (Io) for a given level of production and consumption, and as 

an extension of the IPAT identity (Ehrlich and Holdren, 1971), it also decomposes aggregate environmental impact 

into population, affluence and technology effects. Compared to IPAT identity, the STIRPAT model offers a flexible 

approach for hypothesis testing and does not impose a priory proportionality in the functional relationships between 

factors (Liddle, 2013).  

We choose the STIRPAT model over the competing Environmental Kuznets Curve (EKC) model to avoid 

two complications. 8  As discussed in Liddle (2013; 2015), the STIRPAT model avoids using the quadratic 

transformation of a nonstationary variable (e.g. real GDP per capita). Second, it relaxes the assumption that the 

population elasticity of environmental impact is a unity which makes the population variable redundant in the EKC 

framework.9 Moreover, the STIRPAT model is developed to analyze aggregate environmental impacts rather than 

explaining emissions or pollution at per capita basis. Since policymakers care about aggregate emissions which matters 

greatly for the ecological sustainability, the STIRPAT model is more appropriate from this perspective.  

In general, the STIRPAT model is written as follow:  

b c d

it it it it itI aP A T e  (1) 

 
7 It important to note that the relationship between A and HC could be nonlinear. A special case is that human capital would not alter environmental 

awareness until a certain threshold in HC stock is achieved. As such, 
dA

dH
could be zero when the improvement in HC does not reach to the 

threshold value. We consider this issue in our empirical analysis.  

8 In an earlier version of this paper, EKC framework is also applied to examine the relationship between human capital and CO2 emissions. While 

we found the qualitatively similar results for the nexus, EKC was not supported by provincial panel of China. This is also the primary reason which 

motivates us turning to STIRPAT model. Regression results using EKC model are available upon request.  
9 Note that in the EKC framework, population is not present as one of the right-hand variables. Instead, population is used to scaling environmental 

variable and other controls. It thus implicitly assumes that the coefficient attached to population is unity.  
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Where the subscript i denotes provinces of China and t refers to year. a is a constant and exponents b, c and d are 

elasticities of each variable. Specifically, I standards for reference level of environmental impact and P, A and T are 

populations, affluence and technology, respectively.  

 

2.2 Empirical model  

If we use CO2 emissions as the proxy for the environmental impact, it is clear from the above discussion that 

the total emission is affected by the reference level of environmental impact given by I and the emission changes 

affected by human capital. Therefore, by transforming equation (1) into logarithm form and including human capital 

(
itHC ), our empirical specification with provincial- and time-fixed effects becomes:  

1 2 3 4 5ln( 2 ) ln ln ln lnit it it it it i t itCO P A T HC                (2) 

The theoretical predictions from the STIRPAT model suggest that β2 and β3 should be positive as a larger population 

and richer households would consume more natural resources on average. By contrast, β4 is expected to be negative 

as the deployment of environmentally-friendly technologies would produce fewer pollutions during production. 

Following our conceptual discussion, we expect β5, the coefficient of human capital, to be negative.10 Regarding other 

controls, we employ real GDP per capita to proxy affluence (A). Following Liddle (2013) and Liddle (2015), 

technology (T) is captured by both energy intensity and economic structure. These two variables are also major forces 

in shaping CO2 emissions.  

It is important to note that the estimated coefficient of β5 represents the reduced-form association between 

human capital and CO2 emissions. There are other mitigating channels through which human capital would affect CO2 

emissions (Yao et al., 2019). For instance, human capital contributes to economic growth and technological 

innovations which in turn influence CO2 emissions. We formally consider them in the section of sensitivity checks.   

 

3. DATASET AND ESTIMATION STRATEGY  

3.1 Dataset  

For our empirical purpose, we construct a panel of 30 provinces over the period 1997–2016.11 We focus on 

this period because the rapid growth of CO2 emissions and reliable emission data are only available during this period.  

 
10 Note that when human capital is proxied by the number of average schooling years, the logarithm operation is not taken. If we take the logarithm 

of average schooling years, the estimated coefficient HC would be interpreted as 
5  percent reduction in CO2 emissions due to one per cent 

improvement in average schooling years. Obviously, this interpretation is not intuitive. As such, we follow the literature estimating returns-to-

education and does not take logarithm operation for the number of schooling years (Yao et al., 2018). In that way, the estimated coefficient of 
5

directly indicates us that how much per centage (
5  ×100%) reductions in CO2 emissions is due to a one-year improvement in average schooling 

years.  
11 We focus on this period because of data availability. Data used for constructing CO2 emissions are not available until 1997 and the same data for 

the period 2017–2019 is not published yet.   
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Our key explanatory variable, human capital, is obtained from the China Center for Human Capital and Labor 

Market Research (CHLR hereafter). To measure it comprehensively, we have compiled a set of different proxies for 

the working-age population between 16 and 64 years old.12 Our benchmark proxy is educational attainment in terms 

of average schooling years, on the basis that human capital embodied in workers is proportional to the number of 

formal schooling years (Wößmann, 2003). This proxy captures the overall development of human capital (Barro and 

Lee, 2013).  

However, this aggregate measure mutes on the distribution of human capital across different age groups in 

which their human capital could exert heterogeneous impacts on CO2 emissions. To test this hypothesis, we have also 

measured the average schooling years across three groups, specifically, for the cohorts of 16–24, 25–44, and 45–64 

years old. The first splitting point is set to be 24 as it is the upper age bound for the majority of full-time Chinese 

students. The second splitting point is used to divide the young and older cohorts of full-time workers. We select 

splitting point 45 to balance two cohorts with each of them spanning 20 years. In order to show our results are not 

sensitive to these splitting points, we have performed robustness checks in Section 5 using an alternative grouping 

strategy.    

The heterogeneity analysis across different age cohorts help us to understand the mechanisms through which 

human capital may affect pollution. If the human capital embodied in the 16–24 years old cohort is the main driving 

force to the negative human capital–CO2 emissions association, the underlying mechanism is likely to operate through 

the non-production sector, as a considerable proportion of this cohort remains in school (Ge et al., 2018). While tertiary 

education is less common in developing countries like China, our dataset (1997–2016) is coincident with a nation-

wide educational initiative that dramatically expanded the enrolments in tertiary education. According to the World 

Bank (2019), the gross college enrolment in China increased from 5.45 per cent in 1997 to 48.44 per cent in 2016. 

The rest half cannot access to tertiary education are mostly disadvantaged cohort from rural regions. Without proper 

qualifications, they usually end up with farming works or migrate to cities and sort into labour-intensive jobs (Yao et 

al., 2018).  

Our second and third proxies of human capital are, respectively, the shares of the working-age population 

holding a high school degree and tertiary degree. Compared to school enrolment ratio that is commonly used in the 

literature, our measures are more integrated into production and therefore should exert a direct impact on emissions. 

Additionally, they emphasize on the quality aspect of the existing working force and can distinguish human capital 

into basic and advanced categories.13 In other words, this setup allows us to examine human capital–CO2 emissions 

nexus from the perspective of human capital quality.  

Our CO2 emission data are drawn from Shan et al. (2018a). To date, no annual, officially published CO2 

emission data exist at the provincial level of China. Scholars commonly estimate it following the Guidelines for 

 
12 This setup is according to Chinese Labor Law which stipulates that the youngest age allowed to work formally is 16 years old and the upper 

bound retirement age is 65 years old.  
13 One may suggest that basic human capital should also include the proportions of primary and junior high school degree holders (Li et al., 2014). 
However, due to the enforced Nine-Year Compulsory Education law, the variations in these educations are quite limited across provinces over our 

sample period. We have also examined their impacts on CO2 emissions, but none of them are significant. Results are available upon request.   
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National Greenhouse Gas Inventories recommended by IPCC (Intergovernmental Panel on Climate Change). 

However, due to subjective coverage on different industries and fossil fuels, these estimates exhibit considerable 

discrepancies, with a gap could be large as total emissions of Russia (Shan et al., 2018a). 

This uncertainty is addressed by Shan et al. (2018a) via the following improvements. The first is the 

consideration of 26 fossil fuels consumed in 47 industrial sectors, consistently for 30 provinces over the period 1997–

–2016.14 The second is the adjustments made on carbon emission factors, which govern the chemical process from 

fuel combustion to CO2 generation.15 Existing estimates adopt the default values recommended by IPCC, which are 

approximately 40 per cent higher than the values obtained from surveying China’s fossil fuel quality and industrial 

processes (Liu et al., 2015). Using updated, China-specific emission factors unambiguously improves estimation to a 

large extent, which considerably alleviates measurement errors. Third, Shan et al. (2018a) incorporated the process-

related CO2 emissions that are due to the cement production process. It is an important source of carbon emissions in 

China but has been largely ignored in previous estimations. Omitting it would severely bias the estimation downward 

given China is the top cement producer in the world. Finally, Shan et al. (2018a) employed both sectoral and reference 

approaches, which respectively employed energy consumption data and energy production data, to cross check their 

estimations.  

Other variables suggested by STIRPAT framework, alongside additional controls and other pollution 

indicators used in sensitivity checks, are collected from a series of Chinese statistical publications, which are listed in 

Appendix A. 

Table 1 defines and summaries all variables used in this study. The entire working-age population attains 

9.15 years of formal schooling on average. Due to excluding retiree cohort, this figure is much higher than 7.45 years 

estimated by Barro and Lee (2013) over the similar period (Zhang et al., 2007). Meanwhile, there are large 

discrepancies across different age groups. Younger generations on average attain more formal schooling than their 

older counterparts. Moreover, we note that the share of high school degree holders almost doubles the share of tertiary 

degree holders, reflecting the nature of basic and advanced human capital. Regarding CO2 emissions, reference 

approach produces higher estimations than the sectoral approach. For the estimation from the sectoral approach, much 

of CO2 emissions are due to fossil fuel consumption, and particularly coal consumption.  

 [Insert Table 1 about here] 

 

 
14 For instance, Li et al. (2016) considered 8 fossil fuels whereas 9 was taken in Ren et al. (2014). However, none of them even recognized industrial 
heterogeneity in carbon emission factors like fossil fuel oxygenation efficiency, which refers to the oxidation ratio during fossil fuel combustion.  
15The equation CO2ij=ADij×NCVi×CCi×Oij describes the relationship between fossil fuel consumption and CO2 emissions. i refers to fossil fuel 

type and j refers to industrial sector. NCVi is the net caloric value and CCi is carbon content, both of which are fuel specifically. Meanwhile, Oij is 
the oxygenation efficiency, which depends on fossil fuel and industry. These fossil fuel- and/or industrial- specific parameters are collectively 

known as emission factors. Shan et al. (2018a) offered a detailed explanation on them.   
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3.2 Econometric strategy 

We estimate the long-run association between human capital and CO2 emissions in Chinese provinces over 

the period 1997–2016. Since regional interdependencies are often presented due to economic, fiscal and political 

integrations, we need to account for such cross-sectional dependency to avoid related bias in our estimations (Pesaran, 

2007; Westerlund, 2007). To examine whether our panel is subject to this issue, we perform the multiple cross-

sectional dependence (CD) tests including Breusch and Pagan (1980) Lagrange multiplier (LM) test, the Pesaran (2004) 

scaled LM test, Baltagi et al. (2012) bias-corrected scaled LM test, and the Pesaran (2004) CD test.   

We then apply panel unit root tests to find the order of integration in our variables. Since cross-sectional 

dependence might be presented in our panel, we perform the cross-sectionally augmented IPS panel unit root (CIPS) 

test (Pesaran, 2007) and compare it to the result from Im et al. (2003) (IPS) panel unit test. We implement both tests 

to demonstrate how a cross-sectionally dependent panel may affect the order of integration for our selected variables. 

Having identified cross-sectional dependence and the order of integration in our panel, we perform a panel 

cointegration test. We carry out this test since our panel spans 20 years and the estimation of it is subject to spurious 

regression. If cointegration is found between the proxies of human capital and CO2 emissions, the significant 

association between them cannot be considered as spurious (Greene, 2012). We conduct the Westerlund (2007) test, 

on the basis that it allows cross-sectionally dependence in the panel and imposes no common factor restrictions. While 

the Westerlund (2007) test displays desirable small-sample properties, the test results may be sensitive to the selections 

of lead and lag length in a short T panel like ours (Westerlund, 2007). Given that we have five variables over 20 years 

in the cointegrating space, we follow Salim et al. (2017) and seek to balance between the number of regressors and 

their lengths of lead and lag in the model. Specifically, we first apply the Westerlund (2007) test to a bivariate model 

with only human capital and carbon emissions in exchange for deep lead and lag lengths, before incorporating all 

other controls at the expense of reduced lead and lag lengths. 

Our last step is to estimate the coefficient of human capital on CO2 emissions. We begin with a fixed effects 

model that accommodates both time-invariant, provincial-specifically fixed effect and aggregate time effect that 

controls external shocks universal to all provinces. Meanwhile, fully modified OLS (FMOLS) estimator is employed 

to account for the cointegrating relationship between human capital and CO2 emissions. To avoid biased estimates due 

to cross-sectional dependence, we also consider the augmented mean-group (AMG) estimator (Eberhardt and Teal, 

2010). In general, AMG shares the spirit of Pesaran’s (2006) common correlated effects mean-group (CCEMG) that 

removes cross-sectional dependence in the panel by plugging the cross-sectional average of the dependent and 

independent variables as additional regressors in the model (Salim et al., 2017; Yao et al., 2019). Compared to 

CCEMG, AMG explicitly includes the time dummies to capture the unobservable common factors and performs better 

for a cross-sectionally dependent panel under the Monte Carlo simulation (Eberhardt and Teal, 2010).      

 



11 
 

4. EMPIRICAL RESULTS 

Table 2 presents the results for the Breusch–Pagan LM, Pesaran scaled LM, bias-corrected scaled LM and 

Pesaran CD tests which share the null hypothesis that there is no cross-sectional dependence in our panel. The null 

hypothesis is consistently rejected, and we conclude that there is strong evidence of cross-sectional dependence among 

Chinese provinces. This finding is intuitive as a series of market reforms and standardization of the national education 

curriculum have increased provincial dependency in China over the post-reform period (Salim et al., 2017). 

[Insert Table 2 about here] 

 

Next, panel unit root tests are performed to ascertain the order of integration for selected variables. Table 3 

reports the results for both IPS and CIPS tests. According to the IPS test, except asy25t44, TerySch and EcoStc, all 

variables are stationary after first differencing. CIPS test, by contrast, suggest all variables are integrated of order one. 

Since there is strong evidence of cross-sectional dependence in our panel, we prescribe to the CIPS test results and 

conclude that all variables are the first-differenced stationary.16  

[Insert Table 3 about here] 

 

Table 4 reports the results of Westerlund cointegration test, which assumes the null hypothesis of no 

cointegration among its four statistics ( G
,  G

, P  and P ).17 For panel A where the bivariate model is focused, 

there is evidence of cointegration between CO2 emissions and human capital captured by asyT and its counterparts 

across different age groups. Note that the evidence is much stronger for the cohort aged between 25 and 44. Meanwhile, 

the long-run association holds for the share of tertiary degree holders but not for the share of high school degree 

holders. Panel B adds affluence, population and technology effects suggested by the STIRPAT model, at the expense 

of reduced lag and lead length (Westerlund, 2007; Persyn and Westerlund, 2008). The long-run association in the 

multivariate model retains for human capital measured by asy25t44 and TerySch.18 These results appear to support a 

heterogeneous human capital–CO2 emissions nexus across different age cohorts and by types of human capital. 

Specifically, both younger workers and workers with advanced human capital tend to exert a significant impact on 

CO2 emissions.  

 
16 We also conduct the Carrion-i-Silvestre et al. (2005) cross-sectionally dependent panel unit root test with multiple structural breaks. Results are 
reported in Appendix B. In contrast to CPIS test, Carrion-i-Silvestre et al. (2005) test assume the null hypothesis of stationarity. We show that all 

of our variables are not stationary at level. Meanwhile, we have also tested their first differenced transformations and the results cannot reject the 

null hypothesis of stationarity (these results are available upon request). As such, the panel unit test which controls structural breaks has yielded 
the same conclusion from the CPIS test.     
17 G

 and G
refer to group-mean tests, which assume the coefficient of error-correction term is heterogeneous across cross-sectional units; while 

P  and P  tests, known as panel tests, restrict the coefficient of error-correction term to be the same across all cross-sectional units.  

18 Since the Westerlund (2007) test assumes away structural breaks in the cointegrating relationship, we also apply the recently developed Banerjee 
and Carrion-i-Silvestre (2015) panel cointegration test with structural breaks in a cross-sectionally dependent panel. Results reported in Appendix  

are consistent with the Westerlund test results.    
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[Insert Table 4 about here] 

 

Table 5 summaries the baseline results. It shows the impacts of human capital on CO2 emissions across 

different age groups and by the quality of human capital. We begin with the impact of asyT, which captures the overall 

human capital for the entire working-age population. Column (1) finds that there is a negative and significant 

association between human capital and CO2 emissions. Specifically, emissions will be reduced by 12 per cent for one 

additional year of formal schooling, all else equal. 

However, this finding fails to hold across different age groups. As revealed from column (2) to (4), the 

negative association becomes much larger and more significant for the cohort of 25–44 years old, while a positive but 

insignificant relationship is found for the cohorts of 16–24 and 45–64 years old. These results indicate that the 

established negative association between human capital and CO2 emissions is driven by the 25–44 years old cohort. 

Compared to the older generation, they attained 1.6 years more formal schooling (see Table 1) and were free from 

education chaos due to the 1966–1976 Cultural Revolution.19 Given these quantity and quality advantages, the 25–44 

years old cohort may possess better knowledge to acquire abatement practice and technology during the production 

process. While both advantages were also holding for the 16–24 years old cohort, a considerable proportion of them 

remains in school and yet to be full-time employed. As such, their contribution, if any, is expected to be quite limited.  

On another dimension, our empirical human capital–CO2 emissions nexus also differs from the quality of 

human capital. Columns (5) and (6) find that the negative and significant impact holds for advanced human capital 

but not for basic human capital. Specifically, a one per cent increase in the share of tertiary degree holders reduces 

CO2 emissions by 5.7 per cent, all else equal. Why does advanced human capital matter for CO2 reductions? We offer 

two explanations from household and production perspectives. First, households with advanced education are better 

informed about the risk of pollution exposure. It cautions them to carry out avoidance behaviors for themselves and, 

if any, to adopt a less harmful lifestyle to protect the environment for the future generations (Goetz et al., 1998; Graff 

Zivin and Neidell, 2013; ESRC, 2011). Second, workers with advanced human capital are crucial to the innovation 

and the diffusion of environmentally-friendly production technologies (Li and Lin, 2016; Lan and Munro, 2013).  

To detect the possible nonlinear association between human capital and CO2 emissions, we also estimate 

specifications incorporating the square term of asy25t44 and TerySch. Results reported in columns (7) and (8) indicate 

that the estimated coefficients on the square term of both asy25t44 and TerySch are small and insignificant. Meanwhile, 

including these squared terms does not change the magnitude and significance of asy25t44 and TerySch much. These 

 
19 Formal education and the quality of it were severely hampered during 1966–1976 Cultural Revolution. See Meng and Gregory (2002) and Zhang 
et al (2007) for more detail information. Within the 25–44 years old group, people of the oldest cohort were born in 1972 and the legal year for 

them to enroll primary school is 1979, three years after the Cultural Revolution.   
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results suggest that the association between human capital and CO2 emissions appears to be linear. As such, we will 

focus on the linear specification in the subsequent analysis.20 

Since we have established that only selected human capital measures (“asy25t44” and “TerySch”) are 

cointegrated with CO2 emissions, standard OLS estimator with two-way fixed effect may not able to produce long-

run estimates efficiently. To address this concern, we apply FMOLS estimator, which employs a semi-parametric 

correction to eliminate the problems caused by the long run correlation between the cointegrating equation and 

stochastic regressors innovations (Phillips and Hansen, 1990). Results from columns (7) and (8) confirm our previous 

findings that the negative and significant human capital–CO2 emissions nexus is driven by average schooling attained 

by 25–44 years old cohort and by advanced human capital. Moreover, columns (9) and (10) further control cross-

sectional dependence using AMG estimator, and reassuringly, it leaves our findings qualitatively the same.  

Our finding is in line with Goetz et al. (1998) which found a negative association between human capital 

pollution using the U.S. cross-state dataset. Notably, their finding is driven by the share of secondary degree holders 

while our negative association is due to tertiary degree holders. This inconsistency could be related to the differences 

in education systems between the two countries. According to Yao et al. (2018), high-school students in China mostly 

focus on exam-taking skills for qualifying college admission which carry little value in the real world. 

As for the rest controls, results are largely consistent with theoretical predictions from the STIRPAT model. 

Affluence captured by real GDP per capita exerts a positive and highly significant impact on CO2 emissions. Energy 

intensity, which is used to measure the general level of technology, is shown to be detrimental to the environment. 

The positive effect is also reported for the population. These findings are in line with Liddle (2013, 2015) who obtained 

similar results using cross-country panels.   

As a final remark, we carry out CIPS and Pesaran CD tests on the estimated residuals from all specifications. 

Results show that they are stationary and free from cross-sectional dependence, suggesting our estimates are no longer 

biased by these issues.     

[Insert Table 5 about here] 

 

5. SENSITIVITY CHECKS  

This section performs a set of sensitivity checks to further validate our findings. Table 6 reports them in 

alphabetical order.  

[Insert Table 6 about here] 

A: Potential outlier effects 

 
20 We also add squared terms of asyT, asy16t24 and HighSch and estimate them using OLS, FMOLS, and AMG estimators. Results are consistent 
and suggest that nonlinearity between human capital and carbon emissions is not presented in our sample. To conserve space, these results are not 

reported, but available upon request.  
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We begin with dropping four municipalities, namely, Beijing, Tianjin, Shanghai and Chongqing. Due to their 

provincial-level administrative rankings, these megacities are attractive to young talents and are also subject to more 

stringent environmental regulations. The stylized facts concern us that our findings could be driven by these outliers. 

Columns (1) and (2) use the sample excluding them and confirm the negative and significant association between 

human capital and CO2 emissions.  

 

B: Alternative CO2 estimation 

Section B inquires whether our finding is sensitive to CO2 estimation method. So far, our analysis has built 

on a sectoral approach, which relies on energy consumption data to estimate CO2 emissions. By contrast, the reference 

approach, which is based on energy production and trade data, assumes that all the carbon elements from the primary 

energy sources are converted into CO2 emissions. Since the reference approach does not exclude energy losses during 

transportation and any other non-energy purpose uses, it mechanically produces higher estimation and forms an upper 

bound of carbon emissions (see Table 1). Nevertheless, Columns (3) and (4) find that using reference CO2 emission 

data does not change our findings qualitatively.  

 

C: Alternative human capital proxy 

Section C considers income-based human capital (JFHC) instead of education-based measures. While the 

education-based measures are readily available, an obvious shortcoming is that they fail to incorporate informal human 

capital in terms of working experience, on-the-site training and learning-by-doing (Le et al., 2003; Wößmann, 2003; 

Li et al., 2014). To examine whether they could alter our findings, we turn to income-based human capital, which is 

estimated by CHLR. It modified Jorgenson and Fraumeni’s (1989, 1992) lifetime-income approach to estimate the 

monetary human capital stock which systematically incorporates the market value of all aspects of human capital 

services.21 For the reason of consistency, we focus on the monetary human capital stock due to labor force cohort and 

scale it with the number of the working-age population. 

According to columns (5) and (6), a one per cent increases in JFHC is shown to reduce sectoral CO2 emissions 

by 0.67 per cent and reference CO2 emissions by 0.18 per cent, respectively. Our finding is consistent with Lan and 

Munro (2013) and Salim et al. (2017), which concluded that energy-saving practices are assimilated and developed 

through working experience, on-the-site training, and learning-by-doing rather than taught explicitly at schools. As 

such, the government should also consider fostering informal human capital to alleviate global warming.  

 

 
21 In general, the Mincerian equation is used to separate the effects of educational and non-educational human capital on earnings. Li et al. (2014) 
provide a detailed description on how the Mincerian equation was applied to estimate individual earnings from various surveys and then how these 

estimated individual earnings are aggregated into monetary human capital stock.   
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D. Reverse causality 

Section D addresses reverse causality from pollution to human capital. A handful of empirical studies have 

obtained the consistent evidence that pollution is detrimental to the human capital formation through worsening health 

status (Currie et al., 2009; Graff Zivin and Neidell, 2012; Graff Zivin and Neidell, 2013; Bharadwaj et al., 2017). To 

show that our findings are not due to this reverse linkage, we turn to the system GMM method which improves 

estimation efficiency given our variables are nonstationary at levels (Bound et al., 1995).  

Columns (7) and (8) find that both asy25t44 and TerySch retain their negative effects on carbon emissions 

despite the significance level is reduced to 5 per cent. Meanwhile, lagged CO2 emissions has a coefficient of 0.73, 

indicating carbon emissions are highly path-dependent. Regarding diagnostic checks, both AR (1) and AR (2) statistics 

are negative but only the former is significant. Moreover, Hansen statistic is insignificant in both specifications, 

implying that the internal IV is appropriate. These tests consistently suggest that our models are correctly specified 

and properly identified.  

We admit that identification via using external IV is preferred to using internal IV. However, as highlighted 

in Fleisher et al. (2010), macro variables are notoriously difficult to be instrumented as valid IV are often correlated 

with geographical factors and thus are fixed and perfectly collinear with provincial fixed effects. A more complicated 

fact is that we have several different and highly correlated proxies of human capital. To identify the causal effect of 

asy16t24, valid IV must be sufficiently correlated with it, but at the same time, it should not exert any effect on other 

human capital proxies like asy25t44. The same conditions are also applied to the IV for asy25t44. These demanding 

conditions made causal inference using external IV almost impossible.  

Nevertheless, to further rule out the reverse causality from CO2 emissions to human capital, we carry out 

Dumitrescu and Hurlin (2012) panel Granger test in Appendix D. This test allows cross-sectional heterogeneity and 

dependence. Reassuringly, we find that there is unidirectional Granger causality running from human capital to CO2 

emissions, consistently for two different proxies of human capital.  

 

E: Distinguish the short- and long-run effects 

Section E distinguishes human capital–CO2 emissions association into short- and long-run via panel ARDL 

specification. This setup provides another way to test the cointegrating relationship between the two variables. There 

are three estimators designed for ARDL specification, and in our case, pooled mean grouped (PMG) estimator is 

selected over mean-grouped (MG) and dynamic fixed-effect (DFE) estimators according to join-Hausman test.22 

 
22 These estimators made different assumptions on the slope parameters of each cross-sectional unit. For example, DFE assumes constant short-run 

and long-run slope parameters, whereas MG allows the slope parameters to vary in both short and long run. Unlike DEF and MG, PMG permits 
the slope parameters to change in the short run but imposes homogeneous slope parameters across all cross-sectional units in the long run (Pesaran 

et al., 1999; Pesaran and Smith, 1995). 
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Column (9) and (10) confirm the negative association between human capital and CO2 emissions in the long 

run and it is absent in the short run.23 Meanwhile, error-correction terms are shown to be negative and highly 

significant for both human capital proxies. It implies that in the long run, the negative association is restoring 

equilibrium after receiving an external shock, providing further evidence that human capital is cointegrated with CO2 

emissions (Pesaran et al., 1999; Pesaran and Smith, 1995).  

 

F: China-specific controls 

Section F adds several China-specific controls to further alleviate omitted variable bias. Over the past two 

decades, China has seen unprecedented integration into the world economy and the profound institutional changes 

(Naughton, 2007; Meng, 2012; Meng et al., 2013). Their variations could be correlated with human capital 

accumulation, which leads us to find spurious results. To address this concern, we include the trade-to-GDP ratio to 

capture the degree of integration into the world economy. Meanwhile, to gauge the pace of institutional reforms, we 

employ urbanization ratio, the share of the non-state economy and the share of migrant workers into a province. These 

variables are defined in Table 1 and their sources are presented in Appendix A.  

According to Columns (11) and (12), our finding sustains over including these China-specific controls. We 

also find that openness to trade has increased CO2 over the past two decades. This is consistent with the pollution 

haven hypothesis that firms from advanced economies outsourced their energy-intensive industries to China where 

environmental standards are generally lower. Meanwhile, the private ownership (“Non_state”) is shown to be positive 

and significant. While the efficiency gain from privatization would reduce energy waste and therefore carbon 

emissions, the scale effect due to a rapid expansion of domestically-owned private firms has offset the efficiency effect, 

resulting into a net increase of CO2 emissions (Naughton, 2007).  We also find that the share of migrant workers 

(“Imgra”) exerts a positive and significant effect on carbon emissions. This is intuitive as migrant workers give up 

their farming works and find jobs in manufacturing industries which energy is a complementary input. Finally, we 

find that urbanization does not affect emissions in any significant manner.  

 

G: Regional specific time effects 

While the previous section has considered additional controls, our empirical model is still subject to omitted 

variables bias due to other important but unobserved variables. Examples of them include the degree of environmental 

stringency and energy price shocks at the provincial level. In the context of China, the central government establishes 

environmental regulations which are implemented by provincial-level governments with varying degree of 

enforcements (Ma and Ortolano, 2000; Wang, 2013). Meanwhile, energy prices in China are highly regulated for 

promoting industrialization (Naughton, 2007). These features have further complicated the pattern of CO2 emissions.  

 
23 To conserve space, we did not report the short-run effect of human capital on CO2 emissions which is insignificant for both measures of human 

capital. Results are available upon request.  
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In section G, we use region-by-time fixed effects to captures these important but unobserved variables. 

Including these fixed effects captures the process that how provinces with varying degree of absorptive capacities 

responses to the shocks initiated by the central government.24  

Columns (13) and (14) reveal that the estimated coefficients of asy25t44 and TerySch remain negative and 

significant and become slightly larger in magnitude after including the region-by-time fixed effects.  

 

H: Spatial consideration 

Section H extends spatial interaction to the human capital–CO2 emissions nexus. An underlying assumption 

of our analysis is that the environmental impact of human capital is limited to its own administrative region and does 

not spill over to proximate provinces. We now relax it and use Spatial Durbin Model (SDM) that incorporates spatial-

weighted human capital of bordering provinces.25 To that end, we first construct a spatial-weighing matrix that 

captures the interactions among Chinese provinces over space. We prefer contiguity weighting matrix over distance-

based one due to the following reason. Calculating the paired distance between two administrative units needs to 

define their centroids. While it is a simple task when the administrative units are small in geographical scale (e.g. 

community or village), these centroids become less representative in large administrative units like provinces in China 

(Huang et al., 2016). Existing literature has considered the centroids of provincial capital cities, but we suspect it is 

subject to aggregation bias as most economic activities are conducted outside of capital cities. The contiguity 

weighting matrix we employed is demonstrated as follows:  

11 12 13

21 22 23

31 32 33

0 1 0

1 0 0

0 0 0

W

 
 

  
 
 

 

Element 1 refers to the case that two provinces share the common border with each other and 0 otherwise. 

Following this definition, only province 1 and 2 share the border. We have row-normalized W to facilitate 

interpretation following the suggestion of Elhorst (2014).  

Columns (15) and (16) find that the own-effect of human capital remains negative and significant. However, 

spatial-weighted human capital is consistently insignificant for both human capital proxies. We do not report them to 

 
24 Our sample are grouped into six regions: North China (Beijing, Tianjin, Hebei, Shanxi and Inner Mongolia); Northeast China (Liaoning, Jilin 

and Heilongjiang); East China (Shanghai, Jiangsu,  Zhejiang, Anhui, Fujian,  Jiangxi and Shandong); South Central China (Henan, Hubei, Hunan, 

Guangdong, Guangxi and Hainan); Southwest China (Chongqing, Sichuan,  Guizhou and Yunnan); and Northwest China (Shaanxi, Gansu, Qinghai, 
Ningxia and Xinjiang), according to definition of China statistics.  
25 Following the suggestion of one referee, we have also carried out Moran’s I statistic to test whether our dependent variables are spatially correlated. 

Appendix E presents the test results for both sectoral- and reference- based CO2 emissions under three distance cut-offs (200km, 500km and 
1000km). We find strong evidence that CO2 emissions, regardless estimation approaches and distance cut-offs, are spatially correlated. This result 

justifies for the choice of Spatial Durbin Model (SDM).  
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conserve space. We also consider the alternative, distance-based, spatial-weighting matrix and find that it does not 

alter the results using contiguity weighting matrix. We omit them to conserve space.26 

 

I: Combo treatment 

Section I combines A, D, F and G to form the most saturated specification and reassuringly it leaves our 

major results qualitatively unchanged.  

 

J: Finer age groups and educational qualifications 

We have also divided the working-age population using much smaller age bins and replicated all analyses 

over again. Specifically, average schooling years is measured for cohorts with five years interval incrementally: 16–

20, 21–25, 26–30, 31–35, 36–40, 41–45, 46–50, 51–55, 56–60 and 61–64 years old. We find that the negative and 

statistically significant association between human capital and CO2 emissions is concentrated in the age cohorts of 

26–30, 31–35 and 36–40, largely in line with our established result.27 

We also differ tertiary degree holders into three-year college and four-year university degrees for a limited 

time span between 2002 and 2015. While both measures remain negative and highly significant, the effect is much 

stronger for the share of four-year university degree holders. It further reinforces our finding that advanced human 

capital is more important in abating carbon emissions.28 

 

K. Indirect channel through R&D  

Our analysis so far has focused on the direct association between human capital and CO2 emissions. However, 

their association could be mitigated through the channel of research and development (R&D). R&D outcome, due to 

human capital accumulation, could improve production efficiency and reduce the waste of energy input (Awaworyi 

Churchill et al., 2019). As income grows, countries are better able to afford the investment in R&D and are, hence, 

better able to adopt efficient technologies (Romer, 1986; Romer 1990; Aghion and Howitt 1992; Dinda, 2004). More 

efficient technologies reduce the need to use dirty energy and promote clean energy consumption, therefore reducing 

carbon emissions (Yao et al., 2019). Li and Lin (2016) argued that human capital enables switching to energy-efficient 

technology during production, thus reducing greenhouse gas emissions in the process. Ang (2009) applied time series 

dataset from China and identified a negative relationship between technology transfer and CO2 emissions. Using firm-

level data, studies such as Cagno and Trianni (2013) and Cole et al. (2008) highlighted complementarities between 

human capital and R&D in promoting efficient energy use. The IEA (2008) estimated that technological progress, 

 
26 These unreported results are available upon request.  
27 Full regression results are available upon request.  
28 Full regression results are available upon request. 
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alongside investments in human capital and R&D, can lower global primary energy consumption by 18% to 26% 

which significantly reduces carbon emissions. To accommodate this indirect channel, we use a system of structural 

equations and estimate it with maximum likelihood estimator:  

1 2 3 4 5 6ln( 2 ) ln ln ln ln ln &it it it it it it i t itCO P A T HC R D                   

1 2 3 4 5ln & ln ln ln lnit it it it it i t itR D P KS FD HC                 

The first equation of this system is our baseline model (2) augmented with R&D outcome which is proxied by the 

number of granted patents. The second equation models R&D outcome as a function of income level (A), physical 

capital stock (KS), financial development (FD), and one proxy of our human capital. Their definition and source can 

be found in Table 1 and Appendix A, respectively.  

Results are reported in columns (19) and (20) respectively for asy25t44 and TerySch. Their estimated 

coefficients remain negative and highly significant. Note that the effect of asy25t44 increases from 0.268 to 0.391 and 

similarly so for TerySch from 0.057 to 0.092. These changes are intuitive as the indirect effect, which work through 

technological advancement, has strengthened the effect of human capital on CO2 emissions. Meanwhile, in line with 

the findings from Ang (2009) and Li and Lin (2016), there is a negative and significant association between R&D 

efforts and CO2 emissions.29 Our findings imply that the established human capital–CO2 emissions nexus is not 

sensitive to incorporating the indirect channel through R&D.  

  

6. FURTHER ANALYSIS  

In this section, we use disaggregated emission data to examine the potential mechanisms through which 

human capital influences CO2 emissions. The provincial aggregate emission data can be further separated by energy 

sources and end emitters. We first divide aggregate CO2 emissions into two, mutually exclusive, components. One is 

the emissions from fossil energy consumption while the other one is called process-related emissions which are due 

to cement production.  

Table 7 reports the results using these disaggregated CO2 emissions. Columns (1) and (2) find that while both 

asy25t44 and TerySch remain negative, the advanced human capital (TerySch) exerts a much larger effect in reducing 

process-related emissions. Note that this sort of emissions, by definition, has nothing to do with energy consumptions, 

the negative association should operate through technology effect which improves production efficiency. Indeed, over 

the past decade, many small, outdated cement mills have been closed and replaced with modern and capital-intensive 

production facilities. For instance, more efficient New Suspension and Preheater (NPS) kilns have gained popularity 

in the recent decade (Gao et al., 2017; Ke et al., 2013). To further show that the technology effect is at play, we have 

 
29 To conserve space, the estimated results for the R&D model is not reported but available upon request. In addition to R&D, we have also examined 
the indirect channel through economic growth and economic structure. A similar simultaneous equation system is constructed and estimated, and 

we obtained the qualitatively similar estimates as our baseline results. The full regression results are available upon request.    
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conducted a placebo test which considers basic human capital (captured by HighSch). As expected, HighSch cannot 

reduce process-related emissions because basic human capital exerts a limited effect on adopting advanced technology.  

Considering the CO2 emissions due to fossil fuel consumptions, columns (3) and (4) reveal similar results to 

our baseline findings in Table 5. However, the effects of human capital on CO2 emissions are heterogeneous across 

different fossil fuels. Both proxies of human capital exert a larger impact on CO2 emissions due to coal consumption. 

The estimated coefficients of asy25t44 and TerySch increase to 0.354 and 0.077, respectively. However, when looking 

at emissions from non-coal fuels, columns (5) and (6) indicate that the human capital–CO2 emissions nexus is positive 

although they are imprecisely estimated. We offer two explanations for this finding. First, non-coal fossil fuels are 

mainly natural gas and crude oil which account for a much smaller share in the energy mix of China. Second, the 

extent of energy substitution from coal to other but cleaner fuels is quite limited during our sample period. Although 

human capital accumulation may accelerate the substitution from dirty to cleaner energies, this effect is shown to be 

marginal at best (Shan et al. 2018b). Our findings collectively imply that the negative association between human 

capital and environment is mainly stemmed from abating coal related emissions.  

The coal-related CO2 emissions can be reduced by cutting coal consumption, which might be facilitated by 

human capital accumulation. While this mechanism is plausible, it overlooks the stylized fact that coal is a fundamental 

energy source to China and the extent to substitute it with alternative energies is quite limited (Shan et al. 2018b). To 

formally control this scale effect, we include total energy consumption or coal consumption in our baseline model and 

find that our negative human capital–CO2 emissions association remains qualitatively the same.30 This finding implies 

that the negative human capital–CO2 emissions association is unlikely due to reducing coal consumption. A more 

compelling mechanism is through improving energy efficiency which reduces CO2 emissions per unit of coal 

consumption.  

 [Insert Table 7 about here] 

Next, we are also interested in the sectors where these mechanisms are at play. Preliminary evidence suggests 

that the negative association between human capital and CO2 is dominated by production sector as the negative 

association is driven by human capital endowed in younger workers. Ideally, we should regress both industrial CO2 

emissions and household CO2 emissions on human capital separately. The difference in estimated sign, magnitude and 

significance level of human capital would provide us with the answer to this question. Unfortunately, such dataset is 

not available, and we turn to alternative pollutant—sulfur dioxide (SO2) which are systemically collected for industrial 

and household emitters. We admit that the potential damages and regulatory frameworks are different between CO2 

and SO2 but still purse this approach as both pollutants are highly correlated during fossil fuel combustion process.  

Table 8 shows that the negative and significant association is limited to industrial SO2 emissions. For 

household SO2 emissions, such relationship is absent. These results are line with the previous findings that the 

youngest cohort, who are mainly in schools, cannot alter negative human capital–CO2 emissions nexus. We have also 

 
30 These results are available upon request.  
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experimented with other human capital proxies and find that the results remain insignificant for household SO2 

emissions. These results lend support to our claim that the production sector is the major place where the negative 

human capital–CO2 emissions nexus materializes.  

[Insert Table 8 about here] 

 

7. CONCLUSION AND POLICY IMPLICATIONS  

In this study, we examine the relationship between human capital and CO2 emissions using the provincial 

panel of China over the period 1997–2016. We find a negative and significant relationship between them in the long 

run. This result is driven by human capital endowed in young workers aged between 25 and 44 and by workers with 

a tertiary degree. With disaggregated dataset by CO2 sources and end emitters, we can identify the mechanisms through 

which human capital reduces CO2 emissions. We obtain the implicit evidence that the negative association operates 

through technology effect and energy efficiency improvement. Moreover, all these mechanisms are shown to be 

limited to the production sector but absent in the household sector.   

Our findings suggest that human capital could form a complementary, if not an alternative, tool to curb CO2 

emissions. Specifically, schools may consider teaching long-term damages associated with global warming to improve 

students’ environmental awareness. On the production side, financial incentives should be offered to enterprises which 

provides energy/environment related training to their employees. For those firms in high energy/pollution intensity 

industries, they should recruit more professionals to innovate their production process toward environmentally-

friendly way.  Although this study finds that human capital fails to reduce pollution in the household sector, it points 

out an avenue for the policymakers to intervene. For instance, the public campaign should be promoted to strengthen 

households’ environmental awareness which cautions them the potential damages associated with global warming. 

Meanwhile, the financial incentive should be offered to adopt renewable energies or energies with less environmental 

impacts. Recently, the Chinese government have launched a green home appliance plan targeting rural households. 

This strategy should be encouraged among urban households which consume the most of residential energy in China.  

This study, to the best of our knowledge, is one of very few attempts to quantify the environmental benefits 

owning to human capital accumulation. Although we have suggested the potential mechanisms that might drive the 

negative association between human capital and CO2 emissions, the concrete conclusion cannot be drawn without the 

support from micro-level evidence. We leave this for future research.  
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Table 1: Summary statistics  

Variables  Definition  Unit Obs. Mean Std. Dev. Min Max 

CO2R CO2 emissions by reference approach, in log form 1 Tonne 600 18.849 0.942 14.914 21.164 

CO2S CO2 emissions by sectoral approach, in log form 1 Tonne 600 18.812 0.876 15.790 20.552 

CO2S_EC CO2 emissions due to total energy consumption, in log form  1 Tonne 600 18.754 0.872 15.761 20.496 

CO2S_Coal CO2 emissions due to coal consumption, in log form  1 Tonne 600 18.274 0.908 14.648 20.050 

CO2S_Clean CO2 emissions due to less polluted energy consumption, in log form 1 Tonne 600 15.226 2.139 0 17.707 

CO2S_PR CO2 emissions due to production process (e.g. cement production), in log form  1 Tonne 600 15.857 1.122 12.206 17.853 

SO2_indus Industrial SO2 emissions  1 Tonne 600 12.996 0.941 9.735 14.381 

SO2_con Residential SO2 emissions  1 Tonne 390 11.033 1.197 6.163 13.531 

asyT Average schooling years for the entire working age population (16-64) Years  600 9.148 1.082 6.326 12.214 

asy16t24 Average schooling years for the population aged between 16 and 24  Years  600 10.256 1.137 6.801 12.945 

asy25t44 Average schooling years for the population aged between 25 and 44  Years 600 9.423 1.095 6.789 12.983 

asy45t64 Average schooling years for the population aged between 45 and 64  Years  600 7.759 1.294 4.414 11.174 

HighSch Share of working age population who holds senior high school degree % 600 18.141 4.322 8.705 30.270 

TerySch Share of working age population who holds a tertiary degree  % 600 10.519 6.606 2.130 38.390 

JFHC J-F method based monetary human capital stock, constant 1985 price in log form  1RMB 600 11.293 0.547 10.069 12.895 

Afflu Affluence, captured by per capita real GDP in 1985 constant price level, in log form  1RMB  600 8.322 0.769 6.438 9.975 

ppl Total population, in log form  1 Capita  600 17.346 0.767 15.416 18.502 

ECint Energy intensity, Standard Coal Consumed to produce 10,000 RMB GDP (1985 

constant price), in log form   

STC/10,000 600 -16.798 0.477 -17.815 -15.531 

EcoStc Economic structure, captured by industrial value added to total GDP  % 600 45.359 7.828 19.735 59.045 

Urb_ratio Urbanization ratio, the share of people living in the urban areas  % 600 47.352 15.78 21.53 89.6 

Trade_shr Share of trade to GDP % 600 2.647 2.471 0.067 16.448 

Non_state Share of non-state sector economy, measured by the share of workers in non-state 

sectors  

% 600 54.355 19.254 11.3 90.882 

Imgra Share of, inter-provincial, temporal migration workers, defined as the total population 

minus local hukou registered population, scaled by the total population 

% 600 3.200 13.602 -19.699 68.616 

R&D Number of invention patents granted in log form  - 600 8.918 1.821 2.303 13.131 

KS Estimated per capita physical capital stock at 1985 constant price level in log form  1RMB 600 9.536 0.958 7.469 12.304 

FD The estimated proportion of total credit granted to private investors in log form  % 600  -0.751 0.247 -1.796 -0.146 

Note: Data is compiled for 30 provinces over the 1997–2016 period. Appendix A provides the data sources for each variable.  
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Table 2 Cross-sectional dependence, by variables and testing procedures 

 Breusch-Pagan LM Pesaran scaled LM Bias-corrected scaled LM Pesaran CD 

CO2R 7212.462 [0.000]  229.778 [0.000]  228.944 [0.000]  84.806 [0.000]  
CO2S 7557.573 [0.000]  241.478 [0.000]  240.645 [0.000]  86.848 [0.000]  

CO2S_EC 7512.681 [0.000]  239.956 [0.000]  239.123 [0.000]  86.594 [0.000]  
CO2S_Coal 6402.631 [0.000] 202.322 [0.000]  201.488 [0.000]  77.258 [0.000]  

CO2S_Clean 5638.010 [0.000] 176.399 [0.000] 175.565 [0.000] 68.933 [0.000] 
CO2S_PR 6725.312 [0.000]  213.262 [0.000]  212.428 [0.000] 79.253 [0.000]  
SO2_indus 2848.335 [0.000] 81.8197 [0.000] 80.9864 [0.000]  37.383 [0.000]  
SO2_con 1963.005 [0.000]  51.8042 [0.000] 50.5542 [0.000] 18.760 [0.000]  
asyT 8113.592 [0.000] 260.329 [0.000] 259.495 [0.000]  90.071 [0.000]  

asy16t24 7530.431 [0.000] 240.558 [0.000] 239.724 [0.000]  86.293 [0.000]  
asy25t44 8083.792 [0.000] 259.318 [0.000]  258.485 [0.000] 89.905 [0.000]  

asy45t64 7949.639 [0.000] 254.770 [0.000] 253.937 [0.000] 89.136 [0.000]  
HighSch 5317.125 [0.000] 165.512 [0.000] 164.686 [0.000] 36.387 [0.000] 

TerySch 8048.148 [0.000] 258.110 [0.000] 257.277 [0.000] 89.698 [0.000] 
JFHC 8165.667 [0.000] 262.094 [0.000] 261.261 [0.000] 90.362 [0.000]  

Afflu 8167.045 [0.000] 262.141 [0.000] 261.308 [0.000] 90.370 [0.000]  
ppl 4871.891 [0.000] 150.425 [0.000] 149.591 [0.000] 42.184 [0.000]  
ECint 6187.832 [0.000] 195.039 [0.000] 194.206 [0.000] 77.219 [0.000]  
EcoStc 3635.656 [0.000] 108.512 [0.000] 107.679 [0.000] 34.733 [0.000]  

Note: p-values are provided in the brackets. The null hypothesis of all tests assumes no cross-sectional dependence.  
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Table 3 Panel unit root test, by variables and testing procedures 

 IPS  CIPS 

 Level First difference  Level First difference  
CO2R 3.706 -5.473*** -1.188 -4.331*** 

CO2S 2.466 -4.524*** -1.337 -4.145*** 

CO2S_EC 2.517 -4.935*** -1.121 -3.882*** 
CO2S_Coal 2.816 -4.589*** -1.322 -4.737*** 
CO2S_Clean 2.362 -10.170*** -0.885 -3.104*** 

CO2S_PR 2.446 -3.304*** -1.050 -3.774*** 

SO2_indus 1.527 -5.660*** -1.373 -4.273*** 

SO2_con 0.168 -3.123*** -0.684 -4.273*** 

asyT 5.105 -2.674*** -0.031 -1.760** 

asy16t24 2.701 -2.790*** -0.820 -1.694** 

asy25t44 10.727 -1.203 -0.185 -1.616** 

asy45t64 -0.326 -3.663*** -0.554 -2.225*** 

HighSch 5.276 -4.563*** -0.178 -1.617** 

TerySch 11.111 -1.038 0.507 -1.975*** 

JFHC 3.510 3.510*** 0.056 -2.146*** 

Afflu 3.510 0.569 0.075 -2.730*** 

ppl 0.556 -6.109*** -0.549 -2.721*** 

ECint 6.454 -7.929*** -1.459 -4.082*** 

EcoStc 1.537 0.134 -0.606 -2.796*** 

Note:  ***, ** and * denote the significance level at 1%, 5% and 10 %, respectively. The null hypothesis of both tests is that the variable is nonstationary. For 

the CIPS test, the maximum lag is set to 2 and the BG lag is set to 9. For the IPS test, the lag length is selected by minimizing the Akaike Information 

Criterion (AIC).  
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Table 4: Westerlund (2007) panel cointegration test with cross-sectional dependence, by HC proxies and testing procedures 

Panel A: bivariate model asyT asy16t24 asy25t44 asy45t64 HighSch TerySch 

G  
-1.862 [0.140] -1.608 [0.240] -2.722 [0.000] -1.963 [0.080] -0.774 [0.960] -3.473 [0.000] 

G  
-2.002 [0.570] -1.735 [0.930] -1.437 [0.905] -2.344 [0.190] -1.213 [0.960] -1.447 [0.930] 

P  
-11.54 [0.030] -9.290 [0.000] -10.37 [0.000] -3.456 [0.400] -4.704 [0.380] -7.660 [0.000]  

P  
-3.068 [0.040]  -2.562 [0.080]  -2.744 [0.000]  -2.603 [0.000]  -0.903 [0.710]  -3.295 [0.040]  

Panel B: Multivariate model asyT asy16t24 asy25t44 asy45t64 HighSch TerySch 

G  
-2.952 [0.060] -2.999 [0.070] -3.241 [0.055] -2.801 [0.080] -2.657 [0.090] -4.055 [0.020] 

G  
-3.623 [0.740] -4.455 [0.280]  -3.730 [0.665]  -3.700 [0.550] -4.822 [0.110] -3.902 [0.520] 

P  
-13.21 [0.000] -10.44 [0.410]  -16.10 [0.040]  -10.11 [0.300] -10.75 [0.440] -21.22 [0.020] 

P  
-2.608 [0.740]  -3.243 [0.520]  -7.754 [0.000] -2.368 [0.850]  -4.928 [0.160]  -8.219 [0.000]  

Note: robust p-values are provided in the brackets. The null hypothesis of all tests is that there is no cointegrating relationship among variables investigated. All tests incorporate an 

intercept but no trend. For the univariate model, the lead and lag length are set to 2, respectively. For the multivariate model, the lead and lag lengths are set to 0 and 1, respectively. 

For both models, the Bartlett kernel window width is set according to 4(T/100)2/9 3. Bootstrap error is based on 100 repetitions.    
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Table 5: Baseline results 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 OLS OLS OLS OLS OLS OLS OLS OLS FMOLS FMOLS AMG AMG 
asyT -0.118**            

 (0.058)            

asy16t24  0.061           

  (0.040)           

asy25t44   -0.268***    0.240***  -0.203***  -0.212***  

   (0.056)    (0.049)  (0.000)  (0.101)  

(asy25t44)2       -0.0003      

       (0.0003)      

asy45t64    0.062         

    (0.460)         

HighSch     -0.006        

     (0.008)        

TerySch      -0.057***  -0.052***  -0.047***  -0.060*** 

      (0.011)  (0.013)  (0.003)  (0.015) 

(TerySch)2        -0.0001     

        (0.0002)     

Afflu 1.215*** 1.119*** 1.252*** 1.107*** 1.167*** 1.374*** 1.274*** 1.362*** 0.783*** 1.274*** 0.737*** 0.711*** 

 (0.102) (0.102) (0.103) (0.104) (0.108) (0.099) (0.103) (0.103) (0.001) (0.008) (0.125) (0.114) 

ppl 0.469*** 0.602*** 0.487*** 0.549*** 0.433** 1.299*** (0.961) 1.361*** 1.048*** 0.774*** 0.617 0.870 

 (0.171) (0.195) (0.185) (0.163) (0.177) (0.235) (0.231) (0.253) (0.000) (0.005) (0.471) (0.579) 

ECint 1.041*** 1.025*** 0.978*** 1.004*** 1.046*** 0.889*** 0.874*** 0.871*** 0.430*** 0.960*** 0.398*** 0.247*** 

 (0.078) (0.079) (0.072) (0.084) (0.083) (0.074) (0.076) (0.086) (0.000) (0.009) (0.142) (0.101) 

EcoStc -0.001 -0.001 -0.003 -0.001 -0.001 -0.005** -0.005** -0.005** 0.022*** 0.047*** 0.007** 0.003 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.000) (0.006) (0.003) (0.005) 

Constant  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Time fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes 

R2 0.963 0.963 0.964 0.963 0.962 0.965 0.965 0.965 0.998 0.898 0.967 0.912 

CIPS on residual -1.977*** -2.137*** -1.745** -1.935*** -2.307*** -1.958*** -2.030*** -2.056*** -1.881** -1.977*** -2.401*** -2.348*** 

Pesaran CD on residual   1.353 2.475** 1.169 1.138 2.938*** 1.338 1.123 1.312 1.021 0.987 0.887 0.821 

No. of Obs.  600 600 600 600 600 600 600 600 600 600 600 600 

Note: Robust standard errors are reported in parentheses. ***, ** and * denote the significance level at 1%, 5% and 10 %, respectively. The null hypothesis of CIPS tests is 

that the variable is nonstationary. The null hypothesis of Pesaran CD test assumes no cross-sectional dependence.  
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Table 6: Sensitivity checks  

 A B  C D  E F  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Lagged CO2        0.736*** 0.728***     

       (0.088) (0.098)     
asy25t44 -0.273***  -0.057**    -0.227**  -0.334***  -0.204***  

 (0.061)  (0.024)    (0.102)  (0.031)  (0.061)  
TerySch  -0.063***  -0.021***    -0.031**  -0.037***  -0.028*** 

  (0.014)  (0.005)    (0.015)  (0.008)  (0.013) 

JFHC      -0.669*** -0.177***       

     (0.160) (0.077)       

Error Correction         -0.383*** -0.436***   

         (0.067) (0.058)   
Urb_ratio           -0.007 -0.009** 

           (0.004) (0.004) 
Trade_shr           0.034*** 0.029*** 

           (0.001) (0.001) 
Non_state           0.005** 0.005*** 

           (0.004) (0.002) 
Imgra           -0.026*** -0.024*** 

           (0.004) (0.004) 

Basic controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Constant  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region×Year fixed effect  No No No No No No No No No No No No 

AR(1)       -2.83*** -2.70***     

AR(2)       -0.38 -1.27     

Hansen statistic        8.11 4.73     

R2 0.966 0.966 0.991 0.992 0.964 0.991     0.968 0.967 

No. of obs.  520 520 600 600 600 600 570 570 570 570 600 600 

Note: robust standard errors are reported in parentheses. ***, ** and * denote the significance level at 1%, 5% and 10 %, respectively. Robustness check A= drop four municipalities (Beijing, 

Tianjin, Shanghai and Chongqing); B=use CO2 emissions by reference approach; C=use estimated monetary based human capital stock derived from J-F lifetime method; D=consider 

endogeneity of human capital using system GMM estimator; E=distinguish between short- and long-run effect of human capital using PMG estimator; F=add China-specific controls. G=controls 

regional time-specific fixed effects. H=consider spatial interactions. I is a combo of A, D, F and G. K considers indirect channel through R&D  
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Table 6: Sensitivity checks (continues)      

 G H  I=A+D+F+G   J K  

 (13) (14) (15) (16) (17) (18)  (19) (20) 

Lagged CO2      0.744*** 0.684***   

     (0.100) (0.118)   

asy25t44 -0.332***  -0.197***  -0.181**  -0.391***  

 (0.063)  (0.007)  (0.091)  (0.059)  

TerySch  -0.032***  -0.014***  -0.007**  -0.092*** 

  (0.011)  (0.004)   (0.003)  (0.015) 

JFHC          

         

R&D        -0.231*** -0.227*** 

       (0.012) (0.011)  

Urb_ratio     -0.004 -0.012   

     (0.009) (0.009)   
Trade_shr     0.034*** 0.029***   

     (0.001) (0.001)   

Non_state     -0.005 -0.003   

     (0.005) (0.004)   

Imgra     -0.007 -0.006   

     (0.005) (0.005)   

Basic controls Yes Yes Yes Yes Yes Yes Yes Yes 

Constant  Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 

Time fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 

Region×Year fixed effect  Yes Yes No No Yes Yes No No 

AR(1)     -3.11*** -2.84***   

AR(2)     -1.47 -1.56   

Hansen statistic          

R2 0.973 0.972 0.964 0.936 0.921 0.891 NA NA 

No. of obs.  600 600 600 600 520 520 600 600 

Note: as above.  
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Table 7: Mechanisms by disaggregating CO2 sources  

 Production process All fossil fuels Coal  Non-coal 

 (1) (2) (3) (4) (5) (6) (7) (8) 
asy25t44 -0.093*  -0.263***  -0.354***  0.0001  

 (0.055)  (0.026)  (0.044)  (0.256)  
TerySch  -0.056***  -0.059***  -0.077***  0.071 

  (0.013)  (0.006)  (0.009)  (0.076) 

Basic controls Yes Yes Yes Yes Yes Yes Yes Yes 

Energy consumption NA NA Yes Yes Yes Yes Yes Yes 

Constant  Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 

Time fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.976 0.977 0.990 0.991 0.979 0.980 0.557 0.558 

No. of obs.  600 600 600 600 600 600 600 600 

Note: Robust standard errors are reported in parentheses. ***, ** and * denote the significance level at 1%, 5% and 10 %, respectively. 

 

Table 8: Extensions by using alternative air pollution  

 Industrial SO2 emissions  Household SO2 emissions  

 (1) (2) (3) (3) 
asy25t44 -0.233***  -0.182  

 (0.066)  (0.122)  
TerySch  -0.053***  -0.011 

  (0.016)  (0.022) 

Basic controls Yes Yes Yes Yes 

Constant  Yes Yes Yes Yes 

Provincial fixed effect  Yes Yes Yes Yes 

Time fixed effect  Yes Yes Yes Yes 

R2 0.972 0.973 0.939 0.938 

No. of obs.  390 390 390 390 

Note: Robust standard errors are reported in parentheses. ***, ** and * denote the significance level at 1%, 5% and 10 %, respectively. 
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APPENDICES:   
 

Appendix A: Data sources 

Variables Source(s)   
CO2R Shan, Guan & Zheng et al. (2018a)  
CO2S Shan, Guan & Zheng et al. (2018a) 
CO2S_EC Shan, Guan & Zheng et al. (2018a) 
CO2S_Coal Shan, Guan & Zheng et al. (2018a) 
CO2S_Clean Shan, Guan & Zheng et al. (2018a) 
CO2S_PR Shan, Guan & Zheng et al. (2018a) 
SO2_indus China Statistical Yearbook of Environment (2004-2017); China Statistical Yearbook (2004-2017)  
SO2_con China Statistical Yearbook of Environment (2004-2017); China Statistical Yearbook (2004-2017) 
asyT China Center for Human Capital and Labor Market Research (CHLR)  
asy16t24 China Center for Human Capital and Labor Market Research (CHLR) 
asy25t44 China Center for Human Capital and Labor Market Research (CHLR) 
asy45t64 China Center for Human Capital and Labor Market Research (CHLR) 
HighSch China Center for Human Capital and Labor Market Research (CHLR) 
TerySch China Center for Human Capital and Labor Market Research (CHLR) 
JFHC China Center for Human Capital and Labor Market Research (CHLR) 
Afflu China Statistical Yearbook (1998-2017) 
ppl China Statistical Yearbook (1998-2017) 
ECint China Energy Statistical Yearbook (1998-2017); China Statistical Yearbook (1998-2017) 
EcoStc Online of National Data maintained by NBS: http://data.stats.gov.cn/english/easyquery.htm?cn=E0103  
Urb_ratio China Population & Employment Statistics Yearbook (1998-2017) 
Trade_shr China Statistical Yearbook (1998-2017) 
Non_state China Labour Statistical Yearbook (1998-2017) 
Imgra China Population & Employment Statistics Yearbook (1998-2017) 
R&D China Statistical Yearbook (1998-2017) 
KS China Statistical Yearbook (1998-2017) 
FD Almanac of China's Finance and Banking (1998-2017) 

  

http://data.stats.gov.cn/english/easyquery.htm?cn=E0103
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Appendix B Carrion-i-Silvestre et al. (2005) panel unit root test with  

Variables Carri𝒐́n-i-Silvestre et al. (LM(λ)) Break Location (Tb) 

 Test Bootstrap Critical Value (5%)        

CO2R    

Ψ𝑡̅ 

 

-5.5464058** -4.8245164 1998, 2000, 2004, 2012, 

2014 Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-55.722259 ** -46.652524 

CO2S    

Ψ𝑡̅ 

 

-5.1791922** -4.8496594 2001, 2006, 2012, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-49.249202** -46.964128 

CO2S_Coal    

Ψ𝑡̅ 

 

-4.9402440** -4.8611421 2003, 2013, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-46.964610** -45.251437 

CO2S_Clean    

Ψ𝑡̅ 

 

-6.3456868** -4.8903187 2001, 2005, 2012, 2014  

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-75.684061** -48.013073 

CO2S_PR    

Ψ𝑡̅ 

 

-5.9226775** -4.7351567 1997, 1998, 2012 , 2014  

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-62.458886** -44.940383 

SO2_indus    

Ψ𝑡̅ 

 

-4.9744983** -4.8029729 2005, 2006, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

 

s 

 

-46.696109** -45.459133 

SO2_con    

Ψ𝑡̅ 

 

-6.4891595** -4.8463185 2003, 2005, 2007, 2008, 

2014  Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-78.463430** -47.339633 

asyT    

Ψ𝑡̅ 

 

-5.7638507** -4.7502097 1997, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-59.307397** -45.185596 

asy16t24    

Ψ𝑡̅ 

 

-5.7410819** -4.7542567 2001, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-62.308140** -45.243670 

asy25t39    

Ψ𝑡̅ 

 

-5.5430390** -4.7502097 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-58.297809** -45.185596 

asy40t64    

Ψ𝑡̅ 

 

-6.4620849** -4.8292389 2012, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-77.819211 

cv(5%)** 

-46.813964 

HighSch    

Ψ𝑡̅ 

 

-6.0474471** -4.8131857 1997, 2004, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-68.737468** -46.286239 

TerySch    

Ψ𝑡̅ 

 

-5.6050301** -4.8434744 2000, 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-59.546113** -46.979295 
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Variables Carri𝒐́n-i-Silvestre et al. (LM(λ)) Break Location (Tb) 

 Test Bootstrap Critical Value (5%)        

JFHC    

Ψ𝑡̅ 

 

-6.8241824** -4.8469607 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-86.093274** -47.118913 

Afflu    

Ψ𝑡̅ 

 

-6.3406314** -4.6532758 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-75.100675** -43.470365 

Ppl    

Ψ𝑡̅ 

 

-5.0419748** -4.7460604 2010, 2013 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-46.789928** -45.050530 

ECint    

Ψ𝑡̅ 

 

-6.5827311** -4.7334462 2014 

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-80.532354** -44.828221 

EcoStc    

Ψ𝑡̅ 

 

-5.0966172** -4.8380289 2000, 2011, 2012, 2014  

Ψ𝐿𝑀̅̅ ̅̅  

s 

 

-49.872350** -47.177341 

Note: The number of unknown structural break is set to be 5. The null of LM (λ) test implies stationarity. We have used 

msbur.src code developed by Ng & Perron (2001). We ran similar estimations as offered in Table 3 of Carrion‐i‐Silvestre, 

J. L., Del Barrio‐Castro, T., & López‐Bazo, E. (2005). Here the long-run variance is estimated using Bartlett spectral 

kernel with automatic spectral window bandwidth selection as in Andrews (1991), Andrews and Monahan (1992) and 

Sul et al. (2003). The bootstrap distribution is based on 2,000 replications. The maximum lag order has been selected 

by 4(T/100)2/9 where T is the number of time series observations. ***, ** and * indicate that the test statistics is 

significant at 1%, 5%, and 10% levels, respectively. 
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Appendix C: Banerjee and Carrion-i-Silvestre (2015) panel cointegration test with structural breaks 

Dependent Variable *z  Panel data test statistic [ )(*~ iei

t 
] r̂  Pr̂  NP

r1̂  

The model I: with asyT representing human capital     

 -7.59 -6.31 9 4 6 

Model II: with asy25t39 representing human capital    

 -10.33 -5.72 12 5 5 

Model III: with TerySch representing human capital    

 -12.43 -5.38 7 6 4 

Note: Maximum numbers of factors allowed is rmax=12. BIC in Bai and Ng (2004) is employed to estimate the optimum number of common factors ( r̂ ). Specifically, we 

implemented gauss procedures brkcoint.gss, brkfactors_heterog_2sb.gss to develop estimations for Banerjee and Carrion-i-Silvestre (2015) panel cointegration test with structural 

breaks. Our results are similar to Table V of Banerjee and Carrion-i-Silvestre (2015). An elaborated description of the procedures implemented could be found in page 20 of 

Banerjee and Carrion-i-Silvestre (2015). 
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Appendix D: Dumitrescu and Hurlin (2012) panel Granger test 

Null hypothesis  HC does not Granger cause CO2 CO2 does not Granger cause HC 

Test statistics  W  Z  Z  W  Z  Z  
asy25t39 11.159 18.244*** 8.980*** 3.583 1.303 -0.338 

TerySch 13.752 24.042*** 12.168*** 5.610 2.837** 1.156 

Note: lags length is set to be 3. To control cross-sectional dependence, all tests are performed based on the bootstrap 

method with 500 replications.  

 

 

 

Appendix E: Moran’s I test for global spatial autocorrelation 

Distance cut-offs (km) CO2 emissions sector approach CO2 emissions reference approach 

200km 0.626*** 0.596*** 

500km 0.283*** 0.251*** 

1000km 0.102*** 0.103*** 

Note: The Moran’s I lies within the range [-1, 1]. When a positive (negative) value of Moran’s I is observed, this indicates that 

positive (negative) spatial autocorrelation for the variable exists across space. We use STATA code “moransi” to perform the test.  


