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Abstract 
Since 2006, several different groups have computed geoid and/or quasigeoid (quasi/geoid) models for the 
Auvergne test area in central France using various approaches. In this contribution, we compute and 
compare quasigeoid models for the Auvergne test area using Curtin University of Technology’s and the 
Swedish Royal Institute of Technology’s approaches. These approaches differ in many ways, such as their 
treatment of the input data, choice of type of spherical harmonic model (combined or satellite-only), form 
and sequence of correction terms applied, and different modified Stokes’s kernels (deterministic or 
stochastic). We have also compared our new results with most of the previously reported studies over 
Auvergne in order to seek any improvements with respect to time [exceptions are when different subsets 
of data have been used]. All studies considered here have compared the computed quasi/geoid models 
with the same 75 GPS-levelling heights over Auvergne. The standard deviation for almost all of the 
computations (without any fitting) is of the order of 30-40 mm, so there is not yet any clear indication 
whether any approach is necessarily better than any other nor improving over time. We also recommend 
more universal standardisation on the presentation of quasi/geoid comparisons with GPS-levelling data so 
that results from different studies over the same areas can be compared more objectively.  
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Introduction 
It is now over 170 years since George Gabriel Stokes published his seminal formula for geoid determination 
from gravity anomalies (Stokes 1849); over 55 years since the English translation of Mikhail Sergeevich 
Molodensky’s book was published on the formula for quasigeoid determination from gravity anomalies 
(Molodensky et al. 1962); and over 50 years since Martin Hotine’s monograph was published on the 
formula for geoid determination from gravity disturbances (Hotine 1969).  

Despite this long-elapsed time, there remains no universal consensus on geoid and/or quasigeoid 
(quasi/geoid) computation. Arguably, different approaches are necessary in different parts of the world 
due to, for instance, peculiarities of the data holdings. However, there appears to be some subjectivity in 
the selection of the computation strategy. As just one example, the third author of this article admits 
preference for his deterministically modified kernel (Featherstone et al. 1998) for the computation of 
Australian and New Zealand national gravimetric quasigeoid models (Featherstone et al. 2001, 2011, 
2018a; Amos and Featherstone 2009; Claessens et al. 2011). In his defence though, he has compared his 
kernel with other deterministic modifiers and some simplistic stochastic modifiers (e.g., Featherstone et al. 
2004), hence the inclusion of the more sophisticated stochastic modifier embedded in the Swedish Royal 
Institute of Technology’s (KTH) approach in the comparisons presented herein. 

In attempts to reach some sort of consensus on quasi/geoid computation, two principal approaches 
have been endorsed historically by the International Association of Geodesy (IAG): synthetic and empirical. 
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The creation and use of synthetic gravity fields further comprise two variants. The first is to assume 
spherical harmonic coefficients of a high-degree Earth Gravitational Model (EGM) are error-free and use 
them to generate [assumed] self-consistent sets of gravity anomalies and quasi/geoid heights (e.g., Tziavos 
1996; Novák et al. 2001; Featherstone 2002). The second synthetic approach is to use forward modelling of 
gravity anomalies and quasi/geoid heights from digital elevation models (DEMs) (e.g., Haagmans 2000; 
Kuhn and Featherstone 2003a, 2003b, 2005; Ågren 2004; Baran et al. 2006; Fellner et al. 2012; Vaníček et 
al. 2013).  

Empirical study areas have been proposed in regions with reasonably good coverage and 
availability of gravity, topographic and GPS-levelling data, most notably Auvergne in central France 
(Duquenne 2006; Valty et al. 2012) and Colorado in the USA (e.g., Wang et al. 2020; Claessens and Filmer 
2020); Australia has been suggested (Featherstone et al. 2018b) but not yet used by others. In 2006, the 
French Institut Geographique National (IGN) provided a dataset of ~240,000 land gravity observations and 
75 GPS-levelling points over a region surrounding Auvergne in central France along with two DEMs 
(Duquenne 2006). These two DEMs were later replaced by the SRTM 3” DEM. The Auvergne point gravity 
observation data are freely available from the Bureau Gravimétrique International (BGI) database. 

Since 2006, several published studies have presented quasi/geoid computations for the Auvergne 
test-bed using several different techniques, which are summarised in Appendix A. We emphasise that the 
amount of information published on the agreements with the 75 GPS-levelling data is rather inconsistent 
and we discuss this further in Section 3. In particular, we observe that the reporting of descriptive statistics 
of the comparison with GPS-levelling data can be inconsistent, which arguably prevents an objective 
comparison among the different quasi/geoid computation techniques. As such, we present in the 
Electronic Supplementary Material (ESM) a spreadsheet that others may wish to adopt for a more 
standardised comparison. 

Curtin University of Technology’s (CUT) approach to compute the quasigeoid has not been used 
before for the Auvergne test-bed. In this study, therefore, we compare the CUT and KTH’s techniques for 
quasigeoid modelling so as to add another “data point” to the Auvergne test-bed with a view to 
determining how well or not the CUT technique performs with respect to some other methods when using 
the same input and test data. We choose these two approaches only because they are so substantially 
different to one another. 
 
2. Comparing and contrasting the CUT and KTH approaches 
Both approaches have evolved over time, so we only report on their current status, but with some 
historical context. 
 
2.1 The CUT approach 
The CUT approach has evolved over around 25 years with particular focus on computing Australian models, 
though it has also been used in New Zealand, Colorado in the USA and the UK (the latter is unpublished). 
Probably the most Australia-specific aspect is the treatment of the terrestrial gravity data. Usually, refined 
Bouguer or isostatic gravity anomalies are recommended for gridding as they are smoother and thus more 
suited to interpolation. In Australia, however, the mean elevation is only ~330 m (max 2228 m) so 
topographic/isostatic corrections are small and planar simple Bouguer anomalies appear sufficient for 
interpolation and gridding (Goos et al. 2003; Zhang and Featherstone 2004). There is a side-benefit to this 
approach because it allows for the so-called reconstruction of Faye anomalies on the topography 
(Featherstone and Kirby 2000).  

In short, point planar simple Bouguer anomalies [including the atmospheric correction from Moritz 
(1980; 2000)] are computed using a constant topographic bulk density of 2,670 kg m-3. They are then 
interpolated to the 1” x 1” resolution of the Australian DEM using the tensioned spline algorithm (surface 
with T=0.25) embedded in the Generic Mapping Tools (GMT; Wessel et al. 2013). Molodensky free air 
anomalies are ‘reconstructed’ on the topography by applying a reverse planar simple Bouguer correction 
with the height of each DEM element. Faye gravity anomalies are computed by adding the planar terrain 
correction from the same DEM as an approximation of the Molodensky G1 term, recently including error 
propagation (McCubbine et al. 2017, 2019).  These are then block-averaged (GMT routine blockmean) to 



determine surface-mean Faye gravity anomalies as approximations of Molodensky anomalies for 
subsequent quasigeoid computation.  

The CUT approach has consistently used the highest-available degree of EGM, which is generally a 
combined model that has merged terrestrial and satellite-only coefficients (e.g., Pavlis et al. 2012, 2013). 
This is in contrast to the KTH approach that uses a satellite-only EGM so as to avoid correlations in the 
terrestrial data when used twice (e.g., Vaníček and Sjöberg 1991).  The [implicit] rationale for the CUT 
approach is that, while being fully subject to the undesirable correlation of largely the same terrestrial data 
being used (most Australian gravity data are in the public domain), the use of a high-degree EGM makes 
the residual quasigeoid smaller in magnitude and thus less subject to approximation errors in the residual 
quasigeoid computation. A recent refinement to the treatment of the EGM is to compute ellipsoidal area-
mean gravity anomalies on the topography (Featherstone et al. 2018a, Section 2.3.2).  

The CUT approach to computing the residual quasigeoid from the residual area-mean gravity 
anomalies is based on the 1D-FFT (Haagmans et al. 1993) using F77 code that originated from the 
University of Calgary, Canada, but which has been adapted to include deterministically modified kernels 
(Featherstone and Sideris 1998; Featherstone 2003). It also now uses Gauss-Legendre quadrature to 
better-determine area-means for the deterministically modified kernels in the discretised numerical 
integration (Hirt et al. 2011). The Australian models use the deterministic Featherstone et al. (1998) kernel 
that is a combination of the Vaníček and Kleusberg (1997) and Meissl (1971) modifiers. This combined 
modifier aims to reduce the truncation error and improve the rate of convergence to zero of the series 
expansion of the truncation error. The integer degrees of kernel modification and integration cap radius 
are chosen empirically through comparisons with GPS-levelling after parameter sweeps versus GPS-
levelling data. The ellipsoidal correction is handled by using the geocentric radius to the surface of the 
GRS80 ellipsoid in Stokes’s integral along each parallel of latitude of the computation grid in the 1D-FFT 
(Claessens 2006, Chapter 6). 
 
2.2 The KTH approach 
The stochastically modified kernel used in KTH method comprises a least-squares combination of satellite 
and terrestrial data (Sjöberg 1981). Since then, the KTH method has been continuously developed and 
modified (e.g. Sjöberg 1984, 1991, 2003c; Ågren 2004 and references therein). The KTH method follows 
remove-interpolate-restore-compute strategy for the geoid computations, which contrasts with CUT 
method that follows an interpolate-remove-compute-restore strategy.  

The primary uniqueness of the KTH method lies in the stochastic modification of Stokes’s kernel 
and corrections to the gravity data. Unlike other methods, the direct and indirect effects needed to make 
the observations accordant with the geodetic boundary value problem are added as separate combined 
corrections to the approximate geoid estimates obtained using the Stokes integration with un-reduced 
gridded gravity data.  

The KTH method has been used to compute the Swedish national quasigeoid (Ågren et al. 2009b), 
the Nordic Geodetic Commission 2015 quasigeoid (Ågren et al. 2016). The KTH approach has received 
much wider application than the CUT approach, with quasi/geoid models for the Baltic countries (Ellmann 
2004), Iran (Kiamehr 2006), Tanzania (Ulotu 2009), Greece (Daras et al. 2010), Kazakhstan (Inerbayeva 
2010), Sudan (Abdalla and Fairhead 2011),New Zealand (Abdalla and Tenzer 2011), central Turkey (Abbak 
et al. 2012), Moldova (Danila 2012), Saudia Arabia (Abdalla and Mogren 2015), Uganda (Ssengendo 2015), 
Poland (Kuczynska-Siehien et al. 2016), peninsular Malaysia (Pa’suya et al. 2019), Estonia (Ellmann et al. 
2019) and Jilin province in China (Wu et al. 2020).  

In the KTH treatment of the terrestrial gravity data, point free-air gravity anomalies are computed 
from the observed gravity values on the Earth’s surface. These are then reduced point-wise by the long 
wavelength gravity anomalies from synthesising a satellite-only EGM, the high-frequency part of the 
topography is removed using Residual Terrain Modelling (RTM; Forsberg 1985) and the atmospheric effect 
applied to obtain residual point free-air gravity anomalies. These are then interpolated using Least Squares 
Collocation (LSC), in the geogrid.f module of the GRAVSOFT package (Tscherning et al. 1992), to the 
resolution of the desired model to obtain a regular grid of residual gravity anomalies. Since the KTH 



method uses un-reduced gravity anomalies, the contributions of the EGM, RTM and atmospheric effect are 
all computed at the nodes of the grid and restored to the interpolated residual gravity anomalies. 

Following Sjöberg (1991, 2003c), approximate values of geoid undulations are computed from the 
un-reduced gridded gravity anomalies and EGM using the unbiased least squares geoid estimator. This 
makes use of a stochastic Stokes’s modified kernel that simultaneously reduces the errors due to the 
truncation bias, satellite-only EGM coefficients and the terrestrial gravity data (Sjöberg 1984). Besides the 
choice of an integration cap radius, the most important step in the computation of approximate geoid in 
the KTH method is the determination of a-priori estimates of signal and error degree variances. These are 
necessary for the computation of a better choice of modification parameters to be used in the least-
squares modification method. Similar to the CUT approach, the integration cap radius is chosen empirically 
based on parameter sweeps versus GPS-levelling data.  

The Tscherning and Rapp (1974) model is generally preferred to compute the gravity signal degree 
variance. The error degree variance of the EGM gravity is computed from the published error estimates 
that accompany the EGM coefficients. The error degree variance of terrestrial gravity anomalies are 
assumed to be a combination of white noise and a reciprocal distance covariance model (Ågren 2004; 
Ågren and Sjöberg 2009b). The signal and the EGM error degree variances are further rescaled by some 
empirical factor to best depict the ‘reality’ of the study area. The stochastically modified Stokes’s integral 
in the geoid estimator is evaluated using the 1D-FFT method (Haagmans et al. 1993), but it has not been 
modified to include Gauss-Legendre quadrature (cf. Hirt et al. 2011).  

Next are the so-called additive corrections from the combined topographic effect (Sjöberg 2000, 
2001), atmospheric effect (Sjöberg 1999; Sjöberg and Nahavandchi 2000), ellipsoidal shape of the Earth 
(Sjöberg 2003b) and downward continuation (Sjöberg 2003a; Ågren 2004), which are added to the 
approximate geoid to achieve the final geoid.  

The KTH method has been designed primarily to compute a gravimetric geoid, but which is then 
converted to quasigeoid by adding the geoid-quasigeoid separation term (Sjöberg 1995, 2010). However, 
Sjöberg (2000) and Ågren et al. (2009b) show that if the combined topographic effects are not applied in 
the computations using the KTH method and if the downward continuation is also adjusted accordingly, 
the result will be a quasigeoid. This eliminates the need for computing the topographic effects and further 
correction terms to convert the geoid to quasigeoid. The latter is the approach that was taken in the 
computations reported in the following section. 
 
3. Results and Discussion 
Four separate quasigeoid models of Auvergne were computed at a grid resolution of 0.02° x 0.02° using the 
CUT and KTH approaches. The computation area encompasses all 75 GPS-levelling points publicly available 
for validation. The KTH technique was used with the satellite-only DIR_R5 EGM (Bruinsma et al. 2013) up to 
spherical harmonic degree and order (d/o) 240. The CUT method is used with DIR_R5 to d/o 240 (so as to 
compare the results between the two methods), EGM2008 to d/o 360 (to compare the results from CUT 
method with previously published results using some other methods; see Appendix A), and EGM2008 to 
d/o 2190 (to show the CUT method as it has been used in Australia, New Zealand and the USA). The SRTM 
3” x 3” DEM (Farr et al. 2007) is used in all models computed. 

In previous studies over Auvergne (Appendix A), the results are presented either with and/or 
without applying some form of fitting surface. To be consistent with these other studies, we have provided 
our results with and without surface fitting, which are appended in Table A.1. In addition to simple 
descriptive statistics (minimum, maximum, mean and standard deviation) that are commonly used in most 
evaluations of gravimetric quasi/geoid models, we include the mean absolute error (MAE) and skewness, 
which are given in Table 1. We believe that these additional statistics are informative because the mean 
and standard deviation alone do not necessarily provide sufficient information to compare two or more 
methods, as shown later in this section.  

The standard deviation alone gives the magnitude of the variation of differences but not the 
direction, which is better quantified by the skewness. The MAE measures the mean magnitude of 
differences that is not available in case of arithmetic mean values. Thus, MAE and skewness are necessary 
along with mean and standard deviation to have an overall estimate of the magnitude and direction of the 



differences and their distribution. In Table 1, we also provide the coefficient of determination (R-squared) 
values for our four quasigeoids after-fitting as a measure of how well the four-parameter regression model 
explains the total variation of gravimetric quasigeoid with respect to the GPS-levelling points. The closer 
the R-squared value is to one, better is the regression model.  

Moreover, to focus only on the computed quasi/geoid uncertainty, the effect of ellipsoidal and 
levelling height errors should be removed from the overall error estimate obtained with respect to the 
GPS-levelling data. The observed ellipsoidal are not correlated with the computed quasi/geoid, but the 
levelling will have [unknown] correlations if gravity observations have been observed at levelled 
benchmarks. Therefore, the quasi/geoid uncertainty ( )Nσ  before any fitting can be obtained using 
equation 1 (cf. Foroughi et al. 2019).  

( ) ( ) ( )2 2 2
N overall h Hσ σ σ σ= − −      1 

where hσ  and Hσ  are the uncertainties of ellipsoidal and levelling heights, respectively, and  overallσ  is the 
standard deviation obtained on comparison wrt the ground data (e.g., Table A1).  

However, a parametric-fitted quasi/geoid is correlated with the ellipsoidal and levelling heights (see 
equations for 4-parameter fit in the Electronic Supplementary Material). However, due to the unavailability 
of the corresponding covariance terms, the quasi/geoid uncertainty of the fitted model can also be 
computed using equation 1 (cf. Ågren and Sjöberg 2014; Sjöberg and Bagherbandi 2017; Ellmann et al. 

2019). It is important to note here that equation 1 is valid iff overallσ  is greater than ( )2 2
/GPS lev h Hσ σ σ= + . 

This condition may not always be met. In this regard, the internally propagated errors from GPS data 
processing software can be 2-10 times overly optimistic, i.e., too small (Rothacher 2002). Therefore, one 
solution is to scale up the formally propagated ellipsoidal height errors, as has been done for the Australian 
data (Featherstone et al. 2019).  

For the Auvergne GPS-levelling dataset, Duquenne (2006) had provided an approximate and 
blanket (not point by point) error estimate of ~20-30 mm for the ellipsoidal heights and 20 mm for the 
levelled heights. Therefore, the uncertainty of the four quasigeoids (before and after fit) in our study can 
only be computed if the corresponding overallσ  is greater than 32 mm ( /GPS levσ ). From Table A.1, it is 
observed that this condition is true for all the quasigeoid with no fit but not for any quasigeoid after fit. 
Thus, we computed the uncertainties of the quasigeoid with no fit only using equation (1), and these are 
provided in Table 1.  

We also provide results of relative fit of quasigeoids (Table 2) with respect to the tolerances for 
differential levelling (cf. Featherstone 2001). Testing for the relative fit of quasi/geoids can also be an 
analysis tool to investigate quasi/geoid gradients. This parameter is of more interest to land surveyors who 
use relative GNSS baselines and a quasi/geoid as a replacement for the more time-consuming differential 
levelling. Moreover, like the parameter-fitting, it also cancels the effect of almost constant zero-degree 
term (discussed later) irrespective of the choice of reference geopotential (W0) value.  

Figures 1 and 2 show scatter plots of the relative difference (magnitude) of the four quasigeoid 
models before and after parameter fitting, respectively. The curved lines in the figure depict the maximum 
allowable misclose for first order (lower curve) and third order levelling (upper curve) for all the 2775 
baselines computed using equation 2 with c equal to 4 and 12, respectively. 

r c d=                                                          2 
where, r  = standard uncertainty, in mm; c  =empirically derived factor for a given ‘order’ of levelling; d  = 
distance between stations, in km. The values adopted for c may vary among countries, and the levelling 
tolerances for different order levelling in France is unavailable to us, so we have used the values from 
Australian perspective (ICSM, 2007).  

 
 
 
 



Table 1: Extended analysis of the computed quasigeoids with respect to 75 GPS/levelling data around 
Auvergne. L is the degree of kernel modification and psi0 is the integration cap radius. 

 L Ψ0  MAE (m) Skewness R-squared Quasigeoid 
uncertainty (m) 

KTH (DIR_R5) 240 1° 
No Fit 0.819 -0.312 -- 0.016 
4P Fit 0.020 0.712 0.448 NA# 

CUT (DIR_R5) 240 1° 
No Fit 0.871 -0.358 -- 0.012 
4P Fit 0.021 0.152 0.362  NA 

CUT (EGM08 d/o 360) 360 1° 
No Fit 0.982 -0.377 -- 0.016 
4P Fit 0.020 0.151 0.445  NA 

CUT (EGM08 d/o 2190) * 360 0.1° 
No Fit 0.872 -0.413 -- 0.018 
4P Fit 0.020 -0.017 0.481  NA 

*  This solution is almost independent of the modification degree parameter sweeps (analysed for L=20, 40, 
60, 80, 120, 140, 180, 240, 360) 
# Not applicable because overallσ  (after fit) is smaller than /GPS levσ  (cf. Eq. 1 and the discussion after) 
 

Table 2: Relative fit of quasigeoids over (75*74*0.5=) 2775 possible baselines around Auvergne 

 L Ψ0  Min 
(m) 

Max 
(m) 

Mean 
(m) 

StD 
(m) 

MAE 
(m) 

Skew-
ness 

Mean
ppm 

KTH (DIR_R5) 240 1° 
No Fit -0.166 0.189 -0.002 0.051 0.040 0.008 0.440 
4P Fit -0.166 0.170 0.001 0.038 0.029 -0.282 0.354 

CUT (DIR_R5) 240 1° 
No Fit -0.152 0.170 0.010 0.048 0.039 -0.114 0.440 
4P Fit -0.138 0.155 0.002 0.039 0.031 -0.108 0.380 

CUT (EGM08 d/o 
360) 360 1° 

No Fit -0.150 0.177 0.014 0.049 0.041 -0.122 0.457 
4P Fit -0.139 0.154 0.002 0.038 0.030 -0.048 0.374 

CUT (EGM08 d/o 
2190) 360 0.1° 

No Fit -0.159 0.181 0.014 0.050 0.042 -0.121 0.463 
4P Fit -0.122 0.145 0.002 0.038 0.030 0.011 0.369 

 

 
Figure 1: Magnitude of relative differences (circles) for the four quasigeoids before any fitting (a. KTH-
DIR_R5, b. CUT-DIR_R5, c. CUT-EGM08_360, d. CUT-EGM08_2190) over 2775 baselines. Crosses and 
squares represent the maximum permissible error for Australian first order and third order levelling for 
each baseline, respectively.  



 

 
Figure 2: Magnitude of relative error (circles) for the four quasigeoids after four-parameter fitting (a. KTH-
DIR_R5, b. CUT-DIR_R5, c. CUT-EGM08_360, d. CUT-EGM08_2190) over 2775 baselines. Crosses and 
squares represent the maximum permissible error for Australian first order and third order levelling for 
each baseline, respectively.  
 
Following are our key observations from Tables 1, 2 and A.1, coupled with further discussion: 
 

a) For the solutions without any fitting of the computed quasi/geoid and the GPS-levelling data, the 
mean differences of approximately -133 mm and -184 mm by the UNB group and Duquenne (2006), 
respectively, are attributed to a vertical datum shift for France (Rülke et al. 2012). However, for the 
computations using both the methods here (KTH and CUT) and the KTH method in Yildiz et al. 
(2012), the mean difference between quasigeoid and GNSS/levelling is, on average, -863 mm. This 
is almost 730 mm greater in magnitude as compared to the other reported studies. This large 
difference is due to the inconsistency in the application of the zero-degree term (cf. Smith 1998) by 
different groups. While this will cancel when the quasi/geoid is used over baselines (cf. 
Featherstone 2001), it will not if used with single point positioning techniques (such as PPP). A 
practical solution if one does not choose to use a parametric fit, a one parameter fit can be used 
(i.e., a constant terms) to simultaneously absorb the zero-degree term and any constant offset in 
the local vertical datum.  

 
b) There are considerable differences among the results  computed using the KTH method by Ågren et 

al. (2009a), Yildiz et al. (2012) and our current study. These differences can be attributed to three 
reasons:1) the use of different EGMs (and degrees of modification); 2) different spatial resolutions 
of the computed quasigeoid (i.e. interpolation error); and 3) inconsistent ot lack of reporting on the 
zero-degree term. Ågren et al. (2009a) use EIGEN_GL04C (d/o360) to compute a quasigeoid at a 
resolution of 1'x1' with no zero-degree term applied. Yildiz et al. (2012) use EGM2008 (d/o360) and 
computed a quasigeoid at resolution of 0.02°x0.025° with a zero-degree term applied. However, 
the results are presented after removing the mean value, so we are unable to distinguish what 
proportion is due to their value of the zero degree term and any constant offset in the French 
vertical datum. In this study, we used DIR_R5 (d/o 240) with a resolution of 0.02°x0.02°. Our zero-
degree term was applied using the W0 value used in the International Height Reference System 



(Sánchez et al. 2016). We also used the GRS80 ellipsoid and scaled the even degree harmonics as 
per, e.g., Smith (1988). 

 
c) From Table A.1, we observe that for any method (KTH, UNB or GRAVSOFT), since 2006, there is no 

clear trend of improvement in the results without a corrector surface. Of all the studies (in Table 
A.1, with no surface fitting) the smallest standard deviation of 29 mm is obtained using the Radial 
Basis Function (RBF) method (Lin et al. 2019), while the Finite Element Method (FEM) method 
(Janák et al. 2014) provided the largest standard deviation of 97 mm. The KTH method has provided 
the smaller standard deviations of 24 mm (Yildiz et al. 2012), 25 mm (Abbak & Ustun 2015) and 26 
mm (this study) after four-parameter, seven-parameter and four-parameter surface fitting, 
respectively. Utilising the high degree-order EGM2008 (d/o 2190), the CUT method (this study) also 
provided a standard deviation of 26 mm after four-parameter fitting. 
 

d) Different geoid modellers have had different views on whether more than a one-parameter model 
should be used during the GPS-levelling evaluation or not. One argument for this is that different 
permanent tide systems are used for the GPS ellipsoidal heights, levelled heights and terrestrial 
gravity data (cf. Poutannen at al. 1996; Ekman 1989). It is not mentioned in Duquenne (2006) that 
the corresponding data sets have been transformed to a common permanent tide system, which 
means that they most likely are in their default tide systems (e.g., non-tidal for RGF93-ETRS89, 
unknown for NGF-IGN69 and mean for IGSN71). This will result in a systematic tilt effect in the 
north-south direction with the magnitude of a few centimetres (Ekman 1989), which will be 
absorbed by a four-parameter surface. Based on this and the comments in part (a), we recommend 
that both one- and four-parameter fits are used in future Auvergne evaluations.  

 
e) Based on the standard deviation (σ) from Table A.1 with DIR_R5 EGM, the CUT method (σ=34 mm) 

appears marginally “better” than the KTH method (σ=36 mm) without any surface fitting, whereas 
the KTH method (σ=26 mm) is marginally “better” than the CUT method (σ=27 mm) after four-
parameter surface fitting. We use the term marginal because of the blanket error budget used for 
the GPS-levelling and we are not at the ability to compute millimetre-precise quasigeoid models. 
However, for the same EGM, Table 1 shows that after surface fitting, the KTH method provides 
results which are significantly (~ 4.5 times) more positively skewed compared to the CUT method. 
Larger positive skewness represents asymmetrical distribution of differences with more values 
being clustered on the left tail of the distribution and therefore, a larger positive difference. The 
same pattern of results is also observed for the relative fit of the quasigeoids computed using the 
CUT and KTH methods (Table 2). We believe this is why the skewness is an additional and useful 
metric of quasi/geoids versus GPS-levelling. 
 

f) Figures 1 (a,b) and 2(a,b) show that the KTH method (with DIR_R5 EGM d/o 240) provides a larger 
number of baselines beyond 150 km that have misclosures greater than 150 mm and 100 mm, 
respectively, as compared to the CUT method. Moreover, the CUT method with EGM2008 (d/o 
2190) after a four--parameter fit (Figure 2d) results in a misclosure of less than 100 mm for all 
baselines greater than 200 km. Hence, with the available data, the CUT method (as used for 
Australia and New Zealand) can be regarded as a “better” method for larger baselines compared to 
the KTH method, but we acknowledge that this may be because the French gravity data have been 
used in the construction of EGM2008 (Pavlis et al. 2012, 2013).  

 
4. Conclusions and recommendations 
In this study, quasigeoid models of Auvergne were computed using the CUT and KTH techniques and 
compared. The results were also compared with respect to previously published studies on quasi/geoid 
determination over Auvergne. The mean differences of ~730 mm among different techniques (e.g., CUT, 
KTH, UNB, GRAVSOFT/LSC) are mainly due to different treatments of the zero-degree term, but offsets in 
the French vertical datum cannot be eliminated as a candidate. Small (sub-centimetre) differences among 



standard deviations can be due to, one some or all of, the choice of different EGMs, modification degrees, 
cap radii, DEMs, terrain corrections, quasi/geoid resolution and the gridding of the point anomaly data. 
However, all these terms are inseparable, so we are unable to point to any particular candidates. We, 
through our analysis, suggest that the practice of commenting on the pre-eminence of one method over 
other based on only standard deviation is not completely justified.   

It is therefore recommended to establish some commonly adopted guidelines to define a statistical 
table for reporting the results of the quasi/geoid computations. A tentative list of statistical parameters 
can be adapted from Tables 1, 2 and A1. These will be important to 1) have an improved understanding of 
the “accuracy” of the method in use, and 2) more objectively compare the results with other computation 
approaches over the same region. This recommendation perhaps may be further taken up by either Sub-
Commission 2.2 or 2.4 of the International Association of Geodesy.  
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Appendix A 

Table A.1: Results from previous and present study for geoid/quasigeoid of Auvergne. 

Reference Approach Type Software EGM 
(degrees) 0deg Integration  

radius Kernel Terrain  
treatment 

DEM/ 
density 
used 

Atmos Ellip Fit 
type Min Max Mean STD 

Duquenne 
(2006) RCR quasigeoid GRAVSOFT 

GGM02S (2-
100)  
EGM96 (110-
360) 

NA Whole  
area WG RTM 

IGN 
height 
data 
base 

no no none -0.292 -0.117 -0.184 0.038 

            1P -0.108 0.067 0.000 0.038 
            3P -0.069 0.093 0.000 0.037 
                 

Ågren et 
al. (2009) KTH quasigeoid  Geolab EIGEN_GL04C 

(360) No NA LSM Not 
required 

SRTM 
3”x3” yes yes 3P -0.094 0.053 0.000 0.029 

 Fast LSC quasigeoid NA EIGEN_GL04C 
(360) NA NA NA NA SRTM 

3”x3” NA NA 3P -0.117 0.099 0.000 0.042 

 RCR quasigeoid NA EIGEN_GL04C 
(360) NA NA NA RTM SRTM 

3”x3” NA NA 3P -0.085 0.079 0.000 0.035 

 LSC quasigeoid GEOCOL EIGEN_GL04C 
(360) NA NA NA NA SRTM 

3”x3” NA NA 3P -0.196 0.161 0.000 0.067 

 1DFFT quasigeoid NA EIGEN_GL04C 
(360) NA NA NA NA SRTM 

3”x3” NA NA 3P -0.066 0.092 0.000 0.035 

 RCR quasigeoid NA EIGEN_GL04C 
(360) NA NA NA NA SRTM 

3”x3” NA NA 3P -0.069 0.093 0.000 0.037 

                 
Forsberg 
(2010) RCR quasigeoid GRAVSOFT EGM2008 

(360) NA NA WG RTM SRTM 
3”x3” NA NA none -- -- -0.128 0.030 

    EGM2008 
(2190)         -- -- -0.138 0.029 

                 

Valty et 
al. (2012) RCR geoid GRAVSOFT EGM 2008 

(360) NA 3° WG RTM 

IGN 
height 
data 
base 

no no none -- -- -- 0.040 

 KTH geoid 
NA (may 
be 
Geolab) 

EGM 2008 
(360) NA 3° LSM 

Combined 
topographic 
effect 

IGN 
height 
data 
base 

no no none -- -- -0.336 0.038 

                 



Yildiz et 
al. (2012) RCR quasigeoid GEOCOL EGM 2008 

(360) NA 1° WG RTM SRTM 
3”x3” NA NA 1P -0.209 -0.075 -0.133 0.030 

            4P -0.067 0.058 0.000 0.029 

 KTH quasigeoid Geolab EGM 2008 
(360) NA 1° LSM 

Combined 
topographic 
effect 

SRTM 
3”x3” no no 1P -1.118 -0.961 -1.040 0.035 

            4P -0.051 0.095 0.000 0.024 
                 
Janák et 
al. (2014) FEM quasigeoid ANSYS GOCE SGG/ 

TIM-R1 (224) NA NA NA NA SRTM 
1”x1” NA NA none 0.609 1.054 0.863 0.097 

                 

Abbak 
(2014) KTH geoid NA GGM05S 

(180) NA NA LSM 
Combined 
topographic 
effect 

SRTM 
3”x3” yes yes 4P -0.068 0.073 -

0.0004 
0.028 
(RMS) 

         ASTER 
1”x1”   4P -0.065 0.072 -

0.0003 
0.028 
(RMS) 

                 
Abbak & 
Ustun 
(2015) 

KTH geoid LSMSSOFT 
ITG-
GRACE2010S 
(120) 

NA 1° LSM 
Combined 
topographic 
effect 

SRTM 
3”x3” yes yes 1P NA NA NA 0.099 

            7P -0.064 0.047 0.0005 0.025 
                 

Foroughi 
et al. 
(2017a) 

UNB geoid NA (may 
be SHGeo) DIR_R5 (140) NA 0.75° VK DTE, PITE, 

SITE 

NA 
(may be 
SRTM 
3”x3”) 

yes 

NA 
(may 
be 
yes) 

none range 0.163 -- -- 

    DIR_R5 (160) NA 0.75° VK     none -- -- -- 0.033 
                 

Foroughi 
et al. 
(2017b) 

UNB geoid NA (may 
be SHGeo) DIR_R5 (160) NA 0.75° VK DTE, PITE, 

SITE 

SRTM 
3”x3”/ 
density 
model 

yes yes none --- --- 0.133 0.033 

 KTH quasigeoid 
NA (may 
be 
Geolab) 

NA NA NA LSM 
Combined 
topographic 
effect 

SRTM 
3”x3” yes yes none 0.021 0.213 0.125 0.034 

                 
                 

Janák et 
al. (2017) UNB geoid NA (may 

be SHGeo) DIR_R5 (160) NA 0.75° VK DTE, PITE, 
SITE 

SRTM 
3”x3”; 
ACE2; 
JGP95 

yes yes none 0.028 0.207 0.124 0.034 



         

SRTM 
3”x3”; 
ACE2; 
JGP95; 
density 
model 

  none 0.024 0.222 0.133 0.033 

                 
Foroughi 
et al. 
(2019) 

UNB geoid NA (may 
be SHGeo) DIR_R5 (140) NA 1° VK DTE, PITE, 

SITE 

ACE2; 
density 
model 

yes yes none -0.030 -0.190 -0.130 0.033 

                 

Goli et al. 
(2019) UNB geoid NA (may 

be SHGeo) 
GOCO05S 
(280) NA 1.5° VK DTE, PITE, 

SITE 

SRTM 
3”x3”; 
SRTM 
30”x30” 

NA NA none 0.043 0.206 0.124 0.034 

   NA    Modified 
VK     none 0.046 0.205 0.124 0.033 

                 

Lin et al. 
(2019) 

RBF (Free 
positioned 
point 
mass)/RCR 

quasigeoid GRAVSOFT EGM 2008 
(360) NA NA NA RTM SRTM 

3”x3” NA NA none -0.187 -0.045 -0.133 0.029 

 

RBF (Fixed 
positioned 
point 
mass)/RCR 

           -0.197 -0.050 -0.134 0.030 

                 

This Study KTH quasigeoid Geolab DIR_R5 (240) yes 1° LSM Not 
required 

SRTM 
3”x3” yes yes none -0.922 -0.734 -0.819 0.036 

            4P -0.061 0.108 0.000 0.026 

 CUT quasigeoid FFT1Dmod DIR_R5 (240) yes 1° FEO Terrain 
correction 

SRTM 
3”x3” yes yes none -0.958 -0.788 -0.871 0.034 

            4P -0.067 0.086 0.000 0.027 

 CUT quasigeoid FFT1Dmod EGM 2008 
(360) yes 1° FEO Terrain 

correction 
SRTM 
3”x3” yes yes none -0.988 -0.811 -0.892 0.036 

            4P -0.070 0.083 0.000 0.027 

 CUT quasigeoid FFT1Dmod EGM 2008 
(2190) yes 0. 1° FEO Terrain 

correction 
SRTM 
3”x3” yes yes none -0.974 -0.794 -0.873 0.036 

            4P -0.075 0.069 0.000 0.026 
 

 



Approach: Kernel modification: 
RCR= Remove-Compute-Restore 
LSC= Least Squares Collocation 
KTH=Royal Institute of Technology’s method 
UNB= University of New Brunswick’s method 
RBF= Radial Basis Function 
FEM= Finite Element Method 
CUT= Curtin University of Technology’s method 

WG= Wong-Gore (Wong and Gore 1969) 
VK= Vaníček-Kleusberg (Vaníček and Kleusberg 1987) 
Modified VK= Modified Vaníček-Kleusberg (Novák 2003) 
LSM= Least-squares modification (Sjöberg 1984, 1991) 
FEO=Featherstone-Evans-Olliver (Featherstone et al. 1998) 

 

 


