
Abstract— Road network conditions and road quality are 
directly linked with the performance of an entire infrastructure 
system. As sensor monitoring of road deteriorations has rapidly 
increased, road infrastructure performance can now be assessed 
using multiple measures. However, more effective and accurate 
quantitative analysis methods are increasingly required. This 
research explores road infrastructure performance using road 
deterioration network data in the Mid West Gascoyne region, 
Australia. A spatial heterogeneity-based segmentation (SHS) 
model is developed for redefining road segments across the 
network in terms of sensor monitoring data, and for both 
project-level and network-level infrastructure systems 
management. To evaluate the model effectiveness and accuracy, 
an evaluation system is proposed from four aspects: segment 
number, homogeneity within segments, heterogeneity among 
segments, and segment morphology. The SHS model is compared 
with two widely used road network segmentation methods. The 
results show that the SHS model can use fewer segments to ensure 
higher homogeneity within segments and heterogeneity among 
segments across the network. Meanwhile, the segment lengths are 
more uniformly distributed as compared with results from other 
methods. The developed model and findings from this research 
can significantly improve the utilization of sensor monitoring 
network data and support multi-scale infrastructure systems 
management. 

Index Terms—Smart infrastructure management, road 
network, road deterioration, spatial heterogeneity, GIS, spatial 
analysis 
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I. INTRODUCTION

road network is one of the core components of an 
infrastructure system [1, 2]. A critical function of the road 
network is to link buildings, transport facilities, and other 

facilities of the infrastructure system, such as energy, water, 
health, and waste facilities [3, 4]. Therefore, the road network 
conditions and effectiveness have essential impacts on the 
performance of the entire infrastructure system. Sensor 
monitoring data has been increasingly accumulated for road 
performance assessment [5, 6]. However, the methods are still 
limited insofar as effective, accurate, and large spatial scale 
infrastructure data analysis.  

In general, a road surface condition can be measured using 
the traffic burden, pavement service life, and deterioration. The 
traffic burden is computed as the sum weight of all types of 
vehicles, where heavy and light vehicles are the primary types. 
Studies in various nations show that light vehicles are much 
more common than heavy vehicles, but more than 80% of the 
traffic burden on the road surface comes from heavy vehicles 
[7]. In addition, the pavement service life is a widely used 
indicator for practical road design, construction, maintenance, 
and decision-making [8-10]. The pavement service life is 
associated with the design life, variations of traffic flows, and 
local environmental conditions, so it is usually not significantly 
correlated with real conditions. Road deterioration includes 
various movements, wear and tear, and structural and physical 
damage [11]. The rapidly increased usage of sensor monitoring 
data for road deterioration brings more opportunities to 
quantitatively assess road surface conditions [12-14]. In this 
study, road conditions are investigated using sensor monitoring 
deterioration network data.  

Road infrastructure data analysis methods generally come 
from three categories of current and practically urgent 
requirements. First, network-level management has become as 
important as project-level management. Owing to the high 
accuracy of sensors, road condition data has been widely used 
in local road construction and maintenance projects, and in 
project-level management. For instance, the spatial distribution 
of road deterioration has been predicted for roads in New York, 
USA [15], and road condition future scenarios have been 
predicted for fifteen low-volume roads in Kerala, India [16]. 
With the accumulation of data, data-driven investigations, 
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especially large spatial scale data analysis methods, have 
become more important for network-level infrastructure 
management, such as state, regional, and national level 
decision-making [17-19]. Another concern is providing 
in-depth data analysis for simultaneously satisfying different 
road users’ requirements. In practice, raw observations 
generally reveal the exact and local conditions within a short 
road, but segment-based data are more practical for real 
construction works and management [20]. For instance, 
project-level summaries can indicate the requirements or 
effects of construction and maintenance activities, and 
network-level summaries can be used in strategic road 
infrastructure investment and management. Therefore, there is 
great practical potential in developing data analysis methods 
for multi-scale infrastructure systems. Finally, the 
improvement of data accuracy requires improvements in 
modeling accuracy and effectiveness. At the same time, the 
question of how to quantitatively evaluate the accuracy and 
effectiveness of different methods remains an open issue. 

Spatial heterogeneity models have advantages in flexibly 
segmenting spatial data in both large and local spatial scales. 
For instance, in terms of spatial heterogeneity within 
geographical image data, landscape products and remote 
sensing data can be segmented in multiple scales [21-23]. 
Among the models, the spatial stratified heterogeneity 
approach is widely utilized for assessing spatial heterogeneity 
among strata defined by spatial explanatory variables in 
geosciences [24-26]. However, few knowledges are available 
about integrating spatial heterogeneity and characteristics of 
line segments on road network to address road deterioration 
issues.  

This study develops a spatial heterogeneity-based 
segmentation (SHS) model for investigating road performance 
from both project and network levels for multi-scale 
infrastructure systems. High-resolution road deterioration data, 
including curvature and deflection data, are collected across the 
entire network in the Mid-West Gascoyne region of Australia. 
The SHS model is developed and utilized for the homogeneous 
segmentation of deterioration network data. In addition, an 
evaluation system is proposed to compare the effectiveness of 
the SHS model and other two homogeneous segmentation 
methods, i.e., the cumulative difference approach (CDA) and 
the minimization coefficient of variation (MCV) method. 
Finally, the segmentation results are applied to a risk evolution 
for road infrastructure systems.  

II. RELATED WORKS 
Methods related to this study are reviewed in this section, 

including methods for road segment definition and 
homogeneous segmentation. 

A. Road segment definitions 
In construction works and network management, a road 

segment is generally defined in three ways. First, a road 
segment can be a specific part of a road located between two 
intersections [27, 28]. In this way, the road segments are 
determined by road number, name, direction, and intersection 
locations in a road network. Another approach for defining a 

road segment is to find a part of a road with uniform properties, 
such as an identical number of lanes, width, pavement surfacing 
type, construction material, or soil type. In practice and in data 
analysis, road segments are identified using categorical 
variables. The final definition considers that a road segment 
usually has similar or approximate characteristics, including 
traffic flows, road deteriorations, and local environmental 
conditions [29, 30]. Road deteriorations are reflected in sensor 
monitoring data, including curvature, deflection, roughness, 
and rutting. Local environmental conditions, such as 
temperature, precipitation, and soil moisture, can be measured 
with ground sensors and satellite remote sensing. This 
definition presents road segments using continuous 
observations of road or traffic variables. The rapidly increased 
multi-source sensor data provides more opportunities and 
potential for using the last definition in data analysis, traffic 
flow prediction, and road infrastructure management. The 
above three definitions have their respective advantages. Thus, 
there is great potential for defining road segments in a more 
comprehensive way by merging the three definitions.  

B. Homogeneous segmentation methods 
The primary objective of homogeneous segmentation is to 

derive road segments where observations tend to be 
homogeneous, similar, or approximate. Most studies utilize 
homogeneous segmentation methods in road deterioration data 
analysis. The coefficient of variation (CV)-based method and 
the CDA are two typical homogeneous segmentation methods.  

The CV is a fundamental statistical indicator for measuring 
the closeness of a group of data [31-33]. It is computed as the 
ratio between the standard deviation and mean value. The MCV 
method aims at identifying road segments with the minimum 
CV. The MCV and relevant methods have been widely used in 
signal processing [34], image classification and reconstruction 
[33, 35, 36], and system reliability analysis [37]. The major 
advantage of the MCV method is that it can effectively detect 
data groups with high homogeneity.  

The CDA segments road data by detecting locations of 
change points using a cumulative area function and its slope 
function [38-40]. In addition to road data, the CDA has also 
been applied in the segmentation and classification of images 
[41]. In general, the CDA includes three steps. First, a 
cumulative area function is constructed with observations along 
a road. Then, the cumulative difference between the cumulative 
area function and cumulative mean values is computed to 
reveal observation variations. Finally, the change point 
locations are determined as the algebraic sign changes of the 
slope of the cumulative difference function. In practice, owing 
to the sensitivity of the CDA to suddenly changed observations 
and outliers, the CDA requires modifications with data 
smoothing, removing outliers, setting a minimum segment 
length, and setting iterations [42]. The modification steps are 
selected based on observations and practical requirements. 

III. MATERIAL AND METHODS 

A. Study area and data 
The road network in the Mid West Gascoyne region is a 

critical exemplar for Australian road infrastructure systems, 
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and for the world-wide spatial statistical analysis of road 
infrastructure performance. The first factor in its importance 
relates to essential locations and the diverse and comprehensive 
functions of roads. Fig. 1 shows that the road network links in 
Perth, the capital city of Western Australia (WA), which 
includes a densely distributed population, major ports, outer 
grain production areas, and remote mining regions. Thus, the 
road network covers both urban passenger transport and heavy 
vehicle freight transportation, such as port logistics and mining 
and agricultural supply chains.  

In addition, this road network is typical for evaluation of 
"Traffic Speed Deflectometer" (TSD)-based road deterioration 
data in Australia. The TSD is a heavy vehicle-based road 
deterioration monitoring system consisting of Doppler lasers, 
3D sensors, GPS, cameras, and temperature probes [43]. Table 
I lists a summary of the road deterioration data collected by the 
TSD system in this study. In total, 364,901 observations of road 
deteriorations within an interval of 10 m are collected on 19 
highways with a total length of 3649.01 km in the Mid West 
Gascoyne road network. The Great Northern Highway (H006) 
and the North West Coastal Highway (H007) are the two 
longest roads, and their lengths account for 40% of the entire 

road network length. Road deterioration variables include 
curvature and deflection. Curvature presents asphalt fatigue 
with a shape variation of the pavement surface under certain 
loads. Deflection indicates the pavement strength, and is 
monitored as the maximum depression of a pavement surface 
under a standard load. Curvature can be computed as the 
maximum deflection for a load position minus the deflection at 
this position when the load is 200 mm away. The mean 
curvature and deflection of the road network are 152.79 μm and 
341.34 μm, respectively. In general, when the curvature is 
higher than 300 μm or the deflection is higher than 700 μm, the 
road surface conditions are poor, and maintenance and 
reconstruction are required. In the study, 6.3% and 5.1% of the 
road lengths are above the high-risk thresholds for curvature 
and deflection, respectively.  

B. Methods 
This study develops a SHS-based homogeneous 

segmentation model for road deterioration network data 
analysis and multi-scale road infrastructure system 
management. Meanwhile, an evaluation system is proposed to 

TABLE I 
A SUMMARY OF ROAD DETERIORATION OBSERVATIONS DATA 

Road No Road name Length (km) Curvature (μm) Deflection (μm) 
min max mean min max mean 

H004 Brand Highway 364.76  1.13 568.78 176.56 32.04 1363.82 396.68  
H006 Great Northern Highway 752.60  2.59 658.68 147.49 23.13 1504.13 344.81  
H007 North West Coastal Highway 707.44  3.59 1081.34 168.01 16.34 1956.69 364.15  
H044 Carnarvon Road 5.00  38.48 709.68 304.88 213.92 1739.04 782.31  
H048 Minilya Exmouth Road 209.99  6.37 682.91 155.67 34.79 1345.64 321.95  
H050 Geraldton-Mount Magnet Road 322.51  2.05 623.04 134.53 15.89 1597.79 298.28  
H062 John Willcock Link 3.84  44.20 246.00 130.83 132.52 627.57 332.39  
M007 Burkett Road 78.26  13.53 544.40 135.09 65.16 1017.12 310.53  
M011 Shark Bay Road 125.69  5.83 459.51 102.98 18.19 956.85 224.40  
M025 Mingenew-Morawa Road 58.50  2.67 564.65 184.69 73.35 3965.42 439.85  
M028 Midlands Road 181.95  16.64 795.11 183.42 83.06 1780.42 444.72  
M039 Wubin-Mullewa 205.12  6.53 601.79 137.55 16.38 1449.75 327.92  
M045 Indian Ocean Drive 254.96  9.82 674.99 150.62 29.08 1270.60 304.18  
M047 Coral Bay Road 12.32  14.05 246.14 79.59 24.79 395.97 155.13  
M054 Geraldton Walkaway Road 20.12  26.52 535.15 179.50 47.22 1207.91 385.62  
M057 Monkey Mia Road 24.75  8.88 405.51 71.30 28.79 740.58 172.80  
M058 Northampton-Kalbarri 96.04  4.97 983.08 124.74 17.24 1739.31 293.02  
M064 Moonyoonooka-Yuna Road 71.22  8.84 651.58 173.72 41.07 1550.26 402.76  
M069 Mount Magnet-Leinster 153.94 14.29 626.16 130.81 28.75 1329.07 259.89 

All roads 3649.01 1.13 1081.34 152.79 15.89 3965.42 341.34 
 

 
Fig. 1. Location and distribution of road network in the Mid West Gascoyne 
region in Western Australia, Australia. 
  

 
Fig. 2. Steps of spatial network data segmentation, flow chart of the spatial 
heterogeneity-based segmentation (SHS) method, and the evaluation system 
for comparing homogeneous segmentation methods, including cumulative 
difference approach (CDA) and the minimization coefficient of variation 
(MCV).  
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compare the effectiveness of different homogeneous 
segmentation methods. The methods in this study include four 
steps (Fig. 2): data pre-processing, segmentation by categorical 
variables, homogeneous segmentation by continuous variables, 
and model validation. The steps are introduced in the following 
subsections. 

1) Data pre-processing and spatial analysis 
The aim of data pre-processing is to ensure that the road 

deterioration network data is organized in a logical way. The 
data pre-processing includes four parts. The first part is to 
remove or fill missing data. Missing data is common in raw 
sensor monitoring data. In this study, curvature and deflection 
are monitored at a 10 m interval using an updated TSD system 
across the network, without missing data. The second part is 
computing road lengths of observations. Each observation 
represents 10 m of road surface conditions in the study. Third, 
the spatial locations of observations should be sorted to be 
along roads. Finally, geographically separated roads with 
identical road numbers and names should be identified and 
regarded as two roads.  

To further explore the spatial variations of road 
deteriorations, a one-dimensional spatial variogram is 
estimated for deterioration data along the spatial line of each 
road. The coefficients of the variograms are fitted using 
weighted least squares functions from the R “gstat” package, 
which can perform multivariate geostatistical modeling [44]. 
The fitted coefficients of the variograms are then summarized 
using a road length-weighted mean approach, to describe the 
general scales of the spatial variations of the spatial line-based 
curvature and deflection.  

2) Road segmentation by variables 
In this study, road segments are determined by both 

categorical and continuous variables, as consistent with 
practical needs in road construction projects and network 
management. In this study, the categorical variables for 
homogeneous segmentation include road number and name. 
Optionally, categorical variables can also include carriage way 

(left road, right road, or single road), administrative region, 
pavement surfacing type, etc. The continuous variables include 
the curvature and deflection sensor monitoring data.  

3) Spatial heterogeneity-based segmentation (SHS) model 
The SHS model is developed by integrating the 

homogeneous segmentation of network data and a spatial 
stratified heterogeneity analysis. The computation of the SHS 
model includes two steps. The first step is to compare the length 
of a spatial line segment data with the required threshold of 
road segment length. If the length of the spatial line segment 
data is shorter than the required minimum segment length, the 
data is regarded as a segment. If the length of the data is longer 
than the required maximum segment length, the data should be 
segmented using the segmentation approach described in the 
second step. In this study, three segment length thresholds are 
set for the multi-scale road infrastructure system: 100–500 m 
for project-level segmentation, and 1–5 km and 10–50 km for 
network-level segmentation.  

The second step is to divide the data into two segments by 
selecting a change point that meets two criteria: the data 
between the two segments has the highest spatial heterogeneity, 
and the lengths of both segments are within the required 
threshold for segment length. The heterogeneity ( ) of the data 
in the two segments is quantified using a factor detector model 
from the spatial stratified heterogeneity method [45, 46]: 

                            (1) 
where  and  are the number and standard 
deviation of the observations of the segment  or segment , 
respectively, and  and  are the number and standard 
deviation of all observations, respectively. The spatial stratified 
heterogeneity is widely used for evaluating spatial 
heterogeneity among strata defined by spatial explanatory 
variables [24-26]. In this study, it is applied for quantifying the 
heterogeneity of the segment-based data. If the segmented data 
are longer than required maximum segment length, the 
segmentation process will be repeated until all segment lengths 
are within the required length threshold. If two or more 
continuous variables are used in the homogenous segmentation, 
a mean  value of the multiple variables is computed during 
each iteration.  

4) Segmentation method evaluation system for spatial line 
data   

This study proposes a segmentation method evaluation 
system for spatial line data. The evaluation system examines 
four aspects: the number of segments, homogeneity within 
segments, heterogeneity among segments, and morphological 
characteristics of segments. First, the number of segments 
indicates the effectiveness of the methods in segmenting spatial 
line data. From this aspect, fewer segments means the method 
can more effectively segment the line data as compared with 
other methods.  

Second, the homogeneity of the data within segments 
reveals whether the data within segments tends to be similar 
and has a uniform data structure. In this study, the homogeneity 
within segments is computed as: 

                                      (2) 
where  is the number of observations,  is the 
CV of segment , and  is the number of segments. The CV is 

 
Fig. 3. Variogram coefficients and lines modeled with one-dimensional spatial 
variograms for road-based curvature (a and b) and deflection (c and d). 
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the standard deviation divided by the mean value [47]. A higher 
value of the homogeneity within segments means that 
observations within the segments are more similar, and have a 
more uniform data structure. In practice, the percentage of 
lengths of road segments with CV values lower than 0.25 
( ) is generally used to indicate the effectiveness of 
segmentation methods.  

Third, the heterogeneity among segments highlights the 
spatial disparities of data among different segments. It is 
quantified using a factor detector model of the spatial stratified 
heterogeneity method: 

                              (3) 
where  and  are the number and standard deviation of the 
observations of segment , respectively, and  is the standard 
deviation of all observations.  

Finally, the morphological characteristics of segments are 
computed using morphological indicators, to identify the 
distribution patterns of segment lengths. The segment length 
distribution is compared with two common statistical 
distributions, the normal distribution and uniform distribution. 
The closeness between the segment length distribution and one 
of the statistical distributions is calculated using the chi square 
test [48, 49], where the chi square statistical value is used to 
assess the relative closeness derived from different 
segmentation methods. A lower value of the chi square statistic 
indicates a higher relative closeness.  

IV. RESULTS 

A. Statistics and geostatistics of road deteriorations 
network data 

The road deterioration network data, including curvature 
and deflection, are pre-processed for the following analysis and 
homogenous segmentation. In total, 219 parts of roads are 
identified on 19 highways. The minimum, mean, and maximum 
lengths of the road parts are 0.11 km, 16.66 km, and 170.45 km, 
respectively. For reliable geostatistical analysis, deterioration 
data are selected for spatial variograms estimation from 184 
(84.02%) roads where the numbers of observations are higher 
than 50. The sum of the lengths of the selected roads accounts 
for 96.96% of all roads. In this study, exponential models are 
fitted to deterioration variograms. The coefficients of the 
variograms include nugget, sill, and range. The nugget-sill ratio 
is calculated to reveal the unsolved variation at scales finer than 
the sensor-monitoring resolution of the deteriorations (10 m). A 
practical range is computed as the three times the range in the 
exponential model [50]. Fig. 3 shows the summary of the 
variogram coefficients for spatial line-based curvature and 
deflection, and corresponding variogram lines fitted with road 
length-weighted mean coefficients of the variograms. The 
weighted estimated coefficients of the deterioration variogram 
lines are summarized in Table II. The nugget-sill ratios of the 
curvature on 62.35% of the roads are lower than 20%, and the 
nugget-sill ratios of deflection on 44.02% of the roads are lower 
than 20%. The road length-weighted mean nugget-sill ratios of 
curvature and deflection are 14.54% and 40.77%, respectively. 
Thus, the current sensor monitoring resolution can satisfy the 
requirements for accurate analysis of deteriorations, especially 
for curvature analysis. The practical ranges of the spatial 
variations of curvature and deflection are 1.43 km and 14.33 
km, respectively. The relatively short correlation distance of 
the curvature distribution and the long correlation distance of 
the deflection distribution indicate that curvature and deflection 
have distinct spatial structures.  

TABLE II 
ROAD LENGTH-WEIGHTED COEFFICIENTS OF DETERIORATION 

VARIOGRAMS  
Parameters Curvature Deflection 

Nugget 736.83 11730.25 
Sill 6028.56 28769.91 

Nugget-sill ratio 14.54% 40.77% 
Range (km) 0.477 4.778 

Practical range (km) 1.431 14.334 
Road numbers (% of all 

roads) 184 (84.02%) 184 (84.02%) 

Road lengths (km) (% of all 
roads) 3537.95 (96.96%) 3537.95 (96.96%) 

 

 
Fig. 4. Spatial distributions of project- and network-level segments across the 
network. Curvature: (a) project-level, (b) network-level (1–5 km), and (c) 
network-level (10–50 km). Deflection: (d) project-level, (e) network-level (1–5 
km), and (f) network-level (10–50 km). 
  

 
Fig. 5. Statistical comparison of project- and network-level segments derived 
by the SHS method 
 
  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

B. SHS-based segmentations 
Road deterioration maps (Fig. 4) demonstrate both the 

project- and network-level segment-based curvature and 
deflection distributions identified by the SHS approach. 
According to practices of road construction projects and 
decision-making experience of road network management and 
road maintenance strategies in WA, the project-level segments 
range from 100 m to 500 m, and the network-level segments 
range from 1 km to 5 km and from 10 km to 50 km. For 
instance, a majority of road construction projects deal with 
roads of a few hundred meters, such as maintenance for various 
types of local defects, so the project-level segments are defined 
as 100 - 500 m. When longer roads are damaged and need to be 
resurfaced, they will be regarded as network-level segments 
ranging from 1 to 5 km in the study. Then, resurfacing or 
rehabilitation activities may be required for road maintenance. 
For road authority, such Main Roads WA, continuous and 
regular road construction and maintenance plans are proposed 
from the perspective of the whole network management. 
Therefore, 10 - 50 km road segments are applicable for 
effective road construction design and maintenance strategies. 

By using the sensor monitoring deterioration data, the SHS 
model identifies 12,594 project-level segments, 1,271 
network-level (1–5 km) segments, and 134 network-level 
(10–50 km) segments. The deterioration values within 

segments are summarized using mean values to present spatial 
scale effects on maps. Three parts of the segment-based 
deterioration data selected from the North West Coastal 
Highway (H007) are used as examples for the comparison of 
project- and network-level homogenous segmentations. The 
first example is the segment-based data from 253.48 km to 
368.20 km, where deteriorations in the northern part are 
relatively higher than in the southern part. The other two 
examples are segment-based data from 321.94 km to 335.13 
km, where deteriorations are generally high, and 
segment-based data from 272.26 km to 281.70 km, where 
deteriorations are relatively low. The segment-based 
deteriorations on the three examples and the entire road 
network indicate that the project-level segments can effectively 
summarize deterioration observations, and can be widely used 
for local construction and road maintenance projects. The 
network-level segments are a summary of project-level 
segment data. They are essential for regional construction and 
maintenance allocation and road network asset management.  

In addition, the observed and segment-based deterioration 
data on the example roads are visualized with statistical 
summaries (Fig. 5). The statistical summaries of the 
segment-based data include mean, median, and 75% quantile 
values, where the 75% quantile values reveal patterns of 
relatively high deteriorations within segments. The 
visualization demonstrates that the SHS model can effectively 
segment road data while ensuring high homogeneity of data 
within segments, and high heterogeneity of data among 
different segments.  

Finally, the distributions of roads with a high deterioration 
risk identified at the project and network levels are compared 
for curvature and deflection (Fig. 6). In general, if the road 
surface curvature is higher than 300 μm or the deflection is 
higher than 700 μm, the road is in poor condition, and requires 
extensive maintenance activities, and perhaps even 
reconstruction. In the study, both the sensor monitoring 
observations and the segment-based data are compared with the 
high deterioration risk thresholds to identify high-risk roads. 
The high deterioration risk roads across the whole network are 
summarized in Table III. The comparison of high deterioration 
risk roads reveals three aspects. First, high-curvature-risk roads 
are longer than high-deflection-risk roads. Second, the spatial 
patterns of project-level high-risk roads are consistent with 
high-risk observation patterns. The top three 
high-curvature-risk roads are the North West Coastal Highway 
(H007), Great Northern Highway (H006), and Minilya 
Exmouth Road (H048), and the top three high-deflection-risk 
roads are the North West Coastal Highway, Great Northern 
Highway, and Midlands Roads (M028). In total, 76.08 km of 
high-curvature-risk roads and 46.02 km of high-deflection-risk 

TABLE III 
SUMMARY OF HIGH DETERIORATION RISK ROADS OF THE NETWORK  

 Deterioration risk Observation/ Segments  Length 
(km) 

Length percentage 
(%) 

Segment 
number 

Segment 
percentage (%) 

High curvature 
risk 

Observation 230.78 6.32 / / 
Project-level (100–500 m) 179.46 4.92 656 5.21 
Network-level (1–5 km) 100.23 2.75 36 2.83 

Network-level (10–50 km) 15.25 0.42 2 1.49 

High deflection 
risk 

Observation 187.09 5.13 / / 
Project-level (100–500 m) 137.73 3.77 507 4.03 
Network-level (1–5 km) 61.58 1.69 23 1.81 

Network-level (10–50 km) 15.25 0.42 2 1.49 
 

 
Fig. 6. Comparison of high deterioration risk roads. High-curvature-risk roads: 
(a) observations, (b) project-level segments, (c) network-level (1–5 km) 
segments, and (d) network-level (10–50 km) segments. High-deflection-risk 
roads: (e) observations, (f) project-level segments, (g) network-level (1–5 km) 
segments, and (h) network-level (10–50 km) segments. 
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roads are distributed in the North West Coastal Highway. 
Third, owing to the coarse resolution of network-level 
segments, the spatial patterns of network-level deteriorations 
are significantly different from project-level deterioration 
patterns. The North West Coastal Highway is still the road with 
the longest segments of high curvature and deflection risks, but 
the following high-risk roads are varied. In the network-level 
(1–5 km) results, in addition to the North West Coastal 
Highway, the length of the high-curvature-risk roads on the 
Minilya Exmouth Road reaches 19.85 km. The network-level 
(10–50 km) results also reveal that the entire Carnarvon Road 
(H044) is at high deterioration risk. The identification of roads 
above a high deterioration risk at different spatial scales can be 
flexibly used for practical road maintenance decision-making 
and construction projects.  

C. Model validation 
The effectiveness of the SHS model for road deterioration 

network data is comprehensively assessed in this study. Fig. 7 
shows a visualization for comparison of the observations and 
segment-based data of the SHS, CDA, and MCV approaches. 
The results show that the SHS model has a stronger ability in 
grouping roads with similar deteriorations, and in 
differentiating neighbor roads with significant differences. To 
further quantitatively validate the performance of the 
homogeneous segmentation methods, this study proposes an 
evaluation system. The model performance is evaluated from 
four aspects: segment numbers, homogeneity within segments, 
heterogeneity among segments, and segment morphology. In 
the model validation, the SHS model is compared with the 
CDA and MCV approaches. The data are pre-processed with 
identical steps for the segmentations of the three models. The 
statistical evaluations of the three segmentation methods at 
both project and network levels are listed in Table IV. The 
statistical evaluations in regard to the four aspects are presented 
in the following paragraphs.  

For the segment numbers, both the project- and 
network-level segmentations indicate that the SHS model can 
use the fewest number of segments to define the deterioration 
network data. The number of segments derived from CDA is 
less than that from the MCV approach. As compared with 
CDA, 11.4% and 22.4% of the numbers of segments can be 
reduced by the SHS model in the project- and network-level 
(1–5 km) segmentations, respectively. Thus, the segment 
number comparison demonstrates the effectiveness of the SHS 
model in segmentation.  

The homogeneity of the data within segments is quantified 
using two indicators, the homogeneity index, and the 
percentage of the length of the road segment with CV values 
lower than 0.25 ( ). The statistical evaluation shows that the 
project- and network-level results of the SHS model have the 
highest homogeneity within segments. In the project-level 
results, the CV values of 65.78% of the lengths of SHS-based 
road segments are lower than 0.25. The results of the SHS 
model have more segments with relatively low CV values as 
compared with the other two methods. In the network-level 
(1–5 km) results, the  values of the SHS-based segments 
are higher than those of the CDA-based results, indicating the 
relatively higher segmentation effectiveness of the SHS model. 

 
Fig. 7. Visualization comparison of three homogeneous segmentation methods: 
SHS, CDA, and MCV, for project-level (100–500 m) segments ((a) curvature 
segments, and (b) deflection) and network-level (1–5 km) segments ((c) 
curvature and (d) deflection) in parts of the road network 
  

TABLE IV 
STATISTICAL EVALUATION OF DIFFERENT SEGMENTATION METHODS AT PROJECT AND NETWORK LEVELS  

Segmentation 
level Method Number of 

segments 

Homogeneity within segments Heterogeneity 
among segments 

(Q) 

Morphology: difference to distributions 

H p0.25 Normal 
distribution 

Uniform 
distribution 

Project-level 
(100 - 500 m) 

SHS 12594 1.460 65.78% 0.810 6426.18 1346.23 
CDA 14214 1.095 56.76% 0.766 4181.81 2314.58 
MCV 18267 1.095 64.19% 0.792 41260.26 55092.50 

Network-level (1 
- 5 km) 

SHS 1271 8.393 17.61% 0.549 268.75 55.01 
CDA 1637 6.568 17.55% 0.523 1067.78 1181.23 
MCV 1670 6.568 18.36% 0.526 1150.38 1279.48 

Network-level 
(10 - 50 km) 

SHS 134 62.763 1.89% 0.338 47.44 28.21 
CDA 135 62.763 1.30% 0.336 64.62 37.97 
MCV 136 62.398 1.85% 0.337 52.42 38.63 

1. The p0.25 is the percentage of segment lengths with CV lower than 0.25 
2. Morphological indicators are the comparisons between segment length distribution and two statistical distributions, normal distribution and 
uniform distribution 
3. CDA: cumulative difference approach; MCV: minimization coefficient of variation 
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The  values of the SHS-based segments are also lower than 
those of the MCV-based results, because the MCV-based 
results contain more segments, and especially more short roads 
with homogeneous values.  

The heterogeneity of data among different segments across 
the network is quantified using a factor detector value. Both the 
project- and network-level results show that the SHS-based 
segments have the highest heterogeneity among segments. To 
further investigate the segmentation results, Fig. 8 compares 
the relationships among segment length, homogeneity within 
segments, and heterogeneity among segments at the project and 
network (1–5 km) levels. In general, data of relatively long 
segments have higher heterogeneity among segments than short 
segments, but the homogeneity within segments is not closely 
related to segment length. The road length weighted mean 
values reveal that the SHS-based segments have both the 
highest homogeneity within segments, and heterogeneity 
among segments for curvature, deflection, and the mean 
indicators as compared with the CDA and MCV approaches. In 
the project-level results, the CDA-based segments have higher 
homogeneity within segments than the MCV-based results, but 
they have lower heterogeneity among segments. In the 
network-level results, the indicators of the CDA-based 
segments at both dimensions are higher than the indicators of 
the MCV-based results. 

Finally, the segment morphology is assessed, using the 
distribution pattern of segment length. The segment length 
distribution is compared with two common statistical 
distributions, the normal distribution and uniform distribution. 
The assumption is that if the experimental distribution is close 
to one of the two distributions, the segment length is normally 
distributed or uniformly distributed, instead of biased 
distributed. Fig. 9 shows the distribution patterns of the 
segment-based data identified by the SHS, CDA, and MCV 
methods, and their differences from normal and uniform 
distributions. In the project-level results, the length distribution 
of the SHS-based segments is closer to a uniform distribution, 
and that of the CDA-based segments is closer to a normal 
distribution. The lengths of the MCV-based segments are 
biased distributed. In the network-level (1–5 km) results, the 
length distributions of the three methods appear to be bimodal, 
with a main peak at approximately 1.5 km and a lower peak at 
approximately 4 km. The length distribution of the SHS-based 

segments is closer to a uniform distribution. Owing to the 
biased distributions of the CDA- and MCV-based segment 
lengths, the distribution of the SHS-based segment lengths is 
also closer to a normal distribution as compared with the results 
of other two methods. In the network-level results at 10–50 km, 
the distributions of the three methods are similar, and appear to 
be bimodal. However, the chi-square test indicates that the 
result of the SHS model is the best, and is closer to a uniform 
distribution. Therefore, the segment morphology evaluation 
indicates that results of the SHS model are generally closer to 
uniform distributions, and the distribution bias is much lower 
than that from the other two methods. 

V. DISCUSSION 
The proposed spatial heterogeneity-based homogeneous 

segmentation model is applied in multi-scale road 
infrastructure management and for investigating high 
deterioration risk roads across the network. The findings and 
explanations of the project- and network-level analysis are 
respectively presented in following paragraphs.   

The project-level analysis aims at supporting the life cycle 
of road engineering, including the design of new roads, 
construction, operation, maintenance, and reconstruction. In the 
study, the spatial distribution patterns of deterioration data of 
project-level segments are consistent with the patterns from 
sensor monitoring observations. The consistent patterns 
indicate that the quantity of deterioration data is significantly 
reduced to 3.45% (12,594/ 364,901), and simultaneously, the 
key information of the deteriorations remains. For example, the 
high curvature and high-deflection-risk roads identified by the 
SHS model are approximately identical to the observed 
high-risk roads. In the study, the high deterioration risks mainly 
appear on the North West Coastal Highway, Great Northern 
Highway, Minilya Exmouth Road, and Midlands Road. 
Distance is a major factor in the freight transportation mode 
[51], meaning that roads near certain types of freight suppliers 
or needs may be responsible for more supply chains, and are 

 
Fig. 8. Comparisons between heterogeneity among segments and homogeneity 
within segments for project-level (100–500 m) (a) and network-level (1–5 km) 
(b) results 

 
Fig. 9. Statistical distributions of segment lengths of SHS, CDA, and MCV 
methods at project-level (100–500 m) (a), network level (1–5 km) (b), and 
network-level (10–50 km) (c), and distributions of differences from normal and 
uniform distributions at project-level (100–500 m) (e) and network level (1–5 
km) (f).  
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associated with dense freight transportation and port, mining, 
and agricultural logistics. In addition, accurate project-level 
segments are critical for practical engineering works. One of 
the primary tasks of the project-level road infrastructure 
performance investigation is to optimize life-cycle solutions to 
satisfy stakeholders' requirements [52]. In general, the 
requirements consist of improving quality and productivity, 
reducing road user cost, real-time tracking of on-site 
construction progress, decreasing safety and environmental 
risks, and improving information management capabilities 
[53-55]. The project-level segments can significantly improve 
the accuracy and efficiency of decision making in the life cycle 
of road engineering, and can better satisfy users’ requirements.  

The network-level analysis is equally important as the 
project-level analysis, but they have different objectives and 
applications. First, the network-level analysis is desired for 
macro and large-spatial-scale decision making, instead of for 
single-construction projects. The network-level decision 
making includes statistics of road surface conditions across the 
network, strategic network investment for construction and 
maintenance, optimizing categories of deterioration risks, and 
network asset management. In addition, the spatial patterns of 
network-level deteriorations tend to be similar to project-level 
deterioration patterns, but they can present distinct regional 
information. In this study, the high-risk roads are varied at the 
project and network levels, owing to the different length 
percentages of high-risk observations within segments at the 
two levels. From the perspective of network-level management, 
extensive maintenance is required for roads where the overall 
deterioration is severe, or where most parts of the roads are in 
poor condition.  

VI. CONCLUSION  
Defining road segments based on sensor monitoring and 

continuous deterioration data is a fundamental and critical issue 
for intelligent transportation systems, and smart and sustainable 
infrastructure systems. Homogeneous segmentation 
approaches provide effective solutions for investigating road 
deterioration network data. This study proposes a spatial 
heterogeneity-based homogeneous segmentation model for 
more effectively defining road segments using sensor data. In 
addition, an innovative model evaluation system is proposed in 
the study for comprehensive model validation. The primary 
advantage of the SHS model is that the optimal segment-based 
information can be identified with fewer segments. The optimal 
segment-based information includes a relatively high 
homogeneity of data within segments, and a high heterogeneity 
of data among different segments. Both the project- and 
network-level segmentation results indicate that the 
deterioration data within SHS-based segments tends to be 
approximately similar, and the data among neighbor 
SHS-based segments are significantly varied. Meanwhile, the 
SHS model can generate more uniformly distributed lengths of 
segments. The morphological characteristics of the SHS-based 
segments can significantly reduce the impacts of massive short 
segments on practical works and are identified to ensure higher 
segmentation effectiveness. As such, the SHS model and 
concepts and knowledge of the model evaluation system can be 
potentially utilized in broader research regarding network data 

segmentation and spatial model evaluations in transportation 
and road infrastructure. The multi-scale spatial analysis for 
segment-based road deteriorations can be flexibly utilized in 
various project- and network-level studies, construction, and 
road infrastructure management. Therefore, a data-driven road 
segment definition is not only essential for understanding and 
applying sensor monitoring big data, but is also practical for 
road construction works and network asset management.   
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