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ABSTRACT 

A Switched Active Switched Parasitic Antenna (SASPA) array consists of a number 

of antenna elements, e.g., dipoles, arranged in a specific geometry, and where, 

through PIN diodes, the antenna elements can be individually switched into an active 

state or into a parasitic state. In the case of a receiving SASPA array, the antenna 

elements are each terminated by a load (active state) or its terminals may be short-

circuited via a PIN diode (parasitic state). Because of the fast switching speed of PIN 

diodes, a single snapshot of the receiving SASPA array can be formed from a 

number of sub-snapshots, where in each sub-snapshot, one of the elements is made 

active while the remaining elements are made parasitic, and the voltage across the 

load of the active element measured. In the next sub-snapshot, a different element is 

made active while the formerly active element is switched to the parasitic state and 

the remaining elements stay parasitic. The aforesaid mode of operation differs 

significantly from conventional all-active receiving arrays where the antenna 

elements are all active and the voltages across their loads measured simultaneously 

in one snapshot. 

Despite not being studied extensively, SASPA arrays offer multiple advantages over 

all-active antenna arrays. These include directivity, compactness, and less 

requirements on the electronic circuitry. SASPA arrays depend on the strong mutual 

coupling between the antenna elements for their basis of operation. This complicates 

their analyses relative to the analyses of all-active arrays whose mutual coupling can 

often be deemed negligible.  

A difficulty with the mutual coupling models that are available in the literature is that 

they are not suitable for SASPA arrays. In particular, terms in the mutual coupling 

matrix involving parasitic antenna elements are singular. To overcome this, a new 

mutual coupling model, called Coupled Voltage to Uncoupled Current (CVUC), is 
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proposed in this thesis. This model is derived from first principles, that is, from 

electromagnetic field theory. 

In this thesis, two data models applicable to the direction-finding application of 

SASPA arrays are investigated. The first model assumes background noise in the 

transmission media is the dominant noise. Accordingly, the noise measured at the 

terminal of the active receiving antenna element is composed of the noise sensed by 

that element, plus the noise coupled from the other antenna elements. A direction-of-

arrival (DOA) estimation algorithm making use of this coupled-signals-coupled-

noise model is derived in this thesis. The proposed DOA estimation algorithm is 

based on the well-known MUSIC algorithm. 

The second data model assumes that the noise measured at the active antenna 

element is dominated by that element’s self-noise, and this noise term is independent 

of the other elements’ self-noise. By exploiting the properties of this coupled-signals-

uncoupled-noise model in a uniform linear array, a more accurate MUSIC-based 

DOA algorithm is derived in this thesis. The new algorithm is also computationally 

more efficient for simulation studies and on-line DOA estimation.  

In practice, as a result of, for example manufacturing tolerances, the actual mutual 

coupling matrix may differ from that predicted by theory. Accordingly, a new 

method for determining the mutual coupling matrix of SASPA arrays from 

measurements is presented in this thesis. This method is based on finding the null 

space of a rank deficient matrix. 

Finally, simulation studies were conducted to verify the various methods developed 

in this thesis. It is shown that SASPA arrays can provide significant improvements in 

DOA estimation accuracy over all-active antenna arrays of similar size. 
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Chapter 1Equation Chapter (Next) Section 1 

INTRODUCTION 

1.1 Compact Antenna Arrays 

With the rise of mobile communication devices with increasing capabilities and the 

growing deployment of Internet of Things (IOT) devices, there is now a strong 

demand for radio technologies that can be fitted into physically small spaces. In this 

thesis, the capabilities of a type of compact radio antennae, called Switched Active 

Switched Parasitic Antenna (SASPA) array, are investigated. 

An antenna array [1]–[11] is comprised of a number of antenna elements placed in 

strategic distinct locations in space and working together as a single antenna. The 

antenna elements are often simple and identical devices such as a dipole. Common 

array configurations include the Uniform Linear Array (ULA) where the antenna 

elements are uniformly spaced along a line; the Uniform Circular Array (UCA) 

where the antenna elements are uniformly spaced around a circle; the concentric ring 

array which consists of a number of concentric UCAs each with a different radius; 

the planar grid antenna array (GAA) where the antenna elements are placed at the 

vertices of a rectangular grid; and the conformal array where the placement of the 

antenna elements conforms to the contour or shape of the body on which the array is 

mounted. 

Antenna arrays can be transmitting or receiving. This thesis considers the SASPA 

array when operated as a receiving array. In a receiving antenna array, the antenna 

elements, or sensors, sample in space the wavefield of a propagating signal which 

may be acoustic, seismic, electromagnetic, or cosmic in nature, and converts the field 

energy sensed to electrical energy. Based on the measurements collected from the 

array of sensors, various attributes of the propagating signal are then extracted 

through suitable array signal processing algorithms.  
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1.2 Array Signal Processing 

An early application of sensor arrays was in France during World War I where 

microphone arrays were deployed to enable the early detection of approaching 

enemy aircrafts [7]. The array signal processing technique implemented then was 

rudimentary. The outputs of the microphones were simply summed electronically to 

form, effectively, a highly directional microphone. A human operator then listens to 

output of this super-directional microphone and decides on the presence or otherwise 

of approaching aircrafts. It was not till the 1960s, with the advancement of digital 

computer technology and numerical methods, that array signal processing started to 

blossom as an area of active research. This growth is stimulated by the ability of 

computers to perform complex numerical operations, such as those in array signal 

processing algorithms, rapidly and autonomously. The estimation of the various 

parameters of the propagating signals received by an antenna array, and the 

enhancement of the signal of interest, attracted the attention of many researchers, 

scientists and engineers. 

The field of array signal processing is diverse. It can be classified in many ways. 

Firstly, there is the obvious classification into time-domain or frequency-domain 

methods. A less obvious classification is that array signal processing can take place 

in either element-space or beam-space. In element-space methods, the signal outputs 

from the antenna elements are fed directly into the array signal processing algorithm; 

while in beam-space methods, the signal outputs are first combined to form a number 

of different beampatterns where each beampattern gives the response of the array as 

a function of directions in space, and the outputs of these beams are then fed into the 

array signal processing algorithm. 

Next, there is broadband and narrowband array signal processing. In broadband 

array signal processing, the bandwidth of the information-carrying signal is “broad” 

with respect to the carrier frequency of the propagating signal. Seismic arrays and 
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sonar and microphone arrays are typical examples of broadband arrays. 

In contrast, in narrowband array signal processing, the bandwidth of the information-

carrying signal is “narrow” with respect to the carrier frequency of the propagating 

signal. Examples of narrowband arrays are seen typically in radar and radio systems. 

Yet another classification of array signal processing relates to the location of the 

signal sources. In nearfield array signal processing, the sources are located close to 

the array and the wavefronts of these sources are cylindrical or spherical as they 

travel across the array. In farfield array signal processing, the sources are located far 

from the array such that their wavefronts can be approximated as plane-waves 

arriving at the array. Most of the published research on array signal processing 

assumed the plane-wave model since this will lead to algorithms that are simpler to 

derive, implement and analyse. In this thesis, the farfield model is adopted. 

In the above discussion on nearfield and farfield array signal processing, an implicit 

assumption is that the signal sources are point sources. Research on distributed 

sources have also been reported [12] but the algorithms developed and analysed are 

very much scenario dependent and cannot be transferred readily to other 

applications. As with the farfield assumption, the point source assumption is 

convenient as it will lead also to algorithms that are straightforward to implement 

and can be applied to many array signal processing applications. In this thesis, all 

signal sources are assumed to be point sources. 

Finally, array signal processing can be classified in terms of the signal processing 

objectives. In beamforming, which includes conventional beamforming, optimum 

beamforming, and adaptive beamforming, the objective is to enhance the reception of 

a signal arriving from a certain direction while suppressing noise and the influence of 

interfering signals arriving from other directions. Implicit to this class of array signal 

processing algorithms is the ability to steer, electronically, the main beam of the 
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array1 to different directions. 

In parameter estimation, the objective is to estimate, as accurately as possible, the 

parameters of the signal of interest. A parameter that has attracted much interest is 

the Direction of Arrival (DOA) of the signals received by the array. Various 

researchers have proposed and studied algorithms that can perform DOA estimation 

with high-resolution. These algorithms are based on the idea that the received signals 

experience a time delay as they move across the array from sensor to sensor. 

DOA algorithms can be classified further into parametric and non-parametric 

methods according to the cost function of the algorithm [8]. In parametric methods 

such as Deterministic Maximum Likelihood and Stochastic Maximum Likelihood, 

all parameters are estimated simultaneously. These methods require an accurate 

statistical structure or data model that captures all the characteristics of the variables 

to be estimated. Sometimes constraint conditions are also imposed to avoid trivial 

solutions. A drawback of these algorithms is that they require high computations and 

accordingly are less prevalent although they are statistically more accurate in 

estimation. In contrast, the non-parametric methods estimate only one specific 

parameter, e.g. the DOAs, by making use of spectral-based techniques to analyse the 

measurements provided by the antenna elements of the arrays. For narrowband 

arrays, the most effective and popular DOA algorithms are the Multiple Signal 

Classification (MUSIC) algorithm [13] and the Estimation of Signal Parameters via 

Rotational Invariance Technique (ESPRIT) algorithm [14]. In these two algorithms, 

the covariance matrix of the measurements is first eigen decomposed into a signal 

subspace and a noise subspace. The MUSIC algorithm locates the DOAs by finding 

the angles at which its search vector is orthogonal to the noise subspace; while the 

ESPRIT algorithm looks for an invariant rotation matrix between the two signal 

subspaces generated from splitting the antenna array into two subarrays. The DOA 

information is contained in this rotation matrix. 

                                                            
1  That is, the main beam of the receiving beampattern. 
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In this thesis, the focus is on the derivation and study of DOA estimation algorithms 

for a special type of narrowband arrays for radio applications – the Switched Active 

Switched Parasitic Antenna array. 

1.3 Switched Active Switched Parasitic Antenna (SASPA) Arrays 

An assumption often made in the study of narrowband array signal processing is that 

the antenna elements are spaced far enough apart2 so that mutual coupling between 

the elements can be ignored. However, for compact arrays, the subject of this thesis, 

the antenna elements are, by design, spaced closely. Mutual coupling cannot, 

therefore, be ignored. Indeed, it is mutual coupling that lends compact arrays their 

particular characteristics. 

An example of an antenna array that exploits mutual coupling for its success is the 

Yagi-Uda antenna, which is used commonly for TV signal reception. In this array, 

one element is used to intercept the electromagnetic waves of the broadcast signal 

and the other elements (the parasites) act as reflectors and directors. The Yagi-Uda 

antenna can be regarded as a Fixed Active Fixed Parasitic Antenna (FAFPA) array.  

Transmitting, as opposed to receiving, switched parasitic antenna (SPA) arrays were 

studied by Thiel and Smith in [15]. In a transmitting Fixed Active Switched Parasitic 

Antenna (FASPA) array, only one antenna element acts as the active element, i.e. is 

driven by the radio source, and the remaining antenna elements can be either enabled 

as parasitic elements by short circuiting their terminals via a PIN diode or disabled if 

their associated PIN diode is not forward biased. That is to say, the parasitic elements 

can be switched ON or OFF. Thus, by controlling the bias of the PIN diodes of the 

antenna elements close to the active element, the radiation pattern of the array can be 

controlled electronically due to the induced currents in the enabled parasites.  

Thiel and Smith [15] also studied the transmitting Switched Active Switched 

                                                            
2  But not too far apart, for otherwise, the array will suffer from spatial aliasing. 
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Parasitic Antenna (SASPA) array. In this array, all antenna elements are in the 

parasitic state (their terminals are short-circuited) except for one antenna element 

which is active (its terminals connected to the load). At another point in time, 

through PIN diodes, the active antenna element is switched to the parasitic state 

while a formerly parasitic antenna element is switched to take over as the active 

element. Thiel and Smith [15] explored the advantages of implementing FASPA and 

SASPA arrays as transmitting antenna arrays in cellular communications. It is shown 

that arrays with dipole or patch antennas can provide flexibility in steering the array 

radiation pattern with a very low value of the scattering parameter 11S  at resonance 

(as low as -30 dB for some SASPA configurations). Compared to the conventional 

all-active antenna arrays, SPA arrays offer the following advantages: 

1. Self-beamforming array; 

2. Flexible and easy in steering the radiation pattern; 

3. Less power consumption; 

4. Less electronic circuitry is needed; 

5. Compact in size. 

In the case of receiving FASPA or SASPA arrays, the output terminals of the active 

element are terminated by a load impedance and the voltage across this impedance is 

sensed. The remaining antenna elements are either enabled as parasitic elements by 

shorting their output terminals via forward-biased PIN diodes (as in FASPA and 

SASPA) or disabled by not putting their PIN diodes in forward bias thereby 

effectively disconnecting these array elements from the array (as in FASPA). 

As discussed, arrays with parasitic elements such as the FASPA and the SASPA 

array depend on the mutual coupling interaction between their antenna elements for 

them to operate, for example, as direction funding arrays. On the other hand, it is 

well known that mutual coupling has an adverse effect on the performance of all-

active receiving antenna arrays when they are operated as direction finders. 

Svantesson investigated in [16][17] the possibility of using switched parasitic 
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antenna arrays as DOA estimators. He considered a UCA-FASPA array with an 

active element located at the centre of the UCA and the parasitic elements distributed 

equally spaced on the circumference of the UCA. However, mutual coupling was not 

studied for this geometry because the signal model that expressed the measurements 

was based on the switched radiation patterns generated as a result of successively 

switching the parasites between ON and OFF states. In other words, Svantesson 

studied direction finding in beamspace. In this thesis, DOA estimation in element 

space with SASPA arrays is investigated. 

1.4 Goals of this Thesis 

In this dissertation, the benefits and enhancement that are achieved when SASPA 

arrays are used as direction finding (DF) arrays will be investigated. It is assumed the 

elements of the SASPA array are half-wave dipole antennas and they are located in 

an isotropic and homogenous transmission medium. Also, the mutual coupling 

between the elements is not DOA dependent. The improvements in DOA estimation 

over the all-active array, when used in conjunction with the conventional DOA 

algorithms, may be expressed through the following aspects: 

First Goal: 

As mentioned above, mutual coupling governs the performance of SASPA arrays. 

Therefore, it is important to have an accurate model that describes this phenomenon. 

In the literature, different models have been postulated to describe the mutual 

coupling effect. However, because these models were derived from different 

viewpoints such as circuit theory or electromagnetic theory, there is some 

controversy regarding the “correct” model. In any event, none of these models can be 

applied to an SASPA array since the mutual coupling matrices of these models apply 

only to all-active arrays whose elements are all terminated by a load impedance (of 

the same value) while the parasitic elements of an SASPA array has zero load 
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impedance. 

A new model, called Coupled-Voltage-Uncoupled-Current (CVUC), is derived in 

this thesis. The model is applicable to antenna arrays in general and to SASPA arrays 

in particular. The derivation is based on electromagnetic theory and the resultant 

model is represented by a Thévenin equivalent circuit. 

Second Goal: 

Having derived a suitable mutual coupling model, and assuming there is prior 

knowledge of the parameters of this model, couple-free measurements can be 

extracted from the coupled measurements obtained from an SASPA array by 

applying the decoupling matrix (the pseudo-inverse of the mutual coupling matrix) to 

the coupled measurements of a session or snapshot. This procedure is appropriate if 

the noise measured is also affected by the same mutual coupling effect as the 

received signals. In other words, the data model applicable to this signal scenario is 

the coupled-signals-coupled-noise model. 

Suppose the SASPA array has N antenna elements, and a snapshot of the wavefield 

of the propagating signals is obtained by making N sub-snapshots where in each  

sub-snapshot, a different element of the array is switched to the active state. It is 

assumed, relative to the signal bandwidth, that the time taken to collect the N sub-

snapshots of a snapshot can be neglected because of the very short switching time of 

the PIN diodes. In other words, the sub-snapshots can be assumed to be made 

simultaneously (If the time between sub-snapshots in one snapshot is not neglected, a 

time allingment scenario can be applied on the measurement). In this approach, the N 

measurements of coupled voltages are mapped to N N´  measurements of 

uncoupled currents. This will produce N similar steering matrices. Summing up these 

steering matrices will result in a steering matrix that is similar to the steering matrix 

of the all-active array with omnidirectional elements but multiplied by the factor of 

N. This advantage will contribute to reducetion in the distance measure between the 
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steering matrix and the estimated signal subspace. The scaled steering matrix, 

together with the estimated noise or signal subspace, can result in superior 

performance in direction finding when used in the cost function of the MUSIC 

algorithm, despite the spacing between the elements being much less than 2l  (as 

small as 0.15l ).  

In the case where noise is not affected by mutual coupling, that is, they are mainly 

self-noise from the antenna elements, then the relevant data model of the SASPA 

array is the coupled-signals-uncoupled-noise model. This model will result in a 

steering matrix that is the product between a real-valued DOA dependent matrix and 

a matrix that is in half size of the actual mutual coupling matrix. The real-valued 

matrix is formed due to the unitary characteristic of the SASPA array structure, while 

the Toeplitz structure of mutual coupling permits one to represent this effect by the 

halved size mutual coupling matrix. Again, superior performance in direction finding 

relative to an all-active antenna arrays can be obtained. The reason for this can be 

attributed to the fact that only real-valued variables rather than complex variables are 

processed, as a consequence of which the computational effort to perform spectral 

analysis is reduced significantly leading to a numerically more accurate 

determination of the subspaces. Also, the round-off errors accumulated due to 

processing less components of the mutual coupling matrix will be reduced. 

Third Goal: 

If the mutual coupling is not known prior to the processing of the measurements, 

then it must be found first. One approach is to inundate the array with a known test 

signal. The mutual coupling matrix is then determined from the measurements. In the 

case of a SASPA array operating under the assumption of coupled-signals-

uncoupled-noise model, this process reduces to the determination of a mutual 

coupling vector because of the symmetrical Toeplitz structure of the SASPA array’s 

mutual coupling matrix. The mutual coupling vector is found from the null space of 
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the matrix formed from the product between the orthogonal projection on the 

estimated noise subspace and the real-valued matrix mentioned above. This step 

makes use of the one-to-one correspondence between that null space and the mutual 

coupling vector. The estimated mutual coupling matrix is then introduced into the 

cost function of the MUSIC algorithm to achieve high resolution DOA estimation. 

If the array’s applicable data model is the coupled-signals-coupled-noise model, then 

the above procedure can still be used. This requires the test signal impinging on the 

SASPA array to have a high enough signal to noise ratio (SNR) such that it 

dominates the ambient or background noise picked up by the antenna elements. 

1.5 Thesis Outline 

This thesis is devoted to study the performance of SASPA arrays and their 

improvements as DF arrays in conjunction with the MUSIC algorithm. The 

following Chapters give the framework of this thesis: 

 Chapter 2 is devoted to explaining the concept of mutual coupling between the 

elements of an antenna array since SASPA arrays depend on this unavoidable 

phenomenon. A literature review on the available mutual coupling models will be 

conducted. In addition, a new model, called the Coupled Voltages to Uncoupled 

Currents (CVUC) model, will be proposed in this chapter. Although this model is 

derived for all-active receiving antenna arrays, it is also applicable to SASPA 

arrays. The model is derived from the principle of electromagnetic theory and is 

represented by a Thévenin equivalent circuit. To establish the aforementioned 

work in this chapter, some important characteristics of half-wave dipole antenna, 

which is the antenna type used in this dissertation, will be first explored. These 

parameters include current distribution on the antenna, radiation pattern of a 

transmitting antenna, induced voltage of a receiving antenna, and self and mutual 

impedances. 
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 Chapter 3 is dedicated to illustrating in detail the idea of Switched Parasitic 

Antenna (SPA) and Switched Active Switched Parasitic Antenna (SASPA) arrays. 

An SPA array consists of N elements in which one element is always in the active 

state (connected to the radio source if the array is transmitting or to a load if the 

array is receiving), and the other elements are in the parasitic state by short 

circuiting their terminals. An SASPA array consists of N elements in which each 

element can be switched between the active and parasitic states. An RF switch, 

such as PIN diode, can be used to implement the required fast switching action. 

The formulae for the switched far field radiation patterns and the related formulae 

for the currents induced on the elements in transmitting SASPA arrays will be 

studied. The mutual coupling phenomenon in transmitting SASPA arrays will also 

be investigated. Several examples showing the directive and switched radiation 

patterns for ULA-SASPA and UCA-SASPA arrays will be provided to 

demonstrate the self-beamforming and self-steering abilities of these arrays. The 

induced voltages and the mutual coupling in SASPA arrays acting in receive 

mode will also be shown. The validity and appropriateness of the proposed CVUC 

as a model that represents the mutual coupling in receiving SASPA arrays will be 

highlighted via an example of a simple SASPA array. Therefore, the work and the 

analysis in this chapter provide a basis to examine and evaluate the performance 

of SASPA arrays as DF arrays and the advantages that can be achieved from using 

such antenna arrays. 

 Chapter 4 gives a review of the well-known DOA algorithms: MUSIC. The 

capability and improvements obtained from using SASPA arrays in conjunction 

with this algorithm will be examined in the following Chapters. The MUSIC 

algorithm is based on the spectral decomposition of the covariance matrix of the 

array measurements. Therefore, an accurate data model should be considered first 

to reflect the response of array elements to the received signals. Two data models 

are considered in this Chapter. The first model assumes mutual coupling affects 
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both the elements’ response and the measured noise. The second model assumes 

that noise is due mainly to the antenna elements’ self-noise and is not affected by 

mutual coupling. These two data models will be applied to SASPA arrays in the 

next two Chapters to study the enhancement on DOA estimation. Also, the 

effectiveness of the CVUC model in conjunction with MUSIC algorithm will be 

shown in this Chapter by several simulations.  

 Chapter 5 considers the performance of ULA-SASPA and UCA-SASPA as 

direction finding arrays when background noise picked up by the parasitic array 

elements is coupled to the active element. Assuming that mutual coupling is 

known, compensating for this phenomenon will result in a system of 2N  sub-

snapshot couple-free measurements from N snapshot measurements. Averaging 

the measurements will result in a covariance matrix whose noise component is 

reduced by the number of the elements N. As a consequence, the signal subspace 

obtained from the eigendecomposition of the covariance matrix of the 

measurements will be better fitted to the steering matrix of the underlying DOA; 

and a superior high-resolution DOA estimation over the all-active antenna arrays 

will be achieved even in small size aperture arrays. DOA simulations in 

conjunction with the MUSIC algorithm for different scenarios of received signals 

and SASPA arrays are implemented to confirm the advantages of this method. 

The RMSE criterion is also examined from which it is found that this criterion is 

almost unchanged over a wide range of SNR. This reinforces the beneficial 

outcome of this method. 

 Chapter 6 assumes that the measured noise is not affected by mutual coupling. 

That is, the measured noise is due mainly to the active element’s self-noise. A 

rearrangement of the data model for a ULA-SASPA array will result in a steering 

matrix that is the product of two matrices. The first matrix is DOA dependent, and 

its entries are real values, while the second matrix is complex and represents 

mutual coupling but with reduced size than the actual mutual coupling matrix. As 
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a result of the numerically simpler structure of the steering matrix, a reduction in 

the computational load when simulating the ULA-SASPA array can be obtained. 

It can also reduce the computational load if DOA estimation is required to be 

performed on-line. Another advantage of the new data model is that it allows the 

ULA-SASPA array to outperform its all-active ULA counterpart in DOA 

estimation. Several simulations for signals that are received from different 

directions and impinging on small aperture arrays are conducted to show the 

effectiveness of this method. Another simulation study was conducted to 

determine the RMSE of the estimated DOAs as a function of the signal’s SNR. 

 The mutual coupling parameters of an array can vary with time due to changing 

environmental factors. The actual mutual coupling parameters may also differ 

from the theoretical values due to manufacturing tolerances. Chapter 7 

investigates the viability of estimating the on-line mutual coupling parameters of a 

ULA-SASPA direction funding array. The proposed method relies on impinging 

the array with a test signal, then estimating the mutual coupling vector from the 

null space of the rank deficient matrix formed from pre-multiplying the real-

valued matrix mentioned in Chapter 6 by the orthogonal projection matrix with 

range space spanned by the estimated noise subspace. The proposed method is 

much simpler than the methods available in the literature and requires only a 

small amount of computations. The feasibility of the method will be demonstrated 

and verified through simulations. 

 Chapter 8 concludes the whole work of this thesis and gives some suggestions on 

potential future work on SASPA arrays. 
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Chapter 2Equation Chapter (Next) Section 1 

MUTUAL COUPLING IN ANTENNA ARRAYS 

2.1 Introduction 

This thesis investigates the ability of an SASPA array to estimate the DOA of the 

received signals in conjunction with the MUSIC algorithm. Thus, to start with, some 

of important characteristics of a single antenna and antenna arrays should be studied. 

Among these characteristics is the inevitable mutual coupling. Therefore, in this 

chapter, the concepts of this phenomenon will be reviewed in light of the analysis 

found in the literature. However, the available models, which might appropriately 

express mutual coupling in all-active antenna arrays, cannot be applied to SASPA 

arrays. As a result, a new model called Coupled Voltage to Uncoupled Currents 

(CVUC) is proposed first for all-active antenna arrays, and then updated to match 

SASPA arrays in the next chapter.  

Note that in this chapter, the mathematical notations and symbols used were chosen 

to conform with those commonly found in the literature on electromagnetics. Thus, 

for example, E


 is the electric field vector, E is its amplitude, Eq  is the amplitude of 

E


 in the q  direction, q


 is the unit vector in the direction q , and a b´


 and a b⋅


 

denote, respectively, the cross- and dot-product of the vectors a


 and b


. 

2.2 Single Antenna Element 

An antenna is a device that converts electrical alternating current to electromagnetic 

waves and vice versa. In the first case it is called a transmitter while when it converts 

the intercepted electromagnetic waves to electrical current it is called a receiver. 

Antenna can be found in different shapes such as wire antenna, slot antenna, 

microstrip antenna, etc. [18]. Antenna can act alone as a single element or together 

with other antenna elements in an array. The shape or geometry of an array is 
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designed to provide certain characteristics which may serve a specific requirement in 

a communication system.  

2.2.1 Antenna Parameters 

In this section, some of the important and useful antenna parameters for this work 

will be explored. To be specific, the half-wave dipole antenna which is a type of wire 

antenna will be considered as the members of an SASPA array. Figure 2.1 depicts 

this antenna in the Cartesian and polar coordinates. As Figure 2.1 shows, the antenna 

is assumed to be centred at the origin in free space and lying along the z-axis. The 

antenna is assumed to be made from a perfect conducting material. This means that 

the electric field on its surface is zero [18]. The length of this antenna is 2l l=  

where c fl=  in meters is the wave length of the operating frequency f and c is  

the speed of light in vacuum. Thus, this antenna resonates at that frequency and 

accordingly is called half-wave dipole antenna [18]. 

                                                                   z  r 

       φ 

                                                        2a  θ 

                                   2l l=                                        y 

 

                                         x 

Figure 2.1: Dipole antenna in Cartesian and polar coordinates. 

It is assumed that the dipole is very thin, i.e. a l , where a is the radius, so that its 

length should be exactly half the wavelength of the resonance frequency [18]. 

Furthermore, the surface currents that are induced due to the incident waves can be 

ignored. Usually, this antenna is fed, when acting as a transmitter, or loaded, when 

receiving a signal, at the centre where its current distribution is maximum. Using 

such an antenna type allows an accurate study with less complication [19] in 
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conjunction with practical considerations.  

2.2.1.1 The Radiation Intensity Pattern 

The most important parameter that is to be found first for a given antenna is the 

spatial distribution of the energy emitted from that antenna, i.e. its radiation intensity 

pattern. This parameter is defined in the far-field region. It is derived from the 

antenna radiation pattern [18][20]. The shape of that pattern is determined mainly by 

the distribution of the antenna current. For a very thin dipole antenna, the current is 

assumed to have sinusoidal distribution [18]-[20], i.e. for 0x y z¢ ¢ ¢= = = , the 

current is: 

( 0) sin , 2 2
2m
l

I x y z zI k z l z l
é æ öù÷¢ ¢ ¢ ¢ ¢ç= = = = - - £ £ê ú÷ç ÷çè øê úë û

 
 (2.1) 

where mI  is the current amplitude, 2k p l w me= =  is the wave number, and m  

and e  are the permeability and permittivity of the medium respectively. Since (2.1) 

gives zero values at 2z l= , it is considered to be a good approximation of the 

practical situation [18][19]. This means the maximum current occurs at the feed point 

which is at the centre in Figure 2.1. This is justified as long as the dipole is very thin 

and the feed gap is very small in size. The electric far field produced by the current 

in (2.1) for a dipole antenna with arbitrary finite length is expressed in (2.2). It can be 

derived from the magnetic potential vector which can be found in many antenna 

reference books such as in [18]-[20].  

cos cos cos
2 2( , , )

2 sin

jkr
m

kl kl
I e

E r E j
rq

q
q f q h

p q

-
é æ ö æ öù÷ ÷ç ç-ê ú÷ ÷ç ç÷ ÷è ø è øê ú= = ê ú
ê ú
ê úë û

 
 (2.2) 

where h m e=  is the intrinsic impedance and r is the distance between the centre 

of the antenna and the observation point. It is clear from (2.2) that the magnitude of 

the electric far field depends significantly on the dipole length and the elevation 

angle q , the angle made between the z-axis and the line connecting the centre of the 
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dipole to the observation point. The factor jkre-  is the spatial phase shift with the 

term r l  analogous to the time shift term t T   in time varying signals. For a half-

wave dipole antenna, (2.2) becomes: 

cos cos
2

2 sin

jkr
mI e

E j
rq

p
q

q h
p q

-
é æ öù÷çê ú÷ç ÷è øê ú= ê ú
ê ú
ê úë û


 (2.3) 

The Poynting vector is defined as the instantaneous power per unit area radiated from 

an antenna and is the cross product between the instantaneous electric field E  and 

instantaneous magnetic field H  produced by the alternating current on the antenna 

[18][20][22]: 

P E H= ´    (2.4) 

The average of this power is [18][20][21]: 

2
av

2
2

2 2

1 1 1
Re Re

2 2 2

cos cos cos
2 2

sin8

m

E
W E H E r E

kl kl

r
r

I

f q
q

q q f
h h

q
h

qp

*
é ù*
ê úé ù= ´ = ´ =ê úê úë û ê ú
ë û

é æ ö æ öù÷ ÷ç ç-ê ú÷ ÷ç ç÷ ÷è ø è øê ú= ê ú
ê ú
ê úë û

    


 (2.5) 

The radiation intensity U is the average power times the distance squared measured 

from the centre of the antenna to the observation point [18][20][22]: 

2

2
2

av 2

cos cos cos
2 2

sin8
m

kl kl
I

U r W
q

h
qp

é æ ö æ öù÷ ÷ç ç-ê ú÷ ÷ç ç÷ ÷è ø è øê ú= = ê ú
ê ú
ê úë û

 (2.6) 

Figure 2.2 shows a polar diagram for the normalized radiation intensity for a dipole 

with sinusoidal current distribution and for different lengths [18]. As (2.6) reveals, 

the maximum radiation from a half-wave dipole antenna is at 2q p=  and this 

coincides with the fact that maximum radiation occurs where the current is 
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maximum. In addition, it is obvious that this type of antenna is omni-directional as it 

is clear from the 3D polar plot for the radiation intensity in Figure 2.3, i.e. the locus 

of the radiation intensity in the H-plane is a circle. For dipoles having lengths more 

than half wavelength, more than one main lobe will appear in their radiation pattern. 

This results in nulls in certain directions and complicates the directivity of the 

antenna. Accordingly, the analysis in this work assumes that the antennas are half 

wave dipoles. Also, it is assumed that signals are incident on the antenna in the 

azimuth plane where maximum radiation occurs and is independent of elevation 

angle. It is worth mentioning that the radiation pattern is mainly determined by the 

antenna current and not by its applied voltage [19]. This fact is crucial in analysing 

the SASPA array since parasitic elements will conduct short circuit current when 

intercepting a signal while its terminal voltage is zero. In other words, the currents in 

the active and parasitic elements all contribute to the overall response of the array to 

that signal. 

 

 

Figure 2.23: Radiation intensity for the dipole antenna of Figure 2.1. 

                                                            
3 The software 4NEC2 is used for plotting figures 2.2. The official web site for 4NEC2 is: 
 https://www.qsl.net/4nec2/ 
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                      0.5l l=               l l=                  1.5l l=  

 

Figure 2.34: 3-D radiation intensity for a half wave dipole antenna in free 
space. 

2.2.1.2 Antenna Self-Impedance and Equivalent Circuits 

Electrical engineers usually model telecommunication devices in terms of distributed 

or lumped components. This helps them to have good approaches to the 

characteristics of these devices and accurate analysis of the response or transfer 

function of these devices to certain inputs. For example, the uniform transmission 

line with characteristic impedance oZ  when analysed is replaced by a cascade of R-

L-C networks per unit length that gives almost accurate mathematical formulae to 

express oZ  in terms of voltages and currents over the whole length of the 

transmission line. Thus, those formulae will be functions of frequency and as well as 

distance along the transmission line. Similarly, the isolated antenna can be replaced 

by a complex impedance called self-impedance which is a function of the operating 

frequency and the antenna shape. Therefore, the calculation of oZ  requires 

derivations of typical expressions for the current and voltage developed on the 

antenna taking into consideration parameters such as length, diameter, area of the 

gap across which the supply or the load is connected (e.g. in the case of dipole 

                                                                                                                                                                         
 
4 The software 4NEC2 is used for plotting figures 2.3. The official web site for 4NEC2 is: 
 https://www.qsl.net/4nec2/ 
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antennas), and some boundary conditions. 

There are several different approaches to modelling the self-impedance and mutual 

impedance for dipole antennas, which will be explained in later sections. Derivation 

of the self-impedance models is based mainly on the current distribution on the 

antenna especially when their diameters are finite, and the sinusoidal current 

distribution is no longer valid as well [18]-[20]. In addition to the current 

distribution, estimating the mutual coupling impedance relies on other parameters 

such as the type of array elements, the element’s relative location, 3-D figures of 

element radiation patterns, the hybrid network supplying the elements, etc [23]. The 

most prevalent methods are the induced electro motive force (EMF), the method of 

moments (MOM), Hallen’s integral equation and Pocklington’s integral-differential 

equation [18][19][23]. The analysis in these approaches starts from the solutions for 

either the magnetic or electric vector potential of Maxwell’s equations with the 

constraint that the electric field component parallel to the dipole vanishes. In this 

work, because straight wire-based antenna arrays will be investigated as DOA 

estimators, the radius of the dipole in these arrays is assumed to be very thin, hence 

the current distribution will be sinusoidal, and the dipole is assumed to resonate, i.e. 

with a length equals half the wavelength of the operating frequency. The induced 

EMF approach turns out to be good approach. In addition, the induced EMF method 

affords closed form solutions for such arrays [23]. However, Hallen’s integral 

equation will also be used since this approach provides a better view for the short 

circuit current which is induced on a receiving dipole acting as a parasitic element 

[19]. 

Induced Voltage of a Receiving Antenna  

If a dipole intercepts an incident EM wave, an open circuit voltage indV  will be 

induced at its unloaded terminals while a current will be delivered to the load 

connected across the antenna terminals, see Figure 2.4.  
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                                                       z 

  

                                                                k-


   incident wave 

                                          indV                                           y 

 

                                     x 

Figure 2.4: EM wave incident on a dipole antenna. 

Here, 2k p l=


 is the wave number of the incident EM wave. In this model, it is 

assumed that the wave is narrowband, travelling in homogenous and isotropic 

medium and emanating from a source that is located very far from the centre of the 

antenna so that what the antenna receives is a plane wave, i.e., all points on the 

wavefront have the same phase shift. In addition, the electric field component of the 

wave is perpendicular to the propagation direction, i.e., it is vertically polarized 

[8][18][19][24]. This plane-wave propagation model lets one to write the expression 

for the tangential component of the received electric field as follows [19][24]:  

( ) ( ) cosinc j jkzE z E e E eo o
q¢- - ⋅¢ = =k z

 (2.7) 

where oE  is the strength of the electric field at the antenna surface. Because of the 

narrowband assumption, the elevation dependence is only a phase shift. Also, 

because the dipole is assumed to be very thin, (2.7) is an azimuth independent 

function, and cylindrical waves have also not been considered in it. The induced 

voltage indV  can be derived from the formula [18][24]: 

( ) ( )
/2

ind
/2

1 l inc

li
V E z I z dz

I -
¢ ¢ ¢=- ⋅ò

 
 (2.8) 

where iI  is the current at the antenna terminals. Inserting ( )incE z¢


 from (2.7) and I


 

from (2.1) into (2.8) and evaluating the integral yields [18][19][20][24]: 
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 (2.9) 

Note that the induced voltage of an open circuited receiving dipole antenna has the 

same elevation dependence as in (2.2) which is for the electric field of a transmitting 

antenna in the far field. This proves that antennas obey the phenomenon called 

“Reciprocity”. This means that antennas possess identical characteristics when acting 

as a transmitter or a receiver [18][20][21]. The principle of antenna reciprocity 

assumes that for two antennas located far away from each other the voltage induced 

on one of them due to the radiation from the second one which is current driven is 

the same as the voltage induced on the second one by the radiation of the first one if 

it is current driven [18][21]. The EMF models in (2.8) is a consequence of this 

phenomenon. 

In [19], the approach of Hallen’s equation for a receiving antenna has been used to 

derive formulae for the induced voltage and short circuit current in the case of open 

circuited and short-circuited receiving dipole respectively. The respective formulae 

are as follows: 
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 (2.11) 

where ( )B B z=  is a slowly varying function with respect to z and hence is 

considered a constant (see [19] Section 22.3).  Notice the resemblances in the 

elevation dependence for open circuited induced voltage that is derived using both 

methods: EMF and Hallen’s equation. 
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Antenna Self Impedance 

The self-impedance sZ  of an isolated dipole antenna located in free space can be 

written as: 

s s sZ R jX= +  (2.12) 

where s r lR R R= +  is the sum of the radiation resistance rR  and the material loss 

resistance lR . In (2.9), the voltage developed at the terminal of a receiving dipole 

antenna is found. If this voltage is defined in terms of the maximum current and then 

divided by that current, the self-impedance of the dipole referred to the maximum 

current can be calculated [18][21], i.e.  

( ) ( )
2

2 2

1
m

l

s z
l

m

Z E z I z dz
I -

¢ ¢ ¢=- ò  (2.13) 

Plugging (2.1) and (2.7) into (2.13) and evaluating the integral, the real and 

imaginary part of self-impedance, after a lengthy derivation [18], are given by 

[20][21][24]:   

( ) ( ) ( ) ( ) ( )[ ]{
( ) ( ) ( ) ( )[ ]}
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2

0.5cos ln 2 2 2

s i i i
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 (2.15) 

where 5772.0C  is Euler’s constant, and ( )i xa  and ( )i xb  are the cosine and sine 

integral of x respectively [18]: 

( )
cosx

i
y

x dy
y

a
¥

= ò  (2.16) 

( )
0

sinx

i
y

x dy
y

b = ò  (2.17) 

While the real and imaginary parts of the self-impedance in (2.14) and (2.15) 

respectively depend mainly on the dipole length, the latter is also a function of the 
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diameter as well. Accordingly, the imaginary part of the antenna power vanishes at 

far distances and the only component that contributes to energy emission from the 

antenna is the real part of its power [18][20]. The self-impedance components given 

in (2.14) and (2.15) are referred to the maximum current. In case that the maximum 

current does not occur at the driving point terminals, i.e. at points other than the 

antenna terminals, the self-impedance may be referred to its maximum value via the 

relationship: 

m
s m

s

I
Z Z

I
=  (2.18) 

While the above analysis for deriving the formula for self-impedance uses the 

induced EMF method, another expression to the self-impedance can be found from 

the solutions of Hallen’s integral equation by dividing the open circuit voltage in 

(2.10) by the short circuit current in (2.11): 

( )cot 2oc
s

sc

V
Z B kl

I
=- =-  (2.19) 

The self-impedance parts in (2.14) and (2.15) may be more precise than the one in 

(2.19) due to the required boundary conditions and approximations that have been 

made in the Hallen’s approach. 

Antenna Equivalent Circuits 

Having been calculated, the self-impedance of an antenna can be used to represent a 

transmit or receive antenna in a Thévenin’s and Norton’s equivalent circuits, see 

Figures 2.5. Note that sZ  for a transmit antenna is the same as for a receive antenna 

according to the reciprocity theorem [18][20][24][25]. In Figure 2.5d, the self-

impedance sZ  contributes to the retransmission of EM wave from the receiving 

antenna and accordingly this means that the power dissipated in each of the 

equivalent circuits should be equal to the reradiated and scattered power [20][25][26] 

especially in the case of an antenna in free space [27]. The total scattered and 
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retransmitted power can be calculated from [28]: 

( )
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0 0

1
, sin

240
sca

sP E d d
p p

q f q q f
p

= ò ò  (2.20) 

 

 gZ  

                           sV      

         sY           gY                      sI                                                    sZ  

 

 (a)                   Transmit dipole                   (b) 

                                                                   sZ        I  

  + + 

          sY             LY          indI                           LZ               LV                      indV  

                                                                                          -  - 
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Figure 2.5: Thévenin and Norton equivalent circuits for a dipole. (a) and 
(c) Norton equivalent circuits; (b) and (d) Thévenin equivalent circuits. 

where ( ),scaE q f  is the total scattered field and where [29]: 
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where gap
zE is the electric field across the gap gD  where a load or a source can be 

attached to the dipole. Obviously, the scattered field will equal approximately to the 

incident field for a short-circuited dipole and this asserts that a parasitic antenna acts 

as a reflector. In the literature, the circuits in Figures 2.5c and 2.5d are found to be 

good approximations as equivalent electric networks to the receive antenna 

[25][30][31]. However, Collin in [32] argues that equality between the absorbed 

power of a receiving antenna and the scattered power is valid only in the case of a 
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dipole antenna that is loaded with a matched load. Accordingly, the circuits of Figure 

2.5 may not be valid for calculating the total scattered power for non-matched loads. 

It has been proved in [32], as a confirmation for this argument, that the power 

consumed by the load of a receiving antenna using Thévenin equivalent circuit is 

different from the load power calculated using Norton equivalent circuit. Love [33] 

has suggested ‘A constant-power generating circuit for a receiving antenna’. In this 

circuit, the Thévenin and Norton equivalent circuits have been used together in one 

circuit to represent a receiving antenna. Thus, the absorbed power and the scattered 

or reradiated power will be referred to the total constant power resulting from the 

product of the induced voltage source indV  shown in the Thévenin circuit (Figure 

2.5d) and by the current source indI  of the Norton circuit (Figure 2.5c). In addition, 

this model shows that the power delivered to a matched load will be maximum and 

the scattered power will be minimum. In this thesis, the argument of the circuits in 

Figure 2.5 being accurate for a matched load will be taken into consideration since it 

has been agreed in the above discussion that an antenna loaded by a matched load 

will be 50% efficient. In addition, it is clear from (2.20) that scattered power will be 

small for arrays with small aperture which is the case in SASPA arrays. 

2.3 Antenna Arrays  

Antenna arrays have been used since the early days of electrical wireless 

communications. Despite possessing more complicated characteristics than the 

single-element antenna, antenna arrays provide several advantages over a single 

antenna such as increased gain, directivity, etc. Recently, antenna arrays that are 

called “smart antenna” have been used to perform many tasks that could not be 

achieved by a single element. Beamforming, direction finding are some examples of 

those tasks that are crucial in communication systems aiming to deliver more 

throughput to users in dense areas. However, the main price paid for having these 

advantages when using antenna arrays is the adverse effect of the mutual coupling 
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effect between the array members especially when the spacing between them is small 

( 2l£ ). This phenomenon will be discussed in detail in Section 2.5. In this thesis, 

two types of antenna arrays most commonly used as DF arrays will be considered: 

The Uniform Linear Array (ULA), and the Uniform Circular Array (UCA).  

2.3.1  Uniform Linear Array (ULA)  

This geometry is the simplest one in which the antenna elements are located along a 

straight line with a uniform inter-element spacing d. Figure 2.6a depicts a ULA in 

which identical dipole antennas are used and is assumed to be in free space. Each 

element in this array is oriented parallel to the z-axis with its centre located on the x-

axis. This arrangement is also called the “side by side” array [18][20]. The edge (or 

end) of a ULA may present a cut in the overall current distribution, hence lacking 

symmetry. For large ULAs, it is assumed that mutual coupling between array 

elements that are far apart is very small and can be ignored, hence their mutual 

coupling matrix is banded [24]. However, this is not the case for ULA-SASPA arrays 

since the operation of this type of antenna arrays depend intimately on the presence 

of mutual coupling. The steering matrix of ULA arrays, which gives the response of 

the array elements to the received signals, has a Vandermonde structure [8]. 

However, the main drawbacks of ULAs when acting as DF arrays are ambiguity, i.e., 

they cannot distinguish signals arriving from f  for a given q , and asymmetry in 

their beam patterns. 

2.3.2  Uniform Circular Array (UCA) 

If a symmetrical antenna array is required, the ULA is not the right choice. The UCA 

could be a good selection instead [18], see Figure 2.6b. In this geometry, the antenna 

elements are distributed over the circumference of a circle in a certain plane, say the 

x-y plane, with a radius R and oriented parallel to the z-axis. This geometry has 

azimuth symmetry; therefore, the azimuth plane can be scanned by the same 

switched radiation pattern if the array consists of identical elements with uniform 
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spacing. Accordingly, UCA provides more DOA resolution over the ULA as will be 

seen later. In addition, 2D DOA estimation can be performed with UCA arrays. Also, 

UCA does not suffer from ambiguity and has no edge effect. Therefore, it may 

effectively line up with the requirements of adaptive smart antenna arrays [18].  
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Figure 2.6: Two types of antenna arrays. (a) ULA; (b) UCA. 
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2.4  Mutual Coupling and Mutual Impedance 

Mutual coupling is the phenomenon of exchanging power between neighbouring 

antenna elements. The electromagnetic characteristic of a single element, such as the 

radiation pattern, induced voltage, and terminal input impedance will be influenced 

and contaminated when another antenna is in its proximity. In the literature, most 

authors argued that the phenomenon of mutual coupling between array elements has 

an adverse effect on the performance of antenna arrays when acting as direction 

finding (DF) arrays [23][24]. This is due to contaminating the measurements of the 

array by the coupled voltages or currents from the neighbour antenna elements [23]. 

Consequently, DOA algorithms performance will undergo degradation because the 

actual intelligence related to the received signals becomes embedded into the 

measurements. Therefore, the model that correctly and precisely interprets the 

mutual coupling should be investigated to establish further step towards 

compensating such effect.   

Mutual coupling depends on various parameters such as the antenna type, the number 

of antenna elements in the array, the spacing between the elements, the element 

position, the element alignment, the DOA of the signal impinging on the array, and 

the hardware used to process the measurements [18][23]. Expressing this 

characteristic of energy exchange between the array elements has been viewed in 

different perspectives, see [18][23][34][35]. These views are based mainly on 

interpreting the mechanism of spatial exchange of power between the elements of the 

array and interpreting this exchange by equivalent electrical circuits. Therefore, 

different approaches such as induced EMF and MoM have been used to calculate the 

mutual impedance between two wire antennas. The overall model for mutual 

coupling in an array takes the form of a matrix. This matrix may have special 

structure depending on the geometry of the array. For example, ULA is symmetric 

when rotated around the axis which is perpendicular to the array’s axis, therefore its 
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mutual coupling matrix is a symmetric complex Toeplitz. Likewise, the UCA has a 

circulant mutual coupling matrix. 

In DOA estimation, the simplest method to compensate for mutual coupling is by 

applying the inverse of the mutual coupling matrix to the measurements as in 

[17][24][36]-[38] assuming noise is not affected by mutual coupling. This means that 

prior knowledge of mutual coupling is assumed to be already available. However, 

because of various environmental or manufacturing factors, the actual mutual 

coupling may be change over time. Therefore, to compensate for mutual coupling in 

an antenna array by applying the inverse of this effect is not reliable for 

counteracting the coupled measurement in high resolution DOA estimation. In the 

literature, methods such as in [39] have been proposed to eliminate the requirement 

for having prior knowledge about the underlying mutual coupling. 

2.4.1  Mutual Impedance 

To start defining mutual coupling in antenna arrays, the mutual impedance between 

two elements must first be analysed. King [40] has derived analytical formulae for 

the mutual impedance between two wire antennas with any length and located in a 

side-by-side configuration. Kraus [20] has also derived similar expressions for the 

aforementioned configuration and both of their methods are based on the induced 

EMF method. Let the mutual impedance between two identical elements p and q 

located in a side-by-side configuration be: 

pq
pq

q

V
Z

I
=  (2.22) 

where pqV  is the open-circuited voltage induced at the feed point of element p due to 

the current in element q and qI  is the current at the feed point of element q. 

According to the induced EMF method, pqV  can be written as [18] [20]: 

( ) ( )
/2

/2

1 l

pq z ppq
p l

V E z I z dz
I -

¢ ¢ ¢=- ò  (2.23) 



31 
 

Hence, 

( ) ( )
/2

/2

1 l

pq z ppq
q p l

Z E z I z dz
I I -

¢ ¢ ¢=- ò  (2.24) 

Here, ( )
pqzE z¢  is the z-component of the radiated field from element q and parallel 

to the axis of element p and is given by [18][19]: 

( )
1 2

1 2
2cos

4 2

jkR jkR jkRmq

pqz

j I e e kl e
E z

R R R

o

o

h

p

- - -æ öæ ö ÷ç ÷¢ ç ÷=- + -ç ÷ ÷ç ÷çç è ø ÷çè ø
 (2.25) 

qmI  is the maximum current of element q and 1R , 2R  and oR  are as follows [18]-

[20], see Figure 2.7: 

( )22R d z ho = + +  (2.26) 

2
2

1 2
qlR d z h

æ æ öö÷÷ç ç ÷÷= ç ç ÷÷ç ç ÷÷ç çè è øø
+ + -  (2.27) 

2
2

2 2
qlR d z h

æ æ öö÷÷ç ç ÷÷= ç ç ÷÷ç ç ÷÷ç çè è øø
+ + +  (2.28) 

Plugging (2.25) and (2.1) as the current distribution for ( )pI z¢  into (2.24) and after 

some lengthy derivations (see [18][20]), the real and imaginary parts of the mutual 

impedance between identical very thin half-wave dipole antennas p and q in an array 

with N identical elements located side by side in free space is given by [24]:  

( ) ( ) ( )[ ]1 22
4pq i o i iR u u u
h

a a a
p

= - -  (2.29) 

( ) ( ) ( )[ ]1 22
4pq i o i iX u u u
h

b b b
p

= - -  (2.30) 

where ia  and ib  are defined previously in (2.16) and (2.17) respectively while their 

arguments are defined as: 

ou kd=  (2.31)  

( )2 2
1 q qu k d l l= + +  (2.32) 
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( )2 2
2 q qu k d l l= + -  (2.33) 

Figure 2.8 shows the variation of pqR  and pqX  as a function of the spacing d l . It 

is clear from (2.29) and (2.30) that the mutual impedance depends mainly on the 

inter-element spacing and the antenna length. Thus, for two very close elements, the 

coupling is strong and cannot be ignored. When 0d = , the mutual impedance has a 

value of ( )73 42.5j+  which is the same value as the self-impedance. 
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Figure 2.7: Two dipoles in side-by-side configuration. 

It is worthwhile mentioning here the analysis presented in the literature such as in 

[18][19][21] for calculating the driving point impedance for a simple transmitting 

array consisting of two antennas. Starting with the following system of equations:  

1 1 11 2 12V I Z I Z= +  (2.34) 

2 2 22 1 21V I Z I Z= +  (2.35)  

one gets, after dividing the first equation by 1I  and the second equation by 2I : 
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1 2
1 11 12

1 1
d

V I
Z Z Z

I I
= = +  (2.36) 

2 1
2 22 21

2 2
d

V I
Z Z Z

I I
= = +  (2.37) 

 

Figure 2.8: Variation of pqR  and pqX  versus inter-element spacing d l  
for two very thin half-wave dipoles located in side by side configuration. 

1I  and 2I  are actually the uncoupled currents in antennas #1 and #2, while 1V  and 

2V  are the terminal voltages of antennas #1 and #2 respectively. Thus, dividing 1V  

by 1I  or 2V  by 2I  does not give the true driving point impedance of each element in 

the array. In the next section, the relationship between the coupled voltages and 

currents induced on each element in a receiving array will be analysed. The aim is to 

derive mutual coupling models that give a closer view on the energy exchange 

between the array elements.  

2.4.2  Mutual Coupling Models for Receiving Antenna Arrays 

The aim of using antenna arrays is to provide observations or measurements from 

which information about the DOA and other parameters of the received signals can 

be estimated. For DOA estimation, this can be achieved after finding the correlation 
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between the measurements of the response of the array elements to the received 

signals. These responses are measured multiple times to give a statistically more 

accurate estimate of the parameters after processing the correlated observations using 

suitable signal processing algorithms. Obviously, this cannot be done by a single 

antenna. In the next chapters, it will be shown that the responses of the array 

elements are different from each other by the phase shift nje- k r
   due to the time 

delay the received signal experiences when travelling across the array. However, the 

measurements, i.e., the load or terminal voltages of the array elements, include the 

mutual coupling effect between the array elements in addition to their response to the 

received signals. If each element in the array is loaded by the same load (usually 

chosen to be the complex conjugate of the antenna input impedance to attain 

maximum power transfer), the load voltage will be related to the induced voltage 

through the relationship: 

L ind=v Cv  (2.38) 

where 1N
L

´Îv   is the vector of the load voltages at the element terminals and 

1N
ind

´Îv   is the vector of the stand-alone induced voltages, i.e. the uncoupled 

load voltages. The square matrix N NC   , which is called the Mutual Coupling 

Matrix (MCM), is based on self and mutual impedances [23][24]. It has a Toeplitz 

structure for ULA [24] and circulant structure for UCA [23]. Obviously, the size of 

the MCM becomes larger as the number of elements in the array increases. This may 

lead to larger errors in signal processing algorithms that involve decoupling the 

measurements because of their need to calculate the inverse of the MCM. However, 

since 0pqZ   for large spacing d l , see Figure 2.8, the MCM could have a 

banded structure, i.e. with zero entries on the sub-diagonals that are far from the 

main diagonal. In SASPA arrays this may not be valid since in the structure of 

SASPA, it is imperative that the elements should be close to each other. In the 

literature, different interpretations have been applied on the MCM in order that an 

accurate decoupling scheme could be devised to remove the adverse effect of mutual 
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coupling on the performance of DOA algorithms. However, this has led to 

disagreements resulting from using different views such as microwave circuit theory 

or electromagnetic field analysis when interpreting the interaction between the 

elements in an antenna array. While some authors argue that because of reciprocity, 

the mutual coupling effect is the same for receiving and for transmitting arrays [23] 

[25][37], others have defined two separate models for transmitting and receiving 

antenna arrays [41]-[43]. The two most well-known models for modelling mutual 

coupling in receiving antenna arrays are in [37] and in [43]-[47]. In [37], Gupta and 

Ksienski viewed an N-element receiving antenna array as a linear bilateral 1N+  

port network, where the extra port which represents the received signal is modelled 

as an external power supply the network and having an internal impedance. By 

imposing the condition that the open circuit voltage at the terminal of each array 

element is due to the power supply (the incoming signal) alone, the relationship 

between the open circuited voltages and the load voltages will be: 
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=v F V Lv

 (2.39) 

Thus, for this MCM model, the open circuit voltages represent the couple free 

voltages. This MCM model is called the Open-Circuit Voltage (OCV) method 

[46][48]. Note that OCV
N NF  ´Î  in (2.39) is equivalent to 1C-  in (2.38). Also, 

OCVF  is angle independent [23][36]. ppZ  and pqZ  in OCVF  are the conventional self 

and mutual impedances given by (2.14) and (2.15), and (2.29) and (2.30) respectively 

[23][46]. The OCV has the interpretation of adaptive receiving arrays in view of 
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microwave circuits analysis in which the network port is the only source of 

excitation. However, the actual induced voltage across the antenna terminal is the 

result of integrating the antenna current over the antenna surface [48]. Therefore, the 

open circuit voltages are not the exact uncoupled voltages induced by the incoming 

signals [41]. Furthermore, OCV assumes that no radiation occurs from an antenna 

with open circuited terminal [45]. Thus, using the inverse of OCV results only in a 

partial elimination of mutual coupling [49]. However, OCV, which is based on 

microwave circuit theory, was found to be a good approximation [41], especially 

when the array is built up of half-wave dipoles since the current in an open circuited 

dipole can be neglected [36]. Accordingly, it has been used in different DOA 

estimations studies such as in [24][50].  

In [43]-[47], a different MCM model was postulated and is called the Receiving 

Mutual Impedance Method (RMIM). In this model, the voltage measurement at the 

antenna terminals in a receiving array is related to the couple-free terminal voltages 

due to the received signals only through the following relationship: 

1,2 1,
1 1
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 (2.40) 

where 1N´Îu    is the vector of load voltages (terminal voltages) due to the 

incoming signal alone, i.e. the couple free voltages, and ,p qZ  is the receiving mutual 

impedance between elements p and q as defined in [44][46]. While OCV assumes  

the open circuit voltages are the uncoupled voltages, RMIM considers the couple free 
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voltages as the closed-circuit voltages [45][46]. Note that RMIM needs no prior 

knowledge about the self-impedances. Also, in this method, ,p qZ   has been 

calculated experimentally based on the scattered powers from the array elements 

[44][46]. However, the calculation is implemented using hardware necessary for the 

measurement of scattered power in an array consisting only two monopoles 

regardless of the incident angle of the test signal [44][46]. Accordingly, such a 

method may need more hardware and computations for large arrays or arrays 

consisting of another type of antenna. Also, the experimental results for calculating 

the receiving mutual impedance reveal that the mutual coupling between two dipole 

antennas almost vanishes for 1d l> . Accordingly, this method might not be useful 

for such inter-element spacings in large arrays [44, Figure 2]. Yamada et al. [41] 

have used in their suggested MCM another mutual impedance that represents the 

mutual coupling due to the scattered or reradiated power in addition to the 

conventional mutual coupling of a transmitting array. However, this MCM requires 

2N  simultaneous equations to be solved. Also, the method to calculate the mutual 

impedance due to the scattered power has not been defined. 

In this work, a new approach will be explored for modelling the coupling matrix C of 

(2.38) in conventional receiving antenna arrays, i.e. arrays with all-active elements 

and to SASPA arrays as a special case. This approach is based on electromagnetic 

theory in conjunction with circuit theory but in terms of the uncoupled or stand-alone 

values of currents rather than voltages.  

2.4.3 The Coupled Voltages-Uncoupled Currents (CVUC) Model 

The proposed MCM model relates the couple-free or stand-alone currents that are 

induced on each element in a receiving antenna array due to the received signals only 

to the coupled voltages that are measured at the element’s terminal (load voltage). By 

coupled voltage it is meant the voltage induced at the element’s terminal due to the 

received signal and contaminated by the energy exchanged between the array 
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elements. The CVUC model is derived from electromagnetic theory and is 

characterized by a Thévenin equivalent circuit or Norton equivalent circuit. As a 

result, an efficient view of the mechanism of mutual coupling, which will be 

interpreted in terms of an electrical network, will be achieved. Moreover, this model 

matches SASPA arrays as it will be shown in the next chapter. Based on Thévenin 

equivalent circuit, any antenna in a receiving array can be substituted by the circuit 

shown in Figure 2.9a [24][25][30][51] and assuming the dependent voltage sources 

which account for the mutual coupling effect have zero internal impedance [21]. 

Thus, the load voltage of the element p in an N-element receiving antenna array can 

be written as: 

1 1Lp p p pp p q pq N pNv u i Z i Z i Z i Z= - + + + + +   (2.41) 

Despite being regarded as controversial by many authors, the validity of using a 

Thévenin equivalent circuit to model a receiving antenna array may be verified 

through the application of the concept of induced EMF theory to (2.41). It is assumed 

throughout this proof that the array is in the first stage of exchanging energy between 

the elements since a series of this exchange yields the coupled currents. The induced 

voltage at the terminal of a receiving dipole antenna p intercepting a signal can be 

calculated from (2.8) and is rewritten below: 

( ) ( )
2

2

1 l

p z zlp
u E z I z dz

I -
¢ ¢ ¢=- ò  (2.42) 

The system in (2.41) can be formulated in another way starting with considering the 

superposition of the Magnetic Vector Potential A


 of a receiving antenna in an array 

as follows [19] [52]: 

( ) ( ) ( )( ) ( ) ( )
, , , ,

1

( )
N

gap sca sca
z p z p z p z pq

q
q p

A z A z A z A z
=
¹

= + +å  (2.43) 

where ( ),z pA z  is the total z-component of A


 on the antenna surface, ( )( )
,
gap

z pA z  is 

the z-component of A


 across the gap of element p, ( )( )
,
sca

z pA z  is the z-component of 
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the scattered A


 by element p , and ( )( )
,
sca

z pqA z  is the z-component of the scattered A


 

by element q on the surface of element p. Multiplying both sides of (2.43) by 2jc, 

where c is the speed of light and applying the operator ( )2 2
z k¶ + gives [19]: 
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( ) ( ) ( ) ( ), , , ,
1

2 2 2 2
N

inc sca sca
z p L p z p z pq

q
q p

kE z kv z kE z k E zd
=
¹

\ =- + - å  (2.45) 

where ( ),
inc
z pE z is the z-component of the electric field of the incident wave and 

, ( )sca
z pE z  is the z-component of the scattered electric field by element p. To obtain 

(2.45), the following relationship has been used [19]: 

( ) ( ),2p z pv z jcA z=  (2.46) 

where ( )pv z  (in volts) is a scaled version of ( ),z pA z . This results in a scaled value 

of the electric field when ( )2 2
z k¶ +  is applied to it [19, pp. 1176], i.e.: 

( ) ( ) ( ) ( ) ( )2 2 2 2
,,2 2 inc

z p z z pz pk v z k jcA z kE z¶ + = ¶ + =  (2.47) 

The antenna elements are assumed to be good conductors. Therefore, the tangential 

electric field on the surface of a dipole should be zero except at the gap [29], i.e.: 
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 (2.48)  

where ,
gap
z pE  is the z component of the electric field developed at the gap of element p 

and ( ),
sca
z pqE z  is the z-component of the scattered electric field by element q on the 

surface of element p. Furthermore, the delta gap source model assumes that the 

incident electric field ( ),
inc
z pE z  at the gap is constant and equals , ,s p g pv D , where 

,s pv  is the excitation voltage at the feed gap of element p [18]. Note that in [19], 
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( ),
inc
z pE z  is expressed in another way as ( ) ( ), ,

inc
z p s pE z v zd= , where ( )zd  is the delta 

function. In [29], the load voltage of a loaded dipole is defined as: 

, , ,
,

, ,

L p L p L pgap
z p

g p g p

v I Z
E =- =

D D
 (2.49) 

Therefore, the electric field at the gap of a loaded dipole receiving one signal can be 

written as: 

( ) ( ), ,
gap
z p L pE z v zd=  (2.50) 

Finally, (2.45) becomes: 
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Substituting (2.24) and (2.42) into the RHS of (2.41) yields: 
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Substituting the term between the brackets in (2.52) by ( ),L pv zd  as in (2.51) yields: 

( ) ( )
2

, , ,2

1 1
z

l

L p p L p p L plp p
v z I z dz v I v

I I
d

-
= =ò  

Thus, the RHS of (2.41) equals ,L pv . Note that pI  and qI  are the uncoupled 

currents of elements p and q respectively at 0z = . Thus, validation of (2.41) has 

been proved for the contribution of the uncoupled currents of the elements into ,L pv ,  

 



41 
 

i.e., the terminal load voltage developed at the first instant of receiving the incident 

signal. Once the elements begin to exchange the energy, the element currents become 

coupled currents ni , 1,2, , ,n N=   which can be inserted into (2.41) instead of the 

uncoupled currents to include the contribution of them into the load voltage ,L pv . 

 
 
 
 

 +          ppZ           1 1pi Z          q pqi Z    N pNi Z     

                          - 
p

u   Lv                                      pi   

 

                 LZ  

(a) Thévenin’s equivalent circuit 

 

 

  

                           PI            ppY          11 LpY v              LqpqY v       LNpNY v      LY  

Lv  

  
(b) Norton’s equivalent circuit 

Figure 2.9: Thévenin and Norton equivalent circuits of a dipole in an 
antenna array. 

Similarly, the above analysis can be applied to all the other elements in the array to 

give the following system of equations that expresses the terminal voltages of an all-

active receiving antenna array: 

11 LpY v
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,1 1 1 11 2 12 1 1

,2 2 2 22 1 21 2 2

, 1 1 1 1

L q q N N

L q q N N

L N N N NN N q Nq N NN

v u i Z i Z i Z i Z

v u i Z i Z i Z i Z

v u i Z i Z i Z i Z- -

= - + + + + +
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 

 



 

 (2.53) 

The uncoupled voltage 
pu  can be substituted by ( ),p p pp L pu I Z Z= + , where pI  is 

the uncoupled current of element p and .L pZ  is its load impedance. Also, ,L pv  can 

be substituted by , ,L p p L pv i Z= . After some rearrangements, the system in (2.53) can 

be rewritten in matrix-vector form to finally give the CVUC model as: 

( )1-= +Lv D ST I  (2.54) 

where ,1 ,2 ,
T

L L L Nv v vé ù= ë ûLv    is the vector of coupled voltages which are 

measured at the terminals of the array elements and [ ]1 2
T

NI I I=I   is the 

vector of uncoupled currents at the terminals of the array elements. The structure of 

the matrices D, S, and T are as follows: 
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Notice that the CVUC model overcomes the singularity case that might arise in OCV 

and RMIM for short-circuited antenna, i.e. when , 0L pZ = . Note also that the CVUC 

mutual coupling model can be applied to any array geometry such as Uniform Linear 

Array (ULA) or Uniform Circular Array (UCA).  

The entries of matrix T  can be in terms of self and mutual admittances rather than 

self and mutual impedances. This can be implemented by referring to the Norton 

equivalent circuit shown in Figure 2.9b from which another version of (2.41) can be 

written as: 

, ,1 1 , , , 1, ,p p L p pp L p L q pq L N pNi I v Y v Y v Y v Y p N= - + + + + + =    (2.55) 

Replacing ,L qv , 1,2, ,q N=  , by their corresponding equivalent terms ,q L qi Y  and 

following the same procedure used to formulate (2.53) yields another matrix that 

relates the coupled currents to the uncoupled currents in a receiving antenna array: 

11 12 1
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1 1
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N
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L L N

Y Y Y

Y Y Y
I i
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

 (2.56) 

or 

=I Wi  (2.57) 

and the system (2.55) becomes: 

( )1-= +Lv D SW I  (2.58) 

where W is defined in (2.56). However, when analysing SASPA arrays using Norton 

equivalent circuit, the load current of any parasitic element in the array should be the 

current that flows in the self-admittance of each of the parasites because ,L pY ¥  

for parasites. Also, ,L qv , 1,2, ,q N=   with q p¹  and p is the active element, will 
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be given by ,L q q qqv i Y= , i.e. the coupled current of the corresponding parasitic 

element divided by the self-admittance and not by the load admittance as in the case 

of the all-active antenna array shown in (2.55). Thus, for an N-element SASPA array 

with element #1 active and the other 1N -  elements parasites, the system in (2.55) 

will be: 

1 1 ,1 11 ,2 12 , 1 , 1

2 2 ,1 21 ,3 23 , 2 , 2

,1 1 ,2 2 , ,( 1) ( 1)

L L L q q L N N

L L L q q L N N

N N L N L N L q Nq L N N N

i I v Y v Y v Y v Y

i I v Y v Y v Y v Y

i I v Y v Y v Y v Y- -

= - + + + + +

= + + + + + +

= + + + + + +

 

 



 

 (2.59) 

Note that in (2.59) there is no ,L p ppv Y  term in the equations for the currents pi ,

2,3, , .p N=   Replacing ,1Lv  by 1 ,1Li Y  and ,L pv , 2,3, , ,p N=   by p ppi Y , after 

rearranging terms, the system of equations in (2.59) becomes: 
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 (2.60) 

i.e. 

=I Wi  (2.61) 

Thus, the coupling matrix W  is based on self and mutual admittances. The formulae 

for these admittances can be found in [53][54]. In [53], the solution for the current 

distribution on a dipole is first calculated to find the self-admittance using an integral 

equation like (2.8) with another kernel function to describe additional boundaries. In 

calculating the mutual admittance, the authors in [53] used mutual kernel functions 

between the elements of a ULA to determine the current distributions on these 

elements. In contrast, in [54] the induced EMF method was used to find the self and 



45 
 

mutual admittances by inserting the magnetic current rather than electric current in 

the integrand along with the azimuth component of the intensity field. 

2.5 Summary 

In this Chapter, the concept of mutual coupling between the antenna elements in an 

antenna array is reviewed from the perspective of antenna theory. This inherent array 

characteristic is due to the exchange of energy between the antenna elements if they 

are close together. The presence of mutual coupling is often considered to have an 

adverse effect on the performance of transmitting and receiving antenna arrays since 

the response of each element in the array is contaminated by another effect. 

However, there are antenna arrays such as SASPA arrays that depend closely on the 

action of mutual coupling for them to work properly.  

To start the review on mutual coupling, some of the important aspects of antenna 

element and antenna array must be first studied. The current distribution, the 

radiation intensity of a transmitting antenna, and the induced voltage of a receiving 

antenna are reviewed. The self-impedance of an antenna element and the mutual 

impedance between two diploe elements are also studied. The formulae given for the 

self and mutual impedances are based on the induced EMF theory and the concept of 

reciprocity. These impedances are the main entries of the Mutual Coupling Matrix 

(MCM) which expresses the mutual coupling effect. The available mutual coupling 

models in the literature such as OCV, RMIM, and others have been postulated based 

on different views of the energy exchange between the array elements. However, 

most of them did not capture all of the physical phenomena associated with mutual 

coupling, particularly for receiving arrays. In addition, the existing models were 

derived for all-active arrays where all the antenna elements are either driven (in 

transmit mode) or loaded (in receive mode). In other words, the existing models 

cannot be used to develop algorithms for SASPA arrays. As a result, a new model, 

called Coupled Voltages to Uncoupled Currents (CVUC), is proposed in this chapter.  
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The derivation of CVUC is based on electromagnetic theory and microwave network 

theory. The efficacy of this model in SASPA arrays will be shown in the remaining 

chapters of this thesis.  
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Chapter 3Equation Chapter (Next) Section 1 

SWITCHED ACTIVE SWITCHED PARASITIC 
ANTENNA (SASPA) ARRAYS 

3.1  Introduction 

In this chapter, the principle and the effectiveness of using Switched Parasitic 

Antennas (SPA) in antenna arrays will be explored. The Switched Active Switched 

Parasitic Antenna (SASPA) as a special case of (SPA) is then analysed.  

In general, an SPA array consists of one antenna element which is connected to the 

RF signal source when the array acts as a transmitter, or to a load when the array is 

acting as a receiver. This element is called the “active element”. The other antenna 

elements are called “parasitic elements” and their terminations are either short 

circuited (ON state) or left open circuited (OFF state). In the case of SASPA arrays, 

one element is active, and the other elements are short circuited parasites. Using PIN 

diodes, the parasites in SPA arrays can be switched between ON and OFF states. In 

contrast, in SASPA arrays, the PIN diodes are used to switch one (and only one) 

element to the active state while keeping the other elements in the parasitic ON state. 

The role of active element in an SASPA array is then passed to another element after 

a certain time period, and by rapidly and sequentially switching the elements of the 

array to the active state and back, the radiation pattern of the SASPA array can be 

easily and effectively steered to different directions.  

A key feature of SPA and SASPA arrays is that they rely on mutual coupling for 

them to work. This is in contrast to conventional antenna arrays which treat mutual 

coupling as a nuisance. It will be shown in this chapter that, unlike the mutual 

coupling models that are available in the literature, the CVUC model proposed in the 

previous chapter can yield suitable mutual coupling matrices for SASPA arrays. As 

such, this chapter aims to develop the mathematical basis for the derivation of the 
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algorithms presented in later chapters that allow SASPA arrays to act as DF arrays. 

3.2 Switched Parasitic Antenna (SPA) Arrays 

The use of antenna arrays involving passive elements goes back to 1930 when two 

Japanese scientists, Yagi and Uda, constructed an array of wire antennas arranged in 

a side by side configuration [55]. This array is called Yagi-Uda after their names and 

is used for TV signal reception. The array consists of a single half-wave dipole as an 

active radio receiver connected to the TV set and short-circuited dipole antennas with 

different lengths acting as parasites. The array is designed so that the induced 

currents on the parasites together with the current induced on the active element due 

to the received signal produce a radiation pattern with a narrow directive main lobe 

in one direction and almost null radiation in other directions. The length of the 

parasites and the spacing between them have great effects on the resultant radiation 

pattern since they determine the mutual coupling between the active element and the 

parasites. However, the Yagi-Uda antenna needs to be steered mechanically to the 

direction of the required signal to have optimum reception. In other words, the Yagi-

Uda array is a Fixed Active Fixed Parasitic Antenna (FAFPA) array. 

To electronically steer the radiation pattern, a collection of parasitic antennas can be 

placed in the vicinity of a single radio receiver and by making use of the mutual 

coupling between them. Antenna arrays with such a facility are called Switched 

Parasitic Antenna (SPA) arrays. The parasites in the array can be switched between 

the “ON” and “OFF” states using PIN diodes which can operate with very short 

switching times. In the literature of smart antennas, the benefits of SPA arrays in 

cellular communications have been investigated. In [56], the effectiveness of using 

SPA arrays to provide a variety of switched beam patterns that are beneficial in 

mobile communications is studied. It is shown that SPA arrays produce almost 

orthogonal or uncorrelated patterns. Also, it is shown that the envelope correlation 

coefficient between the received signals by SPA arrays decreases significantly as the 
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inter-element spacing decreases. Furthermore, the directivity increases as the number 

of parasites increases. However, the concept of mutual coupling has not been well 

investigated in [56].  

Antenna diversity by implementing SPA arrays with the active element at the centre 

of a circular geometry of parasitic elements is studied in [57]. Using only four 

parasites in the circular geometry with three different terminations, it is possible to 

have symmetrical radiation patterns directed to the main fundamental directions with 

a low correlation coefficient. The circular array has been chosen because of 

symmetry and constant mutual impedance. Also, it is shown in [58] that SPA arrays 

are beneficial in increasing the capacity of SDMA for packet switching networks in 

which several simultaneous antenna beams are required. The SPA array as a special 

class of smart antennas, its potential practical applications, and its advantages in 

controlling and fabrication antenna arrays over the phased arrays have been 

discussed in detail in [15]. In addition to being easy in steering its directive radiation 

pattern, consuming less power, and being comparatively small in size, the SPA array 

also shows a very low scattering factor 11S  and almost fixed input impedance [15]. 

However, 2-D scanning cannot be carried out by the SPA array as in phased arrays 

[15]. As DF arrays, the capability of SPA for DOA estimation have been discussed in 

[16] and [17]. “It was found that the SPA array offers high-resolution direction-

finding performance using only a single radio receiver” [16]. 

SPA array example 

If two arrays that are like a Yagi-Uda array but sharing the same active element are 

used [56], see Figure 3.1, the H-plane directive radiation pattern can be steered 

towards two different directions if the termination of the two sets of parasitic 

elements are changed [15][56]. In this geometry, dipoles #2 and #4 are shorter in 

length than the active element #1 while dipoles #3 and #5 are longer than the active 

element #1, and the spacing is not optimized. If the terminals of dipole #2 and dipole 
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#3 are short circuited, i.e., switching them to the parasitic mode, while leaving the 

terminals of dipole #4 and dipole #5 open circuited, i.e., effectively disconnected 

from the array, the H-plane radiation pattern will be 130° spatially apart from the H-

plane radiation pattern of the same geometry if dipoles #4 and #5 are now switched 

to the parasitic mode , i.e., ON state, and dipoles #2 and #3 are open circuited, i.e., 

OFF state. Switching a parasite between the ON and OFF state can be implemented 

by a PIN diode which operates at very fast speed, see Figure 3.2a. Figure 3.3b shows 

how a dipole can be changed between the parasitic and active states by using a PIN 

diode. This type of SPA arrays in which one element is fixed to the active state while 

the parasites are changed between ON and OFF states is called a Fixed Active 

Switched Parasitic Antenna (FASPA) array. Another type of array, called Switched 

Active Switched Parasitic Antenna (SASPA) array, is the main topic of this research 

and will be explained in Section 3.4. These two types of SPA arrays were first 

proposed by Thiel and Smith, see [15]. 

3.3  PIN Diodes as RF Switches 

PIN diodes are used in SPA and SASPA arrays for the purpose of changing each 

element of the arrays to the “ON” or “OFF” state for the parasites in SPA arrays, or 

between “active” and “parasitic” in SASPA arrays. The switching speed of PIN 

diodes is very high making them very useful as RF switches [59-61]. The ohmic 

resistance of typical PIN diodes, which are current controlled, varies between 1Ω 

(forward biasing) to 10KΩ (reverse biasing) making them advantageous in networks 

operating at UHF and microwave frequencies [59]. PIN diodes are distinctive from 

other electronic switches with the uniquely characteristic of requiring small DC 

levels to control large RF signals [61]. In Figure 3.2, typical circuit diagrams of PIN 

diodes for switching action in SPA and SASPA arrays are illustrated. Figure 3.2a 

shows the circuit diagram for a Single Pole Single Throw (SPST) switch. This circuit 

can be used to switch the parasitic element in an SPA array between ON and OFF 
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states by connecting the element terminals to RFIN and RFOUT terminals respectively. 

Forward biasing the PIN diode switches the element to ON state. While the OFF 

state is obtained when reverse biasing the PIN diode. 

 
 

 #2 

                               #5                                                  

                                         #1                       #4 

                                           #3                                   

                                                               (a)        

                                     

           #5                              #2                          #5                                  #2 

                                #1 #1 

            #3                                    #4                         #3                                   #4 

                                     

                                    (b)                                                                (c) 

                                                                  Active element             

                         Parasitic element-ON state                      Parasitic element-OFF state 

Figure 3.15: A simple SPA array acting in transmit mode. (a) The 
geometry; (b) and (c) Radiation patterns. 

                                                            
5 The software 4NEC2 is used for plotting figures 3.1(b) and (c). The official web site for 4NEC2 is: 
 https://www.qsl.net/4nec2/ 
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(a) 

 
(b) 

https://www.qsl.net/va3iul/RF_Switches/RF_Switches.pdf 

Figure 3.2: Circuit diagrams of RF switches using PIN diode. (a) SPST; 
(b) SPDT. 

In case of SASPA array, the circuit in Figure 3.2a is connected across the load of the 

corresponding element. When the PIN diode is reverse biased, the element is in the 

active state. When the PIN diode is forward biased, the element is switched to the 

parasitic state. In Figure 3.2b, the Single Pole Double Throw (SPDT) switch is 

shown. The antenna terminals can be connected to RF port 1 and RF port 2 and the 

load connected between RF port 3 and RF port 2. When D1 and D2 are forward 

biased, the antenna is in the parasitic state. When D1 is forward biased and D2 is 

reverse biased, the antenna is in the active state. 

3.4  Switched Active Switched Parasitic Antenna (SASPA) Arrays 

A special case of SPA arrays is the Switched Active Switched Parasitic Antenna 

(SASPA) array in which each element can be switched to active state, i.e., at a 
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certain time only one element is active while the rest of the elements are parasitic. 

And at a later time, another element which was parasitic is switched to the active 

state and the previously active element is switched back to the parasitic state. To the 

knowledge of the author, no previous work in the literature has been reported on the 

use of SASPA arrays as DF arrays except for [62]. In [62], a digital word consisting 

of a multiple of ones and zeros controls the terminations of the antenna elements in 

an array. The ones in the digital word activate the corresponding elements while the 

zeros parasitize the other elements. Different digital words are chosen so that the 

azimuth is scanned by the corresponding directive radiation patterns generated by a 

UCA geometry. This facility is used to estimate the DOA of two signals by 

measuring the received powers of the signals for all of the chosen digital words in 

conjunction with the Genetic Algorithm. A drawback of the method is that there 

should be prior knowledge of the DOAs so that the selected digital words will result 

in optimum directive radiation patterns.  

A simple geometry of an SASPA array consisting of two half-wave dipoles one of 

which is active and the other is parasitic is shown in Figure 3.3a [15]. The active 

element is designated as “C” while the parasitic as “P”, and they are aligned in a side 

by side configuration with an inter-element spacing of 8d l= . Here, by the active 

element it is meant that element is driven by a RF voltage or current signal source 

and hence, the array is in transmit mode. If the array is in receive mode, the active 

element will be connected to a load. In both modes, the terminal of the parasitic 

element is short circuited.  

Suppose the array is operating in the transmit mode. Because of mutual coupling,  

a current will be induced on P due to the energizing element C. If the spacing 

between the two elements is small, the current Pi  will be almost equal to but out of 

phase to Ci , i.e. P Ci i»-  [15]. This means that part of the radiation pattern to the 

left of the array will be reflected by the parasite back to the opposite side, i.e., to the 

right side of the array, and contributes to producing a directive radiation pattern in 
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the H-plane, as shown in Figure 3.3b. If the situation is reversed, i.e., element C 

becomes parasitic and element P becomes active, the H-plane radiation pattern is 

now directed to the left side as shown in Figure 3.3d. Figure 3.4 depicts the effect of 

the spacing between the elements on the directivity of the array in the H-plane. As 

can be seen, the smaller is the spacing between the array elements the more 

directivity is produced.  

 

                   P         C                              

                         (a)                                                            (b) 

 C        P                    

                          (c)                               (d) 

Figure 3.36: Illustration of the effect of interchanging active and parasitic 
states between two dipoles of a transmitting SASPA array on the 
direction of the overall radiation pattern of the array. 

                                                            
6 The software 4NEC2 is used for plotting figures 3.3(b) and (d). The official web site for 4NEC2 is: 
 https://www.qsl.net/4nec2/ 
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Figure 3.47: The effect of the spacing d on the directivity of the radiation 
pattern produced by the SASPA array shown in Figure 3.3a. 

          0.2d l=       0.3d l=            0.4d l=                 0.5d l=  

3.5  Far Field Radiation Pattern and Mutual Coupling of SASPA 

Arrays in Transmit Mode 

3.5.1  Far Field Radiation Pattern 

For the simple ULA-SASPA array consisting of two dipoles shown in Figure 3.3a, 

Thiel and Smith [15] have calculated the total H-plane far-electric field when one of 

the elements is active and the other one is parasitic with the active element as a 

reference element, i.e., positioned at the origin: 

( )
( ) ( )cos2

1
cos cos

, ,
2 sin

jkd
tot P C

j
E r i e i

kr

p
fqwm

q f
p q

-
é ù
ê ú= +ê ú
ë û

 (3.1) 

where ( ), ,r q f  is the spherical coordinates of the observation point, d is the spacing 

between the elements, and Ci , Pi  are the active and parasitic currents respectively. 

Thus, totE  of the array in the H-plane will be determined mainly by the amplitude 

                                                            
7 The software 4NEC2 is used for plotting Figure 3.4. The official web site for 4NEC2 is: 
 https://www.qsl.net/4nec2/ 
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and phase of the elements’ current and the spacing between them as shown in Figure 

3.3b. Equation (3.1) can be rewritten in vector form as: 

( ) ( )[ ] cos
1 , , 1
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tot P CE r i i e fq f a q -é ù= ê úë û  (3.2) 

where ( ) ( )( )2
cos sinpa q q q=  and [ ]T⋅  is the transpose of a vector.  

If the element C is switched to the parasitic state and the element P to active, 1totE  

now becomes: 
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and the H-plane radiation pattern is now rotated through 180°, see Figure 3.3d. Note 

that the phase of the parasitic current in (3.3) is positive with respect to the phase of 

the current in the active element, i.e. it is out of phase with respect to the current of 

the parasitic element in (3.1) due to the swapping of the active and parasitic states 

between the elements (see Appendix A). Equations (3.2) and (3.3) can be generalized 

for an N-element ULA-SASPA array as follows, with the active element the 

reference element: 
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where ( )ni  is the vector of the coupled currents of the array and ( )( )n qa  is the array 

factor or the steering vector. The index n refers to the position of the active element. 

Due to the presence the array factor ( )( )n qa  which is produced when the elements of 

the SASPA array are successively switched between active and parasitic states, the 

SASPA array could be considered as a self-beamforming array. 
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SASPA array example 

Figure 3.5 depicts the radiation fields produced by a four-element ULA-SASPA 

array when each element is successively switched to active starting from element #1 

and assuming this element is positioned at the origin. The inter-element spacing is 

8d l= . When element #1 is active and the rest of the elements are parasites, the H-

plane radiation pattern will have a single main lobe directed to the left with 

max 180f =  , see Figure 3.5a. When element #2 is switched to active and the 

previous active element (element #1) switched to parasitic, a new shape of the 

radiation pattern will be produced because of the array factor is now different from 

the one in (3.4) which will be: 

( )( ) ( )2 2 coscos cos1
Tj N kdjkd jkde e e ff ff + -- +é ù= ê úë ûa   (3.5) 

and the current vector becomes: 

( ) ( ) ( ) ( ) ( )
1 3

2 2 2 22
N

T

CP P Pi i i ié ù= ê úë ûi   (3.6) 

Notice the symmetry that occurs between the radiation patterns produced by the 

active elements #1 and #4 and between elements #2 and #3. As a comparison 

between Figure 3.5b and Figure 3.3d, the maximum gain for the two-element ULA-

SASPA array is 7.06 dB at max 180f =  , the Front-to-Back ratio (F/B) is 7 dB, and 

the 3 dB beamwidth HPBW is 120° while the corresponding values for the four-

element ULA-SASPA array are 10.83 dB, 6 dB, and 60° respectively. Notice that the 

radiation patterns produced by active elements #1 and #2 in Figure 3.5 are 

asymmetrical and have different F/B ratios. However, the radiation patterns produced 

by active elements #1 and #4 are symmetrical. This demonstrates the asymmetrical 

and centro-symmetric properties of ULA arrays. In addition, the second and the third 

radiation patterns in Figure 3.5 have additional large lobes in contrast with the first 

and last ones in which a unique maxf  is defined. This unwanted phenomenon may 

cause the array to be ambiguous in DOA estimation.  
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(a)                                                           (b) 

          

                          

(c)                       8d l=  (d) 

                                  Active element               Parasitic element 

Figure 3.58: A four-element ULA-SASPA array acting in transmit mode. 

 

  

                                                            
8 The software 4NEC2 is used for plotting the radiation patterns in Figure 3.5. The official web site for 
4NEC2 is: 
https://www.qsl.net/4nec2/ 
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8R l=  

                                                        Active element             Parasitic element   

Figure 3.69: A five-element UCA-SASPA array acting in transmit mode. 

 

To produce symmetrical radiation patterns with the same gain, F/B and 3 dB BW, the 

UCA-SASPA array can meet such requirements. Figure 3.6 shows a five-element 

                                                            
9 The software 4NEC2 is used for plotting the radiation patterns in Figure 3.6. The official web site for 
4NEC2 is: https://www.qsl.net/4nec2/ 
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UCA-SASPA array with the elements equally placed on the perimeter of a circle 

with radius 8R l= . Each one of the five radiation patterns formed by this geometry 

has maximum gain of 7.65 dB, F/B ratio of 10.4 dB, and 3 dB BW of 95°. 

Successively switching each element to active while keeping the rest of the elements 

parasitic sweeps maxf  over the entire azimuth plane with each maxf  at the angular 

position of the element n [62]: 

max
1

2 , 1,2, ,
n

n N
N

f p
-

= =   (3.7) 

Thus, the array factor ( )( )n qa  in (3.4) for a UCA-SASPA array takes the form [63, 

pp. 15-16]: 

( )( )
1 1

cos 2 cos 2
1 cos cos

TN
jkR jkR

jkR jkR N Ne e e e
f p f p

f ff
æ ö æ ö-÷ ÷ç ç- -÷ ÷ç ç÷ ÷ç ç- è ø è ø

é ù
ê ú= ê ú
ê úë û

a   (3.8) 

( )( )
2 1 1

cos cos 2 cos 2
2 cos

TN
jkR jkR jkR

jkRN N Ne e e e
p

f f p f p
ff

æ ö æ ö æ ö-÷ ÷ ÷ç ç ç- - - -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
é ù
ê ú= ê ú
ê úë û

a   (3.9) 

3.5.2  Mutual Coupling in Transmit SASPA Array 

Mutual impedance plays an important role in determining the resultant radiation 

pattern of an SPA array which in turn depends mainly on the current of each element 

in the array. The amplitude and phase of the current Ci  induced in the active element 

of a transmitting SASPA array entails two components: the first one is the uncoupled 

component CI  that is due to energizing the active element by a RF voltage or current 

source, and the other component is mutually coupled from the short circuit currents 

of the parasites which are induced by the active element. Thus, ( )( ), ,n
totE r q f  in (3.1) 

and (3.2) can be defined in terms of the uncoupled currents rather than the coupled 

currents. To do so, the Thévenin equivalent circuit in Figure 2.5 for an array can be 

used, provided the effect of mutual coupling is included, see Figure 3.7.  
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         gZ      
p

i  + 

         s, pV         

       q pqI Z       +   ppsZ Z               pv    

                     -    

         + 

 - 

 

Using the superposition theorem for an N-element ULA array and assuming that each 

element is supplied by an RF voltage source sV  with identical internal impedance 

gZ , the model expressing the voltage across the self-impedance of each antenna 

element including the effect of mutual coupling is: 

11 11
1 1 11 1 11 1 12 1

11 11

22 22
2 2 22 1 21 2 22 2

22 22

1 1 1 2

N N
g g

N N
g g

NN NN
N N NN N N N NN

NN g NN g

Z Z
v i Z I Z I Z I Z

Z Z Z Z

Z Z
v i Z I Z I Z I Z

Z Z Z Z

Z Z
v i Z I Z I Z I Z

Z Z Z Z

= = + + +
+ +

= = + + +
+ +

= = + + +
+ +









 (3.10) 

Each ,s pV  drives the uncoupled current pI  into the self-impedance ppZ  of the 

corresponding element which in turn radiates the near and far fields as if the element 

is acting alone. The mutual coupling effect of the neighbour elements on the element 

p is represented by the dependent voltage sources q pqI Z , 1,2, ,q N=  , q p¹

which are summed up with ,s pV  to produce the coupled current p p ppi v Z= . In the 

case of an SASPA array with element #1 active, (3.10) becomes: 

Figure 3.7: Thévenin equivalent 
circuit for a dipole in an antenna 
array acting in transmit mode. 
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12 11 1 11
1 1 11 1 11 ,2 ,

11 11

21 22 2 22
2 ,2 22 1 ,

22 22

1 2
, 1 ,2

0

0

N
sc sc N

g g

N
sc sc N

g g

N NN N NN
N sc N NN sc

NN g NN g

Z Z Z Z
v i Z I Z I I

Z Z Z Z

Z Z Z Z
v i Z I I

Z Z Z Z

Z Z Z Z
v i Z I I

Z Z Z Z

= = + + +
+ +

= = + + +
+ +

= = + + +
+ +









 (3.11) 

where ,sc pI , 2,3, ,p N=   are the currents induced on the parasites due to the 

uncoupled current 1I , and ,sc pi  is the coupled current on parasitic element p due to 

1I  and ,sc pI . Note 0pI =  because the parasitic elements are not energized by an 

external voltage or current source.  

The system of equations (3.11) can be rewritten as: 

12 1
1 1 ,2 ,

11 11

21 2
,2 1 ,

22 22

1 2
, 1 ,2

0

0

N
sc sc N

g g

N
sc sc N

g g

N N
sc N sc

NN g NN g

Z Z
i I I I

Z Z Z Z

Z Z
i I I

Z Z Z Z

Z Z
i I I

Z Z Z Z

= + + +
+ +

= + + +
+ +

= + + +
+ +









 (3.12) 

which can be expressed in matrix-vector form as: 

12 12 1

11 11 111 1

21 23 2,2 ,2

22 22 22

, ,1 2 3

1

0

0

N

g g g

Nsc sc

g g g

sc N sc NN N N

NN g NN g NN g

Z Z Z

Z Z Z Z Z Zi I
Z Z Zi I

Z Z Z Z Z Z

i IZ Z Z

Z Z Z Z Z Z

é ù
ê ú

+ + +ê úé ù é ùê úê ú ê úê úê ú ê úê úê ú ê úê ú+ + +ê ú ê úê ú=ê ú ê úê úê ú ê úê úê ú ê úê úê ú ê úê úê ú ê úê úê ú ê úë û ë ûê ú
ê ú+ + +ë û





    



 (3.13) 

or 

( ) ( ) ( )1 1 1=i B I  (3.14) 

The superscripts in (3.14) refer to the active element. Plugging (3.14) into (3.4), the 

electric far field of an SASPA array when element #1 is active becomes: 
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( ) ( ) ( ) ( ) ( )( )1 1 1 1T T

totE a q q= I B a  (3.15) 

The above analysis can be applied to SASPA arrays of both types, ULA and UCA. 

3.6  Induced Voltages and Mutual Coupling of SASPA Arrays in 

Receive Mode 

In the previous section, it was shown that the total radiation pattern emanating from a 

transmitting SASPA array is the result of the uncoupled currents induced on the 

elements, the array factor, and the mutual coupling between the elements. According 

to the reciprocity theorem, the same factors which determine the total radiation 

pattern of an antenna array when transmitting also determine the response of the 

antenna array when receiving signals. Thus, the previous section paved the way to 

study the response of an SASPA array to the received signals. However, the mutual 

coupling in receiving SASPA arrays is different from that in transmitting SASPA 

arrays since the mechanisms of coupled currents in transmit and receive modes are 

different [18]. Specifically, in a transmitting SASPA array, only one element is 

energised by the RF source, while in a receiving SASPA array, all elements are 

energised by the incident signal. Accordingly, some of the characteristics particular 

to a receiving SASPA arrays should also be considered since a comprehensive 

knowledge about these parameters will provide a basis for performing direction-

finding using SASPA arrays. The important parameters to be studied in this section 

are the induced voltages and the receiving mutual coupling models. 

3.6.1  Induced Voltages in Receiving SASPA Arrays 

In Section 2.2.1.2, the voltage induced at the terminal of an unloaded half-wave 

dipole that is intercepting an electric field has been derived by solving Hallen’s 

equation (2.10) by considering certain boundaries or by means of the induced EMF 

method (2.9) which is repeated below for ready reference:  
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( )
cos cos cos

2 2
sinsin

2

o
ind o

kl kl
E

V E
kl

ql
b q

qp

é æ ö æ öù÷ ÷ç ç-ê ú÷ ÷ç ç÷ ÷è ø è øê ú= =ê úæ ö ê ú÷ç ÷ç ÷ ê úè ø ë û

 (3.16) 

where 

( )
cos cos cos

2 2
sinsin

2

kl kl

kl

ql
b q

qp

é æ ö æ öù÷ ÷ç ç-ê ú÷ ÷ç ç÷ ÷è ø è øê ú= ê úæ ö ê ú÷ç ÷ç ÷ ê úè ø ë û

 

In (3.16), oE  is a complex value representing the strength of the electric field of a 

received signal. In DOA estimation, this value is represented by the notation ( )s t . 

For a collection of identical half-wave dipoles arranged in an arbitrary 3-D geometry 

and receiving a signal, see Figure 3.8, the same induced voltage in (3.16) will be 

developed at the terminal of each dipole. However, due to the spatial position of each 

element which is referred to a reference point, usually the origin, each 
nindV  would 

experience a spatial phase shift equal to ( ) n nj je e- - ⋅ ⋅=k r k r
  

 relative to the origin. In 

general, each element response 
nindV  experiences a phase shift accompanied with a 

gain. However, the gain of a half-wave dipole equals 1. The vector nr


 is the distance 

vector between element n and the origin of the Cartesian coordinate system [8]: 

n n n

T
n x y zd d dé ù= ë ûr


 (3.17) 

and k


 is a vector containing the spatial wave number of the received signal: 

[ ]sin cos sin sin cos , 2Tk kq f q f q p l= =k


 (3.18) 

The spatial phase shift is due to the delay in time the signal experiences when 

travelling across the array [8][64]. Thus, the induced voltages at the open-circuited 

terminals of the elements in an antenna array can be written as the vector: 

( ) ( )

( ) ( )

1 2

1 2

N

TT T
N

Tjj j
ind

jj j

s t e e e

s t e e e

b q

b q

⋅⋅ ⋅é ù= ê úë û
é ù= ê úë û

k rk r k r

k rk r k r

v
   

   




 (3.19) 
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Figure 3.8: An arbitrary 3-D geometry of identical antennas receiving a 
signal. 

If the antenna geometry is a ULA with the elements distributed uniformly with a 

spacing d on one axis, say the x-axis, see Figure 3.9a, the term T
nk r

 
 for a signal in 

the x-y plane will be: 

( )[ ]

( )

cos

1 0 0 sin

0

1 cos

T
n xk n d

n kd

f
f

f

é ù
ê ú
ê ú= -
ê ú
ê úë û

= -

k r
 

 (3.20) 

The vector k


 will have azimuth dependence only because 2q p= . If element #1 is 

positioned at the origin, then the measurement in (3.19) becomes: 

( ) ( )

( ) ( )

1 coscos 2 cos1
Tj N kdjkd j kd

ind

ULA

s t e e e

s t

ff fk

k f

-é ù= ê úë û

=

v

a


 (3.21) 

where 

( ) constantk b q= =  

Similarly, for a UCA with radius R and element #1 located at ( ) ( ), , ,0,0x y z R= , 

(3.20) and (3.21) become, respectively: 
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Figure 3.9: Antenna array receiving a signal in the x-y plane (a) ULA; (b) 
UCA. 
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Note that the phase of each element in the UCA geometry of Figure 3.9b has been 

referred to the origin where no element exists. Each vector of the induced voltages in 

(3.21) and in (3.23) is related to the vector of load voltages in an all-active receiving 

antenna array as in (2.38). In the case of SASPA arrays, the variable ( )s t  represents 

the response to the uncoupled current on the elements of the array. This is because 

the load voltage at the terminal of the active element is determined by the induced 

current on that element and by the short circuit currents induced on the parasites 

which are then mutually coupled to the active element. In [19, Chapter 24] the 

induced current on a short-circuited dipole antenna is related to oE  or to ( )s t . Thus, 

after pre-multiplying (3.21) or (3.23) by the CVUC model of (2.54) and inserting the 

Beam Space (BS) term (which will be explained in detail in Chapter 5), the final 

expression for the load voltage at the terminal of the active element can be obtained.  

3.6.2  Mutual Coupling in Receiving SASPA Arrays 

In the previous chapter, the CVUC model was formulated to give the coupling matrix 

of a receiving antenna array. In this section, it will be shown that CVUC matches the 

operation of an SASPA array. This can be shown when the resultant vector of load 

voltages is the zero vector except for one non-zero entry which corresponds to the 

active element. This occurs when substituting , 0L pZ =  into the entries of the CVUC 

model where p corresponds to a parasitic element. For simplicity, let an SASPA 

array consists of two elements with one of them active (element #1) and the other 

parasitic (element #2). The vector of the load voltages for this array will be a vector 

of one non-zero entry which corresponds to the active element and a zero-voltage 

corresponding to the parasitic element. To show this, the matrix ( )1-+D ST  in 

(2.54) for this scenario can be rewritten as:  

1
12

11 ,111 ,1 11 121

22 ,2 21 22 21

22 ,2

1
0

0
1

LL

L

L

Z

Z ZZ Z Z Z

Z Z Z Z Z

Z Z

-

-

é ù-
ê ú

+ê úé ù+ é ù- ê úê ú ê ú+ = + ê úê ú ê ú+ - -ë ûë û ê ú
ê ú+ë û

D ST (3.24) 
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The matrix 1-T  can be rewritten as: 

1
12 12

11 ,1 11 ,11

21 21

22 ,2 22 ,2

1 1

1 1

L L
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Z Z Z Z
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where 

( )( )
( )( )

11 ,1 22 ,2

11 ,1 22 ,2 12 21

L L

L L

Z Z Z Z

Z Z Z Z Z Z

+ +
D=

+ + -
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Pre-multiplying the matrix in (3.25) by the matrix S and making some  

simplifications yields: 
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Finally adding the matrix D  to the result and putting ,2 0LZ =  produces: 
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( )
( ) ( )
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1
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L L
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+D ST  (3.28) 

As can be seen, the second row of the resultant CVUC mutual coupling matrix for 

this case has zero entries. Clearly, the second row corresponds to the parasitic 

element. If the matrix (3.28) is post-multiplied by the vector of uncoupled currents of 

the array elements, the result is the voltage vector: 

( )1
,1 0

T
LL vé ù= ë ûv  (3.29) 

Similarly, if element #1 is converted to parasitic and element #2 is turned to active, 

the matrix (3.28) will be: 

( )
( )

( )

1
11 21 ,2 22 ,2 ,2 11

22 ,2 11 12 21 22 ,2 11 12 21

0 0

L L L

L L

Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z Z Z

-

é ù
ê ú
ê ú+ = ê ú+
ê ú
ê ú+ - + -ë û

D ST  (3.30) 

The procedure described above can be generalized to N-element SASPA arrays. The 

results (3.28) and (3.30) show that applying the CVUC model to the couple-free 

currents (the couple-free load current in the active element and the couple-free short-

circuited currents in the parasites) will couple the energy to the active element. This 

result cannot be obtained if a load impedance of zero is substituted into the OCV 

model of (2.39) or the RMIM model of (2.40) since some of their entries will be 

singular.  

Figures 3.10 and 3.11 show respectively the radiation patterns of five-dipole ULA-

SASPA and six-dipole UCA-SASPA receiving arrays. The mutual coupling between 

the elements is assumed to be the CVUC. The interelement spacing between the 

elements of the ULA-SASPA array is 0.15d l= . The radius of the UCA-SASPA 

array is 4R l= .  

The beam patterns in these plots are the result of the response of the array factor 
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squared 2AF  at the active elements in each of the N sub-snapshots which are spread 

over one snapshot of the measurement. That is, for the ULA-SASPA array: 

( ) ( )( ) ( )( ) ( )
22 2 Tn n n

ULAULAAF x f f= = c a  (3.31) 

and for UCA-SASPA array: 

( ) ( )( ) ( )( ) ( )
22 2 Tn n n

UCAUCAAF x f f= = c a  (3.32) 

where ( )ULA fa   and ( )UCA fa   are defined in (3.21) and (3.23) respectively and 

( )( )Tnc   is the row of the CVUC mutual coupling model which corresponds to the 

active element n. It can be seen from Figure 3.10 that the beam patterns produced in 

the ULA-SASPA array are symmetrical around the element in the middle, while in 

the UCA-SASPA array, all the produced beam patterns are symmetrical. This shows 

that the ULA-SASPA array suffers from the ambiguity property. 

3.7  Summary  

The principle of SPA and SASPA antenna arrays has been explored in this chapter. 

These arrays have a flexible and fast mean to direct and steer their overall radiation 

pattern to different directions by simply changing the load termination of their 

omnidirectional elements. Changing the load condition at the termination of each 

element can be implemented with PIN diodes. These diodes have very short 

switching times and are eminently suitable to act as RF switches. Steering the overall 

radiation pattern of SPA and SASPA arrays to different directions has been 

established through varying the spatial phase shift of the steering vectors by 

successively altering the termination of the elements. This outweighs conventional 

antenna arrays when considering beamforming since a weight vector needs to be 

applied to the latter to achieve a certain beam pattern.  
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Figure 3.10: Radiation patterns of five-dipole ULA-SASPA receiving array with the 
CVUC model as the mutual coupling. The interelement spacing is 0.15d l= . 
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Figure 3.11: Radiation patterns of six-dipole UCA-SASPA receiving array with the 
CVUC model as the mutual coupling. The radius of the array is 4R l= . 
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One of the important characteristics of SPA and SASPA arrays is mutual coupling. 

This characteristic, which may be considered to be an adverse effect in conventional 

antenna arrays, is found to be advantageous in determining the resultant radiation 

pattern and directivity of an SPA or SASPA array in conjunction with the self-

beamforming procedure described above, the number of elements, and the array 

geometry. The mutual coupling and the total radiation pattern of SASPA arrays in 

transmit mode have been analysed so that a closer understanding of the response of 

an SASPA array in receive mode can be gained. It is found that UCA-SASPA arrays 

produce symmetrical and more directional switched patterns. In contrast, ULA-

SASPA arrays produce unsymmetrical and less directional radiation patterns. Also, 

more than one main lobe can be produced when some of the elements of a ULA-

SASPA array are switched to the active state. Thus, UCA-SASPA arrays outperform 

ULA-SASPA arrays in both transmit and receive modes.  

The CVUC model which was postulated in the previous chapter has been shown to 

give an accurate representation of mutual coupling in SASPA arrays since this model 

maps the free-coupled currents induced on the array elements due to the received 

signals only to an appropriate vector of load voltages. The resultant load voltages 

will be the zero vector except for the entry corresponding to the active element. This 

result cannot be obtained when other mutual coupling models such as the OCV and 

RMIM models are used as the mutual coupling model for SASPA arrays. 
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Chapter 4Equation Chapter (Next) Section 1 

DIRECTION OF ARRIVAL ALGORITHM 

4.1  Introduction 

In conventional antenna arrays, all elements are terminated by a load. Hence the 

elements are all active at the instant of measurement. Consequently, these arrays are 

called all-active arrays. This chapter is devoted to explaining one of the many 

different algorithms that have been proposed to estimate the DOA of signals 

impinging on a conventional all-active antenna array. The algorithm is MUSIC 

(MUltiple SIgnal Classification). This DOA algorithm depends mainly on the 

spectral analysis of the covariance matrix of the measurements.  

The data model which reflects the measurements of an all-active array involves the 

response of the array elements to the received signals plus the effect of noise. The 

covariance matrix of the measurements which entail the spatial-temporal correlation 

between the array elements is obtained from the data model. To build up a correct 

data model, further information about the array’s parameters such as the array 

geometry, antenna characteristic, etc. should be available [8]. Eigendecomposition of 

the measurement covariance matrix is then performed to determine the signal and 

noise subspaces. These subspaces are then processed by MUSIC to estimate the 

underlying DOAs.  

In practice, the covariance matrix of the measurements is obtained from a large 

number of snapshots. This requirement ensures the obtained “covariance matrix and 

its eigendecomposition are maximum likelihood estimates of the corresponding exact 

quantities” [8] and unbiased estimation can be achieved. A typical spectral 

identification of these algorithms is the peaks in the pseudospectrum of the 

algorithm, such as in MUSIC [8]. The peaks are located near the DOA of the 

received signals. The most important criteria of the DOA algorithms are the bias and 
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variance of the DOA estimates, and the resolution of the algorithm, i.e. the ability to 

resolve closely spaced signal sources [8]. 

4.2  Review of DOA Estimation with All-Active Antenna Arrays 

4.2.1  The Data Model 

The data model describes the response of the array elements to the received signals 

and is central to the derivation of algorithms to estimate some of the spatial-temporal 

parameters such as DOA, polarization, temporal signal frequency etc. [8]. The array 

response appears as an induced voltage or current at the terminal impedance of each 

element of the antenna array. In addition to these responses to the incident signals, 

the observations or measurements include also noise which are normally assumed to 

be additive. In practice, data models represent a compromise between the need to 

model closely the real world [65] and the need to keep them mathematically simple 

[8]. As such, assumptions are often made when constructing a data model. In the case 

of antenna array processing, these assumptions are: 

1. Linear transmission in an isotropic and non-dispersive medium: This assumption 

implies that several traveling waves can propagate in this media simultaneously 

[8] and in a straight line [14][65], i.e., the media is invariant with respect to 

direction and is non-scattering. 

2. Far field: The received signal is assumed to be in the far field. This means that 

what is received by the antenna array is a plane wave, i.e., the wave is flat and 

having constant phase [8] provided the distance between the signal sources and 

the array is large enough so that the wavefront of the spherical waves emanating 

from the source is approximately a plane wave at the array [8][14][65]. 

3. The number of received signals M is less than the number of the array elements, 

i.e., M N< . It is assumed that the number of signals is known a priori, or it can 
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be estimated by algorithms such as MDL and Akaike’s AIC [8]. It is also 

assumed that the signals arrive from M distinct directions. 

4. Narrow band: The mth received signal, 1, , ,m M=   can be expressed as: 

 ( ) ( ) ( )( ){ } ( ) ( )( )2Re cos 2c mj f t t
m m m c ms t t e t f t tp ba a p b+= = +  (4.1) 

The signal ( )ms t  is said to be narrow band as long as the envelope ( )m ta  and 

phase ( )m tb  are slowly time-varying functions with respect to τ [14][65], where τ 

is the smallest propagation delay from element to element in the array, i.e., 

( ) ( )m mt ta t a- »    and   ( ) ( )m mt tb t b- »  

Thus, ( )ms t  experiences a phase shift only due to that delay, i.e., 

( ) ( ) 2 cj f
m ms t s t e p tt -- »  

In addition, the received signals are assumed to be stochastic with zero mean 

normal distribution and variance of 2
ss , i.e. ( ) ( )20,m ss t N s . The response of 

each element, which is the measured terminal voltage or current, to the delayed 

version of the M received signals will be [14]: 

( ) ( ) ( ) ( )2

1

, 1c p m
M

j f
p p m m

m

x t G s t e p N
p t ff -

=
= £ £å  (4.2) 

where ( )p mG f  is the complex gain and phase of the response of element p,  

and ( )p mt f  is the delay between element p and a reference location. Thus, the 

response of element p is a linear combination of the M received signals [66]. 

Note the M received signals are assumed to have the same carrier frequency  

[14]. Thus, (4.2) can be written in vector-matrix notation as: 

( ) ( ) ( ) ( ) ( )
1

M

m m
m

t s t tf
=

= =åx a A sf  (4.3) 

where ( ) ( ) ( ) ( ) ( )12 2 1
1

c m c N m
Tj f j f N

m m N mG e G ep t f p t ff f f- - ´é ù= Îê úë ûa    is the 

steering vector, { }1, , Mf f= f , and ( ) ( ) ( )[ ]1
N M

Mf f ´= ÎA a a f  is the 

steering matrix.  
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( )A f  is full rank since mf , 1, , ,m M=   are assumed to be distinct, i.e., 

( )( )rank M=A f  [14][65]. Note that the range of the columns of ( )A f  is 

confined to the noiseless measurement of the array or specifically to an M-

dimensional signal subspace of the N-dimensional space of the output of the 

antenna array [8][13]. 

5. Noise: The noise ( )pn t , which is contained in the measurements at the terminal 

of each element, is assumed to be a complex circularly Additive White Gaussian 

Noise (AWGN) [24][65] random-process with mean zero and variance 2
ns , i.e. 

( ) ( )20,p nn t N s . Also, it is assumed that the noise is uncorrelated with the 

received signals [14][24][65]. Including noise, the observations in (4.3) becomes: 

( ) ( ) ( ) ( )t t t= +x A s nf  (4.4) 

where ( ) 1Nt ´În   is the noise vector. The regression model in (4.4) is spatial-

temporal and forms the foundation of most DOA algorithms.  

The structure of the matrix ( )A f  depends on the array geometry. In ULAs, the 

delay time pt  is (see Figure 3.9a):  

( )
( ) ( )1 cos 1 cos

p
c

p d p d

c f

f f
t f

l
- -

=- =-  (4.5) 

Since the antennas used in this work are half-wave dipoles with omnidirectional 

characteristic, then ( ) 1p ma f =  in (4.2) while the spatial phase shift of each element 

with respect to the reference element is: 

( )
( ) ( )

( )
1 cos 1 cos2 22 1 cosc

c p c

p d p dj f jj f f j p kde e e e

f fp pp t f l fl

- -
- -= = =  

The steering matrix for M signals received by an N-element ULA omnidirectional 

antenna array will be: 
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( )

( ) ( ) ( )

1 2

1 2

1 2

cos cos cos

2 cos 2 cos 2 cos

1 cos 1 cos 1 cos

1 1 1

M

M

M

jkd jkd jkd

j kd j kd j kd
ULA

j N kd j N kd j N kd

e e e

e e e

e e e

f f f

f f f

f f f- - -

é ù
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

A







   



f  (4.6) 

The matrix in (4.6) has Vandermonde structure [8]. Similarly, for UCAs, the spatial 

phase shift of each element with respect to the origin (see Figure 3.9b) is found in 

(3.22) and the corresponding steering matrix will be: 

( )

( )

1 2

1 2

1 2

1

cos cos cos

2 2 2
cos cos cos

4 4 4
cos cos cos

2 1
cos

M

M

M

jkR jkRr jkR

jkR jkRr jkR
N N N

jkR jkR jkR
UCA N N N

N
jkR

N

e e e

e e e

e e e

e

f f f

p p p
f f f

p p p
f f f

p
f

æ ö æ ö æ ö÷ ÷ ÷ç ç ç- - -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

æ ö æ ö æ ö÷ ÷ ÷ç ç ç- - - -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

æ -ç -
è

=A







   

f

( ) ( )
2

2 1 2 1
cos cos M

N N
jkR jkR

N Ne e

p p
f f

ö æ ö æ ö- -÷ ÷ ÷ç ç- -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çø è ø è ø

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 

 (4.7) 

4.2.2  Eigenstructure of the Spatial Covariance Matrix 

To estimate spatial information, such as the DOAs, from the measurements ( )tx , the 

second order statistics of the output ( )itx  which is sampled at times 1,2,i = , 

should be calculated, i.e. estimating DOAs from the covariance information among 

the array elements [8]. If the independent variables in (4.4) are dropped, the 

covariance matrix for the measurements is: 

{ } ( )( ){ }
{ } { } { } { }
{ } { }

HH

H H H H H H

H H H

= = + +

= + + +

= +

xR xx As n As n

A ss A A sn ns A nn

A ss A nn

 

   

 

 (4.8) 

where { }⋅  is statistical expectation and ( )H⋅  is the conjugate transpose 

operation. The cross terms in (4.8) vanish due to the assumption that the incident 



79 
 

signals are random processes, they are uncorrelated with noise, and the signals and 

noise all have mean zero. Let { }H =ss S  and { } 2H
n Ns=nn I  denote the 

statistical expectation of the covariance matrix of the received signals and of noise, 

respectively. Then: 

2H
n Ns= +xR ASA I  (4.9) 

The signal covariance matrix S represents the degree of correlation occurring 

between the received signals. Therefore, when the received signals are totally 

uncorrelated, S will be diagonal with the signals’ power on the main diagonal 

[13][66]. However, S could be singular for totally coherent signals [13][66]. 

Accordingly, each entry on the main diagonal of xR  represents the sum of the 

powers of the received signals absorbed by the corresponding array element plus the 

noise power at that element. Note that N N´ÎxR   is Hermitian (not Toeplitz), i.e., 

H =x xR R . In addition, xR  is positive definite (pd) and all its eigenvalues are real 

[8][64]. Therefore, xR  can be defined in terms of its orthonormal set of eigenvectors 

scaled by their corresponding real eigenvalues. This can be done by decomposing 

xR  as 

H=xR EΛE  (4.10) 

In (4.10), 1 2
N N

N
´é ù= Îê úë ûE e e e   contains the distinct eigenvectors of the 

covariance matrix xR  and is unitary, i.e. 1H -=E E , since its columns are 

orthonormal. The matrix ( )1 2diag , , , NL L L=Λ   is diagonal with entries the real 

eigenvalues of xR  ordered such that 1 2 NL L L³ ³ ³  [8], i.e. 

1

2

1

0 0 0

0 0 0

0 0 0

0 0 0
N

N

L
L

L
L

-

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ë û

Λ




    



 (4.11) 

The decomposition in (4.10) is called Eigen Value Decomposition (EVD) or spectral 
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factorization. Another expression equivalent to (4.10) can be written in terms of a 

linear combination of rank one matrices as: 

1

N
H

n n n
n

L
=

=åxR e e  (4.12) 

The outer product of each eigenvector by its complex conjugate leads to a rank one 

matrix which is then scaled by the corresponding eigenvalue. 

In practice, the covariance matrix of the data ( )tx  is measured over only a limited 

time. As a result, the estimated covariance matrix ˆ
xR  may not provide the same 

eigenvectors and corresponding eigenvalues as those in (4.12) [8]. Therefore, the 

practical averaged sample of xR  should be measured for a large number of 

snapshots Q [8][65], i.e.: 

( ) ( )
1

1 ˆˆ ˆ ˆ
Q

H H
i i

i

t t
Q =

= =åxR x x EΛE  (4.13) 

where the sign ⋅  denotes estimated value. In addition, the calculation in (4.13) will 

provide unbiased estimates of the parameters extracted from ˆ
xR  such as DOAs 

[8][13][14][68] if Q is large. Thus, (4.4), (4.10), (4.11), and (4.13) are the foundation 

for describing the methods used in different high-resolution DOA algorithms.  

4.2.3  High Resolution DOA Algorithm 

In the literature of signal processing, the algorithms that are commonly used to 

estimate DOAs have been classified into two main categories [8]: 

1. Parametric methods 

2. Spectral-Based Algorithms. 

The spectral-based algorithms are further classified into: 

a. Beamforming Techniques 

b. Subspace-Based methods. 
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In this work, the focus will be on subspace-based methods. The most well-known 

algorithms of this class are MUltiple SIgnal Classification (MUSIC) [66] and 

Estimation of Signal Parameters via Rotaional Invariance Techniques (ESPRIT) 

[71]. However, only MUSIC is considered since the purpose of this thesis is to 

explore the possibility of high resolution direction funding with SASPA arrays.  

MUSIC is based on based on partitioning the orthonormal subspace Ê  in (4.13) into 

two orthogonal subspaces, the signal subspace ˆ
sE  and the noise subspace ˆ

nE , and 

the fact that ˆ
nE  is orthogonal to the column space of the steering matrix [13][66]. 

Therefore, the covariance matrix in (4.10) is first partitioned into two subspaces as: 

H H H
s s s n n n= = +xR EΛE E Λ E E Λ E  (4.14) 

The partitioning in (4.14) follows from the fact that the column range of the steering 

matrix A is confined to the measurements therefore it should be confined to the  

M-dimensional subspace of E , i.e. N M
s

´ÎE  , while the N M-  columns of E  

form the noise subspace ( )N N M
n

´ -ÎE   [14][63]-[65]. Accordingly, the M 

eigenvalues 1 2 0ML L L³ ³ ³ >  are the elements of the diagonal matrix sΛ  

while 2
1 2M M N nL L L s+ += = = =  are the elements of the diagonal matrix nΛ  

with 1M ML L+ < . 

4.2.3.1 The MUSIC Algorithm 

The MUltiple SIgnal Classification algorithm was found by R. O. Schmidt in his 

PhD dissertation in 1982 [66]. The basic idea behind this algorithm is that the noise 

subspace, which is estimated along with the signal subspace from the measurements 

as in (4.14), is also orthogonal to the subspace spanned by the columns of the 

steering matrix [66], i.e.  

( ) ( ){ } ( )s n= ^A E E    (4.15) 

where ( )A  is the range space of the matrix A. 
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Let 
ine , 1, ,i M N= +   be the set of the noise subspace vectors. Then one vector of 

this set is an eigenvector of the covariance matrix xR  with an associated eigenvalue 

of 2
ns . Now, for any square matrix A , it is well-known that if ( ),lv  is a solution of 

L=Av v , then v  is an eigenvector of A  and L  is the associated eigenvalue. It then 

follows that: 

2

2
1

or

i i

i i

n n n

n n n N

s

s ´

=

- =

x

x

R e e

R e e 0

 (4.16) 

Therefore, post multiplying (4.9) by 
ine  yields: 

2
i i i

H
n n n ns= +xR e ASA e e  

Rearranging and using (4.16), the above equation is reduced to 

1i

H
n N´=ASA e 0  (4.17) 

Assuming A  is full rank, and S is positive definite and non-singular, then: 

1

or

i

H
n M

H
n M N

´

´

=

=

A e 0

A E 0

 (4.18) 

This means the noise subspace is orthogonal to the columns of A [13][66], i.e. every 

noise eigenvector is in the null space of HA . Schmidt has exploited the result in 

(4.18) to estimate the DOA of the received signals by searching for the peaks that 

occur when the squared distance between the search vector ( )fa  for all possible 

{ },f p pÎ -  ( { }0,f pÎ  in the case of ULAs because of ambiguity) and the signal 

subspace is minimum. Alternatively, the goal is to search for the peaks when the 

projection of the search vector ( )fa  onto the noise subspace is minimum [66], i.e. 

by searching for the peaks in the MUSIC spectrum 
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( )
( )  ( )  ( )

2

2

1 1
MUSIC HH H

n n n

P f
f f f

= =
a E E a E a

 (4.19) 

In estimating the signal subspace from the covariance matrix of the measurements, 

there should be prior knowledge about the number of incident signal impinging so 

that E  can be consistently partitioned into two subspaces. Schmidt has pointed out 

[66] that for an array of N antenna elements receiving M signals, the number of 

signals that can be estimated is: 

ˆ ˆM N F= -  (4.20) 

where F̂  is the estimated multiplicity of the minimum eigenvalue 2
min nL s=  of ˆ

xR . 

This is because the noiseless measurements, H N N´ÎASA   has minimum 

eigenvalue min 0L =  with multiplicity F. This means HASA  is singular, i.e., it is 

rank deficient ( ( )rank H M N= <ASA ) [13]. Accordingly, the dimension of the 

null space of HASA  is F. Adding 2
n Ns I  to HASA  will make the latter invertible 

with F̂  minimum eigenvalues equal to 2
ns . The last method is called “diagonal 

loading” [67]. Practically, the equality sign in (4.18) may be replaced by an almost- 

equal sign, i.e., 1
i

H
n M´»A e 0  because the estimated noise eigenvalues will differ 

slightly from 2
ns . The result is merging some portion of the signal subspace into the 

noise subspace. This occurs when the value of some of the eigenvalues of the signal 

subspace are close to the value of the eigenvalues of the noise subspace. To avoid 

such a case and to have an exact value of F̂ , the following conditions are desirable 

when implementing the MUSIC algorithm [66] [68]: 

1. The number of snapshots Q should be large. 

2. The SNR ratio of the received signal should be high. 

3. The number of the elements in the array should be large. 

4. The array aperture should be large. 

As a result, sharper peaks near the true DOAs will be seen in the MUSIC spectrum 

[68]. The following simulations illustrate the influence of the above four parameters 
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on the performance of MUSIC. Figure 4.1 shows the normalized MUSIC spectrum 

for two signals incident from 1 60f =   and 2 20f =  , both with SNR 10 dB= . The 

two signals are impinging on a ULA array consisting of eight identical antenna 

elements with inter-element spacing 0.5d l= . A measurement sample of five runs 

with 1000 snapshots for each run is used. Figure 4.2 shows the MUSIC spectrum for 

the same scenario but with SNR 2 dB= , 0.25d l=  and 100 snapshots for each of 

the five runs. In Figure 4.3, two closely spaced signals 1 20f =   and 2 30f =   with 

SNR 10 dB=  are incident on an antenna array of four identical elements with inter 

element spacing 0.2d l=  and 1000 snapshots for each of the five runs. In this case, 

the array aperture is very small. It is clear from Figure 4.2 that the performance of 

MUSIC degrades when the desirable conditions stated above are partially not valid. 

Also, Figure 4.3 shows that MUSIC fails to estimate the DOAs when the array 

aperture is very small, and the signals are closely spaced. 

The MUSIC cost function in (4.19) can be rewritten in terms of the signal subspace 

as follows. Since the matrix E  in (4.14) consists of a signal subspace and a noise 

subspace, then it can be written as: 

s n
é ù= ê úë ûE E E  (4.21) 

and because of E  is unitary, then: 

[ ]

or

H
sH

s n NH
n

H H
s s n n s n s s N

^

é ù
ê ú= =ê ú
ê úë û

+ = + = + =

E
EE E E I

E

E E E E P P P P I

 (4.22) 

The matrix H N N
s s s

´= ÎP E E   is the orthogonal projection matrix on the signal 

subspace and H N N
n s n n

^ ´= = ÎP P E E  , which is orthogonal to sP , is the 

orthogonal projection matrix on the noise subspace [8]. Any square matrix P  is said 

to be an orthogonal projection matrix if it satisfies the following conditions 2 =P P  

and H =P P  [60]. Substituting (4.22) into (4.19), we get: 
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( )
( )  ( ) ( ) ( ) ( ) ( )  ( )

 ( )
2

2

1 1

1

MUSIC H HH H H
s s s sN

H
s

P

N

f
f f f f f f

f

= =
- -

=
-

a I E E a a a a E E a

E a

 (4.23) 

where ( ) ( )H Nf f =a a . That is, the peaks at the DOAs occur when the norm-2 (the 

Euclidian norm) squared of the projection of the steering vectors onto the signal 

subspace is approximately equals to N; the number of array elements. Eq (4.23) will 

be next used in Chapter 5.  

 

 

 

Figure 4.1: MUSIC spectrum for two signals coming from 1 60f =   and 

2 20f =   with SNR 10 dB=  impinging on an 8-element dipole ULA 
array with inter-element spacing 0.5d l= . Five runs with 1000 
snapshots for each run are used for this simulation. 
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Figure 4.2: MUSIC spectrum for the same scenario of Figure 4.1 but with 
SNR 2 dB= , 0.25d l= . 

 

Figure 4.3: MUSIC spectrum for two signals coming from directions 

1 20f =   and 2 30f =   and incident on an antenna array of four 
elements with 0.2d l= . 

4.3  Data Models with Mutual Coupling Present 

MUSIC has been proposed to estimate DOAs but the mutual coupling effect between 

the array elements is often not considered. In the real world, this phenomenon always 

exists as a result the performance of these DOA algorithms will be degraded because 
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the data collected from the antenna elements will be contaminated by additional 

information that are related to the energy exchange between the array elements. In 

other words, the DOA algorithms described in the previous section rely on the 

uncoupled voltages or currents that are induced on the array elements due to the 

received signals only. Thus, the real data model (4.4) should reflect the contribution 

of mutual coupling on the measurements along with the response of the array to the 

incident signals. A square matrix ( ), , N Ndq f ´ÎC   that represents the mutual 

coupling can be inserted into (4.4) as: 

( ) ( ) ( ) ( ) ( )( ), ,t d t tq f= ⋅ +x C A s n
 f  (4.24) 

where ( )tx


 is now the measurement that includes mutual coupling effects. Note that 

( ), ,dq fC  depends on azimuth, elevation angles of arrival, and the inter-element 

spacing [23]. However, in this thesis, it is assumed the received signals are incident 

in the plane perpendicular to the array, for example, the x-y plane if the dipole 

elements are aligned parallel to the z-axis. Moreover, the antenna elements used in 

the arrays are assumed to be omnidirectional. Therefore, mutual coupling in this 

work will be a function of the inter-element spacing only. For simplicity ( ), ,dq fC  

will be represented by C  only. The structure of C  depends on the geometry of the 

array, and in general, for an arbitrary geometry of antenna elements C  will have the 

following structure: 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

N

N

N

N N N NN

c c c c

c c c c

c c c c

c c c c

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ë û

C





    


 (4.25) 

Each entry ,ijc  , 1,2, ,i j N=   denotes the mutual coupling between elements i  

and j. Note that, if the spacing between the elements is large, then 0ijc »  and C  is a 

banded matrix. In addition, in geometries that consist of identical elements, the 

mutual coupling between any two elements is reciprocal, i.e. ij jic c= . Therefore, C  
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is symmetric.  

When the inter-element spacing between the elements is uniform, such as in a ULA, 

then C  will have a Toeplitz structure, i.e. ( )( )1 1ij i jc c + +=  [70][72]. This means that 

ULAC  is symmetric Toeplitz, i.e.: 
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 (4.26) 

Note that ULAC  in (4.26) can be defined by its first row, or first column, only.  

If the array is UCA, then the structure of UCAC  will be circulant which is a special 

case of Toeplitz matrices. In a circulant matrix, each row is the same as the preceding 

row except for a rotation of one element to the right [73]. However, since the UCA is 

symmetric around one fundamental Cartesian axis (if N is odd) or is symmetric 

around the two fundamental axes (if N is even), then the additional condition 

( )ij N i jc c -=  also applies [73]. Thus 
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 (4.27) 

i.e., UCAC  is symmetric circulant. In contrast to ULAC , UCAC  is defined either by the 

first ( )2 1N +  terms in its first row or column if N is even or by the first ( )1 2N +  

terms in the first row or column if N is odd. Obviously, being defined by fewer 

elements, UCAC  is more beneficial than ULAC  since the latter needs more 

computations in calibration or decoupling scenarios. The entries of C , whether it is 
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for ULA or UCA, can be calculated from Sections 2.3.3 and 2.4.1.  

Now, returning to (4.24) which can be written in a simpler form as:  

( ) ( ) ( ) ( )( )t t t= ⋅ +x C A s n
 f  (4.28) 

the effect of C on the noise ( )tn  depends on the source of the noise [24]. The  

voltage induced on the antenna due to environmental noise such as cosmic and solar 

noise can be exchanged between the array elements via mutual coupling [24]. For 

this scenario, the model (4.28) is valid and the coupling effect represented by C can 

be easily counteracted by pre-multiplying (4.28) by 1-C  (assuming C is non-

singular) to retrieve the model in (4.4) which is the model for measurements with no 

mutual coupling. The matrix 1-C  can be one of the MCMs mentioned in Section 

2.4. Thus, after removing mutual coupling from (4.28), the procedure described in 

Section 4.2.3.1 can be followed to estimate the underlying DOAs.  

On the other hand, mutual coupling may have no effect on the noise if the dominant 

noise source is due to the hardware of the receiver, such as thermal noise [24]. The 

model (4.28) then reduces to: 

( ) ( ) ( ) ( )t t t= +x CA s n
 f  (4.29) 

Obviously, the method used to counteract mutual coupling in (4.28) is not valid for 

(4.29). A method that has been proposed in the literature to estimate DOAs in the 

presence of mutual coupling that does not affect noise will be discussed in the next 

section.  

It should be emphasized here that the discussion thus far in this Chapter relates to all-

active arrays only. In the case of SASPA arrays, the assumptions used to derive 

(4.28) and (4.29) will be used in Chapter 5 and Chapter 6 respectively to develop the 

corresponding data models for SASPA arrays. Applying each of these data models 

on SASPA arrays in some situations will result in improvements in DOA estimation.  
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Reverting back to all-active arrays, obviously the eigenstructure of the covariance 

matrix obtained from (4.29) will differ from the eigenstructure of the covariance 

matrix obtained from (4.4) and the actual information about the signal parameters 

will be disturbed. As a result, the DOA algorithms may fail to find the true DOAs 

[50]. In the next section, a method to counteract such a phenomenon when 

implementing DOA algorithms (on all-active arrays) is discussed.  

4.4 MUSIC Algorithm with Coupled Received Signals and 

Uncoupled Noise 

The covariance matrix for the data model of (4.29) is: 

{ } { } { }
2

H H H H H

H H
n Ns

= = +

= +

xR xx CA ss A C nn

CASA C I

   
 (4.30) 

With a method similar to (4.14), xR


 can be eigendecomposed as .HEΛE
 

 Also, the 

matrix E


 can be partitioned into two orthogonal subspaces, a signal subspace sE


, 

and a noise subspace nE


. However, the column range of the signal subspace sE


 is 

now confined to the column range of the matrix CA  when mutual coupling is 

present [24], i.e.: 

( ) ( )s ÍE CA 


 (4.31) 

This means that the subspace spanned by the columns of CA  is orthogonal to the 

noise subspace nE


, i.e., ( ) ( )n^CA E 


. This result can be used to update the 

cost function of MUSIC by searching for peaks in the MUSIC spectrum at the DOAs 

where the search vector ( ),fCa  [ ],f p pÎ -  is orthogonal to nE


 [50], i.e. (4.19) 

becomes:  

( )
( ) ( ) ( )

2

2

1 1
MUSIC H H H H

n n n

P f
f f f

= =
a C E E Ca E Ca

    (4.32) 
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4.5  MUSIC Algorithm in Conjunction with CVUC 

In Section 2.4.3, CVUC as a mutual coupling model is formulated. The salient 

feature of this model is that it can be applied to all-active and SASPA arrays, and the 

C matrix obtained from the model can be used in the direction finding algorithm  

of (4.32). Also, as was shown in Section 3.6.2, for SASPA arrays, pre-multiplying 

the vector of uncoupled currents of a receiving array by the CVUC model will result 

in a vector of the load voltages, and this vector will contain zeros if the load 

impedances corresponding to parasites in the CVUC model are set to zero. 

In the next section, the effectiveness of CVUC in conjunction with (4.32) to perform 

DOA estimation using all-active antenna arrays will be investigated through 

simulations. In addition, the fulfilment of the condition M N<  for a successful 

DOA estimation will also be examined. Specifically, this condition will be verified 

by considering SASPA arrays with a certain number of fixed active elements. That 

is, if the number of active elements is g, then the number of signals that can be 

detected by that SASPA array should be M g<  since no measurements will be 

made at the terminals of the parasites. For such a case, the N N´  covariance matrix 

will contain rows and columns that are all-zeros. As a result, three subspaces which 

are orthogonal to each other will be obtained from the eigendecomposition of the 

covariance matrix. . The first subspace is the signal subspace N M
s

´ÎE  , the 

second subspace is the noise subspace ( )N g M
n

´ -ÎE  , and the last subspace is the 

parasitic subspace ( )N N g
p

´ -ÎE   whose corresponding eigenvalues are all zeros. 

Since the eigenvalues of the estimated subspace ˆ
pE  are all “solid” zeros (just like 

the eigenvalues of the theoretical pE ) compared to the almost constant, but never all 

constant, eigenvalues of ˆ
nE , this means ˆ

pE  will be more efficient than ˆ
nE  in 

estimating the underlying DOAs when used in (4.32). 
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4.6  Simulation Study 

This section is devoted to show the performance of using MUSIC in conjunction 

with the CVUC model to estimate the DOAs of impinging signals on a non-

switching ULA-SASPA array. As pointed out in Section 3.6.2, setting the load 

impedances of the parasites to zero in the CVUC model results in a vector of load 

voltages with zero entries except for the entries corresponding to the active elements. 

The measurements obtained from such a system under the data model (4.29) is then 

used to calculate the covariance matrix which in turn is used to obtain the 

corresponding signal, noise, and parasitic subspaces. The underlying DOAs are then 

estimated from (4.32) with the C  matrix found from the CVUC model of (2.54). 

In the following simulations, a seven-element ULA-SASPA array is used to estimate 

the DOAs of three signals impinging on the array using (4.32). The inter-element 

spacing is 0.35d l= . The received signals are coming from azimuth directions 

1 60 ,f =   2 62f =   and 3 75f =   with SNR 20 dB=  for each signal. The 

simulations are conducted with different number of active elements g  to emphasize 

the validity of the condition that the number of active elements in a receiving array 

should be greater than the number of received signals, i.e. M g<  for DOA 

estimation to be successful. In addition, the use of the theoretical covariance matrix 

calculated in (4.30) is compared against the use of the covariance matrix obtained 

from the simulated measurements in (4.13).  

In Figure 4.4, the MUSIC spectrums for DOA estimation using the theoretical 

covariance matrix in (4.30) are plotted against the number of active elements in the 

array. The plots show clearly that the three signals can be detected by the ULA-

SASPA array under the condition M g<  with high resolution, same as the all-active 

array with the same number of elements. On the same figure, a plot showing the 

failure to detect the DOAs when the condition M g<  has been violated is also 

shown.  
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Figure 4.4: MUSIC spectrums for DOA estimation from the covariance 
matrix of (4.30) in conjunction with the CVUC model. The array is a 7-
element ULA all-active and ULA-SASPA array with 0.35d l= . Each 
array is receiving three signals emanated from the directions 1 60 ,f =   

2 62f =   and 3 75f =  . 

Figure 4.5 shows the simulation for DOA estimation carried out for the measure-

ments obtained from (4.13). The same ULA all-active and ULA-SASPA arrays are 

used. Also, the same signal scenario is used. Each simulation is conducted over five 

runs with 1000 snapshots for each run. The first plot is for the all-active array; the 

second plot is for the ULA-SASPA array with 5 active and 2 parasitic elements. The 

last plot is for the ULA-SASPA array with 2 active and 5 parasitic elements.  

In Figure 4.6, the effectiveness of the parasitic subspace over the noise subspace 

when used in (4.32) is depicted. The array is a 7-element ULA-SASPA array with 

inter-element spacing 0.25d l=  and receiving three signals with the same scenario 

as in Figures 4.4 and 4.5. However, only 750 snapshots are used for each of the five 

runs. Figure 4.6a shows the MUSIC spectrum when projecting the search vector in 

(4.32) onto the parasitic subspace. Figure 4.6b shows the MUSIC spectrum when 

projecting the search vector onto the noise subspace. The simulations in Figures 4.4 

and 4.5 show that the MUSIC algorithm of (4.32) with the CVUC model succeeded 

in estimating the underlying DOAs with very high resolution provided the number of 

active elements in the array exceeds the number of received signals. 
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It is clear from Figure 4.6 that the resolution for the underlying DOAs obtained from 

using the parasitic subspace in (4.32) is much better than the resolution attained 

when using the noise subspace. This shows that using the parasitic subspace in (4.32) 

can overcome the problem of subspace leakage into the noise subspace. The latter 

may occur when some of the signal eigenvalues are almost equal to the noise power.  

 

(a)                                                        (b) 

 
                                     (c) 

Figure 4.5: Three simulations for DOA estimation from the covariance 
matrix (4.13) for the same scenario used in plotting Figure 4.4. Each 
simulation is executed with five runs with 1000 snapshots for each run. 
The signals are received with SNR 20 dB= . (a) ULA all-active array; (b) 
ULA-SASPA array with five actives and two parasites; (c) ULA-SASPA 
array with two actives and five parasites. 
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(a) 

 

(b) 

Figure 4.6: Comparison between the effectiveness of the parasitic 
subspace and noise subspace when each one of them is used in (4.32) to 
estimate three signals 1 60 ,f =   2 62f =   and 3 75f =   with 

SNR 20 db=  impinging on a 7-element ULA-SASPA array with 
0.25d l= . Five runs with 750 snapshots for each run are used. (a) 

MUSIC spectrum when the parasitic subspace is used; (b) MUSIC 
spectrum when the noise subspace is used. 
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4.7  Summary 

This chapter explores the well-known and effective algorithm for DOA estimation: 

MUSIC. The MUSIC algorithm will be used in the next two chapters to investigate 

the ability of SASPA arrays to produce DOA estimation that is superior to that of 

conventional all-active arrays. These concepts will be helpful to understand some of 

the key characteristics provided by SASPA arrays. Mutual coupling is one of the 

characteristics by which SASPA arrays determine their response to the received 

signals. 

The CVUC model which is found to be an appropriate mutual coupling model for 

SASPA arrays is used in conjunction with MUSIC to estimate the underlying DOAs. 

It is shown the mandatory condition that the number of received signals should be 

less than the number of array elements for a successful DOA estimation can be 

verified by changing the number of active elements in an SASPA array. This 

procedure can be executed by varying the number of parasites in an SASPA by 

setting to zero the load impedances corresponding to the parasites. The result is that 

DOAs can be detected with very high resolution when the number of active elements 

exceeds the number of received signals. Eigendecomposing an SASPA array’s 

covariance matrix will result in three orthogonal subspaces: signal, noise and 

parasitic. It is found by simulation that using the parasitic subspace will lead to better 

resolution for DOA estimation compared to the noise subspace. 
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Chapter 5 Equation Chapter (Next) Section 1 

DOA ESTIMATION USING SASPA ARRAYS 
WITH KNOWN MUTUAL COUPLING AND 
COUPLED NOISE 

5.1  Introduction 

In this chapter and the next chapter, the ability of N-element SASPA arrays to 

estimate the DOAs of a set of impinging signals with high resolution is explored. The 

study assumes mutual coupling between the elements of the SASPA array affects 

both the array elements’ response and noise. Thus, the data model that applies is akin 

to (4.28) which assumes noise is pre-dominantly background noise.  

The procedure to obtain a snapshot of measurements from an SASPA array is to 

leave all antenna elements in the parasitic state while sequentially switch one 

element from the parasitic state to the active state and back. In other words, a single 

snapshot consists of a frame of N sub-snapshots. In practice, the aforesaid 

measurement procedure can be implemented using very high-speed PIN diodes to 

switch the antenna elements between the active and parasitic state during each sub-

snapshot. It is obvious that a fundamental requirement of the measurement procedure 

is that the bandwidth of the impinging signals must be narrow enough to allow one to 

assume the N sub-snapshots taken to form one snapshot are taken almost 

instantaneously. 

The mutual coupling model that is used in the study reported in this chapter is the 

CVUC model derived in Chapter 2, since it was shown in Chapter 3 that this model 

accommodates the operational mode of SASPA arrays, that is, in each sub-snapshot, 

only one antenna element is active (its terminals connected by a load impedance) and 

the remaining ones are parasitic (their terminals shorted together). It shall be 

assumed the CVUC model is known a priori so that couple-free measurements can be 
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obtained after decoupling mutual coupling from the measurements. As a result, N 

versions of the underlying steering matrix will be produced. Thus, the signal 

covariance matrix of SASPA array acting under the CSCN condition will be more 

accurate compared with the all-active antenna receiving array having the same 

geometry. In this chapter, the potential enhancement in performance of MUSIC in 

conjunction with switching SASPA arrays, relative to all-active arrays, is 

investigated. To ensure the comparison is fair, in the simulation study reported in this 

chapter, each all-active array will have the same geometry as the SASPA array 

studied, i.e., same number of elements and same inter-element spacing. Also, mutual 

coupling that would normally exist in the measurements of the all-active array, is 

fully compensated. 

As a side remark, Sections 4.5 and 4.6 of the previous chapter, which examined the 

performance of non-switching SASPA arrays with more than one active elements, 

provides a bridge from all-active arrays to the study of switching SASPA arrays 

having only one active element in each sub-snapshot.  

5.2 Array Data Models 

The data model that expresses the response of an SASPA array to the received 

signals shall be formulated first. This model should depict the spatial-temporal 

dependence since the observations generated by the antenna array is a function of 

time and space. In the case of SASPA arrays, the data model should accommodate 

the fast switching, within a sub-snapshot, of the elements from active to parasitic 

state or vice versa. This fast switching can be modelled as sub-sampling of one 

snapshot. Accordingly, a model that includes a representation of the unavoidable 

time skew of the sub-snapshots is reqruied. In the following, the all-active array data 

model is derived first in a more general setting, mainly to establish notations and 

some concepts. The SASPA array data model is then derived. 
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5.2.1 All-Active Array Data Model 

Consider an all-active antenna array (i.e., a conventional antenna array) with N  

antenna elements where the nth array element, 1, , ,n N=   has directional gain 

( ),nG q f  and is located at [ ]Tn n n nx y z=r . Suppose the array is operating in  

an isotropic, homogeneous, and non-dispersive medium. The response of the array to 

a plane wave with wavelength l  (or frequency w ) arriving from direction ( ),q fu  

( )

sin cos

, sin sin
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q f
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q
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ê ú= ê ú
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is given by the array response vector 
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where ( ), N N
AA q f ´ÎC   is the all-active mutual coupling matrix, and k  is the 

wavenumber 

2
k

p
l

=  (5.3) 

Figure 5.1 shows the spatial coordinate system. 

 

Figure 5.1: The spatial coordinate system 

In the literature, the array manifold vector is also defined. It is given by 

x

y

z

q

f
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That is, ( ),q fa  gives, for a signal arriving from ( ),q fu , the phase delays of the 

signal at the array elements. 

In the general case where M signals ( )ms t , 1, , ,m M=   each arriving from 

( ), ,m mq fu  are impinging on the array, the output of the array elements, as captured 

in one snapshot, is given by 

( ) ( ) ( )
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1 1
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where ( )amb,nn t  is the ambient noise sensed by the nth array element, ( )self ,nn t  is 

the self or internal noise due to the electronic circuitry of the nth array element, and 

AAC  is the non-directional all-active average mutual coupling matrix 

( )
0

1
, sin

4AA AA d d
p p

p
q f q f q

p -
= ò òC C  (5.6) 

Now, suppose the mutual coupling matrix ( ),AA q fC  is independent of direction, and 

the element gains ( ),nG q f  are omnidirectional. Equation (5.5) can then be written in 

the more familiar form 

( ) ( ) ( ) ( ){ } ( )amb self,AA AAt t t t= + +x C A s n nq f  (5.7) 

where 
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and 

( ),AA AA AAq f= =C C C  (5.12) 

Suppose next that the array is planar in the xy-plane, and the incident signals are also 

in the xy-plane. In the case of a Uniform Linear Array (ULA) with element #1 at the 

origin and the other elements distributed uniformly along the +x axis, spaced d  

apart, (5.8) then becomes 
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And in the case of a Uniform Circular Array (UCA) array with radius R, centred at 

the origin, and element #1 located at [ ]1 0 0 TR=r , (5.8) becomes 
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5.2.2 SASPA Array Data Model 

For an N-element SASPA array, a snapshot is spread over N sub-sampling periods. 

Suppose, with no loss of generality, that element #1 is sampled first, followed by 

element #2, then by element #3, etc. Let sT  be the sub-sampling period, and ( )( )nx t  
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be the output from element n, the active element. A snapshot of an SASPA array is 

then formed by 

( )
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where, for 1, , ,n N=   

( )1n st t n T= + -  (5.16) 
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and where ( ) ( ),n
SASPA q fc  and ( )n

SASPAc  are the nth column of the SASPA (CVUC) 

mutual coupling matrices ( ),SASPA q fC  and SASPAC , respectively. 

( )
0

1
, sin

4SASPA SASPA d d
p p

p
q f q f q

p -
= ò òC C  (5.19) 

Suppose that, relative to sT , the bandwidths of the incident signals are sufficiently 

narrow such that  

( ) ( )( )1 , 1, ,m m ss t s t N T m M» + - =   (5.20) 

Accordingly, the time-skew due to sub-sampling can be compensated by simply 

scaling the measurement from the nth array element by ( )1 sj n Te w- - . That is,  
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If the ambient noise and self-noise terms in (5.21) are circularly complex and 

mutually independent, then the effect of the time-realignment term ( )1 sj n Te w- -  is 

simply to rotate them with no effect on their statistical properties. As such, the time-

realignment term can be removed from them to yield the following time-aligned 

SASPA array data model. 
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where 
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and ( ) ( ),n
comp m mb q f  is given by (5.22). 
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Finally, for the simplified signal scenario often studied in the literature where it is 

assumed that 

(a) the array is operating in the xy-plane,  

(b) the mutual coupling matrix is independent of the direction of arrival of the 

impinging signal such that ( ),SASPA SASPAq f =C C  

(c) the gain of the array elements is omnidirectional (at least in the xy-plane) such 

that, with no loss of generality, the gain can be set equal to 1, 

it follows the sub-sampling time-skew compensated sub-snapshot ( ) ( )n
compx t , (5.24), 

can be simplified to: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ } ( )self,amb

T nn n
comp n n nx t t t n t= + +c A s nf  (5.25) 

where ( )A f  is defined by (5.8) with 1 90Mq q= = =  , ( )ts  is defined by (5.9), 
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and ( )nc  is the nth column of the directionless mutual coupling matrix C  where 

( ) ( ) ( )1, N
SASPA SASPAq f é ù= = = ê úë ûC C C c c  (5.27) 

Substituting (5.25) into (5.23) yields the reduced time-aligned SASPA array data 

model 
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5.3 The SASPA Coupled-Signals-Coupled-Noise Model 

5.3.1 Direct Model 

If ambient noise is the dominant noise source, then the reduced time-aligned SASPA 

array data model (5.28) can be simplified to the following Coupled-Signals-Coupled-

Noise (CSCN) model. 
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The covariance matrix of the time-aligned snapshot ( )tf  is given by 

( ) ( ){ }H
s nt t= = +f f fR f f R R  (5.31) 

where sfR  is the signal covariance matrix  

( ) ( ) ( ) ( ){ }
( ) ( )

H H H
s

H H

t t=

=

fR CA s s A C

CA SA C

f f

f f


 (5.32) 

( ) ( ){ }Ht t=S s s  (5.33) 

and nfR  is the noise covariance matrix (see (5.26)) 
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The second equality of (5.34) follows from the assumption that the noise terms are 

identically distributed, circularly complex Gaussian, and mutually independent. That 

is, for 1 2 3 4, , , 1, ,n n n n N=   
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Observe that the noise covariance matrix nfR  is not a scaled identity matrix. This 

implies the MUSIC algorithm derived from the direct model will require a 

generalised eigendecomposition on the estimated data covariance matrix fR . 

5.3.2 Decoupled Model 

The reduced CSCN model (5.30) can also be expressed in the decoupled form. It 

follows from (5.30) that: 
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where each zero entry in the block diagonal matrix 
2N N´ÎΩ   is a 1 N´  zero row 

vector, and ( )tα  represents the couple-free measurements: 
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The system (5.36) consists of N equations in 2N  unknowns (the elements of ( )tα ). 

Therefore, it is underdetermined. The Least Square (LS) method can be used to find 

the smallest solution for such a system, which is: 

( ) ( ) ( ) ( )
1 †H Ht t t

-
= =α Ω ΩΩ f Ω f  (5.38) 

where †Ω  is the right pseudo-inverse of Ω  [76]. Note that Ω  has full row rank, i.e., 

( )rank N=Ω .  

The couple-free measurement vector ( )tα  can be decomposed as: 
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where 

( )( ) ( ) ( ) ( ) ( )amb
nn

nt t t= +α A s nf  (5.40) 

is the estimated couple-free measurement when element n is active. Averaging these 

measurements yields: 
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The covariance matrix of ( )tγ  is then: 
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where the signal covariance matrix is given by 
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and the noise covariance matrix is given by (see (5.26)) 
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n Nn N

s=γR I  (5.44) 

Comparing (5.43) and (5.44) with (5.32) and (5.34), it can be seen that the decoupled 

model of SASPA arrays improves the SNR of the received signals, implying its data 

covariance matrix is more accurate. In [77], it is shown that by increasing the SNR, 

the amount of leakage of the signal subspace into the noise subspace can be reduced. 

Moreover, in [78], it is shown that by increasing the SNR, the eigenvalues of the 

signal subspace become larger and, hence, the merging of the signal subspace  

into the noise subspace is significantly avoided. Therefore, when using ˆ
sE  in the 

MUSIC cost function (4.23), more accurate DOA estimates can be obtained since 

these subspaces are closer, in some sense, to the (unknown) theoretical signal 

subspaces. 

The next two sections point out the enhanced performance of the MUSIC algorithm 

when ULA-SASPA and UCA-SASPA arrays with small inter-element spacing are 

used, compared with the performance of the corresponding all-active arrays.  
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5.4  Simulation Study 

To illustrate the benefits of ULA-SASPA and UCA-SASPA arrays and their 

improved MUSIC performance even when the inter-element spacing is very small, 

the following simulation study was conducted. The enhancements will be 

demonstrated by comparing the performance of an array when it is SASPA and when 

it is all-active. The simulations are carried out for couple-free measurements 

assuming the mutual coupling effect has been first removed. 

Figure 5.2 shows the MUSIC spectrum for two signals coming from 1 70f =   and 

2 80 ,f =   i.e., they are emanating from a direction close to a ULA array’s broadside. 

The ULA array consists of six identical elements with inter-element spacing of 

0.15d l= . The SNR of each signal is 15 dB and five runs with 1000 simulation 

snapshots for each run are shown. Figure 5.3 shows a high-resolution DOA 

estimation for two signals emanating from 1 80f =   and 2 85 ,f =   and both with 

SNR 30 dB= , as received by the same ULA-SASPA array. And as before, the 

simulation was conducted over five runs with 1000 snapshots per run.  

The ULA-SASPA array with closely spaced elements has also the capability to 

improve DOA estimation for signals coming from directions close to the array’s end 

fire, as can be seen from the simulation plots shown in Figure 5.4. The two signals 

arrive from 1 20f =   and 2 30 .f =   Their SNRs are both 30 dB. The ULA-SASPA 

array is the same as that used in the simulation plots shown in Figure 5.2 except 

0.12d l= . The simulation condition is five runs with 3000 snapshots per run.  

Observe that, in spite of the elements of the array being very close to each other, and 

the DOA of the received signals also being very close, the ULA-SASPA array was 

able to estimate the DOAs with high resolution due to the effect of multiplying the 

signal covariance matrix by N relative to the noise covariance matrix, as in (5.43) 

and (5.44). In contrast, the all-active ULA with the same inter-element spacing failed 

to find the DOAs of the received signals.  
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Figure 5.5 shows the DOA estimation by a UCA-SASPA array of two signals with 

SNR 25 dB=  coming from directions 1 70f =   and 2 80f =  . The array has a 

radius 0.2R l=  and consists of six identical half-wave dipoles. The figure also 

shows the estimation of the same signals received by a six dipole UCA all-active 

antenna array with the same radius. Clearly, the UCA-SASPA array succeeded in 

estimating the signals’ DOAs with high resolution despite its very small geometry. In 

contrast, the UCA all-active array is not able to resolve the received signals.  

In Figure 5.6, the same scenario as in the previous simulation is used except the 

received signals are now coming from 1 20f =   and 2 30 .f =   Figures 5.5 and 5.6 

confirm that a UCA-SASPA array with a small radius has the capability to estimate 

signals coming from different directions with the same SNR and same number of 

snapshots. The reason for that is the noise eigenvalues of the data covariance matrix 

of the UCA-SASPA γR  are scaled by 1 N . 
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(a) 

 

 

(b) 

Figure 5.2: MUSIC spectrums for two signals with SNR 15 dB coming 
from 1 70f =   and 2 80 .f =   ULA has 6 identical dipoles with inter-
element spacing 0.15d l= . 5 runs with 1000 simulation snapshots per 
run are used. (a) ULA-SASPA array; (b) ULA all-active array. 
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(a) 

 

 

(b) 

Figure 5.3: MUSIC spectrum for two closely signals with SNR 30 dB 
coming from 1 80f =   and 2 85 .f =   Array and simulation conditions 
same as in Figure 5.2. (a) ULA-SASPA array; (b) ULA all-active array. 
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(a) 

 

 

(b) 

Figure 5.4: MUSIC spectrum for two signals with SNR 35 dB coming 
from 1 20f =   and 2 30 .f =   Array same as in Figures 5.2 and 5.3 
except 0.12d l= . Simulation conducted over 5 runs and 3000 snapshots 
per run. (a) ULA-SASPA array; (b) ULA all-active array. 
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(a) 

 

 
(b) 

Figure 5.5: Comparison between the estimation of two signals coming 
from direction 1 70f =   and 2 80f =   with SNR 25 dB=  and incident 
on (a) UCA-SASPA array with six identical half wave dipoles and radius 

0.2R l= ; (b) similar UCA all-active array.  
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(a) 

 

 

(b) 

Figure 5.6: DOA estimation for the same scenario as in Figure 5.5 but for 
the signals coming from directions 1 20f =   and 2 30 .f =    
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5.5 RMSE Simulations 

To confirm the  improvement provided by ULA-SASPA arrays in DOA estimation 

over the corresponding all-active arrays, the criteria Root Mean Square Error 

(RMSE) which is defined as: 

( )21
1

ˆ

RMSE

L

i
i

L

f f
=

-
=

å
 (5.45) 

will be considered in the following simulation study where îf  is the estimated value 

of the DOA calculated from ith simulation run and 1f  is the actual or true value of 

the DOA. 

Figure 5.7a shows the variation of RMSE against the SNR of a received signal 

coming from 1 80 ,f =   i.e., from a direction close to the broadside of a ULA-SASPA 

array. The array consists of four identical dipole elements with 0.15d l= . The 

simulation was conducted for 100 runs with 100 snapshots for each run. The 

simulation is compared with a ULA all-active array with the same structure. Another 

comparison is shown in Figure 5.7b which was carried out for the same arrays, but 

with the signal arriving from 1 20 ,f =   which is close to the end fire direction. It is 

clear from Figure 5.7 that the ULA-SASPA array has lowered the RMSE of the all-

active array.  

Figure 5.8 illustrates how a UCA-SASPA array performs over a range of SNR 

through investigating the RMSE criterion of (5.45). Figure 5.8a shows the variation 

of RMSE against SNR for a signal emanating from 1 80 ,f =   and impinging on a 

six-element UCA-SASPA array with 0.2R l= . 100 simulation runs with 50 

snapshots for each run were conducted to establish this plot. Figure 5.8b is a plot of 

RMSE versus SNR for a received signal from 1 20f =   impinging on the same array. 

The simulations show that the UCA-SASPA array has also lowered its RMSE with 

respect to the all-active array irrespective of the direction of the received signals. 
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(a) 

 

 

(b) 

Figure 5.7: Two simulations illustrating the variation of RMSE of the 
estimated DOA of a single signal against its SNR. The signal is received 
by a ULA-SASPA array consisting of four identical antenna elements 
with 0.15d l= . 100 runs with 100 snapshots for every run are used. The 
signal direction is (a) 1 80f =  ; (b) 1 20f =  . 
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(a) 

 

 

(b) 

Figure 5.8: Two simulations to illustrate the variation of RMSE of the 
estimated DOA of a single signal against its SNR. The signal is received 
by a UCA-SASPA array consisting of four identical antenna elements 
with 0.2R l= . 100 runs with 50 snapshots for every run are used. The 
signal direction is is (a) 1 80f =  ; (b) 1 20f =  . 
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5.6 Summary 

The data model for an N-element SASPA array of arbitrary geometry is developed in 

this chapter. This model includes both coupled noise and self noise. The consequence 

of assembling a data snapshot from the sequentially measured sub-snapshots is also 

included in the model. It is shown that the time misalignment resulting from the 

delays in acquiring the sub-snapshots can be compensated easily by applying an 

appropriate phase rotation to each measured sub-snapshot. 

This chapter illustrates the performance of ULA-SASPA and UCA-SASPA arrays as 

direction finding arrays in conjunction with the MUSIC algorithm assuming mutual 

coupling is known, and the noise developed at the array elements are coupled 

between them. Decoupling the mutual coupling results in 2N  measurements from 

which a scaled steering matrix is obtained. The scaling matrix represents a gain 

provided by SASPA arrays to the received signals despite the elements of the arrays 

being close together. This benefit improves the performance of SASPA arrays as 

direction finding arrays compared to all-active antenna arrays with the same 

geometrical structure. The reason behind this improvement is the decrease in the 

distance measure between the signal subspace and the related steering matrix, 

thereby reducing the leakage of the signal subspace into the noise subspace. 

Computer simulations have been carried out to gain a good view about the 

enhancement provided by SASPA arrays over all-active arrays when acting as DF 

arrays and to support the theoretical conclusion mentioned above. Also, RMSE plots 

show that SASPA arrays have lower RMSE than all-active antenna arrays. This 

benefit can be exploited when the DOAs of signals with low SNR are required to be 

estimated.  

In the next chapter, high resolution direction finding with SASPA arrays operating 

with uncoupled noise is explored. 
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Chapter 6Equation Chapter (Next) Section 1 

DOA ESTIMATION USING ULA-SASPA ARRAYS 
WITH KNOWN MUTUAL COUPLING AND 
UNCOUPLED NOISE 

6.1  Introduction 

In this chapter, it is assumed that receiver self-noise is the dominant noise. This noise 

is not exchanged between the array elements through mutual coupling [17][24]. 

Assuming the SASPA array is operating under the simplified signal scenario 

described in Section 5.2.2, it follows from the reduced time-aligned SASPA array 

data model (5.28) that the Coupled-Signals-Uncoupled-Noise (CSUN) model is 

given by: 
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As can be readily shown, the covariance matrix of ( )tg  is given by  

( ) ( ){ }H
s nt t= = +g g gR g g R R  (6.3) 

where, as with (5.32), the signal covariance matrix is 

( ) ( )H H
s =gR CA SA Cf f  (6.4) 

and the noise covariance matrix is 

2
n n Ns=gR I  (6.5) 
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6.2 Coupled-Signals-Uncoupled-Noise: the ( )tz  Model for ULA-

SASPA Arrays 

Consider now an N-element ULA-SASPA array consisting of half-wave dipoles with 

inter-element spacing d and operating in the xy-plane, and whose dominant noise 

source is internal self-noise. Suppose N is even. The ( )tz  model of a ULA-SASPA 

array operating under the CSUN condition is defined by: 
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 (6.6) 

where kI  and kJ  are, respectively, the k k´  identity matrix and the k k´  exchange 

matrix.  

The noise covariance matrix can be found as follows: 

( ) ( )
2 2 2 2

self self
2 2 2 2

2 2 2 22

2 2 2 2
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1 1

2 2
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j
t t

j j j

j

j j j
s

s

ì é ù é ù üï ïï ïê ú ê ú= í ýê ú ê úï ï- -ê ú ê úï ïî ë û ë û þ

é ù é ù
ê ú ê ú= ⋅ ⋅ê ú ê ú- -ê ú ê úë û ë û

=

z

I J I I
R n n

I J J J

I J I I
I

I J J J

I



 (6.7) 

To find the signal covariance matrix, suppose, with no loss of generality, that the 

array geometry is as shown in Figure 6.1. As can be readily shown, the array 
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manifold vector is given by 

( ) ( ) ( ) ( )1 3 1
2 2 2

cos cos cosN N N T
jk d jk d jk d

ULA e e e
f f ff

- - -- - +é ù= ê ú
ë û

a   (6.8) 

whereupon the steering matrix for signals arriving from 1, , Mf f  is given by 

( ) ( ) ( )1ULA ULA ULA Mf fé ù= ê úë ûA a af  (6.9) 

 
Figure 6.1: A ULA-SASPA antenna array with even number of elements 
and located symmetrically about the y-axis.  

Now, from (6.1), (6.6) and (6.9) 

( ) ( ) ( ) ( ) ( )( )
2 2

self
2 2

1

2

N N

ULA
N N

t t t t
j j

é ù
ê ú= = +ê ú
-ê úë û

I J
z g T CA s n

I J
f  (6.10) 

where 

2 2

2 2

1

2

N N

N Nj j

é ù
ê ú= ê ú
-ê úë û

I J
T

I J
 (6.11) 

The signal covariance matrix under the ( )tz  model is then given by 

( ) ( )H H H
s ULA ULA=zR TCA SA C Tf f  (6.12) 

An alternative expression for the signal covariance matrix can be derived as follows. 

As can be readily verified, (6.8) has the property that 

( ) ( )ULA N ULAf f*=a J a  (6.13) 

Therefore 

y

x
f... . . .

d
1 2 N
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( ) ( )ULA N ULA
*=A J Af f  (6.14) 

Also, since the mutual coupling matrix is symmetrical and Toeplitz, 

( ) ( )1N n n
N

+ - =c J c  (6.15) 

Accordingly 

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
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 (6.16) 

Likewise 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 2 Im
T T Tn N n n

ALU ALU ALUj j + -- + =c A c A c Af f f  (6.17) 

In other words, the ( )tz  model can be expressed as 

( ) ( ) ( ) ( )selft t t= +z M s Tnf  (6.18) 

where 
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M
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  (6.22) 
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and 

( ) ( )2 21 NN N´é ù¢ = Îê úë û
C c c   (6.25) 

i.e., ¢C  consists of the first 2N  columns of the mutual coupling matrix C  
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 (6.26) 

Now, from (6.8) and (6.9) 

( )( ) ( )( ) ( )( )1Re Re Re N M
ULA ULA ULA Mf f ´é ù= Îê úë ûA a af   (6.27) 

and 

( )( ) ( )( ) ( )( )1Im Im Im N M
ULA ULA ULA Mf f ´é ù= Îê úë ûA a af   (6.28) 

where 

( )( ) 1 3 1
Re cos cos cos

2 2 2

T

ULA m m m m
N N N

f y y y
é æ ö æ ö æ ö ù- - -÷ ÷ ÷ç ç ç= ê ú÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øê úë û

a   (6.29) 
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( )( ) 1 3 1
Im sin sin sin

2 2 2

T

ULA m m m m
N N N

f y y y
é æ ö æ ö æ ö ù- - -÷ ÷ ÷ç ç ç= ê ú÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øê úë û

a   (6.30) 

and 

cosm mkdy f=  (6.31) 

As can be seen, (6.29) and (6.30) exhibit the following symmetries. 

( )( ) ( )( )Re ReULA m N ULA mf f=a J a  (6.32) 

and 

( )( ) ( )( )Im ImULA m N ULA mf f=-a J a  (6.33) 

Therefore, partitioning ¢C  as follows 

1

2

¢é ù
ê ú¢ = ê ú¢ê úë û

C
C

C
 (6.34) 

where 2 2
1

N N´¢ ÎC   and 2 2
2

N N´¢ ÎC  , and defining 

( ) 2 1
,cos

1 3 1
cos cos cos

2 2 2

NT

ULA m m m m
N N

f y y y ´é æ ö æ ö æ ö ù- -÷ ÷ ÷ç ç ç= Îê ú÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øê úë û
a    (6.35) 

( ) 2 1
,sin

1 3 1
sin sin sin

2 2 2

NT

ULA m m m m
N N

f y y y ´é æ ö æ ö æ ö ù- -÷ ÷ ÷ç ç ç= Îê ú÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øê úë û
a    (6.36) 

( ) 2 2
cos 1 2 2

N N

N
´¢¢ ¢ ¢= + ÎC C J C   (6.37) 

and 

( ) 2 2
sin 1 2 2

N N

N
´¢¢ ¢ ¢= - + ÎC C J C   (6.38) 

It can be verified that (6.23) and (6.24) can be written as 

( ) ( ) ( )1 cos ,cos
T

ULA¢¢=M C Af f  (6.39) 

( ) ( ) ( )2 sin ,sin
T

ULA¢¢=M C Af f  (6.40) 

where 
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( ) ( ) ( ) 2
,cos ,cos 1 ,cos

N M
ULA ULA ULA Mf f ´é ù= Îê úë ûA a af   (6.41) 

and 

( ) ( ) ( ) 2
,sin ,sin 1 ,sin

N M
ULA ULA ULA Mf f ´é ù= Îê úë ûA a af   (6.42) 

The signal covariance matrix of ( )tz  is also given, therefore, by 

( ) ( ) ( ) ( ) ( ) ( )H H H
s t té ù= =ê úë ûzR M s s M M SMf f f f  (6.43) 

where 

( )
( ) ( )

( ) ( )

cos ,cos

sin ,sin

T
ULA

T
ULA

é ù¢¢ê ú
= ê ú

ê ú¢¢ê úë û

C A
M

C A

f
f

f
 (6.44) 

Remarks 

(a) It is worthwhile to comment here that, from (6.10), (6.22)-(6.24), and (6.44), 

( )M f  has the following equivalent expressions: 

( ) ( )
( )( )
( )( )

( ) ( )

( ) ( )

cos ,cos

sin ,sin

Re

Im

TT
ULAULA

ULA T T
ULA ULA

é ùé ù ¢¢¢ ê úê ú= = = ê úê ú ê ú¢ê ú ¢¢ê úë û ë û

C AC A
M TCA

C A C A

ff
f f

f f
 (6.45) 

Another expression involving only the first column of the mutual coupling 

matrix C  will be presented in the next section. 

(b) A significant feature of the ( )tz  model of (6.18) is that, compared to the direct 

measurement model of (6.1), the noise covariance matrix of ( )tz  is halved, see 

(6.5) and (6.7). More accurate estimates of the true data covariance matrix can 

thus be achieved with the ( )tz  model, leading to more accurate estimates of the 

incident signals’ DOA. 

(c) Another important feature of the ( )tz  model is that ( ),cosULAA f  and 

( ),sinULAA f  in (6.44) are real-valued matrices. This can result in a reduction in 

the computational load when simulating a ULA-SASPA array operating under 
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the coupled-signals-uncoupled-noise model of (6.1) [65][74][85][86]. It may 

also lead to a reduction in the computational load if the search vector of the 

MUSIC algorithm derived from the ( )tz  model is to be calculated on-line. This 

issue will be discussed further in Section 6.4. 

(d) It is interesting at this juncture to compare the above development with the work 

reported in [74]. In [74], a complex-valued unitary transformation matrix is 

applied to the measurements (or the estimated covariance matrix) of an all-

active array such that the steering matrix is real-valued. This leads to the 

development of an ESPRIT algorithm that requires less computation. The 

requirements of the method discussed in [74] are that the array structure is 

centrosymmetric, for example, ULA, and that no mutual coupling is present. In 

contrast, the method described in this chapter, which leads to the real-valued 

matrices ( ),cosULAA f   and ( ),sinULAA f , (i) requires the array to be ULA, (ii) 

still requires a complex-valued transformation matrix to be applied to the 

measurements, except it is sparse since it involves only simple additions and 

subtractions of the measured sub-snapshots, (iii) does not require the absence of 

mutual coupling., and (iv) is able to take advantage of the self-beamforming 

feature of the array due to the switching of the active element (see Figure 3.5) to 

provide more accurate DOA estimates relative to the array’s all-active 

counterpart if certain conditions are met [9][101]. 
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6.3 MUSIC Algorithm in Conjunction with ULA-SASPA Array 

Recall the coupled-signals-uncoupled-noise ( )tz  model of (6.18).  

( ) ( ) ( ) ( )selft t t= +z M s Tnf  (6.18) 

Using a derivation similar to that shown in the seminal MUSIC paper [13], it can be 

seen the MUSIC spectrum of ( )tz  is given by: 

( )
( )

, 2

2

1
MUSIC

H
n

P f
f

=z

zE m
 (6.46) 

where ( )fm  is given by: 
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f
f

f

é ù¢¢ê ú
= ê ú

ê ú¢¢ê úë û

C a
m

C a
 (6.47) 

and nzE  is the noise subspace estimated from the eigendecomposition of zR . 

6.4  Steering Matrix of ULA-SASPA Arrays in term of ( )1c  

Mutual coupling matrices are symmetric Toeplitz. Therefore, they are characterised 

fully by their first row, or first column, i.e., ( )1c . This notion of being able to 

represent a mutual coupling matrix as a vector can be useful, for example, in 

situations where the mutual coupling matrix is unknown and is to be estimated from 

the measurements, as will be discussed in Chapter 7. 

Here, an alternative expression for the MUSIC search vector ( )fm , (6.47), is 

derived. Unlike the expression given in (6.47) which involves ( ) ( )1 /2, , Nc c , the new 

expression involves only ( )1c .  

Observe firstly from (6.23), (6.24), (6.27) and (6.28) that, with 
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
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 (6.49) 

where ( )( )Re ULA mfa  and ( )( )Im ULA mfa  are defined, respectively, by (6.29) and 

(6.30). 

Re-writing the matrices ( )1 mfm  and ( )2 mfm  in (6.49) as follows: 

( ) ( ) ( ) ( ) ( )[ ] ( )1 1
1 1 1 1m m m mf f f f¢ ¢¢= = +m F c F F c  (6.50) 

( ) ( ) ( ) ( ) ( )[ ] ( )1 1
2 2 2 2m m m mf f f f¢ ¢¢= = -m F c F F c  (6.51) 

or 
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with: 
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 (6.53) 

and N¢I   is an N N´   identity matrix but with the first column becoming the last 
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column, i.e.: 
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and more generally 
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where ( ) ( ), 1, , 2 1 ,n n N= -K   is an N N´  matrix with the following structure: 
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or more generally, 
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Likewise,  
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As an example, ( )mfF  for a six-element ULA-SASPA will have the structure:  
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 (6.62) 

Using (6.50) and (6.51), the system ( )tz  in (6.18) can be rewritten as:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 1
1 2 self

1
self

M

M

t t t

t t

f f fé ù= +ê úë û

= Ä +

z F c F c F c s Tn

I c s Tn



G f
 (6.63) 

where ( ) N NM´ÎG f   is defined as:  

( ) ( ) ( ) ( )[ ]1 2 Mf f f= F F FG f  (6.64) 

and Ä  stands for Kronecker product.  
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The covariance matrix of ( )tz can be derived as follows. First, as can be readily 

verified:  

( )( ) ( ) ( ) ( )1 1
M t tÄ = ÄI c s s c  (6.65) 

Thus: 

( ) ( )
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( ) ( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )

2
1 1

2
1 1

2
1 1

2
1

2

2

2

2

H

HH H n
M M N

H H n
N

HH H n
N

H n
N

t t

t t

t t

t t

s

s

s

s

é ù= ê úë û

é ù= Ä Ä +ê ú
ë û

é ù= Ä Ä +ê ú
ë û

é ù= Ä +ê ú
ë û

= Ä +

zR z z

I c s s I c I

s c s c I

s s c c I

S C I

G f G f

G f G f

G f G f

G f G f









 (6.66) 

where 

( ) ( )Ht té ù= ê úë ûS s s  (6.67) 

( ) ( ) ( )( )1 1 1 H
=C c c  (6.68) 

and the following property of matrix Kronecker product [84] has been invoked to 

obtain the fourth line: 

( )( ) ( ) ( )H H HÄ Ä = ÄA B A B AA BB , for any matrices A  and B . 

Note that S , the signal covariance matrix, is diagonal if the received signals are 

mutually uncorrelated. The powers of the received signals are listed along the 

diagonal.  

The MUSIC spectrum of ( )tz  is given by: 

( ) ( ) ( ), 2 21

2 2

1 1
MUSIC

H H
n n

P
f f

= =z

z zE m E F c
 (6.69) 
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where ( ) ( )1fF c  is now the search vector. 

Concerning (6.69), it is worthwhile to recall that ( )fF  is real. Moreover, as can be 

seen from the example of (6.62), it can be easily constructed once ( )1
2

cos ,N y-  

( ) ( )3 1
2 2

cos , , cosN y y-   and ( ) ( ) ( )1 3 1
2 2 2

sin , sin , , sinN Ny y y- -   have been 

computed. 

6.5  Simulation Study 

The MUSIC cost function (6.46) is used in this section to estimate the DOAs of the 

signals impinging on a ULA-SASPA array. As remarked in Section 6.2, (6.46) offers 

enhanced performance in DOA estimation compared to the classical MUSIC cost 

function of (4.32). This claim will be verified via simulation studies in this section. 

In the simulations, the classical MUSIC algorithm is implemented on an all-active 

ULA with the same array geometry as the ULA-SASPA array and operating in the 

same signal environment as the ULA-SASPA array. 

Figure 6.2 shows the MUSIC spectrum for two signals impinging on an 8-element 

dipole array with inter-element spacing 0.25 .d l=  The signals are incident from 

1 60f =   and 2 62 ,f =   and both with SNR 5 dB= . The figure shows two sets of 

plot, one for the ULA-SASPA array and one for the ULA all-active array. Both plots 

show the results from 5 simulation runs, where 250 snapshots are used for each run. 

Figure 6.3 shows the MUSIC spectrum for the same two arrays as in Figure 6.2 but 

with the impinging signals arriving from 1 20f =   and 2 22 ,f =   and SNR =  

25 dB.  Also, 1000 snapshots per simulation run were used. 

In Figure 6.4, the number of antenna elements used in the first two simulations was 

reduced to 6 but with the same inter-element spacing. The DOAs of the two 

impinging signals are also the same except now, SNR 10 dB= .  

In Figure 6.5, the two 6-element arrays of Figure 6.4 were used to detect two signals, 
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one from 1 20f =   and the other from 2 22 .f =   The SNR has also been increased 

to 25 dB, and 1000 snapshots were used for each of the five simulation runs. 

As can be seen from Figures 6.2 to 6.5, ULA-SASPA arrays with the ( )tz  model 

outperform their ULA all-active array counterparts in direction finding when the 

number of the elements is small. Also, ULA-SASPA arrays are capable of estimating 

the DOAs when the available measurement data set is short, and the power of the 

received signals is low. The superior performance of the ULA-SASPA arrays can be 

attributed to their lower noise level as a result of the ( )tz  transformation and shown 

in (6.7). 

However, comparing Figure 6.2 with Figure 6.3, and Figure 6.4 with Figure 6.5, it 

can be seen the unsymmetrical property in the beam pattern of ULAs is still affecting 

the performance of the ULA-SASPA arrays. In particular, for ULA-SASPA arrays 

and ULA all-active arrays to be able to detect or resolve signals arriving from near 

end fire directions (Figures 6.3 and 6.5), (i) the signals are required to have larger 

SNRs, and/or (ii) more measurement snapshots are required to estimate the data  
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(a) 

 

(b) 

Figure 6.2: MUSIC spectrum for the DOA estimation of two signals 
impinging on an 8-dipole receiving array with inter-element spacing 

0.2d l= . The signals are coming from 1 60f =   and 2 62f =   with 
SNR 5 dB= . Five simulation runs with 250 snapshots for each run are 
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array. 
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(a) 

 

(b) 

Figure 6.3: MUSIC spectrum for the DOA estimation of two signals 
impinging on an 8-dipole receiving array with inter-element spacing 

0.25 .d l=  The signals are coming from from 1 20f =   and 2 22f =   
with SNR 20 dB= . Five simulation runs with 1000 snapshots for each 
run are shown. (a) ULA-SASPA array; (b) ULA all-active antenna array. 
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(a) 

 

(b) 

Figure 6.4: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole receiving array with inter-element spacing 

0.25 .d l=  The signals are coming from 1 60f =   and 2 62f =   with 
SNR 10 dB= . Five simulation runs with 500 snapshots for each run are 
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array. 
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(a) 

 

(b) 

Figure 6.5: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole receiving array with inter-element spacing 

0.25 .d l=  The signals are coming from 1 20f =   and 2 22f =   with 
SNR 25 dB.=  Five simulation runs with 1000 snapshots for each run are 
shown. (a) ULA-SASPA array; (b) ULA all-active antenna array. 
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6.6  RMSE Simulations 

In this section, the RMSE criterion (5.45) is used to study the performance of ULA-

SASPA arrays over a range of SNRs. In the following simulations, mutual coupling 

is assumed to follow the CVUC model, and the ULA-SASPA arrays are operating 

under the ( )tz  model. 

Figures 6.6 plots the RMSE for estimating two broadside signals whose DOAs are 

separated by 2 1 82 80 2 .f f fD = - = - =   The ULA-SASPA array and the ULA 

all-active array both have six-elements with inter-element spacing 0.2 .d l=  The 

RMSE is calculated over 100 runs with 100 snapshots for each run.  

The plots in Figure 6.7 show the RMSE for estimating two end fire signals whose 

DOAs are separated by 2 1 25 20 5 ,f f fD = - = - =   and impinging on the same 

arrays as in Figure 6.5. In terms of the simulation runs, the plots in Figure 6.6 were 

similarly obtained from 100 runs except 300 snapshots per run were used. 

In Figure 6.8, the plots show the RMSE for one signal coming from the severe DOA 

of 1 5 .f =   Both the ULA-SASPA array and ULA all-active array have four 

elements with inter-element spacing 0.12 ,d l=  and the plots are obtained from 100 

runs with 50 snapshots for each run. 

The superior performance of the ULA-SASPA array is clearly self-evident in the 

plots of Figures 6.6 and 6.8. It can be seen from these figures that ULA-SASPA 

arrays have lowered the RMSE of all-active arrays using short data. However, large 

number of snapshots are required when the received signals are close to the end-fire 

direction of the array. 
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Figure 6.6: RMSE versus SNR for estimating fD  between two signals 
coming from 1 80f =   and 2 82f =   and impinging on a ULA-SASPA 
array and a ULA all-active array. Both arrays consist of 6 dipoles with 

0.2 .d l=  100 runs with 250 snapshots for each run are used.  

 

Figure 6.7: RMSE versus SNR for estimating fD  between two signals 
coming from 1 20f =   and 2 25f =   and impinging on a ULA-SASPA 
array and a ULA all-active array. Both arrays consist of 6 dipoles with 

0.2 .d l=  100 runs with 1000 snapshots for each run are used.  
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Figure 6.8: RMSE versus SNR for estimating the DOA of a signal 
coming from 5f=   and impinging on a ULA-SASPA array and a ULA 
all-active array. Both arrays consist of 4 dipoles with inter-element 
spacing 0.12 .d l=  100 runs with 50 snapshots for each run are used.  

6.7  Receiver Block Diagram of a DOA Estimator using an 

SASPA Array 

The block diagram of a DOA estimator operating in conjunction with an N-element 

SASPA array is shown in Figure 6.9. The RF modulated signal developed at the 

loaded terminals of the active element n is down-converted to base band via the 

demodulator. Selection of the output of the active element in a sub-snapshot is 

implemented in the stage following the antenna elements by controlling the PIN 

diodes which are part of one of the circuits shown in Figures 3.2a or 3.2b. This can 

be done by the N size digital word of all zeros except for one logic 1 bit which causes 

the PIN diode of the corresponding antenna element to be forward-biased. Thus, it is 

required to generate N different N-size digital words to cover one measurement 

snapshot. 

The base band signal is processed in the stage following the demodulator. The 
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processing consists of either decoupling the mutual coupling if the array is acting 

under the CSCN model, or applying the T  transformation as in (6.6) if the array is 

acting under the CSUN model. Finally, the DOA estimator collects the processed 

data taken in one snapshot and over a number of snapshots to estimate the DOA of 

the underlying received signals.  

 

 
Figure 6.9: Block diagram for DOA estimation using an SASPA array. 

6.8  Summary  

This chapter investigates the improvements that can be obtained from a ULA-

SASPA array with an even number of antenna elements. The noise measurements of 

the ULA-SASPA array are assumed to be not affected by mutual coupling between 

the antenna elements. 
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It is shown that, after applying a simple transformation to the measured data in a 

snapshot, measurement noise is effectively reduced leading to improved 

performances in DOA estimations. It is also found that a real-valued DOA dependent 

steering matrix can be obtained from the transformation which can result in savings 

in the computational load when either simulating the ULA-SASPA array or 

calculating the MUSIC search vector on-line. The transformation basically adds and 

subtracts the second half set of the measurements to the first half set. The aforesaid 

benefits have been supported by a set of simulation studies. The simulations show 

that ULA-SASPA arrays acting under the CVUN model can outperform all-active 

arrays when used as direction finding arrays despite their small size antenna array 

aperture and the availability of only short data.  
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Chapter 7Equation Chapter (Next) Section 1 

MUTUAL COUPLING ESTIMATION USING ULA-
SASPA ARRAY 

7.1  Introduction 

The enhancement provided by SASPA arrays in DOA estimation has been 

investigated in Chapters 5 and 6 assuming mutual coupling is known. In practice, 

knowledge of mutual coupling on-line is often required since it can deviate from the 

ideal. Mutual coupling in antenna arrays can change for many reasons. The 

characteristics of the array elements and the associated electronic circuitry are 

subjected to manufacturing tolerances. They can also change over time due to 

component ageing and thermal effects [23][81]. Also, nearby metal objects or other 

environmental effects can be another reason for causing mutual coupling to depart 

from the ideal. Accordingly, it is desirable to have a technique to estimate the mutual 

coupling between the array elements. This technique, or algorithm, can be applied 

prior to or simultaneously with DOA estimation.  

In this Chapter, the feasibility of estimating the mutual coupling of a ULA-SASPA 

array will be examined assuming the data model is CSUN. Another viable 

achievement that can be attained for this antenna array is estimating the DOA 

dependent matrix ( )fF   that is formed in Chapter 6. To accomplish the work 

addressed in this chapter, a test signal is first used to estimate the fitted subspace of 

the on-line mutual coupling of an N-element ULA-SASPA array receiving that 

signal. Thereafter, the estimated mutual coupling is used into (6.69) to estimate the 

DOAs of the underlying received signals.  
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7.2  Literature Background on On-Line Mutual Coupling 

Estimation 

Many researches have been reported in the literature to estimate mutual coupling on-

line, prior to or along with estimating the DOAs in a receiving antenna array. Most of 

these methods are based on finding a minimum solution to a cost function which is a 

likelihood function of all the unknown parameters of the array [8]. In [81], iterative 

LS solutions for the MUSIC cost function (4.32) are proposed but they require the 

gain and phase of the array elements to be inserted. In this method, the mutual 

coupling matrix (MCM) is assumed to be a banded matrix if the array is ULA. This 

assumption is based on the fact that the mutual coupling is inversely proportional to 

the distance between two array elements. The procedure is to fix all parameters 

except one for which the LS solution is to be found in the first set of iterations. 

Therefore, initial values are first required for the fixed parameters. The solution 

obtained is then plugged into the cost function to find the solution for the next 

parameter. In [90], the same technique is used but the cost function is the 

observations of the array which is a random process. 

In [24], another iterative LS method is developed based on the root-MUSIC cost 

function. The author used this method to avoid divergent solutions due to improper 

selection of the initial value. The method requires only two steps. The first one is 

implemented to find the nearest roots to the unit circle on which the roots 

( )exp cosjkd f   should reside as if mutual coupling is not present. These roots are 

then inserted into the cost function to estimate the unknown mutual coupling. 

However, this method is useful for ULA arrays only and the nearest roots might not 

be found.  

Another criterion has been exploited in [39] to search for an LS solution for the 

unknown mutual coupling after using the rank deficiency of a matrix formed from 

the orthogonality between the noise subspace and the mutual-coupled steering matrix 
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to find the LS solution to the underlying DOAs. The estimated DOAs are then 

plugged into the first cost function to estimate the mutual coupling. Thus, this 

method requires initial values for the DOAs. To do so, a pre-estimation for certain 

sectors covered by the proposed beamformed array is first implemented. 

Obviously, the aforementioned methods are computationally intensive, and the 

iterative methods may end up with local minima rather than the global minimum if 

the initial values are not selected properly, or there will be no solution at all. 

Furthermore, some of these methods that assume the mutual coupliong matrix is 

banded did not show how to select the useful bandwidth of the MCM. Instead the 

bandwidth is selected arbitrarily to simplify the problem, and this assumption may 

result in errors when determining the true mutual coupling. Also, the banded matrix 

property cannot be applied on SASPA arrays since the elements are close to each 

other and mutual coupling between elements far apart cannot be ignored.  

7.3  Estimating the Mutual Coupling of a ULA-SASPA 

The capability to estimate the mutual coupling of an N-element ULA-SASPA array 

prior to processing the measurements for DOA estimation is examined in this 

section. The method is based on estimating a fitted vector to the mutual coupling 

vector of a symmetrical Toeplitz MCM. This fitted vector can be obtained from the 

null space of a rank deficient matrix. Recall that a symmetrical Toeplitz MCM can be 

defined by its first row or first column. The rank deficient matrix is formed from left 

multiplying the real valued DOA independent matrix ( )fF  found in Chapter 6 by 

the orthogonal projection on the estimated noise subspace.  

In this work, mutual coupling is assumed to be DOA independent. Furthermore, the 

data model used is the one defined in (6.1), i.e., where noise is not affected by mutual 

coupling. Using (6.48), (6.63) and (6.64), the steering matrix ( )M f  for an N-

element ULA-SASPA array receiving M uncorrelated and with an even number  
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of array elements is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

1 1 1
1 2

1

M

M

f f fé ù= ê úë û

é ù= Äê úë û

=

M F c F c F c

I c

U

f

G f

G f

 (7.1) 

where ( )Γ f  is defined by (6.64), and 

( )( )1 MN M
M

´= Ä ÎU I c   (7.2) 

The orthogonal projection onto the subspace spanned by the columns of ( )M f , i.e., 

onto ( )( )M f  [8][14][65][91], is  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1†

1

H T

T TH H

-

-

é ù= = ê úë û

é ù= ê úë û

MP M M M M M M

U U U U

f f f f f f f

G f G f G f G f
 (7.3) 

Note that ( )
N N´ÎMP f   is an orthogonal projection because it is idempotent, i.e. 

( ) ( )
2 ,=M MP Pf f  and it is Hermitian, i.e., ( ) ( )

H =M MP Pf f  [70][92][93]. Post-

multiplying (7.3) by ( )G f  yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1T TH H-é ù= ê úë ûMP U U U Uf G f G f G f G f G f G f  (7.4) 

or 

( ) ( ) ( ) ( )=M U DP Pf fG f G f  (7.5) 

where  

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

T TH H

H H

-

-

é ù= ê úë û

é ù= ê úë û

U DP U U U U

U U D U U D

f G f G f G f G f

f f
 (7.6) 

and ( )D f  is the non-negative definite matrix 

( ) ( ) ( )T=D Γ Γf f f  (7.7) 

( )
MN MN´ÎU DP f   is an oblique projection onto the subspace spanned by the 
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columns of the matrix ( )( )1
M= ÄU I c  along the subspace spanned by the columns 

of ( )D f  [92]. Also, this projection matrix can be considered as a weighted 

orthogonal projection onto ( )U . ( )U DP f  satisfies the condition of idempotency 

but it is not Hermitian, i.e., ( ) ( )
H ¹U D U DP Pf f .  

The equation (7.5) is a homogenous Sylvester matrix equation, i.e., it has the form 

N NM´- =AX XB 0  where ,N N´ÎA   NM NM´ÎB   and N NM´ÎX   [94]-[96]. 

Equation (7.5) has a non-zero solution if and only if ( )MP f  and ( )U DP f  have 

common eigenvalues [96]. Thus (7.5) has a solution, that is, ( )G f  exists since the 

eigenvalues of the projections ( )MP f  and ( )U DP f  is the set { }0,1iL Î . 

7.4  Calculation of the Projection Matrices ( )MP f  and ( )U DP f  

The matrix ( )MP f  can be calculated from the estimated signal subspace as [98]: 

( ) ( ) ( ) ( ) ( )
1 ˆ ˆH T H

s s
-é ù= =ê úë ûMP M M M M E Ef f f f f  (7.8) 

provided the steering matrix is full rank. The matrix ( )U DP f  can be found from the 

following relationship: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
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T TH H
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-

é ù= ⋅ê úë û
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é ù= ⋅ ê úë û
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M U D

U D
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Γ U U Γ Γ U U Γ Γ

U U Γ Γ U U Γ Γ

Γ U Γ Γ U U Γ Γ

Γ P

f f

f

f

f f f f f

f f f f

f f f f f

f

 (7.9) 

i.e., 

( ) ( ) ( ) ( ) ( ) ( )N N MN
^

´
é ù- = =ë ûM U D M U DI P Γ P P Γ P 0f f f ff f  (7.10) 

or 

( ) ( ) N MN´=U DV P 0ff  (7.11) 
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where  

( ) ( ) ( ) N MN´^= ÎMV P ff G f  (7.12) 

and 

( ) ( )
N N

N
^ ´é ù= - Îë ûM MP I Pf f   (7.13) 

is the orthogonal projection on the noise subspace, i.e., ( )
ˆ ˆ H

n n
^ =MP E Ef . Note that 

( )( )rank M=MP f  and ( )( )rank .N M^ = -MP f  

Equations (7.10)-(7.12) state that ( )U DP f  is in the null space of ( )V f . In [99], it has 

been proved that ( )U DP f  and UP  are similar where UP  is the orthogonal projection 

on ( )U , i.e.: 

( ) ( )( ) ( )( ) ( )( ) ( )( )
11 1 1 1 1H HH

M M M M

-- é ù= = Ä Ä Ä Äê ú
ë ûUP U U U U I c I c I c I c  (7.14) 

Therefore, UP  is also in the null space of ( )V f . 

7.5 Estimating the Mutual Coupling Vector ( )1c  

As pointed out in the previous section, UP  is in ( )( )V f . It can be revealed from 

(7.10) and (7.11) that the rank of ( )V f  is the minimum of the ranks of ( )
^
MP f  and 

( )G f  [102], i.e.: 

( )( ) ( )( ) ( )( )( )rank min rank , rank^£ MV P Γff f  (7.15) 

Thus, 

( )( ) ( )rank min ,N M N N M= - = -V f  (7.16) 

Now, according to the rank-nullity theorem which states that ( ) ( )rank M+ =A A  

for any given matrix N M´ÎA   [103], one has the following: 

( )( )( ) ( )( )dim rankMN= -V V f f  (7.17) 



150 
 

Hence, for a ULA-SASPA array receiving a single signal, i.e., 1M = , the dimension 

of the null space of ( )V f  from (7.17) will be 

( )( )( ) ( )dim 1MN M N= - - =V f  (7.18) 

And according to (7.10) and (7.11), the mutual coupling vector ( )1c  of a ULA-

SASPA array receiving a test signal from testf  can be estimated with:  

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( )

1ˆ
test

test

test test

test

f

f

f f

f

^

^

= = =

=

m

m

c V V P Γ

P F
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

f
 (7.19) 

where ( )testfF  can be formed from (6.50)-(6.61) for a test signal emanating from a 

known direction, and ( )testf
^
mP  can be calculated from (7.13). The estimate ( )1ĉ  can 

then be used in (6.69) to estimate the DOAs of the underlying signals after estimating 

the signal subspace ˆ
nE  from the data covariance matrix of a ULA-SASPA array. 

Note that ( )1ˆ ,c  as calculated in (7.19), is the fitted vector to the actual ( )1 .c  Also, the 

vector ( )1ĉ  will be a normalized vector if MATLAB is used to find ( )( )testfV . In 

terms of MUSIC, the scaling of ( )1ĉ  will only result in a vertical shift of the plotted 

MUSIC spectrum. There are no changes to the position of the peaks and, 

concomitant with that, the bias and variance of the estimated DOAs. 

7.6 Estimating the DOA Dependent Matrix ( )fF  

The structure of the ULA-SASPA array also allows the matrix ( ),fF  as defined in 

Section 6.4, to be estimated for a given ( )1ĉ  or ( )1 .c  As pointed out in Section 6.4, 

the steering matrix of a ULA-SASPA array receiving a single signal can be found by 

post-multiplying the matrix ( )fF  by the mutual coupling vector ( )1 .c  In Section 7.5, 

the procedure to estimate a vector fitted to ( )1c  was shown. Also, in Section 7.3, it 

was pointed out that ( )Γ f  is the solution to the Sylvester equation (7.5). In [95][97], 

the solution of (7.5) is found to be: 

( ) ( ) ( )( ) ( ) 2( ) 1
vec vecT

MN N N MN MN´ ´
é ùÄ - Ä ⋅ = =ê úë ûM U DI P P I Γ 0 0f f f  (7.20) 
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where ( )( )vec Γ f  is the vectorization operator which stacks the columns of ( )Γ f  

one on top of another, i.e.: 

( )( )
2 1

11 21 1 12 22 2 13 23vec
T MN

N N MN
´é ù= Îê úë ûΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ  f   

 (7.21) 

If only one signal is incident on the ULA-SASPA array, then 1M =  and (7.20) 

reduces to: 

( ) ( ) ( )( ) ( ) 2 1
vec vecT

N N N N Nf f f ´ ´
é ùÄ - Ä ⋅ = =ê úë ûm U DI P P I F 0 0  (7.22) 

where, see (7.8) 

( ) ( ) ( ) ( ) ( )
1

ˆ ˆH T H
s sf f f f f

-é ù= =ê úë ûmP m m m m e e  (7.23) 

Note that the signal subspace ˆ ˆs s=E e  consists of only one eigenvector when only 

one signal is received. 

Now, it follows from (6.64), (7.2) and (7.6) that, for a single signal, i.e., 1,M =   

( ) ( )f= FG f  (7.24) 

( )( ) ( )1 1
1= Ä =U I c c  (7.25) 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1

1
1 1 1 1

T TH H

H HT Tf f f f

-

-

é ù= ê úë û

é ù= ê ú
ë û

U DP U U U U

c c F F c c F F

f G f G f G f G f
 (7.26) 

The oblique projection matrix ( )fU DP  for a single signal can thus be replaced by the 

matrix ( )fG  which is defined as: 

( ) ( ) ( ) ( )1
ff f f-= mG F P F  (7.27) 

because: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )

1

11 H T

ff f f

f f f f f f

-

--

=

é ù= ê úë û

mG F P F

F m m m m F
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )

1
1 1 1 1 1

1
1 1 1 1

H HT T

H HT T

f

f f f f f f

f f f f

f
-

-

-

ì üï ïé ùï ï= í ýê úï ïë ûï ïî þ

é ù= ê ú
ë û

= U D

F F c c F F c c F F

c c F F c c F F

P

G

 (7.28) 

Therefore, (7.22) becomes: 

( ) ( ) ( )( ) ( ) 2 1
vec vecT

N N N N Nf f f ´ ´
é ùÄ - Ä ⋅ = =ê úë ûmI P G I F 0 0  (7.29) 

Recall from (7.27) that ( ) ( ) ( ) ( )1
ff f f-= mG F P F , and it is shown in (7.23) that 

( )fmP  can be calculated from the estimated signal subspace ˆ se , i.e. from the 

measurements. Therefore, the matrix ( )fF  can be found by searching for a f  that 

solves (7.29). The above procedure will be demonstrated in the simulation of Section 

7.7. 

Now, suppose the received signal is a test signal. Equation (7.29) then becomes 

( ) ( ) ( )( ) 2 1
ˆvec

test

T
N i N test Nf f f

´
é ùÄ - Ä ⋅ =ê úë ûmI P G I F 0  (7.30) 

or 

( )( ) 2 1
ˆvec test N
f

´
⋅ =B F 0  (7.31) 

where 

( ) ( )
test

T
N i Nf fé ù= Ä - Äê úë ûmB I P G I  (7.32) 

Equation (7.31) states that the vector ( )( )ˆvec testfF  is in the null space of the matrix

B , i.e. ( )( ) ( )ˆvec testf ÍF B . However, the solution to (7.30) or (7.31) involves 

calculating the matrix ( )TifG  for the set { }, 1,2,i if =   which includes testf . To 

find the solution, the following squared Euclidean norm function is minimized to 

find the global minimum which should occur at 
oi testf f= : 

( )( ){ } ( ) ( ){ }1 22

2 2
ˆ ˆ ˆarg min arg min ˆH

testi n ii
i i

f f= =Y F E F c  (7.33) 

Note that the vector ( )1ĉ  can be replaced by ( )1c  if the latter is available. Once the 
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null space of B  is calculated, ( )ˆ
testfF  can be found by reshaping ( )( )ˆvec testfF . 

The aforementioned method for estimating ( )ˆ
testfF  cannot be used, however, when 

more than one signal is impinging on the ULA-SASPA array. The reason is the 

inability to form the search matrix ( )ifF  when two signals are received unless these 

signals are close to each other; in which case, the set { }, 1,2,i if =   is chosen with 

a step equal to the difference between the directions of the two received signals. 

Also, ( ) 1
if
-F  is not defined for two signals since it is not a square matrix anymore. 

As pointed out in Section 7.3, the method described above is valid for the CSUN data 

model of (6.1). In case of the system acting under the CSCN data model of (5.30), 

the test signal should have a very large SNR in order that the coupled noise among 

the array elements can be ignored.  

7.7  Simulation Study 

The following simulations demonstrate the effectiveness of the methods proposed in 

Section 7.5 to estimate the DOAs of the signals received by a ULA-SASPA array 

after estimating the mutual coupling. These examples are simulated for array 

geometries with very small interelement spacings. The mutual coupling is first 

estimated assuming a test signal with a known direction is incident on the array. The 

estimated mutual coupling is then used to estimate the DOAs of the underlying 

signals that are incident on the same array. Also, several simulations will be 

conducted to show the possibility of estimating ( )ˆ
testfF  from the measurements 

obtained from a ULA-SASPA array as explained in Section 7.6. 

In Figure 7.1, the MUSIC spectra for two signals incident from 1 40f =   and 

2 43f =   on a 6-element ULA-SASPA array with interelement spacing 0.3d l=  are 

shown. The SNR of each of the received signals is 15 dB and five runs with 500 

simulation snapshots for each run are used. The mutual coupling vector ( )1c  is 

estimated with a test signal from 82testf =   and SNR 15 dB.=  The upper plot is the 
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result of the simulation for estimating the DOAs along with the estimated mutual 

coupling vector  1ĉ  using the process explained in Section 7.5. The lower plot is the 

simulation for estimating the DOAs with the actual mutual coupling vector ( )1c . In 

addition to these plots, Figure 7.1 also shows a plot of the function ( )( )ˆ
ifY F  defined 

in (7.33) versus if . 

Figure 7.2 shows the simulation results for the same scenario as in Figure 7.1 except 

the direction of the test signal is 56 ,testf =   the received signals have 

SNR 15 dB,=  and 0.2d l= . Figure 7.3 shows the same simulation as Figure 7.2 

but with SNR 20 dB,=  and 24testf =  . 

Figures 7.4 shows the MUSIC spectrum for two signals arriving from 1 20f =   and 

2 25 ,f =   both with SNR 30 dB,=  on a 6-element ULA-SASPA array with 

interelement spacing 0.2 .d l=  Five runs with 1000 simulation snapshots for each 

run are used to obtain the plots. The test signal is from 82 .testf =   

Finally, Figure 7.5 shows the DOA estimation for two signals coming from 1 40f =   

and 2 43f =   and impinging on the same array as in Figure 7.4 but with 0.15 .d l=  

Compared with the simulation of Figure 7.1, it is necessary to use for Figure 7.5 a 

higher SNR for the received signals (from 15 dB to 25 dB) and more snapshots (from 

500 to 1000) to obtain distinguishable DOAs. 

Figures 7.1 to 7.5 show that DOA estimation in conjunction with the estimated 

mutual coupling vector closely matches the results of DOA estimation in conjunction 

with the actual mutual coupling vector. This is in spite of the interelement spacing 

between the array elements is small and/or the signals that are incident on the array 

are spatially close. The plots for ( )( )ˆ
ifY F  also confirm that the proposed method for 

estimating the DOA dependent steering matrix ( )ˆ
testfF  is effective and gives the 

exact value of testf .  
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(a) 

(b) 

(c) 

Figure 7.1: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole ULA-SASPA array with 0.3d l= . The signals 
are from 1 40f =   and 2 43f =   with SNR 15 dB= . Five simulation 
runs with 500 snapshots for each run are shown. The test signal has 

82testf =  . (a) In conjunction with the estimated  1ĉ ; (b) in conjunction 
with the actual  1c ; (c) the function ( )( )ˆ

ifY F  versus if . 
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(a) 

(b) 

(c) 

Figure 7.2: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole ULA-SASPA array with 0.2d l= . The signals 
are from 1 40f =   and 2 43f =   with SNR 15 dB= . Five simulation 
runs with 500 snapshots for each run are shown. The test signal is 

56testf =  . (a) In conjunction with the estimated  1ĉ ; (b) in conjunction 
with the actual  1c ; (c) the function ( )( )ˆ

ifY F  versus if . 
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(a) 

(b) 

(c) 

Figure 7.3: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole ULA-SASPA array with 0.2d l= . The signals 
are from 1 40f =   and 2 43f =   with SNR 20 dB= .. Five simulation 
runs with 750 snapshots for each run are shown. The test signal has 

24testf =  . (a) In conjunction with the estimated  1ĉ ; (b) in conjunction 
with the actual  1c , (c) the function ( )( )ˆ

ifY F versus if . 
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(a) 

(b) 

(c) 

Figure 7.4: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole ULA-SASPA array with 0.2d l= . The signals 
are from 1 20f =   and 2 25f =   with SNR 30 dB= .. Five simulation 
runs with 1000 snapshots for each run are shown. The test signal has 

82testf =  . (a) In conjunction with the estimated  1ĉ ; (b) in conjunction 
with the actual  1c , (c) the function ( )( )ˆ

ifY F versus if . 
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(a) 

(b) 

(c) 

Figure 7.5: MUSIC spectrum for the DOA estimation of two signals 
impinging on a 6-dipole ULA-SASPA array with 0.15d l= . The signals 
are from 1 40f =   and 2 43f =   with SNR 25 dB= .. Five simulation 
runs with 1000 snapshots for each run are shown. The test signal has 

82testf =  . (a) In conjunction with the estimated  1ĉ ; (b) in conjunction 
with the actual  1c , (c) the function ( )( )ˆ

ifY F versus if . 
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7.8  RMSE Simulation 

The RMSE criterion versus SNR for different for DOA estimation scenarios is 

examined in this section. Also, qD , the angle between the estimated mutual 

coupling vector and the actual mutual coupling vector versus SNR is investigated. 

The formula (5.45) is used to calculate the RMSE, while the MATLAB built-in 

function “subspace” is used to find the angle qD  between the estimated and the 

actual mutual coupling vectors. 

Figure 7.6a shows the plot for the RMSE against SNR for a signal coming from 

1 20f =   and incident on a 6-dipole ULA-SASPA array with interelement spacing 

0.2d l= . The plot is obtained from 50 runs with 10 snapshots for each run. In 

Figure 7.6b, the variation of the angle qD  between the estimated and the actual 

mutual coupling versus SNR for the same scenario is shown. Figure 7.7 shows the 

variation of the same parameters, i.e., RMSE and the angle qD , against SNR for the 

same scenario used for the plots in Figure 7.6 but with the number of the array 

elements reduced to four.  

It can be clearly seen from the plots of Figures 7.6 and 7.7 that the power of the 

received signals has almost no effect on the performance of ULA-SASPA in 

estimating the unknown mutual coupling. This outcome is confirmed by the plots for 

the variation of qD  for a wide range of SNR. The plots illustrate that the angle 

between the estimated mutual coupling and the actual mutual coupling vector is very 

small. This shows these two vectors are almost linearly dependent.  
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(a) 

 

(b) 

Figure 7.6: (a) RMSE of a signal coming from 20f=   versus SNR. The 
signal is received by a six-dipole ULA-SASPA array with 0.2d l= .  
The plots are derived from 50 runs with 10 snapshots for each run. (b) 
The angle between the estimated and the actual coupling vectors versus 
SNR. 
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(a) 

 

(b) 

Figure 7.7: (a) RMSE of a signal coming from 20f=   versus SNR. The 
signal is received by a four-dipole ULA-SASPA array with 0.2d l= . 
The plots are derived from 50 runs with 10 snapshots for each run. (b) 
The angle between the estimated and the actual coupling vectors versus 
SNR. 
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7.9  Summary  

This chapter demonstrates the ability of a method proposed in this thesis to estimate 

the unknown mutual coupling vector of ULA-SASPA arrays. Determining the 

unknown mutual coupling is required when this inherent array phenomenon is time 

varying. Antenna arrays are subjected to the influence of different factors that may 

result in a previously determined mutual coupling to become out-of-date. Changing 

element behaviour, environmental changes, locating metal objects in the array’s 

vicinity are some of these factors. 

Most of the on-line mutual coupling estimation methods that have been proposed in 

the literature depend on finding, iteratively, the LS solutions to a cost function which 

involve the MCM together with other parameters. Thus, these methods are 

computationally intensive, are subjected to the problem of choosing a suitable set of 

initial values, may have issues with convergence of the iterative method, and are 

restricted by certain array conditions.  

The proposed method in this Chapter exploits the structure of ULA-SASPA arrays 

from which a new steering matrix can be obtained. By making use of this newly 

formed steering matrix, the proposed method estimates the mutual coupling vector 

from the null space of a rank deficient matrix produced from the product of the 

orthogonal projection on the noise subspace with the real-valued DOA dependent 

steering matrix of the ULA-SASPA array. It has been proved that this null space has 

a one-to-one correspondence with the actual mutual coupling vector if only one 

signal is impinging on the array. Thereafter, the estimated mutual coupling vector 

can be used in the cost function of a MUSIC algorithm for precise estimation of the 

DOAs of the received signals. 

Another key characteristic that distinguishes ULA-SASPA arrays from other antenna 

arrays, thus classifying them as an important class of antenna arrays, is the possibility 

of estimating the real-valued DOA dependent steering matrix ( )testfF . It is found 
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that ( )testfF  can be estimated from the solution of a Sylvester matrix equation when 

applied to the measurements of a ULA-SASPA array. 

The plots for the MUSIC algorithm, RMSE criterion, and the angle difference 

between the estimated and the actual mutual coupling vectors, confirm the simplicity, 

importance and effectiveness of the method explained in this Chapter. It is clearly 

shown that using the estimated mutual coupling vector in the MUSIC cost function 

can result in high resolution DOA estimation similar to the DOA resolution when 

using the actual mutual coupling vector. This conclusion is also valid for small 

aperture ULA-SASPA arrays and for closely spaced received signals. If the array 

measurements involve the effect of noise that is coupled by mutual coupling, the 

proposed method is still valid provided the power of the test signal is high enough so 

that the coupled noise among the elements can be ignored. 

Thus, the method formulated in this Chapter for determining the on-line mutual 

coupling characteristic in receiving ULA-SASPA arrays is found to be very efficient, 

easily implemented, and computationally less intensive. 
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Chapter 8Equation Chapter (Next) Section 1 

Conclusions and Future Work 

8.1  Conclusions 

This dissertation has studied the ability of a special kind of smart antenna arrays, 

called Switched Active Switched Parasitic Antenna (SASPA) arrays, to estimate the 

DOA of the received signals. In addition, the improvements due to the key 

characteristics these arrays provide over all-active antenna arrays are also explored. 

The main idea behind using such antenna array is the very fast changing between two 

states; active and parasitic, over the array elements in successive sub-snapshots 

which form a frame of one snapshot of the measurement. In each one of these sub-

snapshots, one element is made active by connecting its terminals to the load and the 

other are made parasitic by short circuiting their terminals. Thus, N different 

measurements (N is the number of elements in the SASPA array) will be obtained 

within one snapshot. The fast switching can be implemented by RF PIN diodes 

integrated in the hardware that is connected to the terminal of each element of the 

SASPA array.  

The capability and enhancement of SASPA arrays as direction finding arrays have 

been examined in conjunction with the MUSIC algorithm under different conditions 

of the data model. Also, the ability to estimate the unknown mutual coupling of a 

ULA-SASPA array is studied. The following conclusions explain briefly the results 

that are obtained when using SASPA arrays as direction finding arrays: 

1. The main subject that is studied in Chapter 2 is the mutual coupling between the 

elements of antenna arrays. This characteristic along with the element response 

determines the overall response of transmitting and receiving SASPA arrays. The 

available MCM in the literature are not useful for interpreting mutual coupling in 

receiving SASPA arrays. As a result, a new mutual coupling model called Coupled 
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Voltages to Uncoupled Currents (CVUC) has been formulated. This new model is 

derived from electromagnetic theory and represented by a Thévenin equivalent 

circuit. The CVUC model accommodates both conventional and SASPA receiving 

arrays.  

2. Chapter 3 discusses the principle of SASPA arrays and how these arrays operate 

as transmitting and receiving arrays. The switched radiation patterns produced by 

Uniform Linear Array SASPA (ULA-SASPA) arrays and Uniform Circular Array 

SASPA (UCA-SASPA) arrays indicate SASPA arrays have the flexible property of 

self-beamforming and self-steering their radiation pattern by simple successive 

changes of the state of each element in the array between active and parasitic states. 

The self-beamforming and self-steering property result from the coupled currents 

induced on each element and are accompanied inherently by a specific array factor 

produced due to the switching of one element to the active state at a given point in 

time. These beneficial properties avoid the requirement for weight vector that is 

needed in phased arrays to obtain beamforming and steering the array’s radiation 

pattern.  

Also, the mutual coupling matrix in transmitting SASPA arrays is studied so that a 

formula for the overall radiation pattern of these arrays in terms of the uncoupled 

currents of the elements is obtained. Therefore, the analysis of the performance of 

transmitting SASPA arrays provides a good insight to receiving SASPA arrays since 

these arrays obey the principle of reciprocity. However, receiving mutual coupling in 

SASPA arrays is different from transmitting SASPA arrays since the contribution of 

the active element to the overall response of SASPA arrays is different in 

transmitting and receiving modes.  

Also, the validation of the CVUC model formulated in Chapter 2 is examined in this 

Chapter. It is shown that this model matches the mutual coupling in receiving 

SASPA arrays. This model has mapped the uncoupled currents on active and 
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parasitic elements to a vector of load voltages which is specifically the zero vector 

except for the entry corresponding to the active element. This vector of resultant load 

voltages is obtained when substituting the corresponding loads of the parasitic 

elements in the CVUC model by the zero impedance. 

3. In Chapter 4, the well-known DOA algorithm; MUSIC is reviewed. This 

algorithm estimates the DOAs of signals received by all-active antenna arrays by 

exploiting the properties of the signal and noise subspaces obtained from the 

eigendecomposition of the covariance matrix of the measurements. The data model 

of the measurements at the terminals of the array elements reflects the response of 

the array to the received signals and to noise as well. The MUSIC algorithm searches 

for the orthogonality between the noise subspace and the search vector which defines 

the response of the array to all possible directions. The spectral decomposition on 

which MUSIC relies on is efficient and computationally less complex than other 

direction-finding algorithms. However, certain conditions should be considered to 

achieve unbiased, successful, and distinguishable DOAs estimation with high 

resolution when using the MUSIC algorithm. These conditions are large number of 

measurement snapshots, large array aperture, high SNR of the received signals and 

the number of array elements should be greater the number of received signals. 

Violation of one or more of these factors may result in poor resolution or 

undistiguashable DOAs. Several simulations for DOA estimation using MUSIC have 

been conducted to show the importance of the aforementioned factors.  

The CVUC model is used in this Chapter to illustrate the validity of the constraint on 

the maximum number of signals received by a receiving FASPA array. It is shown 

that when the number of active elements in an FASPA array is less than the number 

of received signals, MUSIC algorithm fails to estimate the desired DOAs despite the 

actual number of array elements (active plus parasites) is greater than the received 

signals. Also, it is found in this Chapter that using the CVUC model contributes to 

producing three subspaces; signal subspace, noise subspace, and parasitic subspace. 
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These subspaces are mutually orthogonal to each other. However, using the parasitic 

subspace in the cost function of MUSIC gives DOA spectrum that is superior to the 

spectrum obtained with the noise subspace. The reason is that the eigenvalues 

accompanied with the parasitic subspace all have “solid” zero values. Accordingly, 

the merging of a portion of the signal subspace into the parasitic subspace will not 

occur even when some of the eigenvalues of the signal subspace are small.  

4. Chapter 5 is dedicated to investigating the capability of and the enhancement 

offered by SASPA arrays in DOA estimation. In this chapter, the scenario coupled-

signals-coupled-noise is assumed for the data model of SASPA arrays. This means 

that the energy excited by the received signals and the noise are coupled among the 

array elements. The noise which is affected by mutual coupling is the background 

noise picked up by all the array elements. Processing the measurements of a 

receiving SASPA array under the coupled-signals-coupled-noise model results in the 

steering matrix being scaled by factor of N. This outcome is noteworthy since a 

directive gain to the underlying received signals will be attained. Accordingly, the 

estimated signal subspace of SASPA arrays will be accompanied with eigenvalues 

larger than the eigenvalues of the signal subspace obtained from an all-active antenna 

array.  

It is found by conducting several simulations of DOA estimation using the MUSIC 

algorithm that SASPA arrays (ULA-SASPA and UCA-SASPA) structured in small 

size apertures provide significant improvements in DOA estimation as compared 

with the analogous all-active antenna arrays. Also, the plots for the criterion RMSE 

for signals coming from different directions and received by SASPA arrays 

demonstrate the efficiency of these arrays since these plots show almost constant 

performance over a wide range of SNRs. 

5. In Chapter 6, the data model of a ULA-SASPA array is assumed to follow the 

coupled-signals-uncoupled-noise model. The main sources of noise are those made 
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by the electronic circuitry and they are not affected by mutual coupling. The 

structure of ULA-SASPA arrays under such conditions offers two advantages. 

Firstly, the power of the noise will be reduced by half. Secondly, a new steering 

matrix that is different from the steering matrix of ULA all-active arrays can be 

obtained. The new steering matrix is a product of a real-valued matrix and a matrix. 

The second matrix represents the mutual coupling but its number of columns is half 

the number of columns of the original MCM. The real-valued matrix contains the 

DOA information. The new steering matrix reduces the computational complexity of 

calculating the steering matrix and the covariance matrix of the measurements. Also, 

the estimated signal subspace will be accompanied by larger real eigenvalues, and 

the round-off error will be reduced. Generation of the real-valued steering matrix in 

ULA-SASPA array needs no transformation matrices that are used in other works in 

the literature such as the method used in [74]. As a result, ULA-SASPA arrays 

provide high resolution DOA estimation that is superior to ULA all-active antenna 

arrays.  

Several simulations conducted for estimating the DOAs of received signals using 

MUSIC in conjunction with ULA-SASPA arrays has asserted this superiority. The 

simulations show clearly that spatially close signals have been distinguishably 

detected when incident on small aperture ULA-SASPA arrays. The effectiveness of 

ULA-SASPA arrays is also noticed when the RMSE criterion is used to study the 

performance of MUSIC for received signals that are emanated from different 

directions. 

6. It can be concluded from the work of Chapter 7 that ULA-SASPA array can be 

used effectively for estimating the unknown mutual coupling before estimating the 

DOAs of signals impinging on this array. A test signal incident on the underlying 

ULA-SASPA array is first used to estimate the vector of the mutual coupling. The 

null space of a rank deficient matrix determines the fitted vector to the actual mutual 

coupling vector. The rank deficient matrix is produced from the product of the 
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orthogonal projection on the noise subspace of the covariance matrix of the 

measurement of the test signal by the real-valued DOA dependent steering matrix of 

the test signal.  

The proposed method is clearly very simple and require small amount of 

computations compared with other methods proposed in the literature which most of 

them depend on iterative LS solutions such as the methods used in [24] and [81]. 

Simulations for DOA estimation using MUSIC show that the fitted vector greatly 

matches the actual mutual coupling vector since the MUSIC spectrums obtained in 

conjunction with these two vectors are very similar. Also, the plots for RMSE for the 

received signal versus SNR show that the performance of a ULA-SASPA array as an 

estimator for mutual coupling and DOA is almost SNR independent. The plots for 

the angle difference between the estimated and actual mutual coupling vectors show 

obvious linear dependency between them. 

Finally, the following is a list of the advantages provided by SASPA arrays in brief: 

1. Capability of DOA estimation with very high resolution as compared with all-

active antenna arrays.   

2. Estimation of the unknown mutual coupling of the array.  

3. Self-beamforming and self-steering of the overall radiation pattern of the array. 

4. Providing parasitic subspace that is orthogonal to the signal subspace and having 

eigenvalues with zero value. 

5. Reduction in the computation complexity for calculating the steering matrix and 

the covariance matrix. 

6. Operation at low SNR and with short data measurements. 

7. Possible physically fitting into compact devices. 
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8.2  Suggested Future Work  

To the best of the author’s knowledge, the subject of using SASPA arrays in high 

resolution DOA estimation and the enhancement that these arrays provide was rarely 

investigated in the literature. Thus, many and different future work can be conducted 

on this type of antenna arrays through considering several parameters which may 

give further attention to SASPA arrays since these arrays are beneficial when 

mounted in a user’s compact sets. 

1. The consecutive switching of each element to the active state in SASPA arrays 

results in steering matrices associated with the array’s key characteristics. These 

characteristics allocate advantages to SASPA array as receiving antenna arrays 

when used in the field of DOA estimation. The case of switching one element to 

the active state within one sub-snapshot period and leaving the other elements in 

the parasitic state has been dealt with in this work. It will be useful to study the 

advantages and improvements of these arrays when several elements are enabled 

to be active during one sub-snapshot. The mutual coupling model for such a 

scenario is required to be updated over the mutual coupling model of the SASPA 

arrays formed in this work. In addition, the structure of the steering matrix for 

both conditions; known and unknown mutual coupling can also be investigated. 

2. The DOA dependent matrix in (6.64), ( )fΓ , can be estimated from the equation 

(7.5) which represents the homogenous Sylvester equation - =AX BX 0 . It is 

useful to estimate the matrix ( )fU DP  from the array’s measurement of the 

received signals.  Thus, estimation of ( )fΓ  may lead to estimating the DOAs 

directly with accurate values without using the MUSIC cost function or other 

DOA algorithms. Hence, new algorithms based on ULA-SASPA arrays may be 

formulated. 

3. In Chapter 6, the number of the elements in a ULA-SASPA array is assumed to 

be even. The new measurements ( )1 tz  and ( )2 tz  can be obtained either from 



172 
 

adding the first 2 1N +  measurements to the remaining flipped upside-down 

2 1N +  measurements and subtracting the last flipped upside-down 2N

measurements from the first 2N  measurement or vice versa. A further analysis 

for these new measurements can be studied to investigate the advantages that 

might be obtained when using ULA-SASPA arrays with odd N. 

4. In this work, the received signals are assumed to be uncorrelated. It is 

advantageous to study the performance of SASPA arrays when receiving 

correlated signals. Under such a case, the signal covariance matrix =S  

( ) ( ){ }Ht ts s  will no-longer be diagonal. This could be investigated for both 

the data models assumed in Chapters 5 and 6.  

5. To work on UCA-SASPA arrays with unknown mutual coupling and to follow 

the same procedure of obtaining the steering matrix as was carried out in Chapter 

7. It is well known that UCA arrays are more beneficial than ULA because of 

their symmetrical and unambiguous characteristics. Therefore, processing the 

measurements of UCA-SASPA array with unknown mutual coupling could lead 

to a new data model and in turn to estimated subspaces from which DOA and 

coupling matrix determination can be achieved more accurately. 
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Appendix A – Figure 3.3 

To show how exchanging the state of the elements in Figure 3.3 between active and 

parasitic states results in (3.3), the following diagrams illustrate the idea. To start 

with, the geometry of the antenna array corresponding to (3.2) is as follows: 

    active element 

    parasitic element 

 

                                                                                      y  

 

                                                                         

                                                                                                     

             x 

 

Figure A1 

The expression for the total H-plane electric field in Figure A1 is given by (3.2) and 

is rewritten below for ready reference [15]: 

( ) ( )[ ] cos
1 , , 1

Tjkd
tot P CE r i i e fq f a q -é ù= ê úë û  (3.2) 

When the active and parasitic states are swapped between the two elements in Figure 

A1, the geometry of the antenna array becomes as shown in Figure A2. 

The new expression for the total H-plane electric field as a result of the antenna array 

shown in Figure A2 is: 

( ) ( )[ ] cos
2 , , 1

Tjkd
tot C PE r i i e fq f a q -é ù= ê úë û  (3.3) 
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                                                                                            y 

 

    

 

                                                                                               x 

 

Figure A2 

Figure A2 can be updated by shifting the y-axis to the left so that the active element 

is positioned at the origin. This can be implemented if (3.3) is multiplied by the 

factor cosjkde f+ . Thus, Figure A2 becomes:as shown in Figure A3. 

         y 

 

 

     x 

 

Figure A3 

The resultant total electric field can now be expressed as: 

( ) ( )[ ]

( )[ ]

cos cos
2

cos

, , 1

1

Tjkd jkd
tot C P

Tjkd
C P

E r i i e e

i i e

f f

f

q f a q

a q

+ -

+

é ù= ê úë û

é ù= ê úë û

 (A1) 

But 

( ) ( )cos coscos jkd jkdjkde e ef f pf - - - ++ = =  (A2) 

Therefore,  
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( ) ( )[ ] ( )

( )[ ] ( )

cos
2

cos

, , 1

1

Tjkd
tot C P

Tjkd
P C

E r i i e

i i e

f p

f p

q f a q

a q

- +

- +

é ù= ê úë û

é ù= ê úë û

 (A3) 

which when compared with (3.2), it can be seen that the radiation pattern will be the 

same as the one produced by (3.2) except it is rotated around the y-axis by 180. 

 

Equation Chapter (Next) Section 1  



176 
 

References 

[1] IEEE Trans. Antennas and Propagation, Special Issue on Adaptive Antennas, 
vol. 24, no. 5, September 1976. 

[2] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, Wiley, 
1980. 

[3] S. Haykin (ed.), J. H. Justice, N. L. Owsley, J. L. Yen and A. C. Kak, Array 
Signal Processing, Prentice-Hall, 1985. 

[4] IEEE Trans. Antennas and Propagation, Special Issue on Adaptive Processing 
Antenna Systems, vol. 34, no. 3, March 1986. 

[5] B. D. Van Veen and K. M. Buckley, "Beamforming: A Versatile Approach to 
Spatial Filtering," IEEE ASSP Magazine, vol. 5, no. 2, pp. 4-24, April 1988. 

[6] S. U. Pillai, Array Signal Processing, Springer-Verlag, 1989. 

[7] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and 
Techniques, Prentice-Hall, 1993. 

[8] H. Krim and M. Viberg, “Two Decades of Array Signal Processing Approach, 
The Parametric Approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, 
pp. 67- 94, July 1996. 

[9] H. L. Van Trees, Optimum Array Processing, Wiley, 2002. 

[10] J. Benesty, J. Chen and Y. Huang, Microphone Array Signal Processing, 
Springer-Verlag, 2008. 

[11] P. S. Naidu, Sensor Array Signal Processing, 2nd ed., CRC Press, 2009. 

[12] B. Völcker, M. Bengtsson and B. Ottersten, “Spatially Spread Sources in 
Antenna Array Processing,” in S. Chandran (ed.), Adaptive Antenna Arrays: 
Trends and Applications, Springer-Verlag, 2004. 

[13] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter estimation,” 
IEEE Trans. Antennas and Propagation, vol. 34, no. 3, pp. 276-280, March 
1986. 

[14] R. Roy and T. Kailath, “ESPRIT – Estimation of Signal Parameters Via 
Rotational Invariance Techniques,” IEEE Trans. Acoustics, Speech, and Signal 
Processing, vol. 37, no. 7, pp. 984-995, July 1989. 

[15] D. V. Thiel and S. Smith, Switched Parasitic Antennas for Cellular 
Communications, Artech House, 2002. 

[16]  T. Svantesson and M. Wennstrom, “High-resolution direction finding using a 
switched parasitic antenna,” in Proc. 11th IEEE Signal Processing Workshop 
on Statistical Signal Processing, Singapore, August 2001, pp. 508–511. 

[17] T. Svantesson, Antennas and Propagation from a Signal Processing 
Perspective, PhD Thesis, Chalmers University of Technology, Sweden, 2001. 

[18]  C. A. Balanis, Antenna theory: Analysis and design, 4th ed., John Wiley & 
Sons, 2016. 



177 
 

[19]  S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University. 
Available at  www.ece.rutgers.edu/~orfanidi/ewa. 

[20]  J. D. Kraus, Antennas. McGraw Hill. New York. 1988. 

[21]  E. C. Jordan and K. G. Balmain, Electromagnetic waves and radiating systems. 
2nd ed. Prentice Hall, New Jersey, 1968.  

[22]  K. Kishore, Antenna and wave propagation. I.K. International Publishing 
House. Pvt. Ltd, New Delhi, 2009. 

[23]  H. Singh, H. L. Sneha, and R. M. Jha, “Mutual coupling in phased arrays: A 
Review”, International Journal of Antennas and Propagation, vol. 2013, 
Article ID 348123, 23 pages. 

[24]  T. Svantesson, Direction Finding in the Presence of Mutual Coupling. Thesis 
for the degree of Licentiate of Engineering. Department of Signals and 
Systems. School of Electrical and Computer Engineering. Chalmers University 
of Technology. Sweden 1991. 

[25]  P. Kildal, “Equivalent Circuits of Receive Antennas in Signal Processing 
Arrays”, Microwave and Optical Technology Letters, vol. 21, no. 4, pp. 244-
246, May 1999. 

[26]  A. W. Love, “Comments on “Limitations of the Thévenin and Norton 
Equivalent Circuits for a Receiving Antenna”, IEEE Antennas and 
Propagation Magazine, vol. 45, no. 4, August 2003. 

[27]  D. Pozar, “Scattered and Absorbed Powers in Receiving Antennas”, IEEE 
Antennas and Propagation Magazine, vol. 46, no. 1, February 2004. 

[28]  S. R. Best and B. C. Kaanta, “A Tutorial on the Receiving and Scattering 
Properties of Antennas”, IEEE Antennas and Propagation Magazine, vol. 51, 
no. 5, October 2009. 

[29]  P. Papakanellos, “Study of Scattering and Receiving Dipole Antennas on the 
Basis of the Method of Auxiliary Sources”, Electromagnetics, vol. 23, no. 6, 
pp. 525-537, January 2003. doi: 10.1080/02726340390222053 

[30]  R. P. Meys, “A Summary of the Transmitting and Receiving Properties of 
Antennas”, IEEE Antennas and Propagation Magazine, vol. 42, no. 3, June 
2000. 

[31]  J. V. Bladel, “On the Equivalent Circuit of a Receiving Antenna”, IEEE 
Antennas and Propagation Magazine, vol. 44, no. 1, February 2002. 

[32]  R. E. Collin, “Limitations of the Thévenin and Norton Equivalent Circuits for a 
Receiving Antenna”, IEEE Antennas and Propagation Magazine, vol. 45, no. 
2, April 2003. 

[33]  A. W. Love, “Comment: On the Equivalent Circuits of a Receiving Antenna”, 
IEEE Antennas and Propagation Magazine, vol. 44, no. 5, October 2002. 

[34]  J. L. Allen and B. L. Diamond, “Mutual Coupling in Antenna arrays”, 
Technical Report, Lincoln Laboratories, Massachusetts Institute of 
Technology, 1966. 

[35]  C. Craeye and D. González‐Ovejero, “A review on array mutual coupling 
analysis”, Radio Sci., vol. 46, no.2, April 2011.  doi: 10.1029/2010RS004518. 



178 
 

[36]  T. Su and H. Ling, “On modelling mutual coupling in antenna arrays using the 
coupling matrix”, Microwave and Optical Technology Letters, vol. 28, no. 4, 
pp. 231-237, 2001. 

[37]  I. J. Gupta and A. A. Ksienski, “Effect of Mutual Coupling on the Performance 
of Adaptive Arrays”, IEEE Transactions on Antennas and Propagation, vol. 
AP-31, no.5, September 1983. 

[38]  E. BouDaher et al., “DOA Estimation with Co-Prime Arrays in the Presence of 
Mutual Coupling”, 23rd European Signal Processing Conference (EUSIPCO), 
pp. 2880-2884, 2015. 

[39]  Z. Liu, et al., “DOA estimation with uniform linear arrays in the presence of 
mutual coupling via blind calibration”, Signal Processing 89, pp. 1446-1456, 
July 2009. doi: 10.1016/j.sigpro.2009.01.017 

[40]  H. E. King, “Mutual Impedance of Unequal Length Antennas in Echelon”, IRE 
Transactions on Antennas and Propagation, vol. AP-5, pp. 306-313, 1957.   

[41]  H. Yamada, Y. Ogawa, and Y. Yamagucji, “Mutual Coupling Compensation in 
Array Antenna for High-Resolution DOA Estimation”, Proceedings of 
ISAP2005, Korea, 2005. 

[42]  T. Sato and R. Kohno, “New Calibration Matric Calculation Method for 
Removing the Effect of Mutual Coupling for Uniform Linear Arrays”, IEEE 
63rd Vehicular Technology Conference, vol. 6, pp. 2686-2690, 2006. 

[43]  H. T. Hui, “A New Definition of Mutual Impedance for Application in Dipole 
Receiving Antenna Arrays”, IEEE Antennas and Wireless Propagation Letters, 
vol. 3, pp. 364-367, 2004.   

[44]  H. T. Hui and S. Lu, “Receiving Mutual Impedance between Two Parallel 
Dipole Antennas”, IEEE Region 10 Conference, pp. 1-4, 2006. 

[45]  H. Lui, H. T. Hui, and M. S. Leong “A note on the Mutual-Coupling Problems 
in Transmitting and Receiving Antenna Arrays”, IEEE Antennas and 
Propagation Magazine, vol. 51, no. 5, pp. 171-176, 2009.   

[46]  Y. Yu and H. T. Hui, “Design of Mutual Compensation Network for a Small 
Receiving Monopole Array”, IEEE Transactions on Microwave Theory and 
Techniques, vol. 59, no. 9, pp. 2241-2245, 2011 

[47]  H. S. Lui and H. T. Hui, “Mutual Coupling Compensation for Direction-of-
Arrival Estimations Using the Receiving-Mutual-Impedance Method”, 
International Journal of Antennas and Propagation, vol. 2010, Article ID 
373061, 7 pages, 2010.  

[48]  S. Henault and Y. M. M. Antar, “Comparison of Various Mutual Coupling 
Compensation Methods in Receiving Antenna Arrays”, IEEE Antennas and 
Propagation Society International Symposium, pp. 1-4, June 2009.  

[49]  N. Parhizgar et al., “A Modified Decoupling Scheme for Receiving Antenna 
Arrays with Application to DOA Estimation”, International Journal of RF and 
Computer-Aided Engineering, vol. 23, no. 2, pp. 246-259, 2013. 

[50]  C. Yeh, M. Leou, and D. R. Ucci, “Bearing Estimation with Mutual Coupling 
Present”, IEEE Transactions on Antennas and Propagation, vol. 37, no. 10, 
October 1989. 



179 
 

[51]  R. G. Vaughan and J. B. Andersen, “Antenna Diversity in Mobile 
Communications”, IEEE Transactions on Vehicular Technology, vol. VT-36, 
no. 10, November 1987. 

[52]  C. W. Harrison, “Calculation of the Impedance Properties of Parasitic Antenna 
Arrays Involving Elements of Finite Radius”, Wiley Online Library, May 2009. 
doi:10.1111/j.1559-3584. 1945.tb01663.x 

[53]  R. W. P. King, G. J. Fikioris, and R. B. Mack, Cylindrical Antenna and Arrays, 
Cambridge University Press 2002. 

[54]  T. A. Milligan, Modern Antenna Design, 2nd ed., A John Wiley & Sons, INC., 
Publications, 2005. 

[55]  Yagi-Uda Antenna, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Yagi%E2%80%93Uda_antenna 

[56]  R. G. Vaughan, “Switched Parasitic Elements for Antenna Diversity” IEEE 
Transactions on Antennas and Propagation, vol. 47, no. 2, pp. 399-405, 
February 1999.   

[57]  N. L. Scott, M. O. Leonard-Taylor and R. G. Vaughan, “Diversity Gain from a 
Single-Port Adaptive Antenna Using Switched Parasitic Elements Illustrated 
with a Wire and Monopole Prototype”, IEEE Transactions on Antennas and 
Propagation, vol. 47, no. 6, pp. 1066-1070, June 1999.   

[58]  A. A. Almhdie, V. Kezys, and T. D. Todd, “Improved Capacity TDMA/SDMA 
using Switched Parasitic Antennas”, IEEE international symposium on 
personal, indoor and mobile communications, vol. 1, pp. 363-367, London, 
September 2000. 

[59]  Microsemi-Watertown, THE PIN DIODE CIRCUIT DESIGNERS’ 
HANDBOOK, Microsemi Corporation, 1998. 

[60]  PIN diode, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/PIN_diode 

[61]  Iulian Rosu, YO3DAC/VA3IUL, RF Switches, 
https://www.qsl.net/va3iul/RF_Switches/RF_Switches.pdf 

[62]  P. K. Varlamos and C. N. Capsalis, “Direction-of-Arrival Estimation (DOA) 
Using Switched Parasitic Planar Arrays and the Method of Genetic 
Algorithms”, Wireless Personal Communications, vol. 28(1), pp. 59-75, 2004. 

[63]  S. Chandran (ed.), Advances in Direction-of-Arrival Estimation, ARTECH 
HOUSE, INC. 2006. 

[64]  J. Foutz, A. Spanias, and M. K. Banavar, Narrowband Direction of Arrival 
Estimation for Antenna Arrays, Morgan & Claypool Publishers 2008. 

[65]  Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-Arrival 
Estimation, Artech house, 2010. 

[66]  R. O. Schmidt, A signal subspace approach to multiple emitter location and 
spectral estimation, Ph.D. dissertation, Stanford University, Palo Alto, CA, 
1982. 



180 
 

[67]  B. D. Carlson, “Covariance Matrix Estimation Errors and Diagonal Loading in 
Adaptive Arrays”, IEEE Transactions on Aerospace and Electronics Systems, 
vol 24. no. 4 July 1988. 

[68]  P. Stocia and A. Nehorai, “MUSIC, Maximum Likelihood, and Cramer-Rao 
Bound”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 
37, no. 5, pp. 720-741, May1989.  

[69]  M. S. Vijay and U. L. Bombale, “An Overview of Smart Antenna and a Survey 
on Direction of Arrival Estimation Algorithms for Smart Antenna”, IOSR 
Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 
2278-2834 ISBN: 2278-8735 pp. 01-06.  

[70]  G. H. Golub and C. F. Van Loan, Matrix Computation, 4th ed., The Johns 
Hopkins University Press, 2013. 

[71]  R. H. Roy. ESPRIT: Estimation of signal parameters via rotational invariance 
techniques, Ph.D. dissertation, Stanford University, 1987.  

[72]  Toeplitz matrix, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Toeplitz_matrix 

[73]  Circulant matrix, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Circulant_matrix 

[74]  M. Haardt, Efficient One-, Two-, and Multidimensional High-Resolution Array 
Signal Processing, Shaker Verlag, Aachen 1997. 

[75]  H. Lee, and M. Wengrovitz, “Resolution threshold of beam space MUSIC for 
two closely spaced emitters”, IEEE Transactions on Acoustics, Speech, and 
Signal Processing, vol. 38, no. 9, pp. 1545-1559, September 1990.  

[76]  Moore-Penrose pseudoinverse, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse 

[77]  M. Shaghaghi and S. A. Vorobyov, “Subspace Leakage Analysis and Improved 
DOA Estimation With Small Sample Size”, IEEE Transactions on Signal 
Processing, vol. 63, no. 12, June 2015. 

[78]  M. L. McCloud and L. L. Scharf, “A New Subspace Identification Algorithm 
for High-Resolution DOA Estimation”, IEEE Transactions on Antennas and 
Propagation, vol. 50, no. 10, pp. 1382-1390, October 2002. 

[79]  Singular Value Decomposition, From Wikipedia, the free encyclopedia 
https://en.wikipedia.org/wiki/Singular_value_decomposition 

[80]  B. R. Jackson et al., “Direction of Arrival Estimation using Directive Antennas 
in Uniform Circular Arrays”, IEEE Transactions on Antennas and 
Propagation, vol. 63, no. 2, pp. 736-747, February 2015. 

[81]  B. Friedlander and A. J. Weiss, “Direction Finding in the Presence of Mutual 
Coupling”, IEEE Transactions on Antennas and Propagation, vol. 39, no. 3, 
pp. 273-284, March 1991. 

[82]  Normal Distribution, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Normal_distribution 

[83]  Hadamard products (matrices), From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Hadamard_product_(matrices) 



181 
 

[84]  W.-H. Steeb and Y. Hardy, Matrix calculus and Kronecker product: a 
practical approach to linear and multilinear algebra, 2nd ed., World Scientific 
Publishing Co. Pte Ltd, Singapore, 2011. 

[85]  K.-C. Huarng and C.-C. Yeh, “A Unitary Transformation Method for Angle-
of-Arrival Estimation”, IEEE Transactions on Signal Processing, vol. 39, no. 
4, April 1991. 

[86]  J. Dai, W. Xu, and D. Zhao, “Real-Valued DOA estimation for uniform linear 
array with unknown mutual coupling”, Signal Processing 92, pp 2056-2065, 
2012. doi: 10.1016/j.sigpro.2012.01.017 

[87]  Z. Ye, J. Dai, X. Xu and X. Wu, “DOA Estimation for Uniform Linear Array 
with Mutual Coupling”, IEEE Transactions on Aerospace and Electronic 
Systems, Vol. 45, No.1 January 2009. 

[88]  I. Selesnik, “Least Squares with Examples in Signal Processing”, NYU-Poly, 
March 2013. https://www.semanticscholar.org/paper/Least-Squares-with-
Examples-in-Signal-Processing-1-
Selesnick/7164db0fa52a1a7e1be91586dd02695394c34925 

[89]  Band matrix, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Band_matrix 

[90]  Q. Bao and W. Zhi, “DOA Estimation under Unknown Mutual Coupling and 
Multipath”, IEEE Transactions on Aerospace and Electronic Systems, vol. 41, 
no. 2, April 2005 

[91]  Projection (Linear Algebra), From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Projection_(linear_algebra) 

[92]  R. T. Behrens and L. L. Scharf, “Signal Processing Applications of Oblique 
Projection Operators”, IEEE Transactions on Signal Processing, vol. 42, no. 6, 
June 1994. 

[93]  R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge 
University Press, New York, USA. 

[94]  W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and 
C++ programs, World Scientific Publishing Co. Pte. Ltd., 1997. 

[95]  A. J. Laub, Matrix Analysis for Scientists & Engineers, Siam, 2005. 

[96]  S. K. Godunov, Modern Aspects of Linear Algebra, Translations of 
Mathematical Monographs, Vol. 175, American Mathematical Society, 1998. 

[97]  A. Graham, Kronecker Products and Matrix Calculus: with Applications, Ellis 
Horwood Ltd., 1981.  

[98]  X. Zhang, Matrix Analysis and Applications, Cambridge University Press, 
2017. 

[99]  S. N. Afriat, “Orthogonal and Oblique Projections and the Characteristics of 
Pairs of Vector Spaces”, Mathematical Proceedings of the Cambridge 
Philosophical Society, vol. 53(4), pp. 800-816, 1957 

[100] C. A. Balanis, Advanced Engineeriing Electromagnetics, 2nd ed., John Wiley 
& Sons, Inc., 2012. 



182 
 

[101] P. Stoica and A. Nehorai, “Comparative performance study of element-space 
and beam-space MUSIC estimators”, Circuits, Systems and Signal Processing, 
vol. 10, no. 3, pp. 285-292, September 1991.  

[102] Rank (linear algebra), From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Rank_(linear_algebra) 

[103] Rank-nullity theorem, From Wikipedia, the free encyclopedia, 
https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem 

 


