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Abstract 

With the development of smart grid (SG) and demand response (DR) programs, 

smart homes (SHs) can play a significant role in increasing the penetration of 

renewable resources while improving the sustainability of the grid. This thesis 

addresses the complexity of SH operation and local renewable resources optimum 

sizing. The effect of different criteria and components of SH on the size of 

renewable resources and annual cost of electricity in the residential sector is 

investigated. The operation of SH with the optimum size of renewable resources is 

also evaluated to study the annual cost of SH. In addition, the effectiveness of SH 

with committed exchange power functionality is studied with the goal of 

minimising annual electricity cost while responding to DR programs.  

First, background and a literature review relevant to state-of-the-art technologies 

and elements (such as SH optimal sizing problem, DR programs, home energy 

management System (HEMS), renewable distributed generation and SH enablers) 

are presented. Then, a modelling framework for implementing stochastic behaviour 

of renewable resources in optimisation problems is introduced. Wind turbine (WT), 

photovoltaics (PV), SH generation cost, battery charge/discharge, heating, 

ventilation, and air conditioning (HVAC) load and plug-in electric vehicles (PEV) 

charge/discharge are also modelled to be used for sizing optimisation. After that, 

optimum component sizing for a SH with rooftop WT, PV, battery storage system 

(BSS), PEV and shiftable loads by minimising annual electricity cost is introduced. 

A new rule-based HEMS is proposed in association with Monte Carlo simulations 

and particle swarm optimisation (MCS-PSO). Import and export of energy with 

vehicle-to-home (V2H) integration is considered along with stochastic behaviors of 

temperature, irradiance, wind speed, load, PEV availability and electricity rate 

(ER). After determining near-optimal sizes of rooftop PV, WT, and BSS, the 

performance of the SH operation is evaluated with the selected near-optimal 

renewable resources. The impacts of shiftable loads, maximum daily export energy, 

battery charge/discharge rates, V2H integration and, maximum WT, PV and battery 

capacity limits are investigated in sensitivity analysis simulations.  
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Following the above, a SH with committed exchange power functionality is 

proposed. Near-optimal sizes of rooftop PV, WT and BSS are studied for different 

conditions based on the proposed rule-based HEMS algorithm utilising a proposed 

MCS-PSO approach. Annual cost is minimised for determining near-optimal size 

of rooftop PV, WT and BSS for the SH with the committed power exchange. 

Stochastic behaviors of renewable resources and availability of PEV are considered. 

After determining near-optimal sizes of rooftop PV, WT and BSS, the performance 

of the SH operation is evaluated with the selected near-optimal renewable 

resources. The impacts of shiftable loads, maximum daily export energy, battery 

charge/discharge rates, V2H integration and maximum WT, PV and battery 

capacity limits are investigated in sensitivity analysis simulations. Further 

investigation is conducted to study the effect of various committed power 

exchanges to the annual cost and optimal sizes of rooftop PV, WT and BSS for the 

SH with shiftable load and V2H integration. 

The contribution of this study is significant for policy-makers, researchers and 

system designers who aim to improve SG, SH, electricity tariff structures and DR 

programs for the residential sector, which can further increase the penetration of 

renewable resources. 
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SH smart home 

SHMC smart home micro-computer 

SOC state of charge 

SR spinning reserve  

TMY typical meteorological year 

TOU time of use  

UK United Kingdom 

UPnP Universal Plug and Play 

V2G vehicle-to-grid  

V2H vehicle-to-home 

WT wind turbine 
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List of Symbols 

𝑖  daily time steps in MCS-PSO 

 j hourly time steps in MCS-PSO 

k MCS-PSO maximum iteration number 

∆𝑡 time interval for simulations (sec) 

𝛼 electricity Reward Factor 

𝛽 electricity Penalty Factor 

𝐵(∆𝑡𝑗) available battery charge (kWh) 

𝑐1 the cognitive parameter in PSO  

𝑐2 the social parameter in PSO 

𝐶𝑎𝑝𝐵 capacity of battery (kWh)  

𝐶𝑎𝑝𝑃𝐸𝑉  capacity of PEV (kWh) 

𝐶𝑎𝑝𝑃𝑉 capacity of PV (kW) 

𝐶𝑎𝑝𝑊𝑇 capacity of WT (kW) 

𝐶𝐻𝑜𝑢𝑟 hourly electricity cost of SH (cents) 

𝐶𝐷𝑎𝑦 daily electricity cost of SH (cents) 

𝐶𝐴𝑛𝑛𝑢𝑎𝑙 annual electricity cost of SH (cents) 

𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉  cost of discharging PEV for sell/export (cents/kWh) 

D search–space dimension for PSO and ABC 

DOD depth of discharge (%) 

𝐸𝐵(∆𝑡𝑗) electricity charge/discharge of battery during ∆𝑡𝑗 (kWh) 

𝐸𝑃𝐸𝑉(∆𝑡𝑗) electricity charge/discharge of PEV during ∆𝑡𝑗 (kWh) 

𝐸𝑃𝑉(∆𝑡𝑗) energy generation by PV during ∆𝑡𝑗 (kWh) 

𝐸𝑤(∆𝑡𝑗) energy generation by WT during ∆𝑡𝑗 (kWh) 

𝐸𝐵𝑢𝑦(∆𝑡𝑗) electricity imported/purchased from SG during ∆𝑡𝑗 (kWh) 

𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) electricity exported/sold to SG during ∆𝑡𝑗 (kWh) 
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𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 maximum limit of daily electricity export (kWh/day) 

𝐸𝑠𝑒𝑙𝑙
𝑃𝐸𝑉(∆𝑡𝑗) electricity sold to SG from PEV during ∆𝑡𝑗 (kWh) 

𝐸𝑅(∆𝑡𝑗) electricity rate during ∆𝑡𝑗 (cents/kWh) 

𝐸𝑅𝑚𝑎𝑥(𝐷𝐼) maximum electricity rate during DI (cents/kWh) 

𝐸𝑅𝑚𝑖𝑛(𝐷𝐼) minimum electricity rate during DI (cents/kWh) 

FF fill factor 

𝑓𝑖𝑡𝑠 fitness of the candidate solution in ABC 

𝐺(∆𝑡𝑗) global horizontal irradiance during ∆𝑡𝑗 (W/sq.m) 

𝐼𝑆𝐶  short-circuit current (A) 

𝐼𝑆𝐶.𝑆𝑇𝐶 short-circuit current measured under standard test conditions (A) 

𝐾𝐼 short-circuit current coefficient (A/°C) 

𝐾𝑉 open-circuit voltage coefficient (V/°C) 

𝐿𝑏 base load (kW) 

𝐿𝑠 schedulable load (kW) 

𝐿𝑏𝑢 unpredictable load (kW) 

𝐿𝐻𝑉𝐴𝐶 HVAC load (kW) 

𝐿𝐶𝑃𝑉 levelised cost of PV (cents/kWh) 

𝐿𝐶𝑊 levelised cost of WT (cents/kWh) 

𝐿𝐶𝑃𝑉+𝑊𝑇 levelised cost of total PV+WT (cents/kWh) 

𝐿𝐶𝐵 levelised cost of the battery (cents/kWh2) 

limit prearranged number of cycles which a food source will be abandoned 

if does not improve in ABC 

MCN maximum cycle number in ABC 

𝜂𝑃𝑉𝑖𝑛𝑣 PV system inverter efficiency 

𝑁𝑃𝑉 number of PV modules 

NCOT nominal cell operating temperature (°C) 

𝑝𝑔𝑏𝑒𝑠𝑡 the global best solution in PSO 

𝑝𝑖𝑑 the local best solution in PSO 
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𝑝𝑠 probability of choosing a food source in ABC 

𝑅𝑐 rate of battery charge and discharge (kW) 

𝑅𝑐
𝑃𝐸𝑉 rate of PEV charge and discharge (kW) 

SN number of candidates/food sources in ABC 

𝑆𝑂𝐶𝐵 state of charge of the battery (%) 

𝑆𝑂𝐶𝑃𝐸𝑉 state of charge of PEV (%) 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉  state of charge of PEV at arrival time (%) 

𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉  minimum state of charge of PEV at departure time (%) 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡
𝑃𝐸𝑉 initial state of charge of PEV in the start of the day (%) 

𝑇𝐴(∆𝑡𝑗) ambient temperature during ∆𝑡𝑗 (°C) 

𝑇𝐶(∆𝑡𝑗) cell temperature during ∆𝑡𝑗 (°C) 

𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉  PEV arrival time (hour) 

𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 PEV departure time (hour) 

𝑇𝑟𝑒𝑓 PV panel temperature of 25°C at reference operating conditions 

𝑉𝑐𝑖  cut-in wind speed (m/s)  

𝑉𝑐𝑜 cut-out wind speed (m/s) 

𝑉𝑂𝐶 open-circuit voltage (V) 

𝑉𝑂𝐶.𝑆𝑇𝐶 open-circuit voltage measured under standard test conditions (V) 

𝑉𝑟 rated wind speed (m/s) 

𝑉𝑤 wind speed (m/s) 

𝑤 inertia weight for PSO 
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Chapter 1 Introduction  

1.1 Background 

Concerns about greenhouse gas (GHG) emissions and electricity demand increases 

have dramatically increased interest in renewable energy resources over the last 

decades. As a result, the penetration of the grid by renewable resources has 

increased. With the increase of distributed generation and the intermittency 

characteristic of some renewable energy resources, the need for smart, efficient, 

balanced, economic, sustainable and secure grid has also increased. 

Information and communication technologies (ICT) play an important role in the 

evolution of the smart grid. Demand-side management (DSM) and demand 

response (DR) programs are also considered important options for balancing energy 

generation and demand. With the development of demand response programs and 

new technologies, the residential sector can play a significant role in optimising 

grid operation. 

 

1.1.1 Fossil CO2 emissions 

Since the start of the 21st century, reports show that global GHG emissions have 

increased compared to the three preceding decades. This is in part due to increased 

CO2 emissions generated by emerging economies. Global anthropogenic fossil CO2 

emissions showed an increase of 1.2% in 2017 compared to 2016, reaching about 

37.1 Gt. This increase was 0.4% in 2016 compared to 2015 (noting that 2016 was 

a leap year) [1]. Figure 1.1 shows global fossil CO2 annual emissions in Gt CO2/year 

separated by sectors. As can be seen, a large part of global CO2 is generated by the 

power and transport industries. This portion can be decreased by increasing the 

penetration of renewable resources and plug-in electric vehicles (PEVs). 
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Figure 1.1. Global fossil CO2 annual emissions (Gt CO2/year) [1]. 

 

1.1.2 Renewable energy 

Interest in renewable energy has increased significantly over the last several 

decades due to the limited supply of conventional fossil fuels and their associated 

environmental issues. In the 1970s the threat of running out of conventional fossil 

fuels led to programs for expanding renewable resources, but this interest was 

temporary and receded again as supply increased to meet demand. However, with 

recognition of the link between global warming and CO2 emissions, and the risks 

of using conventional fossil fuels, renewable energy has seen renewed attention. 

The main renewable energy systems which have been used for generating electricity 

are wind, solar, thermal, photovoltaics (PVs), biomass, geothermal, hydroelectric 

and ocean. According to [2], 25,921 km2 of PV can generate (during one year) the 

equivalent energy of the United States’ needs for one year. This area is less than 

one-quarter of the area that is covered with streets and roads in the USA. Adding 

other renewable resources makes it even more feasible to power the entire country 

using only renewable resources. However, there is a problem associated with many 

forms of renewable resources – namely, their intermittency characteristic. 
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1.1.3 Smart grid (SG) 

Electrical grid efficiency needs to improve to overcome environmental and 

regulatory restraints and the rapid increase in demand for penetration of renewable 

sources [3]. According to [4], the challenges operation of the electrical grid system 

faces include: 

 reliability, power quality and energy efficiency 

 increased renewable energy resources penetration, household demand, electric 

cars and micro-generation 

 generation and consumption uncertainty, customer awareness and short-term 

contracts. 

Some of traditional grid issues driving the transition towards a smart grid (Figure 

1.2) are listed in [5]. A brief definition of smart grid is also offered: ‘The smart grid 

is a suite of information based applications made possible by increased automation 

of the electricity grid, as well as the underlying automation itself; this suite of 

technologies integrates the behaviour and actions of all connected supplies and 

loads through dispersed communication capabilities to deliver sustainable, 

economic and secure power supplies’ [5]. 

Traditional Grid Smart Grid

Traditional Grid Smart Grid 

Centralized Generation Generation Everywhere 

Power Flows Downhill Power Flows from Everywhere 

Utility Controls Connections Anyone May Participate 

Behaviour: Predictable Behaviour: Chaotic 

 

Figure 1.2. Transition to smart grid [6]. 
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Economic and policy-based considerations, along with new technologies – in 

communications, renewable generation, energy storage and computing power – as 

well as innovative products and services, intelligent control/monitoring, and self-

healing technologies, mean that SG can [5]: 

 enable consumers to choose their supply and equip them with superior 

information 

 authorise consumers to play a role in system operation optimisation. 

Source: NIST Smart Grid Framework 1.0 Sept. 2009

a

  

Figure 1.3. Customer domain overview in SG [7]. 

 

An overview of the customer domain in SG is shown in Figure 1.3. There are three 

key features in the interconnection of buildings and the smart grid [7]. The first is 

a distributed renewable energy strategy that enables customers to generate 

electricity. The second feature is demand response (DR) programs between 

customers and service providers. Finally, the third feature is the availability of plug-

in electric vehicles (PEV) and the possibility of charging them in buildings.  
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The smart home (SH) can be considered as a nanogrid which can play a significant 

role in the transition of the grid towards a smart grid [4]. With the development of 

SGs and SHs, and utilisation of demand-side load management, the electrical grid 

is expected to have higher stability, with lower load fluctuation and operational cost 

(in terms of matching generation and demand) and reduced network dynamics and 

line losses [8]. SG can forecast electricity prices and control the energy at 

transmission and distribution levels by monitoring SHs’ energy and environmental 

data [9]. Using demand-side management in the residential sector in the context of 

SGs and SHs appears promising, as residential energy usage is almost 40% of global 

primary usage [3, 10, 11]. 

1.1.4 Smart home 

Smart homes (SHs) were introduced to improve energy efficiency, energy savings, 

comfort, security, safety and healthcare [12, 13]. They use artificial intelligence, 

communication skills, computational power, monitoring and controlling abilities to 

improve life experience and they can respond to residents’ behaviour [14]. Also, 

the development of the Internet of Things (IoT), along with other information and 

communication technologies (ICT), makes SHs more feasible [3, 15]. According to 

[3], an SH is defined as ‘a home which is smart enough to assist the inhabitants to 

live independently and comfortably with the help of technology is termed as smart 

home. In a smart home, all the mechanical and digital devices are interconnected to 

form a network, which can communicate with each other and with the user to create 

an interactive space’. In another definition [12], the SH is defined as ‘an application 

that is able to automatize or assist the users through different forms such as ambient 

intelligence, remote home control or home automation systems’ [3]. Some of 

fundamental characteristics of SHs are presented by [3] as follows.  

 Automation: having the capability to incorporate automatic devices or execute 

automated functions. 

 Adaptability: having the capability to learn, forecast and fulfil users’ needs. 

 Multi-functionality: having the capability to produce various results or carry 

out multiple duties. 

 Efficiency: having the capability to save time and costs by carrying out 

functions in a suitable manner. 
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 Interactivity: having the capability to allow users to interact with each other. 

Systems and technologies for SHs are investigated by [3]. Their advantages and 

disadvantages are discussed and available products on the market are introduced; 

these are presented in Table 1.1. 

Table 1.1. Smart home technologies. 

Integrated 

Wireless 

Technologies 

HEMS Products SHMC 

Products 

Home Automation products 

6LoWPAN CISCO Arduino Control4Home automation  

Blutooth DigitalSTROM Libelium 

Waspmote 

Creston home automation & 

entertainment 

EnOcean 

Technology 

The Energy 

Navigator platform 

BeagleBone 

Black 

British Gas Smarter Living & energy 

saving-smart meters 

DASH7 e-GOTHAM Raspberry Pi General Electric Brillion technology 

GSM Dreamwatts Banana Pi Panasonic smart appliance 

NeuRFon TM 

Netform 

Energy Team’s 

Energy Data 

Collector Tool 

 Whirlpool smart appliances 

MyriaNed Google PowerMeter  Vera smarter home control 

RFID Savant  Honda Smart Home US 

UWB SMARTHEMSTM  Samsung SmartThings 

Wi-Fi EmonCMS  LG Smart ThinqTM 

WLAN   HomeSeer HS3, Staples Connect 

Z-Wave   LonWorks, OpenHAB, Wink, Iris 

ZigBee   Nexia, KNX, UPnP, iHome, WeBee  

 

A home energy management system (HEMS) is one of the important enablers of 

SHs. It can be used to minimise electricity cost and increase efficiency by enabling 

consumers to actively control demand and generation [16]. According to [17], 

HEMSs can be used for: 

 balancing demand and supply while managing energy flow for SHs 

 planning energy production for exchanging energy with the grid. 
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Renewable energy generation and energy requirements in SHs are misaligned, and 

energy cost differs during peak and off-peak hours. HEMS can be used for 

managing energy, which can be facilitated with energy storage [16]. 

SHs can help consumers use electricity efficiently in order to decrease energy cost, 

peak load and GHG emissions. However, more studies are needed in the areas of 

DR and end-users of the SG [3].  

1.2 Research scope 

This thesis focuses on a committed power smart home (SH) with optimal size of 

renewable resources for demand response (DR) programs to facilitate penetration 

of renewable resources in order to reduce emissions while improving SG efficiency. 

SHs with various ranges of committed power are studied, which helps policy-

makers understand the impact of electricity rate and electricity tariff structures on 

the penetration of renewable resources. 

Two HEMSs – for a non-committed power SH and a committed power SH – are 

proposed to schedule the load and allocate the local renewable resources for the SH 

based on dynamic day-ahead price and incentive DR programs. 

Also, the near-optimal size of renewable resources for SHs is investigated using 

Monte Carlo simulation and particle swarm optimisation (MCS-PSO) to increase 

the profit of households while increasing the penetration of renewable resources 

based on the DR programs. 

Probabilistic behaviour of renewable resources, loads, electricity rate (ER) and 

availability of a plug-in electric vehicle (PEV) is considered along with household 

comfort preferences, SH energy generation cost and shiftable/non-shiftable loads. 

1.3 Research objectives 

This thesis aims to investigate the optimum sizing of renewable resources for SH 

with/without committed power exchange and PEV integration. SH operation is 

evaluated for determined near optimal sizes following a sensitivity analyses. The 

research objectives can be listed as follows: 
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1. Modelling stochastic behaviour of SH components and development of rule-

based HEMS algorithms to empower households for shifting (scheduling) 

their shiftable loads to off-peak periods based on the DR programs. 

2. Optimum sizing of SH renewable resources and investigating the impacts of 

shiftable loads, V2H, battery rate, maximum daily electricity export, and 

maximum capacities of BSS, WT and PV on optimal sizes. 

3. Optimum sizing of renewable resources for SH with committed power 

exchange and PEV integration by utilizing proposed rule-based algorithm with 

MCS and PSO. Also, investigating the impacts of shiftable loads, V2H, 

battery rate, maximum daily electricity export, and maximum capacities of 

BSS, WT and PV on optimal sizes. 

4. Evaluating the performance through the operation of SH with/without 

committed power exchange and cost evaluation with near-optimal renewable 

component sizes. 

5. Investigating the impact of various range of committed power for the SH with 

shiftable loads and shiftable PEV/H2V/V2H.  

1.4 Thesis structure 

The outline of this thesis is shown in Figure 1.4. After this introductory chapter, the 

rest of this thesis is organised as follows. 

 Chapter 2: This chapter presents an overview of the recent literature about SH 

components in the context of smart grid and demand response programs. A 

number of technologies and components that play a significant role in SHs are 

discussed and evaluated. Recent studies of demand-side management, 

renewable distributed generation, optimal sizing of renewable resources and SH 

enabling technologies are summarised and discussed. 
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 Chapter 3: This chapter presents data modelling and optimisation methods 

used for energy management and sizing optimisation in SHs. Two methods are 

introduced for modelling wind speed, global irradiance, temperature, power 

demand, and electricity rate based on yearly data by use of Monte Carlo 

simulation (MCS). Additionally, components of SHs, such as renewable 

resources and loads, are modelled to be used in the following chapters’ 

simulations. Further, particle swarm optimisation (PSO) is presented to be used 

for optimum sizing of components for SHs.  

 Chapter 4: This chapter presents optimum component sizing for an SH with 

rooftop WT, PV, BSS, PEV and shiftable loads by minimising annual electricity 

cost. A new rule-based home energy management system (HEMS) is proposed 

in association with MCS-PSO. Import and export of energy with V2H 

integration is considered along with stochastic behaviors of temperature, 

irradiance, wind speed, load and ER. Also, lognormal and normal probability 

density functions are used for projecting availability of PEV. After determining 

near-optimal sizes of rooftop PV, WT, and BSS, the performance of the SH 

operation is evaluated with the selected near-optimal renewable resources. The 

impacts of shiftable loads, maximum daily export energy, battery 

charge/discharge rates, V2H integration and maximum WT, PV and battery 

capacity limits are investigated in sensitivity analysis simulations. Finally the 

optimisation results for MCS-PSO and MCS-ABC are compared for Cases B1, 

B2 and B3 in Section 4.4.4. 

 Chapter 5: This chapter presents a SH with committed exchange power 

functionality. Near-optimal sizes of rooftop PV, WT, and BSS are studied for 

different conditions based on the proposed rule-based algorithm (HEMS) with 

MCS-PSO. Annual cost is minimised for determining the near-optimal size of 

rooftop PV, WT, and BSS for the SH with committed power exchange. 

Stochastic behaviors of renewable resources and availability of PEV are 

considered. After determining near-optimal sizes of rooftop PV, WT and BSS, 

the performance of the SH operation is evaluated with the selected near-optimal 

renewable resources. The impacts of shiftable loads, maximum daily export 

energy, battery charge/discharge rates, V2H integration and maximum WT, PV 

and battery capacity limits are investigated in sensitivity analysis simulations. 
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Further investigation is conducted to study the effect of various committed 

power exchange to the optimal sizes of rooftop PV, WT and BSS for the SH 

with the shiftable load and V2H integration. 

 Chapter 6: This chapter presents conclusions, contributions and future research 

recommendations. 

 

Chapter 1     

Research Background, Scope, Objectives and Structure

Chapter 2     

Review of Literature

Chapter 3     

Modelling stochastic behaviour of renewable resources and 

components of Smart Home

Chapter 4     

Home Energy Management System for Smart Home, Optimum size 

of renewable resources, Operation evaluation

Chapter 5     

Home Energy Management System for Smart Home with 

committed power exchange, Optimum size of renewable resources, 

Operation evaluation, Effect of various committed power exchange 

to the optimum sizes and annual cost

Chapter 6     

Conclusions, Significance, Contributions and Future works

 

Figure 1.4. Thesis outline. 
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Chapter 2 Literature Review for Smart 

Homes 

2.1 Introduction 

This chapter presents an overview of recent literature about SH components in the 

context of smart grid and demand response programs. A number of technologies 

and components that play a significant role in SHs are discussed and evaluated. 

These technologies empower SHs and facilitate the transition of the grid towards a 

smart grid. Implementation of these technologies and optimal usage is important 

for increasing energy efficiency while reducing greenhouse gas emissions. 

Investigated areas are classified into four main categories. 

1. Demand-side management and demand response programs 

a. Demand-side management 

b. Demand response programs 

2. Renewable distributed generation 

a. PV system  

b. Wind system  

c. Electrical storage system  

3. Optimal sizing of renewable resources 

a. Optimal sizing for microgrid 

b. Optimal sizing for smart home 

4. Smart home enablers 

a. Power metering devices 

b. Communication network 

c. Smart appliances  

d. The Internet of Things 

e. Smart sensors 

f. Monitoring and control systems 

g. Cloud computing 

h. Home energy management system (HEMS) 

i. Energy consumption scheduling 
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2.2 Demand-side management and demand 

response programs 

Demand-side management (DSM) and demand response (DR) programs are 

promoted in residential contexts to address residential demand increases. They seek 

to influence the patterns of energy consumption. DSM programs are used to 

influence consumers in the medium- or long-term to increase energy efficiency. 

However, DR is designed for short-term influence on demand by use of a control 

signal, such as price [4].  

2.2.1 Demand-side management 

Demand-side management (DSM) was introduced in 1970 [18]. It is a marketing 

strategy focused on technology and on utilities’ and customers’ needs [7]. DSM 

activities are defined as ‘those which involve actions on the demand (i.e. customer) 

side of the electric meter, either directly or indirectly stimulated by the utility. These 

activities include those commonly called load management, strategic conservation, 

electrification, strategic growth or deliberately increased market share’ [19]. DSM 

has been extended to be used for stability and reliability improvement, power 

system loading and system expenditures decrement [20]. 

DSM aims to balance demand with available supply and achieve the following 

goals [7, 21]. 

 Operational cost reduction for entire network. 

 Improving consumers’ participation in generation and energy management. 

 Load management. 

 Balancing demand and supply. 

 Improving energy efficiency and conservation. 

 Decreasing emissions. 
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DSM is categorised by [22], based on timing and the impact of the applied measures 

on the customer process, into four categories: (i) energy efficiency (EE); (ii) time 

of use (TOU); (iii) demand responses (DR); (iv) spinning reserve (SR). In addition, 

DSM challenges in UK are studied in [23] and the policy is reviewed by [21] after 

dividing DSM into three broad areas, as can be seen in Figure 2.1. 

  

Figure 2.1. Elements of demand-side management [21]. 

  

2.2.2 Demand response programs 

Utilities and aggregators use DR, which is a DSM programs, to manage power 

consumption. DR provides notifications to customers in order to change consumers’ 

expected load patterns for efficiency improvement [24]. It is a cost-effective 

alternative (compared to adding generation resources) during demand spikes and 

peak times to reduce system emergencies and peak demand [25].  

DR is defined as ‘changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or 

to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized’ [18]. 
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There are two types of DR programs[26]: 

 time-based programs 

 incentive-based programs.  

These two types contain fourteen DR classifications, which are described in [7] and 

listed in Table 2.1. In the price-based programs, price is variable and based on 

dynamics such as real-time pricing (RTP), critical peak pricing (CPP) and time of 

use (TOU) [27]. 

 A simple type of DR is TOU, which defines several periods with different 

electricity prices for each period. Providers such as Ausgrid (Figure 2.2) in Sydney 

and Synergy in Perth, Australia, provide TOU services for motivated customers. 

CPP is similar to TOU pricing; however, for some days regular peak price is 

changed to a predetermined higher rate. This seeks to reduce customer demand 

when the reliability of the grid is under pressure [28]. One of the most efficient 

price-based programs is RTP, which reflect changes in the wholesale market and 

energy price changes hourly or a day ahead [7].  

Midnight Midnight
pm10 pm10

8pm

2pm
Noon Noon

7am7am

Off Peak

Shoulder
Shoulder

Off Peak

Peak

Weekends &

Public Holidays
Weekdays

  

Figure 2.2. Ausgrid TOU periods [7]. 

In the incentive-based programs, customers receive load control signals to reduce 

their demand. These signals can be based on contractual agreement or incentive-

based payments [29].  
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Table 2.1. Demand response programs, issues, approaches and future 

extensions [7, 28]. 

Demand Response  

Incentive-Based Programs Time-Based Programs 

1. Direct load control [30] 

2. Interruptible load [31] 

3. Spinning reserves 

4. Non-spinning reserves 

5. Emergency demand response [32] 

6. Load as capacity resource 

7. Demand bidding and buyback [33]  

8. Regulation service 

1. Critical peak pricing [34] 

2. Real-time pricing [35, 36] 

3. Time-of-use pricing [37-39] 

4. Critical peak pricing with 

control 

5. Peak time rebate 

6. System peak response 

transmission tariff 

Mathematical Problems  Mathematical Models 

Utility maximisation [40-45] 

Cost minimisation [46-52] 

Price reduction [46, 53] 

Renewable energy [43, 44, 54-60] 

Energy storage [40, 45, 58, 59, 61-71] 

Utility function [40-44, 47, 48] 

Cost function [41, 42, 47, 48] 

Approaches Future Extensions 

Convex optimisation [40, 41, 46] 

Game theory [47, 48, 69, 72-77] 

Dynamic programming [44, 49, 71, 78-81] 

Markov decision process [57, 70, 82, 83] 

Stochastic programming [43, 84-86] 

Particle swarm optimisation [45, 61, 87-90] 

Coupled constraint [91, 92] 

Hierarchical game [93, 94] 

Communication impact [95, 96] 
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Figure 2.3. Demand response for: (a) peak shaving; (b) valley filling; and (c) load 

shifting [28]. 

 

For deployment of SG technologies and services, DR is one of the important areas 

with critical functionality [97]. It is used for peak shaving, valley filling and load 

shifting (Figure 2.3). Also, it brings significant economic advantages, as can be seen 

in Figure 2.4 [24]. DR techniques are reviewed by [98].  
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EMS at the end-user level is one of technologies that can be improved to further 

advance DR [99]. Residential DR is investigated by [100] and multi-consumption 

level pricing is introduced to control high-level consumer consumption. Also, a 

Dynamic Demand Response Controller (DDRC) is proposed by [101] to control 

HVAC loads with a threshold price determined by households. 
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Figure 2.4. Price volatility reduction by demand response programs [7]. 

 

2.3 Renewable distributed generation 

Distributed generation (DG) units are utilised in the grid to decrease power 

interruption along with serving customers and ensuring reliable supply. They are 

classified into non-renewable and renewable classes (Figure 2.5). There are several 

definitions of DG in the literature. ‘DG is defined as small generation units from a 

few kilowatts (kW) up to 50 MW and/or energy storage devices typically sited near 

customer loads or distribution and sub-transmission substations as distributed 

energy resources’ [102]. The economics of DG are reviewed in [103] and the impact 

of DG on power quality is studied in [104]. 
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Figure 2.5. Distributed generation types and technologies [102]. 

Renewable DG plays an important role in the electric power system given recent 

developments in renewable energy technologies and the negative environmental 

impacts of fossil fuels. In addition, deregulation of markets and the demand for 

reliable power is expanding renewable DG all over the world [104]. Power utilities 

are utilising renewable DG in the distribution network to decentralise their power 

systems. This integration has environmental, technical and economic benefits, 

which depend on type, size and location of renewable DG units, configuration of 

distribution system and the technology utilised for energy conversion [102, 105]. 

Optimum sizing and location of renewable DG are important to achieve the 

maximum benefits [106]. It is predicted that 34% of global electricity will be 

generated by renewable resources by 2030 [102]. PV and wind systems are two 

renewable resources that have been widely utilised over the last few decades.  

2.3.1 PV system  

A PV system converts solar energy into electrical energy and includes PV cells, 

electronics interface, controller and associated auxiliaries. The modules’ position, 

cell temperature and insolation are some of important factors for PV output power. 

Solar resources are environmentally friendly and are potential alternatives to 

conventional resources. Based on the demand, PV systems can be configured to 

produce direct or alternating current. They can be used for serving a specific 

demand or for peak shaving. They can also connect to the grid through feed-in and 

net-metering [107]. Advantages of PV systems include their low operation and 
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maintenance costs with long service lifetimes, their being pollution free with no 

fuel cost, being modular and easy to install and being environmentally friendly. PV 

systems’ penetration is expected to reach 872 GW by 2030 because of the 

abovementioned advantages – along with their supply security compared to oil and 

gas availability and price variations [102]. 

Solar power generation studies are reviewed by [108] and PV technologies [109] 

and challenges [110] are investigated in the literature. Also, PV self-consumption 

and improvement options are summarised by [111]. 

2.3.2 Wind systems  

A wind system converts wind energy into electrical energy and includes blades, 

electronic circuit interface, gearbox, rotor, mechanical shaft and electric generator. 

Wind speed capacity and the height of the wind system are the important factors for 

wind system output power. Wind resource assessment and feasibility studies are 

essential to siting wind systems [112]. This can dramatically affect levelised cost 

of electricity (LCOE) for wind systems. 

LCOE is lifecycle cost of a generation technology divided by lifetime energy 

production of that technology. It can be used to compare different technologies for 

electricity generation. LCOE depends on factors such as; initial investment, 

installation cost, O&M expenses, capacity, fuel cost (where relevant), interest rate, 

government tax subsidies, location (availability of resources) and other important 

metrics [102, 113]. 

Advantages of wind systems include no fuel cost, long lifespan of the components, 

low O&M costs, low installation cost, low effective cost, no greenhouse gases 

(GHGs) and capablity to export reactive power to the grid [114]. Some factors that 

need to be considered before installing a wind system are identifying a reliable 

demand and understanding the energy’s economics; capital access; availability of 

the grid for grid-connected system; understanding the wind resource; and land 

availability. Wind system penetration has increased over recent decades due to its 

potential contribution to power supply. It is expected that the global installed 

capacity of wind energy will reach 2000 GW by 2030 [102].    
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Figure 2.6. Wind turbine classification [115]. 

A cross-axis WT is studied in [116] and vertical axis WTs for urban usage are 

reviewed by [115] after classifying WTs (Figure 2.6). In addition, an 

unconventional power electronic interface is presented by [114] for power quality 

improvement of wind energy conversion system. In another study, economic, 

environmental and material developments for wind and solar resources coupled 

with electric storage systems (ESSs) are studied in [117]. Additionally, many 

universities in Australia and all around the world have installed PV-WT for research 

studies (Figure 2.7). The PV-wind hybrid system which is implemented in the 

National Institute of Technology (India) [118] utilizes a horizontal axis WT as 

illustrated in Figure 2.7 a. However, the hybrid system at Curtin University contains 

both horizontal and vertical axis WTs as illustrated in Figure 2.7 b. 

(a) National Institute of Technology in Agartala, India (b) Green Electric Energy Park at Curtin University, Perth, WA, Australia  

Figure 2.7. PV-Wind hybrid [118]. 
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2.3.3 Electrical storage system  

An electrical storage system (ESS) is a process for storing electricity produced 

during off-peak demand, when the electricity price and demand are generally low, 

to be used in the future when the demand is high. ESSs play an important role in 

enhancing the integration of renewable resources into the grid. Some advantages of 

ESS are electricity cost reduction at peak period and low O&M costs, congestion 

reduction on the power system and reducing line losses, generation capacity 

reduction, ancillary services, improving power system quality, deferring investment 

in transmission and distribution facilities and improving power system reliability 

[102]. ESSs can be categorised based on the form of stored energy in the system 

[119].  

ESS planning in the distribution network is studied in [120]. In addition, battery 

storage technologies and the role of battery storage systems of electric hybrid 

vehicles in the power system are studied in [121]. Increasing PV penetration by 

using energy storage technology is studied in [122]. Distributed PV generation and 

ESSs are studied in [123]. Residential PV-battery systems are also used for peak 

shaving [124] and residential voltage profile improvement [107]. 

With the increase of EV penetration, ESSs are also used for energy services [125]. 

Also, V2G technologies’ impact on distribution systems and utility interfaces is 

studied in [126]. 

2.4 Optimal sizing of renewable resources 

One complex problem in SG is defining the optimal capacities of distributed 

generations (DGs) and battery storage systems (BSSs) for grid-connected systems, 

which depend on many variables including probabilistic behaviours of renewable 

resources. Novel strategies are being used for energy management in microgrids 

(MGs) [127, 128], smart buildings [129] and SHs [130] after the rapid 

developments in SGs. For example, DR programs, rooftop PVs, PEVs and BSSs 

are used in SHs for peak load shaving [131]. PEV coordination in SG has been 

studied for peak load shaving [132], minimisation of cost and losses [133, 134] and 

reactive power compensation [135]. Optimal size of renewable resources will be 
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affected by all of these novel strategies, DR programs and penetration of PEVs. For 

grid-connected systems, the optimum sizes of DGs and BSSs have been studied for 

MGs, which have a large capacity for renewable generation [133, 134] [136-138] 

as well as for SHs, which have a limited capacity for renewable generation [139-

143]. 

2.4.1 Optimal sizing for microgrid 

At the large scale (MGs), optimal sizing and energy management for BSS have 

been studied with regard to renewable energy generation and dynamic pricing of 

the electricity [127]. In another study, the optimal size of WT and PV for different 

levels of PEV penetration in residential MGs has been studied [137]. In addition, 

multi-criteria decision analyses are used in [138] for optimal sizing of a hybrid PV–

WT system and weighting criteria techniques are used for studying its sensitivity to 

input profiles. Controllable loads effect on residential MGs with BSS and 

renewable energy generations without considering V2G has also been studied 

[128]. 

2.4.2 Optimal sizing for smart home 

At the small scale (SHs), more investigations is necessary for determining optimal 

sizes of renewable generation and BSS, in view of factors such as H2G, V2H and 

DR, as well as the probabilistic behaviors of temperature, irradiance, wind speed, 

ER and load. Determining the optimal size of renewable generation and BSS 

becomes more complex when we consider these concepts. Some studies have been 

conducted on component sizing of SHs; however, these did not consider all types 

of loads and generations [139-141]. For instance, a hybrid wind–PV system with 

BSS is studied in [140] without consideration of PEVs and component sizing. 

Different residential PV and BSS sizes are evaluated in [141] from an economic 

point of view. DR impacts on SH component sizing for different case studies are 

investigated in [142] without consideration of shiftable loads and WT. Additionally, 

this study considers only a flat trading price, which provides no incentive for 

customers to accomplish peak load shaving [142]. Optimum sizes of WT and BSS 
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in SHs are determined in [139] by adopting a stochastic approach. However, PV 

and V2H are not considered. Moreover, it is based on daily (not annual) cost 

minimisation, which may not determine an acceptable solution [143].     

 

2.5 Smart home enablers  

Penetration of SHs depends on developing and implementing new technologies that 

enable SHs to integrate into SGs. These technologies provide the proper 

infrastructure for interconnection of SHs and SGs. Some of the main enablers are 

discussed in the following sections. 

2.5.1 Power metering devices 

Around the 1980s, automatic meter reading (AMR) began to be used for collecting 

meter data. However, AMR systems could not be used for control messages or 

broadcasting command. Advanced metering infrastructure (AMI), introduced 

around 2005, creates a link between external information systems and AMRs via a 

bi-directional communication system. Figure 2.8 shows a proposed network 

described in [144]. Currently, smart meters are becoming ever smarter. Non-

intrusive load monitoring (NILM) can be implemented in them to determine the 

operation of some individual loads [145-148]. This may reduce the number of 

sensors needing to be installed in a SH. According to [144], key features of smart 

meters are as follows. 

 Providing consumption data for utility and consumer. 

 Time-based pricing. 

 Outage and failure notification. 

 Net metering. 

 Power quality monitoring such as: voltage, phase and current, power factor, 

active and reactive power. 

 Load limiting for demand response purposes. 

 Detecting energy theft. 

 Remote command (turning on/off) operations. 
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 Improving environmental conditions with decreasing emissions through 

efficient power consumption. 

 Communicating with other intelligent devices. 

 Providing security [149]. 
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Figure 2.8. Proposed network by [144]. 

 

2.5.2 Communication network 

One of the important components of SHs is the home area network (HAN). Without 

a HAN, it is not feasible to implement a SH. HAN was defined in 2001 as ‘a network 

to interconnect home electronic products and systems, enabling its remote access 

and control and making available any content such as music, video, and other data’ 

[150]. In another study, a HAN is defined as ‘a network to connect devices capable 

of sending and receiving signals from other devices and applications’ [10, 150]. 

Therefore, HANs are an important element of SHs that empower HEMS. 
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HANs can use a combination of wireless and wired technologies. The first 

technologies were wired technologies, which have low cost and can be used based 

on the pre-existing infrastructure of houses. Optical fibre, telephone lines, twisted 

pairs, coaxial cables and power lines can be used for wired HANs. However 

wireless technologies are expected to play an important role in HANs based on 

recent research and developments. WiFi and Zigbee are generic technologies, while 

6LoWPAN is a new technology that optimises Internet Protocol Version 6 (IPv6) 

for low-power communications.  

Some of the technologies and standards – such as UPnP (Universal plug and play), 

DLNA (Digital Living Network Alliance), LonWorks, ZigBee (a wireless 

BACnet), X-10, domoNet, Amigo, Project HYDRA, Home Plug and Play, oBIX 

(Open Building Information Exchange), Konnex and Jini – are analysed and 

compared in [150]. Figure 2.9 shows a classification of HAN communication 

technologies. 

HAN communications and network technologies

Wireless

Radio frequency

Wired

Electrical wiring, optical 

fiber, telephone line

Battery-free

Energy harvesting

Battery-operated

No energy harvesting

 EnOcean

 HomePlug       0.1 - 200 Mbps          up to 200 m

 Ethernet       10 Mbps - 10 Gbps   100m

 Fibre optic       0.1 - 10 Gbps          up to 100 km

 Coaxial cables       172 Mbps          30 km

 ITU G.hn       

 X10      

 Insteon

Transmission medium      Rate          Range

 Z-Wave       40 kbps      10-30 m

 WiFi       1 - 600 Mbps      70-100m

 6LoWPAN       20 - 250 kbps      10-30 m

 ZigBee       20 - 250 kbps      70-100m

 Bluetooth       700 Mbps      70-100m

 ONE-NET

Transmission medium    Rate Range

 

Figure 2.9. HAN medium classification [4, 150]. 

 

Important features for HAN communication technologies are [4]: 

 reliability 

 security 

 interoperability and scalability 

 total cost 
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 coexistence 

 bandwidth and latency 

 forward and backward compatibility 

 power consumption 

Each HAN technology is superior in some features but none of them is dominant 

across all features. Three of the most popular HAN technologies (WiFi, Zigbee and 

HomePlug) are compared in Figure 2.10. 

ZigBee Low Power WiFi Home Plug

Energy

Consumption
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Interoperability
Typical Range

Latency

Bandwidth

Security

Lowest

Low

Average

High

Highest

 

Figure 2.10. Qualitative comparison of three HAN communication technologies 

[151]. 

 

2.5.3 Smart appliances  

Domestic devices are getting smart. They are becoming more intelligent and can 

communicate with HEMS to shift their operational times. They can also be 

controlled and monitored remotely. The demand for customer involvement in their 

energy use and load shifting is less because of their intelligent algorithms. Smart 

appliances may run less frequently or shift their operational cycle to reduce cost 
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and/or save energy. Some common smart appliances are washing machines, 

dishwashers, air conditioners and refrigerators. For instance, a smart washing 

machine in a house with local renewable generation will operate during the high 

local generation period and a smart fridge can shift defrost cycles to the off-peak 

hours. Some smart washing machines in a pilot project in the Netherland have been 

tested to operate with control signals [152]. Residential customers can decrease and 

modify the demand if smart appliances adaptation becomes popular and widespread 

[4]. Smart appliances sufficiency is investigated for providing reserve services 

[153] and electricity demand shifting [154] in the literature. In another study, five 

smart appliances’ flexibility potential (maximum duration of time that a specified 

decrease or increase of power can be realised without user comfort violation) is 

investigated; this can be used for defining the impact of DR [155]. 

2.5.4 The Internet of Things 

The Internet of Things (IoT) is defined as ‘an emerging global Internet-based 

information architecture facilitating the exchange of goods and services in global 

supply chain networks’ [4, 156]. Several advantages of implementing IoT in 

intelligent electric power network are [157]: 

 fewer communication protocols [158-160] 

 increased adaptability, resiliency, reliability and energy efficiency [157] 

 facilitation of on-demand information access and end-to-end service [161] 

 advanced control over home appliances [161] 

 networked operation and increased information operation capabilities [162] 

 advanced sensing capabilities [163] 

 reduced physical attacks (e.g. substation break-ins) by continuously 

monitoring the electric power network’s assets in real-time [157] 

 reduced natural disasters damage [164] 

 increased scalability and interoperability [165]. 

Some challenges related to IoT – such as security, computation, power 

management, complexity, big data, connectivity and sensing – are discussed in 

[157] and some solutions are proposed. A layered architecture to apply IoT to SHs 

is also introduced (Figure 2.11).  
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Figure 2.11. IoT architecture introduced for SHs by [157]. 

 

The IoT perspective has been accelerated by the introduction of IPv6, high-

performance computers, innovative analytical tools, wireless communication 

technologies, clouding computing, microelectromechanical systems and radio-

frequency sensors [4]. Motivations (Figure 2.12) and challenges (Figure 2.13) for 

SH applications based on IoT are discussed and reviewed in [166].  
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Figure 2.12. Benefits classification for SH applications based on IoT [166].  
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Figure 2.13. Challenges classification for SH applications based on IoT [166]. 

2.5.5 Smart sensors 

In the last few decades the number of sensors in our world has increased 

dramatically. Cars, mobile phones, buildings and cities are equipped with more 

sensors that enable users to control devices and activate security systems. Some 

studies suggest that more than 30 sensors are required for SHs to have a meaningful 

impact.  

There are a variety of sensors designed for safety, health and security. For example, 

ambient-assisted homes in Europe are equipped with sensors to monitor the daily 

routine and health of inhabitants. Sensors for detecting occupancy, temperature, 

light, motion, voltage and current are more appropriate for energy management 

purposes. They measure the parameters for different devices and at different 

locations of the house and send the data to a centralised system to be monitored by 

users. Although sensors have restrictions – such as limited storage and 

computations, limited ability for communication and short battery life – they can 

make household devices programmable, intelligent and better able to interact with 

inhabitants and the outside world [4]. A number of sensor technologies for SHs are 
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reviewed by [167] and several types of IoT sensors are listed in [157]. Additionally, 

several studies related to intelligent sensors for the industrial IoT are compared in 

[168] and a smart sensor is designed and verified for this application.  

2.5.6  Monitoring and control systems 

Personal computers (PCs), tablets, mobile devices and web servers can be used for 

monitoring SH data. This monitoring system can be called a human–machine 

interface. For example, an embedded monitoring and automatic control system for 

an industrial system is demonstrated in [169].   

Control systems are the brain of SHs. They can be implemented by use of micro-

computers, programmable logic controllers and embedded systems or they can be 

cloud-based. Supervisory control and data acquisition (SCADA) is also used in 

large control systems [170]. Monitoring and control systems in SHs are considered 

components of the home energy management system (HEMS) [171], which is 

discussed later in this chapter. 

2.5.7 Cloud computing 

Along with the benefits of ICT, there are some concerns about the reliability, 

availability and security of SG data processing and analysis. Cloud computing can 

be one of the best solutions [172]. A number of studies related to cloud computing 

applications for SG architecture are compared in [173]. 

A cloud-based computing framework is proposed by [174] for big data information 

management in SGs. Another cloud-based framework is proposed by [175] for SHs. 

Cloud computing can be even more beneficial with the expansion of IoT [168], and 

the conjunction of cloud computing and IoT is investigated by [176] and [177] for 

SHs. 
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2.5.8 Home energy management system (HEMS) 

Energy management systems (EMSs) have been used for the last several decades in 

the generation and transmission of the electrical power system and, more recently, 

in distribution systems [178]. They are used to optimise, control and monitor the 

demand, generation and transport of energy. Various technologies –such as Xerox 

systems, computer-based and software-based systems and embedded systems – are 

used for EMSs in the grid. EMSs, along with SCADA, enable applications such as 

optimal power flow, dispatcher training simulators, unit commitment, load 

forecasting, state estimation, and flow and contingency analysis [170]. 

Distribution network operation is becoming more automated with emerging SG 

functionalities, and households are becoming actively involved in energy markets. 

Because of this, home energy management systems (HEMSs) are dramatically 

expanding. HEMSs enable households to minimise their electricity cost and 

collaborate with the public grid through ancillary services, peak shaving, demand 

response and load shifting. HEMSs are defined as ‘in-home devices or systems that 

monitor, control, and analyse home energy use and provide information to the 

occupants. These systems are to conserve energy, reduce cost and improve comfort 

using intelligent monitoring and control systems’ [4]. They are also defined by 

[179] as, ‘a demand response tool that shifts and curtails demand to improve the 

energy consumption and production profile of a house according to electricity price  

and consumer comfort. The HEMS can communicate with household devices and 

the utility, as needed, and receive external information (e.g., solar power production 

and electricity prices) to improve the energy consumption and production schedule 

of household devices. The HEMS finds the optimal operation schedule by using a 

scheduling algorithm, and dispatches signals appropriately.’  

Residential generation integration into the SG can be facilitated by HEMSs to meet 

the various needs of households and to maintain the robustness and reliability of 

energy supply infrastructure. Some of potential interests for HEMSs among main 

stakeholders are given in the Table 2.2. According to [3], benefits of HEMSs 

include: 
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 greater savings for utility providers and customers. 

 decreased peak loads and peak-to-average ratio 

 making it possible to compare energy usage with historical data 

 including local renewable energy production 

 enabling households to be in a systemic context and to interconnect to the 

outside wold (Shaping SG). 

Table 2.2. Potential interests for HEMS among stakeholders [4]. 

Residential 

users 

Government Network 

operators 

Energy retailers Others 

Comfort Carbon emission 

reduction 

Demand 

response 

Demand response Energy services 

Cost reduction Energy efficiency 

measures 

Asset 

management 

HEMS products 

sales 

HEMS sales 

Social prestige Fuel poverty 

alleviation 

Load shifting Customer retention Research 

 

Although HEMS applications are correlated, they can apply to four main areas, 

which are shown in Table 2.3. Customer-based HEMS applications are mostly 

based on customers’ needs. However, network-based HEMS applications mostly 

focus on enhancing networks’ power quality and reliability while considering 

customers’ comfort and preferences [180-184]. Market-based HEMS applications 

are more focused on dynamic tariff systems for DR [46, 181, 185, 186], while 

service-based HEMS applications mostly concentrate on energy efficiency 

improvements [4].  

Table 2.3. Four major areas for HEMS applications [4]. 

Customer-based Network-based Market-based Service-based 

Power monitoring 

and feedback 

Demand response Customer benefits Energy provision 

at lowest cost 

Personalisation 

and goal setting 

Congestion 

management 

Network operator 

benefits 

Energy efficiency 

improvements 

Device control Load shifting Retailers benefits Customer comfort 

Safety    
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Various EMSs for energy savings are reviewed in [187]. In addition, centralised 

[188-192] and decentralised [48, 92, 193-199] EMSs for residential area through 

coordination of multiple SHs are studied in [200]. Modelling and complexity 

related to HEMSs is reviewed by [179]. There are various algorithms and 

approaches in the literature for EMSs, DR and scheduling. Some of them are 

presented in Table 2.4 with references. 

Table 2.4. Some methods in the literature for EMSs, DR and scheduling. 

Methods and approaches  Ref. 

Mixed Integer Multi-Time Scale Stochastic Optimisation [201] 

Adaptive Neural Fuzzy Inference System [202] 

Artificial Neural Network [203, 204] 

Bayes Theorem [205] 

Binary Particle Swarm Optimisation  [90, 206] 

Clustering [207] 

Contextual Energy Resource Management Methodology [208] 

Different Evolution And PSO (PSO-DE Algorithm) [209] 

Dinkelbach Method [210] 

Domotic Effects Enforcement And Boolean Satisfiability Problem [211] 

Fuzzy TOPSIS Approach [212, 213] 

Game Theory (GT) Approach [48, 214] 

Genetic Algorithm [215-219] 

Greedy Iterative Algorithm And Walrasian Equilibrium Theory [220] 

Nondominated Sorting Genetic Algorithm-II And Grey Relational 

Analysis 

[221] 

Hill-Climbing Heuristic Method [222] 

Integer Linear Program [223] 

Vickrey-Clarke-Groves Mechanism [42] 

Knapsack [224, 225] 

Lagrangian Dual Approach [226] 

Linear Regression Modelling [227] 

Linear Programming  [228] 

Mixed-Integer Linear Programing [180, 229-231] 

[232] [233] 

Mixed-Integer Nonlinear Programming [234, 235] 

Moving Window Algorithm  [236] 
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Methods and approaches  Ref. 

Multiagent Coordination Algorithm [237] 

Multi-Period Joint Energy Scheduling Algorithm [238] 

Multi-Time Scale And Multi-Stage Stochastic Optimisation 

Framework 

[239] 

Mutation Particle Swarm Optimisation  [240] 

Naive Bayes Classifier (NBC) And Hidden Markov Model 

(Machine Learning) 

[241] 

Newton’s Method [242] 

Particle Swarm Optimisation  [89, 243, 244] 

Polyblock Approximation Algorithm  [245] 

Q-Learning [246] [247] 

Semi Markov Model [248] 

Stochastic Dynamic Programming  [249] 

Tabu Search [250] 

Token Bucket Algorithm [251] 

Traversal-And-Pruning Algorithm [252] 

Two-Horison Algorithm  [253] 

 

2.5.9 Energy Consumption Scheduling 

Complex algorithms for HEMSs are created because of DR programs [101, 181, 

216, 224, 225, 254-259], modern ICTs [183, 201, 228, 242, 256] and distributed 

energy generation [16, 48, 89, 260-262] in residential sectors. Scheduling problems 

[146, 263-265] are one optimisation problem, along with other categories [7] such 

as household problems [181, 255, 266], distributed generation problems [89, 257] 

and pricing problems [46, 48, 267].  

There are diverse operation conditions for various appliances which should be 

considered in scheduling methods. A particular number of timeslots will be 

determined for the duration of time horizon planning approach. Then, optimisation 

techniques can be used to allocate the timeslots to the operations of various 

appliances and determine which operation should start/finish in each timeslot. 

Sequential order of tasks and the number of shiftable timeslots are the  
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other factors that need to be considered. Appliances operations are different. For 

example, various tasks must be taken in order for a washing machine to fulfil a job. 

Appliances load commitment in an allocated timeslot has been considered in [51, 

256, 268] as an important factor. In another study, household appliances scheduling 

for a stand-alone system is investigated by [269]. Also, operation scheduling of 

distributed energy resources is investigated in [270].Some of scheduling and 

optimisation approaches for residential are summarised in Table 2.5 [7]. 

Table 2.5. Scheduling and optimisation for residential sector. 

Optimisation Method Optimisation Objective DRP Ref. 

 Particle swarm 

optimisation  

 Monte Carlo simulation 

 Cost minimisation  Real-Time [271] 

[272] 

 Particle swarm 

optimisation  

 Monte Carlo simulation 

 Cost minimisation  N/A [273] 

 Particle swarm 

optimisation  

 Monte Carlo simulation 

 Cost minimisation  

 

TOU [274] 

 Monte Carlo simulation 

 Decision tree 

 Cost minimisation  

 Energy usage efficiency 

TOU [275] 

 Pattern search-based 

optimisation with 

sequential Monte Carlo 

simulation 

 Cost minimisation  

 Reliability satisfaction 

N/A [276] 

 Particle swarm 

optimisation  

 Binary particle swarm 

optimisation 

 Cost minimisation  

 

TOU [277] 

 Particle swarm 

optimisation  

 Cost minimisation  

 Emission reduction 

Real-Time [278] 

 Agent-based particle 

swarm optimisation 

 Energy saving 

 Comfort maximisation 

 Voltage support 

Real-Time [279] 

 Particle swarm 

optimisation 

 Cost minimisation  

 Comfort maximisation 

TOU [280] 

 Particle swarm 

optimisation  

 Cost minimisation  N/A [240] 
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Optimisation Method Optimisation Objective DRP Ref. 

 Quadratic binary 

particle swarm 

optimisation  

 Cost minimisation  

 

Real-Time 

& TOU 

[281] 

 Particle swarm 

optimisation 

 Cost minimisation  

 Comfort maximisation 

Real-Time 

& TOU & 

Load 

curtailment 

[282] 

 particle swarm 

optimisation 

 Cost minimisation  

 

TOU [283] 

 Mixed Integer Linear 

Programming  

 heuristic allocation 

algorithm 

 Cost minimisation  

 Maximisation of 

scheduling preferences   

 Maximisation of 

climatic comfort 

TOU [284] 

 particle swarm 

optimisation 

 Maximising comfort 

level 
N/A [285] 

 particle swarm 

optimisation 

 Saving energy  

 cost minimisation 

N/A [269] 

   Linear Programming 

 Offline and Online 

stochastic scheduling 

 minimise the monetary 

expense of the customer 
Day-ahead 

pricing 

[228] 

 Scenario-based 

Stochastic optimisation 

 Mixed integer linear 

programming 

 Minimising the 

electricity bill in 

different time slots 

Real-time 

pricing 

[256] 

 Linear programming  Utility maximisation and 

cost minimisation 
Real-time 

pricing 

[41] 

 Linear Programming  Minimising energy cost 

and maximising the 

consumer utility 

Real-time 

pricing 

[286] 

 N/A  N/A (Energy cost and 

comfort as constraint) 
Time 

varying 

price 

[181] 

 Combinatorial 

optimisation (First fit 

decreasing height) 

 Earliest deadline first 

scheduling algorithm 

 Peak load shaving N/A [183] 

 Particle Swarm 

Optimisation 

 Determine the 

distributed energy 

resources operation 

schedules (maximise the 

end-users’ net benefits) 

TOU and 

CPP 

[89] 
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Optimisation Method Optimisation Objective DRP Ref. 

 Linear sequential 

Optimisation 

 Minimising the energy 

cost 
Real-time 

pricing  

(day-ahead) 

[51] 

 Linear programming  Minimising the payment 

and inconvenience 

functions 

Time- 

varying 

price 

[268] 

 Mixed integer 

programming 

 Minimising the payment 

and interruption cost at 

the time of outage 

occurrence 

TOU [287] 

 Linear programming  Minimising energy to 

the grid and maximising 

the energy to grid 

Day-ahead 

pricing 

[288] 

 Linear programming  Cost minimisation 

 Maximising the 

financial gain for selling 

energy to grid 

Dynamic 

pricing 

scheme 

[289] 

 Linear programming  Utility maximisation (or 

welfare maximisation) 

and cost minimisation 

Real-time 

pricing 

[40] 

 Convex programming 

with 𝐿1 regularisation 

 Minimising the total 

cost of energy and the 

users’ dissatisfaction 

Real-time 

pricing 

[290] 

 

Use of stochastic optimisations is promising for power system uncertainty 

modelling and renewable energy applications particularly for capturing uncertainty 

behaviour of renewable energy systems [291] [292]. One of popular methods for 

modelling uncertainty of data is MCS [293, 294]. Because MCS is considered as a 

time consuming method [292], meta-heuristic methods can be used for reducing the 

computational expense of optimisations [291]. Meta-heuristic methods such as PSO 

are considered quick compared to “Mathematical programming methods” for 

complex scheduling problems [240] [295]. In addition, hybridization of PSO is 

suggested by [296] for solving complex and intricate problems. Therefore, there are 

many studies which have used MCS-PSO to solve complex problems especially 

when uncertainty of data needs to be considered [272-274, 295, 297-300]. 
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2.6 Conclusion 

In this chapter, the most important technologies and elements related to SHs and 

end users of the SG are identified and reviewed, with a focus on the most relevant 

recent investigations. 

With the development of new technologies, SH penetration is increasing. SHs and 

new technologies are changing people’s lifestyles. Adopting SH technology can 

improve lifestyle, comfort and safety, and lead to a cleaner environment and energy 

savings. Uptake also facilitates the transition of the grid towards a smart grid. 

With the merging of new technologies in the SG, new factors need to be considered 

in the interaction of SHs and the SG. EMSs and sizing of renewable resources 

should be updated by considering new technologies and using the full capacity of 

new technologies to provide the best benefit and service to energy users and energy 

providers. 

In the next chapter, components and data modelling for SHs, along with the 

optimisation and approaches used in this thesis, are explained. 
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Chapter 3 Data Modelling and 

Optimisation for SHs1 

 

3.1 Introduction 

The penetration of solar generation, wind turbine, battery storage systems (BSSs) 

and plug-in electric vehicles (PEVs) in the smart grid (SG) and smart homes (SHs) 

has increased rapidly in the last few decades. As a consequence, there is a need to 

model the associated data for studies into demand response (DR) programs, energy 

management systems (EMSs), load scheduling and optimal sizing of renewable 

resources for SHs. There are many complex problems in SG and SHs that need to 

be solved by robust algorithms. Some popular optimisation algorithms which can 

be used for solving these problems are summarised at the end of this chapter.  

Determining the optimum size of renewable energy is explored here for both SHs 

with a small capacity for renewable generation [139, 140, 143] and microgrids with 

a large capacity for renewable generation [127, 128, 138]. However, for the studies 

in the concept of SG and distributed generation (DG), it is important to consider the 

probabilistic behavior of wind speed, irradiance, temperature, load, electricity rate 

(ER) and availability of PEVs. Monte Carlo simulation (MCS) can be used to model 

the probabilistic behavior of these data. MCS can be used along with optimisation 

algorithms to find optimal solutions, and especially for finding the optimal size of 

renewable resources for SHs, which is explained in the sections 4.3 and 5.3 in 

following chapters. Two approaches are investigated for modelling data based on 

MCS in sections 3.3.1 and 3.3.2 and the second approach is chosen for the 

simulations in chapters 4 and 5. 

                                                 
1 This chapter is mainly extracted from published papers [301] and [143] (Appendix A). 
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This chapter starts with a description of SH components. Renewable resources such 

as PV, WT and BSS, along with coordinated PEV, are described. This will be 

followed by a description of data modelling for SHs. Two methods of implementing 

MCS with hourly probability distributions and daily data sampling are investigated 

in sections 3.3.1 and 3.3.2. MCS with daily data sampling is chosen for data 

modelling in the following chapters, after comparison of section 3.3.3. Finally, 

optimisation methods are summarised, and particle swarm optimisation (PSO) is 

precisely described to begin preparation for its use in the following chapters.  

3.2 Smart home components and modellings 

Figure 3.1 shows the electricity flow for a grid-connected SH with rooftop PV, WT, 

BSS and PEV with the possibility of importing and exporting energy considering 

dynamic electricity pricing. 

Battery 
Storage

+-

Smart 

Home
Smart 

Grid

 

Figure 3.1. Electricity flow between SH and SG [143]. 

3.2.1 Wind turbine system model 

The WT output energy 𝐸𝑊 during time interval ∆𝑡𝑗 is calculated based on the wind 

speed [302]: 

𝐸𝑊(∆𝑡𝑗) =

{
 

 𝐶𝑎𝑝𝑊𝑇 (
𝑉𝑤(∆𝑡𝑗) − 𝑉𝑐𝑖
𝑉𝑟 − 𝑉𝑐𝑖

)∆𝑡        𝑉𝑐𝑖 ≤ 𝑉𝑤(∆𝑡𝑗) ≤ 𝑉𝑟   

𝐶𝑎𝑝𝑊𝑇 . ∆𝑡                                      𝑉𝑟 ≤ 𝑉𝑤(∆𝑡𝑗) ≤ 𝑉𝑐𝑜 

0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

 
(3.1) 

where 𝑉𝑤(∆𝑡𝑗), 𝑉𝑐𝑖, 𝑉𝑐𝑜 and 𝑉𝑟 denote wind speed, cut-in, cut-out and rated wind 

speed (m/s), respectively. 
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3.2.2 PV system model 

The rooftop PV output energy 𝐸𝑃𝑉 during ∆𝑡𝑗 depends on the open-circuit voltage 

and short-circuiting current [136, 138]: 

𝐸𝑃𝑉(∆𝑡𝑗) = 𝑁𝑃𝑉𝑉𝑂𝐶(∆𝑡𝑗)𝐼𝑆𝐶(∆𝑡𝑗)𝜂𝑃𝑉𝑖𝑛𝑣. 𝐹𝐹(∆𝑡𝑗) 
(3.2) 

where: 

       𝑉𝑂𝐶(∆𝑡𝑗) = 𝑉𝑂𝐶.𝑆𝑇𝐶 + 𝐾𝑉(𝑇𝐶(∆𝑡𝑗) − 𝑇𝑟𝑒𝑓(∆𝑡𝑗)) 
(3.3) 

      𝐼𝑆𝐶(∆𝑡𝑗) = {𝐼𝑆𝐶.𝑆𝑇𝐶 + 𝐾𝐼[𝑇𝐶(∆𝑡𝑗) − 𝑇𝑟𝑒𝑓(∆𝑡𝑗)]}
𝐺(∆𝑡𝑗)

1000
  (3.4) 

      𝑇𝐶(∆𝑡𝑗) = 𝑇𝐴(∆𝑡𝑗) +
𝑁𝐶𝑂𝑇 − 20

800
𝐺(∆𝑡𝑗) (3.5) 

where NCOT=45°C, 𝑇𝑟𝑒𝑓(∆𝑡𝑗)=25°C, 𝑉𝑂𝐶(∆𝑡𝑗) is open-circuit voltage (V), 

𝐼𝑆𝐶(∆𝑡𝑗) is short-circuit current (A), 𝑇𝐶(∆𝑡𝑗) is cell temperature (°C), 𝑇𝐴(∆𝑡𝑗) is 

ambient temperature during ∆𝑡𝑗, 𝐼𝑆𝐶.𝑆𝑇𝐶 and 𝑉𝑂𝐶.𝑆𝑇𝐶 are the PV module short-circuit 

current (A) and open-circuit voltage (V) measured under standard test conditions, 

𝐾𝑉 is open-circuit voltage coefficient (V/°C), 𝐾𝐼 is the short-circuit current 

coefficient (A/°C) and 𝐺(∆𝑡𝑗) is global irradiance during ∆𝑡𝑗 (W/sq.m) [136]. 

3.2.3 Cost of renewable energy generation 

The renewable generation cost is included in the total electricity cost using the 

concept of levelised cost of electricity (LCOE) by calculating levelised cost of 

electricity for a PV-WT system (𝐿𝐶𝑃𝑉+𝑊𝑡) at each ∆𝑡𝑗 as a function of 𝐿𝐶𝑃𝑉 and 

𝐿𝐶𝑊: 

𝐿𝐶𝑃𝑉+𝑊𝑇(∆𝑡𝑗)

=

{
 
 

 
 

  
𝐿𝐶𝑃𝑉 + 𝐿𝐶𝑊

2
                               𝐸𝑃𝑉(∆𝑡𝑗) + 𝐸𝑊(∆𝑡𝑗) = 0

𝐸𝑃𝑉(∆𝑡𝑗) × 𝐿𝐶𝑃𝑉 + 𝐸𝑊(∆𝑡𝑗) × 𝐿𝐶𝑊
𝐸𝑃𝑉(∆𝑡𝑗) + 𝐸𝑊(∆𝑡𝑗)

               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

 
(3.6) 
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where levelised cost of electricity for PV (𝐿𝐶𝑃𝑉) and levelised cost of electricity for 

WT (𝐿𝐶𝑊) are determined by dividing PV and WT total costs (including the initial 

investment, installation, maintenance and operation costs) by their total lifetime 

energy production [113, 139]. They depend on SH location, wind speed, solar 

radiation, PV/WT size, type, availability and cost. The cost of battery is considered 

separately by including its levelised cost 𝐿𝐶𝐵 in the formulation of SH electricity 

cost (Eq. (4.3)). 

3.2.4 Battery charge and discharge conditions 

BSS is used for storing renewable energy during off-peak load hours and releasing 

it during high-demand periods as well as trading with the grid by importing/ 

exporting electricity when the Electricity rates (ERs) are low/high. However, the 

charge and discharge permissions for trading are limited as follows [139]. 

 To increase battery lifetime, decision intervals (DIs) are defined as the periods 

with two consecutive intersections of 𝐿𝐶𝑃𝑉+𝑊𝑇 (∆𝑡𝑗) (Eq. (3.6)) and 𝐸𝑅(∆𝑡𝑗) 

profiles (Figure 3.2). 

 There is permission for only one charge/discharge action during each DI at the 

extreme minimum/maximum point of ER, as illustrated in Figure 3.2. 

 

Figure 3.2. Decision intervals (DIs) and charge/discharge trading permissions. 
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The battery state of charge is limited to be between minimum (𝑆𝑂𝐶𝑚𝑖𝑛
𝐵 ) and 

maximum (𝑆𝑂𝐶𝑚𝑎𝑥
𝐵 ) state of charge of the battery and there are limitations for BSS 

operation during demand supply and power trade. The following constraints are 

considered for charging and discharging the battery: 

{
 
 

 
 |𝐸𝐵(∆𝑡𝑗)| < 𝑅𝑐 × ∆𝑡                        

−𝐸𝐵(∆𝑡𝑗) < 𝐷𝑂𝐷 × 𝐶𝑎𝑝𝐵             

𝐵(∆𝑡𝑗) < 𝐶𝑎𝑝𝐵                                

𝑆𝑂𝐶𝑚𝑖𝑛
𝐵 ≤ 𝑆𝑂𝐶𝐵(∆𝑡𝑗) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝐵

   (3.7) 

where 𝑅𝑐 = 0.2 × 𝐶𝑎𝑝𝐵 (𝑅𝑐 is rate of battery charge/discharge (kW) and 𝐶𝑎𝑝𝐵  is 

capacity of battery (kWh)) and DOD=85% [139]. 𝐷𝑂𝐷 is depth of discharge (%), 

𝐸𝐵(∆𝑡𝑗) is electricity charge/discharge of battery during ∆𝑡𝑗 (kWh) and 𝐵(∆𝑡𝑗) is 

available battery charge during ∆𝑡𝑗 (kWh).  

3.2.5 PEV charge and discharge conditions 

The charge/discharge (H2V/V2H) control of PEV is similar to the battery operation 

(Section 3.2.4) with additional variables, constraints, and conditions. The additional 

variables (𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 , 𝑇𝑑𝑒𝑝

𝑃𝐸𝑉, 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉  and 𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛

𝑃𝐸𝑉 ) are modelled based on their 

probability density functions of Eqs. (3.8)–(3.11) (Figure 3.3) and are subject to 

Eqs.  (3.12)–(3.13). 𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 , 𝑇𝑑𝑒𝑝

𝑃𝐸𝑉, 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉  and 𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛

𝑃𝐸𝑉  denote PEV arrival 

time (hour), PEV departure time (hour), state of charge of PEV at arrival time (%) 

and minimum state of charge of PEV at departure time (%), respectively. Based on 

the data set given in [303], it was recommended in [257] that the PEV’s arrival and 

departure times follow normal distributions with the means of 6 pm and 7 am and 

standard deviations of 2 hours. In addition, 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉  is related to 𝑆𝑂𝐶𝑑𝑒𝑝

𝑃𝐸𝑉 and daily 

travel distance. Daily travel distance was modelled in [304] with a log-normal 

distribution with a mean of 32 miles and standard deviation of 24 miles. We 

considered that the minimum acceptable departure SOC for PEV follows a normal 

distribution with the mean of 80% and standard deviation of 20%. Also, we 

assumed that the daily travel distance and period which PEV is out of the house 

during the weekends is 50% less than the weekdays. 

𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 ~𝑁(𝜇𝑃𝐸𝑉𝑎, 𝜎𝑃𝐸𝑉𝑎) (3.8) 
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where 𝜇𝑃𝐸𝑉𝑎 = 18, 𝜎𝑃𝐸𝑉𝑎 = 2 and 12 ≤ 𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 ≤ 24. 

𝑇𝑑𝑒𝑝
𝑃𝐸𝑉~𝑁(𝜇𝑃𝐸𝑉𝑑, 𝜎𝑃𝐸𝑉𝑑) (3.9) 

where 𝜇𝑃𝐸𝑉𝑑 = 7, 𝜎𝑃𝐸𝑉𝑑 = 2 and 5 ≤ 𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 ≤ 12. 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 ~𝑆𝑂𝐶𝑑𝑒𝑝

𝑃𝐸𝑉 − 𝑙𝑛𝑁(𝜇𝑆𝑂𝐶𝑎, 𝜎𝑆𝑂𝐶𝑎) (3.10) 

where 𝜇𝑆𝑂𝐶𝑎 = 3.66 and 𝜎𝑆𝑂𝐶𝑎 = 0.42.  

𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉 ~𝑁(𝜇𝑆𝑂𝐶𝑑 , 𝜎𝑆𝑂𝐶𝑑) (3.11) 

where 𝜇𝑆𝑂𝐶𝑑 = 80 and 𝜎𝑆𝑂𝐶𝑑 = 20. 

𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 < 𝑇𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉   (3.12) 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 < 𝑆𝑂𝐶𝑑𝑒𝑝

𝑃𝐸𝑉 (3.13) 

Note that based on PDFs of Figure 3.3, 𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 and 𝑇𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉  are around 7:30am and 

6pm while 𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉  and 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉  are about 80% and 65% of the total PEV 

battery capacity [257, 303, 304]. 

 

Figure 3.3. Probability density functions (PDFs) for the PEV. 

Additional conditions for H2V and V2H operations are: 
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 Period 1 (before 5 am): PEV will be first charged from the renewable resources 

and then from the SG until it reaches at least 𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉 . PEV is not allowed to 

be discharged from 1am to 5 am (Eq. (3.17)). 

 Period 2 (5 am to 𝑇𝑑𝑒𝑝
𝑃𝐸𝑉): PEV can be discharged (according to Table 4.2) until 

it reaches 𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉  (Eqs. (3.14) and (3.17)). 

 Period 3 (𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 to 𝑇𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉 ): No charge and discharge actions since PEV is not at 

SH (Eq. (3.15)). 

 Period 4 (after 𝑇𝑎𝑟𝑟𝑖𝑣𝑒
𝑃𝐸𝑉 ): PEV charging and discharging are allowed (according 

to Table 4.2) subject to Eqs. (3.16)–(3.17). 

𝑆𝑂𝐶𝑑𝑒𝑝,𝑚𝑖𝑛
𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶𝑃𝐸𝑉(∆𝑡𝑗) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑃𝐸𝑉   ∀𝑗 ∈ [5, 𝑇𝑑𝑒𝑝
𝑃𝐸𝑉] (3.14) 

𝑆𝑂𝐶𝑃𝐸𝑉(∆𝑡𝑗) = 0    ∀ 𝑗 ∈ [𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 , 𝑇𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉 ) (3.15) 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶𝑃𝐸𝑉(∆𝑡𝑗) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑃𝐸𝑉    ∀ 𝑗 ∉ [𝑇𝑑𝑒𝑝
𝑃𝐸𝑉 , 𝑇𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝐸𝑉 ] (3.16) 

{
|𝐸𝑃𝐸𝑉(∆𝑡𝑗)| ≤ 𝑅𝑐

𝑃𝐸𝑉 × ∆𝑡                   ∀ 𝑗 

𝐸𝑃𝐸𝑉(∆𝑡𝑗) < 𝐶𝑎𝑝𝑃𝐸𝑉                           ∀ 𝑗
 

 

(3.17) 

where at the beginning of each day, 𝑆𝑂𝐶𝑖𝑛𝑖𝑡
𝑃𝐸𝑉 (initial state of charge of PEV in the 

start of the day (%)) is assumed to be equal to its last value in the previous day. 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝐸𝑉, 𝑆𝑂𝐶𝑚𝑎𝑥

𝑃𝐸𝑉 , 𝐸𝑃𝐸𝑉(∆𝑡𝑗), 𝑅𝑐
𝑃𝐸𝑉and 𝐶𝑎𝑝𝑃𝐸𝑉  denote minimum state of charge 

of PEV (%), maximum state of charge of PEV (%), electricity charge/discharge of 

PEV during ∆𝑡𝑗 (kWh), rate of PEV charge/discharge (kW) and the capacity of PEV 

(kWh), respectively. Figure 3.4 shows an example of PEV charging and discharging 

operations during a typical day where the departure and arrival times are 9 am and 

5 pm, respectively. Other PEV parameters are listed in Table 3.1 ( 

𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉  denotes cost of discharging PEV for sell/export (cents/kWh)). 
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Figure 3.4. PEV State of Charge (SOC) during a typical day. 

 

Table 3.1. Input parameters for PEV. 

Parameter 𝑪𝒂𝒑𝑷𝑬𝑽 

[kWh] 

𝑹𝒄
𝑷𝑬𝑽 

[kW] 

𝑪𝒅,𝒔𝒆𝒍𝒍
𝑷𝑬𝑽  

[cents/kWh] 

𝑺𝑶𝑪𝒎𝒂𝒙
𝑷𝑬𝑽  

[%] 

𝑺𝑶𝑪𝒅𝒆𝒑,𝒎𝒊𝒏
𝑷𝑬𝑽  

[%] 

𝑺𝑶𝑪𝒎𝒊𝒏
𝑷𝑬𝑽 

[%] 

Value 50 12 0.3 95 80 10 

Associated Eq. (3.17) (3.17) (4.3) (3.14) and (3.16) (3.14) (3.16) 

 

3.2.6 HVAC load 

The proposed model for calculating the heating, ventilation, and air conditioning 

load 𝐿𝐻𝑉𝐴𝐶(∆𝑡𝑗) is based on the occupancy, ambient temperature (𝑇𝐴) and 

electricity rate (ER). There is a correlation between occupancy and load 

consumption [305]. Therefore, at each hour, the SH is assumed to be occupied if at 

least one of the following conditions holds. 

 Base load (𝐿𝑏) is higher than the average of 𝐿𝑏. 

 PEV is at the SH and 𝐿𝑏 is higher than 80% of the 𝐿𝑏 average. 

 The time is between 1 am and 5 am. 

If the SH is unoccupied, 𝐿𝐻𝑉𝐴𝐶(∆𝑡𝑗) is considered to be zero; otherwise, it is 

obtained from Table 3.2 and is subject to Eq. (3.18). The maximum 𝐿𝐻𝑉𝐴𝐶(∆𝑡𝑗) is 

assumed to be 2 kW for the SH and it is limited to 1 kW during the early morning 

hours: 
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{
0 ≤ 𝐿𝐻𝑉𝐴𝐶(∆𝑡𝑗) ≤ 1                ∀𝑗 ∈ [1,5)   

0 ≤ 𝐿𝐻𝑉𝐴𝐶(∆𝑡𝑗) ≤ 2               ∀𝑗 ∈ [5,24]   
 (3.18) 

Table 3.2. Heating, ventilation, and air conditioning (HVAC) loads of SH. 

 𝑻𝑨(∆𝒕𝒋) Conditions (°C) 

Conditions 18℃ ≤ 𝑇𝐴(∆𝑡𝑗) ≤ 26℃ 12℃ ≤ 𝑇𝐴(∆𝑡𝑗) < 18℃ 

Or 

26℃ < 𝑇𝐴(∆𝑡𝑗) ≤ 32℃ 

𝑇𝐴(∆𝑡𝑗) < 12℃ 

Or 

32℃ < 𝑇𝐴(∆𝑡𝑗) 

𝑬𝑹𝒎𝒂𝒙(𝑫𝑰) 0 kW 0 kW 0.5 kW 

Usual ER 0 kW 0.5 kW 1 kW 

𝑬𝑹𝒎𝒊𝒏(𝑫𝑰) 0 kW 1 kW 2 kW 

 

3.3 Data modelling 

MCS can be used for random generation of the input data for renewable energy 

simulations. MCS is used in the literature to model the stochastic behavior of  

renewable resources. In this section, two methods for implementing MCS are 

introduced and described along with their characteristics. One of the methods for 

generating data is the use of probability distributions. Probability distributions for 

wind speed, global irradiance, temperature, power demand, and electricity rate in 

every hour are determined. The other method is data sampling, which can be based 

on real yearly data or typical meteorological year (TMY) data, which are classified 

seasonally or monthly. These two methods are described and compared in this 

section [301].   

3.3.1 Modelling wind speed, irradiance, 

temperature, load and electricity rate based 

on yearly data using probability distributions 

for Monte Carlo simulations   

For modelling these sources of data, we can use their probability distributions in 

each hour (when the simulation interval is considered to be one hour). First, we 

need to determine these probability distributions for each hour for each set of data 

using their TMY or yearly historical data. Then we can use these probability 

distributions to generate hourly data for simulations and optimisations. 
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3.3.1.1 Determine probability distributions for yearly 

data in every hour 

Probability distributions of wind speed, global irradiance, temperature, power 

demand, and electricity rate are determined for every hour of the day. For each of 

these sources of data in every hour/interval, at least one specific probability 

distribution is defined.   

3.3.1.1.1 Wind speed probability distribution 

Wind speed for each hour is fitted to a probability distribution. One year’s hourly 

historical data at a 10-metre elevation from McCook, Nebraska [306], are utilised 

and indicate that a Weibull distribution is the best for describing data in each hour. 

Therefore, there are 24 probability distributions with 24 shape and scale parameters. 

In other words, for each hour there are one shape parameter and one scale 

parameter. These probability distributions are described by Eq. (3.19). Two of 

Weibull distributions are demonstrated for 9am and 2pm in Figure 3.5. 

𝑉𝑤(∆𝑡𝑗)~𝑊𝐸𝐼𝐵(𝐴𝑤𝑗 , 𝐵𝑤𝑗)    ∀ 𝑗 ∈ {1,2,3, … ,24} (3.19) 

with 𝐴𝑤𝑗 and 𝐵𝑤𝑗 illustrated in Table 3.3. 

Weibull 

distribution 

for 9am to 

10am

Weibull distribution 

for 2pm to 3pm

 

Figure 3.5. Wind speed data modelling by hourly probability distributions. 

3.3.1.1.2 Irradiance probability distribution 

Global horizontal irradiance data for each hour are fitted to one or two probability 

distributions. One year’s data for McCook, Nebraska, in 2014 from [307] are 

collected and fitted to 14 probability distributions, which are demonstrated in 

Figure 3.6.  
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Hourly normalised data from 10:00 to 17:00 are best fitted to eight beta 

distributions, which are described by Eq. (3.20). For other hours, data are zero or a 

fraction of data is fitted to Weibull or lognormal distributions, as described by Eqs. 

(3.21) and (3.22). 

𝐺(∆𝑡𝑗)~𝐵𝑒𝑡𝑎(𝛼𝐺𝑗 , 𝛽𝐺𝑗)       ∀ 𝑗 ∈ {10,11,12,… ,17} (3.20) 

𝐺(∆𝑡𝑗)~𝑊𝐸𝐼𝐵(𝐴𝑗 , 𝐵𝑗)     ∀ 𝑗 ∈ {9,18} (3.21) 

𝐺(∆𝑡𝑗)~𝑙𝑛𝑁(𝜇𝐺𝑗 , 𝜎𝐺𝑗)     ∀ 𝑗 ∈ {8,19,20} (3.22) 

with 𝛼𝐺𝑗 , 𝛽𝐺𝑗 , 𝐴𝑗 , 𝐵𝑗 , 𝜇𝐺𝑗 and 𝜎𝐺𝑗 illustrated in Table 3.3. 

Weibull 

distributions 

for 9am to 

10am

Beta 

distribut ion for 

2pm to 3pm

 

Figure 3.6. Irradiance data modelling by hourly probability distributions. 

3.3.1.1.3 Temperature probability distribution 

Temperature data for each hour are fitted to two probability distributions. One year 

data for McCook, Nebraska, in 2014 from [307] are utilised and indicate that normal 

and lognormal distributions are the best to describe data in each hour. For each hour 

the data are best fitted to two normal distributions, except for 15:00 and 16:00 which 

are fitted to both normal and lognormal distributions. Therefore, Eqs. (3.23) and 

(3.24) can be used for generating temperature data as are demonstrated in Figure 

3.7.  

𝑇𝐴(∆𝑡𝑗)~𝑁(𝜇𝑡𝑗 , 𝜎𝑡𝑗)    ∀ 𝑗 ∈ {1,2, … ,14,17,… ,24} (3.23) 

𝑇𝐴(∆𝑡𝑗)~𝑙𝑛𝑁(𝜇
′
𝑡𝑗
, 𝜎′𝑡𝑗)    ∀ 𝑗 ∈ {15,16} (3.24) 

with 𝜇𝑡𝑗, 𝜎𝑡𝑗 , 𝜇
′
𝑡𝑗

 and 𝜎′𝑡𝑗 illustrated in Table 3.3. 
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Normal 

distributions 

Normal distributions 

 

Figure 3.7. Temperature data modelling by hourly probability distributions. 

 

3.3.1.1.4 Load probability distribution 

The predetermined (not schedulable) load of a US home that is considered as base 

load, 𝐿𝑏 and includes lighting, freezers, refrigerators, water heaters, microwave, 

ovens etc.[139, 308] for each hour is fitted to a normal distribution which is 

described by Eq. (3.25) and shown in Figure 3.8.  

𝐿𝑏(∆𝑡𝑗)~𝑁(𝜇𝑙𝑗 , 𝜎𝑙𝑗)    ∀ 𝑗 ∈ {1,2,3,… ,24} (3.25) 

with 𝜇𝑙𝑗and 𝜎𝑙𝑗 illustrated in Table 3.3. 

Schedulable load, (𝐿𝑠) and unpredictable load, (𝐿𝑢) should be modelled separately 

(Section 4.2.1). The models for HVAC and electric vehicle are described in the 

previous sections (Sections 3.2.5 and 3.2.6). 

Normal 

distribution 

for 9am to 

10am

Normal distribution 

for 2pm to 3pm

B
as

e
 lo

ad
 (

kW
)

 
Figure 3.8. Base load data modelling by hourly probability distributions. 
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3.3.1.1.5 Electricity rate probability distribution 

Electricity rate for each hour is fitted to a probability distribution. One year’s hourly 

historical data from Ameren utility [309] is utilised and indicates that normal and 

lognormal distributions are the best for describing data in each hour. Therefore, 

there are 24 probability distributions which are described by Eqs. (3.26) and (3.27). 

One year data are generated and showed in Figure 3.9. 

𝐸𝑅(∆𝑡𝑗)~𝑁(𝜇𝑟𝑗 , 𝜎𝑟𝑗)          ∀ 𝑗 ∈ {1,2, … ,6} ∪ {22, 23, 24} (3.26) 

𝐸𝑅(∆𝑡𝑗)~𝑙𝑛𝑁(𝜇
′
𝑟𝑗
, 𝜎′𝑟𝑗)      ∀ 𝑗 ∈ {7,8, … ,21} (3.27) 

with 𝜇𝑟𝑗, 𝜎𝑟𝑗, 𝜇
′
𝑟𝑗

and 𝜎′𝑟𝑗 illustrated in Table 3.3. 

Lognormal 

distribution for 

9am to 10am

Lognormal 

distribution for 

2pm to 3pm

 

Figure 3.9. Electricity rate data modelling by hourly probability distributions. 

Table 3.3. Parameters of hourly probability distribution functions for wind speed, 

global irradiance, temperature, base load and ER. 

 

Hour 

Wind 

Speed 

(Eq. 19) 

Global 

Irradiance*        

(Eqs. 20–22) 

Temperature** 

(Eqs. 23–24) 

Base load 

(Eq. 25) 

Electricity 

Rate 

(Eq. 26–27) 

j 𝐀𝐰 𝐁𝐰 𝛼𝐺 , 𝑨, 𝝁𝑮 𝛽𝐺 , 𝑩, 𝝈𝑮 𝝁𝒕 𝝈𝒕 𝝁′
𝒕
 𝝈′𝒕 𝛍𝐥 𝛔𝐥 𝝁𝒓, 𝛍

′
𝐫
 𝝈𝒓,𝛔

′
𝐫 

1 3.78 3.07 N/A N/A -0.4 6.3 18.4 4.4 1.00 0.07 2.47 0.66 

2 4.06 2.70 N/A N/A -0.5 6.3 18.1 4.2 0.85 0.07 2.45 0.57 

3 3.64 2.93 N/A N/A -1.0 6.0 17.3 4.4 0.80 0.08 2.46 0.67 

4 3.99 2.61 N/A N/A -1.6 5.8 16.5 4.5 0.80 0.07 2.44 0.67 

5 3.76 2.41 N/A N/A -1.6 5.8 16.1 4.3 0.80 0.08 2.59 1.02 

6 3.28 3.10 N/A N/A -1.9 5.7 15.6 4.4 0.86 0.08 2.95 1.24 

7 3.44 2.92 N/A N/A -2.0 5.7 16.1 4.7 0.90 0.08 1.23 0.48 

8 4.19 3.47 4.33 1.15 -2.0 5.9 17.6 5.3 0.95 0.09 1.21 0.35 
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Hour 

Wind 

Speed 

(Eq. 19) 

Global 

Irradiance*        

(Eqs. 20–22) 

Temperature** 

(Eqs. 23–24) 

Base load 

(Eq. 25) 

Electricity 

Rate 

(Eq. 26–27) 

9 4.59 3.25 88.9,377 1.2,5.3 -0.7 6.4 20.3 5.6 1.00 0.09 1.26 0.35 

10 5.62 3.84 1.20 3.58 1.6 7.0 23.1 5.5 1.00 0.10 1.29 0.37 

11 5.95 4.78 1.65 2.90 4.0 7.5 25.6 5.2 1.06 0.10 1.28 0.34 

12 7.42 5.14 1.91 2.31 5.8 7.7 27.2 5.1 1.10 0.10 1.28 0.34 

13 7.33 4.51 1.92 1.89 7.0 7.8 28.2 5.1 1.09 0.11 1.26 0.32 

14 7.17 4.00 2.00 1.86 8.4 8.2 29.4 4.8 1.14 0.10 1.25 0.29 

15 6.84 5.03 1.99 2.09 8.1 8.2 3.4 0.2 1.20 0.11 1.22 0.32 

16 7.27 3.69 2.01 2.78 7.9 8.3 3.4 0.2 1.28 0.11 1.23 0.32 

17 7.09 3.53 1.69 3.63 6.6 8.2 28.2 4.8 1.34 0.11 1.30 0.31 

18 6.02 2.62 307.58 1.61 4.6 7.9 26.8 5.0 1.45 0.12 1.35 0.37 

19 5.22 2.87 4.95 0.82 2.9 7.2 24.6 5.2 1.59 0.13 1.37 0.41 

20 4.74 2.19 4.31 0.90 1.4 7.3 19.5 3.3 1.67 0.13 1.34 0.38 

21 4.28 2.33 N/A N/A 1.5 6.8 21.5 4.6 1.65 0.12 1.25 0.33 

22 4.66 2.56 N/A N/A 0.9 6.6 20.6 4.6 1.49 0.13 3.08 0.86 

23 4.52 2.51 N/A N/A 0.2 6.4 19.7 4.6 1.20 0.08 2.79 0.80 

24 4.50 2.49 N/A N/A -0.2 6.3 18.9 4.6 0.99 0.07 2.72 0.85 

* G(∆t8) < 300, G(∆t18) < 550, G(∆t19) < 380, G(∆t20) < 180, G(∆t8) = G(∆t19) = 0 with a 

probability of 1/3. G(∆t9) = G(∆t18) = 0 with a probability of 1/5. G(∆t20) = 0 with a 

probability of 2/3. Global irradiance data between 10 am to 5 pm are normalised and divided by 

1200. 

** Temperature <45 °C and probability of choosing (𝜇𝑡𝑗,𝜎𝑡𝑗) or (𝜇′
𝑡𝑗

,𝜎′𝑡𝑗) is 1/2. 

 

3.3.1.2 Utilise probability distributions to model input 

data in each hour 

For every hour/interval, data can be generated based on their probability 

distributions. These probability distributions can be used to apply MCS for sizing 

optimisation or electricity management simulations in that location. It should be 

mentioned that, because PEV is modelled based on daily PDFs and there is no sign 

of the relationship between PEV availability and different seasons/months of the 

year, these PDFs can be used in the second method as well. 
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3.3.2 Daily data modelling for wind speed, 

irradiance, temperature, load and electricity 

rate using data sampling for Monte Carlo 

simulations   

Repeated random sampling can be used to generate MCS input data for simulations 

to model uncertainties associated with the data. These data intervals can be per hour, 

per minutely etc. depending on available data, and can be chosen based on 

simulation purposes. These repeated data samples can be chosen from TMY data 

or real historical data. However, these data need to be classified based on seasons 

or months of the year. For example, it is not practical to choose an irradiance sample 

from winter and to then choose a wind speed sample from summer for the same day 

simulation data, because wind speed, irradiance, temperature, load and electricity 

rate data are correlated. In other words, for each day, data sampling should be 

collected from similar databases based on the season (or month) of the year. In 

addition, daily sampling instead of hourly/interval sampling will make it possible 

to consider the correlation of every interval value with their prior interval value 

more precisely during each day [301]. 

3.3.3 Comparison of two methods for MCS data 

modelling  

Use of probability distributions as given in section 3.3.1 is a good way to model the 

probabilistic behavior of renewable resources. However, there are two noteworthy 

matters that should be considered for simulation purposes. First, the correlation 

between wind speed, irradiance, temperature, load and electricity rate should be 

considered in order to improve this method. Second, the correlation between every 

interval value and the prior interval value is not considered precisely (i.e. generated 

data fluctuation is high). Although there is an inherent correlation between every 

interval value and the prior interval value, which is generated with probability 

distributions in section 3.3.1, these correlations might be insufficient for some 

sensitive simulations. One of the two following options can be used to improve the 

first method. 
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1. Prediction or classification methods can be used for determining correlated 

databases and for defining or predicting the next interval value.  

2. Defining probability distributions for every season (or every month) of data 

(instead of yearly data) separately. Therefore, for each interval for every season 

(or month) for every database, we will have at least one probability distribution. 

Although there will be an inherent correlation between every interval with the 

prior interval value, prediction, or classification methods might be used for 

improvement. 

The second method given in section 3.3.2, which is based on data sampling, 

considers the correlation between databases and data intervals more precisely. Also, 

it is less expensive in terms of computing resources. Therefore, the second method 

is used in the following chapters for data modelling of the simulations to determine 

the optimum capacity of renewable resources for the SH.   

3.4 Optimisation 

There are three common approaches to solving optimisation problems: 

mathematical optimisation, heuristic methods and meta-heuristic searches. 

Mathematical optimisation can solve many optimisation problems. However, these 

methods are relatively expensive for some difficult problems. Mathematical 

optimisation includes the following. 

 Linear programming problems: these are simple problems, and objectives are 

affine functions of constraints.  

 Quadratic programming problems: these are similar to linear programming 

problems; however, they have a quadratic objective and they can be solved in 

polynomial time if the objective is positive definite. Although they are 

comparably simple, they will be an NP-hard problem if the objective is 

indefinite.  

 Convex programming problems: these are more complex than linear and 

quadratic problems. They have concave inequality and linear equality 

constraints along with a convex objective function. Convex problems 

convergence is guaranteed if they have a solution.  
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 Dynamic programming problems: these solve the sub-problems after 

subdividing large complex problems. They store the solutions for sub-problems 

and solve the problems recursively.  

 Mixed integer linear programming problems: these have integer variables along 

with other unknown variables and usually are NP-hard. However, some can be 

solved by algorithms such as the cutting-plane method and branch-and-bound.  

 Mixed integer nonlinear programming and nonlinear programming problems: it 

can be extremely challenging to solve these problems, and there is no guarantee 

of find the solution (if any solution exists).  

Heuristic and meta-heuristic functions are introduced for solving difficult problems 

which are impossible or expensive to solve with mathematical approaches. They 

can be used to find quick and approximate solutions for many difficult problems.   

Heuristic methods are knowledge-based methods that use certain rules to determine 

approximate solutions. They are well-designed and useful for decreasing 

computational effort. 

Meta-heuristic searches may find a near-optimal solution by making few or no 

assumptions. Many of these algorithms – such as particle swarm optimisation, 

genetic algorithms and evolutionary algorithms – converge near a solution within a 

search space by using massive population sizes which navigate semi-randomly. 

These methods are used widely to solve optimisation problems, and they can 

usually find good solutions by searching a wide set of possible solutions. They are 

less expensive compared to mathematical methods [179]. 

Table 3.4. Optimisation methods. 

Mathematical 

Optimisation 

Meta-Heuristic 

Search 

Heuristic Method 

Linear programming Immune clonal 

selection programming 

Mix of optimisation 

and heuristics 

Dynamic programming Particle swarm 

optimisation 

Artificial neural 

networks 

Convex programming Tabu search State-queueing model 
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Mathematical 

Optimisation 

Meta-Heuristic 

Search 

Heuristic Method 

Quadratic programming Genetic algorithm Backtracking-based 

method 

Mixed integer linear 

programming 

Evolutionary 

algorithms 

Constraint optimisation 

by broadcasting 

Mixed integer nonlinear 

programming 

 Markov decision 

processes 

  TOPSIS 

 

Meta-heuristic methods are one of the best approaches for solving continuous and 

combinatorial problems [240, 310-312]. For solving many multi-objective and 

nonlinear optimisation problems in research, meta-heuristic methods are preferred 

because of reliability, availability, cost and performance optimisation [296, 313-

315]. 

PSO is a meta-heuristic methods that has been extensively used for optimisation 

problems in the literature. There are more than 1779 applications of PSO introduced 

in the literature. PSO is recognised as one of the most suitable tools for various 

optimisation problems compared to other meta-heuristic and evolutionary 

algorithms, such as genetic algorithms [316, 317]. In another research study, three 

different meta-heuristic optimisation methods are compared for real-time-

application optimisation in HEMS. Evaluation results demonstrated that PSO 

performance was better than Tabu search (TS) and simulated annealing (SA) [318]. 
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3.4.1 Particle swarm optimisation (PSO)  

Particle swarm optimisation (PSO) is used in the simulations to minimise the annual 

cost of the SH (Eq. (4.4)). PSO is one of the most appropriate AI approaches, 

making it possible to find a near-global solution for multi-dimensional problems. It 

works by choosing a population of candidate solutions. These candidate solutions 

(particles) move around the search space based on a few formulae to find the best 

solution. This technique was introduced by Kennedy and Eberhart in 1995 based 

on a simplified version of social systems in nature, such as a bird flock behavior 

[319]. 

The steps for the PSO algorithm are as follows. 

 

1. Initialise PSO parameters such as a total number of iterations, size of swarm or 

population etc. 

2. Initialise particles randomly in the problem space. Each particle has a position 

(Eq. (3.28)) and velocity (Eq. (3.29)) in D dimensional space, which can be 

represented as follows: 

𝑋𝑖 = [𝑋𝑖1, 𝑋𝑖2, . . , 𝑋𝑖𝐷] (3.28) 

𝑉𝑖 = [𝑉𝑖1, 𝑉𝑖2, . . , 𝑉𝑖𝐷] (3.29) 

 

3. Evaluate the objective function fitness (Eq. (3.30)) for each particle, which 

can be represented as follows: 

𝐹𝑖 = 𝑓(𝑋𝑖1, 𝑋𝑖2, . . , 𝑋𝑖𝐷) (3.30) 

 

4. Obtain personal best position (𝑝𝑖𝑑) and global best position (𝑝𝑔𝑏𝑒𝑠𝑡). The best 

position obtained by a particle itself up to the current iteration is called personal 

best position and shown with 𝑝𝑖𝑑. In each iteration 𝑝𝑖𝑑 is obtained by comparing 

the fitness value of the current position with the last 𝑝𝑖𝑑 and will be updated if 

the current position is better. For the first iteration the 𝑝𝑖𝑑will be same as the 

first position (𝑋𝑖). The best position among all personal best positions is called 

global best position (𝑝𝑔𝑏𝑒𝑠𝑡).   

5. In each iteration, velocity (Eq. (3.31)) for each particle updates as follows: 
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𝑉𝑖
𝑡+1 = 𝑤 × 𝑉𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑝𝑖𝑑𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑2 × (𝑝𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) (3.31) 

where w is inertia weight and 𝑉𝑖
𝑡 is the velocity for particle i at iteration t, 𝑐1 

and 𝑐2 are acceleration coefficients, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers 

between (0,1), 𝑝𝑖𝑑𝑖
𝑡 is the best position for particle i at iteration t, 𝑋𝑖

𝑡 is the 

position for particle i at iteration t, 𝑝𝑔𝑏𝑒𝑠𝑡
𝑡  is the global best position at iteration 

t, and 𝑉𝑖
𝑡+1 is the velocity for particle i at iteration t+1. 

6. Each particle position (Eq. (3.32)) updates in each iteration as follows: 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (3.32) 

7. Evaluate the fitness of each particle to obtain personal best positions and global 

best position. 

8. Repeat the process until the convergence criteria are met.  

The velocity is limited to 𝑉𝑚𝑎𝑥. Each particle is pulled toward 𝑝𝑖𝑑 and 𝑝𝑔𝑏𝑒𝑠𝑡 

positions with stochastic acceleration terms which are controlled by acceleration 

coefficients [319, 320]. Figure 3.10 shows the flowchart for the PSO algorithm. 
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Initialize parameters

Initialize particles (Positions and Velocities)

Evaluate objective function fitness for initial particles

Local best position = current position

Set global best position = min(local best positions)

Update velocities and positions of particles

Local best position = current position

Global best position = current position

Yes

Yes

Yes

No

No

No

Start

Stop

Current position fitness < local best position

Current position fitness < global best position fitness

Stopping criteria met?Next iteration

Evaluate objective function fitness for each particle

All particles are evaluated?Next particle
No

Yes

 

Figure 3.10. PSO algorithm. 

PSO is hybridised with MCS in the following chapters for solving optimisation 

problems while considering the probabilistic behaviour of input data. In the 

following chapters, the second approach given in section 3.3.2 is used for 

implementing MCS and hybridisation of MCS-PSO is further explained. 
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3.5  Conclusion 

In this chapter, SH components and renewable resources are modelled and will be 

used for optimisations and simulations in the following chapters. Furthermore, two 

methods for MCS simulations are introduced. The first method is based on 

probability distribution for generating data and the second on data sampling that 

allows us to generate data relating to the correlation between databases and data 

intervals more precisely. Therefore, the second approach given in section 3.3.2 is 

chosen for further simulations in the following chapters. Finally, PSO optimisation 

is described and will also be used in the following chapters for optimisations.
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Chapter 4 Optimal Sizing of 

Renewable Resources in 

Smart Homes1 

4.1 Introduction 

In this chapter, the annual electricity cost of a SH with rooftop PV, WT, BSS, PEV 

and shiftable loads is minimised by performing optimal component sizing using 

Monte Carlo simulations and particle swarm optimisation (MCS-PSO) in 

association with a new rule-based home energy management system (HEMS) 

considering import and export of energy with V2H integration. The stochastic 

behaviors of wind speed, irradiance, temperature, load and ER are considered while 

the availability of PEV is projected using normal and lognormal probability density 

functions. Performance of the proposed approach is evaluated by SH operation and 

cost calculations with near-optimal component sizes. Simulations and sensitivity 

analyses are performed to investigate the impacts of shiftable loads, V2H 

integration, battery charge/discharge rates, maximum daily export energy, 

maximum PV, WT and battery capacity limits as well as the possibility of 

eliminating BSS for further reductions in annual cost and levelised cost of 

electricity (LCOE). Finally the optimisation results for MCS-PSO and MCS-ABC 

are compared for Cases B1, B2 and B3 in Section 4.4.4. 

4.2 Data modelling for wind speed, irradiance, 

temperature, load and ER  

Annual data are used to implement MCS and perform near-optimal component 

sizing of the SH in Section 4.3. 

                                                 
1 This chapter is mainly extracted from published paper [143] (Appendix A). 
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4.2.1 Input data  

The typical meteorological year (TMY) data [307] for wind speed, global horizontal 

irradiance and ambient temperature are used along with ER [308, 309] from 

McCook, Nebraska. Also, the predetermined (not schedulable) load of a home in 

the United States is considered as the base load (𝐿𝑏) [139, 308]. It includes lighting, 

freezer, refrigerator, water heater, microwave and oven loads. Schedulable and 

unpredictable loads (𝐿𝑠, 𝐿𝑢) are also modelled along with the 𝐿𝑏. Five types of 

schedulable loads are considered (Table 4.1). 𝐿𝑢 is considered to be less than 5% 

of 𝐿𝑏 and to change randomly based on a uniform distribution. Schedulable loads 

can be shifted to the cheapest ER hours in their DIs while HVAC and PEV are 

considered separately, as explained in the previous chapter. 

Table 4.1. Schedulable loads (𝐿𝑠). 

Appliance Usage Frequency Working Cycle 

(Hours) 

Total Energy 

(kWh) 

Dishwasher Every day 2 1.2 

Clothes Dryer Twice a week 1 1.1 

Washing Machine Twice a week 1 0.5 

Iron Once a week 1 1 

Electric Oven Once a week 1 2 

 

4.2.2 Monte Carlo simulation (MCS)  

Repeated random sampling is used to obtain numerical results since there are 

uncertainties associated with the inputs. The TMY information and annual data for 

wind speed, irradiance, temperature, load and ER are used as the input data for 

MCS. These data are separated into four seasons in order to keep the most closely 

correlated data in the same databases. Everyday input data are generated based on 

daily data sampling from the associated season databases. In addition, daily data 

sampling (instead of hourly) is used to consider the dependency and high 

correlation of hourly data to their prior values. This method makes it possible to 

apply a combination of MCS with PSO optimisation and determine the near-optimal 

WT, PV and BSS capacities, as explained in Section 4.3. 
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4.3 Proposed MCS-PSO for optimal 

component sizing and operation of SH 

with H2V and V2H integrations    

This section will first introduce the new rule-based HEMS and then incorporate it 

into the proposed MCS-PSO for near-optimal component sizing (Figure 4.1) and 

operation (Figure 4.2) of the SH.   

4.3.1 Proposed rule-based HEMS with 

coordinated PEV and BSS charging and 

discharging operations 

The proposed HEMS (Table 4.2) considers day-ahead electricity prices to 

coordinate charging/discharging activities of BSS and PEV based on renewable 

generation and loads to reduce the daily cost of SH electricity consumption. Charge 

and discharge costs and constraints (Sections 3.2.4–3.2.5) are considered in the 

simulations. In addition, the net renewable generation surplus is stored in the battery 

and PEV for future demands and electricity trading. This is done based on the 

proposed seven HEMS rules of Table 4.2. 

At each interval (∆𝑡𝑗), the proposed HEMS satisfies the following trading and 

power flow constraints. 

𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) < 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 (4.1) 

𝐿𝑏(∆𝑡𝑗) + 𝐿𝑠(∆𝑡𝑗) + 𝐿𝑢(∆𝑡𝑗) = 

𝐸𝐵𝑢𝑦(∆𝑡𝑗) − 𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) − 𝐸𝐵(∆𝑡𝑗) − 𝐸𝑃𝐸𝑉(∆𝑡𝑗). 
(4.2) 

4.3.2 Proposed MCS-PSO for optimal component 

sizing of SH 

One of the best options for solving the nonlinear SH component-sizing problem is 

a meta-heuristic optimisation technique such as PSO. As explained in the previous 
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chapter, PSO starts with a population of random candidate solutions (particles) 

within the problem space. In each iteration, particles move toward the best global 

(𝑝𝑔𝑏𝑒𝑠𝑡) and the best local (𝑝𝑖𝑑) solutions. PSO updates 𝑝𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑖𝑑 at the end of 

each iteration until it arrives at a sufficiently good fitness or reaches the maximum 

iteration number. The particle acceleration rates toward 𝑝𝑖𝑑 and 𝑝𝑔𝑏𝑒𝑠𝑡 locations are 

controlled by the cognitive parameter (𝑐1) and social parameter (𝑐2), respectively. 

Moreover, an inertia weight coefficient (𝑤) is used for better control of the 

exploration and exploitation in PSO. 

Table 4.2. Operation rules of proposed rule-based HEMS with consideration of 

shiftable loads and v2h to minimise the annual cost of SH. 

Rule HEMS Rule-Based Instruction 

1 Acquire initial SOCs for PEV and BSS from the previous day. 

2 Determine DIs (according to the instructions of Section 3.2.4 and Figure 3.2) 

and move all shiftable loads to the cheapest ER hours. 

3 Schedule PEV to be charged until 5 am (Section 3.2.5). 

4 At each iteration considering Eqs. (4.1)–(4.2), use the following priorities to 

supply the SH loads from: i) renewable resources, ii) battery, iii) PEV and iv) 

SG. 

5 At each DI considering Eqs. (4.1)–(4.2), sell/purchase electricity at the extreme 

maximum/minimum point of ER to discharge/charge the: i) PEV and ii) battery. 

6 At each iteration, sell the surplus electricity to satisfy Eqs. (4.1)–(4.2). 

7 Update initial SOCs of PEV and BSS for the next day. 

 

The proposed MCS-PSO is executed to minimise the annual electricity cost of the 

SH and determine the near-optimal sizes of PV, WT, and BSS (Figure 4.2). For 

each ∆𝑡𝑗 of the day, the electricity cost is calculated as: 

𝐶𝐻𝑜𝑢𝑟(∆𝑡𝑗) = 𝐿𝐶𝑊. 𝐸𝑊(∆𝑡𝑗) + 𝐿𝐶𝑃𝑉 . 𝐸𝑃𝑉(∆𝑡𝑗) 

                  +𝐿𝐶𝐵 . 𝐶𝑎𝑝𝐵. ∆𝑡 + 𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉 . 𝐸𝑠𝑒𝑙𝑙

𝑃𝐸𝑉(∆𝑡𝑗) + 𝐸𝐵𝑢𝑦(∆𝑡𝑗) 

                  × 𝐸𝑅(∆𝑡𝑗) − 𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) × 𝐸𝑅(∆𝑡𝑗) 

(4.3) 
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where the electricity purchase rate (EPR) and the electricity selling rate (ESR) are 

assumed to be equal to the ER. For the selected SH located in McCook (Nebraska, 

USA), 𝐿𝐶𝑊=3.5 cents/kWh [139] and 𝐿𝐶𝑃𝑉=4.1 cents/kWh [113] while a reduction 

of 1.0 cent/kWh is also considered for the carbon capture cost [321, 322], and it is 

assumed that 𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉 = 0.3 cents/kWh and 𝐿𝐶𝐵 = 0.3 cents/kWh/h [139]. 

The objective function for PSO is the minimisation of the SH annual cost of 

electricity: 

𝑀𝑖𝑛  𝐶𝐴𝑛𝑛𝑢𝑎𝑙 =∑ 𝐶𝐷𝑎𝑦(𝑖) 
365

𝑖=1
 (4.4) 

𝐶𝐷𝑎𝑦 =∑ 𝐶𝐻𝑜𝑢𝑟(∆𝑡𝑗)
24

𝑗=1
 

(4.5) 

 

The simulations’ convergence was ensured by a detailed analysis of PSO behavior 

based on different parameters. The selected PSO parameters for the simulations are 

presented in Table 4.3. For improving the effectiveness of MCS, an inertia weight 

of 0.2 is used to limit particle’s velocity. The selected upper boundaries for PV, WT 

and BSS are based on physical limitations of the SH. Also, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 depends on 

the physical limitations and utilities contracts’ flexibility. For the simulations of this 

chapter, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is considered to be always less than the average base load of the 

SH. Figure 4.1 shows the proposed MCS-PSO algorithm for determining near-

optimal size of PV, WT and BSS. 
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Initialization of Monte Carlo Simulation (MCS)

Acquire TMY data and distinguish seasons databases for load, ER, wind speed, 

irradiance and temperature. Derive  Eqs. (3.8)-(3.11) (daily probability distribution 

functions of PEV)

Initialization and Start of PSO   

Set population and iterations numbers, initial capacities of BSS, PV and WT

Save optimal sizes of PV, WT and BSS

Update Daily Input Data for MCS

Determine day-ahead profiles for PEV (Figure 3.3 using Eqs. (3.8)-(3.11)) 

and generate daily input data from similar seasons databases

Yes

Apply Rules 1-3 of HEMS (Table 4.2)     

Update SOCs, determine DIs and schedule PEV charging until 5am

Adjust sizes of PV, WT and 
BSS. Next PSO iteration

Save MCS-PSO solution for present population  

Apply Rules 4-6 of HEMS (Table 4.2)     

Supply loads, perform trading and/or charge/discharge of PEV/BSS

Next hour Calculate hourly cost  

Update initial SOCs of PEV and BSS for the next day 

(Table 4.2, Rule 7). Calculate daily cost  

Next day up to 1 year 

Calculate annual cost   

Update the best PSO solution    

   

Next PSO population 

No
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Figure 4.1. Proposed MCS-PSO algorithm for optimal sizing of PV, WT, and BSS 

to minimise annual electricity cost of SH. 
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Update Daily Input Data for MCS

Determine day-ahead profiles for PEV (Figure 3.3 using Eqs. 

(3.8)-(3.11)) and the input data based on daily MCS.

Apply Rules 1-3 of HEMS (Table 4.2)     

Update SOCs, determine DIs & schedule PEV charging until 5am

Apply Rules 4-6 of HEMS (Table 4.2)     

Supply loads, perform trading and/or charge/discharge PEV/BSS

Next hour Save BSS hourly status (on, off or idle)  

Update initial SOCs of PEV and battery for next day 

(Table 4.2: Rule 7). Calculate daily cost (Eq. (4.5))  

Calculate LCOE (Eq. (4.6))  

Save Day-Ahead Schedule of BSS  

Next year up to 25 years 

Next day up to one year 

Calculate annual cost (Eq. (4.4))
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Optimal Component Sizing and Initialization of MCS

Run algorithm of Figure 4.1 to find optimal sizes of PV, BSS and 

WT. Acquire annual data and distinguish seasons databases.

 

Figure 4.2. Proposed algorithm for SH operation to determine day-ahead BSS 

schedules, annual cost (Eq. (4.4)) and LCOE (Eq. (4.6)). 

 

Table 4.3. Input parameters for PSO. 

Parameter Particles K D 𝒄𝟏 𝒄𝟐 𝒘 Boundaries 

PV WT BSS 

Value 50 1000 3 1 1 0.2 [0,15] [0,5] [0,30] 

 

4.3.3 Operation of SH  

After determining the near-optimal component sizes (Figure 4.1), the proposed 

algorithm of Figure 4.2 can be used for SH operation and day-ahead scheduling of 

BSS. The algorithm can also be used for the calculation of annual cost (Eqs. (4.4)–

(4.5)) and the LCOE over the lifetime of renewable resources [113, 139]: 

𝐿𝐶𝑂𝐸𝑆𝐻 =
∑𝑐𝑜𝑠𝑡 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒

∑ 𝑠𝑢𝑝𝑙𝑖𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒
 (4.6) 
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where the lifetime of PV and WT is assumed to be 25 years and battery life is eight 

years with the maximum of 2000 cycles [323]. 

4.4 Simulations results   

Simulations are performed first to determine the near-optimal component sizes of 

the SH shown in Figure 3.1 with the proposed PSO-MCS algorithm of Figure 4.1 

and then to investigate its operation and performance with the proposed algorithm 

of Figure 4.2. Simulations results (Figures. 4.3–4.8) are summarised in Table 4.4.  

The optimal component sizes, annual cost, annual cost reduction and the LCOE 

(Eq. (4.6)) are determined and compared for two operating conditions: without 

(Table 4.4; rows 5–8) and with (Table 4.4; rows 9–12) the WT. For each case, the 

impacts of shiftable loads (Cases A2 and B2), H2V and V2H integrations (Cases 

A3 and B3), as well as the effect of eliminating BSS altogether (Cases A4 and B4) 

are investigated. For the base case operation (without PV, BSS and WT), the annual 

cost is $848, and the LCOE is 3.21 cents/kWh (Table 4.4; row 4). 

4.4.1 Optimal sizing of PV and BSS without WT to 

minimise annual cost of household electricity 

This section does not consider WT and determines the near-optimal sizes of PV and 

BSS as well as the corresponding annual and levelised costs for operating 

conditions with and without shiftable loads and V2H integration (Table 4.4, Cases 

A1–A3). In addition, the possibility of eliminating BSS altogether is also 

investigated in Case A4. 
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Table 4.4. Summary of simulation results (Figures. 4.3–4.8) for optimal 

component sizing (Figure 4.1) and operation (Figure 4.2) of SH. 
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Base Case: SH without PV, BSS, and WT N/A N/A N/A N/A N/A 848 N/A 3.21 

Case A: 

SH with PV,          

PEV and 

BSS 

(Figures. 

4.3–4.5) 

A1 Nonshiftable Loads, 

PEV (H2V only) 

50 10 10.73 10.27 N/A 718 15.3 2.72 

A2 Shiftable Loads, PEV  

(H2V only) 

50 7 11.11 7.37 N/A 696 17.9 2.64 

A3 Shiftable Loads, PEV 

(H2V and V2H) 

50 3 9.85 0.79 N/A 634 25.2 2.40 

A4 Case A3 without BSS 50 N/A 9.88 0 N/A 636 25.0 2.41 

Case B: 

SH with PV,         

PEV, BSS      

and WT   

(Figures. 

4.6–4.8) 

B1 Nonshiftable Loads, 

PEV (H2V only) 

50 10 6.40 10.60 4.83 710 16.1 2.68 

B2 Shiftable Loads, PEV  

(H2V only) 

50 10 6.21 9.42 5 687 19.0 2.60 

B3 Shiftable Loads, PEV 

(H2V and V2H) 

50 8 0.08 6.25 5 612 27.8 2.31 

B4 Case B3 without BSS 50 N/A 0 0 5 615 27.5 2.32 
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Case A1: Nonshiftable load and PEV 

(a)

(b)

(c)

(10, 50, 662)

(10, 50, 10.7)

(10, 50, 10.3)

 

Figure 4.3. Case A1 (nonshiftable loads and PEV). The sensitivity of MCS-PSO 

solution (Figure 4.1) to battery charge/discharge rate and maximum daily export 

limit. Arrows show near-optimal solutions for the annual cost ($662), PV (10.73 

kW), and battery (10.27 kWh) sizes. 

In Case A1, the schedulable loads (Table 4.1) and PEV are considered to be 

nonshiftable, and there is no V2H integration. The near-optimal sizes of PV and 

BSS are determined based on a range of different 𝑅𝑐 and 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 values for the 

SH (Figure 4.3). As expected, there are different solutions for different operating 

conditions. However, the minimum yearly cost is achieved when 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 

kWh/day, 𝑅𝑐 is 10 kWh/hour and the capacities of PV and battery are 10.73 kW 

and 10.27 kWh, respectively. This near-optimal solution for Case A1 offers an 

annual cost reduction of 15.3% (Table 4.4). 
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Case A2: Shiftable load and PEV

(a)

(b)

(c)

(7, 50, 659)

(7, 50, 11.1)

(7, 50, 7.4)

 

Figure 4.4. Case A2 (shiftable loads and shiftable PEV/H2V). The sensitivity of 

MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum 

daily export limit. Arrows show near-optimal solutions for the annual cost ($659), 

PV (11.11 kW), and battery (7.37 kWh) sizes. 

In Case A2, the schedulable loads (𝐿𝑠 in Table 4.1, which are less than 2% of the 

total load) are considered to be shiftable and there is no V2H integration. The near-

optimal sizes of PV and BSS are determined based on a range of different 𝑅𝑐 and 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 values for the SH (Figure 4.4). As with Case A1, there are different 

solutions. However, the minimum yearly cost is attained when 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 

kWh/day, 𝑅𝑐 is 7 kWh/hour and the capacities of PV and battery are 11.11 kW and 

7.37 kWh, respectively. This near-optimal solution for Case A2 can produce a 

17.9% annual cost reduction (Table 4.4). 
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Case A3: Shiftable load and PEV + V2H

(a)

(b)

(c)

(3, 50, 589)

(3 ,50, 0.8)

(3 ,50, 9.8)

 

Figure 4.5. Case A3 (shiftable loads and shiftable PEV/H2V/V2H). The sensitivity 

of MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum 

daily export limit. Arrows show near-optimal solutions for the annual cost ($589), 

PV (9.85 kW) and battery (0.79 kWh) sizes. 

In Case A3, both schedulable loads and V2H integration are considered. As with 

Cases A1–A2, the near-optimal sizes of PV and BSS are determined based on a 

range of different 𝑅𝑐 and 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 values (Figure 4.5). The minimum yearly cost 

corresponding to 25.2% annual cost reduction (Table 4.4) is reached when 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥, 𝑅𝑐, PV and battery ratings are 50 kWh/day, 3 kWh/hour, 9.85 kW and 

0.79 kWh, respectively. 
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According to the summarised results of Table 4.4 (rows 5–8), for the SH with 

optimal sizes of PV and BSS: 

 Introduction of PV and BSS will reduce the annual cost by 15.3% while the 

LCOE reduces from 3.21 to 2.72 cents/kWh (Table 4.4; rows 4 and 5). 

 Scheduling of shiftable loads by the proposed HEMS (Table 4.2) will provide 

greater savings with an annual cost reduction of 17.9% and LCOE of 2.64 

cents/kWh (Table 4.4; row 6). 

 Integration of V2H will further reduce the optimal sizes of PV and BSS to 

9.85kW and 0.79kWh while the annual cost reduction and LCOE are also 

improved to 25.2% and 2.40 cents/kWh, respectively (Table 4.4; row 7). 

 The proposed battery-less configuration (Table 4.4, Case A4) looks very 

promising as well, with a 25% reduction in the annual cost. Comparing the 

results of Cases A1 and A4, LCOE is improved from 2.72 to 2.41 cents/kWh. 

4.4.2 Optimal sizing of PV, WT, and BSS to 

minimise annual cost of household electricity 

The impacts, benefits, and limitations of introducing WT are investigated in Cases 

B1–B4. They are similar to Cases A1–A4 with the inclusion of WT. Near-optimal 

sizes of PV, WT, and BSS are determined for a range of 𝑅𝑐 and 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 values as 

shown in Figures. 4.6–4.8. For Case B1, the minimum yearly cost is achieved when 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 kWh/day, 𝑅𝑐 is 10 kWh/hour and the capacity of PV, WT and battery 

are 6.40 kW, 4.83 kW and 10.60 kWh, respectively (Figure 4.6). This near-optimal 

solution for Case B1 can create a 16.1% annual cost reduction (Table 4.4). Note 

that the solution for Case B2 offers a more significant annual cost reduction of 

19.0% (Table 4.4 and Figure 4.7 with 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥=50 kWh/day, 𝑅𝑐=10 kWh/hour, 

PV=6.21 kW, WT=5 kW and BSS=9.42 kWh). While the most attractive solution 

with an annual cost reduction of 27.8% (Table 4.4) is for Case B3 with 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥=50 

kWh/day, 𝑅𝑐=8 kWh/hour, PV=0.08 kW, WT=5 kW and BSS=6.25 kWh (Figure 

4.8). 
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Case B1: Nonshiftable load and PEV 

(b)

(c)

(d)

(a)

(10, 50, 646)

(10, 50, 4.8)

(10, 50, 10.6)

(10, 50, 6.4)

 

Figure 4.6. Case B1 (nonshiftable loads and PEV). The sensitivity of MCS-PSO 

solution (Figure 4.1) to battery charge/discharge rate and maximum daily export 

limit. Arrows show near-optimal solutions for annual cost ($646), WT (4.83 kW), 

PV (6.40 kW) and battery (10.60 kWh) sizes. 
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Case B2: Shiftable load and PEV 

(d)

(a)

(b)

(c)

(10, 50, 639)

(10, 50, 5)

(10, 50, 6.2)

(10, 50, 9.4)

 

Figure 4.7. Case B2 (shiftable loads and shiftable PEV/H2V). The sensitivity of 

MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum 

daily export limit. Arrows show near-optimal solutions for the annual cost ($639), 

WT (5 kW), PV (6.21 kW), and battery (9.42 kWh) sizes. 
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Case B3: Shiftable load and PEV + V2H

(b)

(a)

(c)

(d)

(8, 50, 568)

(8, 50, 6.2)

(8, 50, 0.1)

(8, 50, 5)

 

Figure 4.8. Case B3 (shiftable loads and shiftable PEV/ H2V/V2H). The sensitivity 

of MCS-PSO solution to battery charge/discharge rate and maximum daily export 

limit. Arrows show near-optimal solutions for annual cost ($568), WT (5 kW), PV 

(0.08 kW) and battery (6.25 kWh) sizes. 
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Comparison of simulations results in Table 4.4 (rows 5–12) for Cases A1–A4 and 

B1–B4 reveals further improvements in annual cost and LCOE for all simulated 

scenarios. For example: 

 According to Table 4.4 (column 10), there are further reductions in the annual 

costs from 15.3%, 17.9%, 25.2% and 25.0% (without WT; rows 5–8) to 16.1%, 

19.0%, 27.8% and 27.5% (with WT; rows 9–12). 

 There are also reductions in LCOE from 2.72, 2.64, 2.40, and 2.41 cents/kWh 

(without WT; Table 4.4: column 11; rows 5–8) to 2.68, 2.60, 2.31, and 2.32 

cents/kWh (with WT; Table 4.4: column 11; rows 9–12). 

 The proposed battery-less configuration (Table 4.4, Case B4) looks even more 

attractive compared to Case A4 since the annual cost reduction and LCOE are 

further improved from 25.0% to 27.5% and from 2.41 cents/kWh to 2.32 

cents/kWh, respectively. 

4.4.3 Impacts of load shifting on BSS operation 

For the SH considered in this study, the schedulable loads (𝐿𝑠) are about 2% of the 

total household load (Table 4.1). Figure 4.9 demonstrates the impacts of shifting 𝐿𝑠 

on the BSS operation. The consumption, generation and, SOC of BSS before and 

after shifting 𝐿𝑠 to the cheapest ER hours in their corresponding DIs are shown in 

Figure 4.9.a and Figure 4.9.b, respectively. In this particular study, shifting of the 

schedulable loads did not result in significant impacts on the battery consumption, 

generation and SOC. 

 

               (a)                       (b) 

Figure 4.9. Consumption, generation and SOC for BSS in SH; (a) before shifting 

the schedulable loads, (b) after shifting the schedulable loads. 
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4.4.4 Comparing MCS-PSO results with MCS-

ABC 

In this section, Artificial Bee Colony (ABC) is utilized in conjunction with MCS to 

evaluate MCS-PSO results for three most complex Cases of B1, B2 and B3. 

Simulation results are compared in Table 4.5. 

Artificial Bee Colony (ABC) is one of the stochastic optimisation methods which 

is proposed by Karaboga [324] and its performance is examined and compared with 

other heuristic algorithms such as PSO [325-333]. A food source position, indicates 

a potential solution in ABC algorithm and the fitness/quality of this solution is 

defined based on the amount of food source in that position. There are three 

categories of bees in this algorithm. First category is called employed bees which 

go to the food source based on their memories from their last visit and local 

information. Second category is onlookers which are waiting to choose food 

sources based on employed bees information. Third category is called scouts which 

search randomly for new sources. In ABC algorithm, onlookers and employed bees 

are responsible for exploitation of the search space and scouts are responsible for 

exploration. Also a greedy selection process is utilized in each cycle for memorizing 

food source position based on the comparison of fitness of the new solution and the 

previous solution [325]. 

First step in this algorithm is generating initial population of solutions. Each 

solution (𝑥𝑠) is a three dimensional vector. In other words, each solution or food 

source position consists of 3 numbers which represent size of BSS, PV and WT in 

our simulations. Number of onlooker bees or employed bees are equal to number 

of population (SN) which is considered to be 50 in this section simulations. Two 

other control parameters in ABC are maximum cycle number (MCN) and the value 

of limit which are considered to be 3000 and 300 in our simulations. The number 

of limit is defined in ABC to abandon a food source if it cannot be improved further 

during that prearranged number of cycles. If a food source is abandoned, then the 

scout will discover a new food source based on the following equation: 

𝑥𝑠
𝑑 = 𝑥𝑚𝑖𝑛

𝑑 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥
𝑑 − 𝑥𝑚𝑖𝑛

𝑑 ) (4.7) 

where 𝑑 ∈ {1, 2, … , 𝐷} and D is equal to 3 in this section simulations.  
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After initialisation, these solutions will be populated for each cycle and the position 

of the employed bees will be changed based on the local information and fitness 

value of the new solutions. Every employed bee in each cycle modifies her position 

to check if the fitness value improves. If it is improved then, memorises the new 

position/solution, otherwise, remembers the previous one. However, each onlooker 

bee will get the information from employed bees after their population in each cycle 

completed. She will choose a food source based on the employed bees information. 

Probability of choosing food sources (𝑝𝑠) with higher fitness value is higher when 

an onlooker bee chooses her position [325]. This probability is defined as follows: 

𝑝𝑠 =
𝑓𝑖𝑡𝑠

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

 (4.8) 

where 𝑓𝑖𝑡𝑠 and SN are fitness of the candidate solution and the number of 

candidates/food sources respectively. Fitness of the candidate solution is calculated 

as follows: 

𝑓𝑖𝑡𝑠 =
1

1 + 𝐶𝐴𝑛𝑛𝑢𝑎𝑙𝑠
 (4.9) 

where 𝐶𝐴𝑛𝑛𝑢𝑎𝑙𝑠 is our objective function which is the annual cost of electricity for 

candidate 𝑥𝑠 (Eq. (4.4)).  

Each candidate population in ABC is determined from the old food position based 

on the following equation: 

𝑣𝑠𝑑 = 𝑥𝑠𝑑 + 𝜑𝑠𝑑(𝑥𝑠𝑑 − 𝑥𝑛𝑑) (4.10) 

where n, d and 𝜑𝑠𝑑 are chosen randomly along with 𝑑 ∈ {1, 2, … , 𝐷} and 𝑛 ∈

{1, 2, … , 𝑆𝑁}. In addition, n is always different from s. Also, 𝜑𝑠𝑑 is always between 

-1 and 1 [325].  
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Table 4.5. Simulation results for comparing MCS-PSO with MCS-ABC for Cases 

B1, B2 and B3. 
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Case B: 

SH with 

PV,         

PEV, 

BSS      

and WT    

B1: 

Nonshiftable 

Loads, PEV 

(H2V only) 

B1𝑀𝐶𝑆−𝑃𝑆𝑂 50 10 6.40 10.60 4.83 710 16.1 2.68 

B1𝑀𝐶𝑆−𝐴𝐵𝐶 50 10 6.91 10.69 4.71 691 18.6 2.61 

Differences % - - 7.97 0.85 -2.48 -2.68 15.53 -2.61 

B2:  

Shiftable 

Loads, PEV  

(H2V only) 

B2𝑀𝐶𝑆−𝑃𝑆𝑂 50 10 6.21 9.42 5.00 687 19.0 2.60 

B2𝑀𝐶𝑆−𝐴𝐵𝐶 50 10 6.11 9.40 4.64 688 18.9 2.60 

Differences % - - -1.61 -0.21 -7.20 0.15 -0.53 0.00 

B3:  

Shiftable 

Loads, PEV 

(H2V and 

V2H) 

B3𝑀𝐶𝑆−𝑃𝑆𝑂 50 8 0.08 6.25 5.00 612 27.8 2.31 

B3𝑀𝐶𝑆−𝐴𝐵𝐶 50 8 0.00 6.68 5.00 612 27.8 2.31 

Differences % - - -100 6.88 0.00 0.00 0.00 0.00 
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For Case B1, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT 

are 6.91 kW, 10.69 kWh and 4.71 kW which was determined by MCS-PSO to be 

6.40 kW, 10.60 kWh and 4.83 kW respectively. In other words, MCS-ABC results 

for PV and battery are 7.97% and 0.85% higher and for WT, it is 2.48% lower. 

Also, annual cost, annual cost reduction and LCOE are determined to be $691, 

18.6% and 2.61 cents/kWh which was determined by MCS-PSO to be $710, 16.1% 

and 2.68 cents/kWh respectively. In other words, MCS-ABC results for annual cost 

and LCOE are 2.68% and 2.61% lower and annual cost reduction is changed from 

16.1% to 18.6% for Case B1 (Table 4.5; rows 4-6). 

For Case B2, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT 

are 6.11 kW, 9.40 kWh and 4.64 kW which was determined by MCS-PSO to be 

6.21 kW, 9.42 kWh and 5 kW respectively. In other words, MCS-ABC results for 

PV, battery and WT are 1.61%, 0.21% and 7.20% lower. In addition, annual cost, 

annual cost reduction and LCOE are determined to be $688, 18.9% and 2.60 

cents/kWh which was determined by MCS-PSO to be $687, 19.0% and 2.60 

cents/kWh respectively. It can be seen that, the differences were lower than 1% for 

annual cost, annual cost reduction and LCOE in Case B2 (Table 4.5; rows 7-9). 

For Case B3, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT 

are 0 kW, 6.68 kWh and 5 kW which was determined by MCS-PSO to be 0.08 kW, 

6.25 kWh and 5 kW respectively. In other words, MCS-ABC results for PV is 

changed from 0.08 kW to 0 kW and for battery is changed from 6.25 kWh to 6.68 

kWh, which is 6.88% higher, and for WT it is equal for both methods. Also, annual 

cost, annual cost reduction and LCOE are determined to be $612, 27.8% and 2.31 

cents/kWh which was determined by MCS-PSO to be $612, 27.8% and 2.31 

cents/kWh respectively. It can be seen that, the differences were almost 0.00% for 

annual cost, annual cost reduction and LCOE in Case B3 (Table 4.5; rows 10-12). 

Although the near-optimal solutions are slightly different for MCS-ABC and MCS-

PSO, they are close to each other as expected. It should be noted that the maximum 

cycle number in ABC optimisation was three times more than PSO to make sure 

the near-optimal solution is achieved. 
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4.5 Sensitivity analyses 

Detailed sensitivity analyses are performed for Cases A1–A3 and B1–B3 to 

investigate impacts of the maximum daily electricity export (𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥) and the rate 

of battery charge/discharge (𝑅𝑐) as well as the maximum capacity limits for PV, 

WT and BSS. These are a number of parameters that significantly affect the optimal 

sizes of PV, WT and BSS for the SH. Based on the detailed sensitivity simulations 

presented in Table 4.4 and Figures 4.3–4.8: 

 Increasing the maximum daily electricity export will: i) decrease the annual cost 

and increase the PV size for all cases, ii) increase the WT size up to an upper 

limit, iii) increase the BSS size for Cases A1–A2 and B1–B2. This happens 

because the SH is able to export more electricity. 

 Increasing the rate of battery charge and discharge will: i) reduce annual cost 

and slightly decrease the PV size for Cases B1–B2, and ii) significantly increase 

the BSS size for Cases A1–A2 and B1–B2. This happens because BSS is able 

to charge/discharge faster. 

 Inclusion of WT in addition to PV will: i) reduce the annual cost for Cases B1–

B3, ii) decrease the PV size, particularly for Case B3. 

4.6 Conclusion 

This chapter performs:  

i. optimum sizing of rooftop PV, WT, and BSS for the SH with PEV using a 

proposed rule-based algorithm with MCS and PSO (Figure 4.1) 

ii. performance evaluation through the operation of the SH and cost 

calculations with near-optimal component sizes (Figure 4.2) 

iii. sensitivity analyses on the impacts of maximum daily electricity export, rate 

of battery charge and discharge, as well as the maximum capacities of PV, 

WT and BSS on their optimum sizes (Table 4.4 and Figures. 4.3–4.8) 

iv. comparing the results of MCS-PSO with MCS-ABC for Cases B1, B2 and 

B3 (Table 4.5). 
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The main conclusions are as follows. 

 Introduction of PV and BSS will provide significant annual cost reduction (over 

15%) and LCOE from 3.21 to 2.72 cents/kWh, while the inclusion of WT will 

provide an additional reduction in annual cost (over 16%) and LCOE to 2.68 

cents/kWh (Table 4.4; rows 4, 5 and 9). 

 Consideration of V2H decreases initial investment (by reducing component 

sizes), annual cost (over 25.2% and 27.8% without and with WT) and LCOE to 

2.40 and 2.31 cents/kWh without and with WT (Table 4.4; rows 7 and 11). 

 It may be a good option to eliminate BSS altogether in SHs that have renewable 

resources and PEVs with V2H integration. This battery-less configuration 

results in annual cost and LCOE reductions (Table 4.4; rows 8 and 12). 

 Based on the sensitivity analyses (Figures. 4.3–4.8), further reductions in LCOE 

are possible by increasing PV, WT and BSS sizes; however, there may be 

limitations associated with the initial investment, maximum daily electricity 

export, battery charge, and discharge rate as well as space requirements for 

installations of rooftop PV and WT. 
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Chapter 5 Optimal Sizing of 

Renewable Resources for 

Smart Home with 

Committed Exchange 

Power Functionality  

5.1 Introduction 

In this chapter, committed exchange power functionality is considered for the SH. 

Then, near-optimal sizes of rooftop PV, WT, and BSS are studied for different 

conditions based on the proposed rule-based algorithm (HEMS) with MCS and PSO 

(Figure 5.1). Annual cost is minimised for determining near-optimal size of rooftop 

PV, WT and BSS for the committed power SH. Stochastic behaviors of renewable 

resources and availability of PEV are considered the same as in the previous 

chapter. After determining near-optimal sizes of rooftop PV, WT and BSS, the 

performance of the SH operation is evaluated with the selected near-optimal 

renewable resources. The impacts of shiftable loads, maximum daily export energy, 

battery charge/discharge rates, V2H integration and maximum WT, PV and battery 

capacity limits are investigated in sensitivity analyses of Sections 5.4.1 and 5.4.2. 

Further investigation is conducted in Section 5.4.3 to study the effect of various 

committed power exchange to the optimal sizes of rooftop PV, WT and BSS for the 

SH with the shiftable load and V2H integration. 

5.2 Data modelling for temperature, 

irradiance, wind speed, load and ER 

Similarly to the previous chapter, MCS is used to model annual data for performing 

a near-optimal component sizing of the SH with a committed exchange power 

capability in Section 5.3. 
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5.2.1 Input data  

Input data in this chapter simulations are same as for the previous chapter and are 

explained in Section 4.2.1. Similar annual data is used for ambient temperature, 

global horizontal irradiance, wind speed, ER and base load while PEV, HVAC, 𝐿𝑢 

and 𝐿𝑠 (Table 4.1) are modelled separately, as in the last chapter. However, a 

committed power export is considered for the SH in this chapter during peak time 

hours (7pm, 8pm and 9pm).  

5.2.2 Monte Carlo simulation (MCS)  

As in the previous chapter, MCS is used to model probabilistic behaviour of input 

data. At the same time, the correlation between different data is considered along 

with the correlation between each interval and the previous interval in each 

database. Correlation between different data is considered by separating data into 

four databases based on four seasons and generating data separately for each season. 

Also, correlation between each interval and the prior interval is considered by use 

of daily data sampling. These methods make it possible to model probabilistic 

behaviour of input data to be used in optimisation algorithms, as described in the 

next section. 

5.3 Proposed MCS-PSO for optimal 

component sizing and operation of SH 

with H2V and V2H integrations and 

committed power exchange functionality   

In this section, we introduce the new rule-based HEMS with a committed power 

exchange functionality. We then integrate it into the proposed MCS-PSO to execute 

near-optimal component sizing (Figure 5.1) and operation (Figure 5.2) for the SH 

with a committed power exchange functionality. 
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5.3.1 Proposed rule-based HEMS with committed 

power exchange, coordinated PEV and BSS 

charging and discharging operations 

The new HEMS is proposed to consider committed power exchange functionality 

(Table 5.1). Hourly day-ahead electricity prices are considered along with 

predefined hours for the SH to export predetermined power to the grid. EPR and 

ESR for the committed power SH are different compared to other SHs during the 

predefined committed hours, which can be defined based on the utility contracts 

and agreements. This proposed HEMS will export the committed power to the grid 

in the predetermined hours, which in this chapter are considered to be during peak 

time hours (7pm, 8pm and 9pm). It also decreases the daily cost of SH electricity 

bills by using renewable generations and coordinating BSS charge/ discharge 

activities and PEV. Constraints are considered along with charge and discharge 

costs (Sections 3.2.4–3.2.5) in the simulations. Furthermore, battery and PEV are 

utilised to store surplus renewable generation for future demands and electricity 

trading. This new HEMS is based on the proposed rules in Table 5.1.  

It should be mentioned that the following power flow and trading constraints are 

satisfied by the proposed HEMS at each interval (∆𝑡𝑗): 

𝐿𝑏(∆𝑡𝑗) + 𝐿𝑠(∆𝑡𝑗) + 𝐿𝑢(∆𝑡𝑗) = 

𝐸𝐵𝑢𝑦(∆𝑡𝑗) − 𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) − 𝐸𝐵(∆𝑡𝑗) − 𝐸𝑃𝐸𝑉(∆𝑡𝑗). 
(5.1) 

𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗) < 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 (5.2) 

5.3.2 Proposed MCS-PSO for optimal component 

sizing of SH with committed power exchange 

functionality 

A combination of MCS and PSO is used to solve the component-sizing problem for 

the committed power SH. As mentioned in the previous chapter, PSO is one of the 

best meta-heuristic optimisation techniques for solving this kind of nonlinear 

problem. MCS is also used to consider the probabilistic behaviour of renewable 
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resources. PSO starts with a random candidate solutions for particles, which are 

size of WT, PV and BSS within the problem space. In each iteration, 𝑝𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑖𝑑 

are calculated based on the proposed HEMS and particles move toward these best 

solutions. These best solutions will be updated in each iteration until PSO reaches 

the maximum iteration number or reaches a sufficiently good fitness. PSO 

parameters such as 𝑐1, 𝑐2 and 𝑤 are adjusted based on this problem to control 

particle acceleration rates toward best solutions and better exploitation and 

exploration. 

Table 5.1. Operation rules for minimising annual cost of SH with V2H, shiftable 

loads and committed exchange power functionality. 

Rule Instructions for Rule-Based HEMS with the committed power exchange 

functionality 

1 Acquire the time (intervals/hours) and the amount of power that SH is 

committed to export. Also reward(𝛼) and penalty(𝛽) factors for these hours Eq. 

(5.4). 

2 Based on the previous day, acquire initial SOCs for BSS and PEV. 

3 Schedule shiftable loads to the hours with the cheapest ER based on DIs (as 

explained in Section 3.2.4 and Figure 3.2). 

4 Schedule PEV for early morning to be charged before 5 am (Section 3.2.5). 

 

5 

Schedule BSS before 5 am to have enough charge for committed power hours 

(before 5 am; charging is first from renewable resources and then from SG 

during cheapest hours same as PEV which is described in Section 3.2.5). 

 

 

6 

At each interval, if there is a commitment for exporting power then;  

1-export the amount of power which is committed for that interval to SG (this 

can be from: first; renewable resources second; battery and third; PEV) 

2-suply the load from: first; renewable resources second; battery and third; PEV 

3-expensive penalty(𝛽) applies if there is shortage to export and supply the load 

Eq. (5.4). 

 

7 

At each interval if there is no commitment, then supply the SH loads with the 

following preferences: 1-renewable resources, 2-battery, 3-PEV and 4-SG with 

consideration of Eqs. (5.1)–(5.2). 

 

8 

Except for the committed power hours, at each DI; purchase/sell electricity at 

the extreme minimum/maximum point of the ER considering Eqs. (5.1)–(5.2) to 

charge/discharge PEV and Battery. 

 

9 

Surplus electricity will be sold to SG at each interval to satisfy Eqs. (5.1)–(5.2) 

except for the committed power hours which all renewable resources will be 

used to deliver the committed power and supply the loads. 

10 At the end of the day, initial SOCs for BSS and PEV will be updated for the 

next day. 
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The proposed MCS-PSO is used for defining near-optimal sizes of WT, PV and 

BSS (Figure 5.1) for the committed power SH while minimising the annual cost 

of electricity.  

Electricity cost for each ∆𝑡𝑗 of the day when there is no committed power exchange 

during that interval, is calculated as follows: 

𝐶𝐻𝑜𝑢𝑟(∆𝑡𝑗) = 𝐿𝐶𝑃𝑉 . 𝐸𝑃𝑉(∆𝑡𝑗) + 𝐿𝐶𝑊. 𝐸𝑊(∆𝑡𝑗) 

                  +𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉 . 𝐸𝑠𝑒𝑙𝑙

𝑃𝐸𝑉(∆𝑡𝑗) + 𝐿𝐶𝐵 . 𝐶𝑎𝑝𝐵. ∆𝑡

+ 𝐸𝑅(∆𝑡𝑗) × 𝐸𝐵𝑢𝑦(∆𝑡𝑗) − 𝐸𝑅(∆𝑡𝑗) × 𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗). 

(5.3) 

Electricity cost for each ∆𝑡𝑗 of the day when there is committed power exchange 

during that interval, is calculated as follows: 

𝐶𝐻𝑜𝑢𝑟(∆𝑡𝑗) = 𝐿𝐶𝑃𝑉 . 𝐸𝑃𝑉(∆𝑡𝑗) + 𝐿𝐶𝑊. 𝐸𝑊(∆𝑡𝑗) 

                  +𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉 . 𝐸𝑠𝑒𝑙𝑙

𝑃𝐸𝑉(∆𝑡𝑗) + 𝐿𝐶𝐵 . 𝐶𝑎𝑝𝐵. ∆𝑡 + 𝛽 × 

                  𝐸𝑅(∆𝑡𝑗) × 𝐸𝐵𝑢𝑦(∆𝑡𝑗) − 𝛼 × 𝐸𝑅(∆𝑡𝑗) × 𝐸𝑆𝑒𝑙𝑙(∆𝑡𝑗), 

(5.4) 

where the ESR and EPR are assumed to be equivalent to the ER. However, for the 

committed power exchange hours there are two factors that are considered in Eq. 

(5.4) as reward (𝛼) and penalty (𝛽) factors. Reward and penalty factors for the 

simulations are assumed to be 𝛼 =3 and 𝛽 =10. Other parameters, such as 

𝐿𝐶𝑊, 𝐿𝐶𝑃𝑉, 𝐶𝑑,𝑠𝑒𝑙𝑙
𝑃𝐸𝑉 , 𝐿𝐶𝐵 , are same as in the previous chapter. 

The objective function for the optimisation is to minimise the annual electricity 

cost of the SH: 

𝐶𝐷𝑎𝑦 =∑ 𝐶𝐻𝑜𝑢𝑟(∆𝑡𝑗)
24

𝑗=1
 (5.5) 

𝑀𝑖𝑛  𝐶𝐴𝑛𝑛𝑢𝑎𝑙 =∑ 𝐶𝐷𝑎𝑦(𝑖) 
365

𝑖=1
 

 

(5.6) 

PSO behaviour is analysed carefully by using different parameters to secure the 

convergence of simulations. An inertia weight of 0.2 is considered to enhance the 

effectiveness of MCS by limiting the particles’ velocity. Table 5.2 shows the PSO 

parameters selected for simulations. Upper boundaries for WT, PV and BSS are 

selected according to SH physical restrictions. In addition, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 can be 

determined based on utilities contracts’ adaptability and physical restrictions. As 
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in to the previous chapter, it is chosen to be less than the SH average base load. 

Figure 5.1 illustrates the algorithm (MCS-PSO) for the committed power SH to 

determine near-optimal size of WT, PV and BSS. 

 

Initialization of Monte Carlo Simulation (MCS)

Acquire TMY data and distinguish seasons databases for load, ER, wind speed, 

irradiance and temperature. Derive  Eqs. (3.8)-(3.11) (daily probability distribution 

functions of PEV)

Initialization and Start of PSO   

Set population and iterations numbers, initial capacities of BSS, PV and WT

Save optimal sizes of PV, WT and BSS

Update Daily Input Data for MCS

Determine day-ahead profiles for PEV (Figure 3.3 using Eqs. (3.8)-(3.11)) 

and generate daily input data from similar seasons databases

Yes

Apply Rules 2-5 of HEMS (Table 5.1)     

Update SOCs, determine DIs and schedule PEV/BSS charging until 5am

Adjust sizes of PV, WT and 
BSS. Next PSO iteration

Save MCS-PSO solution for present population  

Apply Rule 6 of HEMS (Table 5.1)     

Export the committed power and 

supply loads using renewable 

resource, BSS and PEV

Next hour Calculate hourly cost  

Update initial SOCs of PEV and BSS for the next day 

(Table 5.1, Rule 10). Calculate daily cost  

Next day up to 1 year 

Calculate annual cost   

Update the best PSO solution    

   

Next PSO population 

No
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Apply Rule 1 of HEMS for Committed Power Exchange (Table 5.1)   

Acquire the time (intervals/hours), reward (α), penalty (β) and the amount of 

power that SH is committed to export for these intervals Eq. (5.4)

   
No Yes

Apply Rules 7-9 of HEMS (Table 5.1)     

Supply loads, perform trading and/or 

charge/discharge of PEV/BSS

 

Figure 5.1. Proposed algorithm (MCS-PSO) for SH with committed power 

exchange functionality to determine near-optimal size of WT, PV and BSS. 
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Update Daily Input Data for MCS

Determine day-ahead profiles for PEV (Figure 3.3 using Eqs. 

(3.8)-(3.11)) and the input data based on daily MCS.

Apply Rules 2-5 of HEMS (Table 5.1)     

Update SOCs, determine DIs & schedule PEV/BSS charging until 5am

Next hour

Update initial SOCs of PEV and battery for next day 

(Table 5.1: Rule 10). Calculate daily cost (Eq. (5.5))  

Calculate LCOE (Eq. (5.7))  

Save Day-Ahead Schedule of BSS  

Next year up to 25 years 

Next day up to one year 

Calculate annual cost (Eq. (5.6))
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Optimal Component Sizing and Initialization of MCS

Run algorithm of Figure 5.1 to find optimal sizes of PV, BSS and 

WT. Acquire annual data and distinguish seasons databases.

Apply Rule 1 of HEMS for Committed Power Exchange (Table 5.1)   

Acquire the time (intervals/hours), reward (α) and penalty (β) factors and 

the amount of power that SH is committed to export for these intervals

Apply Rule 6 of HEMS (Table 5.1)     

Export the committed power and 

supply loads using renewable 

resource, BSS and PEV

   
No

Apply Rules 7-9 of HEMS (Table 5.1)     

Supply loads, perform trading and/or 

charge/discharge of PEV/BSS

Yes

Save BSS hourly status (on, off or idle)  

 

Figure 5.2. Proposed operation algorithm for SH with committed power exchange 

functionality to determine BSS day-ahead schedules, annual cost (Eq. (5.6)) and 

LCOE (Eq. (5.7)). 

 

Table 5.2. PSO input parameters. 

Parameter Particles K D 𝒄𝟏 𝒄𝟐 𝒘 Boundaries 

PV WT BSS 

Value 60 1200 3 1 1 0.2 [0,40] [0,5] [0,40] 
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5.3.3 Operation of SH with committed power 

exchange functionality 

The SH with committed power exchange functionality exports the committed 

power during the agreed time (intervals/hours) to SG. In this chapter it is assumed 

that the SH is committed to export power during peak hours (7pm, 8pm and 9pm). 

In Sections 5.4.1 and 5.4.2, it is assumed that the SH is committed to export 5kWh 

to SG in each hour during peak hours (Figures 5.3–5.8). Committed power 

parameters used for simulations of Figures 5.3–5.8 are presented in Table 5.3. 

Table 5.3. Committed power parameters and assumptions. 

Parameter Committed 

hours 

[hour] 

Committed power 

for each hour  

[kWh] 

𝜶 𝜷 

Value 7pm, 8pm, 9pm 5 3 10 

Associated Figs. 5.3–5.17 5.3–5.8 5.3–5.17 5.3–5.17 

 

For operation of the committed power SH and BSS day-ahead scheduling, the 

algorithm in Figure 5.2 is proposed to be used after finding the near-optimal sizes 

of PV, WT and BSS (Figure 5.1). This algorithm is also utilised for calculating the 

annual cost (Eq. (5.6)) and the LCOE over the renewable resources’ lifetime [113, 

139] for the committed power SH: 

𝐿𝐶𝑂𝐸𝑆𝐻 =
∑𝑐𝑜𝑠𝑡 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒

∑ 𝑠𝑢𝑝𝑙𝑖𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒
 (5.7) 

where WT and PV lifetime is considered to be 25 years and the lifetime of battery 

is considered to be eight years with the maximum cycles of 2000 [323]. 

5.4 Simulations results for SH with committed 

power exchange   

First, the near-optimal sizes of PV, WT and BSS are determined by use of the 

proposed MCS-PSO algorithm (Figure 5.1) for the committed power SH (for 

various cases of 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐). Then, its performance and operation are 

investigated by the proposed algorithm in Figure 5.2. Simulations results of Figures 

5.3–5.8 and 5.9–5.17are summarised in Table 5.4 and Table 5.5 respectively. 
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For the next two sections of this chapter, it is assumed that the SH is committed to 

export power during 7pm, 8pm and 9pm (peak hours in this case) and 5kWh for 

each hour (Figures 5.3–5.8). Electricity reward (𝛼) and penalty (𝛽) factors are 

assumed to be 3 and 10 during this period for finding component sizes of PV, WT 

and BSS. 

For different operating conditions, the optimal component sizes, annual cost, annual 

cost reduction and LCOE (Eq.(5.7)) are resolved and compared. In the next section, 

the SH is without WT (Table 5.4; rows 5–8). For Section 5.4.2, WT is considered 

as well (Table 5.4; rows 9–11). For each of these cases, the impacts of shiftable 

loads (Cases A2 and B2), and integration of H2V/V2H are investigated. The effect 

of eliminating BSS for Case A3 is also investigated (Case A4). 

In Section 5.4.3, Case B3 is repeated for the SH with various export power 

commitments to evaluate the effect of committed power exchange to the optimal 

sizing (Figure 5.1) and operation (Figure 5.2) of the SH (Table 5.5). It should be 

mentioned that annual cost for the base case operation (without power committed 

exchange, PV, WT and BSS) is $848 and the LCOE is 3.21 cents/kWh, as presented 

in Table 5.4 (row 4). 

5.4.1 Optimal sizing of PV and BSS without WT 

for the SH with committed power exchange 

to minimise annual cost of household 

electricity 

In this section’s simulations, WT is not considered and the near-optimal sizes of PV 

and BSS are determined for the committed power SH. It is assumed that the SH is 

committed to export power during 7m, 8pm and 9pm (peak hours) at 5kWh for each 

hour (Figures. 5.3–5.5). Electricity reward (𝛼) and penalty (𝛽) factors are assumed 

to be 3 and 10 during this period. 

Different operating conditions are investigated with and without shiftable loads and 

V2H integration to find near-optimal sizes by use of the MCS-PSO algorithm 

(Figure 5.1). Then, annual cost and LCOE are evaluated by the algorithm of Figure 

5.2 for these cases (Table 5.4, Cases A1–A3). Furthermore, elimination of BSS is 

also studied in Case A4. 
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In the first case (Case A1), PEV and schedulable loads (Table 4.1) are examined as 

nonshiftable and V2H integration is not considered. Based on a range of different 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐 values, near-optimal sizes of PV and BSS are determined for the 

committed power SH (Figure 5.3). As can be seen from Figure 5.3, for various 

operating conditions there are different solutions. However, the minimum annual 

cost is achieved when 𝑅𝑐 is 10 kWh/hour, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 kWh/day and the 

capacities of PV and battery are 16.20 kW and 32.95 kWh, respectively. The best 

achieved annual cost for Case A1 is $1294, which does not offer any annual cost 

reduction. After running the operation algorithm of Figure 5.2 for various ranges of 

𝛼, we found that in order to achieve an annual cost reduction we need to increase 𝛼 

to almost 7 for Case A1 (Table 5.4).   

In the second case (Case A2), PEV and schedulable loads (Table 4.1) are examined 

as shiftable and V2H integration is not considered. Based on a range of different 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐 values, near-optimal sizes of PV and BSS are determined for the 

committed power SH (Figure 5.4). As can be seen from Figure 5.4, for various 

conditions there are different solutions. However, the minimum annual cost is 

achieved when 𝑅𝑐 is 10 kWh/hour, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 45 kWh/day and the capacities of 

PV and battery are 11.69 kW and 30.92 kWh, respectively. The best achieved 

annual cost for Case A2 is $1260, which again does not offer any annual cost 

reduction. After running the operation algorithm of Figure 5.2 for various ranges of 

𝛼, we found that in order to produce an annual cost reduction we need to increase 

𝛼 to almost 7 for Case A2 (Table 5.4).   

In the third case (Case A3), PEV and schedulable loads (Table 4.1) are examined 

as shiftable and V2H integration is also considered. Based on a range of different 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐 values, near-optimal sizes of PV and BSS are determined for the 

committed power SH (Figure 5.5). As can be seen from Figure 5.5, for various 

conditions there are different solutions. However, the minimum annual cost is 

achieved when 𝑅𝑐 is 3 kWh/hour, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 kWh/day and the capacities of PV 

and battery are 11.44 kW and 6.98 kWh, respectively. The best achieved annual 

cost for Case A3 is $505. After running the operation algorithm of Figure 5.2, an 

annual cost reduction of 24.2% is achieved with this near-optimal solution for Case 

A3 (Table 5.4). 
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Table 5.4. Summary of simulation results (Figures 5.3–5.8) for optimal 

component sizing (Figure 5.1) and operation (Figure 5.2) of SH with the 

committed power exchange. 

 

 

 

 

 

Case Studies 

Simulations 

Optimal Component Sizing 

of SH with Committed 

Power Exchange (5kWh for 

each hour during 7pm, 8pm 

and 9pm (𝜶 =3 and 𝜷 =10)), 

utilising Daily Monte Carlo 

Data Generation (Proposed 

MCS-PSO Algorithm of 

Figure 5.1) 

Operation of SH with Committed 

Power Exchange (Algorithm of 

Figure 5.2) utilising Optimal 

Component Sizes and Daily Monte 

Carlo Data Generation 

𝜶 =3 and 𝜷 =10 𝜶 =7 and 𝜷 =10 
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] 

Base Case: SH without Committed Power 

Exchange, PV, BSS, and WT 

N/A N/A N/A N/A N/A 848 N/A 3.21 848 N/A 3.21 

Case A: 

SH with 
Committed 

Power 

Exchange, PV, 

PEV and BSS 

(Figures. 5.3–

5.5) 

A1 Nonshiftable Loads, 

PEV (H2V only) 

50 10 16.20 32.95 N/A 1409 N/A 5.33 757 10.7 2.86 

A2 Shiftable Loads, PEV  

(H2V only) 

45 10 11.69 30.92 N/A 1397 N/A 5.25 843 0.5 3.17 

A3 Shiftable Loads, PEV 

(H2V and V2H) 

50 3 11.44 6.98 N/A 643 24.2 2.43 174 79.5 0.65 

A4 Case A3 without BSS 50 N/A 13.70 0 N/A 732 13.7 2.77 579 31.7 2.18 

Case B:SH with 
Committed 

Power 

Exchange, PV, 

PEV, BSS and 

WT (Figures. 

5.6–5.8) 

B1 Nonshiftable Loads, 

PEV (H2V only) 

50 10 11.18 31.10 5 1285 N/A 4.86 629 25.8 2.38 

B2 Shiftable Loads, PEV  

(H2V only) 

50 10 8.48 29.41 5 1267 N/A 4.78 705 16.9 2.66 

B3 Shiftable Loads, PEV 

(H2V and V2H) 

45 4 9.19 0 4.95 571 32.7 2.16 186 78.1 0.70 
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Case A1: Nonshiftable load and PEV with committed power 

(b)

(a)

(c)

(10, 50, 16.2)

(10, 50, 32.9)

(10, 50, 1294)

3

 

Figure 5.3. Case A1 (nonshiftable loads and PEV with committed power 

exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export limit 

and battery charge/discharge rate for SH with committed power exchange. Near-

optimal solutions are demonstrated with arrows for the annual cost ($1294), PV 

(16.20 kW), and battery (32.95 kWh) sizes. 
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(b)

(a)

(c)

Case A2: Shiftable load and PEV with committed power 

(10, 45, 1260)

(10, 45, 11.7)

(10, 45, 30.9)

3

 

Figure 5.4. Case A2 (shiftable loads and shiftable PEV/H2V with committed 

power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export 

limit and battery charge/discharge rate for SH with committed power exchange. 

Near-optimal solutions are demonstrated with arrows for the annual cost ($1260), 

PV (11.69 kW), and battery (30.92 kWh) sizes. 

 

 



128 

(b)

(a)

(c)

Case A3: Shiftable load and PEV with committed power + V2H 

(3, 50, 505)

(3, 50, 11.4)

(3, 50, 7)

 

Figure 5.5. Case A3 (shiftable loads and shiftable PEV/H2V/V2H with committed 

power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export 

limit and battery charge/discharge rate for SH with committed power exchange. 

Near-optimal solutions are demonstrated with arrows for the annual cost ($505), 

PV (11.44 kW), and battery (6.98 kWh) sizes. 
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Based on the simulations shown in Table 5.4 (rows 5–8), for the committed power 

SH with near-optimal sizes of PV and BSS: 

 Introduction of PV and BSS is not sufficient to reduce the annual cost for Case 

A1 and we need to increase 𝛼 to almost 7 for this case. (It should be mentioned 

that these sizes are near optimal when 𝛼 =3.) 

 Although shiftable load scheduling reduced the annual cost compared to Case 

A1, it is not sufficient and we need to increase 𝛼 to almost 7 for this case to 

produce an annual cost reduction. 

 Integration of V2H decreased the near-optimal sizes of PV and BSS to 11.44kW 

and 6.98kWh. It also rapidly reduced the annual cost for the committed power 

SH. Annual cost reduction and LCOE for Case A3 were 24.2% and 2.43 

cents/kWh, respectively (Table 5.4; row 7). 

 The proposed battery-less arrangement of Case A4 (Table 5.4) reduced the 

annual cost and LCOE to 13.7% and 2.77 cents/kWh, which is also promising 

but not as much as Case A3. 

 Choosing 𝛼=3 for the committed power SH (Eq.(5.4)) created an annual cost 

reduction for Cases A3 and A4 of 24.2% and 13.7% (Table 5.4). 

5.4.2 Optimal sizing of PV, WT, and BSS for the 

SH with committed power exchange to 

minimise annual cost of household electricity 

In this section’s simulations, WT is also considered and the near-optimal sizes of 

PV, WT and BSS are determined for the committed power SH. It is assumed that 

the SH is committed to export power during 7pm, 8pm and 9pm (peak hours) at 

5kWh for each hour (Figures. 5.6–5.8). Electricity reward (𝛼) and penalty (𝛽) 

factors are assumed to be 3 and 10 during this period (as in the previous section). 

As in the previous section, operating conditions are investigated with and without 

shiftable loads and V2H integration to find near-optimal sizes by using the MCS-

PSO algorithm (Figure 5.1). Then, annual cost and LCOE are evaluated using the 

algorithm in Figure 5.2 for these cases (Table 5.4, Cases B1–B3). 
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Cases B1–B3 are similar to Cases A1–A3 but with consideration of WT to 

investigate the impacts, limitations and benefits of WT inclusion. For a range of 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐 values, near-optimal sizes of WT, PV, and BSS are determined, as 

demonstrated in Figures 5.6–5.8. The minimum annual cost for Case B1 is attained 

when 𝑅𝑐 is 10 kWh/hour, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 kWh/day and the capacities of WT, PV 

and battery are 5 kW, 11.18 kW and 31.10 kWh, respectively (Figure 5.6). The best 

achieved annual cost for Case B1 is $1177, which does not offer any annual cost 

reduction for these conditions; 𝛼 should be at least equal to 6 to produce an annual 

cost reduction. This near-optimal solution (for 𝛼=3) can generate a 25.8% annual 

cost reduction (Figure 5.2) for Case B1 if we choose 𝛼=7 (Table 5.4).     

The minimum annual cost for Case B2 is attained when 𝑅𝑐 is 10 kWh/hour, 

𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 is 50 kWh/day and the capacities of WT, PV and battery are 5 kW, 8.48 

kW and 29.41 kWh, respectively (Figure 5.7). The best achieved annual cost for 

Case B1 is $1144, which does not offer any annual cost reduction for these 

conditions; 𝛼 should be at least equal to 6 for achieving annual cost reduction. This 

near-optimal solution (for 𝛼=3), can produce a 16.9% annual cost reduction (Figure 

5.2) for Case B2 if we choose 𝛼=7 (Table 5.4).     

The minimum annual cost for Case B3 is attained when 𝑅𝑐 is 4 kWh/hour, 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 

is 45 kWh/day and the capacities of WT, PV and battery are 4.95 kW, 9.19 kW and 

0 kWh, respectively (Figure 5.8). The best achieved annual cost for Case B3 is 

$379, which makes this the most attractive case among Cases A1–A3 and B1–B3. 

After running the operation algorithm in Figure 5.2, an annual cost reduction of 

32.7% is achieved with this near-optimal solution for Case B3 (Table 5.4). 
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Case B1: Nonshiftable load and PEV with committed power 

(b)

(d)

(a)

(c)

(10, 50, 1177)

(10, 50, 11.2)

(10, 50, 31.1)

(10, 50, 5)

33

 

Figure 5.6. Case B1 (nonshiftable loads and PEV with committed power 

exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export limit 

and battery charge/discharge rate for SH with committed power exchange. Near-

optimal solutions are demonstrated with arrows for the annual cost ($1177), WT 

(5 kW), PV (11.18 kW), and battery (31.1 kWh) sizes. 
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Case B2: Shiftable load and PEV with committed power 

(b)

(d)

(a)

(c)

(10, 50, 1144)

(10, 50, 8.5)

(10, 50, 29.4)

(10, 50, 5)

33

 

Figure 5.7. Case B2 (shiftable loads and shiftable PEV/H2V with committed 

power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export 

limit and battery charge/discharge rate for SH with committed power exchange. 

Near-optimal solutions are demonstrated with arrows for the annual cost ($1144), 

WT (5 kW), PV (8.48 kW), and battery (29.41 kWh) sizes. 
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Case B3: Shiftable load and PEV with committed power + V2H

(b)

(d)

(a)

(c)

(4, 45, 379)

(4, 45, 4.9)

(4, 45, 9.2)

(4, 45, 0)

 

Figure 5.8. Case B3 (shiftable loads and shiftable PEV/H2V/V2H with committed 

power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export 

limit and battery charge/discharge rate for SH with committed power exchange. 

Near-optimal solutions are demonstrated with arrows for the annual cost ($379), 

WT (4.95 kW), PV (9.19 kW), and battery (0 kWh) sizes. 
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Comparing Cases A1–A3 and B1–B3 simulations – which are summarised in Table 

5.4 (rows 5–11) – reveals additional improvements/reduction in annual cost and 

LCOE for all cases when WT is added to the committed power SH. For example: 

 According to Table 5.4, annual cost (column 9) and LCOE (column 11) are 

reduced for Cases A1–A3 (without WT; rows 5–7) when WT is added (Cases 

B1–B3; rows 9–11) to the committed power SH. 

 Selected parameters for the committed power SH (such as 𝛼=3) can bring 

annual cost reductions for Cases A3, A4 and B3 of 24.2%, 13.7% and 32.7%, 

respectively. 

 With the consideration of WT for SH, near-optimal sizes of PV and BSS are 

reduced along with annual cost for all cases (Table 5.4). 

 Adding WT to Case A3 has given us a battery-less configuration (Case B3) as 

a near-optimal solution (Table 5.4) with the annual cost reduction of 32.7%. 

 

5.4.3 Effect of committed power exchange to the 

optimal size of PV, WT, and BSS for the SH  

In this section’s simulations, further investigation is conducted to study the effect 

of committed power exchange on the optimal size of PV, WT and BSS. Conditions 

are same as for Case B3. For all cases in this section (Case C1–C10), PEV and 

schedulable loads (Table 4.1) are examined as shiftable and V2H integration is 

considered. Also, electricity reward (𝛼) and penalty (𝛽) factors are assumed to be 

3 and 10 during committed power hours (as in previous sections). However, various 

committed power export is considered for each case during the three peak hours 

(7pm, 8pm and 9pm). 

For each case, the near-optimal sizes of PV, WT and BSS are determined by use of 

the proposed MCS-PSO algorithm (Figure 5.1) for the committed power SH (for 

various cases of 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 and 𝑅𝑐); then, the performance and operation of the SH 

are investigated by the proposed algorithm in Figure 5.2. Simulations results of 

Figures. 5.9–5.17 are summarised in Table 5.5. 
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Table 5.5. Summary of simulation results (Figures. 5.9–5.17) for evaluating the 

effect of committed power exchange to the optimal sizing (Figure 5.1) and 

operation (Figure 5.2) of SH. 

 

 

 

 

 

Case Studies 

Simulations 

Optimal Component Sizing of 

SH with Committed Power 

Exchange (5kWh for each 

hour during 7pm, 8pm and 

9pm (𝜶 =3 and 𝜷 =10)), 

utilising Daily Monte Carlo 

Data Generation (Proposed 

MCS-PSO Algorithm of 

Figure 5.1)  

Operation of SH with 

Committed Power 

Exchange (Algorithm 

of Figure 5.2) utilising 

Optimal Component 

Sizes and Daily Monte 

Carlo Data Generation 

𝜶 =3 and 𝜷 =10 
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Base Case: SH without Committed Power 

Exchange, PV, BSS, and WT 

N/A N/A N/A N/A N/A 848 N/A 3.21 

Case C: 

SH with Committed 

Power Exchange, PV, 

PEV, BSS and WT with 

Shiftable Loads, H2V and 

V2H. 

Various committed power 

export is considered for 

various cases for each 

hour during peak hours 

(7pm, 8pm and 9pm). 

(Figures. 5.9–5.17) 

C1 1kWh 50 1 8.68 0.08 5 922 N/A 3.49 

C2 2kWh 45 8 10.42 0 4.63 844 0.5 3.19 

C3 3kWh 45 10 9.15 0.01 5 751 11.4 2.84 

C4 4kWh 45 9 9.59 0.17 5 657 22.5 2.48 

C5* 5kWh 45 4 9.19 0 4.95 571 32.7 2.16 

C6 6kWh 30 8 7.10 0 5 509 40.0 1.92 

C7 7kWh 50 5 10.43 1.2 5 398 53.1 1.50 

C8 8kWh 50 3 10.04 5.29 4.99 269 68.3 1.02 

C9 9kWh 35 3 8.29 6.25 5 235 72.3 0.89 

C10 10kWh 50 4 8.62 8.61 4.61 143 83.1 0.54 

*)Figures for Case C5 (which are same as Case B3) are not shown in this section as they are 

demonstrated in the previous section (Figure 5.8). 
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(b)

(d)

(a)

(c)

(1, 50, 743)

(1, 50, 5)

(1, 50, 8.7)

(1, 50, 0.1)

Case C1: Committed to export 1kWh in each hour (7pm, 8pm and 9pm) 

 

Figure 5.9. Case C1 (shiftable loads and shiftable PEV/H2V/V2H with 1kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($743), WT (5 kW), 

PV (8.68 kW), and battery (0.08 kWh) sizes. 
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(b)

(d)

(a)

(c)

(8, 45, 631)

(8, 45, 4.6)

(8, 45, 10.4)

(8, 45, 0)

Case C2: Committed to export 2kWh in each hour (7pm, 8pm and 9pm) 

 

Figure 5.10. Case C2 (shiftable loads and shiftable PEV/H2V/V2H with 2kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($631), WT (4.63 kW), 

PV (10.42 kW), and battery (0 kWh) sizes. 



138 

(b)

(d)

(a)

(c)

(10, 45, 544)

(10, 45, 5)

(10, 45, 9.1)

(10, 45, 0)

Case C3: Committed to export 3kWh in each hour (7pm, 8pm and 9pm) 

 

Figure 5.11. Case C3 (shiftable loads and shiftable PEV/H2V/V2H with 3kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($544), WT (5 kW), 

PV (9.15 kW), and battery (0.01 kWh) sizes. 
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(b)

(d)

(a)

(c)

(9, 45, 435)

(9, 45, 5)

(9, 45, 9.6)

(9, 45, 0.2)

Case C4: Committed to export 4kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.12. Case C4 (shiftable loads and shiftable PEV/H2V/V2H with 4kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($435), WT (5 kW), 

PV (9.59 kW), and battery (0.17 kWh) sizes. 
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(b)

(d)

(a)

(c)

(8, 30, 287)

(8, 30, 5)

(8, 30, 7.1)

(8, 30, 0)

Case C6: Committed to export 6kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.13. Case C6 (shiftable loads and shiftable PEV/H2V/V2H with 6kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($287), WT (5 kW), 

PV (7.10 kW), and battery (0 kWh) sizes. 
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(b)

(d)

(a)

(c)

(5, 50, 211)

(5, 50, 5)

(5, 50, 10.4)

(5, 50, 1.2)

Case C7: Committed to export 7kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.14. Case C7 (shiftable loads and shiftable PEV/H2V/V2H with 7kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($211), WT (5 kW), 

PV (10.43 kW), and battery (1.2 kWh) sizes. 
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(b)

(d)

(a)

(c)

(3, 50, 119)

(3, 50, 5)

(3, 50, 10)

(3, 50, 5.3)

Case C8: Committed to export 8kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.15. Case C8 (shiftable loads and shiftable PEV/H2V/V2H with 8kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($119), WT (4.99 kW), 

PV (10.04 kW), and battery (5.29 kWh) sizes. 
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(b)

(d)

(a)

(c)

(3, 35, 74)

(3, 35, 5)

(3, 35, 8.3)

(3, 35, 6.2)

Case C9: Committed to export 9kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.16. Case C9 (shiftable loads and shiftable PEV/H2V/V2H with 9kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS- 

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($74), WT (5 kW), PV 

(8.29 kW), and battery (6.25 kWh) sizes. 
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(b)

(d)

(a)

(c)

(4, 50, 12)

(4, 50, 4.6)

(4, 50, 8.6)

(4, 50, 8.6)

Case C10: Committed to export 10kWh in each hour (7pm,8pm and 9pm) 

 

Figure 5.17. Case C10 (shiftable loads and shiftable PEV/H2V/V2H with 10kWh 

committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS- 

PSO sensitivity (Figure 5.1) to maximum daily export limit and battery 

charge/discharge rate for SH with committed power exchange. Near-optimal 

solutions are demonstrated with arrows for the annual cost ($12), WT (4.61 kW), 

PV (8.62 kW), and battery (8.61 kWh) sizes. 
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Sensitivity analyses are performed for the selected solution of Case C7 to 

investigate the annual cost reduction for this case (PV=10.43kW, WT=5kW and 

BSS=1.2kWh) based on various electricity reward factors (𝛼), as illustrated in 

Figure 5.18. As can be seen, with the decrease of 𝛼 from 3 to 0.8, the annual cost 

reduction decreased from 53.1% to almost 0% and it is not economically beneficial 

for the SH to engage in the proposed DR if 𝛼 is less than 0.8. In addition, for 𝛼=1 

(i.e. ESR during committed power is equal to ER), the annual cost reduction is 

5.13%, which is economically beneficial for the SH. However, it is not a sufficient 

incentive to encourage the SH to participate in this committed power program. 

Therefore, 𝛼 should be at least 1.5 for this SH with committed power functionality 

(Case C7) to achieve at least 22% annual cost reduction. 

 

Figure 5.18. Annual cost reduction for Case C7 based on various electricity 

reward factors. 

 

Based on this section’s simulations (which are summarised in Table 5.5), for a 

committed power SH with near-optimal sizes of PV, WT and BSS: 

 Introduction of a SH with the committed export power functionality reduced 

annual cost for Case C2 to Case C10 in comparison with the base case. 

 With the increase of committed power export during peak hours (7pm, 8pm and 

9pm), the annual cost of the SH is decreased. 

 Near-optimal size of BSS was almost 0 kWh for Cases C1 to C6. However, after 

Case C6 with the increase of committed power export during peak hours (7pm, 

8pm and 9pm), the near-optimal size of BSS is increased (Cases C7–C10).  
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 For almost all cases, the size of PV is increased with the increase of the 

maximum daily export limit.  

5.5 Sensitivity analyses  

Impacts of the battery charge/discharge rate (𝑅𝑐), maximum daily electricity export 

(𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥) and the maximum capacity limits for WT, PV and BSS are studied for 

Cases A1–A3, B1–B3 and C1–C10 through a comprehensive sensitivity analysis.  

Optimal sizes of WT, PV and BSS for the SH with committed power exchange 

functionality can be significantly affected by a number of parameters. According to 

the Table 5.4 (Cases A1–A3, B1–B3) and comprehensive sensitivity simulations of 

Figures. 5.3–5.8: 

 Increasing the maximum limit for daily electricity export (𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥) for the 

committed power SH will reduce the annual cost and slightly increase the size 

of PV for almost all cases. 

 Increasing the battery charge/discharge rate (𝑅𝑐) for the committed power SH 

will decrease annual cost for Cases A1–A2 and B1–B2. (This was a dramatic 

decrease when 𝑅𝑐 increased from 1kWh/hour to 5kWh/hour in these cases.) It 

also dramatically increase the size of BSS for Cases A1–A2 and B1–B2 because 

of the faster battery charge and discharge ability. However, we did not see this 

dramatic increase for the size of BSS when 𝑅𝑐 increased from 5kWh/hour to 

10kWh/hour in these cases. 

 Considering WT in addition to PV and BSS will decrease the annual cost for 

the committed power SH in Cases B1, B2 and B3 and will reduce the size of 

PV.  

More investigation is conducted for case B3 with various ranges of committed 

power for Cases C1–C10 (Case C5 is same as Case B3). According to Table 5.5 

and comprehensive sensitivity simulations of Figures. 5.9–5.17: 

 There is a cost reduction for Cases C2–Case C10 in comparison with the base 

case. Also, with the increase of committed power export, cost reduction is 

increased. 
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  For the cases with low committed power export, the near-optimal size of BSS 

was almost 0 kWh. However, with the increase of committed power export, the 

near-optimal size of BSS is increased for Cases C7–C10. For Case C10, the 

near-optimal size of BSS was 8.61kWh. 

 Size of PV is increased by increase of maximum daily export limit for almost 

all cases. 

5.6 Conclusion 

This chapter performs:  

i. Optimum sizing of rooftop WT, PV and BSS for a SH with committed 

power exchange and PEV integration using a proposed rule-based algorithm 

with MCS and PSO (Figure 5.1). 

ii. Evaluating the performance through the operation of the SH with committed 

power exchange and cost evaluation with near-optimal component size 

(Figure 5.2). 

iii. Investigating the impact of 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥, 𝑅𝑐, maximum capacities of WT, PV 

and BSS on their optimum sizes (Table 5.4 and Figures. 5.3–5.8). 

iv. Investigating the impact of various range of committed power for the SH 

with shiftable load and shiftable PEV/H2V/V2H (Table 5.5 and Figures. 

5.9–5.17). 

The major conclusions are as follows. 

  Introducing PV and BSS to the committed power SH (with 𝛼=3 and 𝛽=10) with 

shiftable load and V2H integration will provide significant annual cost 

reduction (over 24%) and LCOE from 3.21 to 2.43 cents/kWh for Case A3, 

while the inclusion of WT will provide an additional reduction in annual cost 

(over 32%) and LCOE to 2.16 cents/kWh for Case B3 (Table 5.4; rows 4, 7 and 

11). 

 Introducing PV and BSS to the committed power SH (with 𝛼=3 and 𝛽=10) 

without V2H integration will not provide annual cost reduction (Cases A1–A2 

and B1–B2) and we need to increase 𝛼 in order to get cost reduction.   
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 Consideration of V2H for the committed power SH (with 𝛼=3 and 𝛽=10) 

reduces initial investment by reducing the size of PV and BSS. In addition, it 

reduces annual cost (over 24% and 32% without and with WT, respectively) 

and LCOE to 2.43 and 2.16 cents/kWh without and with WT, respectively 

(Table 5.4; rows 7 and 11). 

 Eliminating BSS for the committed power SH (with 𝛼=3 and 𝛽=10) with 

shiftable load, V2H integration and renewable resources may be a good option. 

As can be seen for Case A4, battery-less configuration reduces LCOE and 

annual cost (Table 5.4; row 8). This is more promising in Case B3 when WT is 

also considered for the SH. The near-optimal size of BSS for Case B3 is 0kWh 

(Table 5.4; row 11). 
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Chapter 6 Conclusion 

SHs can be beneficial to energy consumers and providers if appropriate DR 

programs are in place. The effect of different components of SHs on the size of 

renewable resources and annual cost of electricity is investigated in this thesis. The 

operation of a SH with the optimal size of renewable resources is also evaluated to 

study the annual cost of SH. In addition, the effectiveness of SHs with committed 

power functionality is studied with the aim of minimising annual electricity cost 

while responding to DR programs. This study can help policy-makers establish 

better electricity tariff structures and DR programs for the residential sector. With 

appropriate implementation of SHs and DR programs, it is possible to further 

increase the penetration of renewable resources. The conclusions and the 

significance of each chapter are described in the following section. 

6.1 Conclusions and significance 

This thesis presented a comprehensive literature survey on state-of-the-art 

technologies and elements that play significant role in the SH in the SG context. A 

number of studies closely related to this research were reviewed in Chapter 2.  

Investigated areas were classified into four categories. The first category was 

demand-side management and demand response programs. The second category 

was renewable distributed generation. PV systems, wind systems and electrical 

storage systems were described under the second category. The third category was 

optimal sizing of renewable resources, which included optimal sizing for 

microgrids and for SHs. The final category was SH enablers, which included: (i) 

power metering devices; (ii) communication network; (iii) smart appliances; (iv) 

the Internet of Things; (v) smart sensors; (vi) monitoring and control systems; (vii) 

cloud computing; (viii) home energy management system (HEMS) and; (ix) energy 

consumption scheduling. 

Data modelling and optimisation methods used for energy management and sizing 

optimisation in SHs were presented in Chapter 3. Two modelling approaches were 

introduced to consider stochastic behaviour of wind speed, global irradiance, 
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 temperature, power demand, and electricity rate based on yearly data and use of 

Monte Carlo simulation (MCS). Also, components of SHs were modelled to be used 

in the following chapters’ simulations. Particle swarm optimisation (PSO) was also 

introduced as a method to be used for optimum sizing of components for SHs. 

The work in Chapter 3 is significant because it introduced a modelling framework 

for implementing stochastic behaviour of renewable resources in optimisation 

problems. New models were also proposed for SH generation cost, HVAC load and 

PEV charge/discharge algorithms. 

Chapter 4 focused on HEMS and the optimisation problem for SHs. Optimum 

component sizing for a SH with rooftop WT, PV, BSS, PEV and shiftable loads by 

minimising annual electricity cost was presented in Chapter 4. A new rule-based 

HEMS was proposed in association with Monte Carlo simulations and particle 

swarm optimisation (MCS-PSO). Import and export of energy with V2H integration 

was considered along with stochastic behaviors of temperature, irradiance, wind 

speed, load and ER. Additionally, normal and lognormal probability density 

functions were used for projecting availability of PEV. After determining near-

optimal sizes of rooftop PV, WT and BSS, the performance of the SH operation 

was evaluated with the selected near-optimal renewable resources. The impacts of 

shiftable loads, maximum daily export energy, battery charge/discharge rates, V2H 

integration and maximum PV, WT and battery capacity limits were investigated in 

sensitivity analysis simulations. 

The contributions in Chapter 4 are notable, with a new rule-based HEMS algorithm 

proposed for a SH with rooftop PV, WT, BSS and PEV to empower households to 

shift (schedule) their shiftable loads to off-peak periods based on the day-ahead and 

dynamic electricity price. Additionally, optimum sizing of SH renewable resources 

(including rooftop PV/BSS or rooftop PV/WT/BSS) was studied utilising the 

proposed MCS-PSO approach. In addition, the effect of shiftable loads, V2H, 

battery charge/discharge rate, maximum daily electricity export, and maximum 

capacities of WT, PV and BSS on optimal sizes of renewable resources were 

investigated. Finally, the SH operation was evaluated based on the proposed 

algorithm and near-optimal renewable component sizes. 
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A SH with committed exchange power functionality was proposed in Chapter 5. 

Near-optimal sizes of rooftop PV, WT and BSS were studied for different 

conditions based on the proposed HEMS utilising the proposed MCS-PSO 

approach. Annual cost was minimised for determining the near-optimal size of 

rooftop PV, WT and BSS for the SH with committed power exchange. Stochastic 

behaviors of renewable resources and availability of PEV were considered. After 

determining near-optimal sizes of rooftop PV, WT and BSS, the performance of the 

SH operation was evaluated with the selected near-optimal renewable resources. 

The impacts of shiftable loads, maximum daily export energy, battery 

charge/discharge rates, V2H integration and maximum PV, WT and battery 

capacity limits were investigated in sensitivity analysis simulations. Further 

investigation was conducted to study the effect of various committed power 

exchanges to the optimal sizes of rooftop PV, WT and BSS for the SH with the 

shiftable load and V2H integration. 

There are significant contributions in Chapter 5, too. It offers an insight into the 

renewable resources sizing problem and the effect of DR programs on renewable 

resources penetration in the residential sector, along with the economic profits/costs 

for households. This chapter focused on a SH with committed exchange power to 

investigate the savings households can achieve by participating in incentive-based 

DR programs along with price-based DR programs. The findings can assist 

stakeholders and service providers in establishing better electricity tariff structures 

and DR programs for the residential sector to increase the overall benefits for 

energy producers and consumers while increasing the penetration of renewable 

resources and decreasing GHG emissions.  

6.2 Contributions 

In terms of contributions made, this thesis has: 

1. Proposed a modelling framework for implementing stochastic behaviour of 

renewable resources in optimisation problems. 

2. Proposed a new algorithm for PEV charge/discharge to coordinate SHs for 

engaging DR programs. 
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3. Proposed a rule-based HEMS algorithm for a SH with rooftop PV, WT, BSS 

and PEV to empower households to shift (schedule) their shiftable loads to off-

peak periods based on dynamic day-ahead electricity price and minimising 

electricity cost. 

4. Proposed a new approach for finding optimum size of renewable resources 

(including PV, WT and BSS) for SHs based on annual cost minimisation by use 

of a proposed rule-based algorithm and MCS-PSO. 

5. Conducted sensitivity analysis simulations to illustrate the effect of shiftable 

loads, V2H, battery charge/discharge rate, maximum daily electricity export, 

and maximum capacities of WT, PV and BSS on optimal sizes of renewable 

resources for a SH engaged in price-based DR programs.  

6. Evaluated the SH operation based on the proposed algorithm and near-optimal 

renewable component sizes. 

7. Proposed a rule-based HEMS algorithm for a committed power SH with rooftop 

PV, WT, BSS and PEV to empower households to engage in both price-based 

and incentive-based DR programs. 

8. Determined the near-optimal size of rooftop WT, PV and BSS for a SH with 

committed power exchange and PEV integration using the proposed rule-based 

algorithm with MCS and PSO. 

9. Evaluated the operation of SH with committed power exchange based on the 

proposed algorithm and near-optimal renewable component sizes.  

10. Conducted sensitivity analysis simulations to illustrate the effect of shiftable 

loads, V2H, battery charge/discharge rate, maximum daily electricity export, 

and maximum capacities of WT, PV and BSS on optimal sizes of renewable 

resources for a SH with committed power exchange functionality. 

11. Evaluated the impact of various ranges of committed power exchange on the 

electricity cost and renewable resources size of the SH with shiftable load and 

shiftable PEV/H2V/V2H. This can assist stakeholders and service providers in 

establishing better electricity tariff structures and DR programs for the 

residential sector to increase the overall benefits for energy producers and 

consumers. 
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6.3 Future work 

Smart homes have many different aspects to be investigated in the context of SGs. 

With the development of new technologies – ICT, IoT, smart appliances, renewable 

resources technologies, cloud computing, data security, smart meters – DR 

programs and various government policies, along with the building characteristics, 

social and psychological behaviour of residents, there are many variable to 

investigate, particularly when the stability and reliability of the SG can be related 

to these subjects.  

This research proposed a home energy management system for a SH in a residential 

environment along with a modelling framework for implementing stochastic 

behaviour of renewable resources in optimisation problems. The optimal size of 

renewable resources and operation was also studied for this SH along with the effect 

of DR programs on the size of renewable resources and operation of the SH.  

There are some areas and directions which have been identified for further research, 

as follows. 

1. Implementing machine learning techniques and forecasting methods in HEMS 

in order to monitor, analyse and predict both SH consumers’ and devices’ 

behaviour (including renewable resources) along with energy providers and DR 

programs. This will assist HEMS in better scheduling shiftable loads and better 

allocating renewable resources in response to DR programs. 

2.  Investigating the effect of implementation of machine learning techniques and 

forecasting methods in HEMS on the optimal size of renewable resources and 

operation of SHs along with the possibility of introducing new DR programs to 

the industry.  

3. Modelling a virtual plant that includes a number of SHs, and then studying the 

optimum size of renewable resources and the effect of different DR programs 

on the operation and optimal size of renewable resources for this virtual plant. 

4. Evaluating the effect of other DR programs on the operation and optimal sizing 

of renewable resources for SHs. SH operation cost and sizing problems can be 

studied in the concept of different DR programs, which may be beneficial for 

some individual and special consumers. 
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5. Investigating the implementation of scheduling algorithms for each appliance 

that consumes electricity in a SH. Each appliance can be considered separately 

to be modelled and scheduled based on its specific algorithm. Then a 

supervisory algorithm can be applied to minimise household electricity cost 

while maintaining desired comfort level. 

6. Implementing advanced scheduling algorithms for HVAC load management to 

investigate its effect on the size of renewable resources for SH and annual cost 

of electricity for households. 

7. Investigating the utilisation of SH for ancillary supports to the grid such as 

injecting reactive power to the grid based on the local renewable resources and 

BSS. 

8. Implementing various optimisation algorithms instead of a rule-based algorithm 

for operation of SHs in the sizing problem. This can be followed by 

investigating the effect of these algorithms on the size of renewable resources 

for SHs. Additionally, the effect of various DR programs on the annual cost and 

the size of renewable resources for the SH can be evaluated with those 

algorithms. 

9. With the expansion of ICT infrastructure and SHs, machine learning and data-

mining technologies can be utilised to extract new rules and criteria from SHs’ 

big data in order to improve rule-based algorithms (for HEMS or individual 

devices) and DR programs.  

This chapter concludes the thesis by presenting a review of the thesis’s significance, 

contributions and proposed solutions. Finally, some issues for further investigation 

identified during this research are listed in the future work. 
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