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Considered as the father of coordination chemistry, the Alsatian chemist, Alfred Werner, 

had an enormous influence upon much of twentieth century chemistry [1]. This is 

reflected in the words of another Alsatian chemist, and Nobel laureate, Jean-Marie Lehn, 

in describing supramolecular chemistry as "generalised coordination chemistry" [2]. 

Werner, working at the University of Zurich, conducted a remarkable variety of syntheses 

of cobalt(III) compounds in particular but did not live to see his rationalisations of their 

nature justified by another great scientific advance of the twentieth century, X-ray 

crystallography [3]. Somewhat paradoxically, this advance has also revealed that Werner 

was fortunate in that the usual complexed form on Co(III) of a ligand he used 

extensively, 1,2-ethanediamine, "ethylenediamine" = "en", was that of a chelate. The 

characterisation of unidentate and bridging forms of coordinated ethylenediamine, 

however, is quite recent [4,5] and the development of syntheses specifically designed to 

produce "hypodentate" ligand [6] complexes of Co(III) with polyamines more recent still 

[7]. 

 One of the best known syntheses of a coordination compound is that of 

[Co(en)3]Cl3•3H2O. The procedure first reported by Werner is one for which a yield of 95 

% is conventionally quoted [8]. Such a figure would be regarded as excellent, and it is of 

practical significance, but, as is usual with such information, it is not accompanied by any 

explanation of why the yield is not 100 %. In general, any deficiency from 100 % may be 

due to incomplete reaction, the diversion of some material along another reaction 
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pathway, inefficiency in the actual isolation, an error in the assumed stoichiometry or 

some combination of all these factors. Having occasion to conduct the synthesis of 

[Co(en)3]Cl3•3H2O  on the scale of 10 kg, a natural frugality suggested to us that the 

amount of material represented by (100 - 95)% of 10 kg would be worthy of isolation and 

characterisation.  A laborious separation using cation exchange chromatography was 

therefore conducted on the acidified reaction mixture obtained from the standard 

synthesis of [Co(en)3]Cl3•3H2O after removal of the bulk of this material in close to the 

expected quantity. This proved to be extremely complicated, in part because its conduct 

in batches caused it to become apparent that slow reactions were still occurring in 

solution, as well as because the amounts of the numerous species present spanned a wide 

concentration range. In the end, not all species present could be isolated and characterised 

but the nature of some of those that could provides an interesting tale in cobalt chemistry. 

 The relatively high (water) solubility of [Co(en)3]Cl3•3H2O makes it unsurprising 

that it remained a significant component of the "wastes". Given that its formation 

commences with the addition of ethylenediamine to Co(II), a labile aqua-ion [9], an 

equilibrium distribution at this point over many possible species but including mono-, 

bis- and tris-chelate species would be anticipated. It is therefore also unsurprising that 

"Wernerian" bis(ethylenediamine)Co(III) species in sum  proved to be a major 

component (as was indeed recognised by Werner himself [8]), and this explains at least 

part of the complexity of the attempted chromatographic separations, since relatively 

slow reactions interconvert the various forms shown below [10]. 

trans-[Co(en)2(OH2)2]
3+

trans-[Co(en)2(OH2)Cl]
2+

trans-[Co(en)2Cl2]
+

cis-[Co(en)2(OH2)Cl]
2+

cis-[Co(en)2Cl2]
+

cis-[Co(en)2(OH2)2]
3+

 
 

 Whether mono-(ethylenediamine)Co(III) species were present initially is 

impossible to say, as their reduction to Co(II) would be expected under the conditions of 

the final acidified reaction mixture [11]. Both "free" Co(II) and ethylenediamine 

(protonated) were isolated during the chromatography but they could also have arisen 
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because of incomplete oxidation or, for one or the other, because of inexactitude in the 

composition of the original mixture. Further, it is known that the peroxo-bridged dimers 

presumed to be intermediates in most oxidations of Co(II) to Co(III) using air (or O2) can 

undergo acid-catalysed decomposition to return to Co(II) and protonated ligand [12], so 

this reaction is another possible source of these two species in the wastes, presumably 

though as a minor pathway for any such peroxo dimers alongside the loss of H2O2 and the 

formation of Co(III) monomers. 

 The presence of "one-ended en" complexes as side products in the formation of 

Co(III)-ethylendiamine chelates has been known for some time, though the structural 

characterisation of  [Co(en)2(H2NCH2CH2NH3)Cl]Cl[ZnCl4], A, is quite recent [4]. This 

complex proved to be present in ~2 % yield in our syntheses, its crystal structure (Fig. 

1a), redetermined here at 'low' temperature (ca 150 K), being in complete accord with the 

earlier determination. The complex also is isomorphous with its Cr(III)/Hg(II) analogue 

[13] and was refined in a similar setting, the two systems being similar in that the range 

of M-N distances (M-N 1.968(6) (Co), 2.079(10) Å (Cr)) is narrow, with no indication of 

any significant trans effects, though the difference in M-N distances (0.11 Å) is 

considerably greater than that in M-Cl distances (2.302(3) - 2.2621(9) ~0.040 Å), 

presumably reflecting differences in the Lewis acidity of Co(III) and Cr(III). There are 

significant differences between unidentate and chelate en in A, the Co-N-C bond angle 

for the unidentate ligand being 120.5(2) ˚, appreciably greater than the near-tetrahedral 

values of the other N-donor sites, and in the conformationally trans enH+ ligand, the 

central C-C bond (1.536(4) Å) is longer than those of the chelate ligands (1.503(5), 

1.502(5) Å), while the two C-N bonds (N(31)-C(32) 1.476(4), C(33)-N(34) 1.483(4) Å) 

do not differ significantly in length from one another and are similar to those of the 

chelate ligands (1.483(4) - 1.495(4) Å).  We did not detect the en-bridged complex 

[(en)2CoCl(H2NCH2CH2NH2Co(en)2Cl)]4+, B, (Fig. 1b) though this is known to be a side 

product in the synthesis of trans[Co(en)2Cl2]+ using H2O2 as an oxidant [4]. It is possible 

that the presence of [Co(en)2(H2NCH2CH2NH3)Cl]3+ results from the oxidation of the 

corresponding Co(II) species (perhaps with an aqua ligand in place of Cl), though it is 

tempting to attribute its presence to the expected intermediacy of a peroxo-bridged dimer 

[12] which, given that the maximum coordination number known for Co(III) is 6, could 
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not contain three bidentate ethylenediamine ligands. This consideration leads to a 

dilemma in that, if it is assumed that all oxidation passes via a peroxo-dimer where each 

Co has two chelate and one "one-ended" ethylenediamine ligands attached, and 

subsequently via [Co(en)2(H2NCH2CH2NH3)Cl]3+, the fact that the latter undergoes slow 

ring closure [14] makes the efficiency of [Co(en)3]3+ formation difficult to explain. It is 

well-known, however, that analogues of [Co(en)3]2+ involving cage amine ligands 

undergo rapid outer-sphere oxidation by O2 [15], so that the results of the Werner 

preparation are perhaps indicative of the operation of at least two oxidation mechanisms. 

 A complex found to be present at approximately one-third of the level of 

[Co(en)2(H2NCH2CH2NH3)Cl]3+ was the well-known [16] species [Co(en)2(NH3)Cl]2+, C, 

presently structurally characterised as the dithionate (Fig. 2a), though structures are also 

known for both the (+)589-3-bromocamphor-9-sulfonate [17] and the chloride [18]. 

(Conformational differences between these species are discussed below.) Perhaps 

significantly, a third complex present in similar amounts to [Co(en)2(NH3)Cl]2+ was 

[Co(en)(H2NCH2CH2N=CHCH2NH2)Cl]2+, D, (Fig. 2b) a known species [19] in which 

the tridentate diamine-imine ligand present may derive from intramolecular reaction of  

[Co(en)2(H2NCH2CH2NH3)Cl]3+ after the uncoordinated amino group has been oxidised 

to an imine and then hydrolysed to ammonia and the corresponding aldehyde. The 

released ammonia obviously could be the source of that in [Co(en)2(NH3)Cl]2+, the 

presence  of this complex otherwise being difficult to explain, since free ammonia is not 

expected to be present in ethylenediamine. 

 A yellow species (thus presumably one with a CoN6 chromophore) present in 

similar amounts to [Co(en)2(NH3)Cl]2+ proved difficult to purify chromatographically 

until 1H nuclear magnetic resonance spectroscopy was used to establish the presence of 

an NHCH3 entity at which slow (base-catalysed) inversion could occur [20], resulting in 

the slow interconversion of two isomers unless the chromatographic eluants were 

strongly acidic (e.g. 3 mol L-1 HCl). Crystallisation, as their [Co(CN)6]3- derivatives, of 

the two complexes ultimately separated showed them to be diastereomers of [Co(en)2(N-

CH3en)]3+ (Fig. 3), E, F, only one of these (F) having been previously characterised by a 

structure determination [21]. While it is possible to write highly speculative mechanisms 

for the generation of such species from en, the real point of interest here is that the 
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isomeric structures reveal an aspect of the complex ion stereochemistry not generally 

amenable to study at the time of Werner, though it is now well-recognised that each of 

the enantiomers of [Co(en)3]3+, which Werner could separate, actually consists of a 

mixture of rapidly converting conformers, usually designated as lel3, lel2ob, lelob2 and ob3 

in reference to whether the C-C bond of the separate en units is oriented parallel ("lel") or 

obverse ("ob") to the C3 axis of the averaged complex ion form [22]. More precisely, 

using using upper- and lower-case Greek symbols to denote the helicities about the metal 

and of the ring conformations [23], the designation lel3 is equivalent to Δ(λλλ);Λ(δδδ), 

lel2ob equivalent to Δ(λλδ);Λ(δδλ), etc. In the case of N-methyl-en complexes, the 

assumption that the N-methyl group would prefer an equatorial orientation on and so 

"lock" the ring formed by chelation, leads to the conclusion that two diastereomeric 

forms should exist, depending on whether the ring is λ or δ and the N-methyl centre of R 

or S configuration on a Co centre of one particular chirality (Fig. 4).  This is as observed 

for the two isomers shown in Fig. 3, though of course these structures establish only the 

situation in the solid state and do not necessarily mean that in solution there cannot be an 

interconversion, not requiring inversion at N, with forms involving axial methyl 

substituents. In addition, the inversion of the N-methyl-en ring in passing from one 

diastereomer to the other is associated with inversion of one of the en rings, so that it 

happens that both these complexes can be described as lel2ob species. This is possibly in 

part a consequence of different hydrogen-bonding arrays in the two species, one of which 

is anhydrous while the other is a dihydrate. For simple en chelate rings, the energy 

difference between lel and ob orientations is expected to be small [22],  and in the Cr(III) 

analogue of A, for example, crystallised as its chloride-tetrachloromercurate(II) rather 

than, as for the Co compound, as its chloride-tetrachlorozincate(II), the two rings have 

the same conformations, rather than the opposite as in A [13]. This sort of observation of 

subtle features of the complex ion stereochemistry is not uncommon [24] and a further 

example is the fact that in the present structure determination for C as its dithionate, a lel2 

species was found, whereas in the (+)589-3-bromocamphor-9-sulfonate the species is a 

disordered mixture of ob2 and lelob , and in the chloride lelob. As well, the en-bridged 

species B crystallises in space group P212121, meaning that the individual crystals are 

resolved, and the dimers within them have Co(III) centres all of the same absolute 
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configuration in the(lel2)(lel2) form, i.e., Δ(λλ);Δ(λλ) or Λ(δδ);Λ(δδ). All the present 

structures are of sufficient quality to define the complicated hydrogen-bonding networks 

present in all and which must play a role in influencing the solubility of the various 

species. (The reason for crystallising E and F as hexacyanocobaltates was that they were 

exceedingly difficult to precipitate from aqueous media in any other form.) 

 Had Werner been confronted with [Co(en)2(H2NCH2CH2NH3)Cl]3+ as the principal 

product of his [Co(en)3]3+ synthesis, his rationalisation of the chemistry of Co(III)/en 

complexes might have been less convincing, though no doubt his understanding of the 

overall chemistry of Co(III) complexes would have allowed him to encompass this result. 

It is nonetheless worthy of note that a century of study following his work may not yet 

have revealed the full details of the reactions he so intelligently exploited.  A similar 

remark may apply to one of the classical experiments in Pt(II) stereochemistry, the 

resolution of [Pt(H2NCH2C(CH3)2NH2)(H2NCH(C6H5)CH(C6H5)NH2)]2+ [25]. Were it to 

have been assumed that conversion between chiral forms of the chelate rings could be 

slow, the result may have been much more difficult to interpret.  In an era of catchcries 

such as "atom economy", "green chemistry" and "molecular engineering", it is a salutary 

lesson that an apparently efficient synthesis, such as that of [Co(en)3]Cl3•3H2O may be a 

disguise for a remarkable range of different events. Clearly, no simple answer can be 

given to the question of how to improve the yield of [Co(en)3]Cl3•3H2O from 95 to 100 

%. 

 

Experimental 

Structure Determinations. Full spheres of CCD area-detector data were measured at ca 

153 K (Bruker AXS instrument, ω scans; monochromatic Mo Kα radiation, λ = 0.71073 

Å) yielding Nt(otal) reflections, reducing to N unique (Rint quoted) after 

'empirical'/multiscan absorption correction (proprietary software), No with F > 4σ(F) 

being considered 'observed' and used in the full matrix least squares refinement 

(anisotropic displacement parameter forms for the non-hydrogen atoms; (x, y, z, Uiso)H 

were refined in all cases).  Conventional residuals R, Rw (weights: (σ2(F) + 0.0004 F2)-1) 

are quoted on |F| at convergence.  Neutral atom complex scattering factors were 

employed within the context of the Xtal 3.7 program system [26]. Pertinent results are 
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given in the tables and figures, the latter showing 50% probability amplitude 

displacement ellipsoids for the non-hydrogen atoms, hydrogen atoms having arbitrary 

radii of 0.1 Å. 

Crystal/ refinement data.- (All structures are monoclinic, space group P21/c (C2h
5, No. 

14), Z = 4, and were determined at T~150 K.) 

 

A. cis-[Co(en)2(H2NCH2CH2NH3)Cl]Cl[ZnCl4] = C6H25Cl6CoN6Zn, M = 518.4. a = 

13.332(2), b = 11.426(1), c = 13.872(2) Å, β = 118.863(2) °, V = 1850.6 Å3. Dc = 1.860 

Mg m-3; specimen: 0.26 x 0.20 x 0.08 mm.  µMo = 3.04 mm-1; 'T'min/max = 0.80.  2θmax = 58 

°; Nt = 18246, N = 4684 (Rint = 0.031), No = 3642; R = 0.033, R' = 0.037; nv = 281,   |Δρmax| 

= 0.98(8) e Å-3. 

 

C. cis-[Co(en)2(NH3)Cl]S2O6 = C4H19ClCoN5O6S2, M = 391.7. a = 7.8025(9), b = 

13.783(2), c = 12.845(2) Å, β = 93.140(2) °, V = 1379.2 Å3. Dc = 1.886 Mg m-3; specimen: 

0.45 x 0.20 x 0.08 mm.  µMo = 1.77 mm-1; 'T'min/max = 0.83.  2θmax = 58 °; Nt = 13510, N = 

3491 (Rint = 0.021), No = 3016; R = 0.034, R' = 0.042; nv = 248, |Δρmax| = 1.38(5) e Å-3. 

 

D. [Co(en)(NH2CH2CH2N=CHCH2NH2))Cl][ZnCl4] = C6H19ClCoN5Zn, M = 462.8. a = 

8.5593(8), b = 10.607(1), c = 18.112(2) Å, β = 103.646(1) °, V = 1597.9 Å3. Dc = 1.924 

Mg m-3; specimen: 0.65 x 0.25 x 0.20 mm.  µMo = 3.36 mm-1; 'T'min/max = 0.65.  2θmax = 58 

°; Nt = 15500, N = 4603 (Rint = 0.027), No = 3502; R = 0.027, R' = 0.034; nv = 239, |Δρmax| 

= 0.77(5) e Å-3. 

 

E. [Co(en)2(N-CH3en)][Co(CN)6]•2H2O = C13H30Co2N12O2, M = 504.3. a = 13.872(2), b = 

9.969(1), c = 15.423(2) Å, β = 95.258(2) °, V = 2123.9 Å3. Dc = 1.577 Mg m-3; specimen: 

0.45 x 0.25 x 0.19 mm.  µMo = 1.60 mm-1; 'T'min/max = 0.73.  2θmax = 58 °; Nt = 20615, N = 

5310 (Rint = 0.026), No = 4221; R = 0.035, R' = 0.043; nv = 373,   |Δρmax| = 1.22(5) e Å-3. 

 

F. [Co(en)2(N-CH3en)][Co(CN)6] = C13H26Co2N12, M = 468.3. a = 14.176(2), b = 

9.462(1), c = 14.326(2) Å, β = 90.608(2) °, V = 1921.4 Å3. Dc = 1.619 Mg m-3; specimen: 
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0.25 x 0.24 x 0.22 mm.  µMo = 1.75 mm-1; 'T'min/max = 0.87.  2θmax = 58 °; Nt = 18614, N = 

4860 (Rint = 0.029), No = 3869; R = 0.030, R' = 0.035; nv = 351,   |Δρmax| = 1.20(6) e Å-3. 

 

The crystallographic data, in the form of .cif files, have been deposited with the CCDC, 

deposition numbers  246595–246599. These data may be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data 

Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax. (+44) 1223-336-033 or 

deposit@ccdc.cam.ac.uk. 
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Figure captions 

 

Figure 1 (a) Views of a single cation in the lattice of    

  [Co(en)2(H2NCH2CH2NH3)Cl]Cl[ZnCl4], A, showing (i) the isolated cation 

  (ORTEP view) and (ii) the cation (simplified representation) with multiple 

  N…Cl  approaches <3.5 Å due to its environment of both coordinated and  

  "free" chloride species, presumed to be indicative of NH…Cl hydrogen- 

  bonding. 

  (b) The binuclear cation present in       

  [(en)2CoCl(H2NCH2CH2NH2Co(en)2Cl)][ZnCl4]2 [4], in which the two  

  metal centres are of the same chirality. 

 

Figure 2 (a) Part of the lattice of cis-[Co(en)2(NH3)Cl][S2O6] showing the Co  

  complex and all its neighbouring dithionate anions for which at least one  

  oxygen atom lies within hydrogen-bonding distance of NH. 

  (b) Part of the lattice of [Co(en)(H2NCH2CH2N=CHCH2NH2)Cl][ZnCl4],  

  showing the cationic Co species and all neighbouring [ZnCl4]2- entities  

  lying within hydrogen-bonding distances. 

 

Figure 3 Diastereoisomeric species containing the [Co(en)2(N-CH3en)]3+ cation: 

  (a) One of the cations of Λ chirality present in the lattice of [Co(en)2(N- 

  CH3en)][Co(CN)6]•2H2O; both en rings are of δ chirality, while the N- 

  CH3en ring is of λ chirality, with its chiral-N centre of S absolute   

  configuration. 

  (b) One of the cations of Λ chirality present in the lattice of [Co(en)2(N- 

  CH3en)][Co(CN)6]; the en rings are of opposite chirality (one δ, one λ),  

  while the N-CH3en ring is of δ chirality, with its chiral-N centre of R  

  absolute configuration. 

 

Figure 4 Chirality descriptors for saturated chelate-ring complexes. 
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Edges of an octahedron spanned by chelate rings (bold lines) giving rise to 

chirality about the metal centre designated by upper case Greek symbols.
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