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Abstract  

Speaking involves selecting a word among co-activated words in the lexicon. The factors 

determining which potentially co-activated words affect the production of spoken words 

remain underspecified. This research investigated the influence of words that sound similar 

to a target word (phonological neighbours) on the picture naming latency and accuracy of 

young English-speaking adults. Response time analyses showed a significant interaction 

between the frequency of the target and the frequency of those phonological neighbours 

that were higher in frequency than the target. Analysis of a published picture naming 

dataset gave similar results. The mechanisms underlying these results were explored using 

computational modelling. The critical interaction observed in the human data was 

successfully reproduced in analyses of the output of some versions of an interactive 

activation model. This model featured a relatively slow rise of activation in the phonological 

lexicon nodes, resulting in an increase in the effect of frequency. Overall, results show that 

phonological neighbourhood effects are tightly related to frequency effects.  
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Introduction 

Every act of oral communication requires retrieval of a phonological word form: We need to 

select the word form that corresponds to the meaning we wish to convey, from a range of 

words, including those with a similar phonological form. One common metric to 

characterise form similarity between words in the lexicon is phonological neighbourhood 

density (PND). The phonological neighbourhood density of a given word refers to the 

number of words in the lexicon that only differ from that word by one phoneme, either 

substituted, added, or deleted (Luce, 1987). For example, under this definition, ‘fat’, ‘kit’, 

‘cab’, ‘at’, ‘scat’ and ‘cats’ all count as phonological neighbours of ‘cat’.  This definition of 

neighbours is widely accepted and used in the speech production literature (e.g., Sadat et 

al., 2014; Vitevitch, 2002) and in programmes that allow the calculation of phonological 

neighbourhood density (PND, e.g., N-Watch (Davis, 2005) and Clearpond (Marian et al., 

2012)). Consequently, this is the definition used in this paper1. Some words have many 

phonological neighbours (high PND, or ‘dense’ phonological neighbourhoods; e.g., cat, 50 

neighbours; man, 51 neighbours), others have few (low PND, or ‘sparse’ neighbourhoods; 

e.g. inch, 5 neighbours; elk, 6 neighbours). Each of these neighbours has its own specific 

frequency value and hence a word’s phonological neighbourhood can be of overall high or 

low frequency depending on the frequency of the neighbours (high or low phonological 

neighbourhood frequency (PNF)).  

It is generally assumed that when a word is activated in the lexicon, the phonological 

neighbours of this word are also activated (e.g., Luce et al., 1990). This is true when we 

                                                 
1 Other measures of neighbourhood density include the Clustering Coefficient (Watts & Strogatz, 1998), 

Neighbourhood spread (Andrews, 1997), or Phonological Levensthein distance (Suárez et al., 2011). 
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recognise spoken words, with consistent inhibitory effects of more dense phonological 

neighbourhoods (e.g., Luce & Pisoni, 1998). Despite less consistent effects in spoken word 

production (see below for review), some theories also hypothesise that phonological 

neighbours are activated in spoken word production and that this activation affects the 

lexical selection process (e.g., Chen & Mirman, 2012; Dell & Gordon, 2003). The more 

phonological neighbours that are active, the greater the influence is hypothesised to be.  

In models with interactivity between word nodes and phoneme nodes, phonological 

neighbours are generally assumed to be activated in spoken word production. For example, 

within the interactive activation account proposed by Dell and colleagues (1997), activation 

of phonological neighbours occurs by feedback from the phoneme level to the word level: 

activation flows back, not only to the target lexical item, but also to its phonological 

neighbours (see Figure 1). Then, if (many) neighbours are active, they in turn will further 

activate the target’s phonemes, leading to facilitation of target production (e.g., Dell & 

Gordon, 2003). This model does not feature competition or inhibition within or between 

levels. However, even within this account, the effect of neighbours need not be facilitatory. 

If, for example, neighbours are strongly activated at the word level, approaching the level 

of activation of the target, then these neighbours might yield inhibitory effects. For 

example, if there is noise or damage to the system, such as weakened lexical connections 

following brain damage or in the case of healthy ageing, a phonological neighbour could be 

selected in the place of the target, therefore affecting accuracy. In addition, more time 

steps may be required for the target to reach a level of activation sufficiently superior to the 

level of activation of the phonological neighbours to be selected (see e.g., Gordon & 

Kurczek, 2013).  

< Insert Figure 1 about here > 
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Chen and Mirman (2012) also modelled the influence of phonological neighbourhood 

density in a model where interactivity between levels is complemented with bi-directional 

inhibitory connections within the word level. The general principle here was that weakly 

active neighbours should exert facilitative effects while strongly active neighbours should 

be inhibitory. Chen and Mirman suggest that in spoken word production, phonological 

neighbours are weak neighbours and should, therefore, exert a facilitatory effect on 

response time, while semantic neighbours, on the other hand, are strong competitors and 

should therefore induce inhibitory effects.  

It is, indeed, uncontroversial that producing a word to speak involves selecting the target 

word from a set of co-activated semantically related candidates. However, existing studies 

of “simple” picture naming do not find effects of the number of semantic competitors a 

word has in the lexicon. This can be seen through investigations of the influence of 

“semantic neighbourhood density” (the number of words that are close in meaning to a 

given target) that has not been shown to predict picture naming behaviour in unimpaired 

subjects (for a review, see Hameau et al., 2019). This is not to say that there is no 

competition between semantically related words in simple picture naming: the presence of 

semantic competition has been demonstrated in a range of paradigms and in a 

considerable number of studies (see Abdel Rahman and Melinger, 2009, for a review). 

However, because of these null findings, and in order not to lose the focus of the present 

study by considering this issue in detail, semantic neighbourhood density was not included 

as a predictor in the present study. 2  

                                                 
2 We also performed analyses including semantic neighbourhood density on the Australian picture naming 
response times and accuracy of the present study (unreported here but available upon request to the 
authors), and found no significant effect of this predictor, in line with previous findings. 
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Returning to focus on phonological neighbours, it seems clear from the literature, that 

current theories hypothesise that there may be a critical role of the degree of activation of 

both target and neighbours in the effects of neighbourhood on production. One of the 

most well-known causes of variation in lexical activation is word frequency. Lexical 

frequency can be represented either as different resting activation levels (e.g., Dell, 1988) 

where, by virtue of their higher resting levels of activation, higher frequency words are 

given a “head start” in the selection process, or as different connection weights between 

lexical and sublexical units (e.g., Chen & Mirman, 2012), where more frequent use results in 

stronger connection weights between a higher frequency word’s lexical representation and 

its segments, compared to a lower frequency word. Both mechanisms result in faster and 

higher activation of phonemes leading to greater accuracy and shorter latencies in word 

production for higher frequency words. If the frequencies of the phonological neighbours of 

the target are also taken into account, one would expect that, first, the higher the 

frequency of phonological neighbours, the stronger their effects on target word selection; 

and second, the lower the frequency of a target, the stronger the effects of its phonological 

neighbours. Hence, maximal effects of phonological neighbours would be expected on 

words that are lower in frequency but have many phonological neighbours of higher 

frequency. However, the precise balance between overall facilitation and inhibition in these 

scenarios is unclear. The present study aims to shed light on these patterns through both 

behavioural and computational modelling experiments. We first review the current 

literature on phonological neighbourhood effects in spoken word production, and then 

return to this issue in more detail. 
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In spoken word production, the majority of research has focused on phonological 

neighbourhood density (PND), with less of a focus on effects of neighbourhood frequency. 

In general, there is a lower likelihood of phonological errors for words of high PND 

compared to low PND, in spontaneous speech (e.g., malapropisms in an English speech 

error corpus: Vitevitch, 1997), or in paradigms designed to induce speech errors 

experimentally (the SLIPs, or Spoonerisms of Laboratory-Induced Predisposition 

technique: Stemberger, 2004; Vitevitch, 2002). In naming to definition, high PND targets 

seem to elicit more correct responses and fewer tip-of-the-tongue states than low PND 

targets (e.g., Vitevitch & Sommers, 2003). However, in contrast to these facilitatory effects 

of PND in some tasks that incorporate spoken word production, there is not yet any clear 

consensus regarding the effects of PND on a particular task used to investigate spoken 

word production processes: picture naming. Findings in English picture naming differ with 

respect to the presence and the direction of any effect3 (e.g., facilitation: Vitevitch, 2002; 

no effect:  Vitevitch et al., 2004; inhibition: Newman & German, 2005), and effects seem to 

depend on the age of the participants (e.g., inhibitory effects on accuracy in children: 

Newman & German, 2002; no effects on accuracy in young adults: Vitevitch, 2002). The 

relevant literature is summarised in Table 1. In English speaking young adults, PND seems 

to exert either a facilitatory effect on latency (Vitevitch, 2002: Experiments 3, 4, and 5; see 

also Newman & Bernstein Ratner, 2007, for a marginally significant facilitatory effect) or no 

significant effect (Gordon & Kurczek, 2013;  Vitevitch et al., 2004); while the effect on 

accuracy has also been either facilitatory (Newman & Bernstein Ratner, 2007) or non-

                                                 
3 Here, we focus on current findings in picture naming in the English language, acknowledging that these 
effects are not necessarily generalisable across languages, as shown for example by the mostly inhibitory 
effects of PND found in Spanish ( Pérez, 2007; Sadat et al., 2014; Vitevitch & Stamer, 2006, but see Baus et al., 
2008), in Dutch (Jescheniak & Levelt, 1994; Tabak et al., 2010), and even in words from an artificial lexicon 
(Frank et al., 2007). 
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significant (Gordon & Kurczek, 2013; Vitevitch, 2002: Experiments 3-5; Vitevitch et al., 

2004: Experiment 3). A different pattern of results has been found in other age groups: in 

children, Bernstein Ratner and colleagues (2009) found no significant effect of PND on 

latencies despite facilitation on accuracy. In contrast, Arnold et al.  (2005), found inhibitory 

effects for both children’s latencies and their accuracy, and Newman and German (2002, 

2005) observed a detrimental effect of high PND on accuracy. This was for three different 

PND measures: “standard” PND, and in the 2005 study, also for the number of phonological 

neighbours of higher frequency than the target, and frequency-weighted PND. Finally, in 

older adults, Gordon and Kurczek (2013) found inhibitory effects on latency (but not 

accuracy) of a measure that consisted of the residuals obtained by regressing PND on 

length (thereby removing the shared variance attributable to length).  

<Insert Table 1 about here> 

Turning to those studies that have investigated the effect of phonological neighbourhood 

frequency (PNF), the effects mostly seem to be facilitatory. In young adults (Newman & 

Bernstein Ratner, 2007) and in older adults (Vitevitch & Sommers, 2003), facilitatory effects 

of PNF were found on both accuracy and response latency, and on accuracy in children 

(Bernstein Ratner et al., 2009; Newman & German, 2002). However, these results need 

replication given the small number of available studies, in particular for the young adult 

group. 

An important consideration here, is how phonological neighbourhood frequency is 

calculated. As noted above, it refers to the overall frequency of a word’s neighbours. Some 

studies have used the average of the frequencies of each neighbour as a measure of 

neighbourhood frequency (e.g., Baus et al., 2008; Chan & Vitevitch, 2010; Vitevitch, 2002; 
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Vitevitch & Sommers, 2003), while others have used the summed frequency of the 

neighbours (e.g., Coady & Aslin, 2003; Mirman & Graziano, 2013). In the computational 

implementation of Levelt et al.'s (1999) theory, WEAVER++, the probability of lexical 

selection is determined by the Luce ratio, which refers to the activation of the target 

divided by the sum of the activation of the competitors and the target. Hence for this 

theory, what is important is the sum of the frequency of the phonological neighbours. In 

contrast, we are unaware of a theory that would predict the average frequency to be the 

relevant factor. Consequently, in the research presented here we used summed frequency 

as the measure of neighbourhood frequency. The use of summed PNF rather than average 

PNF, does result in a stronger confound with the number of phonological neighbours, 

compared to the use of average PNF (perhaps why, for example, Vitevitch and Luce (1998) 

refer to summed PNF as "frequency-weighted similarity neighborhood")4. However, it has 

the advantage of being less affected by the presence of neighbours that are potentially very 

low in frequency than a metric based on average frequency of neighbours. 

While previous research has examined effects of PNF, we have argued that the prediction 

from current theories is that what is more likely to be important is not the “main” effect of 

PND or PNF, but the relative strength of activation of neighbours relative to the target. The 

influence of neighbours is predicted to be more influential on production of low frequency 

targets than on high frequency targets, and neighbours of higher frequency than the target 

to have stronger effects than neighbours in general. If this prediction is correct, then one 

                                                 
4 Although in this paper we are reporting analyses pertaining to the summed frequency of phonological 
neighbours, the Supplementary Materials include a summary of supplementary analyses with average 
neighbourhood frequency measures, given their prevalence in the literature. The findings are mostly very 
similar between measures of summed and average frequency of a word’s neighbours. 
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would expect effects of PND or PNF to vary, depending on the frequency of targets relative 

to the frequency of these items’ phonological neighbours.  

This idea of different effects of phonological neighbours depending on the relative levels of 

activation of a target and its phonological neighbours is not new. In auditory word 

recognition, the Neighbourhood Activation Model (Luce & Pisoni, 1998) has very similar 

predictions: Within this model, the Neighbourhood Probability Rule states that the 

absolute frequency of a given target word may have different effects on word recognition 

depending on the frequency of this target word’s phonological neighbours. Luce and Pisoni 

predicted, for instance, that the words that would be the most difficult to recognise would 

be low frequency target words with neighbours that are high in frequency. Similarly, 

Newman and German (2002) directly targeted the frequency of the target and the 

frequency of its phonological neighbours in spoken word production by investigating the 

effect of the number of neighbours of higher frequency than the target (and found an 

inhibitory effect of these neighbours). However, no study has, to our knowledge, looked at 

the interaction between target frequency and phonological neighbourhood density or 

phonological neighbourhood frequency in picture naming (density or frequency of either all 

phonological neighbours, or of neighbours of higher frequency than the target only). This is 

a focus of the present study and will allow a better specification of the dynamics at play 

during spoken word production.  

All the studies reviewed above but one (Gordon & Kurczek, 2013) used a factorial design, 

that is, controlled sets of stimuli with a dense/sparse neighbourhood or high frequency/low 

frequency neighbourhood condition.  Because of the problems in precisely matching the 

item sets, this type of design usually leads to small numbers of items, resulting in a reduced 
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number of trials. It can be as few as eight items (Arnold et al., 2005), and up to 72 (Newman 

& German, 2002), and is in contrast with, for example, Gordon and Kurczek (2013) who used 

200 items in a continuous design (See Rabovsky and colleagues (2016), for a discussion 

regarding issues relating to the dichotomisation of continuous variables). Consequently, in 

the present study, we used a continuous design (i.e., without matching sets with 

manipulated variables) with a larger number of trials (more participants and more items) to 

increase power in the determination of which aspects of PND/ PNF are most critical in 

predicting picture naming behaviour.  

Hence, in Experiment 1, we used simple picture naming as a tool to investigate the 

influence of several measures of PND and PNF on spoken word production in a group of 

Australian English speakers, using a large number of stimuli. We used linear mixed effect 

modelling to take into account individual variation induced by different participants and 

different items. In Experiment 2 we replicated our latency analysis with a published set of 

picture naming data in British English. Finally, in Experiment 3, we used computational 

modelling to explore the characteristics of the language system that can replicate the 

effects found across Experiment 1 and 2. Computational modelling is a powerful tool for 

theory building. By adjusting the parameters of a computer program that aims to simulate 

a certain behaviour, and comparing the outcomes of simulations that use different 

parameter settings, to the corresponding “real-life” behaviour, it is possible to test and 

refine theories. In Experiment 3, we ran a series of simulations in some versions of an 

interactive activation model (DRC-SEM, an extension of the Dual Route Computational 

(DRC) model of reading: Coltheart et al., 2001 that enables simulation of spoken word 
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production from semantics) in order to explore the necessary features of the language 

production system required to simulate our behavioural effects.  

Experiment 1: Picture naming in Australian English speakers 

The goal of this experiment was, using a range of phonological neighbourhood measures, 

to determine:   

a) how phonological neighbourhood measures predict picture naming behaviour 

(response time and accuracy) in English speaking young adults, while controlling 

for other variables that have proven to be influential in picture naming,  

b) whether measures of phonological neighbourhood density and phonological 

neighbourhood frequency (including measures of neighbours of higher frequency 

than the target) interact with target frequency, 

c) whether the strongest effects are observed with measures pertaining to 

neighbours that have higher frequency than the target.  

Method 

Participants 

Forty monolingual English-speaking participants (29 females) were recruited from 

Macquarie University (Australia) and gave their written consent to participate in this study. 

All either received course credit, or were paid AU$15 for their participation. All had English 

as their native language and none was exposed to another language at home. They were 

aged between 18 and 36 years (mean 20.7, SD 3.64) and had normal or corrected-to-normal 

vision. 

Stimuli 
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The stimuli presented for naming consisted of 386 black and white drawings taken from the 

International Picture Naming Project (IPNP) picture database (Székely et al., 2004). These 

stimuli were selected from the 520 IPNP items when they had a target name that consisted 

of a single word, and had name agreement of greater than 75% in English monolingual 

speakers as given in the IPNP database.  Following the experiment, further items were 

excluded from the analyses, due to low (less than 50%) accuracy (24 items, 6% of total 

items), or because the dominant Australian English response for this target comprised two 

words (skipping rope, paper bag, coat hanger: 3 items, <1% of total items).  This procedure 

resulted in a final set of 359 items for analysis. Separate analyses were performed on the 

183 monosyllabic items within this analysed set, in order to verify that potential observed 

effects were maintained when only using monosyllabic words. This is because the 

computational modelling in Experiment 3 was conducted using only monosyllabic words 

(the only type of words in the DRC vocabulary). In addition, this allows better comparison 

with the reviewed studies in which targets were all monosyllabic (Arnold et al., 2005; 

Gordon & Kurczek, 2013; Newman & German, 2002; Vitevitch, 2002; Vitevitch et al., 2004; 

Vitevitch & Sommers, 2003).  

Our control predictors included the properties of the words or trials that have commonly 

been shown to influence the speed of picture naming (e.g., Alario et al., 2004; Baayen & 

Milin, 2010; Perret & Bonin, 2018). These include the target attributes name agreement 

(consisting of average accuracy for each item), visual complexity, familiarity, age of 

acquisition, imageability, word length in phonemes and phonotactic probability, plus trial 
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number. Experimental predictors included log word-form frequency5 of the target, as well 

as four phonological neighbourhood measures: phonological neighbourhood density (PND) 

(consisting of the number of phonological neighbours of the target), higher frequency PND 

(corresponding to the number of phonological neighbours whose word frequency was 

higher than the frequency of the target word), summed phonological neighbourhood 

frequency (PNF) (the sum of the frequencies of all of the target word’s phonological 

neighbours), and summed higher frequency PNF (the summed frequency of those 

phonological neighbours whose word frequency was higher than the frequency of the 

target). All measures are described in detail in Appendix A, and a list of stimuli is provided in 

the supplementary materials. Correlations between the different psycholinguistic variables 

are provided in Table 2. 

<Insert Table 2 about here> 

Procedure 

DMDX (Forster & Forster, 2003) was used for presentation of the stimuli. Instructions were 

presented on the screen and explained further by the examiner: participants were asked to 

name each picture as quickly and accurately as possible, with a single word. Each trial 

started with a 200ms fixation cross, followed by a blank screen for 600ms, which was then 

followed by the target picture presented in the centre of the screen for 2000ms. Recording 

started upon stimulus presentation and continued for 2000ms after the picture 

disappeared. A new trial was initiated 1500ms after timeout. There were 10 practice items, 

                                                 
5 We chose neighbour frequency counts based on the word-form rather than the lemma throughout, in line 
with previous studies (e.g., Newman & German, 2002; Vitevitch & Sommers, 2003), and applied this choice to 
target frequency as well. Another reason for this choice is that, with the one phoneme difference rule, 
neighbours can be the plural of the target word (“cats” is a neighbour of “cat”), therefore not corresponding to 
the lemma. We acknowledge that it would be equally sensible to consider lemmas and lemma frequency both 
for targets and phonological neighbours (which we implemented in a previous version of this manuscript, 
obtaining a very similar pattern of results). 
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followed by the 386 picture stimuli (that included the 359 items that were eventually 

analysed), organized in four blocks of approximately 96 items (11 minutes) each, separated 

by a short break. The order of stimuli was fully randomised, blocks were only created in 

order to allow for a few breaks in the experiment. The experiment lasted approximately an 

hour.  

Analysis  

Data were analysed in R (R Core Team, 2014) using generalised linear mixed effects 

modelling to assess the specific respective influence of each PND/PNF variable, allowing 

the effect to vary across participants and items, while removing the variance associated 

with control predictors. 

Vocal response latencies were manually adjusted using CheckVocal (Protopapas, 2007). A 

response was coded as correct when it corresponded exactly to the target word, with no 

self-correction or dysfluency. Acceptable alternative responses (e.g., ‘refrigerator’ for 

‘fridge’ or ‘bathtub’ for ‘bath’) were discarded from both latency and accuracy analyses, 

given that the phonological neighbourhood values would differ for these responses. 

Incorrect responses included visual errors, semantic errors, and no responses (or timeout), 

and were removed from response time (RT) analyses. 

For each participant, response times that were above three standard deviations from the 

participant’s mean (1.22% of all correct trials) were replaced by the actual value of three 

standard deviations above the participant’s mean. This ensured that longer response times 

that expressed the difficulty of some items for a given participant were not removed from 

the data, but their replacement ensured a more normal distribution. Raw response 

latencies were used as dependent variable. In order to satisfy normality assumptions, a 

generalised linear mixed effect model was fitted, assuming an inverse Gaussian distribution 
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(with an identity link function). This procedure was preferred to the use of a linear mixed 

effects model with transformed RTs, as transformation can distort the ratio scale properties 

of measured variables, which comes with a risk of misinterpretation (Lo & Andrews, 2015)6. 

All independent variables were standardised across the set of 359 items for each 

participant, to have a mean of zero and standard deviation of 1, in order to allow for clearer 

interpretation of the size of the effects and of interactions.  

Addressing multicollinearity 

Inspection of the pairwise correlations between all predictors revealed that several of the 

item-related predictors were correlated, especially and unsurprisingly all the PND/PNF 

variables (see Table 2). Correlations between explanatory variables can create 

multicollinearity and inflate standard errors between multicollinear variables. To avoid 

multicollinearity between PND/PNF measures, we chose to run separate analyses with each 

individual PND/PNF variable. Moreover, while some authors have residualised predictors in 

order to overcome multicollinearity between length and PND (e.g., Gordon & Kurczek, 

2013; Sadat et al., 2014), Wurm and Fisicaro (2014) do not recommend using this 

procedure, as it may lead to interpretation errors. As regressions already allow us to 

determine the effect of one predictor independent of the variance shared with control 

variables, we did not residualise our predictors. Multicollinearity was monitored by looking 

at Variance Inflation Factors (VIFs), that are indicators of multicollinearity: Depending on 

the authors, VIFs above 2.5 (e.g., Allison, 2012) or 5 (e.g., Hutcheson & Sofroniou, 1999) are 

                                                 
6 We thank Steve Lupker, who reviewed our initially submitted manuscript, for the suggestion of using GLM 
with untransformed RTs. We had initially run LME analyses with transformed RTs and the pattern of results 
(effects of phonological neighbourhood variables) was very similar. A description of these analyses and the 
associated results are available upon request to the first author of this manuscript. 
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a sign of potentially problematic multicollinearity. In another attempt to reduce potential 

model instability due to multicollinearity, it was decided to remove age of acquisition and 

familiarity from the set of control predictors7. This was motivated by the fact that, in our 

analyses the inclusion of these two variables led to a reversal of the effect of target log 

frequency most likely due to multicollinearity as age of acquisition and familiarity are 

strongly correlated with log frequency (around r = .5). Note that the pattern of results 

concerning effects of neighbourhood variables was very similar in the analyses including 

age of acquisition and familiarity to those reported here (details available from the authors 

on request). Potentially problematic patterns of multicollinearity between frequency and, 

for instance, age of acquisition do not seem uncommon: for example, in some spoken 

picture naming studies, frequency effects have been shown to lose significance when age of 

acquisition is taken into account (see, for example, Bonin et al., 2002). Age of acquisition 

and frequency are both thought to affect “the lexical system” (Alario et al., 2004) and 

although concept familiarity (as opposed to word familiarity) is thought to affect earlier 

stages of processing, in reality it seems that concept familiarity ratings are confounded 

with the subjective frequency of words (with correlations as strong as r = .73: Boukadi et al., 

2016; see also Chedid et al., 2019). Therefore, target word frequency, age of acquisition and 

(concept) familiarity may be measuring similar constructs and it is therefore not essential to 

include them all in our analyses. Indeed, removing other variables that are conceptually 

similar to frequency could be argued to clarify the actual relationship between frequency 

and the dependent variable. 

                                                 
7 The removal of age of acquisition and familiarity followed the advice of an anonymous reviewer. Results of 
analyses including age of acquisition and familiarity are available upon request to the authors. 
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Generalised linear mixed effects models were run to assess the contribution of our variables 

of interest, and were performed using the lme4 software package (Bates et al., 2015), p-

values were obtained using lmerTest (Kuznetsova et al., 2017). We first searched for the 

best “base” model (prior to the inclusion of PND/PNF variables). The initial model included 

by-item and by-participant random intercepts in order to account for the random variation 

corresponding to specific words or speakers, and control variables (trial order, visual 

complexity, imageability, length in phonemes, phonotactic probability and name 

agreement) as fixed factors. Next, to define the “base model”, we used model comparison 

to remove those fixed factors that did not significantly improve the model fit. Once this 

base model was hence defined, the relevant measures of phonological neighbourhood 

(PND, PNF, higher frequency PND, or summed higher frequency PNF), as well as target log 

frequency, were added as main effects, in separate models, together with an interaction 

between the phonological neighbourhood variable and target log frequency. Given that the 

different measures of PND/PNF are not compared within the same model, we were able to 

assess each measure’s predictive value compared to the other measures by inspection of 

these separate models’ respective Akaike Information Criterion (AIC). The lower the AIC, 

the better the fit for that particular model and hence the better the predictive value of the 

PND/PNF measure in that model. 

Results 

A summary of all the results of every model run in the study is available in the 

supplementary materials. 

Response time analyses 
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Full set of 359 items 

First, average response time was significantly negatively correlated to average accuracy for 

each item (r = -.665, p < .001). This shows that participants did not sacrifice response time at 

the expense of accuracy nor vice-versa. The inclusion of imageability as a predictor along 

with the other control predictors did not improve the fit of a model incorporating the 265 

items that had imageability values (X2(1) = 0.82, p = .366). Imageability was then removed 

from the predictors, leading to the further analyses being performed on the full set of 359 

items. Consistent with previous literature on the predictors of picture naming latencies, 

words with higher name agreement predicted faster reaction times (X2(1) = 93.58, p <.001). 

The other predictors did not significantly improve the model (visual complexity: X2(1) = 

2.54, p = .111); number of phonemes: X2(1) = 1.14, p = .286; phonotactic probability: X2(1) = 

0.01, p = .905; trial number: X2(1) = 1.09, p = .296). Hence, the final “base” model included 

name agreement as a control fixed factor. In order to account for the random variation 

induced by specific participants and items, we included participant and item as random 

factors (with random intercepts).   

To determine how measures of PND/PNF affected performance, we examined each 

independently when introduced into the base model as a main effect, together with an 

interaction term with target log frequency (see Table 3). The model including higher 

frequency PND and its interaction with target log frequency did not converge, hence the 

model without the interaction term is reported here. 

<Insert Table 3 about here> 

No PND or PNF measure showed any effect on response time, with the exception of a 

significant interaction between summed higher frequency PNF and target log frequency. 

This interaction is illustrated in Figure 2. For words of lower log frequency, the resulting 
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effect of high summed higher frequency PNF tended to be inhibitory, while the effect was 

facilitatory for targets of higher log frequency. The main effect of frequency did not reach 

significance in any of the analyses. 

<Insert Figure 2 about here> 

Subset of 183 monosyllabic items 

Response time analyses for the 183 monosyllabic items included the same control 

predictors as in the analyses of the full set of 359 items, and again all independent variables 

were standardised. When PND/PNF variables were added separately in the model as main 

effects, a significant interaction between target log frequency and summed higher 

frequency PNF was observed, similar to the analysis of the full set (see Table 3). No other 

significant effects of PND/PNF were observed, and similar to the analyses on the full set, 

the effect of target log frequency did not reach significance on any of the analyses.  

Accuracy analyses 

Accuracy analyses were performed using generalised linear mixed effect models, using the 

lme4 software package (Bates et al., 2015). Accuracy was coded as error = 0, correct = 1, 

and overall, accuracy was 87.35%. For accuracy analyses, we considered the same set of 

fixed predictors as for RT analyses, and also included by-item and by-participant random 

intercepts. Once a set of control variables was defined, the relevant measures of 

phonological neighbourhood density or phonological neighbourhood frequency were 

added separately as main effects in distinct models, together with an interaction with 

target log frequency. All independent variables were standardised, in the same fashion as in 

response time analyses.  

Full set of 359 items 

The inclusion of imageability in a model run on the 265 items with imageability values 
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significantly improved the model (X2(1) = 6.07, p = .014). Hence, imageability was kept as a 

control variable, leading to analyses being performed on 265 items instead of 359. Amongst 

the remaining control variables, only length in phonemes made a significant contribution to 

the model’s fit (X2(1) = 6.54, p =.011): longer words were less likely to be named correctly. 

The other predictors were not found to improve the model significantly (trial order: X2(1) = 

1.40, p = .237; visual complexity: X2(1) = 0.33, p = .565; phonotactic probability: X2(1) = 1.06, 

p = .302). Consequently, the accuracy “base” model included imageability and length in 

phonemes as fixed effects, and by-item and by-participant random intercepts. 

Next, each PND/PNF measure was added individually to that base model as a main effect, 

together with an interaction with target log frequency. No effect of any PND/PNF measure 

or interaction reached significance (see Table 3). Target log frequency only reached 

significance in the higher frequency PND model (ß = 1.36, z(0.15) = 2.07, p = .039): more 

frequent words were more likely to be correctly named. Note that models run on the full set 

of 359 items without imageability (and/or without length in phonemes) led to a very similar 

pattern of results. 

Subset of 183 monosyllabic items 

For monosyllabic items, the base model had the same fixed predictors as in the analysis of 

the larger set of items: imageability and length in phonemes, and the same random factors 

(by-item and by-participant random intercepts). This led to analyses being performed on 

the 169 items with imageability values only, instead of the full subset of 183 monosyllabic 

items. Again, all independent variables were standardised. When standardised PND/PNF 

predictors were added individually to the base model as main effects along with target log 

frequency, we found no effect of any neighbourhood measure, and no significant 

interaction between these measures and target log frequency. Full model outputs are 
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reported in the supplementary materials, but in Table 3, the results of the models are 

reported. In this set of analyses, the effect of target log frequency was significant (more 

frequent words were more likely to be named accurately). Note that accuracy analyses run 

on the whole set of 183 monosyllabic items and without imageability (and/or without 

length in phonemes) led to a very similar pattern of results. 

Discussion  

In this experiment, we investigated the influence of several different measures of 

phonological neighbourhood density and phonological neighbourhood frequency on 

picture naming while taking into account the influence of some other common predictors 

of picture naming behaviour, and accounting for the variance induced both by specific 

participants and specific items. More specifically, we were interested in how 

neighbourhood effects varied depending on the frequency of the target and the frequency 

of its neighbours, hypothesising strongest effects of neighbours on lower frequency 

targets, and strongest effects for phonological neighbours of higher frequency than the 

target word compared to phonological neighbours as a whole. The measures relating to the 

full number of phonological neighbours of a given word and their frequency (PND and PNF) 

did not have significant effects in any analysis8. There were also no effects of the number of 

neighbours of higher frequency than the target (higher frequency PND). However, critically, 

there was an interaction between target log frequency and the summed frequency of those 

neighbours higher in frequency than the target (summed higher frequency PNF) in 

                                                 
8 Note that a previous version of this manuscript (available upon request to the authors) included target 
length (number of phonemes) as a predictor in all analyses (including latency analyses), even if it did not 
successfully predict response time and accuracy. Since length is correlated with PND/PNF measures 
(especially PND), it could be that its inclusion changes the pattern of significance for phonological 
neighbourhood measures. However, the analyses including length led to the same patterns of significance (no 
effects of PND and PNF, some effects of higher frequency neighbourhood measures as an interaction of these 
variables with target log frequency). 
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response time analyses, showing that indeed, neighbours that are higher in frequency than 

the target have strongest effects, and that the effects of these neighbours depended on the 

frequency of the target. Inspection of the AIC of each individual model showed that the fit 

was best for those models that included measures of summed higher frequency PNF, 

followed by those with higher frequency PND, then (for all sets of analyses except accuracy 

analyses on the full set of items) PNF, finally PND. There was no effect of any PND/PNF 

measure on accuracy.  

The lack of a main effect of PND on latency is consistent with Vitevitch et al. (2004) and 

Gordon & Kurczek (2013), although the latter study used a residualised measure of PND, 

but inconsistent with Vitevitch's often cited earlier study (Vitevitch, 2002: Experiments 3, 4, 

and 5). The absence of an effect of PND on accuracy is consistent with several studies 

(Gordon & Kurczek, 2013, Vitevitch, 2002: Experiment 4; Vitevitch et al., 2004: Experiment 

3) but inconsistent with others that found facilitation from high PND on accuracy (Newman 

& Bernstein Ratner, 2007; Vitevitch, 2002: Experiment 3).  The absence of a main effect of 

PNF (of neighbours of all frequencies) for this type of task and participant sample is 

inconsistent with the facilitatory effect found by Newman and Bernstein Ratner (2007) for 

both accuracy and response time.  

The two studies showing different results as the present study (Newman & Bernstein 

Ratner, 2007; Vitevitch, 2002) used factorial designs with relatively small sets of stimuli (44 

to 48 items in total; versus the 359 in our study), that were typically monosyllabic words 

matched for at least word frequency, and fewer participants (24 to 34; versus 40 

participants in our study) (see Table 1, earlier). In addition to the fact that our study is 

consequently better powered, we believe that our design is more likely to enable detection 

of “true” effects of the experimental variables. First, with the advent of mixed modelling 
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techniques we were able to take into account the variability induced by both specific 

participants and specific items, as opposed to comparing average performance across 

participants and items (as is the case in Newman & Bernstein Ratner, 2007 and in Vitevitch, 

2002). Such averaging does not take advantage of all the data and important individual 

differences between participants may be overlooked. Second, our study attempted to take 

into account a greater number of predictors of picture naming compared to earlier studies, 

and particularly variables that are thought to affect earlier processing stages in picture 

naming: specifically, visual complexity, imageability and name agreement. In comparison, 

none of these studies included either of these measures (note, though, that visual 

complexity and imageability did not consistently predict performance in the present study). 

The lack of control of potentially confounding variables can produce spurious results, 

therefore increasing the likelihood of a Type 1 error (i.e., finding effects of PND measures 

that would not be observed if these variables were controlled for). Third, in these two 

studies, PND/PNF measures were dichotomised so that performance on a set of low and a 

set of high neighbourhood density/frequency could be compared. Dichotomising a 

continuous variable results in a loss of information, lower measurement precision, and 

usually a considerable loss of power in subsequent analyses (see e.g., MacCallum et al., 

2002), hence keeping the experimental variable as a continuous measure in a large set of 

items with a range of values of this experimental variable is more informative and precise, 

and increases power. In addition, our item set is more diverse than Vitevitch's (2002) item 

set. Vitevitch (2002) used exclusively 3-phoneme-long CVC words, and Newman and 

Bernstein Ratner used monosyllabic words only in their PND experiment, and one- to two-

syllables long in their PNF experiment. Our item set contains words of different lengths and 

CV structures, hence more representative of the diversity of words that are actually used to 
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speak. Furthermore, the dichotomising procedure requires the matching of other variables, 

which can result in retaining unusual materials, again perhaps less representative of 

everyday speech (e.g., Cutler, 1981, cited in Ellis et al., 1996). 

Vitevitch (2002) does not provide the list of items used in his experiments, but we know 

that these items consisted exclusively of short words (three phoneme-long). It is a well-

known fact that shorter words tend to be more frequent than longer words (e.g., Zipf, 

1935). In our analyses, we found different effects of a phonological neighbourhood measure 

depending on the frequency of the target (as seen in the interaction between target log 

frequency and the frequency of neighbours of higher frequency than the target). More 

specifically, we found inhibitory effects on lower log frequency targets and facilitatory 

effects on higher log frequency targets. It is hence possible that, depending on their overall 

frequency, datasets generate either inhibitory or facilitatory effects of (higher frequency) 

phonological neighbours. If Vitevitch’s (2002) item sets are of high frequency (being short 

words), they might be more likely to generate facilitatory effects of phonological 

neighbours, which is what was found (note that we only found effects of neighbours of 

higher frequency than the target, not of all neighbours like Vitevitch).  

On the other hand, Newman & Bernstein Ratner (2007) provide a list of the stimuli used in 

their experiments. Two item sets are relevant here: one that was used to investigate effects 

of PND, the other to investigate effects of PNF. Of their PND set (44 items), our item set 

included 29 items (14 low and 15 high PND items, for a total of 1,160 trials (1,083 correct 

trials)). Namely, our items do not include the verbs that were part of Newman and 

Bernstein-Ratner’s stimuli. The authors actually found no effect of PND on response time 

when taking out these verb stimuli. We ran our response time analyses on these 29 items 

and also found no effect of PND (X2(1) = 1.52, p = .218), suggesting that the effect was at 
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least partly driven by these verb stimuli. In addition to no PND effect, we found a significant 

interaction between log frequency of the target and the summed frequency of neighbours 

of higher frequency than the target (X2(1) = 5.62, p = .018), therefore maintaining the 

effects we found in our full set. Of Newman and Bernstein-Ratner’s PNF set of 44 stimuli, 

our item set included 33 items (20 low and 13 high PNF items). While there was a numerical 

advantage for response time on high PNF items in this overlapping set of items (806ms for 

high PNF vs 830ms on average for low PNF items), our analyses did not show an effect of 

PNF (X2(1) = 0.17, p = .682). We did find an interaction between target log frequency and the 

summed frequency of neighbours of higher frequency than the target (X2(1) = 4.37, p = 

.037), again maintaining the effects we found on the full set. 

Our most notable finding was an interaction between summed higher frequency PNF and 

the log frequency of the target word in response time analyses. The higher the frequency of 

those neighbours of higher frequency than the target, the slower the RTs for the lowest 

frequency targets, but also the faster the naming for targets of high log frequency. A 

parallel can be drawn between these results and the predictions of the Neighbourhood 

Activation Model in spoken word recognition where neighbours of higher frequency than 

the target have an inhibitory effect on targets of low frequency (e.g., Luce & Pisoni, 1998).  

Since these findings are novel, and the effects are relatively small, it is important that we 

investigate their replicability. Consequently, in Experiment 2, we used the same predictors 

and analysis procedure in order to determine whether we could replicate these findings 

using another picture naming dataset (Johnston et al., 2010) and another speaker group – 

British English speakers (rather than Australian English). 

Experiment 2: Picture naming with British English speakers 

Method 
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This experiment uses the picture naming data from Johnston et al. (2010). 

Participants 

Johnston et al. (2010) report response times from 25 native English speakers, 21 female (so 

84%) aged 18 to 27 years (mean age 20.08 years), who had lived continuously in the United 

Kingdom. This sample appears similar to the Australian sample in Study 1 with respect to 

age, but with a higher proportion of female participants.  

Stimuli 

Participants named 539 black-and-white line drawings, mostly selected from Szekely et al. 

(2004). In our analysis, the item set was reduced to 412 items that corresponded to a single 

word according to the available name agreement, had a frequency count in CELEX, whose 

phonotactic probability could be calculated with Phonological Corpus Tools, and had 

accuracy greater than 50%. Within this final set of words, 315 (about 76%) overlapped with 

the stimuli that were analysed in Experiment 1 with Australian speakers, but all 412 words 

were analysed. A summary of the properties of all words in this set, along with those of 

words used in Experiment 1, is available in Appendix A (and the list of items for all the 

experiments is provided in Appendix B).  

Procedure 

The procedure was similar to Experiment 1 procedure (see Johnston et al., 2010, for detail): 

the pictures were shown in a random order to the participants for naming (after a 500ms 

blank screen followed by a 500ms fixation cross, the picture was displayed for a maximum 

of two seconds), without any pre-familiarisation with the pictures or their names. 

Analysis 

Responses were analysed in a similar way to Experiment 1. Data in Johnston et al. (2010) is 

available at the trial level (response time for each correct response, for each of the 25 
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participants). Johnston et al. considered a response correct if it corresponded to the 

dominant name determined by earlier ratings. Overall, accuracy was 87.17%. At the trial 

level, Johnston et al.’s dataset only provides response time for correct trials. However, 

according to the authors, 4.7% of the whole data (i.e., 4.7% of the total of 539 pictures in 

their set) had no response time, due not to an incorrect response, but to instances in which 

the voice key was triggered by an environmental sound, or failed to trigger, when a 

dysfluent response was given, or when the participant took longer than two seconds to 

begin responding. It is probable therefore that there are some trials that would normally 

have been excluded from accuracy analyses because they did not qualify as a failure to 

retrieve the correct target word, but rather as technical glitches. Consequently, while we 

did carry out accuracy analyses, these are not reported in the main text but can be found in 

the supplementary materials. In addition to the pre-processing described by the authors 

(exclusion of instances in which the voice key was mis-triggered or in which the participant 

took more than 2 seconds to respond), we removed a further seven data points that were 

below three standard deviations below the participant’s mean (0.08% of the data): these 

were all below 100ms. In addition, 157 data points (1.75%) that were over three standard 

deviations above the mean were replaced by the actual value of three standard deviations 

above the participant’s mean. 

As for Experiment 1, generalised linear mixed effects models were used to assess the 

contribution of our variables of interest on response time and accuracy, using the lme4 

software package (Bates et al., 2015) and p-values were obtained using lmerTest 

(Kuznetsova et al., 2017). Similar to Experiment 1, analyses were performed on the full set 

of 412 items but also separately on the 210 monosyllabic words within this set. We included 

the same predictors that were retained in the response time analyses of the Australian data 
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for better comparability across analyses. Our base model hence included by-item and by-

participant random intercepts, and in addition, name agreement was included but needed 

to be specific to the pictures used in Johnston et al. (2010) and was therefore based on 

average accuracy for each item. Next, we added each PND/PNF variable separately to that 

base model as a main effect, along with an interaction with target log frequency. All 

independent variables were standardised as in Experiment 1. 

Results 

Response time analysis 

Full set of 412 items 

First, as expected, higher name agreement predicted faster responses (in the base model: ß 

= -91.73, z(6.43) = -14.28, p < .001). Next, when adding the PND/PNF variables and target 

log frequency, as in Experiment 1, a significant interaction between higher frequency PNF 

and the target’s log frequency was observed (Table 4, Model 4). This interaction is 

illustrated in Figure 3. The summed frequency of neighbours of higher frequency than the 

target had an inhibitory effect on response time for lower log frequency targets, but for 

targets of higher frequency, it had a facilitatory effect. The interaction between target log 

frequency and higher frequency PND was also significant (See Table 4, Model 2) a finding 

that was not observed in the Australian dataset analyses. Finally, there was a significant 

facilitatory effect of target log frequency in all response time models performed on the full 

set of 412 items. 

<Insert Table 4 about here> 

<Insert Figure 3 about here> 

Subset of 210 monosyllabic items 
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Similar to the analyses on the full set, in the subset of monosyllabic items, name agreement 

had a facilitatory effect on latencies (in the base model: ß = -91.74, z(8.94) = -10.26, p < 

.001). When PND/PNF variables were added separately to the model as main effects along 

with the interaction with target log frequency, a significant interaction between target log 

frequency and summed higher frequency PNF was observed, in the same direction as in the 

whole set and consistent with Experiment 1 findings. In addition, an interaction between 

target log frequency and higher frequency PND was observed, in the same direction (see 

Table 4). Finally, there was a significant facilitatory effect of target log frequency in all 

response time models performed on the set of 210 monosyllabic items. 

Discussion 

Experiment 2 was a replication using a published picture naming dataset of the methods of 

the Experiment 1 response time analysis, therefore incorporating a (partially) different item 

set and different speakers.  

A similar pattern was observed for response times in British English picture naming from 

Johnston et al. (2010) to that found in Experiment 1 with the Australian English picture 

naming data: an interaction between the log frequency of the target, and the summed 

frequency of neighbours of higher frequency than the target. For targets that were low in 

frequency, having high summed higher frequency PNF resulted in inhibitory effects, while 

on targets that had high frequency, the effect tended to be facilitatory.  This was the case 

for analyses using the full sets of items and on monosyllabic sets, hence on four (partially 

overlapping) datasets. Additionally, in the British dataset, a similar interaction was 

observed between target word log frequency and the number of neighbours of higher 

frequency than the target.  



 

32 
 

Overall, the fact that, across Experiments 1 and 2, it was only those measures based on 

neighbours of higher frequency than the target (higher frequency PND and summed higher 

frequency PNF) that showed significant effects suggests that neighbours that are lower in 

frequency than the target most likely have a negligible effect on target retrieval. We 

examined this claim explicitly in the Australian dataset by investigating the effect on 

picture naming of the number of neighbours of lower frequency than the target and of their 

summed frequency (see supplementary materials). No effect of any of these variables was 

observed nor any interaction between any of these variables and target log frequency (all p 

> .05). 

Critically, our results suggest that phonological neighbourhood effects are modulated by 

target word log frequency: when the target is low in frequency with increasing frequency of 

higher frequency neighbours, naming is slower, but the effect is reversed when the target is 

high in log frequency.  

In order to develop a clearer understanding of how theories can account for observed 

patterns, in the next section we will examine whether the effects of phonological 

neighbourhood that were consistently found in Experiments 1 and 2 across response time 

analyses (i.e., an interaction between target frequency and summed higher frequency PNF) 

can be successfully simulated using a computational model, and if so, which parameters are 

important to do so. Although the results from the present behavioural investigations do not 

conclusively rule out an effect of the number of higher frequency neighbours (higher 

frequency PND), at this time, we do not believe that the evidence for this effect is strong 

enough to justify its inclusion as a benchmark for model success. Therefore, in the next 

section, we do not consider higher frequency PND in the simulations. Previous 

computational simulations (Chen & Mirman, 2012; Dell & Gordon, 2003) produced 
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facilitatory effects of phonological neighbourhood density on word production but did not 

include consideration of target or neighbour frequency. They also used extremely small 

vocabularies (five words or two words). Consequently, here we examine effects of 

phonological neighbourhood in an interactive activation computational model with a much 

larger and more realistic vocabulary, that also implements frequency – DRC-SEM, an 

adaptation of the Dual Route Cascaded Model (DRC: Coltheart et al., 2001).  

Experiment 3: Computational modelling 

This experiment aimed to explore the characteristics of the language production system 

that allow the effects of neighbourhood found in both Experiments 1 and 2 to emerge, 

using an adaptation of the DRC model (Coltheart et al., 2001). The DRC model of reading 

has been demonstrated to simulate aspects of human reading behaviour that are relevant 

to the present study. For instance, the frequency effect on DRC reading speed is 

remarkably similar to the frequency effect seen in human reading data. In simulating lexical 

decision “YES” latencies, DRC was able to capture an interaction between frequency and 

(orthographic) neighbourhood density: high neighbourhood density speeds lexical decision 

responses to target words but only for low frequency targets. 

 In order to simulate picture naming, we used an experimental version of the DRC model 

which allows activation of phonological forms from semantics rather than via print. 

Coltheart and colleagues (1999) implemented a minimal semantic system consisting in 

three colour concepts, in order to model the Stroop effect (naming the ink colour of colour 

words). Building on this rudimentary model, DRC-SEM was constructed with a semantic 

system that contained one semantic unit for each of around 8,000 of the words in DRC’s 
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vocabulary9 (see Ceccherini, 2015 for description). The semantic system also has 

(unimplemented) inhibitory within-level links, the ability to add noise or decay, and 

imageability scaling whereby simulation of potential imageability effects can be examined 

for the subset of nodes that have associated imageability values. Picture naming can be 

simulated with DRC-SEM by switching on the unit in the Semantic System that corresponds 

to the picture. This in turn activates the corresponding unit in the phonological (output) 

lexicon (or corresponding word node), leading next to the activation of the corresponding 

phonemes in the phoneme system. The naming response is produced when activation of 

the phoneme units reaches a pre-established threshold. The time needed to reach this 

threshold (or number of cycles) constitutes the model’s reaction time.  

Communication between levels of representation in the DRC-SEM model is both cascaded 

and interactive. Critical for simulation of phonological neighbourhood effects in naming is 

that phonological neighbours of a target can be activated in the phonological (output) 

lexicon by feedback from the phoneme level to the phonological lexicon. Additionally, as 

frequency is implemented as different resting levels of units in the phonological lexicon, 

activation levels of the units that represent high-frequency words grow faster than those of 

units that represent low-frequency words. Hence, DRC-SEM should allow both the 

activation of phonological neighbours in production and differential levels of activation of 

units in the phonological lexicon depending on their frequency. Apart from activation 

between levels, units within levels can also interact through lateral inhibition. For example, 

an activated unit in the phonological lexicon will inhibit other activated units at that level. 

                                                 
9 DRC-SEM is based on DRC 1.2.1 and is available for download at https://maxcoltheart.wordpress.com/drc/ 
with full detail on the added parameters. 

https://maxcoltheart.wordpress.com/drc/
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We started our exploration of the characteristics of a computational model that allows 

simulation of the effects of phonological neighbourhood in the human data, first using a set 

of “default” DRC-SEM parameters, and then systematically modifying those parameters 

that were most likely to influence activation of neighbours. We chose to investigate 

whether the resulting simulated “response times” were predicted by two phonological 

neighbourhood measures: PND and summed higher frequency PNF. We investigated 

effects of PND on different simulations (even if no effect of PND was observed in the 

present study) to investigate whether parameter settings that were able to generate 

facilitatory effects of PND (as in Chen & Mirman, 2012, and Dell & Gordon, 2003) were or 

were not able to produce the critical interaction we found between target log frequency 

and summed higher frequency PNF.  

Methods 

DRC-SEM’s vocabulary is comprised of monosyllabic words. Hence, targets in this 

experiment were 171 words from the Australian dataset (Experiment 1) that were 

monosyllabic (ranging between two and five phonemes). Of these, 162 belonged to the 

British dataset that we analysed in Experiment 2. 

DRC-SEM is considered to have produced a word when all of the phonemes of that word 

have reached a criterion level of activation. Response time is measured in terms of the 

number of processing cycles required to reach this criterion. A response is considered 

accurate when the output string of phonemes is the one corresponding to the target.  

The number of cycles required to produce a response was used as the dependent variable in 

a series of multiple regressions. Trials which did not result in a correct response were 

excluded from the analysis. DRC-SEM is able to implement potential effects of frequency 

and of length, but not, for example, of visual complexity, age of acquisition or phonotactic 
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probability. It is expected that frequency effects will be  stable in the analyses of the 

simulations, as the omission of these variables removes the intercorrelations between 

frequency and other predictors that is likely the cause of unstable frequency effects in the 

human data (e.g., inhibitory effects of frequency in the Australian analyses when including 

age of acquisition and familiarity as covariates, see discussion above). Target log frequency 

and length in phonemes were therefore included as predictors in linear regressions run on 

the number of cycles, together with either, 1) PND, or 2) the PNF variable that had an effect 

on latencies in both Experiment 1 and 2 (summed higher frequency PNF), with an 

interaction with target log frequency. As DRC-SEM’s phonological lexicon’s units are 

weighted according to their CELEX spoken frequency, CELEX spoken (word-form) log 

frequency was used both for the target and for the calculation of summed higher frequency 

PNF (as opposed to combined spoken and written frequency in the human data analyses). 

All predictors were standardised. Analyses were run in R (R Core Team, 2014).  

The majority of DRC-SEM’s parameters are shared with DRC, and consequently for our 

simulations, we used the standard DRC default settings (see Coltheart et al., 2001), with the 

exception of feature-letter excitation and feature-letter inhibition that were both set to 0 so 

that no written unit would receive external activation. 

DRC-SEM has 16 additional parameters:  

1) a parameter that controls the strength of excitation of a specified semantics unit 

(SemanticsExternalExcitation),  

2) an onset parameter specifying the starting cycle for semantic layer activity,  

3) six parameters that pertain to the semantic layer itself (lateral inhibition, noise, 

decay, decay trigger, threshold, strength of the imageability scaling),  
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4) eight parameters that regulate the strength of connections between the semantic 

layer and the orthographic and phonological lexicons (in both directions, and both 

inhibitory and excitatory). Connection strength determines the speed in the rise of 

activation of the end point unit. For instance, weaker connections between the 

semantic layer and the phonological output lexicon (as modulated by the parameter 

named SemanticPhonlexExcitation) mean that the activation of units in the 

phonological output lexicon will rise more slowly. 

By default, these specific parameters are all set to 0. DRC-SEM has never been used to 

simulate “simple” picture naming, although it has been used to simulate picture-word 

interference (Ceccherini, 2015), and in colour naming in a Stroop paradigm  (Coltheart et 

al., 1999). To model simple picture naming we set SemanticsExternalExcitation to 0.5 (as in 

Ceccherini, 2015),  and following consultation with Max Coltheart, we set semantics to 

phonological lexicon excitation (SemanticPhonlexExcitation) to 0.1. Given that the focus of 

this study was in lexical rather than semantic effects, and we did not have particular 

hypotheses regarding effects that would arise at the semantic level, all the other DRC-SEM-

specific parameters remained at zero, as they had been in previous studies. These initial 

parameters settings were taken as “default” in the present study (see Supplementary 

materials for a full list of parameter values). 

In a series of simulations, we then systematically adjusted those settings most likely to 

impact on the activation of neighbours in the phonological lexicon. The criterion that was 

chosen to deem a simulation successful was the presence, in the analyses of the latencies 

obtained with the respective simulations, of an interaction between target frequency and 

summed higher frequency PNF. In addition to this effect, however, we also documented 

the following criteria, with no particular hierarchy: overall accuracy, target frequency and 
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length effects, and number and nature of units in the phonological lexicon that were 

activated. This was in order to assess whether the obtained simulations generated other 

plausible effects that would strengthen the value of these particular simulations, or unusual 

effects that might undermine this value.    

Results 

The output of each simulation and the main effects of phonological neighbours are 

summarised in Table 5. Full results of each analysis are reported in the supplementary 

materials. 

<Insert Table 5 about here> 

Simulation 1: Default parameters  

With the Default parameters, all 171 target words were correctly ‘named’. Multiple 

regression showed no main effect of PND on the number of cycles DRC-SEM 

 required to produce a response, as well as no main effect of summed higher frequency PNF 

and no significant interaction between this variable and target log frequency. In addition, a 

significant facilitatory effect of target log frequency was observed, while length in 

phonemes did not significantly predict the number of cycles. 

Examining the activation levels within the phonological lexicon, revealed that there was 

rarely activation of any other unit than the target in the phonological lexicon. Only the 

Phonlex units corresponding to homographs (for bow for instance) were activated, most 

likely because of bidirectional activation between the phonological and orthographic 

lexicon units. Our criterion for ‘activation’ of a unit in the phonological lexicon (Phonlex 

unit) was set at 0.02, but even when this value was set to 0.000001, no additional Phonlex 

units were considered activated.  
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The fact that no effect of phonological neighbourhood measures was found, and that 

almost no phonological neighbours were activated, is perhaps unsurprising, since the 

default parameters of DRC feature only limited feedback from the phoneme level to the 

phonological lexicon. Effects of phonological neighbours have previously been explained 

within models that feature interactivity between the phonological lexical level and the 

phonemes. Hence, in Simulation 2, we increased feedback from phonemes aiming to 

increase activation of phonological neighbours.  

Simulation 2: Increasing feedback from the phoneme level to the phonological lexicon 

The DRC parameter that regulates feedback from the phoneme level to the phonological 

lexicon is called PhonemePhonlexExcitation and is set to 0.04 by default. In Simulations 2a 

and 2b, this parameter value was increased to 0.15 and 0.2 respectively with all other 

parameter settings remaining identical to Simulation 1.  

Simulation 2a: PhonemePhonlexExcitation = 0.15 

Once again, all target words were correctly named. Increasing the feedback to the Phonlex 

units from phonemes did result in more Phonlex units being activated, and the number of 

activated Phonlex units was significantly correlated to the total number of phonological 

neighbours of each target word (17 on average; r = .229, p = .003) and the number of 

neighbours of higher frequency than the target (5 on average; r = .209, p = .006). 

However, the main effect of PND did not reach significance in the multiple regression, and 

no main effect of summed higher frequency PNF nor interaction of summed higher 

frequency PNF with target log frequency was observed. A significant facilitatory effect of 

target log frequency was observed, as well as (interestingly), a significant facilitatory effect 

of length (longer words were faster named, although the correlation between Simulation 

2a number of cycles and length was not significant: r = -.053, p = .492). 
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Simulation 2b: PhonemePhonlexExcitation = 0.2 

In Simulation 2b, feedback from the phoneme level to the phonological lexicon was further 

increased (0.2), resulting, once again, in error free naming. The number of activated 

Phonlex units was also higher with this additional increase in feedback (11.72 on average), 

these values were still below the actual number of phonological neighbours (17 on average), 

and remained only moderately correlated to PND (r = .372, p < .001) and were not 

correlated with summed higher frequency PNF (r = .077, p = .314).  

There was a main facilitatory effect of PND, but the effect of summed higher frequency 

PNF did not reach significance, and there was no significant interaction between this 

variable and target log frequency. 

In addition to significant facilitatory effects of target log frequency, effects of length were 

observed, once again in the unexpected direction: longer words were more likely to be 

named in fewer cycles. Note that there were no concerning levels of multicollinearity – all 

VIFs were below 1.73. Length and the number of cycles were negatively correlated with 

Simulation 2b number of cycles (longer words were associated with fewer cycles, r = -.221, 

p = .004). 

Therefore, it appears that sufficient increase of feedback from phonemes to the 

phonological lexicon resulted in facilitatory main effects of phonological neighbourhood 

(PND), but these effects were accompanied by effects of length (in an unexpected 

direction) that were not found in the human data. In addition, the critical interaction 

between target log frequency and summed higher frequency PNF was not reproduced with 

the parameter settings used here in Simulation 2. Consequently, the next simulations 

explored the effects of changes of other parameters that could amplify effects of 
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neighbours: Decreasing inhibition from the phoneme level to the phonological lexicon and 

lateral inhibition within the phonological lexicon. 

Simulation 3: Decreasing inhibition of phonological lexical units  

In contrast to DRC-SEM, the previous computational models used to simulate facilitatory 

main effects of PND in spoken word production (Chen & Mirman, 2012; Dell & Gordon, 

2003) did not include inhibitory links between phonemes and the phonological lexicon. 

Additionally, Chen and Mirman (2012) included lateral inhibition within the phonological 

lexicon (or “word layer”), although Dell and Gordon did not. Furthermore, Coltheart et al. 

(2001) found that the initial DRC model was only able to model facilitatory effects of 

orthographic neighbourhood density on word reading aloud if both inhibition from letter to 

the orthographic lexicon was reduced, and lateral inhibition within the (orthographic and 

phonological) lexicons was set to zero (p. 224). Hence, in the next three simulations, we 

systematically investigated the effects of reducing lexical inhibition in DRC-SEM.  

Simulation 3a: Decreasing inhibition from the phoneme level to the phonological lexicon 

The PhonemePhonlexInhibition parameter has the effect of limiting the activation of other 

units in the phonological lexicon. In simulation 3a, this value was changed from its default 

of 0.16 to zero (with the rest of the parameter settings identical to Simulation 1). This set of 

parameter values was similar to Chen and Mirman's (2012) parameters: featuring both 

some feedback from phonemes and some competition at the level of lexical units, but no 

inhibition coming from phonemes, allowing us to assess whether a model similar to Chen 

and Mirman’s model could either yield the facilitatory effects of PND originally found by 

these authors, or successfully simulate our behavioural findings. This parameter change 

had very little effect compared to Simulation 1. Only one item showed a difference in 

number of cycles for naming (“rose” was named in 77 instead of 78 cycles), and no more 
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Phonlex units were activated compared to Simulation 1. Consequently, as for Simulation 1, 

there was no effect of PND, no main effect of summed higher frequency PNF and no 

significant interaction between this variable and target log frequency. In addition, there 

was a significant facilitatory effect of target log frequency and no effect of length. Hence, a 

computational model similar to Chen and Mirman’s (2012) did not allow us to either 

replicate their finding of a facilitatory effect of PND, nor did it allow us to successfully 

simulate the behavioural effects seen in the present study. 

Simulation 3b: Decreasing inhibition within the phonological lexicon 

Another source of inhibition that could potentially reduce activation of units in the 

phonological lexicon is the lateral inhibition parameter (PhonlexLateralInhibition). This 

parameter has a default value of 0.07. In Simulation 3b, this parameter was set to zero, with 

every other parameter identical to Simulation 1. This change resulted in the exact same 

output as Simulation 3a: there was the exact same number of cycles for each item, and 

exactly the same Phonlex units were activated. The results of the multiple regression were, 

therefore, identical.  

Simulation 3c: Decreasing inhibition from the phoneme level to the phonological lexicon, and 

within the phonological lexicon 

Coltheart et al. (2001) reduced both types of inhibition to observe orthographic 

neighbourhood effects on reading with the initial DRC model. Simulation 3c applied this 

principle to spoken word production from semantics in DRC-SEM by setting both 

PhonemePhonlexInhibition and PhonlexLateralInhibition to zero. This parameter setting 

then approaches Dell and Gordon's (2003) characteristics: it features some feedback from 

phonemes to the lexical units, but no inhibitory mechanisms either between lexical units or 

from phonemes to lexical units. Hence, this simulation allowed us to observe whether such 
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a model could successfully reproduce facilitatory effects of PND, and/or account for our 

behavioural findings. 

This simulation resulted in activation of additional units in the phonological lexicon, and, 

similar to Coltheart and colleagues’ findings for orthographic neighbourhood in reading 

aloud with the initial DRC model, a facilitatory effect of PND. Interestingly, this finding was 

in the absence of any length effect (but with the expected significant facilitatory effect of 

target log frequency). This parameter set did not, however, result in a significant effect of 

summed higher frequency PNF nor any interaction between summed higher frequency PNF 

and target log frequency. 

We can see here that using model settings that resemble those of Dell and Gordon (2003), 

we could not simulate the critical interaction found in the present behavioural data, while 

we could successfully simulate the facilitatory effects of PND that Dell and Gordon 

observed. 

Overall, while some main facilitatory effects of both PND and summed higher frequency 

PNF were seen in Simulations 2 and 3, our human data was not successfully simulated: 

There was no interaction between summed higher frequency PNF and target log frequency 

in any of these simulations. Consequently, the next set of simulations aimed to investigate 

whether parameter settings that should amplify the effects of frequency for the target and 

for co-activated Phonlex units would result in the critical interaction. 

Simulation 4: Increasing the frequency scaling of phonological units 

The FrequencyScale parameter regulates how excitable entries in the (phonological) 

lexicon are. As noted earlier, frequency is implemented in DRC by the resting levels of 

activation of units in the lexicon (higher frequency targets have higher resting levels of 

activation) as determined by a constant (ranging from 0 to -1). Whenever the activation 
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level of a unit is updated, this frequency constant is added to the activation as part of the 

updating. This addition results in activation levels rising more quickly for high frequency 

units than for units of low frequency (if all other factors are held constant). However, prior 

to being added, the frequency constant is multiplied by the FrequencyScale parameter (set 

by default to 0.05), modulating the size of the constant. For larger FrequencyScale values, 

the difference between the constants added for high and low frequency words is increased 

and therefore the effects of frequency are magnified. 

In Simulation 4, we examined the effects of this manipulation: Default parameters were 

used, with the exception of an increase in the FrequencyScale parameter. 

Simulation 4a: FrequencyScale = 0.07 

 When FrequencyScale was set to 0.07, response latencies were slowed, but no additional 

units were activated in the phonological lexicon compared to the default settings. 

Furthermore, there was no significant effect of PND, summed higher frequency PNF nor an 

interaction between summed higher frequency PNF and target log frequency. Increased 

significant facilitatory effects of target log frequency were observed, but no significant 

effect of length. 

Simulation 4b: FrequencyScale = 0.095 

When we further increased the frequency scaling parameter to 0.095, latencies were 

slowed further but no more Phonlex units showed activation. There were still no effects of 

PND or summed higher frequency PNF nor their interaction with target log frequency. As 

expected, significant facilitatory effects of target log frequency increased even further than 

in Simulation 4a. No effects of length were observed.  

Simulations 2 to 4 have demonstrated that several parameter settings can lead to the 

observation of main facilitatory effects of PND, but none of these parameter settings result 
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in the critical interaction between target log frequency and summed higher frequency PNF 

seen in the human response time. In the next simulation, we investigate whether reducing 

the speed at which units in the phonological lexicon are activated might allow for this 

interaction to develop. We achieved this by reducing the parameter that controls the 

strength of excitatory links from semantics to the phonological lexicon 

(SemanticsPhonlexExcitation). We had previously set the “default” value for this parameter 

to 0.1, however, this value was somewhat arbitrary given the paucity of previous 

simulations using DRC-SEM.  

Simulation 5: Decreasing activation from semantics to the phonological lexicon 

Simulation 5a: SemanticsPhonlexExcitation = 0.045  

In simulation 5a, the default parameters were used, except that the 

SemanticsPhonlexExcitation parameter was decreased from 0.1 to 0.045.  

This was the first simulation where naming errors occurred: 27 words were not named 

before the threshold (1,000 cycles), resulting in 84% accuracy (human accuracy was around 

86%). These words were typically low in frequency. Few additional units were activated in 

the Phonological Lexicon.  

In the multiple regression model including the 144 words that were named accurately, 

there was no significant main effect of PND, nor of summed higher frequency PNF. 

However, the critical interaction between target log frequency and summed higher 

frequency PNF that was present in the human data was observed. As in the human data, 

high summed higher frequency PNF tended to be inhibitory on low frequency targets, and 

facilitatory on high frequency targets, compared to low summed higher frequency PNF (see 

Figure 4). Strong significant effects of target log frequency were observed, but no 

significant effects of length. 



 

46 
 

<Insert Figure 4 about here> 

This simulation successfully replicated the pattern observed in the human data, and was 

the first to reproduce the interaction between target log frequency and summed higher 

frequency PNF. However, there were no additional observable phonological lexicon units 

activated. Therefore, the next simulations aimed to build on this finding and explored 

whether combining the parameter changes that induced activation of additional 

phonological lexicon units, in combination with the reduced activation from semantics, 

would provide a closer fit to the human data. 

Simulation 5b: SemanticsPhonlexExcitation = 0.045, no PhonLex lateral inhibition, no 

inhibition from Phonemes to Phonlex 

As noted above, previous computational models (Chen & Mirman, 2012; Dell & Gordon, 

2003) have not included inhibitory links from phonemes to lexical units when simulating 

(main) facilitatory effects of phonological neighbourhood. In addition, in Simulation 3c we 

found that removing within level inhibition and inhibitory feedback from the phoneme level 

resulted in activation of additional phonological lexicon units and a facilitatory main effect 

of PND. Therefore, in Simulation 5b, in addition to setting the SemanticsPhonlexExcitation 

parameter to 0.045, we set both the lateral inhibition within the phonological lexicon and 

the inhibition from phonemes to the phonological lexicon to zero.  

This parameter set resulted in 84% accuracy. Overall, the number of cycles for accurate 

responses correlated very highly between Simulation 5a and Simulation 5b (r = .991, p 

<.001), showing that the presence or absence of inhibition in the system had little effect on 

response latencies.  

No effect of PND was observed. However, the critical interaction between target log 

frequency and summed higher frequency PNF was found, which was in the same direction 
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as in Simulation 5a. Additionally, strong significant effects of target log frequency were 

observed, but there was no significant effect of length. 

This observation suggests that the critical interaction does not require lateral inhibition 

within the phonological lexicon, nor inhibition from phonemes. This parameter set led to 

activation of a large number of Phonlex units. The numbers of units activated for a target 

were not significantly correlated with the actual number of phonological neighbours (r = 

.077, p = .361) but were correlated with the number of phonological neighbours of higher 

frequency than the target (r = .211, p = .011). In addition, although co-activated Phonlex 

units were most often actual phonological neighbours of the target, they did not always 

correspond to phonological neighbours, but rather to words with some phonemes in 

common and with high frequency. For example, with the target bridge the Phonlex unit 

corresponding to the word from was activated: While they do have a phoneme in common, 

clearly, they are not phonological neighbours. 

We note here that, although Simulations 5a and 5b do not differ greatly in response 

latencies, they are very different with regards to the number of Phonlex units they activate. 

This shows that within this DRC-SEM simulation, the number of activated Phonlex units (or 

at least, of Phonlex units that may only be distantly related to the target in form) does not 

seem to be strongly related to response latency. 

The fact that Phonlex units that were only distantly related to the target were activated can 

be explained by the absence of inhibition in a model where interactivity is very strong: Slow 

activation from semantics results in many more processing cycles prior to the phoneme 

production threshold being reached and hence, more opportunities for activation of (very 

frequent) supplementary Phonlex units when there is no inhibition to suppress this 

activation. Because of the lack of inhibition, one would not expect inhibitory effects of 
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phonological neighbours on latencies. However, it is possible to envisage that there might 

be facilitatory effects of phonological neighbours, that we do not observe here.  

Simulation 5c: SemanticsPhonlexExcitation = 0.045, increased feedback from phoneme level. 

In Simulation 5c, we assessed whether the combination of weaker activation from 

semantics to the phonological lexicon (0.045) and increased feedback from the phoneme 

level to the phonological lexicon (set to 0.2, as in Simulation 2b) led to the critical 

interaction.  

Accuracy remained at 84%. Additional phonological lexicon units were activated (these 

Phonlex units corresponded to actual phonological neighbours, unlike in Simulation 5b) and 

the number of activated Phonlex units was marginally significantly correlated with the 

actual number of neighbours (PND: r = .169, p = .077), and did not correlate significantly 

with the number of phonological neighbours of higher frequency than the target (r = .013, p 

= .895). There was no effect of PND, but the interaction between summed higher frequency 

PNF and target log frequency was significant, replicating the patterns found in the human 

data. Target log frequency had a strong significant facilitatory effect, and length did not 

significantly predict the number of cycles. 

In sum, the simulations that showed the desired effects (Simulation 5a, b and c) resulted in 

some items never accurately named, with roughly the same 144 items being named 

correctly across the three simulations. The target items that were incorrectly named were 

significantly lower in log frequency than those items that were correctly named (t(134) = 

1.978, p <.001). One possibility is that if the analysis was performed on these 144 items 

(rather than the full set of 171), the interaction may be present, whatever the parameter 

settings. Consequently, we reanalysed the data from Simulation 1 (default parameters) but 

only including this subset of 144 words. This change did not result in the critical interaction, 
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and no effects of summed higher frequency PNF were observed nor any effects of PND (all 

p > .05), showing that the effect was not due to this particular subset of items, and can be 

attributed to the simulation parameters settings instead. This same procedure was applied 

to Simulations 2 to 4 and once again, the interaction was not observed. The results of these 

additional analyses are reported in the supplementary materials. 

Simulations 5a to c did successfully reproduce the critical interaction between target word 

frequency and summed higher frequency PNF. Aside from this finding, all three simulations 

also showed plausible effects of target frequency and length, but imperfect accuracy. 

Inspection of the adjusted R squared of each “summed higher frequency PNF model” run 

on the respective number of cycles for each of these three simulations showed very similar 

values (R2 = 0.679 for Simulation 5c, and R2 = 0.675 for both Simulation 5a and 5b). While 

none of the simulations showed activation of a set of phonologically related units 

corresponding to phonological neighbours of higher frequency than the target, Simulation 

5b showed the activation of words that were not phonological neighbours of the target 

word. This makes it difficult to give preference to this model. Given that there seems to be 

no frank superiority of any of them, we are unable to adjudicate between these three 

simulations. Therefore, the only parameter change that we can confidently consider able to 

contribute to accounting for our findings is a slow rise in activation from semantics to the 

phonological lexicon that leads to increased interactivity. 

Discussion 

In order to explore the mechanisms underpinning effects of phonological neighbourhood 

on word production, Experiment 3 used an extended version of the DRC model of reading, 

capable of modelling spoken word production through the addition of semantic nodes that 
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can directly activate the phonological output lexicon.  The main findings relating to the 

different simulations, and their possible interpretations will be discussed here. 

First, using this model, we have increased our understanding regarding the processing 

conditions under which effects of PND can be simulated. Indeed, we were able to obtain 

the facilitatory effects of PND that have previously been simulated using other 

computational models (Chen & Mirman, 2012; Dell & Gordon, 2003), by using similar 

parameter settings to these models.  

The authors of the two computational models that have been used to model facilitatory 

effects of PND on spoken word production (Chen & Mirman, 2012; Dell & Gordon, 2003) 

attributed such effects to, at least in part, the presence of feedback from phoneme nodes 

to the phonological word nodes. Dell and Gordon (2003) and Chen and Mirman (2012) both 

used targets of equal (short) length (respectively six CVC words, and five two- phoneme 

“words”), making it impossible to assess any effects of length in their simulations. In the 

context of the DRC model with its much larger and more “realistic” lexicon including words 

of different lengths, and that simulates word frequency effects, we found that the default 

low levels of feedback, that successfully replicate patterns of adult skilled reading, were not 

enough to produce facilitatory effects of PND. Although increasing the amount of feedback 

from phonemes to the phonological lexicon (Simulation 2b) did reproduce an effect of PND 

on latencies, this was at the expense of disproportionate effects of length in the 

unexpected direction of facilitation. In contrast, lack of inhibition alone (with little 

feedback) produced facilitatory effects of PND, and no effect of length, suggesting that no 

or limited inhibition between phonemes and the phonological level (as is the case in both 

Dell & Gordon, 2003, and Chen & Mirman, 2012), in combination with limited feedback 

from phonemes, are critical for successful simulation of facilitatory effects of PND.  
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While our DRC simulations whose parameter settings resembled those of Chen and Mirman 

(2012), and Dell and Gordon (2003), did produce facilitatory effects of PND, they did not 

reproduce the critical interaction between summed higher frequency PNF and target log 

frequency that we observed in our behavioural findings. It needs to be acknowledged that 

Chen and Mirman (2012) did implement frequency of (orthographic) neighbours in a 

simulation of visual word recognition. This was achieved by increasing connection weights 

between the higher frequency “word” units and their corresponding letter units. Chen and 

Mirman’s (2012) parameter settings also included inhibitory links within the “word layer” 

(i.e., the connection strength between units in that layer). The resulting simulations 

allowed for inhibitory effects of higher frequency (orthographic) neighbours to appear. It is 

therefore possible, if connection weights between words and corresponding phoneme units 

were increased in higher frequency phonological neighbours, that this model could 

simulate inhibitory effects of higher frequency neighbours in spoken word production. 

However, it is unclear whether such a simulation would also have resulted in the critical 

interaction between target frequency and the summed frequency of these neighbours of 

higher frequency than the target.  

With Simulation 5, we successfully found three sets of parameter settings capable of 

reproducing the critical interaction between target log frequency and summed higher 

frequency PNF that we found in the behavioural data. This set of simulations featured 

reduced activation from semantics to the phonological lexicon, with or without inhibition 

(within Phonlex units or between phonemes and the phonological lexicon) and whether or 

not increased feedback from phonemes was present. These simulations that allowed for 

the desired effects to emerge had in common, that they allowed for increased effects of 

frequency (target and neighbour frequency), with activation spreading relatively slowly 
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through the system, allowing increased interactivity between the word form level and the 

level of phonemes before the word is successfully produced. To obtain this effect, no 

changes were required from the DRC default settings for reading aloud (that are also used 

for picture naming). The parameter regulating the excitation of Phonlex units from 

semantics had to be changed from the initial DRC-SEM value to successfully model the 

behavioural findings of this study. This initial “default” value of the parameter had been set 

somewhat arbitrarily and our results suggests its setting should be changed. 

Implementation of this change did, however, lead to less than perfect accuracy, because 

there was insufficient activation for very low frequency items to be accurately named. 

Perfect accuracy would be expected in our simulations that feature no noise and in which 

activation is always sent to the correct phonological unit from the correct semantic unit. 

What the less than perfect accuracy suggests, is that the activation of the very low 

frequency units in the phonological lexicon resulted in a very low level of activation sent 

from the phonological lexicon to phonemes. That amount of activation was probably 

insufficient to offset the phoneme decay that is featured in the system. As a consequence, 

target phonemes for those very low frequency words did not reach enough activation for 

successful “naming”.  

Despite the success of these simulations to reproduce behavioural findings with minimal 

changes in initial DRC-SEM parameter settings, some limitations need to be noted. First, a 

paradoxical finding in these simulations, is how either effects of PND or an interaction 

between target log frequency and summed higher frequency PNF could be found in the 

absence of observable activation of “phonological neighbours” (Phonlex units, such as in 

Simulations 4b and 5a).  Second, it needs to be acknowledged that DRC-SEM, in its current 

form, has limited ability to simulate effects happening or arising at the level of semantics 
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(aside from the imageability scaling for some words). For instance, a small number of 

picture naming studies have shown that the number of semantic features of a given 

concept (or semantic richness) has a facilitatory effect on latencies and accuracy (Lampe et 

al., 2021; Rabovsky et al., 2016; Taylor et al., 2012). Consequently, a more comprehensive 

version of DRC-SEM should incorporate such effects. More generally, a comprehensive 

model of spoken word production should also be able to simulate the activation of multiple 

semantically related candidates. This model would need to incorporate an ability to 

simulate effects related to this co-activation that arise in any task involving spoken word 

production (e.g., cumulative semantic interference in semantic blocking: e.g., Howard et 

al., 2006, semantic interference in picture-word interference: e.g., Schriefers et al., 1990, 

etc.), while being able to account for the present effects of phonological neighbours, and 

would also allow exploration of whether these semantic effects would be predicted to 

interact with any other effect, including the phonological effects that are observed here. 

In addition, future developments should go beyond DRC-SEM’s ability to simulate response 

time and also improve the extent to which it can simulate accuracy and error types.  

Finally, in addition to documenting neighbourhood density and frequency effects in spoken 

word production, this study suggests a change in the default parameter set for DRC-SEM 

(decreasing semantics to phonological lexicon excitation) that should be used for further 

investigation of picture naming.  

General Discussion 

We have reported two picture naming experiments in English, one with a population of 

Australian English monolingual speakers, the other using a published dataset of picture 

naming latencies from British English monolingual speakers. Given the inconsistencies in 

the previous literature, our aim was to examine the effects of several phonological 
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neighbourhood measures, and in particular, focus on neighbours of higher frequency than 

the target. Motivated by the literature on word recognition, our study was the first to 

examine whether there was an interaction between target frequency and phonological 

neighbourhood in picture naming.  

The human data in Experiments 1 and 2 found that the most consistent effects were related 

to interactions between target frequency and phonological neighbourhood, in particular, 

summed frequency of phonological neighbours that are of higher frequency than the 

target. These interactions demonstrated that effects of phonological neighbours can be 

both facilitatory and inhibitory, and that these effects are intimately connected to 

frequency effects.  

While it has previously been noted that phonological neighbours can generate forces that 

are either facilitatory or inhibitory, this claim was made in the context of different patterns 

dependent on task modality (production as opposed to reception) (Chen & Mirman, 2012; 

Dell & Gordon, 2003). Here we suggest that opposite forces can be generated within 

spoken word production depending on the frequency of the target and depend critically on 

those neighbours of higher frequency rather than all neighbours. This possibility gives a 

potential insight regarding why the literature shows inconsistent results – depending on the 

frequency of items in a given experimental set and the relative frequency of these items’ 

neighbours, a net facilitatory, null, or even inhibitory main effect of (higher frequency) 

phonological neighbourhood frequency may emerge.  

In Experiment 3, we undertook a systematic series of simulations using the Dual Route 

Computational model of reading, with an implemented semantic component (DRC-SEM). 

Our simulations involved a much larger and more realistic model vocabulary compared to 

the two other computational models of spoken word production that had previously 
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investigated effects of PND (Chen & Mirman, 2012; Dell & Gordon, 2003). DRC-SEM had 

not been designed with these simulations in mind and hence there was no guarantee that 

there would be a parameter set in this model that could simulate the human data. 

Nevertheless, the interaction between frequency and summed higher frequency PNF was 

reproduced using parameters that resulted in a relatively slow rise of activation in the 

phonological output lexicon from semantic input. 

While Chen and Mirman (2012) and Dell and Gordon (2003) did not investigate the 

interaction between target frequency and neighbourhood effects, we set the parameters of 

some simulations so that they would resemble those of Chen and Mirman (2012) and Dell 

and Gordon (2003), respectively. These parameter configurations were not successful at 

simulating the crucial interaction.  However, it is worth noting that Chen and Mirman did 

perform a simulation of visual word recognition taking into account the frequency of words: 

to simulate frequency, connection weights were increased between the higher frequency 

word units and their corresponding letter units. Chen and Mirman found that words that 

had higher frequency neighbours were recognised more slowly because those high 

frequency neighbours became more highly active, more quickly, and took longer to inhibit 

compared to equal frequency neighbours, and therefore delayed the recognition of the 

target word. It would be interesting to see if, within this model, increasing the connection 

weights between the higher frequency word units and their corresponding phoneme units 

would lead to words being inhibited by neighbours of higher frequency, and whether the 

effects would also interact with the target’s frequency. 

A finding of the present study that would merit further investigations is the significant 

interaction that was observed in the British dataset between target log frequency and 



 

56 
 

higher frequency PND. Although we judged that the evidence was not strong enough in the 

present study to justify modelling this interaction in Experiment 3, further behavioural 

research is needed to replicate this finding. If it was discovered that this is actually a robust 

effect, then this interaction should be modelled in simulations as well, and the potential 

changes in parameter settings discussed. 

An important limitation of the present study resides in the limited consideration of 

semantic factors, in particular of the influence of semantically related representations in 

spoken word production. Picture naming is a semantically driven task, but as we noted 

earlier, previous attempts at demonstrating the effect of the number of semantically 

related alternatives in picture naming have failed to show significant effects, although no 

study to date has investigated possible interactions between this and other factors (e.g. 

frequency). Further research is needed to address this important issue. 

Finally, we reported a strong correlation between frequency and both age of acquisition 

and familiarity. One possibility is that the effects that are attributed to frequency in the 

current analyses are actually driven by either of these other variables. For instance, some 

authors have claimed that effects that were attributed to frequency in picture naming were 

actually related to age of acquisition, based on the fact that when age of acquisition was 

included as a covariate, effects of frequency disappeared (e.g., Morrison et al., 1992, cited 

in Bonin et al., 2002). Future research could address this issue by testing the interaction 

between the age of acquisition and/or familiarity of target words and measures pertaining 

to the age of acquisition and/or familiarity of phonological neighbours. 

Conclusion 
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In this investigation of effects of phonological neighbourhood on spoken picture naming, 

we identified a critical interaction between the summed frequency of phonological 

neighbours of higher frequency than the target and the frequency of the target word. This 

phonological neighbourhood measure exerted inhibitory effects on low log frequency 

targets, but facilitatory effects on high log frequency targets. We argue that this 

observation may underpin the inconsistent findings in previous research, as it shows that 

neighbours can exert both facilitatory and inhibitory forces, but that the direction of these 

forces depends on both the frequency of the target and the frequency of its neighbours. 

Computational simulations allowed us to determine that, in a model featuring interactivity 

between words and phonemes, increased frequency effects generated by a slow rise in 

activation from semantics to the phonological lexicon units were needed for this critical 

interaction to occur.  

Our research suggests that in the study of phonological neighbourhoods in spoken word 

production, the number of neighbours does not matter as much as frequency differences 

between the target and its neighbours that determine the activation dynamics in the 

lexicon. As we have demonstrated this research constrains theoretical models and has 

important implications for comparisons across studies.  
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Table 1. Summary of the main findings of studies investigating the influence of PND/PNF on picture naming in unimpaired English 

speakers, sorted by measure of interest and target population.  

Paper 
Measure of 

interest 
Population 

Total 

Items  

Controlled for / 

manipulation of 
design effect on latency 

effect on 

accuracy 

Gordon & 

Kurczek (2013) 
(residual) PND* 31 young adults 200 

Frequency, length, 

phonotactic probability 
continuous ø ø 

Newman & 

Bernstein Ratner 

(2007) 

PND 24 young adults 44 
Frequency, initial 

phoneme, PNF. 
factorial ↗  (marginal) ↗  

Vitevitch (2002): 

Expt 3 
PND 34 young adults 48 

Familiarity, frequency, 

length, PNF. 
factorial ↗  ø 

Vitevitch (2002): 

Expt 4 
PND 25 young adults 48 

Familiarity, frequency, 

length, PNF, phonotactic 

probability. 

factorial ↗  ø 
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Vitevitch (2002): 

Expt 5 
PND 25 young adults 49 

Familiarity, frequency, 

length, PNF, phonotactic 

probability. 

factorial ↗  ø 

Vitevitch et al. 

(2004): Expt 3 
PND 24 young adults 44 

Familiarity, frequency, 

initial phoneme, length, 

PNF, phonotactic 

probability, visual 

complexity. 

factorial ø ø 

Newman & 

German (2005) 
PND 

690 adolescents 

& 530 adults 
44** 

Age of acquisition***, 

familiarity, frequency. 
factorial NA ↘  

Gordon & 

Kurczek (2013) 
(residual) PND* 42 older adults 200 

Frequency, length, 

phonotactic probability. 
continuous ↘  ø 

Bernstein Ratner 

et al. (2009) 
PND 15 children 44 

Frequency, initial 

phoneme, PNF. 
factorial ø ↗  

Arnold et al. 

(2005) 
PND 14 children 8 

Age of acquisition, 

familiarity, frequency, 
factorial ↘  ↘  
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length, phonotactic 

probability. 

Newman & 

German (2002) 
PND ≈ 270 children 72 

Age of acquisition***, 

frequency, PNF. 
factorial NA ↘  

Newman & 

German (2002) 

Frequency-

weighted PND 
≈ 270 children 64 

Age of acquisition***, 

familiarity, frequency. 
factorial NA ↘  

Newman & 

German (2002) 

higher 

frequency PND 
≈ 270 children 26 

Age of acquisition***, 

frequency, frequency-

weighted PND, PND, 

PNF. 

factorial NA ↘  

Newman & 

Bernstein Ratner 

(2007) 

(average) PNF 24 young adults 44 
Frequency, initial 

phoneme, PND. 
factorial ↗  ↗  

Vitevitch & 

Sommers (2003): 

Expt 3 

(average) PNF 21 older adults 54 

Familiarity, frequency, 

length, PND, phonotactic 

probability. 

factorial ↗  ↗  
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Bernstein Ratner 

et al. (2009) 
(average) PNF 15 children 44 

Frequency, initial 

phoneme, length, PND. 
factorial ↗  ↗  

Newman & 

German (2002) 
(average) PNF ≈ 270 children 60 

Age of acquisition***, 

familiarity, frequency, 

PND. 

factorial NA ↗  

The present 

study 

PND, higher 

frequency 

PND, PNF, 

summed higher 

frequency PNF 

40 young adults 359 

Age of acquisition, 

familiarity, target log 

frequency, imageability, 

length, name agreement, 

phonotactic probability, 

visual complexity. 

continuous 

Interaction between target log 

frequency and summed higher 

frequency PNF. 

 

↗ : facilitation, ↘ : inhibition, ø: non-significant effect, NA: not investigated in that study.  *residuals of PND regressed on length. ** 

the dependent variable is a combination of tasks (picture naming, open-end sentences & category sorting). *** some words did not have age 

of acquisition ratings.
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Table 2. Pairwise Pearson correlation coefficients between the control predictors and the PND/PNF predictors (n=359). 

 

VisComp IMG AoA Fam NameAg LengthP 
Phonotac

t 
LogFreq PND 

Higher 

F PND 
PNF 

IMG -0.001           

AoA 0.062 -.129*          

Fam -.117* 0.042 -.649***         

NameAg 0.038 .139* -.406*** .253***        

LengthP 0.082 .132* .448*** -.282*** -.117*       

Phonotact -0.054 -0.008 0.061 -0.039 0.02 .175***      

LogFreq -0.04 -.121* -.512*** .498*** .227*** -.500*** 0.029     

PND -0.089 -.136* -.314*** .225*** .118* -.708*** -0.092 .483***    

Higher F 

PND 
-0.083 -0.082 -0.07 -0.017 0.047 -.535*** -.131* 0.068 .712***   

PNF -0.095 -.125* -.317*** .232*** .125* -.692*** -0.088 .463*** .973*** .749***  

Summed 

higher F 

PNF 

-0.034 -0.101 -0.101 -0.026 0.315 -.234*** -0.049 -0.026 .253*** .360*** .275*** 

*** Correlation is significant at p<.001 (2-tailed); *Correlation is significant at p<.05 (2-tailed) 
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Abbreviations: IMG = imageability (available for 265 items), VisComp = visual complexity, AoA = age of acquisition, Fam = familiarity, 

NameAg = name agreement, LogFreq = target log frequency, LengthP = length in phonemes, Phonotact = phonotactic probability, PND = 

phonological neighbourhood density, Higher F PND = number of phonological neighbours of higher frequency than the target, PNF = 

phonological neighbourhood (summed) frequency, Summed higher F PNF = summed frequency of the neighbours of higher frequency than 

the target. 
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Table 3. Australian response time and accuracy: summary of the effects of each PND/PNF predictor and their interaction with frequency 

when added to the base model: analyses on the whole set of 359 items (265 for accuracy analyses), and on the reduced set of 183 items (169 

for accuracy analyses)). 

  

Response time 

 

Accuracy 

    AIC Estimate Std. Error t value p value vif 

 

AIC Odds ratio Std. Error z value p value vif 

35
9

 it
em

s 

Model 1: PND 164833 

      

6478 

     
     PND  -3.64 7.14 -0.51 .610 1.18  

 

0.96 0.15 -0.25 .804 2.59 

     PND: target F  -5.48 6.47 -0.85 .397 1.05  
 

1.09 0.12 0.76 .448 1.55 

Model 2: Higher F PND 164832 

      

6475 

     
     Higher F PND   -2.20 6.48 -0.34 .734 1.02  

 

1.16 0.11 1.28 .201 1.69 

     Higher F PND: target F  NA NA NA NA NA  
 

1.25 0.14 1.59 .113 1.06 

Model 3: PNF 164832 

      

6478 

     
     PNF  -5.79 6.32 -0.92 .360 1.09  

 

1.05 0.14 0.34 .735 2.39 

PNF: target F  -9.04 7.43 -1.22 .224 1.09  
 

1.07 0.12 0.57 .571 1.45 

Model 4: Summed higher F PNF 164830 

      

6475 

     
     Summed higher F PNF   -7.28 5.39 -1.35 .177 1.01  

 

1.13 0.11 1.08 .279 1.64 
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     Summed higher F PNF: target F   -20.23 9.64 -2.10 .036 1.16    1.25 0.14 1.66 .097 1.02 
18

3 
m

o
n

o
sy

lla
b

ic
 it

em
s 

Model 1: PND 85469 

      

3940 

     
     PND  16.56 10.10 1.64 .101 1.16  

 

0.97 0.16 -0.23 .820 1.74 

     PND: target F  -6.97 7.21 -0.97 .333 1.27  
 

1.06 0.11 0.50 .617 1.06 

Model 2: Higher F PND 85469 

      

3990 

     
     Higher F PND   3.57 14.25 0.25 .802 1.20  

 

1.38 0.18 1.75 .079 2.56 

     Higher F PND: target F  -14.89 8.35 -1.78 .075 1.29  
 

1.19 0.13 1.40 .163 1.49 

Model 3: PNF 85470 

      

3940 

     
     PNF  10.96 9.21 1.19 .234 1.10  

 

1.08 0.15 0.53 .600 1.69 

     PNF: target F  -10.49 7.38 -1.42 .156 1.25  
 

1.04 0.12 0.33 .743 1.02 

Model 4: Summed higher F PNF 85468 

      

3937 

     
     Summed higher F PNF   -2.35 9.94 -0.24 .813 1.28  

 

1.35 0.17 1.78 .076 2.17 

     Summed higher F PNF: target F   -19.98 9.08 -2.20 .028 1.49    1.20 0.13 1.46 .145 2.29 

 

F = frequency, Std.Error = standard error, vif = variance inflation factor. Each PND/PNF predictor was added to the base model including, for the response time models:  

Name agreement, familiarity, log frequency and age of acquisition, and for the accuracy models, age of acquisition and log frequency, with random intercepts for 

participant and item.  
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Table 4. British English response time: Summary of the effects of each PND/PNF predictor and their interaction with frequency. 

  

Response time 

 

  AIC Estimate 
Std. 

Error 
t value p value vif 

4
12

 it
em

s 

Model 1: PND 119007 

     
     PND  2.70 7.69 0.35 .726 1.25 

     PND : target F  -6.11 6.76 -0.90 .366 1.07 

Model 2: Higher F PND 119003 

     
     Higher F PND   -2.27 6.92 -0.33 .743 1.02 

     Higher F PND : target F  -25.23 8.55 -2.95 .003 1.12 

Model 3: PNF 119007 

     
     PNF  1.87 8.59 0.22 .828 1.50 

     PNF : target F  -8.04 8.29 -0.97 .332 1.13 

Model 4: Summed higher F PNF 119004 

     
     Summed higher F PNF   1.51 6.67 0.23 .821 1.04 

     Summed higher F PNF : target F   -23.16 9.29 -2.49 .013 1.11 

2
10

 

m
o

n
o

sy
lla

b

ic
 

it
em

s Model 1: PND 60944 
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     PND  -0.92 10.74 -0.09 .932 1.25 

     PND : target F  -3.22 10.42 -0.31 .757 1.71 

Model 2: Higher F PND 60940 

     
     Higher F PND   -2.89 8.71 -0.33 .740 1.09 

     Higher F PND : target F  -23.71 11.16 -2.12 .034 1.03 

Model 3: PNF 60943 

     
     PNF  -1.28 10.49 -0.12 .903 1.21 

     PNF : target F  -7.30 10.20 -0.72 .474 1.47 

Model 4: Summed higher F PNF 60940 

     
     Summed higher F PNF   -1.76 8.34 -0.21 .833 1.05 

     Summed higher F PNF : target F   -22.38 10.52 -2.13 .033 1.02 

 

F=frequency, Std.Error=standard error, vif=variance inflation factor. Each PND/PNF predictor and interaction was added to the base model 

including picture name agreement, familiarity, log frequency, and age of acquisition, with random intercepts for participant and item.   
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Table 5. Summary of simulation output characteristics and effects of PND and higher frequency PNF on number of cycles, with a summary of 

behavioural results from Experiments 1 and 2. 

    

Significant effects on response latency: t-

values* 

  

% 

Accuracy 

Mean Cycles 

per item  

Mean Phonlex 

units activated 

(other than target) 

PND 

Summed 

higher 

frequency 

PNF 

Interaction 

Summed 

higher 

frequency 

PNF * target 

log frequency 

HUMAN PICTURE NAMING   
Mean RT 

(ms) 
    

Experiment 1: Australian latencies (full set) 86.72 917 NA -0.51 -1.35 -2.10 

Experiment 2: British latencies (full set) 87.17 923 NA 0.35 -0.10 -2.49 

SIMULATION 1: Default settings 100 75.26 0.02 -0.63 0.28 0.16 

SIMULATION 2: Increased feedback from phonemes to the phonological output lexicon 

2a. Phoneme-Phonlex activation 0.14 100 70.78 4.65 -1.67 -0.39 0.19 
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2b. Phoneme-Phonlex activation 0.2 100 67.75 11.73 -3.69 -1.82 0.02 

SIMULATION 3: Reduced Inhibition 

3a. No inhibition from phonemes to Phonlex 100 75.25 0.02 -0.62 0.28 0.15 

3b. No Phonlex lateral inhibition 100 75.25 0.02 -0.62 0.28 0.15 

3c. No inhibition from Phonemes and no lateral inhibition 100 74.35 15.84 -2.40 -1.21 0.32 

SIMULATION 4: Increased frequency scaling             

4a. PhonLex frequency scaling 0.07 100 106.12 0.02 -1.00 -0.02 -0.27 

4b. Phonlex frequency scaling 0.095 100 114.05 0.01 -1.04 -0.68  -0.58 

SIMULATION 5: Weakened Semantics to Phonlex excitation           

5a. Semantics to Phonlex 0.045 84 146.67 0.01 -0.09 -0.61 -2.77 

5b. Semantics to Phonlex 0.045 AND no inhibition  84 146.31 25.53 -0.49 -0.86 -2.73 

5c. Semantics to Phonlex 0.045 AND increased Phoneme-Phonlex feedback 0.2 

  84 114.07 12.02 -0.82 -0.45  -2.52 

* Significant effects are in bold. 

Note: For simulations, all parameters have default values except for those noted in the table (for default values see Supplementary materials)
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Figure 1. Graphic representation of the activation of phonological neighbours within an 

interactive activation model without within or between level inhibition or competition (e.g., 

Dell et al., 1997). 

 

 

 

 

 

 

 

 

Legend: 

Step 1 (plain arrows): Semantic nodes activate the target word node which activates the 

corresponding phoneme nodes. 

Step 2 (dashed arrows): Target phonemes send activation back to the target word node 

AND its phonological neighbours. 

Step 3 (dotted arrows): Target and neighbours send activation back to the phoneme nodes, 

which are then more strongly activated. 

 

 

Figure 2. Effect of Summed higher frequency PNF on response time, moderated by target 

log frequency (Australian dataset). Plot created with ggplot2 (Ginestet, 2011). 

Semantic nodes 

Word nodes 

Phoneme nodes e b ae t m 

bet bat mat 
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Note: “low” and “high” values correspond, respectively, to -1 SD and +1 SD 
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Figure 3. Effect of, 1) Higher frequency PND; and 2) Summed higher frequency PNF on 

response time, moderated by target log frequency (British dataset). Plot created with 

ggplot2 (Ginestet, 2011). 

1) 

 

2) 

 

Note: “low” and “high” values correspond, respectively, to -1 SD and +1 SD 
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Figure 4. Effect of Summed higher frequency PNF on number of cycles, moderated by 

target log frequency (DRC-SEM Simulation 5a). Plot created with ggplot2 (Ginestet, 2011). 

 

Note: “low” and “high” values correspond, respectively, to -1 SD and +1 SD 
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APPENDIX A 

Experiments 1 and 2: Predictors 

A1. Description of measures: 

Trial number: Baayen and Milin (2010) note that there are temporal dependencies between 

successive trials in many experiments. They argue that the inclusion of trial number in the 

model helps improving the fit and clarifying the role of the predictors of interest. Trial 

number reflects the order at which a given item was presented to the participant. 

 

Name agreement refers to the degree to which participants agree on the name of the 

picture. Name agreement measures can either be obtained offline on a separate group of 

participants similar to the experimental group (e.g., Alario & Ferrand, 1999; Barry et al., 

1997; Ellis & Morrison, 1998) or calculated on the basis of the accuracy of the experimental 

participants (Sadat et al., 2014; Severens et al., 2005). The stimuli used here were selected 

on the basis of high name agreement values from the IPNP, but these were from American 

English participants. As name agreement can differ across English varieties (as shown for 

example by the relatively low correlation (r < .5) between British and American English 

name agreement norms in Barry et al. (1997), in our analysis we used the mean accuracy of 

our participants on each of the 359 items as a measure of “speeded” Australian name 

agreement (the same way Sadat et al. 2014 and Severens et al., 2005, did).  

Objective visual complexity values were retrieved from the IPNP (Székely et al., 2004) and 

were available for all items: this measure consists of the size of the digitized stimuli picture 

files in kilobytes. This measure has been suggested to be preferable to subjective ratings of 
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visual complexity which have been shown to be often confounded with familiarity (Székely 

& Bates, 2000).  

Familiarity and Age of Acquisition ratings were drawn from a British English norming 

study (Johnston et al., 2010). Values were available for all the 359 final items. Familiarity 

values are ratings of how usual or unusual a concept/object is in the rater’s realm of 

experience, on a seven-point scale ranging from very unfamiliar to highly familiar. Age of 

Acquisition is a subjective estimate of the age at which the name of the object was learned, 

choosing between seven age bands. 

Values of log summed spoken and written word form frequency were obtained from the 

CELEX database (British English: Baayen et al., 1993). Additionally, frequency measures 

were retrieved from a more recent frequency database (SUBTLEX-UK: Brysbaert & New, 

2009). 

Ratings of imageability (the ease with which a word gives rise to a sensory mental image) 

were obtained from the MRC database (Coltheart, 1981), and were available for 265 of the 

final 359 experimental items. 

Word length was the number of phonemes in each target word. 

Phonotactic probability was calculated using Vitevitch & Luce's (2004) algorithm: average 

unigram or bigram positional probabilities across a word. The measure was computed using 

an online program (Phonological Corpus Tools: Hall et al., 2016).  

Phonological neighbourhood density (PND) was calculated using the online program 

CLEARPOND (Marian et al., 2012), which uses the one-phoneme difference rule (words 
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were neighbours if they shared all but one phoneme, either substituted, added or 

deleted)10.  

Higher frequency PND: In addition to total PND, we also considered more specifically the 

number of neighbours that were (numerically) higher in frequency than the target word.  

Phonological neighbourhood frequency (PNF): Summed log frequency of phonological 

neighbours (frequencies were taken from the CELEX database, Baayen et al., 1993). 

Summed higher frequency PNF: Summed log frequency of the phonological neighbours 

that are (numerically) higher in frequency than the target word.

                                                 
10 The CLEARPOND online program is designed such that possible neighbours are limited to words belonging 
to an educated monolingual adult’s lexicon (a frequency threshold was used, so that the number of words in 
the corpus – 27,751 for English – is a reasonable vocabulary size estimate). This is to ensure that there are no 
rare words that are unlikely to be known by most adult monolinguals.  
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A2. Means and standard deviations of all item-related predictors used in analyses, before standardisation.  

  359 Australian items mean (SD) 412 UK items mean (SD) 

Visual complexity in Kbytes (IPNP) 16,665 (8911)  

 
Visual complexity rating /7 (Johnston et al., 2010) 

 

3.65 (1.00) 

Name agreement (per item percent accuracy) 86 (34) 87(14) 

Familiarity /7 (Johnston et al., 2010) 4.89 (1.17) 4.90 (1.17) 

Age of acquisition /7 (Johnston et al., 2010) 2.99 (0.81) 3.00 (0.83) 

Celex Log combined word-form frequency  2.26 (0.81) 2.31 (0.69) 

Imageability (range 100-700) (MRC) (265 items) 592 (34) (294 items) 591 (37) 

Word Length (in phonemes) 4.37 (1.64) 4.49 (1.57) 

Phonotactic probability (Vitevitch & Luce, 2004) .005 (.003) .005 (.004) 

PND measures     

PND 15.15(15.41) 13.98 (14.39) 

Higher frequency PND 3.38 (4.61) 3.96 (5.37) 
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PNF measures     

PNF 27.10 (29.45) 26.80 (29.29) 

Summed higher frequency PNF 12.61 (36.66) 12.54 (17.02) 

 


