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ABSTRACT

A Switched Active Switched Parasitic Antenna (SASPA) array consists of a number
of antenna elements, e.g., dipoles, arranged in a specific geometry, and where,
through PIN diodes, the antenna elements can be individually switched into an active
state or into a parasitic state. In the case of a receiving SASPA array, the antenna
elements are each terminated by a load (active state) or its terminals may be short-
circuited via a PIN diode (parasitic state). Because of the fast switching speed of PIN
diodes, a single snapshot of the receiving SASPA array can be formed from a
number of sub-snapshots, where in each sub-snapshot, one of the elements is made
active while the remaining elements are made parasitic, and the voltage across the
load of the active element measured. In the next sub-snapshot, a different element is
made active while the formerly active element is switched to the parasitic state and
the remaining elements stay parasitic. The aforesaid mode of operation differs
significantly from conventional all-active receiving arrays where the antenna
elements are all active and the voltages across their loads measured simultaneously

in one snapshot.

Despite not being studied extensively, SASPA arrays offer multiple advantages over
all-active antenna arrays. These include directivity, compactness, and less
requirements on the electronic circuitry. SASPA arrays depend on the strong mutual
coupling between the antenna elements for their basis of operation. This complicates
their analyses relative to the analyses of all-active arrays whose mutual coupling can

often be deemed negligible.

A difficulty with the mutual coupling models that are available in the literature is that
they are not suitable for SASPA arrays. In particular, terms in the mutual coupling
matrix involving parasitic antenna elements are singular. To overcome this, a new

mutual coupling model, called Coupled Voltage to Uncoupled Current (CVUC), is

v



proposed in this thesis. This model is derived from first principles, that is, from

electromagnetic field theory.

In this thesis, two data models applicable to the direction-finding application of
SASPA arrays are investigated. The first model assumes background noise in the
transmission media is the dominant noise. Accordingly, the noise measured at the
terminal of the active receiving antenna element is composed of the noise sensed by
that element, plus the noise coupled from the other antenna elements. A direction-of-
arrival (DOA) estimation algorithm making use of this coupled-signals-coupled-
noise model is derived in this thesis. The proposed DOA estimation algorithm is

based on the well-known MUSIC algorithm.

The second data model assumes that the noise measured at the active antenna
element is dominated by that element’s self-noise, and this noise term is independent
of the other elements’ self-noise. By exploiting the properties of this coupled-signals-
uncoupled-noise model in a uniform linear array, a more accurate MUSIC-based
DOA algorithm is derived in this thesis. The new algorithm is also computationally

more efficient for simulation studies and on-line DOA estimation.

In practice, as a result of, for example manufacturing tolerances, the actual mutual
coupling matrix may differ from that predicted by theory. Accordingly, a new
method for determining the mutual coupling matrix of SASPA arrays from
measurements is presented in this thesis. This method is based on finding the null

space of a rank deficient matrix.

Finally, simulation studies were conducted to verify the various methods developed
in this thesis. It is shown that SASPA arrays can provide significant improvements in

DOA estimation accuracy over all-active antenna arrays of similar size.
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Chapter 1
INTRODUCTION

1.1 Compact Antenna Arrays

With the rise of mobile communication devices with increasing capabilities and the
growing deployment of Internet of Things (IOT) devices, there is now a strong
demand for radio technologies that can be fitted into physically small spaces. In this
thesis, the capabilities of a type of compact radio antennae, called Switched Active

Switched Parasitic Antenna (SASPA) array, are investigated.

An antenna array [1]-[11] is comprised of a number of antenna elements placed in
strategic distinct locations in space and working together as a single antenna. The
antenna elements are often simple and identical devices such as a dipole. Common
array configurations include the Uniform Linear Array (ULA) where the antenna
elements are uniformly spaced along a line; the Uniform Circular Array (UCA)
where the antenna elements are uniformly spaced around a circle; the concentric ring
array which consists of a number of concentric UCAs each with a different radius;
the planar grid antenna array (GAA) where the antenna elements are placed at the
vertices of a rectangular grid; and the conformal array where the placement of the
antenna elements conforms to the contour or shape of the body on which the array is

mounted.

Antenna arrays can be transmitting or receiving. This thesis considers the SASPA
array when operated as a receiving array. In a receiving antenna array, the antenna
elements, or sensors, sample in space the wavefield of a propagating signal which
may be acoustic, seismic, electromagnetic, or cosmic in nature, and converts the field
energy sensed to electrical energy. Based on the measurements collected from the
array of sensors, various attributes of the propagating signal are then extracted

through suitable array signal processing algorithms.



1.2 Array Signal Processing

An early application of sensor arrays was in France during World War 1 where
microphone arrays were deployed to enable the early detection of approaching
enemy aircrafts [7]. The array signal processing technique implemented then was
rudimentary. The outputs of the microphones were simply summed electronically to
form, effectively, a highly directional microphone. A human operator then listens to
output of this super-directional microphone and decides on the presence or otherwise
of approaching aircrafts. It was not till the 1960s, with the advancement of digital
computer technology and numerical methods, that array signal processing started to
blossom as an area of active research. This growth is stimulated by the ability of
computers to perform complex numerical operations, such as those in array signal
processing algorithms, rapidly and autonomously. The estimation of the various
parameters of the propagating signals received by an antenna array, and the
enhancement of the signal of interest, attracted the attention of many researchers,

scientists and engineers.

The field of array signal processing is diverse. It can be classified in many ways.
Firstly, there is the obvious classification into time-domain or frequency-domain
methods. A less obvious classification is that array signal processing can take place
in either element-space or beam-space. In element-space methods, the signal outputs
from the antenna elements are fed directly into the array signal processing algorithm;
while in beam-space methods, the signal outputs are first combined to form a number
of different beampatterns where each beampattern gives the response of the array as
a function of directions in space, and the outputs of these beams are then fed into the

array signal processing algorithm.

Next, there is broadband and narrowband array signal processing. In broadband
array signal processing, the bandwidth of the information-carrying signal is “broad”

with respect to the carrier frequency of the propagating signal. Seismic arrays and



sonar and microphone arrays are typical examples of broadband arrays.

In contrast, in narrowband array signal processing, the bandwidth of the information-
carrying signal is “narrow” with respect to the carrier frequency of the propagating

signal. Examples of narrowband arrays are seen typically in radar and radio systems.

Yet another classification of array signal processing relates to the location of the
signal sources. In nearfield array signal processing, the sources are located close to
the array and the wavefronts of these sources are cylindrical or spherical as they
travel across the array. In farfield array signal processing, the sources are located far
from the array such that their wavefronts can be approximated as plane-waves
arriving at the array. Most of the published research on array signal processing
assumed the plane-wave model since this will lead to algorithms that are simpler to

derive, implement and analyse. In this thesis, the farfield model is adopted.

In the above discussion on nearfield and farfield array signal processing, an implicit
assumption is that the signal sources are point sources. Research on distributed
sources have also been reported [12] but the algorithms developed and analysed are
very much scenario dependent and cannot be transferred readily to other
applications. As with the farfield assumption, the point source assumption is
convenient as it will lead also to algorithms that are straightforward to implement
and can be applied to many array signal processing applications. In this thesis, all

signal sources are assumed to be point sources.

Finally, array signal processing can be classified in terms of the signal processing
objectives. In beamforming, which includes conventional beamforming, optimum
beamforming, and adaptive beamforming, the objective is to enhance the reception of
a signal arriving from a certain direction while suppressing noise and the influence of
interfering signals arriving from other directions. Implicit to this class of array signal

processing algorithms is the ability to steer, electronically, the main beam of the



array' to different directions.

In parameter estimation, the objective is to estimate, as accurately as possible, the
parameters of the signal of interest. A parameter that has attracted much interest is
the Direction of Arrival (DOA) of the signals received by the array. Various
researchers have proposed and studied algorithms that can perform DOA estimation
with high-resolution. These algorithms are based on the idea that the received signals

experience a time delay as they move across the array from sensor to sensor.

DOA algorithms can be classified further into parametric and non-parametric
methods according to the cost function of the algorithm [8]. In parametric methods
such as Deterministic Maximum Likelihood and Stochastic Maximum Likelihood,
all parameters are estimated simultaneously. These methods require an accurate
statistical structure or data model that captures all the characteristics of the variables
to be estimated. Sometimes constraint conditions are also imposed to avoid trivial
solutions. A drawback of these algorithms is that they require high computations and
accordingly are less prevalent although they are statistically more accurate in
estimation. In contrast, the non-parametric methods estimate only one specific
parameter, e.g. the DOAs, by making use of spectral-based techniques to analyse the
measurements provided by the antenna elements of the arrays. For narrowband
arrays, the most effective and popular DOA algorithms are the Multiple Signal
Classification (MUSIC) algorithm [13] and the Estimation of Signal Parameters via
Rotational Invariance Technique (ESPRIT) algorithm [14]. In these two algorithms,
the covariance matrix of the measurements is first eigen decomposed into a signal
subspace and a noise subspace. The MUSIC algorithm locates the DOAs by finding
the angles at which its search vector is orthogonal to the noise subspace; while the
ESPRIT algorithm looks for an invariant rotation matrix between the two signal
subspaces generated from splitting the antenna array into two subarrays. The DOA

information is contained in this rotation matrix.

' That is, the main beam of the receiving beampattern.
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In this thesis, the focus is on the derivation and study of DOA estimation algorithms
for a special type of narrowband arrays for radio applications — the Switched Active

Switched Parasitic Antenna array.

1.3 Switched Active Switched Parasitic Antenna (SASPA) Arrays

An assumption often made in the study of narrowband array signal processing is that
the antenna elements are spaced far enough apart® so that mutual coupling between
the elements can be ignored. However, for compact arrays, the subject of this thesis,
the antenna elements are, by design, spaced closely. Mutual coupling cannot,
therefore, be ignored. Indeed, it is mutual coupling that lends compact arrays their

particular characteristics.

An example of an antenna array that exploits mutual coupling for its success is the
Yagi-Uda antenna, which is used commonly for TV signal reception. In this array,
one element is used to intercept the electromagnetic waves of the broadcast signal
and the other elements (the parasites) act as reflectors and directors. The Yagi-Uda

antenna can be regarded as a Fixed Active Fixed Parasitic Antenna (FAFPA) array.

Transmitting, as opposed to receiving, switched parasitic antenna (SPA) arrays were
studied by Thiel and Smith in [15]. In a transmitting Fixed Active Switched Parasitic
Antenna (FASPA) array, only one antenna element acts as the active element, i.e. is
driven by the radio source, and the remaining antenna elements can be either enabled
as parasitic elements by short circuiting their terminals via a PIN diode or disabled if
their associated PIN diode is not forward biased. That is to say, the parasitic elements
can be switched ON or OFF. Thus, by controlling the bias of the PIN diodes of the
antenna elements close to the active element, the radiation pattern of the array can be

controlled electronically due to the induced currents in the enabled parasites.

Thiel and Smith [15] also studied the transmitting Switched Active Switched

? But not too far apart, for otherwise, the array will suffer from spatial aliasing.
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Parasitic Antenna (SASPA) array. In this array, all antenna elements are in the
parasitic state (their terminals are short-circuited) except for one antenna element
which is active (its terminals connected to the load). At another point in time,
through PIN diodes, the active antenna element is switched to the parasitic state
while a formerly parasitic antenna element is switched to take over as the active
element. Thiel and Smith [15] explored the advantages of implementing FASPA and
SASPA arrays as transmitting antenna arrays in cellular communications. It is shown
that arrays with dipole or patch antennas can provide flexibility in steering the array
radiation pattern with a very low value of the scattering parameter Sll at resonance
(as low as -30 dB for some SASPA configurations). Compared to the conventional
all-active antenna arrays, SPA arrays offer the following advantages:

Self-beamforming array;

Flexible and easy in steering the radiation pattern;

1

2

3. Less power consumption;

4. Less electronic circuitry is needed;
5

Compact in size.

In the case of receiving FASPA or SASPA arrays, the output terminals of the active
element are terminated by a load impedance and the voltage across this impedance is
sensed. The remaining antenna elements are either enabled as parasitic elements by
shorting their output terminals via forward-biased PIN diodes (as in FASPA and
SASPA) or disabled by not putting their PIN diodes in forward bias thereby

effectively disconnecting these array elements from the array (as in FASPA).

As discussed, arrays with parasitic elements such as the FASPA and the SASPA
array depend on the mutual coupling interaction between their antenna elements for
them to operate, for example, as direction funding arrays. On the other hand, it is
well known that mutual coupling has an adverse effect on the performance of all-
active receiving antenna arrays when they are operated as direction finders.

Svantesson investigated in [16][17] the possibility of using switched parasitic



antenna arrays as DOA estimators. He considered a UCA-FASPA array with an
active element located at the centre of the UCA and the parasitic elements distributed
equally spaced on the circumference of the UCA. However, mutual coupling was not
studied for this geometry because the signal model that expressed the measurements
was based on the switched radiation patterns generated as a result of successively
switching the parasites between ON and OFF states. In other words, Svantesson
studied direction finding in beamspace. In this thesis, DOA estimation in element

space with SASPA arrays is investigated.

1.4 Goals of this Thesis

In this dissertation, the benefits and enhancement that are achieved when SASPA
arrays are used as direction finding (DF) arrays will be investigated. It is assumed the
elements of the SASPA array are half-wave dipole antennas and they are located in
an isotropic and homogenous transmission medium. Also, the mutual coupling
between the elements is not DOA dependent. The improvements in DOA estimation
over the all-active array, when used in conjunction with the conventional DOA

algorithms, may be expressed through the following aspects:

First Goal:

As mentioned above, mutual coupling governs the performance of SASPA arrays.
Therefore, it is important to have an accurate model that describes this phenomenon.
In the literature, different models have been postulated to describe the mutual
coupling effect. However, because these models were derived from different
viewpoints such as circuit theory or electromagnetic theory, there is some
controversy regarding the “correct” model. In any event, none of these models can be
applied to an SASPA array since the mutual coupling matrices of these models apply
only to all-active arrays whose elements are all terminated by a load impedance (of

the same value) while the parasitic elements of an SASPA array has zero load



impedance.

A new model, called Coupled-Voltage-Uncoupled-Current (CVUC), is derived in
this thesis. The model is applicable to antenna arrays in general and to SASPA arrays
in particular. The derivation is based on electromagnetic theory and the resultant

model is represented by a Thévenin equivalent circuit.

Second Goal:

Having derived a suitable mutual coupling model, and assuming there is prior
knowledge of the parameters of this model, couple-free measurements can be
extracted from the coupled measurements obtained from an SASPA array by
applying the decoupling matrix (the pseudo-inverse of the mutual coupling matrix) to
the coupled measurements of a session or snapshot. This procedure is appropriate if
the noise measured is also affected by the same mutual coupling effect as the
received signals. In other words, the data model applicable to this signal scenario is

the coupled-signals-coupled-noise model.

Suppose the SASPA array has N antenna elements, and a snapshot of the wavefield
of the propagating signals is obtained by making N sub-snapshots where in each
sub-snapshot, a different element of the array is switched to the active state. It is
assumed, relative to the signal bandwidth, that the time taken to collect the N sub-
snapshots of a snapshot can be neglected because of the very short switching time of
the PIN diodes. In other words, the sub-snapshots can be assumed to be made
simultaneously (If the time between sub-snapshots in one snapshot is not neglected, a
time allingment scenario can be applied on the measurement). In this approach, the N
measurements of coupled voltages are mapped to N XN measurements of
uncoupled currents. This will produce N similar steering matrices. Summing up these
steering matrices will result in a steering matrix that is similar to the steering matrix
of the all-active array with omnidirectional elements but multiplied by the factor of

N. This advantage will contribute to reducetion in the distance measure between the
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steering matrix and the estimated signal subspace. The scaled steering matrix,
together with the estimated noise or signal subspace, can result in superior
performance in direction finding when used in the cost function of the MUSIC
algorithm, despite the spacing between the elements being much less than A/2 (as

small as 0.15X).

In the case where noise is not affected by mutual coupling, that is, they are mainly
self-noise from the antenna elements, then the relevant data model of the SASPA
array is the coupled-signals-uncoupled-noise model. This model will result in a
steering matrix that is the product between a real-valued DOA dependent matrix and
a matrix that is in half size of the actual mutual coupling matrix. The real-valued
matrix is formed due to the unitary characteristic of the SASPA array structure, while
the Toeplitz structure of mutual coupling permits one to represent this effect by the
halved size mutual coupling matrix. Again, superior performance in direction finding
relative to an all-active antenna arrays can be obtained. The reason for this can be
attributed to the fact that only real-valued variables rather than complex variables are
processed, as a consequence of which the computational effort to perform spectral
analysis 1is reduced significantly leading to a numerically more accurate
determination of the subspaces. Also, the round-off errors accumulated due to

processing less components of the mutual coupling matrix will be reduced.
Third Goal:

If the mutual coupling is not known prior to the processing of the measurements,
then it must be found first. One approach is to inundate the array with a known test
signal. The mutual coupling matrix is then determined from the measurements. In the
case of a SASPA array operating under the assumption of coupled-signals-
uncoupled-noise model, this process reduces to the determination of a mutual
coupling vector because of the symmetrical Toeplitz structure of the SASPA array’s

mutual coupling matrix. The mutual coupling vector is found from the null space of



the matrix formed from the product between the orthogonal projection on the
estimated noise subspace and the real-valued matrix mentioned above. This step
makes use of the one-to-one correspondence between that null space and the mutual
coupling vector. The estimated mutual coupling matrix is then introduced into the

cost function of the MUSIC algorithm to achieve high resolution DOA estimation.

If the array’s applicable data model is the coupled-signals-coupled-noise model, then
the above procedure can still be used. This requires the test signal impinging on the
SASPA array to have a high enough signal to noise ratio (SNR) such that it

dominates the ambient or background noise picked up by the antenna elements.

1.5 Thesis Outline

This thesis is devoted to study the performance of SASPA arrays and their
improvements as DF arrays in conjunction with the MUSIC algorithm. The

following Chapters give the framework of this thesis:

= Chapter 2 is devoted to explaining the concept of mutual coupling between the
elements of an antenna array since SASPA arrays depend on this unavoidable
phenomenon. A literature review on the available mutual coupling models will be
conducted. In addition, a new model, called the Coupled Voltages to Uncoupled
Currents (CVUC) model, will be proposed in this chapter. Although this model is
derived for all-active receiving antenna arrays, it is also applicable to SASPA
arrays. The model is derived from the principle of electromagnetic theory and is
represented by a Thévenin equivalent circuit. To establish the aforementioned
work in this chapter, some important characteristics of half-wave dipole antenna,
which is the antenna type used in this dissertation, will be first explored. These
parameters include current distribution on the antenna, radiation pattern of a
transmitting antenna, induced voltage of a receiving antenna, and self and mutual

impedances.
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= Chapter 3 is dedicated to illustrating in detail the idea of Switched Parasitic
Antenna (SPA) and Switched Active Switched Parasitic Antenna (SASPA) arrays.
An SPA array consists of N elements in which one element is always in the active
state (connected to the radio source if the array is transmitting or to a load if the
array is receiving), and the other elements are in the parasitic state by short
circuiting their terminals. An SASPA array consists of N elements in which each
element can be switched between the active and parasitic states. An RF switch,
such as PIN diode, can be used to implement the required fast switching action.
The formulae for the switched far field radiation patterns and the related formulae
for the currents induced on the elements in transmitting SASPA arrays will be
studied. The mutual coupling phenomenon in transmitting SASPA arrays will also
be investigated. Several examples showing the directive and switched radiation
patterns for ULA-SASPA and UCA-SASPA arrays will be provided to
demonstrate the self-beamforming and self-steering abilities of these arrays. The
induced voltages and the mutual coupling in SASPA arrays acting in receive
mode will also be shown. The validity and appropriateness of the proposed CVUC
as a model that represents the mutual coupling in receiving SASPA arrays will be
highlighted via an example of a simple SASPA array. Therefore, the work and the
analysis in this chapter provide a basis to examine and evaluate the performance
of SASPA arrays as DF arrays and the advantages that can be achieved from using

such antenna arrays.

= Chapter 4 gives a review of the well-known DOA algorithms: MUSIC. The
capability and improvements obtained from using SASPA arrays in conjunction
with this algorithm will be examined in the following Chapters. The MUSIC
algorithm is based on the spectral decomposition of the covariance matrix of the
array measurements. Therefore, an accurate data model should be considered first
to reflect the response of array elements to the received signals. Two data models

are considered in this Chapter. The first model assumes mutual coupling affects
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both the elements’ response and the measured noise. The second model assumes
that noise is due mainly to the antenna elements’ self-noise and is not affected by
mutual coupling. These two data models will be applied to SASPA arrays in the
next two Chapters to study the enhancement on DOA estimation. Also, the
effectiveness of the CVUC model in conjunction with MUSIC algorithm will be

shown in this Chapter by several simulations.

Chapter 5 considers the performance of ULA-SASPA and UCA-SASPA as
direction finding arrays when background noise picked up by the parasitic array
elements is coupled to the active element. Assuming that mutual coupling is
known, compensating for this phenomenon will result in a system of N 2 sub-
snapshot couple-free measurements from N snapshot measurements. Averaging
the measurements will result in a covariance matrix whose noise component is
reduced by the number of the elements N. As a consequence, the signal subspace
obtained from the eigendecomposition of the covariance matrix of the
measurements will be better fitted to the steering matrix of the underlying DOA;
and a superior high-resolution DOA estimation over the all-active antenna arrays
will be achieved even in small size aperture arrays. DOA simulations in
conjunction with the MUSIC algorithm for different scenarios of received signals
and SASPA arrays are implemented to confirm the advantages of this method.
The RMSE criterion is also examined from which it is found that this criterion is
almost unchanged over a wide range of SNR. This reinforces the beneficial

outcome of this method.

Chapter 6 assumes that the measured noise is not affected by mutual coupling.
That is, the measured noise is due mainly to the active element’s self-noise. A
rearrangement of the data model for a ULA-SASPA array will result in a steering
matrix that is the product of two matrices. The first matrix is DOA dependent, and
its entries are real values, while the second matrix is complex and represents

mutual coupling but with reduced size than the actual mutual coupling matrix. As
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a result of the numerically simpler structure of the steering matrix, a reduction in
the computational load when simulating the ULA-SASPA array can be obtained.
It can also reduce the computational load if DOA estimation is required to be
performed on-line. Another advantage of the new data model is that it allows the
ULA-SASPA array to outperform its all-active ULA counterpart in DOA
estimation. Several simulations for signals that are received from different
directions and impinging on small aperture arrays are conducted to show the
effectiveness of this method. Another simulation study was conducted to

determine the RMSE of the estimated DOAs as a function of the signal’s SNR.

The mutual coupling parameters of an array can vary with time due to changing
environmental factors. The actual mutual coupling parameters may also differ
from the theoretical values due to manufacturing tolerances. Chapter 7
investigates the viability of estimating the on-line mutual coupling parameters of a
ULA-SASPA direction funding array. The proposed method relies on impinging
the array with a test signal, then estimating the mutual coupling vector from the
null space of the rank deficient matrix formed from pre-multiplying the real-
valued matrix mentioned in Chapter 6 by the orthogonal projection matrix with
range space spanned by the estimated noise subspace. The proposed method is
much simpler than the methods available in the literature and requires only a
small amount of computations. The feasibility of the method will be demonstrated

and verified through simulations.

Chapter 8 concludes the whole work of this thesis and gives some suggestions on

potential future work on SASPA arrays.
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Chapter 2
MUTUAL COUPLING IN ANTENNA ARRAYS

2.1 Introduction

This thesis investigates the ability of an SASPA array to estimate the DOA of the
received signals in conjunction with the MUSIC algorithm. Thus, to start with, some
of important characteristics of a single antenna and antenna arrays should be studied.
Among these characteristics is the inevitable mutual coupling. Therefore, in this
chapter, the concepts of this phenomenon will be reviewed in light of the analysis
found in the literature. However, the available models, which might appropriately
express mutual coupling in all-active antenna arrays, cannot be applied to SASPA
arrays. As a result, a new model called Coupled Voltage to Uncoupled Currents
(CVUC) is proposed first for all-active antenna arrays, and then updated to match

SASPA arrays in the next chapter.

Note that in this chapter, the mathematical notations and symbols used were chosen
to conform with those commonly found in the literature on electromagnetics. Thus,
for example, E is the electric field vector, E is its amplitude, £, is the amplitude of
E in the 0 direction, § is the unit vector in the direction 6, and @xb and G-b

denote, respectively, the cross- and dot-product of the vectors @ and b.

2.2 Single Antenna Element

An antenna is a device that converts electrical alternating current to electromagnetic
waves and vice versa. In the first case it is called a transmitter while when it converts
the intercepted electromagnetic waves to electrical current it is called a receiver.
Antenna can be found in different shapes such as wire antenna, slot antenna,
microstrip antenna, etc. [18]. Antenna can act alone as a single element or together

with other antenna elements in an array. The shape or geometry of an array is
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designed to provide certain characteristics which may serve a specific requirement in

a communication system.
2.2.1 Antenna Parameters

In this section, some of the important and useful antenna parameters for this work
will be explored. To be specific, the half-wave dipole antenna which is a type of wire
antenna will be considered as the members of an SASPA array. Figure 2.1 depicts
this antenna in the Cartesian and polar coordinates. As Figure 2.1 shows, the antenna
is assumed to be centred at the origin in free space and lying along the z-axis. The
antenna is assumed to be made from a perfect conducting material. This means that
the electric field on its surface is zero [18]. The length of this antenna is /= \/2
where A=c¢/f in meters is the wave length of the operating frequency f and c is
the speed of light in vacuum. Thus, this antenna resonates at that frequency and

accordingly is called half-wave dipole antenna [18].

Figure 2.1: Dipole antenna in Cartesian and polar coordinates.

It is assumed that the dipole is very thin, i.e. a < A\, where a is the radius, so that its
length should be exactly half the wavelength of the resonance frequency [18].
Furthermore, the surface currents that are induced due to the incident waves can be
ignored. Usually, this antenna is fed, when acting as a transmitter, or loaded, when
receiving a signal, at the centre where its current distribution is maximum. Using

such an antenna type allows an accurate study with less complication [19] in
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conjunction with practical considerations.
2.2.1.1 The Radiation Intensity Pattern

The most important parameter that is to be found first for a given antenna is the
spatial distribution of the energy emitted from that antenna, i.e. its radiation intensity
pattern. This parameter is defined in the far-field region. It is derived from the
antenna radiation pattern [18][20]. The shape of that pattern is determined mainly by
the distribution of the antenna current. For a very thin dipole antenna, the current is

assumed to have sinusoidal distribution [18]-[20], i.e. for x' =)' =2z'=0, the

4

where [, is the current amplitude, k£ =27/\ = w\/pue is the wave number, and p

current 1s:

I(x'=y =2 =0)=2I,sin , —12<2'<1)2 2.1)

and ¢ are the permeability and permittivity of the medium respectively. Since (2.1)
gives zero values at z=+1/2, it is considered to be a good approximation of the
practical situation [18][19]. This means the maximum current occurs at the feed point
which is at the centre in Figure 2.1. This is justified as long as the dipole is very thin
and the feed gap is very small in size. The electric far field produced by the current
in (2.1) for a dipole antenna with arbitrary finite length is expressed in (2.2). It can be
derived from the magnetic potential vector which can be found in many antenna

reference books such as in [18]-[20].

kl kl
B [ ikr|cos Ecos& —CoSs S
E(r705¢):E9:0]n = .
2nr sinf

(2.2)

where 1 =+/u/e is the intrinsic impedance and r is the distance between the centre
of the antenna and the observation point. It is clear from (2.2) that the magnitude of
the electric far field depends significantly on the dipole length and the elevation

angle 0, the angle made between the z-axis and the line connecting the centre of the
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dipole to the observation point. The factor e M is the spatial phase shift with the
term 7/ analogous to the time shift term #/7 in time varying signals. For a half-

wave dipole antenna, (2.2) becomes:

— jkr | COS [W cos 0]
I,e 2

27r sinf

E, =8 jn (2.3)

The Poynting vector is defined as the instantaneous power per unit area radiated from
an antenna and is the cross product between the instantaneous electric field E and
instantaneous magnetic field H produced by the alternating current on the antenna
[18][20][22]:

P=ExH (2.4)

The average of this power is [18][20][21]:

W—lR%ExHﬂ—lReEx$€z—Fl+ﬁ
a9 0 ¢ ) 0 n 2n 0
ki kP (2.5)
I ‘2 cos|—cosf |—cos|—
Q22 sind

The radiation intensity U is the average power times the distance squared measured

from the centre of the antenna to the observation point [18][20][22]:
|1

ki K\
7 |cos|—cosf|—cos|—
nl 2 2

U=rw, =
K 872 sin@

av

(2.6)

Figure 2.2 shows a polar diagram for the normalized radiation intensity for a dipole
with sinusoidal current distribution and for different lengths [18]. As (2.6) reveals,
the maximum radiation from a half-wave dipole antenna is at § =7/2 and this

coincides with the fact that maximum radiation occurs where the current is
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maximum. In addition, it is obvious that this type of antenna is omni-directional as it
is clear from the 3D polar plot for the radiation intensity in Figure 2.3, i.e. the locus
of the radiation intensity in the H-plane is a circle. For dipoles having lengths more
than half wavelength, more than one main lobe will appear in their radiation pattern.
This results in nulls in certain directions and complicates the directivity of the
antenna. Accordingly, the analysis in this work assumes that the antennas are half
wave dipoles. Also, it is assumed that signals are incident on the antenna in the
azimuth plane where maximum radiation occurs and is independent of elevation
angle. It is worth mentioning that the radiation pattern is mainly determined by the
antenna current and not by its applied voltage [19]. This fact is crucial in analysing
the SASPA array since parasitic elements will conduct short circuit current when
intercepting a signal while its terminal voltage is zero. In other words, the currents in
the active and parasitic elements all contribute to the overall response of the array to
that signal.

Tot-gain [dBi] Yertical plane

300 MHz

135
-999 < dBi< 391
150 -393 < dBi < 217
-333 ¢ dBi < 261
Max gain The:90

13
ExAMPLET-1 ot
EXAMPLET-0.5.004 5
EXAMPLET-1.5.0ut
Phi= 360

-180

Figure 2.2°: Radiation intensity for the dipole antenna of Figure 2.1.

* The software 4NEC?2 is used for plotting figures 2.2. The official web site for 4NEC2 is:
https://www.gsl.net/4nec2/
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Figure 2.3*: 3-D radiation intensity for a half wave dipole antenna in free
space.

2.2.1.2 Antenna Self-Impedance and Equivalent Circuits

Electrical engineers usually model telecommunication devices in terms of distributed
or lumped components. This helps them to have good approaches to the
characteristics of these devices and accurate analysis of the response or transfer
function of these devices to certain inputs. For example, the uniform transmission
line with characteristic impedance Z, when analysed is replaced by a cascade of R-
L-C networks per unit length that gives almost accurate mathematical formulae to
express Z, in terms of voltages and currents over the whole length of the
transmission line. Thus, those formulae will be functions of frequency and as well as
distance along the transmission line. Similarly, the isolated antenna can be replaced
by a complex impedance called self-impedance which is a function of the operating
frequency and the antenna shape. Therefore, the calculation of Z, requires
derivations of typical expressions for the current and voltage developed on the
antenna taking into consideration parameters such as length, diameter, area of the

gap across which the supply or the load is connected (e.g. in the case of dipole

* The software 4NEC2 is used for plotting figures 2.3. The official web site for 4ANEC2 is:
https://www.qsl.net/4nec2/
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antennas), and some boundary conditions.

There are several different approaches to modelling the self-impedance and mutual
impedance for dipole antennas, which will be explained in later sections. Derivation
of the self-impedance models is based mainly on the current distribution on the
antenna especially when their diameters are finite, and the sinusoidal current
distribution is no longer valid as well [18]-[20]. In addition to the current
distribution, estimating the mutual coupling impedance relies on other parameters
such as the type of array elements, the element’s relative location, 3-D figures of
element radiation patterns, the hybrid network supplying the elements, etc [23]. The
most prevalent methods are the induced electro motive force (EMF), the method of
moments (MOM), Hallen’s integral equation and Pocklington’s integral-differential
equation [18][19][23]. The analysis in these approaches starts from the solutions for
either the magnetic or electric vector potential of Maxwell’s equations with the
constraint that the electric field component parallel to the dipole vanishes. In this
work, because straight wire-based antenna arrays will be investigated as DOA
estimators, the radius of the dipole in these arrays is assumed to be very thin, hence
the current distribution will be sinusoidal, and the dipole is assumed to resonate, i.e.
with a length equals half the wavelength of the operating frequency. The induced
EMEF approach turns out to be good approach. In addition, the induced EMF method
affords closed form solutions for such arrays [23]. However, Hallen’s integral
equation will also be used since this approach provides a better view for the short
circuit current which is induced on a receiving dipole acting as a parasitic element

[19].
Induced Voltage of a Receiving Antenna

If a dipole intercepts an incident EM wave, an open circuit voltage V; 4 will be
induced at its unloaded terminals while a current will be delivered to the load

connected across the antenna terminals, see Figure 2.4.
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Figure 2.4: EM wave incident on a dipole antenna.

Here, k =27/) is the wave number of the incident EM wave. In this model, it is
assumed that the wave is narrowband, travelling in homogenous and isotropic
medium and emanating from a source that is located very far from the centre of the
antenna so that what the antenna receives is a plane wave, i.e., all points on the
wavefront have the same phase shift. In addition, the electric field component of the
wave is perpendicular to the propagation direction, i.e., it is vertically polarized
[8][18][19][24]. This plane-wave propagation model lets one to write the expression

for the tangential component of the received electric field as follows [19][24]:
Fine (Z/) _ Eoe—j(—k).z _ Eoejkz’cos0 2.7)

where E, is the strength of the electric field at the antenna surface. Because of the
narrowband assumption, the elevation dependence is only a phase shift. Also,
because the dipole is assumed to be very thin, (2.7) is an azimuth independent
function, and cylindrical waves have also not been considered in it. The induced
voltage V4 can be derived from the formula [18][24]:

1 pl2 - -
Vi =7 S E ()T 2.8)

where /; is the current at the antenna terminals. Inserting E™e (z' ) from (2.7) and

from (2.1) into (2.8) and evaluating the integral yields [18][19][20][24]:
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Note that the induced voltage of an open circuited receiving dipole antenna has the
same elevation dependence as in (2.2) which is for the electric field of a transmitting
antenna in the far field. This proves that antennas obey the phenomenon called
“Reciprocity”. This means that antennas possess identical characteristics when acting
as a transmitter or a receiver [18][20][21]. The principle of antenna reciprocity
assumes that for two antennas located far away from each other the voltage induced
on one of them due to the radiation from the second one which is current driven is
the same as the voltage induced on the second one by the radiation of the first one if
it is current driven [18][21]. The EMF models in (2.8) is a consequence of this

phenomenon.

In [19], the approach of Hallen’s equation for a receiving antenna has been used to
derive formulae for the induced voltage and short circuit current in the case of open
circuited and short-circuited receiving dipole respectively. The respective formulae
are as follows:
[kl ] [kl ]
cos|—|—cos|—cosf
2E, 2 2

Voe = : (2.10)
ksin ki sind

kl kl
2E coS 5 —COoS 30059
I..=1(0)= 0

= - (2.11)
Bkcos[l;l] sin¢

where B = B(z) is a slowly varying function with respect to z and hence is
considered a constant (see [19] Section 22.3). Notice the resemblances in the
elevation dependence for open circuited induced voltage that is derived using both

methods: EMF and Hallen’s equation.

22



Antenna Self Impedance

The self-impedance Z, of an isolated dipole antenna located in free space can be

written as:
Z, =R, + jX, (2.12)

where R, = R, + R, is the sum of the radiation resistance R, and the material loss
resistance R;. In (2.9), the voltage developed at the terminal of a receiving dipole
antenna is found. If this voltage is defined in terms of the maximum current and then
divided by that current, the self-impedance of the dipole referred to the maximum

current can be calculated [18][21], 1.e.

1 2
Z :_E 71/2E(z')12(z')dz' (2.13)

Plugging (2.1) and (2.7) into (2.13) and evaluating the integral, the real and
imaginary part of self-impedance, after a lengthy derivation [18], are given by

[20][21][24]:

Ry =-L{C+In(kl)— o (kl)+0.5sin (k1)[ 8, (24l) — 23, (k)

27 (2.14)

+0.5c08(K1)[C + In (kl/2) + o, (2kD) — 20; (KD)]}

X, =142, (kl)+ cos (k)[ 2, (kl) — 3, (2K
4m (2.15)

—sin(kl)[zai (kl)— oy (2kl) — o (2ka2/l)]}

where C =0.5772 is Euler’s constant, and a;(x) and [3;(x) are the cosine and sine

integral of x respectively [18]:

ai(X>=fOZ%dy (2.16)
Bi(x) = fox Siryly dy (2.17)

While the real and imaginary parts of the self-impedance in (2.14) and (2.15)

respectively depend mainly on the dipole length, the latter is also a function of the
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diameter as well. Accordingly, the imaginary part of the antenna power vanishes at
far distances and the only component that contributes to energy emission from the
antenna is the real part of its power [18][20]. The self-impedance components given
in (2.14) and (2.15) are referred to the maximum current. In case that the maximum
current does not occur at the driving point terminals, i.e. at points other than the

antenna terminals, the self-impedance may be referred to its maximum value via the

relationship:
1
Z, = ]—’”Zm (2.18)

While the above analysis for deriving the formula for self-impedance uses the
induced EMF method, another expression to the self-impedance can be found from
the solutions of Hallen’s integral equation by dividing the open circuit voltage in

(2.10) by the short circuit current in (2.11):

V4 :—%:—Bcot(klﬂ) (2.19)

S
sc

The self-impedance parts in (2.14) and (2.15) may be more precise than the one in
(2.19) due to the required boundary conditions and approximations that have been

made in the Hallen’s approach.
Antenna Equivalent Circuits

Having been calculated, the self-impedance of an antenna can be used to represent a
transmit or receive antenna in a Thévenin’s and Norton’s equivalent circuits, see
Figures 2.5. Note that Z_ for a transmit antenna is the same as for a receive antenna
according to the reciprocity theorem [18][20][24][25]. In Figure 2.5d, the self-
impedance Z; contributes to the retransmission of EM wave from the receiving
antenna and accordingly this means that the power dissipated in each of the
equivalent circuits should be equal to the reradiated and scattered power [20][25][26]

especially in the case of an antenna in free space [27]. The total scattered and

24



retransmitted power can be calculated from [28]:

K= 24107r fohf(;r

£ (0,0)] sin0d0dg (2.20)

(©)  Receive dipole (d)

Figure 2.5: Thévenin and Norton equivalent circuits for a dipole. (a) and
(c) Norton equivalent circuits; (b) and (d) Thévenin equivalent circuits.

where E*“(6,¢) is the total scattered field and where [29]:

ESP |z- )< A,

Eénc(p:aaeﬂ ¢)+E;‘ca (p:aaeaqs):[ (221)

0, |Z—Z/|>Ag

where E2 is the electric field across the gap A ¢ Where a load or a source can be
attached to the dipole. Obviously, the scattered field will equal approximately to the
incident field for a short-circuited dipole and this asserts that a parasitic antenna acts
as a reflector. In the literature, the circuits in Figures 2.5¢ and 2.5d are found to be
good approximations as equivalent electric networks to the receive antenna
[25][30][31]. However, Collin in [32] argues that equality between the absorbed

power of a receiving antenna and the scattered power is valid only in the case of a
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dipole antenna that is loaded with a matched load. Accordingly, the circuits of Figure
2.5 may not be valid for calculating the total scattered power for non-matched loads.
It has been proved in [32], as a confirmation for this argument, that the power
consumed by the load of a receiving antenna using Thévenin equivalent circuit is
different from the load power calculated using Norton equivalent circuit. Love [33]
has suggested ‘A constant-power generating circuit for a receiving antenna’. In this
circuit, the Thévenin and Norton equivalent circuits have been used together in one
circuit to represent a receiving antenna. Thus, the absorbed power and the scattered
or reradiated power will be referred to the total constant power resulting from the
product of the induced voltage source V;,; shown in the Thévenin circuit (Figure
2.5d) and by the current source /;,; of the Norton circuit (Figure 2.5¢). In addition,
this model shows that the power delivered to a matched load will be maximum and
the scattered power will be minimum. In this thesis, the argument of the circuits in
Figure 2.5 being accurate for a matched load will be taken into consideration since it
has been agreed in the above discussion that an antenna loaded by a matched load
will be 50% efficient. In addition, it is clear from (2.20) that scattered power will be

small for arrays with small aperture which is the case in SASPA arrays.

2.3 Antenna Arrays

Antenna arrays have been used since the early days of electrical wireless
communications. Despite possessing more complicated characteristics than the
single-element antenna, antenna arrays provide several advantages over a single
antenna such as increased gain, directivity, etc. Recently, antenna arrays that are
called “smart antenna” have been used to perform many tasks that could not be
achieved by a single element. Beamforming, direction finding are some examples of
those tasks that are crucial in communication systems aiming to deliver more
throughput to users in dense areas. However, the main price paid for having these

advantages when using antenna arrays is the adverse effect of the mutual coupling
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effect between the array members especially when the spacing between them is small
(<)\/2). This phenomenon will be discussed in detail in Section 2.5. In this thesis,
two types of antenna arrays most commonly used as DF arrays will be considered:

The Uniform Linear Array (ULA), and the Uniform Circular Array (UCA).

2.3.1 Uniform Linear Array (ULA)

This geometry is the simplest one in which the antenna elements are located along a
straight line with a uniform inter-element spacing d. Figure 2.6a depicts a ULA in
which identical dipole antennas are used and is assumed to be in free space. Each
element in this array is oriented parallel to the z-axis with its centre located on the x-
axis. This arrangement is also called the “side by side” array [18][20]. The edge (or
end) of a ULA may present a cut in the overall current distribution, hence lacking
symmetry. For large ULAs, it is assumed that mutual coupling between array
elements that are far apart is very small and can be ignored, hence their mutual
coupling matrix is banded [24]. However, this is not the case for ULA-SASPA arrays
since the operation of this type of antenna arrays depend intimately on the presence
of mutual coupling. The steering matrix of ULA arrays, which gives the response of
the array elements to the received signals, has a Vandermonde structure [8].
However, the main drawbacks of ULAs when acting as DF arrays are ambiguity, i.e.,
they cannot distinguish signals arriving from +¢ for a given 6, and asymmetry in

their beam patterns.
2.3.2 Uniform Circular Array (UCA)

If a symmetrical antenna array is required, the ULA is not the right choice. The UCA
could be a good selection instead [18], see Figure 2.6b. In this geometry, the antenna
elements are distributed over the circumference of a circle in a certain plane, say the
x-y plane, with a radius R and oriented parallel to the z-axis. This geometry has
azimuth symmetry; therefore, the azimuth plane can be scanned by the same

switched radiation pattern if the array consists of identical elements with uniform
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spacing. Accordingly, UCA provides more DOA resolution over the ULA as will be
seen later. In addition, 2D DOA estimation can be performed with UCA arrays. Also,
UCA does not suffer from ambiguity and has no edge effect. Therefore, it may

effectively line up with the requirements of adaptive smart antenna arrays [18].

Figure 2.6: Two types of antenna arrays. (a) ULA; (b) UCA.
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24 Mutual Coupling and Mutual Impedance

Mutual coupling is the phenomenon of exchanging power between neighbouring
antenna elements. The electromagnetic characteristic of a single element, such as the
radiation pattern, induced voltage, and terminal input impedance will be influenced
and contaminated when another antenna is in its proximity. In the literature, most
authors argued that the phenomenon of mutual coupling between array elements has
an adverse effect on the performance of antenna arrays when acting as direction
finding (DF) arrays [23][24]. This is due to contaminating the measurements of the
array by the coupled voltages or currents from the neighbour antenna elements [23].
Consequently, DOA algorithms performance will undergo degradation because the
actual intelligence related to the received signals becomes embedded into the
measurements. Therefore, the model that correctly and precisely interprets the
mutual coupling should be investigated to establish further step towards

compensating such effect.

Mutual coupling depends on various parameters such as the antenna type, the number
of antenna elements in the array, the spacing between the elements, the element
position, the element alignment, the DOA of the signal impinging on the array, and
the hardware used to process the measurements [18][23]. Expressing this
characteristic of energy exchange between the array elements has been viewed in
different perspectives, see [18][23][34][35]. These views are based mainly on
interpreting the mechanism of spatial exchange of power between the elements of the
array and interpreting this exchange by equivalent electrical circuits. Therefore,
different approaches such as induced EMF and MoM have been used to calculate the
mutual impedance between two wire antennas. The overall model for mutual
coupling in an array takes the form of a matrix. This matrix may have special
structure depending on the geometry of the array. For example, ULA is symmetric

when rotated around the axis which is perpendicular to the array’s axis, therefore its
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mutual coupling matrix is a symmetric complex Toeplitz. Likewise, the UCA has a

circulant mutual coupling matrix.

In DOA estimation, the simplest method to compensate for mutual coupling is by
applying the inverse of the mutual coupling matrix to the measurements as in
[17][24][36]-[38] assuming noise is not affected by mutual coupling. This means that
prior knowledge of mutual coupling is assumed to be already available. However,
because of various environmental or manufacturing factors, the actual mutual
coupling may be change over time. Therefore, to compensate for mutual coupling in
an antenna array by applying the inverse of this effect is not reliable for
counteracting the coupled measurement in high resolution DOA estimation. In the
literature, methods such as in [39] have been proposed to eliminate the requirement

for having prior knowledge about the underlying mutual coupling.
2.4.1 Mutual Impedance

To start defining mutual coupling in antenna arrays, the mutual impedance between
two elements must first be analysed. King [40] has derived analytical formulae for
the mutual impedance between two wire antennas with any length and located in a
side-by-side configuration. Kraus [20] has also derived similar expressions for the
aforementioned configuration and both of their methods are based on the induced
EMF method. Let the mutual impedance between two identical elements p and g

located in a side-by-side configuration be:

v
__Pg
Zpg =22 (2.22)

q

where ¥, is the open-circuited voltage induced at the feed point of element p due to
the current in element ¢ and /, is the current at the feed point of element g.

According to the induced EMF method, ¥, can be written as [18] [20]:

V o &=—— f E. (Z/)[p(zl)dzl (2.23)
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Ly =——— | E. (z/)]p (z/)dz/ (2.24)
Here, Ezpq (') is the z-component of the radiated field from element ¢ and parallel
to the axis of element p and is given by [18][19]:

_jnlmq

rq 4

(2.25)

+ —2cos [—
R R, 2

e MR kR, kl] o kR, ]
0

I, is the maximum current of element ¢ and R;, R, and R, are as follows [18]-
q

[20], see Figure 2.7:

R, =~d* +(z+h) (2.26)
l 2

R = \/dz —I—[z—i— h—[iq]] (2.27)
Z 2

R, = \/dz + [z +h+ [%]] (2.28)

Plugging (2.25) and (2.1) as the current distribution for 7, (z' ) into (2.24) and after
some lengthy derivations (see [18][20]), the real and imaginary parts of the mutual
impedance between identical very thin half-wave dipole antennas p and ¢ in an array

with N identical elements located side by side in free space is given by [24]:

Rpq :%[20@(”0)_0‘1‘ (1) — 0 ()] (2.29)

Xpg = %[zﬁi(”o)—ﬂi () — B; (uy)] (2.30)

where o, and 3; are defined previously in (2.16) and (2.17) respectively while their

arguments are defined as:

u, =kd (2.31)

o0
= k(‘/dz +iI —1—lq) (2.32)
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Uy = k(./af2 +1 —lq) (2.33)

Figure 2.8 shows the variation of R,  and X, as a function of the spacing d /ATt
is clear from (2.29) and (2.30) that the mutual impedance depends mainly on the
inter-element spacing and the antenna length. Thus, for two very close elements, the
coupling is strong and cannot be ignored. When d = 0, the mutual impedance has a

value of (73+ j42.5) which is the same value as the self-impedance.

>
v

Figure 2.7: Two dipoles in side-by-side configuration.

It is worthwhile mentioning here the analysis presented in the literature such as in
[18][19][21] for calculating the driving point impedance for a simple transmitting

array consisting of two antennas. Starting with the following system of equations:
N=0Z,+1Z, (2.34)
Vy =572y + 112y (2.35)

one gets, after dividing the first equation by /; and the second equation by /, :
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V 1

I_lzzld =27y +1—2212 (2.36)
1 1

V. 1

1—2 =Zyq =2y +1—1221 (2.37)
2 2

Mutual impedance between two wire antennas in side by side configuration
100 . : : ' : ' : . '

Xpq
80 F 1Zpa| | 1

60F \

Rpq, Xpq and |Zpq| in ohm

d/A

Figure 2.8: Variation of R, and X, versus inter-element spacing d /A
for two very thin half-wave dipoles located in side by side configuration.

I} and I, are actually the uncoupled currents in antennas #1 and #2, while /; and
V, are the terminal voltages of antennas #1 and #2 respectively. Thus, dividing ¥}
by I; or V5 by I, does not give the true driving point impedance of each element in
the array. In the next section, the relationship between the coupled voltages and
currents induced on each element in a receiving array will be analysed. The aim is to
derive mutual coupling models that give a closer view on the energy exchange

between the array elements.
2.4.2 Mutual Coupling Models for Receiving Antenna Arrays

The aim of using antenna arrays is to provide observations or measurements from
which information about the DOA and other parameters of the received signals can

be estimated. For DOA estimation, this can be achieved after finding the correlation
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between the measurements of the response of the array elements to the received
signals. These responses are measured multiple times to give a statistically more
accurate estimate of the parameters after processing the correlated observations using
suitable signal processing algorithms. Obviously, this cannot be done by a single
antenna. In the next chapters, it will be shown that the responses of the array
elements are different from each other by the phase shift ¢/ KT due to the time
delay the received signal experiences when travelling across the array. However, the
measurements, i.e., the load or terminal voltages of the array elements, include the
mutual coupling effect between the array elements in addition to their response to the
received signals. If each element in the array is loaded by the same load (usually
chosen to be the complex conjugate of the antenna input impedance to attain

maximum power transfer), the load voltage will be related to the induced voltage

through the relationship:
\Js :Cvind (238)

where v, e CV

is the vector of the load voltages at the element terminals and
Vind € C¥ s the vector of the stand-alone induced voltages, i.e. the uncoupled
load voltages. The square matrix CeC"", which is called the Mutual Coupling
Matrix (MCM), is based on self and mutual impedances [23][24]. It has a Toeplitz
structure for ULA [24] and circulant structure for UCA [23]. Obviously, the size of
the MCM becomes larger as the number of elements in the array increases. This may
lead to larger errors in signal processing algorithms that involve decoupling the
measurements because of their need to calculate the inverse of the MCM. However,
since ‘Z pq‘—> 0 for large spacing d/\, see Figure 2.8, the MCM could have a
banded structure, i.e. with zero entries on the sub-diagonals that are far from the
main diagonal. In SASPA arrays this may not be valid since in the structure of
SASPA, it is imperative that the elements should be close to each other. In the

literature, different interpretations have been applied on the MCM in order that an

accurate decoupling scheme could be devised to remove the adverse effect of mutual
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coupling on the performance of DOA algorithms. However, this has led to
disagreements resulting from using different views such as microwave circuit theory
or electromagnetic field analysis when interpreting the interaction between the
elements in an antenna array. While some authors argue that because of reciprocity,
the mutual coupling effect is the same for receiving and for transmitting arrays [23]
[25][37], others have defined two separate models for transmitting and receiving
antenna arrays [41]-[43]. The two most well-known models for modelling mutual
coupling in receiving antenna arrays are in [37] and in [43]-[47]. In [37], Gupta and
Ksienski viewed an N-element receiving antenna array as a linear bilateral N +1
port network, where the extra port which represents the received signal is modelled
as an external power supply the network and having an internal impedance. By
imposing the condition that the open circuit voltage at the terminal of each array
element is due to the power supply (the incoming signal) alone, the relationship

between the open circuited voltages and the load voltages will be:

Vool 1 Zu Zi Zin | V1
Vo2 Z Z Z VL2
Zu . %n . L
_ ZL ZL ZL
ZNI ZN2 o 1_|_ZNN
VN Zy Z Z vy
or (2.39)

v, =Focv Vi

Thus, for this MCM model, the open circuit voltages represent the couple free
voltages. This MCM model is called the Open-Circuit Voltage (OCV) method
[46][48]. Note that F,., € CVV in (2.39) is equivalent to C~' in (2.38). Also,
Focy 1s angle independent [23][36]. Z,,, and Z,, in K., are the conventional self
and mutual impedances given by (2.14) and (2.15), and (2.29) and (2.30) respectively

[23][46]. The OCV has the interpretation of adaptive receiving arrays in view of
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microwave circuits analysis in which the network port is the only source of
excitation. However, the actual induced voltage across the antenna terminal is the
result of integrating the antenna current over the antenna surface [48]. Therefore, the
open circuit voltages are not the exact uncoupled voltages induced by the incoming
signals [41]. Furthermore, OCV assumes that no radiation occurs from an antenna
with open circuited terminal [45]. Thus, using the inverse of OCV results only in a
partial elimination of mutual coupling [49]. However, OCV, which is based on
microwave circuit theory, was found to be a good approximation [41], especially
when the array is built up of half-wave dipoles since the current in an open circuited
dipole can be neglected [36]. Accordingly, it has been used in different DOA

estimations studies such as in [24][50].

In [43]-[47], a different MCM model was postulated and is called the Receiving
Mutual Impedance Method (RMIM). In this model, the voltage measurement at the
antenna terminals in a receiving array is related to the couple-free terminal voltages

due to the received signals only through the following relationship:

" 1 2 N _Z" vy,
2 2
Uy —Zz’1 1 —Z2’N Vi
_| Z 2
ZNI N2 1
Uy Z, z, VLN
or (2.40)

u=Frvmm Vi

where ue CM1

is the vector of load voltages (terminal voltages) due to the
incoming signal alone, i.e. the couple free voltages, and Z?*? is the receiving mutual
impedance between elements p and ¢ as defined in [44][46]. While OCV assumes

the open circuit voltages are the uncoupled voltages, RMIM considers the couple free
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voltages as the closed-circuit voltages [45][46]. Note that RMIM needs no prior
knowledge about the self-impedances. Also, in this method, Z?'¢ has been
calculated experimentally based on the scattered powers from the array elements
[44][46]. However, the calculation is implemented using hardware necessary for the
measurement of scattered power in an array consisting only two monopoles
regardless of the incident angle of the test signal [44][46]. Accordingly, such a
method may need more hardware and computations for large arrays or arrays
consisting of another type of antenna. Also, the experimental results for calculating
the receiving mutual impedance reveal that the mutual coupling between two dipole
antennas almost vanishes for d/\ > 1. Accordingly, this method might not be useful
for such inter-element spacings in large arrays [44, Figure 2]. Yamada et al. [41]
have used in their suggested MCM another mutual impedance that represents the
mutual coupling due to the scattered or reradiated power in addition to the
conventional mutual coupling of a transmitting array. However, this MCM requires
N? simultaneous equations to be solved. Also, the method to calculate the mutual

impedance due to the scattered power has not been defined.

In this work, a new approach will be explored for modelling the coupling matrix C of
(2.38) in conventional receiving antenna arrays, i.e. arrays with all-active elements
and to SASPA arrays as a special case. This approach is based on electromagnetic
theory in conjunction with circuit theory but in terms of the uncoupled or stand-alone

values of currents rather than voltages.
2.4.3 The Coupled Voltages-Uncoupled Currents (CYUC) Model

The proposed MCM model relates the couple-free or stand-alone currents that are
induced on each element in a receiving antenna array due to the received signals only
to the coupled voltages that are measured at the element’s terminal (load voltage). By
coupled voltage it is meant the voltage induced at the element’s terminal due to the

received signal and contaminated by the energy exchanged between the array
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elements. The CVUC model is derived from electromagnetic theory and is
characterized by a Thévenin equivalent circuit or Norton equivalent circuit. As a
result, an efficient view of the mechanism of mutual coupling, which will be
interpreted in terms of an electrical network, will be achieved. Moreover, this model
matches SASPA arrays as it will be shown in the next chapter. Based on Thévenin
equivalent circuit, any antenna in a receiving array can be substituted by the circuit
shown in Figure 2.9a [24][25][30][51] and assuming the dependent voltage sources
which account for the mutual coupling effect have zero internal impedance [21].
Thus, the load voltage of the element p in an N-element receiving antenna array can

be written as:

Vi =ty —iyZ oy 4Ly iy L iy Z (2.41)

Despite being regarded as controversial by many authors, the validity of using a
Thévenin equivalent circuit to model a receiving antenna array may be verified
through the application of the concept of induced EMF theory to (2.41). It is assumed
throughout this proof that the array is in the first stage of exchanging energy between
the elements since a series of this exchange yields the coupled currents. The induced
voltage at the terminal of a receiving dipole antenna p intercepting a signal can be
calculated from (2.8) and is rewritten below:
1 l/ 2 / !/ /

u, = _Ef"/z E,()I1,(z) dz (2.42)
The system in (2.41) can be formulated in another way starting with considering the

superposition of the Magnetic Vector Potential A4 of a receiving antenna in an array

as follows [19] [52]:

A, (2) = ABP) (2)+ AT (z)+ E ABD (z) (2.43)

qip
where 4, ,(z) is the total z-component of A on the antenna surface, Agﬁ;‘p )(z) is

the z-component of A across the gap of element p, Agf;“) (z) is the z-component of
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the scattered 4 by element p , and A§S;3> (z) is the z-component of the scattered A
by element g on the surface of element p. Multiplying both sides of (2.43) by 2jc,

where c is the speed of light and applying the operator (8§ + kz) gives [19]:

(02 + &% )(2eA. , (2))

(2.44)
= (024 K2)(2jed. , (2))| 2| AP (2)+ AL (2)+ Z A5 (@)
qu
DKEDS (2) = —2kvy, 6 (2)+ 2KESS (2 2k2 EZ(2) (245)

q::p

where E;”]C, (z) is the z-component of the electric field of the incident wave and
E7)(z) 1s the z-component of the scattered electric field by element p. To obtain

(2.45), the following relationship has been used [19]:
v,(2)=2jcd, ,(z) (2.46)

where v, (z) (in volts) is a scaled version of AZ (z). This results in a scaled value

of the electric field when (8? + kz) is applied to it [19, pp. 1176], i.e

(02 +K7)v, (2) = (0% + K2 )2jeA,, ) (2) = 2kEDS (2) (2.47)

The antenna elements are assumed to be good conductors. Therefore, the tangential

electric field on the surface of a dipole should be zero except at the gap [29], i.e.:

A
E%ﬂp 2= zg.p| <—5F
Eznc (Z) Esca _ Az (248)

0 lz—z4 | > %

where EZ77 is the z component of the electric field developed at the gap of element p

and E:°, (z) is the z-component of the scattered electric field by element g on the

surface of element p. Furthermore, the delta gap source model assumes that the

incident electric field E;”; (z) at the gap is constant and equals v, , /A, ,, where

v, p 1s the excitation voltage at the feed gap of element p [18]. Note that in [19],
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E;"; (z) is expressed in another way as E;"; (z)=v;,,0(2), where 6(z) is the delta

function. In [29], the load voltage of a loaded dipole is defined as:

Ag,p Ag,p

v 1; 2
ES _ _ Lp _ “LpZLp (2.49)

Therefore, the electric field at the gap of a loaded dipole receiving one signal can be

written as:

EZg"Z’ (z2)=v;,,0(2) (2.50)

Finally, (2.45) becomes:
. N
v p0(2)=—Ez (2)+ EX5 (2) = D EZy (2) (2.51)
q=1
q=p

Substituting (2.24) and (2.42) into the RHS of (2.41) yields:

1 1/2 inc ! 1/2 sca
_Ef E™(2)1, (z)dz—i—éf EX(2)1, (z)dz

—1)2 Pz z ~12 P z
12 I
o Z f 1/2] I ;i;; )Ipz (Z)dZ
‘]¢P
or
- l}’lc sca sca
_ f » E}(z)—Ey +ZE (z)dz (2.52)

qip

Substituting the term between the brackets in (2.52) by v, ,6(z) as in (2.51) yields:

1 pl)2 {
Zf—l/ZVL’pé(Z)IPZ (Z)dZ :EVL’p[p — VL,p

Thus, the RHS of (2.41) equals v; ,. Note that /, and [, are the uncoupled
currents of elements p and g respectively at z=0. Thus, validation of (2.41) has

been proved for the contribution of the uncoupled currents of the elements into v; ,,
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1.e., the terminal load voltage developed at the first instant of receiving the incident
signal. Once the elements begin to exchange the energy, the element currents become
coupled currents i,, n=1,2,...,N, which can be inserted into (2.41) instead of the

uncoupled currents to include the contribution of them into the load voltage v; .

- - iz, + -
o, T
—F
A

(b) Norton’s equivalent circuit

Figure 2.9: Thévenin and Norton equivalent circuits of a dipole in an
antenna array.

Similarly, the above analysis can be applied to all the other elements in the array to
give the following system of equations that expresses the terminal voltages of an all-

active receiving antenna array:
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via=w —hZy il ttiZy o FiyZyy
Vo =y — iy + i Lyt tiy 2y + o Findyy
(2.53)

Vin =uy —inZyy FhZy ot iy iy 2y

The uncoupled voltage u, can be substituted by u, =1, (Z w2 ), where 1, is
the uncoupled current of element p and Z; , is its load impedance. Also, v; , can
be substituted by v; , =i,Z; . After some rearrangements, the system in (2.53) can

be rewritten in matrix-vector form to finally give the CVUC model as:

v =(D+ST )1 (2.54)
where vy, :[VL’I Via VLN " is the vector of coupled voltages which are
measured at the terminals of the array elements and I=[/; I, - [ N]T is the

vector of uncoupled currents at the terminals of the array elements. The structure of

the matrices D, S, and T are as follows:

le + ZL,I 0 ce 0
0 222 + Zsz v 0
D= . :
—Zy Zp Z\n
Zy —Zy ZyN
S= )
Zyy  Zys —Z NN
1 —Z1p —Z\y
Zn+Zp, Zn+Zp,
—Zy 1 —Z)y
T=|Z20n+Z, Zyp+Z,
—Zy —Zy> 1
Iny+Ziy ZywtZon
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Notice that the CVUC model overcomes the singularity case that might arise in OCV
and RMIM for short-circuited antenna, i.e. when Z; , = 0. Note also that the CVUC
mutual coupling model can be applied to any array geometry such as Uniform Linear

Array (ULA) or Uniform Circular Array (UCA).

The entries of matrix T can be in terms of self and mutual admittances rather than
self and mutual impedances. This can be implemented by referring to the Norton
equivalent circuit shown in Figure 2.9b from which another version of (2.41) can be

written as:
ip:[p_VL,prp+VL,1Yp1+.“+VL,(1YP(]+"'+VL,NYpN’ pzl,,N (2.55)
Replacing v, ,, ¢=12,...,N, by their corresponding equivalent terms i, / Y, and

following the same procedure used to formulate (2.53) yields another matrix that

relates the coupled currents to the uncoupled currents in a receiving antenna array:

e e Zhe
J Y, Y ) Y N ;
1 1
I -1 1+ Yy —Yon i
, Y4 Y15 Y N (2.56)
Iy iy
—Yw —Yyvo 1+ Yy
Y, Yy YL,N
or
I=Wi (2.57)
and the system (2.55) becomes:
vi =(D+SW I (2.58)

where W is defined in (2.56). However, when analysing SASPA arrays using Norton
equivalent circuit, the load current of any parasitic element in the array should be the
current that flows in the self-admittance of each of the parasites because Y; , — oo

for parasites. Also, v, ., 4= L,2,...,N with ¢ = p and p is the active element, will
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be given by v, . =i, /7,

4q » 1-¢. the coupled current of the corresponding parasitic

element divided by the self-admittance and not by the load admittance as in the case
of the all-active antenna array shown in (2.55). Thus, for an N-element SASPA array
with element #1 active and the other N —1 elements parasites, the system in (2.55)

will be:

h=n—v ity oY+t v g+ v vy
=D +vp Yoty s+t v Yo, + v vy (2.59)

iy =1Iy+vi Yy +vio¥no ++ v Yng T+ veov—nYvv-n

Note that in (2.59) there is no v; ¥, term in the equations for the currents i,
p=2,3,...,N. Replacing v, ; by il/YLJ and v ,, p=2,3,...,N, by ip/Yp , after

rearranging terms, the system of equations in (2.59) becomes:

I mn w Yo Xy Nyl
Yi, Y» Y33 Yy
I, -1 1 Y DhHiylh
R Y33 N (2.60)
—Yvi Yo T
Iy Y, Yy Y33 N
1.€.
I=Wi (2.61)

Thus, the coupling matrix W is based on self and mutual admittances. The formulae
for these admittances can be found in [53][54]. In [53], the solution for the current
distribution on a dipole is first calculated to find the self-admittance using an integral
equation like (2.8) with another kernel function to describe additional boundaries. In
calculating the mutual admittance, the authors in [53] used mutual kernel functions
between the elements of a ULA to determine the current distributions on these

elements. In contrast, in [54] the induced EMF method was used to find the self and
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mutual admittances by inserting the magnetic current rather than electric current in

the integrand along with the azimuth component of the intensity field.

2.5 Summary

In this Chapter, the concept of mutual coupling between the antenna elements in an
antenna array is reviewed from the perspective of antenna theory. This inherent array
characteristic is due to the exchange of energy between the antenna elements if they
are close together. The presence of mutual coupling is often considered to have an
adverse effect on the performance of transmitting and receiving antenna arrays since
the response of each element in the array is contaminated by another effect.
However, there are antenna arrays such as SASPA arrays that depend closely on the

action of mutual coupling for them to work properly.

To start the review on mutual coupling, some of the important aspects of antenna
element and antenna array must be first studied. The current distribution, the
radiation intensity of a transmitting antenna, and the induced voltage of a receiving
antenna are reviewed. The self-impedance of an antenna element and the mutual
impedance between two diploe elements are also studied. The formulae given for the
self and mutual impedances are based on the induced EMF theory and the concept of
reciprocity. These impedances are the main entries of the Mutual Coupling Matrix
(MCM) which expresses the mutual coupling effect. The available mutual coupling
models in the literature such as OCV, RMIM, and others have been postulated based
on different views of the energy exchange between the array elements. However,
most of them did not capture all of the physical phenomena associated with mutual
coupling, particularly for receiving arrays. In addition, the existing models were
derived for all-active arrays where all the antenna elements are either driven (in
transmit mode) or loaded (in receive mode). In other words, the existing models
cannot be used to develop algorithms for SASPA arrays. As a result, a new model,

called Coupled Voltages to Uncoupled Currents (CVUC), is proposed in this chapter.
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The derivation of CVUC is based on electromagnetic theory and microwave network
theory. The efficacy of this model in SASPA arrays will be shown in the remaining

chapters of this thesis.
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Chapter 3

SWITCHED ACTIVE SWITCHED PARASITIC
ANTENNA (SASPA) ARRAYS

3.1 Introduction

In this chapter, the principle and the effectiveness of using Switched Parasitic
Antennas (SPA) in antenna arrays will be explored. The Switched Active Switched

Parasitic Antenna (SASPA) as a special case of (SPA) is then analysed.

In general, an SPA array consists of one antenna element which is connected to the
RF signal source when the array acts as a transmitter, or to a load when the array is
acting as a receiver. This element is called the “active element”. The other antenna
elements are called “parasitic elements” and their terminations are either short
circuited (ON state) or left open circuited (OFF state). In the case of SASPA arrays,
one element is active, and the other elements are short circuited parasites. Using PIN
diodes, the parasites in SPA arrays can be switched between ON and OFF states. In
contrast, in SASPA arrays, the PIN diodes are used to switch one (and only one)
element to the active state while keeping the other elements in the parasitic ON state.
The role of active element in an SASPA array is then passed to another element after
a certain time period, and by rapidly and sequentially switching the elements of the
array to the active state and back, the radiation pattern of the SASPA array can be

easily and effectively steered to different directions.

A key feature of SPA and SASPA arrays is that they rely on mutual coupling for
them to work. This is in contrast to conventional antenna arrays which treat mutual
coupling as a nuisance. It will be shown in this chapter that, unlike the mutual
coupling models that are available in the literature, the CVUC model proposed in the
previous chapter can yield suitable mutual coupling matrices for SASPA arrays. As

such, this chapter aims to develop the mathematical basis for the derivation of the
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algorithms presented in later chapters that allow SASPA arrays to act as DF arrays.

3.2 Switched Parasitic Antenna (SPA) Arrays

The use of antenna arrays involving passive elements goes back to 1930 when two
Japanese scientists, Yagi and Uda, constructed an array of wire antennas arranged in
a side by side configuration [55]. This array is called Yagi-Uda after their names and
is used for TV signal reception. The array consists of a single half-wave dipole as an
active radio receiver connected to the TV set and short-circuited dipole antennas with
different lengths acting as parasites. The array is designed so that the induced
currents on the parasites together with the current induced on the active element due
to the received signal produce a radiation pattern with a narrow directive main lobe
in one direction and almost null radiation in other directions. The length of the
parasites and the spacing between them have great effects on the resultant radiation
pattern since they determine the mutual coupling between the active element and the
parasites. However, the Yagi-Uda antenna needs to be steered mechanically to the
direction of the required signal to have optimum reception. In other words, the Yagi-

Uda array is a Fixed Active Fixed Parasitic Antenna (FAFPA) array.

To electronically steer the radiation pattern, a collection of parasitic antennas can be
placed in the vicinity of a single radio receiver and by making use of the mutual
coupling between them. Antenna arrays with such a facility are called Switched
Parasitic Antenna (SPA) arrays. The parasites in the array can be switched between
the “ON” and “OFF” states using PIN diodes which can operate with very short
switching times. In the literature of smart antennas, the benefits of SPA arrays in
cellular communications have been investigated. In [56], the effectiveness of using
SPA arrays to provide a variety of switched beam patterns that are beneficial in
mobile communications is studied. It is shown that SPA arrays produce almost
orthogonal or uncorrelated patterns. Also, it is shown that the envelope correlation

coefficient between the received signals by SPA arrays decreases significantly as the
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inter-element spacing decreases. Furthermore, the directivity increases as the number
of parasites increases. However, the concept of mutual coupling has not been well

investigated in [56].

Antenna diversity by implementing SPA arrays with the active element at the centre
of a circular geometry of parasitic elements is studied in [57]. Using only four
parasites in the circular geometry with three different terminations, it is possible to
have symmetrical radiation patterns directed to the main fundamental directions with
a low correlation coefficient. The circular array has been chosen because of
symmetry and constant mutual impedance. Also, it is shown in [58] that SPA arrays
are beneficial in increasing the capacity of SDMA for packet switching networks in
which several simultaneous antenna beams are required. The SPA array as a special
class of smart antennas, its potential practical applications, and its advantages in
controlling and fabrication antenna arrays over the phased arrays have been
discussed in detail in [15]. In addition to being easy in steering its directive radiation
pattern, consuming less power, and being comparatively small in size, the SPA array
also shows a very low scattering factor S;; and almost fixed input impedance [15].
However, 2-D scanning cannot be carried out by the SPA array as in phased arrays
[15]. As DF arrays, the capability of SPA for DOA estimation have been discussed in
[16] and [17]. “It was found that the SPA array offers high-resolution direction-

finding performance using only a single radio receiver” [16].

SPA array example

If two arrays that are like a Yagi-Uda array but sharing the same active element are
used [56], see Figure 3.1, the H-plane directive radiation pattern can be steered
towards two different directions if the termination of the two sets of parasitic
elements are changed [15][56]. In this geometry, dipoles #2 and #4 are shorter in
length than the active element #1 while dipoles #3 and #5 are longer than the active

element #1, and the spacing is not optimized. If the terminals of dipole #2 and dipole

49



#3 are short circuited, i.e., switching them to the parasitic mode, while leaving the
terminals of dipole #4 and dipole #5 open circuited, i.e., effectively disconnected
from the array, the H-plane radiation pattern will be 130° spatially apart from the H-
plane radiation pattern of the same geometry if dipoles #4 and #5 are now switched
to the parasitic mode , i.e., ON state, and dipoles #2 and #3 are open circuited, i.e.,
OFF state. Switching a parasite between the ON and OFF state can be implemented
by a PIN diode which operates at very fast speed, see Figure 3.2a. Figure 3.3b shows
how a dipole can be changed between the parasitic and active states by using a PIN
diode. This type of SPA arrays in which one element is fixed to the active state while
the parasites are changed between ON and OFF states is called a Fixed Active
Switched Parasitic Antenna (FASPA) array. Another type of array, called Switched
Active Switched Parasitic Antenna (SASPA) array, is the main topic of this research
and will be explained in Section 3.4. These two types of SPA arrays were first

proposed by Thiel and Smith, see [15].

3.3 PIN Diodes as RF Switches

PIN diodes are used in SPA and SASPA arrays for the purpose of changing each
element of the arrays to the “ON” or “OFF” state for the parasites in SPA arrays, or
between “active” and “parasitic” in SASPA arrays. The switching speed of PIN
diodes is very high making them very useful as RF switches [59-61]. The ohmic
resistance of typical PIN diodes, which are current controlled, varies between 1Q2
(forward biasing) to 10KQ (reverse biasing) making them advantageous in networks
operating at UHF and microwave frequencies [59]. PIN diodes are distinctive from
other electronic switches with the uniquely characteristic of requiring small DC
levels to control large RF signals [61]. In Figure 3.2, typical circuit diagrams of PIN
diodes for switching action in SPA and SASPA arrays are illustrated. Figure 3.2a
shows the circuit diagram for a Single Pole Single Throw (SPST) switch. This circuit

can be used to switch the parasitic element in an SPA array between ON and OFF
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states by connecting the element terminals to RFjy and RFoyt terminals respectively.
Forward biasing the PIN diode switches the element to ON state. While the OFF

state is obtained when reverse biasing the PIN diode.

-
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-~ -
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~— -
-~ -
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~— -
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~—— -
~—— -

#1 #4

el
8

(a)

@ Active element

@ Pparasitic element-ON state O Parasitic element-OFF state

Figure 3.1°: A simple SPA array acting in transmit mode. (a) The
geometry; (b) and (c) Radiation patterns.

> The software 4NEC?2 is used for plotting figures 3.1(b) and (c). The official web site for 4NEC2 is:
https://www.qsl.net/4nec2/
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https://www.qsl.net/va3iul/RF Switches/RF Switches.pdf

Figure 3.2: Circuit diagrams of RF switches using PIN diode. (a) SPST;
(b) SPDT.

In case of SASPA array, the circuit in Figure 3.2a is connected across the load of the
corresponding element. When the PIN diode is reverse biased, the element is in the
active state. When the PIN diode is forward biased, the element is switched to the
parasitic state. In Figure 3.2b, the Single Pole Double Throw (SPDT) switch is
shown. The antenna terminals can be connected to RF port 1 and RF port 2 and the
load connected between RF port 3 and RF port 2. When D1 and D2 are forward
biased, the antenna is in the parasitic state. When D1 is forward biased and D2 is

reverse biased, the antenna is in the active state.

34 Switched Active Switched Parasitic Antenna (SASPA) Arrays

A special case of SPA arrays is the Switched Active Switched Parasitic Antenna

(SASPA) array in which each element can be switched to active state, i.e., at a
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certain time only one element is active while the rest of the elements are parasitic.
And at a later time, another element which was parasitic is switched to the active
state and the previously active element is switched back to the parasitic state. To the
knowledge of the author, no previous work in the literature has been reported on the
use of SASPA arrays as DF arrays except for [62]. In [62], a digital word consisting
of a multiple of ones and zeros controls the terminations of the antenna elements in
an array. The ones in the digital word activate the corresponding elements while the
zeros parasitize the other elements. Different digital words are chosen so that the
azimuth is scanned by the corresponding directive radiation patterns generated by a
UCA geometry. This facility is used to estimate the DOA of two signals by
measuring the received powers of the signals for all of the chosen digital words in
conjunction with the Genetic Algorithm. A drawback of the method is that there
should be prior knowledge of the DOAs so that the selected digital words will result

in optimum directive radiation patterns.

A simple geometry of an SASPA array consisting of two half-wave dipoles one of
which is active and the other is parasitic is shown in Figure 3.3a [15]. The active
element is designated as “C” while the parasitic as “P”, and they are aligned in a side
by side configuration with an inter-element spacing of d = \/8. Here, by the active
element it is meant that element is driven by a RF voltage or current signal source
and hence, the array is in transmit mode. If the array is in receive mode, the active
element will be connected to a load. In both modes, the terminal of the parasitic

element 1s short circuited.

Suppose the array is operating in the transmit mode. Because of mutual coupling,
a current will be induced on P due to the energizing element C. If the spacing
between the two elements is small, the current Ip will be almost equal to but out of
phase to i., 1.e. ip ~—i- [15]. This means that part of the radiation pattern to the
left of the array will be reflected by the parasite back to the opposite side, i.e., to the

right side of the array, and contributes to producing a directive radiation pattern in
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the H-plane, as shown in Figure 3.3b. If the situation is reversed, i.e., element C
becomes parasitic and element P becomes active, the H-plane radiation pattern is
now directed to the left side as shown in Figure 3.3d. Figure 3.4 depicts the effect of
the spacing between the elements on the directivity of the array in the H-plane. As

can be seen, the smaller is the spacing between the array elements the more

directivity is produced.

Tat-gain [dBi] any Horizontal plane
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240
design(2.1)d_2E=0.125lamhda 2 auf =
Theta= 90 270

U D D
oy I ]
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Max gain Phi:0

(a) (b)

=
i)

0

24
C P design(2.1)d_2E =0.128lambds_1 ouf 505 -B.2 < dBi < 7.06
Theta= 90 270 Max gain Phi:180

(©) (d)

Figure 3.3 Illustration of the effect of interchanging active and parasitic
states between two dipoles of a transmitting SASPA array on the
direction of the overall radiation pattern of the array.

® The software 4NEC?2 is used for plotting figures 3.3(b) and (d). The official web site for 4NEC2 is:
https://www.gsl.net/4nec2/
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Figure 3.47: The effect of the spacing d on the directivity of the radiation
pattern produced by the SASPA array shown in Figure 3.3a.

m—d =02\ =03\ e—=04)\ —d=05)\

3.5 Far Field Radiation Pattern and Mutual Coupling of SASPA

Arrays in Transmit Mode
3.5.1 Far Field Radiation Pattern

For the simple ULA-SASPA array consisting of two dipoles shown in Figure 3.3a,
Thiel and Smith [15] have calculated the total H-plane far-electric field when one of
the elements is active and the other one is parasitic with the active element as a

reference element, i.e., positioned at the origin:

cos(% cos9)

W
Ein (r,@,qb) — SR

o (ip e‘f"d°°s¢+ic) (3.1)
TKY

sind

where (7,0,¢) is the spherical coordinates of the observation point, d is the spacing
between the elements, and i, ip are the active and parasitic currents respectively.

Thus, E,,, of the array in the H-plane will be determined mainly by the amplitude

” The software 4NEC?2 is used for plotting Figure 3.4. The official web site for ANEC2 is:
https://www.qsl.net/4nec2/
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and phase of the elements’ current and the spacing between them as shown in Figure

3.3b. Equation (3.1) can be rewritten in vector form as:
. T
Eon (r0.8)= a(0)lip ic]je e 1] (3.2)

where a(0) = (( )cos 0 / sin 9) and [ }T is the transpose of a vector.

i
2
If the element C is switched to the parasitic state and the element P to active, £, ,

now becomes:

iwp | cos( T cosf
Ep (1,0,0) = zjﬂ_:; (2 >

' (iC e—jkdcosqS +iP>
sin 6 (3.3)

=a(O)lic iplle e 1]

and the H-plane radiation pattern is now rotated through 180°, see Figure 3.3d. Note
that the phase of the parasitic current in (3.3) is positive with respect to the phase of
the current in the active element, i.e. it is out of phase with respect to the current of
the parasitic element in (3.1) due to the swapping of the active and parasitic states
between the elements (see Appendix A). Equations (3.2) and (3.3) can be generalized
for an N-element ULA-SASPA array as follows, with the active element the
reference element:

N .
E") (r,0,6) = a(0)| i) + 3 ig)eﬂ(qfn)kdcow

q

q=1
g=n
=a(0) if(”T) i(cn) ’}(DZ,)' (3.4)
[ej(l—n)kdcos¢ N ej(N—n)kdc0s¢T

where i) is the vector of the coupled currents of the array and a”) (0) is the array
factor or the steering vector. The index » refers to the position of the active element.
Due to the presence the array factor a”) (0) which is produced when the elements of
the SASPA array are successively switched between active and parasitic states, the

SASPA array could be considered as a self-beamforming array.
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SASPA array example

Figure 3.5 depicts the radiation fields produced by a four-element ULA-SASPA
array when each element is successively switched to active starting from element #1
and assuming this element is positioned at the origin. The inter-element spacing is
d = )\/8. When element #1 is active and the rest of the elements are parasites, the H-
plane radiation pattern will have a single main lobe directed to the left with
Gmax = 180°, see Figure 3.5a. When element #2 is switched to active and the
previous active element (element #1) switched to parasitic, a new shape of the
radiation pattern will be produced because of the array factor is now different from

the one in (3.4) which will be:

. . . T
a(2) (¢) _ [e—/kdcosqb 1 e+jkdcos¢ e+J(N72)kdcos¢ (3.5)

and the current vector becomes:

i =i ) R @7 (3.6)

Py

Notice the symmetry that occurs between the radiation patterns produced by the
active elements #1 and #4 and between elements #2 and #3. As a comparison
between Figure 3.5b and Figure 3.3d, the maximum gain for the two-element ULA-
SASPA array is 7.06 dB at ¢, =180°, the Front-to-Back ratio (F/B) is 7 dB, and
the 3 dB beamwidth HPBW is 120° while the corresponding values for the four-
element ULA-SASPA array are 10.83 dB, 6 dB, and 60° respectively. Notice that the
radiation patterns produced by active elements #1 and #2 in Figure 3.5 are
asymmetrical and have different F/B ratios. However, the radiation patterns produced
by active elements #1 and #4 are symmetrical. This demonstrates the asymmetrical
and centro-symmetric properties of ULA arrays. In addition, the second and the third
radiation patterns in Figure 3.5 have additional large lobes in contrast with the first
and last ones in which a unique |¢,,,| is defined. This unwanted phenomenon may

cause the array to be ambiguous in DOA estimation.
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Figure 3.5%: A four-element ULA-SASPA array acting in transmit mode.

® The software 4NEC?2 is used for plotting the radiation patterns in Figure 3.5. The official web site for
4NEC2 is:

https://www.gsl.net/4nec2/
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Figure 3.6”: A five-element UCA-SASPA array acting in transmit mode.

To produce symmetrical radiation patterns with the same gain, F/B and 3 dB BW, the

UCA-SASPA array can meet such requirements. Figure 3.6 shows a five-element

° The software 4NEC?2 is used for plotting the radiation patterns in Figure 3.6. The official web site for
4NEC2 is: https://www.gsl.net/4nec2/
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UCA-SASPA array with the elements equally placed on the perimeter of a circle
with radius R = \/8. Each one of the five radiation patterns formed by this geometry
has maximum gain of 7.65 dB, F/B ratio of 10.4 dB, and 3 dB BW of 95°.
Successively switching each element to active while keeping the rest of the elements
parasitic sweeps ¢, over the entire azimuth plane with each ¢,,, at the angular

position of the element n [62]:

D =”T_127r, n=12,.,N (3.7)

Thus, the array factor a” (0) in (3.4) for a UCA-SASPA array takes the form [63,

pp. 15-16]:
ijCOS[(b*ZWL] ijCOS[(Z)*ZT(E] g
a(l)(¢):e—ijcos¢ eijcosqS e N e N (3,8)
) 27 _ 1 . N-N
3(2) (¢) _ e‘]choS[¢—N] eijcosqS ]kRCOS[(b—ZTrN] eJchos[¢—27rN] (3.9)

3.5.2 Mutual Coupling in Transmit SASPA Array

Mutual impedance plays an important role in determining the resultant radiation
pattern of an SPA array which in turn depends mainly on the current of each element
in the array. The amplitude and phase of the current i induced in the active element
of a transmitting SASPA array entails two components: the first one is the uncoupled
component /- that is due to energizing the active element by a RF voltage or current
source, and the other component is mutually coupled from the short circuit currents
of the parasites which are induced by the active element. Thus, E\") (r,6,¢) in (3.1)
and (3.2) can be defined in terms of the uncoupled currents rather than the coupled
currents. To do so, the Thévenin equivalent circuit in Figure 2.5 for an array can be

used, provided the effect of mutual coupling is included, see Figure 3.7.

60



Figure 3.7: Thévenin equivalent
circuit for a dipole in an antenna
array acting in transmit mode.

Using the superposition theorem for an N-element ULA array and assuming that each
element is supplied by an RF voltage source V; with identical internal impedance
Z,, the model expressing the voltage across the self-impedance of each antenna

element including the effect of mutual coupling is:

- Zy Zy

nw=ily=LZ+1LZy——+ -+ INIiy5—
ZntZ, ZintZ,

- Zy Zy

V) =ity =hiy——5—+ 12y + -+ InZyy
Zp+2, Z + 2, (3.10)

. 4 Z

vy =IiNZyy = 112N1¢Z+112N22¢+"'+1NZNN
w2, NN T4y

Each ¥, , drives the uncoupled current 7, into the self-impedance Z,, of the
corresponding element which in turn radiates the near and far fields as if the element
is acting alone. The mutual coupling effect of the neighbour elements on the element

p is represented by the dependent voltage sources [,Z

¢Zpg> 9=12,....N, g=p

which are summed up with V , to produce the coupled current i, =v, / Z,, - Inthe

case of an SASPA array with element #1 active, (3.10) becomes:
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ZyZyy T ZinZyy
Z +7 seN 7z 17
11t 11t<4g

g
. ZrZ VAN
Vy =lgenZyy =L =224 04 [y 2222
: Zp+2Z, NZp+2, (.11)

nw=ipZy=1Z,+1

sc,2

. VANV ZnZ
VN:lsc,NZNN=11M Isc,2M+"'+0
A Iy +2Z,

where [/ sepr P = 2,3,...,N are the currents induced on the parasites due to the

uncoupled current [, and iy , is the coupled current on parasitic element p due to

Iy and [

se,p- Note I, =0 because the parasitic elements are not energized by an

external voltage or current source.

The system of equations (3.11) can be rewritten as:

. Z Z
I :]1+1SC,ZZ¢+"'+ISC,N¢
n+tZg Zy+2Z,

. Z Z
ion :Il¢+0+”'+1scNA

’ Zy+Z, T Ip+Z, (3.12)

Z Z

io N :]1¢+]sc2¢+...+0

’ Zyy +Z, T Zyy tZ,

which can be expressed in matrix-vector form as:

1 Zy) Zi) . Zin
i ntzZy  IntZ, In+tZg\ I
isc,2 Z21 0 223 ... —ZZN Isc,2
| zy+2, Zpn+2, Zp+72, o13)
Iye,N Zyi Zno Zy3 . 0 Isc,N
Iy tZg ZyytZg Zyyt+Zg
or
i) =M (3.14)

The superscripts in (3.14) refer to the active element. Plugging (3.14) into (3.4), the

electric far field of an SASPA array when element #1 is active becomes:

62



EY = a(0)1V" B a0 (g) (3.15)

The above analysis can be applied to SASPA arrays of both types, ULA and UCA.

3.6 Induced Voltages and Mutual Coupling of SASPA Arrays in

Receive Mode

In the previous section, it was shown that the total radiation pattern emanating from a
transmitting SASPA array is the result of the uncoupled currents induced on the
elements, the array factor, and the mutual coupling between the elements. According
to the reciprocity theorem, the same factors which determine the total radiation
pattern of an antenna array when transmitting also determine the response of the
antenna array when receiving signals. Thus, the previous section paved the way to
study the response of an SASPA array to the received signals. However, the mutual
coupling in receiving SASPA arrays is different from that in transmitting SASPA
arrays since the mechanisms of coupled currents in transmit and receive modes are
different [18]. Specifically, in a transmitting SASPA array, only one element is
energised by the RF source, while in a receiving SASPA array, all elements are
energised by the incident signal. Accordingly, some of the characteristics particular
to a receiving SASPA arrays should also be considered since a comprehensive
knowledge about these parameters will provide a basis for performing direction-
finding using SASPA arrays. The important parameters to be studied in this section

are the induced voltages and the receiving mutual coupling models.
3.6.1 Induced Voltages in Receiving SASPA Arrays

In Section 2.2.1.2, the voltage induced at the terminal of an unloaded half-wave
dipole that is intercepting an electric field has been derived by solving Hallen’s
equation (2.10) by considering certain boundaries or by means of the induced EMF

method (2.9) which is repeated below for ready reference:
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2
where
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\ COS[200S9 —cos[z]
sin ] Sin

In (3.16), E, is a complex value representing the strength of the electric field of a
received signal. In DOA estimation, this value is represented by the notation s(7).
For a collection of identical half-wave dipoles arranged in an arbitrary 3-D geometry
and receiving a signal, see Figure 3.8, the same induced voltage in (3.16) will be
developed at the terminal of each dipole. However, due to the spatial position of each
element which is referred to a reference point, usually the origin, each V;,; would

—jkK) T,

Y ejfcf

experience a spatial phase shift equal to e n relative to the origin. In
general, each element response V;,; ~experiences a phase shift accompanied with a
gain. However, the gain of a half-wave dipole equals 1. The vector T, is the distance

vector between element 7 and the origin of the Cartesian coordinate system [8]:

P,=[d, d, d, (3.17)
and k is a vector containing the spatial wave number of the received signal:
Kk =k[sinfcos¢ sinfsing cosd]”, k=2m/\ (3.18)

The spatial phase shift is due to the delay in time the signal experiences when
travelling across the array [8][64]. Thus, the induced voltages at the open-circuited

terminals of the elements in an antenna array can be written as the vector:

T . - T
Vind 25(9)S(t)[efk'rl LS Y | Y

(3.19)

o7 T T
e]k I ejk In . e]k Iy
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incoming signa%

Figure 3.8: An arbitrary 3-D geometry of identical antennas receiving a
signal.

If the antenna geometry is a ULA with the elements distributed uniformly with a

spacing d on one axis, say the x-axis, see Figure 3.9a, the term Kk’ r, for a signal in

the x-y plane will be:
cos ¢
kK't, =k[(n—1)d, 0 0]sin¢
(=, 0 0]sin 20

=(n—1)kd cos¢
The vector k will have azimuth dependence only because 6 = 7/2 . If element #1 is

positioned at the origin, then the measurement in (3.19) becomes:

V-d:/-ss(t)[l p/kdcosd  j2kdcosd ej(N—l)kdcosqﬁ}T
mn

(3.21)
= ka4 (¢)s (1)

where

k = (3(0) = constant

Similarly, for a UCA with radius R and element #1 located at (x,y,z)=(R,0,0),

(3.20) and (3.21) become, respectively:
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Figure 3.9: Antenna array receiving a signal in the x-y plane (a) ULA; (b)
UCA.
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Note that the phase of each element in the UCA geometry of Figure 3.9b has been
referred to the origin where no element exists. Each vector of the induced voltages in
(3.21) and in (3.23) is related to the vector of load voltages in an all-active receiving
antenna array as in (2.38). In the case of SASPA arrays, the variable s(¢) represents
the response to the uncoupled current on the elements of the array. This is because
the load voltage at the terminal of the active element is determined by the induced
current on that element and by the short circuit currents induced on the parasites
which are then mutually coupled to the active element. In [19, Chapter 24] the
induced current on a short-circuited dipole antenna is related to E, or to s(¢). Thus,
after pre-multiplying (3.21) or (3.23) by the CVUC model of (2.54) and inserting the
Beam Space (BS) term (which will be explained in detail in Chapter 5), the final

expression for the load voltage at the terminal of the active element can be obtained.
3.6.2 Mutual Coupling in Receiving SASPA Arrays

In the previous chapter, the CVUC model was formulated to give the coupling matrix
of a receiving antenna array. In this section, it will be shown that CVUC matches the
operation of an SASPA array. This can be shown when the resultant vector of load
voltages is the zero vector except for one non-zero entry which corresponds to the
active element. This occurs when substituting Z; , =0 into the entries of the CVUC
model where p corresponds to a parasitic element. For simplicity, let an SASPA
array consists of two elements with one of them active (element #1) and the other
parasitic (element #2). The vector of the load voltages for this array will be a vector
of one non-zero entry which corresponds to the active element and a zero-voltage
corresponding to the parasitic element. To show this, the matrix (D—f—ST*l) in

(2.54) for this scenario can be rewritten as:

Zn+7Zp, 0
0 Zy+Z;,

_le ZlZ

D+ST ' =
ZZl _Z22
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The matrix T~' can be rewritten as:

-1
| ~7Z, 1 Zip
O le +ZL,1 le+ZL,1

' — — A (3.25)

—Z 1 21 1

ZZZ+ZL2 Z22+ZL2

where

Z+Z Ly + 2
A— ( 11 L,1)< 22 L,2) (3.26)

(Zn + ZL,1)<222 +Z;, ) —ZyZy,

Pre-multiplying the matrix in (3.25) by the matrix S and making some

simplifications yields:

ST!
Zp
[zZn zy Iy +2Z,
Zy —Zy Zy 1
Zp+Z,
7, Z1yZy, —21Zyy 75
(Zy +Zp ) (Zoy +Zp5) IntZ, ZntZp,
(21 +Zy(Zoa+ 21 0) = 21525 Zy - ZpZy  —ZpZy .
Lpn+Z,, Zy+Zp,
(Zn + ZL,l)[ZuZzl —Zy (Zzz + ZL,Z)] (Zzz + ZL,2>ZI2ZL,1
B (Zn + ZL,I)(ZZZ +Zp, ) — 292y, (Zn + ZL,I)(ZZZ +Zp, ) —Z1yZy;
(le + ZL,I)Z2IZL,2 (Zzz +Z;, )[_ZIZZZI —Zy (Zn +7Z;, )]
(le + ZL,I)(ZZZ +Z, ) — 2122y (Zn + ZL,I)(ZZZ +Z;, ) —Z12Zy)
(3.27)
Finally adding the matrix D to the result and putting Z; , =0 produces:
i+ Z 0
psT =" T
(Zyy+ 21| 2122y, — 2112y VASAVAR,
N (211 +ZL,1)Zzz —ZyZy, (le +ZL,1)222 —Z1yZy

Zyy|=Z1yZy) = Zyy (2 + 2]
(Zn + ZL,l)Zzz —Z12Zy)
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(Zi+Z11) 21172 20212y
211+ Z10) 20— 212751 (Zy1+Z1) 200 — 2192, (3.28)

0 0

As can be seen, the second row of the resultant CVUC mutual coupling matrix for
this case has zero entries. Clearly, the second row corresponds to the parasitic
element. If the matrix (3.28) is post-multiplied by the vector of uncoupled currents of

the array elements, the result is the voltage vector:

VW=l o (3.29)

Similarly, if element #1 i1s converted to parasitic and element #2 is turned to active,

the matrix (3.28) will be:

0 0

-1 _
D+ST "= ASASAR) (Zzz + ZL,Z)ZL,2ZII (3.30)
(Zyy+Z12) 20— Z12Zyy (Zyn+Z15) 2y — 2132

The procedure described above can be generalized to N-element SASPA arrays. The
results (3.28) and (3.30) show that applying the CVUC model to the couple-free
currents (the couple-free load current in the active element and the couple-free short-
circuited currents in the parasites) will couple the energy to the active element. This
result cannot be obtained if a load impedance of zero is substituted into the OCV
model of (2.39) or the RMIM model of (2.40) since some of their entries will be

singular.

Figures 3.10 and 3.11 show respectively the radiation patterns of five-dipole ULA-
SASPA and six-dipole UCA-SASPA receiving arrays. The mutual coupling between
the elements is assumed to be the CVUC. The interelement spacing between the
elements of the ULA-SASPA array is d =0.15)\. The radius of the UCA-SASPA
array is R = \/4.

The beam patterns in these plots are the result of the response of the array factor
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squared |AF |2 at the active elements in each of the N sub-snapshots which are spread

over one snapshot of the measurement. That is, for the ULA-SASPA array:

LR =] @ =) agpa(o) (331)
and for UCA-SASPA array:
‘AFL(]Z’)A = ‘x(n) (425)‘2 = (c(n))T aycy (¢)2 (3.32)

where ag; (@) and ayc,(¢) are defined in (3.21) and (3.23) respectively and
(c("))T is the row of the CVUC mutual coupling model which corresponds to the
active element 7. It can be seen from Figure 3.10 that the beam patterns produced in
the ULA-SASPA array are symmetrical around the element in the middle, while in
the UCA-SASPA array, all the produced beam patterns are symmetrical. This shows

that the ULA-SASPA array suffers from the ambiguity property.

3.7 Summary

The principle of SPA and SASPA antenna arrays has been explored in this chapter.
These arrays have a flexible and fast mean to direct and steer their overall radiation
pattern to different directions by simply changing the load termination of their
omnidirectional elements. Changing the load condition at the termination of each
element can be implemented with PIN diodes. These diodes have very short
switching times and are eminently suitable to act as RF switches. Steering the overall
radiation pattern of SPA and SASPA arrays to different directions has been
established through varying the spatial phase shift of the steering vectors by
successively altering the termination of the elements. This outweighs conventional
antenna arrays when considering beamforming since a weight vector needs to be

applied to the latter to achieve a certain beam pattern.
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CVUC model as the mutual coupling. The interelement spacing is d = 0.15\.
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One of the important characteristics of SPA and SASPA arrays is mutual coupling.
This characteristic, which may be considered to be an adverse effect in conventional
antenna arrays, is found to be advantageous in determining the resultant radiation
pattern and directivity of an SPA or SASPA array in conjunction with the self-
beamforming procedure described above, the number of elements, and the array
geometry. The mutual coupling and the total radiation pattern of SASPA arrays in
transmit mode have been analysed so that a closer understanding of the response of
an SASPA array in receive mode can be gained. It is found that UCA-SASPA arrays
produce symmetrical and more directional switched patterns. In contrast, ULA-
SASPA arrays produce unsymmetrical and less directional radiation patterns. Also,
more than one main lobe can be produced when some of the elements of a ULA-
SASPA array are switched to the active state. Thus, UCA-SASPA arrays outperform

ULA-SASPA arrays in both transmit and receive modes.

The CVUC model which was postulated in the previous chapter has been shown to
give an accurate representation of mutual coupling in SASPA arrays since this model
maps the free-coupled currents induced on the array elements due to the received
signals only to an appropriate vector of load voltages. The resultant load voltages
will be the zero vector except for the entry corresponding to the active element. This
result cannot be obtained when other mutual coupling models such as the OCV and

RMIM models are used as the mutual coupling model for SASPA arrays.
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Chapter 4
DIRECTION OF ARRIVAL ALGORITHM

4.1 Introduction

In conventional antenna arrays, all elements are terminated by a load. Hence the
elements are all active at the instant of measurement. Consequently, these arrays are
called all-active arrays. This chapter is devoted to explaining one of the many
different algorithms that have been proposed to estimate the DOA of signals
impinging on a conventional all-active antenna array. The algorithm is MUSIC
(MUltiple SlIgnal Classification). This DOA algorithm depends mainly on the

spectral analysis of the covariance matrix of the measurements.

The data model which reflects the measurements of an all-active array involves the
response of the array elements to the received signals plus the effect of noise. The
covariance matrix of the measurements which entail the spatial-temporal correlation
between the array elements is obtained from the data model. To build up a correct
data model, further information about the array’s parameters such as the array
geometry, antenna characteristic, etc. should be available [8]. Eigendecomposition of
the measurement covariance matrix is then performed to determine the signal and
noise subspaces. These subspaces are then processed by MUSIC to estimate the

underlying DOAs.

In practice, the covariance matrix of the measurements is obtained from a large
number of snapshots. This requirement ensures the obtained “covariance matrix and
its eigendecomposition are maximum likelihood estimates of the corresponding exact
quantities” [8] and unbiased estimation can be achieved. A typical spectral
identification of these algorithms is the peaks in the pseudospectrum of the
algorithm, such as in MUSIC [8]. The peaks are located near the DOA of the

received signals. The most important criteria of the DOA algorithms are the bias and
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variance of the DOA estimates, and the resolution of the algorithm, i.e. the ability to

resolve closely spaced signal sources [8].

4.2 Review of DOA Estimation with All-Active Antenna Arrays

4.2.1 The Data Model

The data model describes the response of the array elements to the received signals
and is central to the derivation of algorithms to estimate some of the spatial-temporal
parameters such as DOA, polarization, temporal signal frequency etc. [8]. The array
response appears as an induced voltage or current at the terminal impedance of each
element of the antenna array. In addition to these responses to the incident signals,
the observations or measurements include also noise which are normally assumed to
be additive. In practice, data models represent a compromise between the need to
model closely the real world [65] and the need to keep them mathematically simple
[8]. As such, assumptions are often made when constructing a data model. In the case

of antenna array processing, these assumptions are:

1. Linear transmission in an isotropic and non-dispersive medium: This assumption
implies that several traveling waves can propagate in this media simultaneously
[8] and in a straight line [14][65], i.e., the media is invariant with respect to

direction and is non-scattering.

2. Far field: The received signal is assumed to be in the far field. This means that
what is received by the antenna array is a plane wave, i.e., the wave is flat and
having constant phase [8] provided the distance between the signal sources and
the array is large enough so that the wavefront of the spherical waves emanating

from the source is approximately a plane wave at the array [8][14][65].

3. The number of received signals M is less than the number of the array elements,

i.e., M < N.Itis assumed that the number of signals is known a priori, or it can
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be estimated by algorithms such as MDL and Akaike’s AIC [8]. It is also

assumed that the signals arrive from M distinct directions.

. Narrow band: The mth received signal, m =1,..., M, can be expressed as:

(1) = Re{ay, ()P = o (t)cos (27 £t + 3, (1)) (a.1)

N

The signal s, (¢) is said to be narrow band as long as the envelope «,, (¢) and
phase (3,,(¢) are slowly time-varying functions with respect to 7 [14][65], where ©

is the smallest propagation delay from element to element in the array, i.e.,
a,(t—T)~a,(t) and B, (t—71)= 03, (?)

Thus, s,, (¢) experiences a phase shift only due to that delay, i.e.,

St —7) s, (1)e /2T

In addition, the received signals are assumed to be stochastic with zero mean
normal distribution and variance of USZ , e s,()~N (0,0’?). The response of
each element, which is the measured terminal voltage or current, to the delayed

version of the M received signals will be [14]:

M .
=36, (dy)sy(1)e 2T 1< pan 42)
m=1

where Gp(¢m) is the complex gain and phase of the response of element p,

and 7,(d, ) is the delay between element p and a reference location. Thus, the
response of element p is a linear combination of the M received signals [66].
Note the M received signals are assumed to have the same carrier frequency

[14]. Thus, (4.2) can be written in vector-matrix notation as:

M

x(1)= " a(@ s, ()= A(d)s(2) (4.3)
m=1

where a( [Gl e /2m/en(Gm) L Gy (¢m)e_j27rchN(¢m)}T eV {5 the

steering vector, G = {gzﬁl,...,ng}, and A(d)=[a(¢y) -+ a(dy)| € CVM s the

Steering matrix.
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A(¢) is full rank since ¢,,, m=1,...,M, are assumed to be distinct, i.e.,
rank (A (¢))=M [14][65]. Note that the range of the columns of A(d) is
confined to the noiseless measurement of the array or specifically to an M-
dimensional signal subspace of the N-dimensional space of the output of the

antenna array [8][13].

5. Noise: The noise n, (), which is contained in the measurements at the terminal
of each element, is assumed to be a complex circularly Additive White Gaussian
Noise (AWGN) [24][65] random-process with mean zero and variance 0,2, , 1.€.
n,(t)~N (O,o,% ) Also, it is assumed that the noise is uncorrelated with the

received signals [14][24][65]. Including noise, the observations in (4.3) becomes:
x(t)=A(db)s(¢)+n(z) (4.4)

where n(¢) € CM is the noise vector. The regression model in (4.4) is spatial-

temporal and forms the foundation of most DOA algorithms.

The structure of the matrix A(¢) depends on the array geometry. In ULAs, the

delay time 7, is (see Figure 3.9a):

—1)d cos —1)d cos
c Y
Since the antennas used in this work are half-wave dipoles with omnidirectional
characteristic, then a, (¢,,) =1 in (4.2) while the spatial phase shift of each element

with respect to the reference element is:

2 f, 1) coso - (p=1)dcoso

e—jzﬂchp(@ Mo Jem A _ ej(pfl)kdcosqﬁ

=e€ =e

The steering matrix for M signals received by an N-element ULA omnidirectional

antenna array will be:
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ejkd cos ¢y ejkd Cos ¢, . ejkd cos Py
Appg(d)=]| o/2kdcossy pJ2kdeoss, o j2kd cosgy (4.6)
ej(N—l)kdcosqSl ej(N—l)kdcosqu ej(N—l)kdcosqSM

The matrix in (4.6) has Vandermonde structure [8]. Similarly, for UCAs, the spatial
phase shift of each element with respect to the origin (see Figure 3.9b) is found in

(3.22) and the corresponding steering matrix will be:

o /KRcos @y eijr cos gy . eij COS Py
JkR COS[¢1 _zi] ijrcos[(bz _21] JkR COS[¢ _2771']
e N e N o N
O I I
ijcos[gz)l_ZW(N—l)] ijCOS[% _M] ijcos[qu _M]
e N e N B N

4.7)
4.2.2 Eigenstructure of the Spatial Covariance Matrix

To estimate spatial information, such as the DOAs, from the measurements x(¢), the
second order statistics of the output x(#;) which is sampled at times i=12,...,
should be calculated, i.e. estimating DOAs from the covariance information among
the array elements [8]. If the independent variables in (4.4) are dropped, the

covariance matrix for the measurements is:

R, = E{XXH} = E{(As—l—n)(As—i— n)H}
= AE{SSH}AH —f—AE{an}—i—E{nsH}AH —|—E{nnH} (4.8)
= AE{SSH}AH + E{nnH}

where E{-} is statistical expectation and ( - )H is the conjugate transpose

operation. The cross terms in (4.8) vanish due to the assumption that the incident
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signals are random processes, they are uncorrelated with noise, and the signals and
. HY H\_ 2

noise all have mean zero. Let E{ss }— S and E{nn }— 0,1y denote the

statistical expectation of the covariance matrix of the received signals and of noise,

respectively. Then:

R, = ASAY 1571, (4.9)

The signal covariance matrix S represents the degree of correlation occurring
between the received signals. Therefore, when the received signals are totally
uncorrelated, S will be diagonal with the signals’ power on the main diagonal
[13][66]. However, S could be singular for totally coherent signals [13][66].
Accordingly, each entry on the main diagonal of R, represents the sum of the
powers of the received signals absorbed by the corresponding array element plus the
noise power at that element. Note that R, € CM*N' is Hermitian (not Toeplitz), i.e.,
Rf =R, . In addition, R, is positive definite (pd) and all its eigenvalues are real
[8][64]. Therefore, R, can be defined in terms of its orthonormal set of eigenvectors

scaled by their corresponding real eigenvalues. This can be done by decomposing

R, as
R, = EAE” (4.10)
In (4.10), E=|e; e, --- eN]GCNXN contains the distinct eigenvectors of the

covariance matrix R, and is unitary, i.e. E7 :Efl, since its columns are
orthonormal. The matrix A = diag(4;,4,,...,4y) is diagonal with entries the real

eigenvalues of R, ordered such that A, > A, >---> Ay [8], i.e.

A 0 - 0 0
0 A4 -« 0 0
A=l o 4.11)
0 0 Ay, 0
0 0 0 Ay

The decomposition in (4.10) is called Eigen Value Decomposition (EVD) or spectral
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factorization. Another expression equivalent to (4.10) can be written in terms of a

linear combination of rank one matrices as:
N H
R, =) Aee, (4.12)
n=1

The outer product of each eigenvector by its complex conjugate leads to a rank one

matrix which is then scaled by the corresponding eigenvalue.

In practice, the covariance matrix of the data x(z) is measured over only a limited
time. As a result, the estimated covariance matrix ﬁx may not provide the same
eigenvectors and corresponding eigenvalues as those in (4.12) [8]. Therefore, the

practical averaged sample of R, should be measured for a large number of

snapshots Q [8][65], i.e.:

A 1 & H SATH

R, :EZX(Q)X (t.)=EAE (4.13)
i=1

where the sign - denotes estimated value. In addition, the calculation in (4.13) will
provide unbiased estimates of the parameters extracted from ﬁx such as DOAs
[8][13][14][68] if Q is large. Thus, (4.4), (4.10), (4.11), and (4.13) are the foundation

for describing the methods used in different high-resolution DOA algorithms.
4.2.3 High Resolution DOA Algorithm

In the literature of signal processing, the algorithms that are commonly used to
estimate DOAs have been classified into two main categories [8]:

1. Parametric methods

2. Spectral-Based Algorithms.

The spectral-based algorithms are further classified into:

a. Beamforming Techniques

b. Subspace-Based methods.
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In this work, the focus will be on subspace-based methods. The most well-known
algorithms of this class are MUItiple Slgnal Classification (MUSIC) [66] and
Estimation of Signal Parameters via Rotaional Invariance Techniques (ESPRIT)
[71]. However, only MUSIC is considered since the purpose of this thesis is to

explore the possibility of high resolution direction funding with SASPA arrays.

MUSIC is based on based on partitioning the orthonormal subspace E in (4.13) into
two orthogonal subspaces, the signal subspace ES and the noise subspace En, and
the fact that En is orthogonal to the column space of the steering matrix [13][66].

Therefore, the covariance matrix in (4.10) is first partitioned into two subspaces as:

H H H
R, =EAE” —=EAE" +E A E (4.14)

n-"n—n

The partitioning in (4.14) follows from the fact that the column range of the steering
matrix A is confined to the measurements therefore it should be confined to the
M-dimensional subspace of E, i.e. E E(CNXM, while the N —M columns of E
form the noise subspace E, € CNXN-M) [14][63]-[65]. Accordingly, the M
eigenvalues A; > /A, >--->/A;, >0 are the elements of the diagonal matrix A
while Ay, =4y, ==Ay = aﬁ are the elements of the diagonal matrix A,

4.2.3.1 The MUSIC Algorithm

The MUItiple SIgnal Classification algorithm was found by R. O. Schmidt in his
PhD dissertation in 1982 [66]. The basic idea behind this algorithm is that the noise
subspace, which 1s estimated along with the signal subspace from the measurements
as in (4.14), is also orthogonal to the subspace spanned by the columns of the

steering matrix [66], i.e.
{R(A)=R(E,)} L R(E,) (4.15)

where R (A) is the range space of the matrix A.
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Let e n i=M +1,...,N be the set of the noise subspace vectors. Then one vector of
this set is an eigenvector of the covariance matrix R, with an associated eigenvalue
of 02 . Now, for any square matrix A, it is well-known that if (v,\) is a solution of

Av = Av, then v is an eigenvector of A and A is the associated eigenvalue. It then

follows that:
Rxeni = Unenl-
or (4.16)

Rye, — Uﬁen[ =0y

Therefore, post multiplying (4.9) by e, yields:

Rye, = ASA” e, + aﬁeni

Rearranging and using (4.16), the above equation is reduced to

ASA"e, =0y, (4.17)

Assuming A is full rank, and S is positive definite and non-singular, then:
AHen,- =0y
or (4.18)

H
A En :0M><N

This means the noise subspace is orthogonal to the columns of A [13][66], i.e. every
noise eigenvector is in the null space of A Schmidt has exploited the result in
(4.18) to estimate the DOA of the received signals by searching for the peaks that
occur when the squared distance between the search vector a(¢) for all possible
pe{-m7m} (¢€{0,7} in the case of ULAs because of ambiguity) and the signal
subspace is minimum. Alternatively, the goal is to search for the peaks when the
projection of the search vector a(¢) onto the noise subspace is minimum [66], i.e.

by searching for the peaks in the MUSIC spectrum
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1 1
Pyysic (9) = = 5 (4.19)

2

In estimating the signal subspace from the covariance matrix of the measurements,
there should be prior knowledge about the number of incident signal impinging so
that E can be consistently partitioned into two subspaces. Schmidt has pointed out
[66] that for an array of N antenna elements receiving M signals, the number of

signals that can be estimated is:
M=N-F (4.20)

where F is the estimated multiplicity of the minimum eigenvalue A_;, = 05 of ﬁx .
This is because the noiseless measurements, ASAT cCMN' has minimum
eigenvalue A ;. =0 with multiplicity F. This means ASAY s singular, 1.e., it is
rank deficient (rank(ASAH ) =M < N) [13]. Accordingly, the dimension of the
null space of ASA” is F. Adding a,%l y to ASA? will make the latter invertible
with F minimum eigenvalues equal to 05. The last method is called “diagonal
loading” [67]. Practically, the equality sign in (4.18) may be replaced by an almost-
equal sign, ie., A7 e, ~ 0,,.; because the estimated noise eigenvalues will differ
slightly from a,% . The result is merging some portion of the signal subspace into the
noise subspace. This occurs when the value of some of the eigenvalues of the signal
subspace are close to the value of the eigenvalues of the noise subspace. To avoid

such a case and to have an exact value of ¥, the following conditions are desirable

when implementing the MUSIC algorithm [66] [68]:

1. The number of snapshots QO should be large.
2. The SNR ratio of the received signal should be high.
3. The number of the elements in the array should be large.

4. The array aperture should be large.

As a result, sharper peaks near the true DOAs will be seen in the MUSIC spectrum

[68]. The following simulations illustrate the influence of the above four parameters
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on the performance of MUSIC. Figure 4.1 shows the normalized MUSIC spectrum
for two signals incident from ¢; = 60° and ¢, =20°, both with SNR =10 dB. The
two signals are impinging on a ULA array consisting of eight identical antenna
elements with inter-element spacing d = 0.5\ . A measurement sample of five runs
with 1000 snapshots for each run is used. Figure 4.2 shows the MUSIC spectrum for
the same scenario but with SNR =2 dB, d = 0.25)\ and 100 snapshots for each of
the five runs. In Figure 4.3, two closely spaced signals ¢; =20° and ¢, =30° with
SNR =10 dB are incident on an antenna array of four identical elements with inter
element spacing d = 0.2\ and 1000 snapshots for each of the five runs. In this case,
the array aperture is very small. It is clear from Figure 4.2 that the performance of
MUSIC degrades when the desirable conditions stated above are partially not valid.
Also, Figure 4.3 shows that MUSIC fails to estimate the DOAs when the array

aperture is very small, and the signals are closely spaced.

The MUSIC cost function in (4.19) can be rewritten in terms of the signal subspace
as follows. Since the matrix E in (4.14) consists of a signal subspace and a noise

subspace, then it can be written as:

E=|E, E, (4.21)
and because of E is unitary, then:
EH
EEH :[Es En] ’ :IN
EH
n
or (4.22)

EsEf—i_EnE}]Z :Ps+Pn :PS+PSJ_ :IN

The matrix P, = EsEf' e CVV s the orthogonal projection matrix on the signal
subspace and P, =P =E EY ¢ C"*" | which is orthogonal to P,, is the
orthogonal projection matrix on the noise subspace [8]. Any square matrix P is said
to be an orthogonal projection matrix if it satisfies the following conditions P> =P

and P7 =P [60]. Substituting (4.22) into (4.19), we get:
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Puusic (6) = o —
T o)l - a0) e (0)a(0) " (@) a(0)
1 (4.23)
N[
2

where a’’ (¢)a(¢) = N . That is, the peaks at the DOAs occur when the norm-2 (the
Euclidian norm) squared of the projection of the steering vectors onto the signal
subspace is approximately equals to N; the number of array elements. Eq (4.23) will

be next used in Chapter 5.

MUSIC spectrum

P(o)

\
h

L il L L .
0 10 20 30 40 50 60 70 80 90
DOA in degree

Figure 4.1: MUSIC spectrum for two signals coming from ¢; = 60° and
¢, =20° with SNR =10 dB impinging on an 8-element dipole ULA
array with inter-element spacing d =0.5\. Five runs with 1000
snapshots for each run are used for this simulation.
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4.3

MUSIC spectrum

103

10° F

P(e)
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Figure 4.2: MUSIC spectrum for the same scenario of Figure 4.1 but with
SNR =2 dB, d =0.25)\.

MUSIC spectrum

DOA in degree

Figure 4.3: MUSIC spectrum for two signals coming from directions
¢ =20° and ¢, =30° and incident on an antenna array of four
elements with d = 0.2\ .

Data Models with Mutual Coupling Present

MUSIC has been proposed to estimate DOAs but the mutual coupling effect between

the array elements is often not considered. In the real world, this phenomenon always

exists as a result the performance of these DOA algorithms will be degraded because
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the data collected from the antenna elements will be contaminated by additional
information that are related to the energy exchange between the array elements. In
other words, the DOA algorithms described in the previous section rely on the
uncoupled voltages or currents that are induced on the array elements due to the
received signals only. Thus, the real data model (4.4) should reflect the contribution
of mutual coupling on the measurements along with the response of the array to the
incident signals. A square matrix C(6,6,d )ECN *N' that represents the mutual

coupling can be inserted into (4.4) as:
X(1)=C(6,6,d)-(A(d)s(t) + (1)) (4.24)

where X(¢) is now the measurement that includes mutual coupling effects. Note that
C(6,¢,d) depends on azimuth, elevation angles of arrival, and the inter-element
spacing [23]. However, in this thesis, it is assumed the received signals are incident
in the plane perpendicular to the array, for example, the x-y plane if the dipole
elements are aligned parallel to the z-axis. Moreover, the antenna elements used in
the arrays are assumed to be omnidirectional. Therefore, mutual coupling in this
work will be a function of the inter-element spacing only. For simplicity C(6,,d)
will be represented by C only. The structure of C depends on the geometry of the
array, and in general, for an arbitrary geometry of antenna elements C will have the

following structure:

‘i1 2 Gz G
€1 Cp C3 - Oy

C=|c ¢ 3 - ay (4.25)
Cn1 Cn2 CN3 0 CaN

Each entry ¢;, i,j=1L2,...,N denotes the mutual coupling between elements i
and j. Note that, if the spacing between the elements is large, then ¢; ~ 0 and C isa
banded matrix. In addition, in geometries that consist of identical elements, the

mutual coupling between any two elements is reciprocal, i.e. ¢; = cj; . Therefore, C
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1S symmetric.

When the inter-element spacing between the elements is uniform, such as in a ULA,

then C will have a Toeplitz structure, i.e. ¢; = ¢ 1)(j41) [70][72]. This means that

Cy4 1s symmetric Toeplitz, i.e.:

‘1 €12 €13 R O S I .Y
€12 ‘1 ‘12 €3 T QN
€13 €12 ‘1 €12 K :
Coa=| . . . (4.26)
: 13 €12 : : 13
CI(N-1) : R K ‘1 €12
AN Q-1 €13 €12 11

Note that Cyj; 4 in (4.26) can be defined by its first row, or first column, only.

If the array is UCA, then the structure of C,-, will be circulant which is a special
case of Toeplitz matrices. In a circulant matrix, each row is the same as the preceding
row except for a rotation of one element to the right [73]. However, since the UCA 1is
symmetric around one fundamental Cartesian axis (if N is odd) or is symmetric
around the two fundamental axes (if N is even), then the additional condition

Cij = C(N—i)j also applies [73]. Thus

ij
11 2 63t 3 O
€12 1 2 63 O3
3 ¢p ¢y oy :

Cuca=| . . (4.27)
3 2 . - O3
C13 : . . Cll Clz
Cl2 ¢33 C2 Oy

1e., Cycy 1s symmetric circulant. In contrast to Cy; 4, Cycy 18 defined either by the
first (N/2)+1 terms in its first row or column if N is even or by the first (N +1)/2
terms in the first row or column if N is odd. Obviously, being defined by fewer
elements, C;, 1s more beneficial than C;;, since the latter needs more

computations in calibration or decoupling scenarios. The entries of C, whether it is
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for ULA or UCA, can be calculated from Sections 2.3.3 and 2.4.1.

Now, returning to (4.24) which can be written in a simpler form as:
X(1)=C-(A(¢)s(1) +n(r) (4.28)

the effect of C on the noise n(7) depends on the source of the noise [24]. The
voltage induced on the antenna due to environmental noise such as cosmic and solar
noise can be exchanged between the array elements via mutual coupling [24]. For
this scenario, the model (4.28) is valid and the coupling effect represented by C can
be easily counteracted by pre-multiplying (4.28) by c! (assuming C is non-
singular) to retrieve the model in (4.4) which is the model for measurements with no
mutual coupling. The matrix C~! can be one of the MCMs mentioned in Section
2.4. Thus, after removing mutual coupling from (4.28), the procedure described in

Section 4.2.3.1 can be followed to estimate the underlying DOAs.

On the other hand, mutual coupling may have no effect on the noise if the dominant
noise source is due to the hardware of the receiver, such as thermal noise [24]. The

model (4.28) then reduces to:
x(1)=CA(d)s(t)+n(z) (4.29)

Obviously, the method used to counteract mutual coupling in (4.28) is not valid for
(4.29). A method that has been proposed in the literature to estimate DOAs in the
presence of mutual coupling that does not affect noise will be discussed in the next

section.

It should be emphasized here that the discussion thus far in this Chapter relates to all-
active arrays only. In the case of SASPA arrays, the assumptions used to derive
(4.28) and (4.29) will be used in Chapter 5 and Chapter 6 respectively to develop the
corresponding data models for SASPA arrays. Applying each of these data models

on SASPA arrays in some situations will result in improvements in DOA estimation.
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Reverting back to all-active arrays, obviously the eigenstructure of the covariance
matrix obtained from (4.29) will differ from the eigenstructure of the covariance
matrix obtained from (4.4) and the actual information about the signal parameters
will be disturbed. As a result, the DOA algorithms may fail to find the true DOAs
[50]. In the next section, a method to counteract such a phenomenon when

implementing DOA algorithms (on all-active arrays) is discussed.

4.4 MUSIC Algorithm with Coupled Received Signals and
Uncoupled Noise

The covariance matrix for the data model of (4.29) is:

R, =E{xx" | = CAE{ss" | A”C" + E{nn"
- B} CAB{ss) AFC 4 B{an -
= CASAICH 4571,
With a method similar to (4.14), ﬁx can be eigendecomposed as EAE? . Also, the
matrix E can be partitioned into two orthogonal subspaces, a signal subspace E,,
and a noise subspace E, . However, the column range of the signal subspace E, is

now confined to the column range of the matrix CA when mutual coupling is

present [24], i.e.:

R(E,)C R(CA) (4.31)

This means that the subspace spanned by the columns of CA is orthogonal to the
noise subspace E, , i.e., R(CA) L R(En) This result can be used to update the
cost function of MUSIC by searching for peaks in the MUSIC spectrum at the DOAs
where the search vector Ca(¢), ¢ €[—m,7| is orthogonal to E, [50], i.e. (4.19)

becomes:

1 B 1
(6)C"E,E;Ca0) BN Ca(o)f]

Pyusic (¢) = 7 (4.32)
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4.5 MUSIC Algorithm in Conjunction with CYUC

In Section 2.4.3, CVUC as a mutual coupling model is formulated. The salient
feature of this model is that it can be applied to all-active and SASPA arrays, and the
C matrix obtained from the model can be used in the direction finding algorithm
of (4.32). Also, as was shown in Section 3.6.2, for SASPA arrays, pre-multiplying
the vector of uncoupled currents of a receiving array by the CVUC model will result
in a vector of the load voltages, and this vector will contain zeros if the load

impedances corresponding to parasites in the CVUC model are set to zero.

In the next section, the effectiveness of CVUC in conjunction with (4.32) to perform
DOA estimation using all-active antenna arrays will be investigated through
simulations. In addition, the fulfilment of the condition M < N for a successful
DOA estimation will also be examined. Specifically, this condition will be verified
by considering SASPA arrays with a certain number of fixed active elements. That
is, if the number of active elements is g, then the number of signals that can be
detected by that SASPA array should be M < g since no measurements will be
made at the terminals of the parasites. For such a case, the N X N covariance matrix
will contain rows and columns that are all-zeros. As a result, three subspaces which
are orthogonal to each other will be obtained from the eigendecomposition of the
covariance matrix. . The first subspace is the signal subspace E, e CVM | the
second subspace 1s the noise subspace E, € cNHe—M ), and the last subspace is the
parasitic subspace E, € c¥V=2) whose corresponding eigenvalues are all zeros.
Since the eigenvalues of the estimated subspace E p are all “solid” zeros (just like
the eigenvalues of the theoretical E ,) compared to the almost constant, but never all
constant, eigenvalues of En , this means E » Will be more efficient than En in

estimating the underlying DOAs when used in (4.32).
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4.6 Simulation Study

This section is devoted to show the performance of using MUSIC in conjunction
with the CVUC model to estimate the DOAs of impinging signals on a non-
switching ULA-SASPA array. As pointed out in Section 3.6.2, setting the load
impedances of the parasites to zero in the CVUC model results in a vector of load
voltages with zero entries except for the entries corresponding to the active elements.
The measurements obtained from such a system under the data model (4.29) is then
used to calculate the covariance matrix which in turn is used to obtain the
corresponding signal, noise, and parasitic subspaces. The underlying DOAs are then

estimated from (4.32) with the C matrix found from the CVUC model of (2.54).

In the following simulations, a seven-element ULA-SASPA array is used to estimate
the DOAs of three signals impinging on the array using (4.32). The inter-element
spacing is d =0.35\. The received signals are coming from azimuth directions
¢ =60°% ¢ =62° and ¢;=75° with SNR=20dB for each signal. The
simulations are conducted with different number of active elements g to emphasize
the validity of the condition that the number of active elements in a receiving array
should be greater than the number of received signals, i.e. M <g for DOA
estimation to be successful. In addition, the use of the theoretical covariance matrix
calculated in (4.30) is compared against the use of the covariance matrix obtained

from the simulated measurements in (4.13).

In Figure 4.4, the MUSIC spectrums for DOA estimation using the theoretical
covariance matrix in (4.30) are plotted against the number of active elements in the
array. The plots show clearly that the three signals can be detected by the ULA-
SASPA array under the condition M < g with high resolution, same as the all-active
array with the same number of elements. On the same figure, a plot showing the
failure to detect the DOAs when the condition M < g has been violated is also

shown.

92



MUSIC spectrum in conjunction with CVUC model;Theoretical case(eq 12)
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Figure 4.4: MUSIC spectrums for DOA estimation from the covariance
matrix of (4.30) in conjunction with the CVUC model. The array is a 7-
element ULA all-active and ULA-SASPA array with d =0.35)\. Each
array is receiving three signals emanated from the directions ¢; = 60°,
¢2 - 620 and ¢3 - 750 .
Figure 4.5 shows the simulation for DOA estimation carried out for the measure-
ments obtained from (4.13). The same ULA all-active and ULA-SASPA arrays are
used. Also, the same signal scenario is used. Each simulation is conducted over five
runs with 1000 snapshots for each run. The first plot is for the all-active array; the

second plot is for the ULA-SASPA array with 5 active and 2 parasitic elements. The

last plot is for the ULA-SASPA array with 2 active and 5 parasitic elements.

In Figure 4.6, the effectiveness of the parasitic subspace over the noise subspace
when used in (4.32) is depicted. The array is a 7-element ULA-SASPA array with
inter-element spacing d = 0.25\ and receiving three signals with the same scenario
as in Figures 4.4 and 4.5. However, only 750 snapshots are used for each of the five
runs. Figure 4.6a shows the MUSIC spectrum when projecting the search vector in
(4.32) onto the parasitic subspace. Figure 4.6b shows the MUSIC spectrum when
projecting the search vector onto the noise subspace. The simulations in Figures 4.4
and 4.5 show that the MUSIC algorithm of (4.32) with the CVUC model succeeded
in estimating the underlying DOAs with very high resolution provided the number of

active elements in the array exceeds the number of received signals.
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It is clear from Figure 4.6 that the resolution for the underlying DOAs obtained from
using the parasitic subspace in (4.32) is much better than the resolution attained
when using the noise subspace. This shows that using the parasitic subspace in (4.32)
can overcome the problem of subspace leakage into the noise subspace. The latter

may occur when some of the signal eigenvalues are almost equal to the noise power.
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Figure 4.5: Three simulations for DOA estimation from the covariance
matrix (4.13) for the same scenario used in plotting Figure 4.4. Each

simulation is executed with five runs with 1000 snapshots for each run.
The signals are received with SNR =20 dB. (a) ULA all-active array; (b)
ULA-SASPA array with five actives and two parasites; (¢) ULA-SASPA
array with two actives and five parasites.
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S16ASPA array;5actives,2parasites, projection on parasitic subspace
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Figure 4.6: Comparison between the effectiveness of the parasitic
subspace and noise subspace when each one of them is used in (4.32) to
estimate three signals ¢ =60°, ¢, =62° and ¢;=75° with
SNR =20 db impinging on a 7-element ULA-SASPA array with
d =0.25). Five runs with 750 snapshots for each run are used. (a)
MUSIC spectrum when the parasitic subspace is used; (b) MUSIC
spectrum when the noise subspace is used.
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4.7 Summary

This chapter explores the well-known and effective algorithm for DOA estimation:
MUSIC. The MUSIC algorithm will be used in the next two chapters to investigate
the ability of SASPA arrays to produce DOA estimation that is superior to that of
conventional all-active arrays. These concepts will be helpful to understand some of
the key characteristics provided by SASPA arrays. Mutual coupling is one of the
characteristics by which SASPA arrays determine their response to the received

signals.

The CVUC model which is found to be an appropriate mutual coupling model for
SASPA arrays is used in conjunction with MUSIC to estimate the underlying DOAs.
It 1s shown the mandatory condition that the number of received signals should be
less than the number of array elements for a successful DOA estimation can be
verified by changing the number of active elements in an SASPA array. This
procedure can be executed by varying the number of parasites in an SASPA by
setting to zero the load impedances corresponding to the parasites. The result is that
DOASs can be detected with very high resolution when the number of active elements
exceeds the number of received signals. Eigendecomposing an SASPA array’s
covariance matrix will result in three orthogonal subspaces: signal, noise and
parasitic. It is found by simulation that using the parasitic subspace will lead to better

resolution for DOA estimation compared to the noise subspace.
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Chapter 5

DOA ESTIMATION USING SASPA ARRAYS
WITH KNOWN MUTUAL COUPLING AND
COUPLED NOISE

5.1 Introduction

In this chapter and the next chapter, the ability of N-element SASPA arrays to
estimate the DOAs of a set of impinging signals with high resolution is explored. The
study assumes mutual coupling between the elements of the SASPA array affects
both the array elements’ response and noise. Thus, the data model that applies is akin

to (4.28) which assumes noise is pre-dominantly background noise.

The procedure to obtain a snapshot of measurements from an SASPA array is to
leave all antenna elements in the parasitic state while sequentially switch one
element from the parasitic state to the active state and back. In other words, a single
snapshot consists of a frame of N sub-snapshots. In practice, the aforesaid
measurement procedure can be implemented using very high-speed PIN diodes to
switch the antenna elements between the active and parasitic state during each sub-
snapshot. It is obvious that a fundamental requirement of the measurement procedure
is that the bandwidth of the impinging signals must be narrow enough to allow one to
assume the N sub-snapshots taken to form one snapshot are taken almost

instantaneously.

The mutual coupling model that is used in the study reported in this chapter is the
CVUC model derived in Chapter 2, since it was shown in Chapter 3 that this model
accommodates the operational mode of SASPA arrays, that is, in each sub-snapshot,
only one antenna element is active (its terminals connected by a load impedance) and
the remaining ones are parasitic (their terminals shorted together). It shall be

assumed the CVUC model is known a priori so that couple-free measurements can be
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obtained after decoupling mutual coupling from the measurements. As a result, N
versions of the underlying steering matrix will be produced. Thus, the signal
covariance matrix of SASPA array acting under the CSCN condition will be more
accurate compared with the all-active antenna receiving array having the same
geometry. In this chapter, the potential enhancement in performance of MUSIC in
conjunction with switching SASPA arrays, relative to all-active arrays, is
investigated. To ensure the comparison is fair, in the simulation study reported in this
chapter, each all-active array will have the same geometry as the SASPA array
studied, i.e., same number of elements and same inter-element spacing. Also, mutual
coupling that would normally exist in the measurements of the all-active array, is

fully compensated.

As a side remark, Sections 4.5 and 4.6 of the previous chapter, which examined the
performance of non-switching SASPA arrays with more than one active elements,
provides a bridge from all-active arrays to the study of switching SASPA arrays

having only one active element in each sub-snapshot.

5.2 Array Data Models

The data model that expresses the response of an SASPA array to the received
signals shall be formulated first. This model should depict the spatial-temporal
dependence since the observations generated by the antenna array is a function of
time and space. In the case of SASPA arrays, the data model should accommodate
the fast switching, within a sub-snapshot, of the elements from active to parasitic
state or vice versa. This fast switching can be modelled as sub-sampling of one
snapshot. Accordingly, a model that includes a representation of the unavoidable
time skew of the sub-snapshots is reqruied. In the following, the all-active array data
model is derived first in a more general setting, mainly to establish notations and

some concepts. The SASPA array data model is then derived.
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5.2.1 All-Active Array Data Model

Consider an all-active antenna array (i.e., a conventional antenna array) with N
antenna elements where the nth array element, n =1,..., N, has directional gain
G,(0,¢) and is located at r, =[x, y, z,]". Suppose the array is operating in
an isotropic, homogeneous, and non-dispersive medium. The response of the array to

a plane wave with wavelength \ (or frequency w) arriving from direction u(6,¢)

sinf cos ¢
u(f,¢)=|sinfsing (5.1)

cosd

is given by the array response vector

G, (0, gb)eﬂ‘ﬁT“(@a ?)
b(0,0)=C,4(0,9) : (5.2)
Gy (6, (b)ejkfzeu(‘% })

where C,,(6,¢)€ CY*N is the all-active mutual coupling matrix, and k is the

wavenumber
27

k=— 53
)\ (5.3)

Figure 5.1 shows the spatial coordinate system.

Figure 5.1: The spatial coordinate system

In the literature, the array manifold vector is also defined. It is given by
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i u(0.6)

a(0,¢)=| (5.4)

/T8, 9)

That is, a(d,¢) gives, for a signal arriving from u(6, ¢), the phase delays of the

signal at the array elements.

In the general case where M signals s, (), m=1,...,M, each arriving from
u(0,, ¢, ), are impinging on the array, the output of the array elements, as captured
in one snapshot, is given by
51 (t) namb,l <t) nself,l (t)
XAA<t):[b(913¢l) b<9Ma¢M)] S 0 7 I el (5.5)
Sm (t) namb,N (t> nself,N (t>
where 71,1, , (¢) is the ambient noise sensed by the nth array element, ng , (¢) is
the self or internal noise due to the electronic circuitry of the nth array element, and

C 44 1s the non-directional all-active average mutual coupling matrix
— 1 T T .
C . _Efo f_ﬂcAA(e, ¢)sin0dodo (5.6)

Now, suppose the mutual coupling matrix C , (0, ¢) is independent of direction, and
the element gains G, (0, ¢) are omnidirectional. Equation (5.5) can then be written in

the more familiar form

X0 (1) = C 1 {A (8, &)8(£) + My (1)} + M (1) (5.7)
where
ejkrlru(91=¢1) ejkrlT“(9M>¢M)
A0, )= : : (5.8)
o) L k(b o)

s(t)=| : (59)
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Namb,1 (t)

Ny ()= (5.10)
namb,N (t)
Nseif (2)

nge ()= (5.11)
nself,N (t)

and

Cu=Cuy(0,0)=C4y (5.12)

Suppose next that the array is planar in the xy-plane, and the incident signals are also
in the xy-plane. In the case of a Uniform Linear Array (ULA) with element #1 at the
origin and the other elements distributed uniformly along the +x axis, spaced d

apart, (5.8) then becomes

1 1

ejkd cos ¢y . ejkd cosPys
Ay (d)= : : (5.13)

ejkd(N—l)cos¢l . ejkd(N—l)cosgSM

And in the case of a Uniform Circular Array (UCA) array with radius R, centred at

the origin, and element #1 located at 1, =[R 0 0], (5.8) becomes
eij cos@y . eij cosPys

JkR cos[¢1 —27ri] JkR cos[qu —27TL]
¢ N, N
Ayca(P)= : : (5.14)
N-1

ikR cos| oy —2m———
/ [qﬁ] N ] ..

. N-1
]kR COS[¢M —271'7]

e e

5.2.2 SASPA Array Data Model

For an N-element SASPA array, a snapshot is spread over N sub-sampling periods.
Suppose, with no loss of generality, that element #1 is sampled first, followed by

element #2, then by element #3, etc. Let 7, be the sub-sampling period, and x) (1)
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be the output from element n, the active element. A snapshot of an SASPA array is

then formed by
(1) V(1)
@+, @4
Xsuspa (1) = ¥ (: ) =" :(2) (5.15)
M (N =1 AN (2y)
where, for n =1, ..., N,
t,=t+(n—1)T, (5.16)
S1 (tn)
(1) =" (O, 81) - B (Oprn )|
Sm (tn)
n 5.17
r na(lm)b,l (tn) ( )
+ (ESZISPA) 5 + el (1)
nzglrril)b,N (tn)

Gl (em 5 gbm ) ejkrlTu(Hm On)
n T . iwln—
B Os ) = (€§spa (Onrs &) : e/ (5.18)
GN (Hm’ (bm ) ejkr]{;u(ems ¢m)

and where chSP (0, ¢) and EéZ)SP 4 are the nth column of the SASPA (CVUC)

mutual coupling matrices C g gp4 (0, ®) and Cg,gp, , respectively.
— 1 T T .
Csuspa = Efo f_ﬂCSASPA (0, ¢)sin0d¢d0 (5.19)

Suppose that, relative to 7, the bandwidths of the incident signals are sufficiently

narrow such that
Sp(t)=s, t+(N-1)T,), m=1,...M (5.20)

Accordingly, the time-skew due to sub-sampling can be compensated by simply

scaling the measurement from the nth array element by e /(" =VT5  That is,
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comp
5 (2)
= [Blony (O, 61) -+ By (Bars Bar)]| (5.21)
sy (1)
na(trrlrzb,l (t)
+ e St (Eg‘QS‘PAy : + et (1)

where

Gl <6 , ¢ )ejkrlTu(gms @m)
il ) T m> Pm )€ o
bggf)np (B $) = 00 '(ch)SPA (0> ¢m)) 3 /=N

Gy (0,, ¢m>ejkrz€u(9m7¢m)
G, (6, ¢m)ejkrfu(9m»¢m)
(et (B 6,)) : (5.22)
Gy(0,.6,) SN0, D)
If the ambient noise and self-noise terms in (5.21) are circularly complex and
mutually independent, then the effect of the time-realignment term e /=T g

simply to rotate them with no effect on their statistical properties. As such, the time-

realignment term can be removed from them to yield the following time-aligned

SASPA array data model.
xg}mp (t) x(l) (tl)
(2) —jwTy ((2)
X comp (1) = x"’”’”,”(t) _| e (5.23)
) (t) e—jw(N—l)Tsx(N)(tN)

comp

where
51(0) RENICY
Koy (0= [0y 01,60 - oy Onrntn )] F |+ (e (5.2
sy (1) nz(inm)b,N ()
+ Pgelfn (tn )

and B (0. ) is given by (5.22).

103



Finally, for the simplified signal scenario often studied in the literature where it is
assumed that

(a) the array is operating in the xy-plane,

(b) the mutual coupling matrix is independent of the direction of arrival of the

impinging signal such that Cgqp, (0, ) = CSASPA

(c) the gain of the array elements is omnidirectional (at least in the xy-plane) such

that, with no loss of generality, the gain can be set equal to 1,

it follows the sub-sampling time-skew compensated sub-snapshot xg’éznp (1), (5.24),

can be simplified to:

T n
xlo ()= (™) {A(d)s(0)+ iy (1)} + e (8,) (5.25)
where A (@) is defined by (5.8) with 6, =---=6,, =90°, s(¢) is defined by (5.9),
na(lirin)b,l (tn>
n{, (4,) = : (5.26)

nz(lrrgb,N (tn)
and ¢ is the nth column of the directionless mutual coupling matrix C where
C=Cyysps(0.0) = Cyysps = [C(l) W) (5.27)

Substituting (5.25) into (5.23) yields the reduced time-aligned SASPA array data

model
T
(c(l)) ni, (1)
Xcomp (t) :CA(d))S(t)+ +nse1f (t) (528)
T
(™) 0 (1)
where
nself,l (tl)
Ny (1) = 3 (5.29)
nself,N (tN)
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5.3 The SASPA Coupled-Signals-Coupled-Noise Model

5.3.1 Direct Model

If ambient noise is the dominant noise source, then the reduced time-aligned SASPA

array data model (5.28) can be simplified to the following Coupled-Signals-Coupled-

Noise (CSCN) model.
70 ()"l ()

f(¢)= : =CA(d)s(t)+ : (5.30)
A0 (™) 0l (1)

The covariance matrix of the time-aligned snapshot f (t) is given by

H
R, =E{f(Nf ()"} =Ry +Ry, (5.31)
where Ry, is the signal covariance matrix

Ry, = B{CA(¢)s(1)s(1) A(0)" C"'}

=CA()SA ()" "

(5.32)

s =E{s(1)s(1)"} (5.33)

and Ry, is the noise covariance matrix (see (5.26))

(1) (t)

Mam t H H

(O P e () M1 (1)

‘ ' | () | ()
na(ilr)le (tl) (1) (N)

) namb,N (tl) narnb,N (tN)
an == E‘
narnb,l (tN)
|

na(lﬁt)),N (ty)
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0 (c(N>)T o2 (5.34)
= 0,21 diag(”c(l) 2, o c(N)Hi)

The second equality of (5.34) follows from the assumption that the noise terms are
identically distributed, circularly complex Gaussian, and mutually independent. That

iS, for ny, Ny, N3, Ny = 1,...,N

2
, m =nyand n =
B, (1)1 <zn4>}[‘j; o 559

Observe that the noise covariance matrix Ry, is not a scaled identity matrix. This
implies the MUSIC algorithm derived from the direct model will require a

generalised eigendecomposition on the estimated data covariance matrix Ry.

5.3.2 Decoupled Model

The reduced CSCN model (5.30) can also be expressed in the decoupled form. It
follows from (5.30) that:

MO8 0 ( ()| A@)s() +nly (1)
A()s(1) + 0 (1)
=Q : (5.36)
A()s(r) +ni) (1)
=Qua(t)
where each zero entry in the block diagonal matrix Q € cN*N ’ isa IxN zero row

vector, and a(#) represents the couple-free measurements:
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A(®)s(t) +nl (1)
a(t)= : e (5.37)

A(9)s(r) + 0l (1,)

The system (5.36) consists of N equations in N 2 unknowns (the elements of a(z)).
Therefore, it is underdetermined. The Least Square (LS) method can be used to find

the smallest solution for such a system, which is:
~1
a(t)=Q"(Q0") f(1)=Q" () (5.38)

where Q is the right pseudo-inverse of Q [76]. Note that  has full row rank, i.e.,
rank (Q)=N.

The couple-free measurement vector a.(z) can be decomposed as:

aV (1)

a(t)=| (5.39)
a(N)(t)

where

a (1) = A(¢)s(t)+ 0", (1) (5.40)

is the estimated couple-free measurement when element 7 is active. Averaging these

measurements yields:
n 1 n
D20 ()= A(@)s(0)+ > nlny (1) (5.41)

The covariance matrix of y(#) is then:
H
R, =B{y()7(t)"} =R, +R,, (5.42)
where the signal covariance matrix is given by
Ry, =E{A(d)s(1)s(1)" A(0)"}

(5.43)
= A(d)SA ()"
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and the noise covariance matrix is given by (see (5.26))

]

anﬁb(t)

n=1

| (X
Ron E{F > Moy (1)

N N ]
ne(llrgb,l(tn> Z”gﬁzb,l(tn)* anrrlrzb,N(tn>*
1 n=l1 n=1 n=l1
e (n)
n
Znamb,N(tn)
n=l1
. Na,zl 0
:F
0 Na,zl
1 5
:NUHIN (5.44)

Comparing (5.43) and (5.44) with (5.32) and (5.34), it can be seen that the decoupled
model of SASPA arrays improves the SNR of the received signals, implying its data
covariance matrix is more accurate. In [77], it is shown that by increasing the SNR,
the amount of leakage of the signal subspace into the noise subspace can be reduced.
Moreover, in [78], it is shown that by increasing the SNR, the eigenvalues of the
signal subspace become larger and, hence, the merging of the signal subspace
into the noise subspace is significantly avoided. Therefore, when using Es in the
MUSIC cost function (4.23), more accurate DOA estimates can be obtained since
these subspaces are closer, in some sense, to the (unknown) theoretical signal

subspaces.

The next two sections point out the enhanced performance of the MUSIC algorithm
when ULA-SASPA and UCA-SASPA arrays with small inter-element spacing are

used, compared with the performance of the corresponding all-active arrays.
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5.4 Simulation Study

To illustrate the benefits of ULA-SASPA and UCA-SASPA arrays and their
improved MUSIC performance even when the inter-element spacing is very small,
the following simulation study was conducted. The enhancements will be
demonstrated by comparing the performance of an array when it is SASPA and when
it is all-active. The simulations are carried out for couple-free measurements

assuming the mutual coupling effect has been first removed.

Figure 5.2 shows the MUSIC spectrum for two signals coming from ¢ =70° and
¢, =80°, i.e., they are emanating from a direction close to a ULA array’s broadside.
The ULA array consists of six identical elements with inter-element spacing of
d =0.15\. The SNR of each signal is 15 dB and five runs with 1000 simulation
snapshots for each run are shown. Figure 5.3 shows a high-resolution DOA
estimation for two signals emanating from ¢ =80° and ¢, =85°, and both with
SNR =30 dB, as received by the same ULA-SASPA array. And as before, the

simulation was conducted over five runs with 1000 snapshots per run.

The ULA-SASPA array with closely spaced elements has also the capability to
improve DOA estimation for signals coming from directions close to the array’s end
fire, as can be seen from the simulation plots shown in Figure 5.4. The two signals
arrive from ¢, =20° and ¢, = 30°. Their SNRs are both 30 dB. The ULA-SASPA
array is the same as that used in the simulation plots shown in Figure 5.2 except

d = 0.12) . The simulation condition is five runs with 3000 snapshots per run.

Observe that, in spite of the elements of the array being very close to each other, and
the DOA of the received signals also being very close, the ULA-SASPA array was
able to estimate the DOAs with high resolution due to the effect of multiplying the
signal covariance matrix by N relative to the noise covariance matrix, as in (5.43)
and (5.44). In contrast, the all-active ULA with the same inter-element spacing failed

to find the DOAs of the received signals.
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Figure 5.5 shows the DOA estimation by a UCA-SASPA array of two signals with
SNR =25 dB coming from directions ¢, =70° and ¢, =80°. The array has a
radius R =0.2\ and consists of six identical half-wave dipoles. The figure also
shows the estimation of the same signals received by a six dipole UCA all-active
antenna array with the same radius. Clearly, the UCA-SASPA array succeeded in
estimating the signals’ DOAs with high resolution despite its very small geometry. In

contrast, the UCA all-active array is not able to resolve the received signals.

In Figure 5.6, the same scenario as in the previous simulation is used except the
received signals are now coming from ¢ =20° and ¢, = 30°. Figures 5.5 and 5.6
confirm that a UCA-SASPA array with a small radius has the capability to estimate
signals coming from different directions with the same SNR and same number of
snapshots. The reason for that is the noise eigenvalues of the data covariance matrix

of the UCA-SASPA R, are scaled by I/N .
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Figure 5.2: MUSIC spectrums for two signals with SNR 15 dB coming
from ¢ =70° and ¢, =80°. ULA has 6 identical dipoles with inter-
element spacing d =0.15)\. 5 runs with 1000 simulation snapshots per
run are used. (a) ULA-SASPA array; (b) ULA all-active array.
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ULA-SASPA array
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Figure 5.3: MUSIC spectrum for two closely signals with SNR 30 dB
coming from ¢ =80° and ¢, =85°. Array and simulation conditions
same as in Figure 5.2. (a) ULA-SASPA array; (b) ULA all-active array.
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Figure 5.4: MUSIC spectrum for two signals with SNR 35 dB coming
from ¢ =20° and ¢, =30°. Array same as in Figures 5.2 and 5.3
except d = 0.12\ . Simulation conducted over 5 runs and 3000 snapshots
per run. (a) ULA-SASPA array; (b) ULA all-active array.
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Figure 5.5: Comparison between the estimation of two signals coming
from direction ¢ =70° and ¢, =80° with SNR =25 dB and incident
on (a) UCA-SASPA array with six identical half wave dipoles and radius
R =0.2); (b) similar UCA all-active array.
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Figure 5.6: DOA estimation for the same scenario as in Figure 5.5 but for
the signals coming from directions ¢, = 20° and ¢, = 30°.
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5.5 RMSE Simulations

To confirm the improvement provided by ULA-SASPA arrays in DOA estimation
over the corresponding all-active arrays, the criteria Root Mean Square Error

(RMSE) which is defined as:

(5.45)

will be considered in the following simulation study where él- is the estimated value
of the DOA calculated from ith simulation run and ¢; is the actual or true value of

the DOA.

Figure 5.7a shows the variation of RMSE against the SNR of a received signal
coming from ¢, = 80°, i.e., from a direction close to the broadside of a ULA-SASPA
array. The array consists of four identical dipole elements with d =0.15)\. The
simulation was conducted for 100 runs with 100 snapshots for each run. The
simulation is compared with a ULA all-active array with the same structure. Another
comparison is shown in Figure 5.7b which was carried out for the same arrays, but
with the signal arriving from ¢, =20°, which is close to the end fire direction. It is
clear from Figure 5.7 that the ULA-SASPA array has lowered the RMSE of the all-

active array.

Figure 5.8 illustrates how a UCA-SASPA array performs over a range of SNR
through investigating the RMSE criterion of (5.45). Figure 5.8a shows the variation
of RMSE against SNR for a signal emanating from ¢, =80°, and impinging on a
six-element UCA-SASPA array with R=0.2)\. 100 simulation runs with 50
snapshots for each run were conducted to establish this plot. Figure 5.8b is a plot of
RMSE versus SNR for a received signal from ¢; =20° impinging on the same array.
The simulations show that the UCA-SASPA array has also lowered its RMSE with

respect to the all-active array irrespective of the direction of the received signals.
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RMSE vs. SNR for ULA-SASPA and ULA all-active arrays
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Figure 5.7: Two simulations illustrating the variation of RMSE of the
estimated DOA of a single signal against its SNR. The signal is received
by a ULA-SASPA array consisting of four identical antenna elements
with d = 0.15\. 100 runs with 100 snapshots for every run are used. The
signal direction is (a) ¢; =807; (b) ¢, =20°.
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RMSE vs. SNR for UCA-SASPA and UCA all-active arrays
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Figure 5.8: Two simulations to illustrate the variation of RMSE of the
estimated DOA of a single signal against its SNR. The signal is received
by a UCA-SASPA array consisting of four identical antenna elements
with R =0.2\. 100 runs with 50 snapshots for every run are used. The

signal direction is is (a) ¢, =80°; (b) ¢, =20°.
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5.6 Summary

The data model for an N-element SASPA array of arbitrary geometry is developed in
this chapter. This model includes both coupled noise and self noise. The consequence
of assembling a data snapshot from the sequentially measured sub-snapshots is also
included in the model. It is shown that the time misalignment resulting from the
delays in acquiring the sub-snapshots can be compensated easily by applying an

appropriate phase rotation to each measured sub-snapshot.

This chapter illustrates the performance of ULA-SASPA and UCA-SASPA arrays as
direction finding arrays in conjunction with the MUSIC algorithm assuming mutual
coupling is known, and the noise developed at the array elements are coupled
between them. Decoupling the mutual coupling results in N 2 measurements from
which a scaled steering matrix is obtained. The scaling matrix represents a gain
provided by SASPA arrays to the received signals despite the elements of the arrays
being close together. This benefit improves the performance of SASPA arrays as
direction finding arrays compared to all-active antenna arrays with the same
geometrical structure. The reason behind this improvement is the decrease in the
distance measure between the signal subspace and the related steering matrix,

thereby reducing the leakage of the signal subspace into the noise subspace.

Computer simulations have been carried out to gain a good view about the
enhancement provided by SASPA arrays over all-active arrays when acting as DF
arrays and to support the theoretical conclusion mentioned above. Also, RMSE plots
show that SASPA arrays have lower RMSE than all-active antenna arrays. This
benefit can be exploited when the DOAs of signals with low SNR are required to be

estimated.

In the next chapter, high resolution direction finding with SASPA arrays operating

with uncoupled noise is explored.
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Chapter 6

DOA ESTIMATION USING ULA-SASPA ARRAYS
WITH KNOWN MUTUAL COUPLING AND
UNCOUPLED NOISE

6.1 Introduction

In this chapter, it is assumed that receiver self-noise is the dominant noise. This noise
is not exchanged between the array elements through mutual coupling [17][24].
Assuming the SASPA array is operating under the simplified signal scenario
described in Section 5.2.2, it follows from the reduced time-aligned SASPA array

data model (5.28) that the Coupled-Signals-Uncoupled-Noise (CSUN) model is

given by:
0

g(t)=|  |=CA(d)s(1)+ng(?) (6.1)
g™ (1)

where from (5.29)

nself,l (t1>
Dgelf (t) = (6.2)

nself,N (tN )

As can be readily shown, the covariance matrix of g(¢) is given by
H

R, =B{g()g(1)"} =Ry + Ry, (6.3)
where, as with (5.32), the signal covariance matrix is
R, =CA(d)SA ()" C” (6.4)
and the noise covariance matrix is
R —g2

n UnIN (65)

g
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6.2  Coupled-Signals-Uncoupled-Noise: the z(z) Model for ULA-
SASPA Arrays

Consider now an N-element ULA-SASPA array consisting of half-wave dipoles with
inter-element spacing d and operating in the xy-plane, and whose dominant noise
source is internal self-noise. Suppose N is even. The z(¢) model of a ULA-SASPA

array operating under the CSUN condition is defined by:

(e 0+ )

@@+ )

I JInp
2(n)=| ", _1 g(1) (6.6)

e w-gMw) | 2

My HAnp

(0" 0)

where I, and J, are, respectively, the &k x k identity matrix and the k x k exchange

matrix.

The noise covariance matrix can be found as follows:

I J | il
1| w2 N/2 gl N2 JAN2 |1
R,, = E{E . . Ngerf (t>nself (t . E}
—np w2 Inn =N
1 v Ine| 0 vz g
I | 6.7)
4=y Hnp Inp =i
)
— EO-nIN

To find the signal covariance matrix, suppose, with no loss of generality, that the

array geometry is as shown in Figure 6.1. As can be readily shown, the array
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manifold vector is given by

LN ma N T
a4 (¢) _ e—/k(%)d cos¢ e—/k(%)d cos¢ . e—l—jk(%)dcomﬁ (6.8)
whereupon the steering matrix for signals arriving from ¢, ..., ¢, is given by
Ayra ()= [aULA (1) - ayLs(dn )} (6.9)
YA
| ¢
. ° . . . . >
1 2 s N X

Figure 6.1: A ULA-SASPA antenna array with even number of elements
and located symmetrically about the y-axis.

Now, from (6.1), (6.6) and (6.9)

1| vz I
2= g =T(CAuL (6)s(0)+ e (1) (6.10)
i N
where
o JInp
1 . (6.11)
A S A P
The signal covariance matrix under the z(#) model is then given by
R, =TCAy;,(0)SAy., (¢)" T (6.12)

An alternative expression for the signal covariance matrix can be derived as follows.

As can be readily verified, (6.8) has the property that

a4 (9)=JI nagLs (o) (6.13)

Therefore
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Ay (D) =IyAyrs (o)

Also, since the mutual coupling matrix is symmetrical and Toeplitz,

Accordingly

(c(n))T Ay () + (C(NH_n))T Apyrs ()

- (c(n))T Ayra(®)+ (c(n)>T Iy -InAyLs (D)
- (c(n) )T Ay () + (c(n))T Ayra(d)

— 2(c(”))T Re(AULA ((1)))
Likewise
) A (@) () Ay () =2(e) 1m(A  (0)

In other words, the z(¢) model can be expressed as

Z<t> = M(d))S(t) + Tnself (t)

N
z,(t)= : ec=™

[=

x1
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(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



1
C12
13

C14

AN C(N-1) CN-2) "

Im<AULA (4)))

C/:[c(l) c(]%)

C12
1
C12

3

Re(aULA (Pm )) =

c CNX%

i.e., C' consists of the first N/2 columns of the mutual coupling matrix C

3
C12
11

C12

Now, from (6.8) and (6.9)

Re(AULA (‘1))) = [Re(aULA (¢1)>

[Im(aULA (¢1>>

[I—N
cos
2

Re(aULA (P ))} e RMM

Im(aULA (¢M))} e RV

]zbm cos[ 2N

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)



3—-N

Im<aULA (P )) =

. ([1-N ) . (N—1
s1n[ 3 ]¢m sin ]?ﬁm sm[ > ]wm

and
Y,, = kd cos ¢,
As can be seen, (6.29) and (6.30) exhibit the following symmetries.

Re(aULA (¢m)> =Jdy Re<aULA (D ))

and

Im<aULA (& )) =—Jy Im(aULA (P ))
Therefore, partitioning C’ as follows

ol
C)

C' =

NN N
where C; € C2"2 and C) € C2"2 , and defining

[=

N-—1 N-3 N7 |
Sutscos () = o5 T cos[ M2, oo L, [ €RE
(N—1 (N-=3 1 T |
Brssm (6) = sin ]wm sm[ ]zwm sm[; b,| eRY"
NN
Cgos = (Ci +JN/2C/2> eC=™2
and
Nl

ln =(—Cl+ Iy 2Ch) e C?

sin
It can be verified that (6.23) and (6.24) can be written as

Ml (d)) = (Cgos )T AULA,cos ((1))

M, ()

(Cén )T Ay sin (©)

where
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(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)



AULA,cos ((I)) = [aULA,cos (¢1) o aULA,cos ((bM )] S R%XM (6-41)

and
Txm
Ayrasin(©) = [aULA,sin(¢I> aULA,sin(¢M>] eR (6.42)
The signal covariance matrix of z(¢) is also given, therefore, by
R, =E[M()s(1)s(t)" M (o) | = M(o)SM ()" (6.43)
where
T
M((i)) _ (CgOS)T AULA,cos <¢) (6.44)
( ;/in) AULA,sin (d))
Remarks
(a) It is worthwhile to comment here that, from (6.10), (6.22)-(6.24), and (6.44),

(b)

(©)

M(¢) has the following equivalent expressions:

C'TRe(A C" ) Apptos (&
M(db) = TCAy () = ( ULA(@)] (Clos)” Aua,cos ()

/ _ (6.45)
c’ Im<AULA (‘b)) ( ;’in)T Ay sin (©)

Another expression involving only the first column of the mutual coupling

matrix C will be presented in the next section.

A significant feature of the z(z) model of (6.18) is that, compared to the direct
measurement model of (6.1), the noise covariance matrix of z(¢) is halved, see
(6.5) and (6.7). More accurate estimates of the true data covariance matrix can
thus be achieved with the z(¢z) model, leading to more accurate estimates of the

incident signals’ DOA.

Another important feature of the z(#) model is that Ay, () and
AyL4sin (@) in (6.44) are real-valued matrices. This can result in a reduction in

the computational load when simulating a ULA-SASPA array operating under
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(d)

the coupled-signals-uncoupled-noise model of (6.1) [65][74][85][86]. It may
also lead to a reduction in the computational load if the search vector of the
MUSIC algorithm derived from the z(#) model is to be calculated on-line. This

1ssue will be discussed further in Section 6.4.

It is interesting at this juncture to compare the above development with the work
reported in [74]. In [74], a complex-valued unitary transformation matrix is
applied to the measurements (or the estimated covariance matrix) of an all-
active array such that the steering matrix is real-valued. This leads to the
development of an ESPRIT algorithm that requires less computation. The
requirements of the method discussed in [74] are that the array structure is
centrosymmetric, for example, ULA, and that no mutual coupling is present. In
contrast, the method described in this chapter, which leads to the real-valued
matrices Ay 4cos (@) and Ay 4o (d), (i) requires the array to be ULA, (ii)
still requires a complex-valued transformation matrix to be applied to the
measurements, except it is sparse since it involves only simple additions and
subtractions of the measured sub-snapshots, (iii) does not require the absence of
mutual coupling., and (iv) is able to take advantage of the self-beamforming
feature of the array due to the switching of the active element (see Figure 3.5) to
provide more accurate DOA estimates relative to the array’s all-active

counterpart if certain conditions are met [9][101].
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6.3 MUSIC Algorithm in Conjunction with ULA-SASPA Array

Recall the coupled-signals-uncoupled-noise z(¢) model of (6.18).
2(1) = M()s(t) + Tnge (¢) (6.18)

Using a derivation similar to that shown in the seminal MUSIC paper [13], it can be

seen the MUSIC spectrum of z(¢) is given by:

1
B, music (9)=——— (6.46)
[fm o)
where m(¢) is given by:
c” T
m(¢) _ ( cos)T aULA,cos (¢) (6_47)
(C;/in> aULA,sin (¢)

and E,, is the noise subspace estimated from the eigendecomposition of R, .

6.4 Steering Matrix of ULA-SASPA Arrays in term of ¢\

Mutual coupling matrices are symmetric Toeplitz. Therefore, they are characterised
fully by their first row, or first column, i.e., ¢! This notion of being able to
represent a mutual coupling matrix as a vector can be useful, for example, in
situations where the mutual coupling matrix is unknown and is to be estimated from

the measurements, as will be discussed in Chapter 7.

Here, an alternative expression for the MUSIC search vector m(¢), (6.47), is

N/2)

derived. Unlike the expression given in (6.47) which involves c(l),. . .,c( , the new

expression involves only .

Observe firstly from (6.23), (6.24), (6.27) and (6.28) that, with

M(d)=|m(er) - m(dy)|= ::;((2)) :ijﬁz)) (6.48)
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N N
where m(¢,,) € CV, m,(4,,)€ c>"" and m, (¢,,) € C>™", one obtains:

(c(l))T Re(aULA (%)) Re(aULA (¢m)>T e

<°(2)>T Re(aULA(cbm)) Re(aUL A(¢m))T Ne)

m, ()

m; (¢m)

m(¢,,) =

S L S i S S oo A - (6.49)

(c(N/2))T Im(aULA (¢m>) Im(aULA (¢m>)T c(N/Z)

where Re(aUL 4 ((bm)) and Im(aUL A(¢m)> are defined, respectively, by (6.29) and
(6.30).

Re-writing the matrices m, (¢,,) and m, (¢,,) in (6.49) as follows:

m; (6,,) = F (¢,,) e = [F{(¢,,) + F(g,,)]c” (6.50)
m, (¢,,)=F, (¢,,)c") =[F}(8,,)— F(8,)]"” (6.51)
m _ my (¢m> _ Fl (¢m> C(l) _ c(l)
O 0] s 0] o
with:
(Re(aULA (Pm )))T
(Re(aULA (Pm )))T Iy
F(¢,)= (Re(aUM(%)))T 1,2 e RNV/ZN (6.53)
(Re(aULA (Dm )))T I?vN/zil

and I)y is an N x N identity matrix but with the first column becoming the last
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column, i.e.:

00 0 -1
100 ---0
=01 0 - 0= e (6.54)
oo : Inoi o Ov—iya
000 1 O0
and more generally
1)," =Ty - (n times)- T, = O"IX(N” . b (6.55)
N-n O N-nyxn
0
(Re(aULA (Pm )))T K"
F(¢,) = (Re(aULA(¢m)))T K? | eRrNZY (6.56)

(Re (aULA (Pm )))T KW

where K(”), n=1,...,(N/2—1), isan N x N matrix with the following structure:

010 0 —1
0000 0
KY=000--0 0 (6.57)

, etc. (6.58)

0000 O

or more generally,

KM _ e (6.59)

Likewise,
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T

(Im(aULA (¢m)))

(Im<aULA (¢m)))T Iy

B ()= (m{agps(0,)) 132 | (6.60)

(Im<aULA (P )))T Iy

01><N
(Im<aULA (¢m)))T K"
B (6,) =|(Im(ag(8,)) K |eRVZN (6.61)

(Im<aULA (Pm )))T KV

As an example, F(¢,,) for a six-element ULA-SASPA will have the structure:

cos [g] v, cos [%]z/m cos 3 v, cos (%]z/m cos [%] Y, ~Cos [§]¢m
cos [%] P, cos |— wm +cos| |y, cos| |y, cos [%) ¥, cos [g] ¥, 0 (662)
_ cos %] v, cos ||, + cos|>|Y cos [%] ¥, tcos|>|p, cos [g] ¥, 0 0
—sin g Y, —sin|=| —sin [%] b, sin [%] ¥, sin 3 Y, sin||¢,
—sin % Y, —sin|=|Y, —sin|=|Y sin % Y, sin [%] ¥, sin 3 P, 0
—sin % Y, sin|-|Y, —sin|=|y sin| |+, —sin|>|¢ ~ sin % P, 0 0
Using (6.50) and (6.51), the system z(¢) in (6.18) can be rewritten as:
2(t)= (1)) F(a)e o F(op)e]s(0)+ T (1 .
=T(6) (L @ " )s(e) + Ty (1
where T'(¢) e RVM s defined as:
L(d)=[F(¢) F(¢y) -+ Flgy)] (6.64)

and ® stands for Kronecker product.
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The covariance matrix of z(¢)can be derived as follows. First, as can be readily

verified:
(L @cW)s(r)=s(t) @V (6.65)
Thus:
R, =B|z(t)z(r)" |
H 0'2
=BT @) (1 o< )sHs0)” (1 o) o) |+ Ly
—T($)E (s(t)®c(1)>(s(t)®c(l))H}I‘(d))H +"7’31N (6.66)
H 2

—D(6)E|(s()s(r)" ) (c(l) () )}r(q))H +221,

=T(¢)(sec|r(9)" +"731N
where
S — E[s(t)s(t)H ] (6.67)
c — (cm)H (6.68)

and the following property of matrix Kronecker product [84] has been invoked to

obtain the fourth line:
(A®B)(A®B) = (AAH)® (BBH) , for any matrices A and B.

Note that S, the signal covariance matrix, is diagonal if the received signals are
mutually uncorrelated. The powers of the received signals are listed along the

diagonal.

The MUSIC spectrum of z(¢) is given by:

1 1

) e = _ 6.69
By music ‘Eg,m(gé)uz ‘EZF(qﬁ)c(l)Hz (6.69)
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where F(¢) ¢V is now the search vector.

Concerning (6.69), it is worthwhile to recall that F(¢) is real. Moreover, as can be

seen from the example of (6.62), it can be easily constructed once cos(NT’l)zb,

cos(NT’3>@ZJ, oo cos(%)zb and sin(NT’IMJ, sin(NT’3)¢, oo sin(%)@b have been

computed.

6.5 Simulation Study

The MUSIC cost function (6.46) is used in this section to estimate the DOAs of the
signals impinging on a ULA-SASPA array. As remarked in Section 6.2, (6.46) offers
enhanced performance in DOA estimation compared to the classical MUSIC cost
function of (4.32). This claim will be verified via simulation studies in this section.
In the simulations, the classical MUSIC algorithm is implemented on an all-active
ULA with the same array geometry as the ULA-SASPA array and operating in the

same signal environment as the ULA-SASPA array.

Figure 6.2 shows the MUSIC spectrum for two signals impinging on an 8-element
dipole array with inter-element spacing d = 0.25\. The signals are incident from
¢ =60° and ¢, =62° and both with SNR =5 dB. The figure shows two sets of
plot, one for the ULA-SASPA array and one for the ULA all-active array. Both plots

show the results from 5 simulation runs, where 250 snapshots are used for each run.

Figure 6.3 shows the MUSIC spectrum for the same two arrays as in Figure 6.2 but
with the impinging signals arriving from ¢, =20° and ¢, =22°, and SNR =

25 dB. Also, 1000 snapshots per simulation run were used.

In Figure 6.4, the number of antenna elements used in the first two simulations was
reduced to 6 but with the same inter-element spacing. The DOAs of the two
impinging signals are also the same except now, SNR =10 dB.

In Figure 6.5, the two 6-element arrays of Figure 6.4 were used to detect two signals,
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one from ¢; =20° and the other from ¢, =22°. The SNR has also been increased

to 25 dB, and 1000 snapshots were used for each of the five simulation runs.

As can be seen from Figures 6.2 to 6.5, ULA-SASPA arrays with the z(z) model
outperform their ULA all-active array counterparts in direction finding when the
number of the elements is small. Also, ULA-SASPA arrays are capable of estimating
the DOAs when the available measurement data set is short, and the power of the
received signals is low. The superior performance of the ULA-SASPA arrays can be

attributed to their lower noise level as a result of the z(¢) transformation and shown

in (6.7).

However, comparing Figure 6.2 with Figure 6.3, and Figure 6.4 with Figure 6.5, it
can be seen the unsymmetrical property in the beam pattern of ULAs is still affecting
the performance of the ULA-SASPA arrays. In particular, for ULA-SASPA arrays
and ULA all-active arrays to be able to detect or resolve signals arriving from near
end fire directions (Figures 6.3 and 6.5), (i) the signals are required to have larger

SNRs, and/or (i1) more measurement snapshots are required to estimate the data
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Figure 6.2: MUSIC spectrum for the DOA estimation of two signals
impinging on an 8-dipole receiving array with inter-element spacing
d = 0.2\ . The signals are coming from ¢ =60° and ¢, =62° with
SNR =5 dB. Five simulation runs with 250 snapshots for each run are
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array.
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Figure 6.3: MUSIC spectrum for the DOA estimation of two signals
impinging on an 8-dipole receiving array with inter-element spacing
d =0.25\. The signals are coming from from ¢ =20° and ¢, =22°
with SNR =20 dB. Five simulation runs with 1000 snapshots for each
run are shown. (a) ULA-SASPA array; (b) ULA all-active antenna array.
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Figure 6.4: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole receiving array with inter-element spacing
d =0.25\. The signals are coming from ¢ =60° and ¢, =62° with
SNR =10 dB. Five simulation runs with 500 snapshots for each run are
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array.
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Figure 6.5: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole receiving array with inter-element spacing
d =0.25\. The signals are coming from ¢ =20° and ¢, =22° with
SNR = 25 dB. Five simulation runs with 1000 snapshots for each run are
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array.

138



6.6 RMSE Simulations

In this section, the RMSE criterion (5.45) is used to study the performance of ULA-
SASPA arrays over a range of SNRs. In the following simulations, mutual coupling
is assumed to follow the CVUC model, and the ULA-SASPA arrays are operating

under the z(¢) model.

Figures 6.6 plots the RMSE for estimating two broadside signals whose DOAs are
separated by A¢ = ¢, — ¢, =82°—80° =2°. The ULA-SASPA array and the ULA
all-active array both have six-elements with inter-element spacing d = 0.2\. The

RMSE is calculated over 100 runs with 100 snapshots for each run.

The plots in Figure 6.7 show the RMSE for estimating two end fire signals whose
DOAs are separated by A¢ = ¢, — ¢y =25°—20°=5°, and impinging on the same
arrays as in Figure 6.5. In terms of the simulation runs, the plots in Figure 6.6 were

similarly obtained from 100 runs except 300 snapshots per run were used.

In Figure 6.8, the plots show the RMSE for one signal coming from the severe DOA
of ¢ =5° Both the ULA-SASPA array and ULA all-active array have four
elements with inter-element spacing d = 0.12)\, and the plots are obtained from 100

runs with 50 snapshots for each run.

The superior performance of the ULA-SASPA array is clearly self-evident in the
plots of Figures 6.6 and 6.8. It can be seen from these figures that ULA-SASPA
arrays have lowered the RMSE of all-active arrays using short data. However, large
number of snapshots are required when the received signals are close to the end-fire

direction of the array.
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RMSE vs. SNR for ULA-SASPA and ULA all-active arrays

—8— ULA-SASPA
=&+ ULA all-active

SNR (dB)

Figure 6.6: RMSE versus SNR for estimating A ¢ between two signals
coming from ¢, =80° and ¢, =82° and impinging on a ULA-SASPA
array and a ULA all-active array. Both arrays consist of 6 dipoles with
d = 0.2). 100 runs with 250 snapshots for each run are used.

14 RMSE vs. SNR for ULA-SASPA and ULA All-Active arrays
IL —O— ULA-SASPA
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Figure 6.7: RMSE versus SNR for estimating A¢ between two signals
coming from ¢, =20° and ¢, =25° and impinging on a ULA-SASPA
array and a ULA all-active array. Both arrays consist of 6 dipoles with
d = 0.2). 100 runs with 1000 snapshots for each run are used.
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0§MSE vs. SNR for ULA-SASPA and ULA all-active antenna arrays
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Figure 6.8: RMSE versus SNR for estimating the DOA of a signal
coming from ¢ =5° and impinging on a ULA-SASPA array and a ULA
all-active array. Both arrays consist of 4 dipoles with inter-element
spacing d = 0.12\. 100 runs with 50 snapshots for each run are used.

6.7 Receiver Block Diagram of a DOA Estimator using an

SASPA Array

The block diagram of a DOA estimator operating in conjunction with an N-element
SASPA array is shown in Figure 6.9. The RF modulated signal developed at the
loaded terminals of the active element n is down-converted to base band via the
demodulator. Selection of the output of the active element in a sub-snapshot is
implemented in the stage following the antenna elements by controlling the PIN
diodes which are part of one of the circuits shown in Figures 3.2a or 3.2b. This can
be done by the N size digital word of all zeros except for one logic 1 bit which causes
the PIN diode of the corresponding antenna element to be forward-biased. Thus, it is
required to generate N different N-size digital words to cover one measurement

snapshot.

The base band signal is processed in the stage following the demodulator. The
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processing consists of either decoupling the mutual coupling if the array is acting

under the CSCN model, or applying the T transformation as in (6.6) if the array is

acting under the CSUN model. Finally, the DOA estimator collects the processed

data taken in one snapshot and over a number of snapshots to estimate the DOA of

the underlying received signals.

Hardware for changing each element befween

active and parasitic states

i

COutput from the active element »

Carrier signal

aseband signal

Processing baseband signals; decoupling if the model is CSCN

or generating m () if the model iz CEUN

h 4
DOA estimator

l

Om

0001000

An N zize digital word generator

Figure 6.9: Block diagram for DOA estimation using an SASPA array.

6.8 Summary

This chapter investigates the improvements that can be obtained from a ULA-

SASPA array with an even number of antenna elements. The noise measurements of

the ULA-SASPA array are assumed to be not affected by mutual coupling between

the antenna elements.
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It is shown that, after applying a simple transformation to the measured data in a
snapshot, measurement noise is effectively reduced leading to improved
performances in DOA estimations. It is also found that a real-valued DOA dependent
steering matrix can be obtained from the transformation which can result in savings
in the computational load when either simulating the ULA-SASPA array or
calculating the MUSIC search vector on-line. The transformation basically adds and
subtracts the second half set of the measurements to the first half set. The aforesaid
benefits have been supported by a set of simulation studies. The simulations show
that ULA-SASPA arrays acting under the CVUN model can outperform all-active
arrays when used as direction finding arrays despite their small size antenna array

aperture and the availability of only short data.
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Chapter 7

MUTUAL COUPLING ESTIMATION USING ULA-
SASPA ARRAY

7.1 Introduction

The enhancement provided by SASPA arrays in DOA estimation has been
investigated in Chapters 5 and 6 assuming mutual coupling is known. In practice,
knowledge of mutual coupling on-line is often required since it can deviate from the
ideal. Mutual coupling in antenna arrays can change for many reasons. The
characteristics of the array elements and the associated electronic circuitry are
subjected to manufacturing tolerances. They can also change over time due to
component ageing and thermal effects [23][81]. Also, nearby metal objects or other
environmental effects can be another reason for causing mutual coupling to depart
from the ideal. Accordingly, it is desirable to have a technique to estimate the mutual
coupling between the array elements. This technique, or algorithm, can be applied

prior to or simultaneously with DOA estimation.

In this Chapter, the feasibility of estimating the mutual coupling of a ULA-SASPA
array will be examined assuming the data model is CSUN. Another viable
achievement that can be attained for this antenna array is estimating the DOA
dependent matrix F(¢) that is formed in Chapter 6. To accomplish the work
addressed in this chapter, a test signal is first used to estimate the fitted subspace of
the on-line mutual coupling of an N-element ULA-SASPA array receiving that
signal. Thereafter, the estimated mutual coupling is used into (6.69) to estimate the

DOAs of the underlying received signals.
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7.2 Literature Background on On-Line Mutual Coupling

Estimation

Many researches have been reported in the literature to estimate mutual coupling on-
line, prior to or along with estimating the DOAs in a receiving antenna array. Most of
these methods are based on finding a minimum solution to a cost function which is a
likelihood function of all the unknown parameters of the array [8]. In [81], iterative
LS solutions for the MUSIC cost function (4.32) are proposed but they require the
gain and phase of the array elements to be inserted. In this method, the mutual
coupling matrix (MCM) is assumed to be a banded matrix if the array is ULA. This
assumption is based on the fact that the mutual coupling is inversely proportional to
the distance between two array elements. The procedure is to fix all parameters
except one for which the LS solution is to be found in the first set of iterations.
Therefore, initial values are first required for the fixed parameters. The solution
obtained is then plugged into the cost function to find the solution for the next
parameter. In [90], the same technique is used but the cost function is the

observations of the array which is a random process.

In [24], another iterative LS method is developed based on the root-MUSIC cost
function. The author used this method to avoid divergent solutions due to improper
selection of the initial value. The method requires only two steps. The first one is
implemented to find the nearest roots to the unit circle on which the roots
exp( jkd cos¢) should reside as if mutual coupling is not present. These roots are
then inserted into the cost function to estimate the unknown mutual coupling.
However, this method is useful for ULA arrays only and the nearest roots might not

be found.

Another criterion has been exploited in [39] to search for an LS solution for the
unknown mutual coupling after using the rank deficiency of a matrix formed from

the orthogonality between the noise subspace and the mutual-coupled steering matrix
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to find the LS solution to the underlying DOAs. The estimated DOAs are then
plugged into the first cost function to estimate the mutual coupling. Thus, this
method requires initial values for the DOAs. To do so, a pre-estimation for certain

sectors covered by the proposed beamformed array is first implemented.

Obviously, the aforementioned methods are computationally intensive, and the
iterative methods may end up with local minima rather than the global minimum if
the initial values are not selected properly, or there will be no solution at all.
Furthermore, some of these methods that assume the mutual coupliong matrix is
banded did not show how to select the useful bandwidth of the MCM. Instead the
bandwidth is selected arbitrarily to simplify the problem, and this assumption may
result in errors when determining the true mutual coupling. Also, the banded matrix
property cannot be applied on SASPA arrays since the elements are close to each

other and mutual coupling between elements far apart cannot be ignored.

7.3 Estimating the Mutual Coupling of a ULA-SASPA

The capability to estimate the mutual coupling of an N-element ULA-SASPA array
prior to processing the measurements for DOA estimation is examined in this
section. The method is based on estimating a fitted vector to the mutual coupling
vector of a symmetrical Toeplitz MCM. This fitted vector can be obtained from the
null space of a rank deficient matrix. Recall that a symmetrical Toeplitz MCM can be
defined by its first row or first column. The rank deficient matrix is formed from left
multiplying the real valued DOA independent matrix F(¢) found in Chapter 6 by

the orthogonal projection on the estimated noise subspace.

In this work, mutual coupling is assumed to be DOA independent. Furthermore, the
data model used is the one defined in (6.1), i.e., where noise is not affected by mutual
coupling. Using (6.48), (6.63) and (6.64), the steering matrix M(¢) for an N-

element ULA-SASPA array receiving M uncorrelated and with an even number

146



of array elements is:

M(0)=[F(e)e) F(op)e) - F(y)c]
=T(¢)[1y; @] (7.1)
=T(¢)U

where T'(¢) is defined by (6.64), and

U= (1, @c)ec™ (7.2)

The orthogonal projection onto the subspace spanned by the columns of M(d), i.e.,

onto R (M (b)) [8][14][651[91], is

(7.3)
~1
=T(6)U[U"T(¢) T(o)U| U T(9)
Note that Pyvio) € CVN s an orthogonal projection because it is idempotent, i.e.
Pyi(s) =Pwp)» and it is Hermitian, ie., Pyjy) =Py [70][92][93]. Post-
multiplying (7.3) by I'(¢) yields:

Paigo)D(0) = T(¢) U[U"T(6) T(¢)U] ' U"T () T(6) (7.4
or

Py (d) =T'(d)Py/p(e) (7.5)
where

Py/ns) = U[U"T(0) T()U]  UT(¢) T(0)

(7.6)
= U[UHD((b)U]_lUHD(d))
and D (o) is the non-negative definite matrix
D(¢)=T(¢) I'(¢) (7.7)
Pype) € CMN>MN " is an oblique projection onto the subspace spanned by the
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columns of the matrix U= (I u® c(1)> along the subspace spanned by the columns
of D(¢) [92]. Also, this projection matrix can be considered as a weighted
orthogonal projection onto R (U). PU/D(¢) satisfies the condition of idempotency

but it is not Hermitian, 1.e., P&D(q;) = Py/p(g) -

The equation (7.5) is a homogenous Sylvester matrix equation, i.e., it has the form
AX —XB =0y, where AcCY" BecCM™ and XeCV™ [94]-[96].
Equation (7.5) has a non-zero solution if and only if Prvico) and PU/D(q;) have
common eigenvalues [96]. Thus (7.5) has a solution, that is, I'(¢) exists since the

eigenvalues of the projections Pyy4,) and Py/py) is the set 4; € {0,1}.

7.4  Calculation of the Projection Matrices Py, and Py p g,

The matrix Pyy(¢) can be calculated from the estimated signal subspace as [98]:
T A A
M(¢)" =EE/ (7.8)

provided the steering matrix is full rank. The matrix Py /D(¢) an be found from the

following relationship:
Pri(o) T (0)Py/p(e)
= (6)U[U"T(¢) T(4)U] ' U"r () T (o)
[T (¢) T(0)U]  UT(6) T(0) (7.9)
= 1(4)[U" T ()] U (&) T (0)

=T (¢)Pyp(o)

ie.,

[IN - PM(q;)]r(d))PU/D(q)) = Pl\la(q))r(d))Pu/D(q)) =0y (7.10)
or

V($)Py/ne) = Oynsmn (7.11)
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V()= Pyjip) L' (¢) e C (7.12)
and
Pyico) = Iy — Pye)| €YY (7.13)

A

is the orthogonal projection on the noise subspace, i.e., Pﬁ(d)) —E,E . Note that

rank(PM(q))) =M and rank(Pl\l,[(d))) =N-M.

Equations (7.10)-(7.12) state that Py, is in the null space of V(). In [99], it has
been proved that Pyp4) and Py are similar where Py is the orthogonal projection
on R(U),ie.

—1

PU:U(UHU)_IU:(IM®c(1)>[(1M®c(l))H(1M®c(1)) (1M®c<l>)H (7.14)

Therefore, Py is also in the null space of V(o).

7.5 Estimating the Mutual Coupling Vector ¢V

As pointed out in the previous section, Py is in N (V(¢)). It can be revealed from
(7.10) and (7.11) that the rank of V(¢) is the minimum of the ranks of Pﬁ(d)) and
T'(d) [102], ie.:

rank (V(¢)) < min(rank(Pﬁ@))), rank(F(d)))) (7.15)
Thus,
rank(V(¢))=min(N-M,N)=N-M (7.16)

Now, according to the rank-nullity theorem which states that rank (A)+ N (A)=M

(CNXM

for any given matrix A € [103], one has the following:

dim(N (V(¢))) = MN —rank(V(¢)) (7.17)
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Hence, for a ULA-SASPA array receiving a single signal, i.e., M =1, the dimension

of the null space of V(¢) from (7.17) will be
dim(N (V()))= MN —(M —N)=1 (7.18)

And according to (7.10) and (7.11), the mutual coupling vector ¢ of a ULA-

SASPA array receiving a test signal from ¢,,,, can be estimated with:

e = N (V(9))= N (V () = N (P T (61e))

(7.19)
_N( m(¢,,.) (¢test>)

where F(¢,,,) can be formed from (6.50)-(6.61) for a test signal emanating from a
known direction, and Plﬁ((%t) can be calculated from (7.13). The estimate ¢ can
then be used in (6.69) to estimate the DOAs of the underlying signals after estimating

the signal subspace En from the data covariance matrix of a ULA-SASPA array.

Note that é(l), as calculated in (7.19), is the fitted vector to the actual e, Also, the
vector ¢ will be a normalized vector if MATLAB is used to find A’ (V(¢pes)) - In
terms of MUSIC, the scaling of ¢ will only result in a vertical shift of the plotted
MUSIC spectrum. There are no changes to the position of the peaks and,

concomitant with that, the bias and variance of the estimated DOAs.

7.6  Estimating the DOA Dependent Matrix F(¢)

The structure of the ULA-SASPA array also allows the matrix F(¢), as defined in
Section 6.4, to be estimated for a given ¢ or ¢V As pointed out in Section 6.4,
the steering matrix of a ULA-SASPA array receiving a single signal can be found by
post-multiplying the matrix F(¢) by the mutual coupling vector ¢!V, In Section 7.5,
the procedure to estimate a vector fitted to ¢V was shown. Also, in Section 7.3, it
was pointed out that I'(¢) is the solution to the Sylvester equation (7.5). In [95][97],

the solution of (7.5) is found to be:

Lyv @ Pyggg) — PS/D(@ ® IN]-Vec(F(d))) = vec(0y ) = LN (7.20)
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where vec(I'(¢)) is the vectorization operator which stacks the columns of T'(¢)

one on top of another, i.e.:

T nMN*x1
Vec(l“(d))):[l““ Fyp o yyp Tpp Ty e Ty Tz Tpg o FMNJ eRM™
(7.21)

If only one signal is incident on the ULA-SASPA array, then M =1 and (7.20)

reduces to:

Ty @ Pty =P j(g) © Ty |- vee(F(9)) = vee (Oy,y) = 0,2, (7.22)
where, see (7.8)

Puo) = m(0)|m(0)" m(¢)| m(e)" =&e (7.23)

Note that the signal subspace E, =€ consists of only one eigenvector when only

one signal is received.

Now, it follows from (6.64), (7.2) and (7.6) that, for a single signal, i.e., M =1,

I'(¢)=F() (7.24)
U=(ned))=c" (7.25)
Pujs) = U[UT(6) T()U]  U"T(0) T(0)
B (7.26)
=) F(@) F(9)eV| (V) F(0) F(o)

The oblique projection matrix Py /D(6) for a single signal can thus be replaced by the

matrix G(¢) which is defined as:

G(¢)=F(¢) ' Pyy)F(9) (7.27)
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—F(¢)"! {Fw)c(” () Ro) F@)e] (M) F<¢>T}F<¢>
= () R (o) @) () Fo) F(6) (1.28)
= Pyn()
Therefore, (7.22) becomes:
Ly ® Py — G () @1y -vec(F(¢)) = veo(Oyy) =0, (7.29)

Recall from (7.27) that G(¢) :F(¢)_1Pm(¢)F(¢), and it is shown in (7.23) that
Py(g) can be calculated from the estimated signal subspace €., i.e. from the
measurements. Therefore, the matrix F(¢) can be found by searching for a ¢ that

solves (7.29). The above procedure will be demonstrated in the simulation of Section

7.7.

Now, suppose the received signal is a test signal. Equation (7.29) then becomes

Iy @ Py~ G(8) @1y | veo(F (@) = 0,2, (7.30)
or

B-vee(F(dy)) =0, , (7.31)
where

B=ly@Py, —G(0) @1y (7.32)

Equation (7.31) states that the vector Vec<l:“(¢test)> is in the null space of the matrix
B, ie. Vec(ﬁ‘(¢,est))§ N (B). However, the solution to (7.30) or (7.31) involves
calculating the matrix G(¢,)" for the set {¢, i =1,2,...} which includes ¢, . To
find the solution, the following squared Euclidean norm function is minimized to
find the global minimum which should occur at ¢; = ¢, :

i, = arg{nliin“Y(ﬁ‘(¢i)>“§}: arg{mjn

1

E; ﬁ(cb,-)é“)H;} (7.33)

test

Note that the vector ¢V can be replaced by ¢! if the latter is available. Once the
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null space of B is calculated, F(¢,,,) can be found by reshaping Vec(f?(@est)) :

The aforementioned method for estimating ¥(¢,,,,) cannot be used, however, when
more than one signal is impinging on the ULA-SASPA array. The reason is the
inability to form the search matrix F(¢;) when two signals are received unless these
signals are close to each other; in which case, the set {¢,, i =1,2,...} is chosen with
a step equal to the difference between the directions of the two received signals.

Also, F(gbl-)_1 is not defined for two signals since it is not a square matrix anymore.

As pointed out in Section 7.3, the method described above is valid for the CSUN data
model of (6.1). In case of the system acting under the CSCN data model of (5.30),
the test signal should have a very large SNR in order that the coupled noise among

the array elements can be ignored.

7.7 Simulation Study

The following simulations demonstrate the effectiveness of the methods proposed in
Section 7.5 to estimate the DOAs of the signals received by a ULA-SASPA array
after estimating the mutual coupling. These examples are simulated for array
geometries with very small interelement spacings. The mutual coupling is first
estimated assuming a test signal with a known direction is incident on the array. The
estimated mutual coupling is then used to estimate the DOAs of the underlying
signals that are incident on the same array. Also, several simulations will be
conducted to show the possibility of estimating F(¢,,,) from the measurements

obtained from a ULA-SASPA array as explained in Section 7.6.

In Figure 7.1, the MUSIC spectra for two signals incident from ¢ =40° and
¢, =43° on a 6-element ULA-SASPA array with interelement spacing d = 0.3\ are
shown. The SNR of each of the received signals is 15 dB and five runs with 500
simulation snapshots for each run are used. The mutual coupling vector eV s

estimated with a test signal from ¢,,,, =82° and SNR =15 dB. The upper plot is the
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result of the simulation for estimating the DOAs along with the estimated mutual

coupling vector ¢

using the process explained in Section 7.5. The lower plot is the
simulation for estimating the DOAs with the actual mutual coupling vector ¢ In
addition to these plots, Figure 7.1 also shows a plot of the function Y(F(gbi)) defined

in (7.33) versus ¢ .

Figure 7.2 shows the simulation results for the same scenario as in Figure 7.1 except
the direction of the test signal is ¢,, =56°, the received signals have
SNR =15dB, and d =0.2)\. Figure 7.3 shows the same simulation as Figure 7.2
but with SNR =20 dB, and ¢,,, = 24°.

Figures 7.4 shows the MUSIC spectrum for two signals arriving from ¢, =20° and
¢, =25° both with SNR=30dB, on a 6-element ULA-SASPA array with
interelement spacing d = 0.2\. Five runs with 1000 simulation snapshots for each

run are used to obtain the plots. The test signal is from ¢,,,, = 82°.

Finally, Figure 7.5 shows the DOA estimation for two signals coming from ¢, = 40°
and ¢, =43° and impinging on the same array as in Figure 7.4 but with d = 0.15\.
Compared with the simulation of Figure 7.1, it is necessary to use for Figure 7.5 a
higher SNR for the received signals (from 15 dB to 25 dB) and more snapshots (from
500 to 1000) to obtain distinguishable DOAs.

Figures 7.1 to 7.5 show that DOA estimation in conjunction with the estimated
mutual coupling vector closely matches the results of DOA estimation in conjunction
with the actual mutual coupling vector. This is in spite of the interelement spacing
between the array elements is small and/or the signals that are incident on the array
are spatially close. The plots for Y(F(gbi)) also confirm that the proposed method for
estimating the DOA dependent steering matrix F(¢,,,) is effective and gives the

exact value of ¢, .
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Figure 7.1: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole ULA-SASPA array with d = 0.3\. The signals
are from ¢ =40° and ¢, =43° with SNR =15 dB. Five simulation
runs with 500 snapshots for each run are shown. The test signal has
Gres; = 82°. () In conjunction with the estimated é(l); (b) in conjunction
with the actual ¢"”; (c) the function Y(F(¢i)) versus ¢; .
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Figure 7.2: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole ULA-SASPA array with d = 0.2\ . The signals
are from ¢ =40° and ¢, =43° with SNR =15 dB. Five simulation
runs with 500 snapshots for each run are shown. The test signal is
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Figure 7.3: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole ULA-SASPA array with d =0.2\. The signals
are from ¢, =40° and ¢, =43° with SNR =20 dB.. Five simulation
runs with 750 snapshots for each run are shown. The test signal has
bress = 24° . (a) In conjunction with the estimated &, (b) in conjunction

with the actual ¢, (c) the function Y (ﬁ (¢, )) Versus ¢ .
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Figure 7.4: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole ULA-SASPA array with d = 0.2\ . The signals
are from ¢, =20° and ¢, =25° with SNR =30 dB.. Five simulation
runs with 1000 snapshots for each run are shown. The test signal has
Gres; = 82°. (a) In conjunction with the estimated é(l]; (b) in conjunction
with the actual ¢", (c) the function Y (ﬁ (¢ )) Versus ¢ .
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Figure 7.5: MUSIC spectrum for the DOA estimation of two signals
impinging on a 6-dipole ULA-SASPA array with d = 0.15\ . The signals
are from ¢, =40° and ¢, =43° with SNR =25 dB.. Five simulation
runs with 1000 snapshots for each run are shown. The test signal has

Gress = 82°. (a) In conjunction with the estimated &"; (b) in conjunction
with the actual ¢, (c) the function Y (ﬁ (¢, )) Versus ¢ .
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7.8 RMSE Simulation

The RMSE criterion versus SNR for different for DOA estimation scenarios is
examined in this section. Also, A@, the angle between the estimated mutual
coupling vector and the actual mutual coupling vector versus SNR is investigated.
The formula (5.45) is used to calculate the RMSE, while the MATLAB built-in
function “subspace” is used to find the angle A6 between the estimated and the

actual mutual coupling vectors.

Figure 7.6a shows the plot for the RMSE against SNR for a signal coming from
¢ =20° and incident on a 6-dipole ULA-SASPA array with interelement spacing
d =0.2)\. The plot is obtained from 50 runs with 10 snapshots for each run. In
Figure 7.6b, the variation of the angle Af# between the estimated and the actual
mutual coupling versus SNR for the same scenario is shown. Figure 7.7 shows the
variation of the same parameters, i.e., RMSE and the angle A#, against SNR for the
same scenario used for the plots in Figure 7.6 but with the number of the array

elements reduced to four.

It can be clearly seen from the plots of Figures 7.6 and 7.7 that the power of the
received signals has almost no effect on the performance of ULA-SASPA in
estimating the unknown mutual coupling. This outcome is confirmed by the plots for
the variation of Af# for a wide range of SNR. The plots illustrate that the angle
between the estimated mutual coupling and the actual mutual coupling vector is very

small. This shows these two vectors are almost linearly dependent.
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Figure 7.6: (a) RMSE of a signal coming from ¢ = 20" versus SNR. The
signal is received by a six-dipole ULA-SASPA array with d =0.2\.
The plots are derived from 50 runs with 10 snapshots for each run. (b)

The angle between the estimated and the actual coupling vectors versus
SNR.

161



07 RMSE of estimated DOA vs. SNR in ULA-SASPA

Fitted mutual coupling
Actual mutual coupling

06

o o
» [¢;]
T T

RMSE in degree
o
w

o
N
T

o
BN
T
1

0 1 1 1 1
0 5 10 15 20 25

SNRin dB

(a)

Ang(!e6 between the estimated mutual coupling and the actual mutual coupling vs. SNR

6 in degree

SNR in dB
(b)

Figure 7.7: (a) RMSE of a signal coming from ¢ = 20° versus SNR. The
signal is received by a four-dipole ULA-SASPA array with d =0.2\.
The plots are derived from 50 runs with 10 snapshots for each run. (b)
The angle between the estimated and the actual coupling vectors versus
SNR.
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7.9 Summary

This chapter demonstrates the ability of a method proposed in this thesis to estimate
the unknown mutual coupling vector of ULA-SASPA arrays. Determining the
unknown mutual coupling is required when this inherent array phenomenon is time
varying. Antenna arrays are subjected to the influence of different factors that may
result in a previously determined mutual coupling to become out-of-date. Changing
element behaviour, environmental changes, locating metal objects in the array’s

vicinity are some of these factors.

Most of the on-line mutual coupling estimation methods that have been proposed in
the literature depend on finding, iteratively, the LS solutions to a cost function which
involve the MCM together with other parameters. Thus, these methods are
computationally intensive, are subjected to the problem of choosing a suitable set of
initial values, may have issues with convergence of the iterative method, and are

restricted by certain array conditions.

The proposed method in this Chapter exploits the structure of ULA-SASPA arrays
from which a new steering matrix can be obtained. By making use of this newly
formed steering matrix, the proposed method estimates the mutual coupling vector
from the null space of a rank deficient matrix produced from the product of the
orthogonal projection on the noise subspace with the real-valued DOA dependent
steering matrix of the ULA-SASPA array. It has been proved that this null space has
a one-to-one correspondence with the actual mutual coupling vector if only one
signal is impinging on the array. Thereafter, the estimated mutual coupling vector
can be used in the cost function of a MUSIC algorithm for precise estimation of the

DOAs of the received signals.

Another key characteristic that distinguishes ULA-SASPA arrays from other antenna
arrays, thus classifying them as an important class of antenna arrays, is the possibility

of estimating the real-valued DOA dependent steering matrix F (¢, ). It is found
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that F(¢,,,) can be estimated from the solution of a Sylvester matrix equation when

applied to the measurements of a ULA-SASPA array.

The plots for the MUSIC algorithm, RMSE criterion, and the angle difference
between the estimated and the actual mutual coupling vectors, confirm the simplicity,
importance and effectiveness of the method explained in this Chapter. It is clearly
shown that using the estimated mutual coupling vector in the MUSIC cost function
can result in high resolution DOA estimation similar to the DOA resolution when
using the actual mutual coupling vector. This conclusion is also valid for small
aperture ULA-SASPA arrays and for closely spaced received signals. If the array
measurements involve the effect of noise that is coupled by mutual coupling, the
proposed method is still valid provided the power of the test signal is high enough so

that the coupled noise among the elements can be ignored.

Thus, the method formulated in this Chapter for determining the on-line mutual
coupling characteristic in receiving ULA-SASPA arrays is found to be very efficient,

easily implemented, and computationally less intensive.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation has studied the ability of a special kind of smart antenna arrays,
called Switched Active Switched Parasitic Antenna (SASPA) arrays, to estimate the
DOA of the received signals. In addition, the improvements due to the key
characteristics these arrays provide over all-active antenna arrays are also explored.
The main idea behind using such antenna array is the very fast changing between two
states; active and parasitic, over the array elements in successive sub-snapshots
which form a frame of one snapshot of the measurement. In each one of these sub-
snapshots, one element is made active by connecting its terminals to the load and the
other are made parasitic by short circuiting their terminals. Thus, N different
measurements (N is the number of elements in the SASPA array) will be obtained
within one snapshot. The fast switching can be implemented by RF PIN diodes
integrated in the hardware that is connected to the terminal of each element of the

SASPA array.

The capability and enhancement of SASPA arrays as direction finding arrays have
been examined in conjunction with the MUSIC algorithm under different conditions
of the data model. Also, the ability to estimate the unknown mutual coupling of a
ULA-SASPA array is studied. The following conclusions explain briefly the results

that are obtained when using SASPA arrays as direction finding arrays:

1. The main subject that is studied in Chapter 2 is the mutual coupling between the
elements of antenna arrays. This characteristic along with the element response
determines the overall response of transmitting and receiving SASPA arrays. The
available MCM in the literature are not useful for interpreting mutual coupling in

receiving SASPA arrays. As a result, a new mutual coupling model called Coupled
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Voltages to Uncoupled Currents (CVUC) has been formulated. This new model is
derived from electromagnetic theory and represented by a Thévenin equivalent
circuit. The CVUC model accommodates both conventional and SASPA receiving

arrays.

2. Chapter 3 discusses the principle of SASPA arrays and how these arrays operate
as transmitting and receiving arrays. The switched radiation patterns produced by
Uniform Linear Array SASPA (ULA-SASPA) arrays and Uniform Circular Array
SASPA (UCA-SASPA) arrays indicate SASPA arrays have the flexible property of
self-beamforming and self-steering their radiation pattern by simple successive
changes of the state of each element in the array between active and parasitic states.
The self-beamforming and self-steering property result from the coupled currents
induced on each element and are accompanied inherently by a specific array factor
produced due to the switching of one element to the active state at a given point in
time. These beneficial properties avoid the requirement for weight vector that is
needed in phased arrays to obtain beamforming and steering the array’s radiation

pattern.

Also, the mutual coupling matrix in transmitting SASPA arrays is studied so that a
formula for the overall radiation pattern of these arrays in terms of the uncoupled
currents of the elements is obtained. Therefore, the analysis of the performance of
transmitting SASPA arrays provides a good insight to receiving SASPA arrays since
these arrays obey the principle of reciprocity. However, receiving mutual coupling in
SASPA arrays is different from transmitting SASPA arrays since the contribution of
the active element to the overall response of SASPA arrays is different in

transmitting and receiving modes.

Also, the validation of the CVUC model formulated in Chapter 2 is examined in this
Chapter. It is shown that this model matches the mutual coupling in receiving

SASPA arrays. This model has mapped the uncoupled currents on active and
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parasitic elements to a vector of load voltages which is specifically the zero vector
except for the entry corresponding to the active element. This vector of resultant load
voltages is obtained when substituting the corresponding loads of the parasitic

elements in the CVUC model by the zero impedance.

3. In Chapter 4, the well-known DOA algorithm; MUSIC is reviewed. This
algorithm estimates the DOAs of signals received by all-active antenna arrays by
exploiting the properties of the signal and noise subspaces obtained from the
eigendecomposition of the covariance matrix of the measurements. The data model
of the measurements at the terminals of the array elements reflects the response of
the array to the received signals and to noise as well. The MUSIC algorithm searches
for the orthogonality between the noise subspace and the search vector which defines
the response of the array to all possible directions. The spectral decomposition on
which MUSIC relies on is efficient and computationally less complex than other
direction-finding algorithms. However, certain conditions should be considered to
achieve unbiased, successful, and distinguishable DOAs estimation with high
resolution when using the MUSIC algorithm. These conditions are large number of
measurement snapshots, large array aperture, high SNR of the received signals and
the number of array elements should be greater the number of received signals.
Violation of one or more of these factors may result in poor resolution or
undistiguashable DOAs. Several simulations for DOA estimation using MUSIC have

been conducted to show the importance of the aforementioned factors.

The CVUC model is used in this Chapter to illustrate the validity of the constraint on
the maximum number of signals received by a receiving FASPA array. It is shown
that when the number of active elements in an FASPA array is less than the number
of received signals, MUSIC algorithm fails to estimate the desired DOAs despite the
actual number of array elements (active plus parasites) is greater than the received
signals. Also, it is found in this Chapter that using the CVUC model contributes to

producing three subspaces; signal subspace, noise subspace, and parasitic subspace.
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These subspaces are mutually orthogonal to each other. However, using the parasitic
subspace in the cost function of MUSIC gives DOA spectrum that is superior to the
spectrum obtained with the noise subspace. The reason is that the eigenvalues
accompanied with the parasitic subspace all have “solid” zero values. Accordingly,
the merging of a portion of the signal subspace into the parasitic subspace will not

occur even when some of the eigenvalues of the signal subspace are small.

4. Chapter 5 is dedicated to investigating the capability of and the enhancement
offered by SASPA arrays in DOA estimation. In this chapter, the scenario coupled-
signals-coupled-noise is assumed for the data model of SASPA arrays. This means
that the energy excited by the received signals and the noise are coupled among the
array elements. The noise which is affected by mutual coupling is the background
noise picked up by all the array elements. Processing the measurements of a
receiving SASPA array under the coupled-signals-coupled-noise model results in the
steering matrix being scaled by factor of N. This outcome is noteworthy since a
directive gain to the underlying received signals will be attained. Accordingly, the
estimated signal subspace of SASPA arrays will be accompanied with eigenvalues
larger than the eigenvalues of the signal subspace obtained from an all-active antenna

array.

It is found by conducting several simulations of DOA estimation using the MUSIC
algorithm that SASPA arrays (ULA-SASPA and UCA-SASPA) structured in small
size apertures provide significant improvements in DOA estimation as compared
with the analogous all-active antenna arrays. Also, the plots for the criterion RMSE
for signals coming from different directions and received by SASPA arrays
demonstrate the efficiency of these arrays since these plots show almost constant

performance over a wide range of SNRs.

5. In Chapter 6, the data model of a ULA-SASPA array is assumed to follow the

coupled-signals-uncoupled-noise model. The main sources of noise are those made
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by the electronic circuitry and they are not affected by mutual coupling. The
structure of ULA-SASPA arrays under such conditions offers two advantages.
Firstly, the power of the noise will be reduced by half. Secondly, a new steering
matrix that is different from the steering matrix of ULA all-active arrays can be
obtained. The new steering matrix is a product of a real-valued matrix and a matrix.
The second matrix represents the mutual coupling but its number of columns is half
the number of columns of the original MCM. The real-valued matrix contains the
DOA information. The new steering matrix reduces the computational complexity of
calculating the steering matrix and the covariance matrix of the measurements. Also,
the estimated signal subspace will be accompanied by larger real eigenvalues, and
the round-off error will be reduced. Generation of the real-valued steering matrix in
ULA-SASPA array needs no transformation matrices that are used in other works in
the literature such as the method used in [74]. As a result, ULA-SASPA arrays
provide high resolution DOA estimation that is superior to ULA all-active antenna

arrays.

Several simulations conducted for estimating the DOAs of received signals using
MUSIC in conjunction with ULA-SASPA arrays has asserted this superiority. The
simulations show clearly that spatially close signals have been distinguishably
detected when incident on small aperture ULA-SASPA arrays. The effectiveness of
ULA-SASPA arrays is also noticed when the RMSE criterion is used to study the
performance of MUSIC for received signals that are emanated from different

directions.

6. It can be concluded from the work of Chapter 7 that ULA-SASPA array can be
used effectively for estimating the unknown mutual coupling before estimating the
DOAs of signals impinging on this array. A test signal incident on the underlying
ULA-SASPA array is first used to estimate the vector of the mutual coupling. The
null space of a rank deficient matrix determines the fitted vector to the actual mutual

coupling vector. The rank deficient matrix is produced from the product of the
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orthogonal projection on the noise subspace of the covariance matrix of the
measurement of the test signal by the real-valued DOA dependent steering matrix of

the test signal.

The proposed method is clearly very simple and require small amount of
computations compared with other methods proposed in the literature which most of

them depend on iterative LS solutions such as the methods used in [24] and [81].

Simulations for DOA estimation using MUSIC show that the fitted vector greatly
matches the actual mutual coupling vector since the MUSIC spectrums obtained in
conjunction with these two vectors are very similar. Also, the plots for RMSE for the
received signal versus SNR show that the performance of a ULA-SASPA array as an
estimator for mutual coupling and DOA is almost SNR independent. The plots for
the angle difference between the estimated and actual mutual coupling vectors show
obvious linear dependency between them.

Finally, the following is a list of the advantages provided by SASPA arrays in brief:

1. Capability of DOA estimation with very high resolution as compared with all-

active antenna arrays.
2. Estimation of the unknown mutual coupling of the array.
3. Self-beamforming and self-steering of the overall radiation pattern of the array.

4. Providing parasitic subspace that is orthogonal to the signal subspace and having

eigenvalues with zero value.

5. Reduction in the computation complexity for calculating the steering matrix and

the covariance matrix.
6. Operation at low SNR and with short data measurements.

7. Possible physically fitting into compact devices.
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8.2 Suggested Future Work

To the best of the author’s knowledge, the subject of using SASPA arrays in high
resolution DOA estimation and the enhancement that these arrays provide was rarely
investigated in the literature. Thus, many and different future work can be conducted
on this type of antenna arrays through considering several parameters which may
give further attention to SASPA arrays since these arrays are beneficial when

mounted in a user’s compact sets.

1. The consecutive switching of each element to the active state in SASPA arrays
results in steering matrices associated with the array’s key characteristics. These
characteristics allocate advantages to SASPA array as receiving antenna arrays
when used in the field of DOA estimation. The case of switching one element to
the active state within one sub-snapshot period and leaving the other elements in
the parasitic state has been dealt with in this work. It will be useful to study the
advantages and improvements of these arrays when several elements are enabled
to be active during one sub-snapshot. The mutual coupling model for such a
scenario is required to be updated over the mutual coupling model of the SASPA
arrays formed in this work. In addition, the structure of the steering matrix for

both conditions; known and unknown mutual coupling can also be investigated.

2. The DOA dependent matrix in (6.64), I'(¢), can be estimated from the equation
(7.5) which represents the homogenous Sylvester equation AX —-BX =0. It is
useful to estimate the matrix Pyp) from the array’s measurement of the
received signals. Thus, estimation of I'(¢) may lead to estimating the DOAs
directly with accurate values without using the MUSIC cost function or other
DOA algorithms. Hence, new algorithms based on ULA-SASPA arrays may be

formulated.

3. In Chapter 6, the number of the elements in a ULA-SASPA array is assumed to

be even. The new measurements z,(¢) and z,(¢) can be obtained either from
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adding the first N/2+1 measurements to the remaining flipped upside-down
N/2+1 measurements and subtracting the last flipped upside-down N/2
measurements from the first N/2 measurement or vice versa. A further analysis
for these new measurements can be studied to investigate the advantages that

might be obtained when using ULA-SASPA arrays with odd N.

In this work, the received signals are assumed to be uncorrelated. It is
advantageous to study the performance of SASPA arrays when receiving
correlated signals. Under such a case, the signal covariance matrix S =
E{s(r)s(t)H} will no-longer be diagonal. This could be investigated for both

the data models assumed in Chapters 5 and 6.

To work on UCA-SASPA arrays with unknown mutual coupling and to follow
the same procedure of obtaining the steering matrix as was carried out in Chapter
7. It is well known that UCA arrays are more beneficial than ULA because of
their symmetrical and unambiguous characteristics. Therefore, processing the
measurements of UCA-SASPA array with unknown mutual coupling could lead
to a new data model and in turn to estimated subspaces from which DOA and

coupling matrix determination can be achieved more accurately.
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Appendix A — Figure 3.3

To show how exchanging the state of the elements in Figure 3.3 between active and
parasitic states results in (3.3), the following diagrams illustrate the idea. To start

with, the geometry of the antenna array corresponding to (3.2) is as follows:

@ active element

@ parasitic element

Figure Al

The expression for the total H-plane electric field in Figure Al is given by (3.2) and

is rewritten below for ready reference [15]:

En(r0.0)=a(O)ip iclle ¢ 1] (3.2)

When the active and parasitic states are swapped between the two elements in Figure

A1, the geometry of the antenna array becomes as shown in Figure A2.

The new expression for the total H-plane electric field as a result of the antenna array

shown in Figure A2 is:

Ejo2 (1,0,0) = a(0) ic ip][e_jkdcow 1 (3.3)

173



Figure A2

Figure A2 can be updated by shifting the y-axis to the left so that the active element
is positioned at the origin. This can be implemented if (3.3) is multiplied by the

factor ¢ /%1°°? Thus, Figure A2 becomes:as shown in Figure A3.

V4
;x
Figure A3
The resultant total electric field can now be expressed as:
Eun(n0:0)=a(O)lic iple e ]
(A1)
—aO)ic it ]
But
gHdcoss _ - jid(~cos6) _ oo+ A2)
Therefore,
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Etot2(r999¢> - O[(9>[IC ZP][I e_jICdCOS(QZ)_FW)]T
: g (A3)
=a(O)lip il ]

which when compared with (3.2), it can be seen that the radiation pattern will be the

same as the one produced by (3.2) except it is rotated around the y-axis by 180°.
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