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Abstract

With the development of smart grid (SG) and demand response (DR) programs,
smart homes (SHs) can play a significant role in increasing the penetration of
renewable resources while improving the sustainability of the grid. This thesis
addresses the complexity of SH operation and local renewable resources optimum
sizing. The effect of different criteria and components of SH on the size of
renewable resources and annual cost of electricity in the residential sector is
investigated. The operation of SH with the optimum size of renewable resources is
also evaluated to study the annual cost of SH. In addition, the effectiveness of SH
with committed exchange power functionality is studied with the goal of

minimising annual electricity cost while responding to DR programs.

First, background and a literature review relevant to state-of-the-art technologies
and elements (such as SH optimal sizing problem, DR programs, home energy
management System (HEMS), renewable distributed generation and SH enablers)
are presented. Then, a modelling framework for implementing stochastic behaviour
of renewable resources in optimisation problems is introduced. Wind turbine (WT),
photovoltaics (PV), SH generation cost, battery charge/discharge, heating,
ventilation, and air conditioning (HVAC) load and plug-in electric vehicles (PEV)
charge/discharge are also modelled to be used for sizing optimisation. After that,
optimum component sizing for a SH with rooftop WT, PV, battery storage system
(BSS), PEV and shiftable loads by minimising annual electricity cost is introduced.
A new rule-based HEMS is proposed in association with Monte Carlo simulations
and particle swarm optimisation (MCS-PSO). Import and export of energy with
vehicle-to-home (V2H) integration is considered along with stochastic behaviors of
temperature, irradiance, wind speed, load, PEV availability and electricity rate
(ER). After determining near-optimal sizes of rooftop PV, WT, and BSS, the
performance of the SH operation is evaluated with the selected near-optimal
renewable resources. The impacts of shiftable loads, maximum daily export energy,
battery charge/discharge rates, V2H integration and, maximum WT, PV and battery

capacity limits are investigated in sensitivity analysis simulations.
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Following the above, a SH with committed exchange power functionality is
proposed. Near-optimal sizes of rooftop PV, WT and BSS are studied for different
conditions based on the proposed rule-based HEMS algorithm utilising a proposed
MCS-PSO approach. Annual cost is minimised for determining near-optimal size
of rooftop PV, WT and BSS for the SH with the committed power exchange.
Stochastic behaviors of renewable resources and availability of PEV are considered.
After determining near-optimal sizes of rooftop PV, WT and BSS, the performance
of the SH operation is evaluated with the selected near-optimal renewable
resources. The impacts of shiftable loads, maximum daily export energy, battery
charge/discharge rates, V2H integration and maximum WT, PV and battery
capacity limits are investigated in sensitivity analysis simulations. Further
investigation is conducted to study the effect of various committed power
exchanges to the annual cost and optimal sizes of rooftop PV, WT and BSS for the
SH with shiftable load and V2H integration.

The contribution of this study is significant for policy-makers, researchers and
system designers who aim to improve SG, SH, electricity tariff structures and DR
programs for the residential sector, which can further increase the penetration of

renewable resources.
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Chapter 1  Introduction

1.1 Background

Concerns about greenhouse gas (GHG) emissions and electricity demand increases
have dramatically increased interest in renewable energy resources over the last
decades. As a result, the penetration of the grid by renewable resources has
increased. With the increase of distributed generation and the intermittency
characteristic of some renewable energy resources, the need for smart, efficient,
balanced, economic, sustainable and secure grid has also increased.

Information and communication technologies (ICT) play an important role in the
evolution of the smart grid. Demand-side management (DSM) and demand
response (DR) programs are also considered important options for balancing energy
generation and demand. With the development of demand response programs and
new technologies, the residential sector can play a significant role in optimising

grid operation.

1.1.1 Fossil CO, emissions

Since the start of the 21st century, reports show that global GHG emissions have
increased compared to the three preceding decades. This is in part due to increased
CO2 emissions generated by emerging economies. Global anthropogenic fossil CO2
emissions showed an increase of 1.2% in 2017 compared to 2016, reaching about
37.1 Gt. This increase was 0.4% in 2016 compared to 2015 (noting that 2016 was
a leap year) [1]. Figure 1.1 shows global fossil CO2 annual emissions in Gt CO2/year
separated by sectors. As can be seen, a large part of global COz2 is generated by the
power and transport industries. This portion can be decreased by increasing the

penetration of renewable resources and plug-in electric vehicles (PEVS).
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Figure 1.1. Global fossil CO; annual emissions (Gt COz/year) [1].

1.1.2 Renewable energy

Interest in renewable energy has increased significantly over the last several
decades due to the limited supply of conventional fossil fuels and their associated
environmental issues. In the 1970s the threat of running out of conventional fossil
fuels led to programs for expanding renewable resources, but this interest was
temporary and receded again as supply increased to meet demand. However, with
recognition of the link between global warming and CO2 emissions, and the risks
of using conventional fossil fuels, renewable energy has seen renewed attention.
The main renewable energy systems which have been used for generating electricity
are wind, solar, thermal, photovoltaics (PVs), biomass, geothermal, hydroelectric
and ocean. According to [2], 25,921 km? of PV can generate (during one year) the
equivalent energy of the United States’ needs for one year. This area is less than
one-quarter of the area that is covered with streets and roads in the USA. Adding
other renewable resources makes it even more feasible to power the entire country
using only renewable resources. However, there is a problem associated with many

forms of renewable resources — namely, their intermittency characteristic.
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1.1.3 Smart grid (SG)

Electrical grid efficiency needs to improve to overcome environmental and
regulatory restraints and the rapid increase in demand for penetration of renewable
sources [3]. According to [4], the challenges operation of the electrical grid system

faces include:

e reliability, power quality and energy efficiency

e increased renewable energy resources penetration, household demand, electric
cars and micro-generation

e generation and consumption uncertainty, customer awareness and short-term

contracts.

Some of traditional grid issues driving the transition towards a smart grid (Figure
1.2) are listed in [5]. A brief definition of smart grid is also offered: ‘The smart grid
is a suite of information based applications made possible by increased automation
of the electricity grid, as well as the underlying automation itself; this suite of
technologies integrates the behaviour and actions of all connected supplies and
loads through dispersed communication capabilities to deliver sustainable,

economic and secure power supplies’ [5].

Traditional Grid Smart Grid

B i

Centralized Generation Generation Everywhere

Power Flows Downhill Power Flows from Everywhere
Utility Controls Connections Anyone May Participate
Behaviour: Predictable Behaviour: Chaotic

Figure 1.2. Transition to smart grid [6].
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Economic and policy-based considerations, along with new technologies — in
communications, renewable generation, energy storage and computing power — as
well as innovative products and services, intelligent control/monitoring, and self-

healing technologies, mean that SG can [5]:

e enable consumers to choose their supply and equip them with superior

information

e authorise consumers to play a role in system operation optimisation.
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Figure 1.3. Customer domain overview in SG [7].

An overview of the customer domain in SG is shown in Figure 1.3. There are three
key features in the interconnection of buildings and the smart grid [7]. The first is
a distributed renewable energy strategy that enables customers to generate
electricity. The second feature is demand response (DR) programs between
customers and service providers. Finally, the third feature is the availability of plug-

in electric vehicles (PEV) and the possibility of charging them in buildings.

34



The smart home (SH) can be considered as a nanogrid which can play a significant
role in the transition of the grid towards a smart grid [4]. With the development of
SGs and SHs, and utilisation of demand-side load management, the electrical grid
is expected to have higher stability, with lower load fluctuation and operational cost
(in terms of matching generation and demand) and reduced network dynamics and
line losses [8]. SG can forecast electricity prices and control the energy at
transmission and distribution levels by monitoring SHs’ energy and environmental
data [9]. Using demand-side management in the residential sector in the context of
SGs and SHs appears promising, as residential energy usage is almost 40% of global

primary usage [3, 10, 11].

1.1.4 Smart home

Smart homes (SHs) were introduced to improve energy efficiency, energy savings,
comfort, security, safety and healthcare [12, 13]. They use artificial intelligence,
communication skills, computational power, monitoring and controlling abilities to
improve life experience and they can respond to residents’ behaviour [14]. Also,
the development of the Internet of Things (IoT), along with other information and
communication technologies (ICT), makes SHs more feasible [3, 15]. According to
[3], an SH is defined as ‘a home which is smart enough to assist the inhabitants to
live independently and comfortably with the help of technology is termed as smart
home. In a smart home, all the mechanical and digital devices are interconnected to
form a network, which can communicate with each other and with the user to create
an interactive space’. In another definition [12], the SH is defined as ‘an application
that is able to automatize or assist the users through different forms such as ambient
intelligence, remote home control or home automation systems’ [3]. Some of

fundamental characteristics of SHs are presented by [3] as follows.

e Automation: having the capability to incorporate automatic devices or execute
automated functions.

e Adaptability: having the capability to learn, forecast and fulfil users’ needs.

e Multi-functionality: having the capability to produce various results or carry
out multiple duties.

e Efficiency: having the capability to save time and costs by carrying out

functions in a suitable manner.
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Interactivity: having the capability to allow users to interact with each other.

Systems and technologies for SHs are investigated by [3]. Their advantages and

disadvantages are discussed and available products on the market are introduced;

these are presented in Table 1.1.

Table 1.1. Smart home technologies.

Integrated HEMS Products SHMC Home Automation products
Wireless Products
Technologies
6LOWPAN CISCO Arduino Control4Home automation
Blutooth DigitalSTROM Libelium Creston home automation &
Waspmote entertainment

EnOcean The Energy BeagleBone | British Gas Smarter Living & energy
Technology Navigator platform | Black saving-smart meters
DASH7 e-GOTHAM Raspberry Pi | General Electric Brillion technology
GSM Dreamwatts Banana Pi Panasonic smart appliance
NeuRFon ™ Energy Team’s Whirlpool smart appliances
Netform Energy Data

Collector Tool
MyriaNed Google PowerMeter Vera smarter home control
RFID Savant Honda Smart Home US
uwB SMARTHEMS™ Samsung SmartThings
Wi-Fi EmonCMS LG Smart Thing™
WLAN HomeSeer HS3, Staples Connect
Z-Wave LonWorks, OpenHAB, Wink, Iris
ZigBee Nexia, KNX, UPnP, iHome, WeBee

A home energy management system (HEMS) is one of the important enablers of
SHs. It can be used to minimise electricity cost and increase efficiency by enabling
consumers to actively control demand and generation [16]. According to [17],
HEMSs can be used for:

e Dbalancing demand and supply while managing energy flow for SHs

¢ planning energy production for exchanging energy with the grid.
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Renewable energy generation and energy requirements in SHs are misaligned, and
energy cost differs during peak and off-peak hours. HEMS can be used for
managing energy, which can be facilitated with energy storage [16].

SHs can help consumers use electricity efficiently in order to decrease energy cost,
peak load and GHG emissions. However, more studies are needed in the areas of
DR and end-users of the SG [3].

1.2 Research scope

This thesis focuses on a committed power smart home (SH) with optimal size of
renewable resources for demand response (DR) programs to facilitate penetration
of renewable resources in order to reduce emissions while improving SG efficiency.
SHs with various ranges of committed power are studied, which helps policy-
makers understand the impact of electricity rate and electricity tariff structures on

the penetration of renewable resources.

Two HEMSs — for a non-committed power SH and a committed power SH — are
proposed to schedule the load and allocate the local renewable resources for the SH
based on dynamic day-ahead price and incentive DR programs.

Also, the near-optimal size of renewable resources for SHs is investigated using
Monte Carlo simulation and particle swarm optimisation (MCS-PSO) to increase
the profit of households while increasing the penetration of renewable resources
based on the DR programs.

Probabilistic behaviour of renewable resources, loads, electricity rate (ER) and
availability of a plug-in electric vehicle (PEV) is considered along with household

comfort preferences, SH energy generation cost and shiftable/non-shiftable loads.

1.3 Research objectives

This thesis aims to investigate the optimum sizing of renewable resources for SH
with/without committed power exchange and PEV integration. SH operation is
evaluated for determined near optimal sizes following a sensitivity analyses. The
research objectives can be listed as follows:
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Modelling stochastic behaviour of SH components and development of rule-
based HEMS algorithms to empower households for shifting (scheduling)
their shiftable loads to off-peak periods based on the DR programs.

Optimum sizing of SH renewable resources and investigating the impacts of
shiftable loads, V2H, battery rate, maximum daily electricity export, and
maximum capacities of BSS, WT and PV on optimal sizes.

Optimum sizing of renewable resources for SH with committed power
exchange and PEV integration by utilizing proposed rule-based algorithm with
MCS and PSO. Also, investigating the impacts of shiftable loads, V2H,
battery rate, maximum daily electricity export, and maximum capacities of
BSS, WT and PV on optimal sizes.

Evaluating the performance through the operation of SH with/without
committed power exchange and cost evaluation with near-optimal renewable
component sizes.

Investigating the impact of various range of committed power for the SH with
shiftable loads and shiftable PEV/H2V/V2H.

1.4 Thesis structure

The outline of this thesis is shown in Figure 1.4. After this introductory chapter, the

rest of this thesis is organised as follows.
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Chapter 2: This chapter presents an overview of the recent literature about SH
components in the context of smart grid and demand response programs. A
number of technologies and components that play a significant role in SHs are
discussed and evaluated. Recent studies of demand-side management,
renewable distributed generation, optimal sizing of renewable resources and SH

enabling technologies are summarised and discussed.



Chapter 3: This chapter presents data modelling and optimisation methods
used for energy management and sizing optimisation in SHs. Two methods are
introduced for modelling wind speed, global irradiance, temperature, power
demand, and electricity rate based on yearly data by use of Monte Carlo
simulation (MCS). Additionally, components of SHs, such as renewable
resources and loads, are modelled to be used in the following chapters’
simulations. Further, particle swarm optimisation (PSO) is presented to be used
for optimum sizing of components for SHs.

Chapter 4: This chapter presents optimum component sizing for an SH with
rooftop WT, PV, BSS, PEV and shiftable loads by minimising annual electricity
cost. A new rule-based home energy management system (HEMS) is proposed
in association with MCS-PSO. Import and export of energy with V2H
integration is considered along with stochastic behaviors of temperature,
irradiance, wind speed, load and ER. Also, lognormal and normal probability
density functions are used for projecting availability of PEV. After determining
near-optimal sizes of rooftop PV, WT, and BSS, the performance of the SH
operation is evaluated with the selected near-optimal renewable resources. The
impacts of shiftable loads, maximum daily export energy, battery
charge/discharge rates, V2H integration and maximum WT, PV and battery
capacity limits are investigated in sensitivity analysis simulations. Finally the
optimisation results for MCS-PSO and MCS-ABC are compared for Cases B1,
B2 and B3 in Section 4.4.4.

Chapter 5: This chapter presents a SH with committed exchange power
functionality. Near-optimal sizes of rooftop PV, WT, and BSS are studied for
different conditions based on the proposed rule-based algorithm (HEMS) with
MCS-PSO. Annual cost is minimised for determining the near-optimal size of
rooftop PV, WT, and BSS for the SH with committed power exchange.
Stochastic behaviors of renewable resources and availability of PEV are
considered. After determining near-optimal sizes of rooftop PV, WT and BSS,
the performance of the SH operation is evaluated with the selected near-optimal
renewable resources. The impacts of shiftable loads, maximum daily export
energy, battery charge/discharge rates, V2H integration and maximum WT, PV

and battery capacity limits are investigated in sensitivity analysis simulations.

39



Further investigation is conducted to study the effect of various committed
power exchange to the optimal sizes of rooftop PV, WT and BSS for the SH
with the shiftable load and VV2H integration.

Chapter 6: This chapter presents conclusions, contributions and future research

recommendations.

N
Chapter 1
Research Background, Scope, Objectives and Structure
.
N
Chapter 2
Review of Literature
.
4 Chapter 3 A
Modelling stochastic behaviour of renewable resources and
L components of Smart Home )
4 Chapter 4 A
Home Energy Management System for Smart Home, Optimum size
S of renewable resources, Operation evaluation )
( Chapter 5 )
Home Energy Management System for Smart Home with
committed power exchange, Optimum size of renewable resources,
Operation evaluation, Effect of various committed power exchange
Y to the optimum sizes and annual cost )
N
Chapter 6
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J

Figure 1.4. Thesis outline.



Chapter 2  Literature Review for Smart
Homes

2.1 Introduction

This chapter presents an overview of recent literature about SH components in the
context of smart grid and demand response programs. A number of technologies
and components that play a significant role in SHs are discussed and evaluated.
These technologies empower SHs and facilitate the transition of the grid towards a
smart grid. Implementation of these technologies and optimal usage is important
for increasing energy efficiency while reducing greenhouse gas emissions.

Investigated areas are classified into four main categories.

1. Demand-side management and demand response programs
a. Demand-side management
b. Demand response programs
2. Renewable distributed generation
a. PV system
b. Wind system
c. Electrical storage system
3. Optimal sizing of renewable resources
a. Optimal sizing for microgrid
b. Optimal sizing for smart home

4. Smart home enablers

a. Power metering devices

b. Communication network

c. Smart appliances

d. The Internet of Things

e. Smart sensors

f. Monitoring and control systems

g. Cloud computing

h. Home energy management system (HEMS)

i. Energy consumption scheduling
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2.2 Demand-side management and demand
response programs

Demand-side management (DSM) and demand response (DR) programs are
promoted in residential contexts to address residential demand increases. They seek
to influence the patterns of energy consumption. DSM programs are used to
influence consumers in the medium- or long-term to increase energy efficiency.
However, DR is designed for short-term influence on demand by use of a control

signal, such as price [4].

2.2.1 Demand-side management

Demand-side management (DSM) was introduced in 1970 [18]. It is a marketing
strategy focused on technology and on utilities’ and customers’ needs [7]. DSM
activities are defined as ‘those which involve actions on the demand (i.e. customer)
side of the electric meter, either directly or indirectly stimulated by the utility. These
activities include those commonly called load management, strategic conservation,
electrification, strategic growth or deliberately increased market share’ [19]. DSM
has been extended to be used for stability and reliability improvement, power
system loading and system expenditures decrement [20].

DSM aims to balance demand with available supply and achieve the following
goals [7, 21].

e Operational cost reduction for entire network.

e Improving consumers’ participation in generation and energy management.
e Load management.

e Balancing demand and supply.

e Improving energy efficiency and conservation.

e Decreasing emissions.
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DSM is categorised by [22], based on timing and the impact of the applied measures
on the customer process, into four categories: (i) energy efficiency (EE); (ii) time
of use (TOU); (iii) demand responses (DR); (iv) spinning reserve (SR). In addition,
DSM challenges in UK are studied in [23] and the policy is reviewed by [21] after

dividing DSM into three broad areas, as can be seen in Figure 2.1.

DSM
Categories

Policies

DSM
Implementers

Figure 2.1. Elements of demand-side management [21].

2.2.2 Demand response programs

Utilities and aggregators use DR, which is a DSM programs, to manage power
consumption. DR provides notifications to customers in order to change consumers’
expected load patterns for efficiency improvement [24]. It is a cost-effective
alternative (compared to adding generation resources) during demand spikes and
peak times to reduce system emergencies and peak demand [25].

DR is defined as ‘changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over time, or
to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized’ [18].

43



There are two types of DR programs[26]:

e time-based programs

e incentive-based programs.

These two types contain fourteen DR classifications, which are described in [7] and
listed in Table 2.1. In the price-based programs, price is variable and based on
dynamics such as real-time pricing (RTP), critical peak pricing (CPP) and time of
use (TOU) [27].

A simple type of DR is TOU, which defines several periods with different
electricity prices for each period. Providers such as Ausgrid (Figure 2.2) in Sydney
and Synergy in Perth, Australia, provide TOU services for motivated customers.
CPP is similar to TOU pricing; however, for some days regular peak price is
changed to a predetermined higher rate. This seeks to reduce customer demand
when the reliability of the grid is under pressure [28]. One of the most efficient
price-based programs is RTP, which reflect changes in the wholesale market and
energy price changes hourly or a day ahead [7].

Weekends &
Weekd

Midnight

10pm
Off Peak

Off Peak

Shoulder

Figure 2.2. Ausgrid TOU periods [7].

In the incentive-based programs, customers receive load control signals to reduce
their demand. These signals can be based on contractual agreement or incentive-

based payments [29].
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Table 2.1. Demand response programs, issues, approaches and future
extensions [7, 28].

Demand Response

Incentive-Based Programs Time-Based Programs
1. Direct load control [30] 1. Critical peak pricing [34]
2. Interruptible load [31] 2. Real-time pricing [35, 36]
3. Spinning reserves 3. Time-of-use pricing [37-39]
4. Non-spinning reserves 4. Critical peak pricing with
5. Emergency demand response [32] CO“"”’_‘
6. Load as capacity resource 5. Peak time rebate
7. Demand bidding and buyback [33] 6. System peak response
8. Regu|ati0n service transmission tariff

Mathematical Problems Mathematical Models

Utility maximisation [40-45] Utility function [40-44, 47, 48]
Cost minimisation [46-52] Cost function [41, 42, 47, 48]

Price reduction [46, 53]
Renewable energy [43, 44, 54-60]
Energy storage [40, 45, 58, 59, 61-71]

Approaches Future Extensions
Convex optimisation [40, 41, 46] Coupled constraint [91, 92]
Game theory [47, 48, 69, 72-77] Hierarchical game [93, 94]
Dynamic programming [44, 49, 71, 78-81] Communication impact [95, 96]

Markov decision process [57, 70, 82, 83]
Stochastic programming [43, 84-86]
Particle swarm optimisation [45, 61, 87-90]

c c
S S g
o o =
g 1 g g \
2 z 2

________________ 2
8 S 8
> Py -
5 5 =
c c (<5

S = S —
L w w
Time horizon Time horizon Time horizon

@ (b) ©

Figure 2.3. Demand response for: (a) peak shaving; (b) valley filling; and (c) load
shifting [28].

For deployment of SG technologies and services, DR is one of the important areas
with critical functionality [97]. It is used for peak shaving, valley filling and load
shifting (Figure 2.3). Also, it brings significant economic advantages, as can be seen

in Figure 2.4 [24]. DR techniques are reviewed by [98].
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EMS at the end-user level is one of technologies that can be improved to further
advance DR [99]. Residential DR is investigated by [100] and multi-consumption
level pricing is introduced to control high-level consumer consumption. Also, a
Dynamic Demand Response Controller (DDRC) is proposed by [101] to control
HVAC loads with a threshold price determined by households.

Market

Electricity Price Demand Curve Energy

~ Demand Curve generation cost

P peak —
Pawerage | . __ . _  _  _N"_ . _ . . .~ N _. _
P low |
5
7
Q off -peak Q peak Power
Quantity

Figure 2.4. Price volatility reduction by demand response programs [7].

2.3 Renewable distributed generation

Distributed generation (DG) units are utilised in the grid to decrease power
interruption along with serving customers and ensuring reliable supply. They are
classified into non-renewable and renewable classes (Figure 2.5). There are several
definitions of DG in the literature. ‘DG is defined as small generation units from a
few kilowatts (kW) up to 50 MW and/or energy storage devices typically sited near
customer loads or distribution and sub-transmission substations as distributed
energy resources’ [102]. The economics of DG are reviewed in [103] and the impact

of DG on power quality is studied in [104].
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Figure 2.5. Distributed generation types and technologies [102].

Renewable DG plays an important role in the electric power system given recent
developments in renewable energy technologies and the negative environmental
impacts of fossil fuels. In addition, deregulation of markets and the demand for
reliable power is expanding renewable DG all over the world [104]. Power utilities
are utilising renewable DG in the distribution network to decentralise their power
systems. This integration has environmental, technical and economic benefits,
which depend on type, size and location of renewable DG units, configuration of
distribution system and the technology utilised for energy conversion [102, 105].
Optimum sizing and location of renewable DG are important to achieve the
maximum benefits [106]. It is predicted that 34% of global electricity will be
generated by renewable resources by 2030 [102]. PV and wind systems are two
renewable resources that have been widely utilised over the last few decades.

2.3.1 PV system

A PV system converts solar energy into electrical energy and includes PV cells,
electronics interface, controller and associated auxiliaries. The modules’ position,
cell temperature and insolation are some of important factors for PV output power.
Solar resources are environmentally friendly and are potential alternatives to
conventional resources. Based on the demand, PV systems can be configured to
produce direct or alternating current. They can be used for serving a specific
demand or for peak shaving. They can also connect to the grid through feed-in and

net-metering [107]. Advantages of PV systems include their low operation and
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maintenance costs with long service lifetimes, their being pollution free with no
fuel cost, being modular and easy to install and being environmentally friendly. PV
systems’ penetration is expected to reach 872 GW by 2030 because of the
abovementioned advantages — along with their supply security compared to oil and

gas availability and price variations [102].

Solar power generation studies are reviewed by [108] and PV technologies [109]
and challenges [110] are investigated in the literature. Also, PV self-consumption
and improvement options are summarised by [111].

2.3.2 Wind systems

A wind system converts wind energy into electrical energy and includes blades,
electronic circuit interface, gearbox, rotor, mechanical shaft and electric generator.
Wind speed capacity and the height of the wind system are the important factors for
wind system output power. Wind resource assessment and feasibility studies are
essential to siting wind systems [112]. This can dramatically affect levelised cost

of electricity (LCOE) for wind systems.

LCOE is lifecycle cost of a generation technology divided by lifetime energy
production of that technology. It can be used to compare different technologies for
electricity generation. LCOE depends on factors such as; initial investment,
installation cost, O&M expenses, capacity, fuel cost (where relevant), interest rate,
government tax subsidies, location (availability of resources) and other important
metrics [102, 113].

Advantages of wind systems include no fuel cost, long lifespan of the components,
low O&M costs, low installation cost, low effective cost, no greenhouse gases
(GHGs) and capablity to export reactive power to the grid [114]. Some factors that
need to be considered before installing a wind system are identifying a reliable
demand and understanding the energy’s economics; capital access; availability of
the grid for grid-connected system; understanding the wind resource; and land
availability. Wind system penetration has increased over recent decades due to its
potential contribution to power supply. It is expected that the global installed
capacity of wind energy will reach 2000 GW by 2030 [102].
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Classification of wind Turbines
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Figure 2.6. Wind turbine classification [115].

A cross-axis WT is studied in [116] and vertical axis WTs for urban usage are
reviewed by [115] after classifying WTs (Figure 2.6).

unconventional power electronic interface is presented by [114] for power quality

In addition, an
improvement of wind energy conversion system. In another study, economic,
environmental and material developments for wind and solar resources coupled
with electric storage systems (ESSs) are studied in [117]. Additionally, many
universities in Australia and all around the world have installed PV-WT for research
studies (Figure 2.7). The PV-wind hybrid system which is implemented in the
National Institute of Technology (India) [118] utilizes a horizontal axis WT as
illustrated in Figure 2.7 a. However, the hybrid system at Curtin University contains

both horizontal and vertical axis WTs as illustrated in Figure 2.7 b.

(b) Green Electric Energy Park at Curtin University, Perth, WA, Australia

(a) National Institute of Technology in Agartala, India

Figure 2.7. PV-Wind hybrid [118].
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2.3.3 Electrical storage system

An electrical storage system (ESS) is a process for storing electricity produced
during off-peak demand, when the electricity price and demand are generally low,
to be used in the future when the demand is high. ESSs play an important role in
enhancing the integration of renewable resources into the grid. Some advantages of
ESS are electricity cost reduction at peak period and low O&M costs, congestion
reduction on the power system and reducing line losses, generation capacity
reduction, ancillary services, improving power system quality, deferring investment
in transmission and distribution facilities and improving power system reliability
[102]. ESSs can be categorised based on the form of stored energy in the system
[119].

ESS planning in the distribution network is studied in [120]. In addition, battery
storage technologies and the role of battery storage systems of electric hybrid
vehicles in the power system are studied in [121]. Increasing PV penetration by
using energy storage technology is studied in [122]. Distributed PV generation and
ESSs are studied in [123]. Residential PV-battery systems are also used for peak

shaving [124] and residential voltage profile improvement [107].

With the increase of EV penetration, ESSs are also used for energy services [125].
Also, V2G technologies’ impact on distribution systems and utility interfaces is
studied in [126].

2.4  Optimal sizing of renewable resources

One complex problem in SG is defining the optimal capacities of distributed
generations (DGs) and battery storage systems (BSSs) for grid-connected systems,
which depend on many variables including probabilistic behaviours of renewable
resources. Novel strategies are being used for energy management in microgrids
(MGs) [127, 128], smart buildings [129] and SHs [130] after the rapid
developments in SGs. For example, DR programs, rooftop PVs, PEVs and BSSs
are used in SHs for peak load shaving [131]. PEV coordination in SG has been
studied for peak load shaving [132], minimisation of cost and losses [133, 134] and

reactive power compensation [135]. Optimal size of renewable resources will be
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affected by all of these novel strategies, DR programs and penetration of PEVs. For
grid-connected systems, the optimum sizes of DGs and BSSs have been studied for
MGs, which have a large capacity for renewable generation [133, 134] [136-138]
as well as for SHs, which have a limited capacity for renewable generation [139-
143].

2.4.1 Optimal sizing for microgrid

At the large scale (MGs), optimal sizing and energy management for BSS have
been studied with regard to renewable energy generation and dynamic pricing of
the electricity [127]. In another study, the optimal size of WT and PV for different
levels of PEV penetration in residential MGs has been studied [137]. In addition,
multi-criteria decision analyses are used in [138] for optimal sizing of a hybrid PV—
WT system and weighting criteria techniques are used for studying its sensitivity to
input profiles. Controllable loads effect on residential MGs with BSS and
renewable energy generations without considering V2G has also been studied
[128].

2.4.2 Optimal sizing for smart home

At the small scale (SHs), more investigations is necessary for determining optimal
sizes of renewable generation and BSS, in view of factors such as H2G, V2H and
DR, as well as the probabilistic behaviors of temperature, irradiance, wind speed,
ER and load. Determining the optimal size of renewable generation and BSS
becomes more complex when we consider these concepts. Some studies have been
conducted on component sizing of SHs; however, these did not consider all types
of loads and generations [139-141]. For instance, a hybrid wind—PV system with
BSS is studied in [140] without consideration of PEVs and component sizing.
Different residential PV and BSS sizes are evaluated in [141] from an economic
point of view. DR impacts on SH component sizing for different case studies are
investigated in [142] without consideration of shiftable loads and WT. Additionally,
this study considers only a flat trading price, which provides no incentive for

customers to accomplish peak load shaving [142]. Optimum sizes of WT and BSS
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in SHs are determined in [139] by adopting a stochastic approach. However, PV
and V2H are not considered. Moreover, it is based on daily (not annual) cost
minimisation, which may not determine an acceptable solution [143].

2.5 Smart home enablers

Penetration of SHs depends on developing and implementing new technologies that
enable SHs to integrate into SGs. These technologies provide the proper
infrastructure for interconnection of SHs and SGs. Some of the main enablers are

discussed in the following sections.

2.5.1 Power metering devices

Around the 1980s, automatic meter reading (AMR) began to be used for collecting
meter data. However, AMR systems could not be used for control messages or
broadcasting command. Advanced metering infrastructure (AMI), introduced
around 2005, creates a link between external information systems and AMRs via a
bi-directional communication system. Figure 2.8 shows a proposed network
described in [144]. Currently, smart meters are becoming ever smarter. Non-
intrusive load monitoring (NILM) can be implemented in them to determine the
operation of some individual loads [145-148]. This may reduce the number of
sensors needing to be installed in a SH. According to [144], key features of smart

meters are as follows.

e Providing consumption data for utility and consumer.

e Time-based pricing.

e Outage and failure notification.

e Net metering.

e Power quality monitoring such as: voltage, phase and current, power factor,
active and reactive power.

e Load limiting for demand response purposes.

e Detecting energy theft.

e Remote command (turning on/off) operations.
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e Improving environmental conditions with decreasing emissions through
efficient power consumption.
e Communicating with other intelligent devices.

e Providing security [149].

Smart Meters©
Dlstrlbutlon
Smart Meters i j
Utility

Provider
Smart Meters

| v (P
DTMon é HAN
@ Smart Meters j

Smart|Meters

e

Figure 2.8. Proposed network by [144].

2.5.2 Communication network

One of the important components of SHs is the home area network (HAN). Without
aHAN, it is not feasible to implement a SH. HAN was defined in 2001 as ‘a network
to interconnect home electronic products and systems, enabling its remote access
and control and making available any content such as music, video, and other data’
[150]. In another study, a HAN is defined as ‘a network to connect devices capable
of sending and receiving signals from other devices and applications’ [10, 150].

Therefore, HANSs are an important element of SHs that empower HEMS.
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HANs can use a combination of wireless and wired technologies. The first
technologies were wired technologies, which have low cost and can be used based
on the pre-existing infrastructure of houses. Optical fibre, telephone lines, twisted
pairs, coaxial cables and power lines can be used for wired HANs. However
wireless technologies are expected to play an important role in HANs based on
recent research and developments. WiFi and Zigbee are generic technologies, while
6LOWPAN is a new technology that optimises Internet Protocol Version 6 (IPv6)

for low-power communications.

Some of the technologies and standards — such as UPnP (Universal plug and play),
DLNA (Digital Living Network Alliance), LonWorks, ZigBee (a wireless
BACnet), X-10, domoNet, Amigo, Project HYDRA, Home Plug and Play, oBIX
(Open Building Information Exchange), Konnex and Jini — are analysed and
compared in [150]. Figure 2.9 shows a classification of HAN communication

technologies.

HAN communications and network technologies

\
\ \
Wireless Wired

Radio frequency Electrical wiring, optical
‘ \ | fiber, telephone line
Battery-operated Battery-free
No energy harvesting Energy harvesting
I
e EnOcean
Transmission medium Rate Range Transmission medium  Rate Range
e Z-Wave 40 kbps 10-30 m e HomePlug 0.1 - 200 Mbps up to 200 m
e WiFi 1 - 600 Mbps 70-100m e Ethernet 10 Mbps - 10 Gbps  100m
e 6LoWPAN 20 - 250 kbps 10-30 m e Fibre optic 0.1 - 10 Gbps up to 100 km
e ZigBee 20 - 250 kbps 70-100m e Coaxial cables 172 Mbps 30 km
e Bluetooth 700 Mbps 70-100m e ITUG.hn
e ONE-NET e X10
L)

Insteon

Figure 2.9. HAN medium classification [4, 150].

Important features for HAN communication technologies are [4]:

e reliability
e security
e interoperability and scalability

e total cost
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coexistence
bandwidth and latency
forward and backward compatibility

power consumption

Each HAN technology is superior in some features but none of them is dominant

across all features. Three of the most popular HAN technologies (WiFi, Zigbee and

HomePlug) are compared in Figure 2.10.

Bandwidth

Latency

Security

/Ave;e

Low

Lowest

Interoperability Typical Range

Total Cost Energy

Consumption

——  ZigBee Low Power WiFi Home Plug

Figure 2.10. Qualitative comparison of three HAN communication technologies
[151].

2.5.3 Smart appliances

Domestic devices are getting smart. They are becoming more intelligent and can

communicate with HEMS to shift their operational times. They can also be

controlled and monitored remotely. The demand for customer involvement in their

energy use and load shifting is less because of their intelligent algorithms. Smart

appliances may run less frequently or shift their operational cycle to reduce cost
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and/or save energy. Some common smart appliances are washing machines,
dishwashers, air conditioners and refrigerators. For instance, a smart washing
machine in a house with local renewable generation will operate during the high
local generation period and a smart fridge can shift defrost cycles to the off-peak
hours. Some smart washing machines in a pilot project in the Netherland have been
tested to operate with control signals [152]. Residential customers can decrease and
modify the demand if smart appliances adaptation becomes popular and widespread
[4]. Smart appliances sufficiency is investigated for providing reserve services
[153] and electricity demand shifting [154] in the literature. In another study, five
smart appliances’ flexibility potential (maximum duration of time that a specified
decrease or increase of power can be realised without user comfort violation) is

investigated; this can be used for defining the impact of DR [155].

2.5.4 The Internet of Things

The Internet of Things (1oT) is defined as ‘an emerging global Internet-based
information architecture facilitating the exchange of goods and services in global
supply chain networks’ [4, 156]. Several advantages of implementing I0T in

intelligent electric power network are [157]:

e fewer communication protocols [158-160]

e increased adaptability, resiliency, reliability and energy efficiency [157]

o facilitation of on-demand information access and end-to-end service [161]

e advanced control over home appliances [161]

e networked operation and increased information operation capabilities [162]

e advanced sensing capabilities [163]

¢ reduced physical attacks (e.g. substation break-ins) by continuously
monitoring the electric power network’s assets in real-time [157]

e reduced natural disasters damage [164]

e increased scalability and interoperability [165].

Some challenges related to loT — such as security, computation, power
management, complexity, big data, connectivity and sensing — are discussed in
[157] and some solutions are proposed. A layered architecture to apply 10T to SHs

is also introduced (Figure 2.11).
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Figure 2.11. IoT architecture introduced for SHs by [157].

The 10T perspective has been accelerated by the introduction of IPv6, high-

performance computers, innovative analytical tools, wireless communication

technologies, clouding computing, microelectromechanical systems and radio-

frequency sensors [4]. Motivations (Figure 2.12) and challenges (Figure 2.13) for

SH applications based on loT are discussed and reviewed in [166].

@lefits related to loT-based sm&
home energy conservation:

e Reduced energy wastage
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Figure 2.12. Benefits classification for SH applications based on loT [166].
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Figure 2.13. Challenges classification for SH applications based on loT [166].

255 Smart sensors

In the last few decades the number of sensors in our world has increased
dramatically. Cars, mobile phones, buildings and cities are equipped with more
sensors that enable users to control devices and activate security systems. Some
studies suggest that more than 30 sensors are required for SHs to have a meaningful

impact.

There are a variety of sensors designed for safety, health and security. For example,
ambient-assisted homes in Europe are equipped with sensors to monitor the daily
routine and health of inhabitants. Sensors for detecting occupancy, temperature,
light, motion, voltage and current are more appropriate for energy management
purposes. They measure the parameters for different devices and at different
locations of the house and send the data to a centralised system to be monitored by
users. Although sensors have restrictions — such as limited storage and
computations, limited ability for communication and short battery life — they can
make household devices programmable, intelligent and better able to interact with

inhabitants and the outside world [4]. A number of sensor technologies for SHs are
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reviewed by [167] and several types of 10T sensors are listed in [157]. Additionally,
several studies related to intelligent sensors for the industrial 10T are compared in
[168] and a smart sensor is designed and verified for this application.

2.5.6 Monitoring and control systems

Personal computers (PCs), tablets, mobile devices and web servers can be used for
monitoring SH data. This monitoring system can be called a human—-machine
interface. For example, an embedded monitoring and automatic control system for
an industrial system is demonstrated in [169].

Control systems are the brain of SHs. They can be implemented by use of micro-
computers, programmable logic controllers and embedded systems or they can be
cloud-based. Supervisory control and data acquisition (SCADA) is also used in
large control systems [170]. Monitoring and control systems in SHs are considered
components of the home energy management system (HEMS) [171], which is

discussed later in this chapter.

2.5.7 Cloud computing

Along with the benefits of ICT, there are some concerns about the reliability,
availability and security of SG data processing and analysis. Cloud computing can
be one of the best solutions [172]. A number of studies related to cloud computing

applications for SG architecture are compared in [173].

A cloud-based computing framework is proposed by [174] for big data information
management in SGs. Another cloud-based framework is proposed by [175] for SHs.
Cloud computing can be even more beneficial with the expansion of 10T [168], and
the conjunction of cloud computing and 10T is investigated by [176] and [177] for
SHs.
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2.5.8 Home energy management system (HEMS)

Energy management systems (EMSs) have been used for the last several decades in
the generation and transmission of the electrical power system and, more recently,
in distribution systems [178]. They are used to optimise, control and monitor the
demand, generation and transport of energy. Various technologies —such as Xerox
systems, computer-based and software-based systems and embedded systems — are
used for EMSs in the grid. EMSs, along with SCADA, enable applications such as
optimal power flow, dispatcher training simulators, unit commitment, load

forecasting, state estimation, and flow and contingency analysis [170].

Distribution network operation is becoming more automated with emerging SG
functionalities, and households are becoming actively involved in energy markets.
Because of this, home energy management systems (HEMSs) are dramatically
expanding. HEMSs enable households to minimise their electricity cost and
collaborate with the public grid through ancillary services, peak shaving, demand
response and load shifting. HEMSs are defined as ‘in-home devices or systems that
monitor, control, and analyse home energy use and provide information to the
occupants. These systems are to conserve energy, reduce cost and improve comfort
using intelligent monitoring and control systems’ [4]. They are also defined by
[179] as, ‘a demand response tool that shifts and curtails demand to improve the
energy consumption and production profile of a house according to electricity price

and consumer comfort. The HEMS can communicate with household devices and
the utility, as needed, and receive external information (e.g., solar power production
and electricity prices) to improve the energy consumption and production schedule
of household devices. The HEMS finds the optimal operation schedule by using a

scheduling algorithm, and dispatches signals appropriately.’

Residential generation integration into the SG can be facilitated by HEMSs to meet
the various needs of households and to maintain the robustness and reliability of
energy supply infrastructure. Some of potential interests for HEMSs among main
stakeholders are given in the Table 2.2. According to [3], benefits of HEMSs

include:
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e greater savings for utility providers and customers.

e decreased peak loads and peak-to-average ratio

e making it possible to compare energy usage with historical data

¢ including local renewable energy production

e enabling households to be in a systemic context and to interconnect to the
outside wold (Shaping SG).

Table 2.2. Potential interests for HEMS among stakeholders [4].

Residential Government Network Energy retailers Others

users operators

Comfort Carbon emission Demand Demand response Energy services
reduction response

Cost reduction | Energy efficiency | Asset HEMS products HEMS sales
measures management sales

Social prestige | Fuel poverty Load shifting | Customer retention | Research
alleviation

Although HEMS applications are correlated, they can apply to four main areas,
which are shown in Table 2.3. Customer-based HEMS applications are mostly
based on customers’ needs. However, network-based HEMS applications mostly
focus on enhancing networks’ power quality and reliability while considering
customers’ comfort and preferences [180-184]. Market-based HEMS applications
are more focused on dynamic tariff systems for DR [46, 181, 185, 186], while
service-based HEMS applications mostly concentrate on energy efficiency

improvements [4].

Table 2.3. Four major areas for HEMS applications [4].

Customer-based

Power monitoring
and feedback

Personalisation
and goal setting

Device control

Safety

Network-based

Demand response

Congestion
management

Load shifting

Market-based

Customer benefits

Network operator
benefits

Retailers benefits

Service-based

Energy provision
at lowest cost

Energy efficiency
improvements

Customer comfort
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Various EMSs for energy savings are reviewed in [187]. In addition, centralised
[188-192] and decentralised [48, 92, 193-199] EMSs for residential area through
coordination of multiple SHs are studied in [200]. Modelling and complexity
related to HEMSs is reviewed by [179]. There are various algorithms and
approaches in the literature for EMSs, DR and scheduling. Some of them are

presented in Table 2.4 with references.

Table 2.4. Some methods in the literature for EMSs, DR and scheduling.
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Methods and approaches Ref.
Mixed Integer Multi-Time Scale Stochastic Optimisation [201]
Adaptive Neural Fuzzy Inference System [202]
Atrtificial Neural Network [203, 204]
Bayes Theorem [205]
Binary Particle Swarm Optimisation [90, 206]
Clustering [207]
Contextual Energy Resource Management Methodology [208]
Different Evolution And PSO (PSO-DE Algorithm) [209]
Dinkelbach Method [210]
Domotic Effects Enforcement And Boolean Satisfiability Problem | [211]
Fuzzy TOPSIS Approach [212, 213]
Game Theory (GT) Approach [48, 214]
Genetic Algorithm [215-219]
Greedy lterative Algorithm And Walrasian Equilibrium Theory [220]
Nondominated Sorting Genetic Algorithm-11 And Grey Relational | [221]
Analysis
Hill-Climbing Heuristic Method [222]
Integer Linear Program [223]
Vickrey-Clarke-Groves Mechanism [42]
Knapsack [224, 225]
Lagrangian Dual Approach [226]
Linear Regression Modelling [227]
Linear Programming [228]
Mixed-Integer Linear Programing [180, 229-231]
[232] [233]
Mixed-Integer Nonlinear Programming [234, 235]
Moving Window Algorithm [236]




Methods and approaches Ref.

Multiagent Coordination Algorithm [237]
Multi-Period Joint Energy Scheduling Algorithm [238]
Multi-Time Scale And Multi-Stage Stochastic Optimisation [239]
Framework
Mutation Particle Swarm Optimisation [240]
Naive Bayes Classifier (NBC) And Hidden Markov Model [241]
(Machine Learning)
Newton’s Method [242]
Particle Swarm Optimisation [89, 243, 244]
Polyblock Approximation Algorithm [245]
Q-Learning [246] [247]
Semi Markov Model [248]
Stochastic Dynamic Programming [249]
Tabu Search [250]
Token Bucket Algorithm [251]
Traversal-And-Pruning Algorithm [252]
Two-Horison Algorithm [253]
2.5.9 Energy Consumption Scheduling

Complex algorithms for HEMSs are created because of DR programs [101, 181,
216, 224, 225, 254-259], modern ICTs [183, 201, 228, 242, 256] and distributed
energy generation [16, 48, 89, 260-262] in residential sectors. Scheduling problems
[146, 263-265] are one optimisation problem, along with other categories [7] such
as household problems [181, 255, 266], distributed generation problems [89, 257]
and pricing problems [46, 48, 267].

There are diverse operation conditions for various appliances which should be
considered in scheduling methods. A particular number of timeslots will be
determined for the duration of time horizon planning approach. Then, optimisation
techniques can be used to allocate the timeslots to the operations of various
appliances and determine which operation should start/finish in each timeslot.
Sequential order of tasks and the number of shiftable timeslots are the
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other factors that need to be considered. Appliances operations are different. For
example, various tasks must be taken in order for a washing machine to fulfil a job.
Appliances load commitment in an allocated timeslot has been considered in [51,
256, 268] as an important factor. In another study, household appliances scheduling
for a stand-alone system is investigated by [269]. Also, operation scheduling of
distributed energy resources is investigated in [270].Some of scheduling and

optimisation approaches for residential are summarised in Table 2.5 [7].

Table 2.5. Scheduling and optimisation for residential sector.

Optimisation Method Optimisation Objective DRP Ref.

e Particle swarm e  Cost minimisation Real-Time |[271]
optimisation [272]

e Monte Carlo simulation

e Particle swarm e  Cost minimisation N/A [273]
optimisation

e Monte Carlo simulation

e Particle swarm e  Cost minimisation TOU [274]
optimisation
e Monte Carlo simulation

e Monte Carlo simulation e  Cost minimisation TOU [275]

e Decision tree e Energy usage efficiency

e Pattern search-based e  Cost minimisation N/A [276]
optimisation with e Reliability satisfaction
sequential Monte Carlo
simulation

e Particle swarm e  Cost minimisation TOU [277]
optimisation

e Binary particle swarm
optimisation

e Particle swarm e  Cost minimisation Real-Time |[278]
optimisation e Emission reduction

e Agent-based particle e Energy saving Real-Time |[279]
swarm optimisation e  Comfort maximisation

e Voltage support

e Particle swarm e  Cost minimisation TOU [280]
optimisation e Comfort maximisation

e Particle swarm e  Cost minimisation N/A [240]
optimisation
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Optimisation Method

e  Quadratic binary
particle swarm
optimisation

e Particle swarm
optimisation

e particle swarm
optimisation

e Mixed Integer Linear
Programming

e heuristic allocation
algorithm

e particle swarm
optimisation

e particle swarm
optimisation

. Linear Programming
e  Offline and Online
stochastic scheduling

e Scenario-based
Stochastic optimisation

e Mixed integer linear
programming

e Linear programming

e Linear Programming

e N/A

e  Combinatorial
optimisation (First fit
decreasing height)

e  Earliest deadline first
scheduling algorithm

e Particle Swarm
Optimisation

Optimisation Objective

e Cost minimisation

e  Cost minimisation

e  Comfort maximisation

e  Cost minimisation

e  Cost minimisation

e  Maximisation of
scheduling preferences

e  Maximisation of
climatic comfort

e  Maximising comfort
level

e  Saving energy
e cost minimisation

e minimise the monetary
expense of the customer

e  Minimising the
electricity bill in
different time slots

e  Utility maximisation and
cost minimisation

e Minimising energy cost
and maximising the
consumer utility

e N/A (Energy cost and
comfort as constraint)

e Peak load shaving

e Determine the
distributed energy
resources operation
schedules (maximise the
end-users’ net benefits)

DRP

Real-Time
& TOU

Real-Time
& TOU &
Load
curtailment

TOU

TOU

N/A

N/A

Day-ahead
pricing

Real-time
pricing

Real-time
pricing

Real-time
pricing

Time
varying
price

N/A

TOU and
CPP

Ref.
[281]

[282]

[283]

[284]

[285]

[269]

[228]

[256]

[41]

[286]

[181]

[183]

(89]
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Optimisation Method Optimisation Objective DRP Ref.

e Linear sequential e Minimising the energy Real-time | [51]
Optimisation cost pricing
(day-ahead)
e Linear programming e Minimising the payment Time- [268]
and inconvenience varying
functions price
e Mixed integer *  Minimising the payment ToU [287]
programming and interruption cost at
the time of outage
occurrence
e Linear programming e Minimising energy to Day-ahead |[288]
the grid and maximising pricing
the energy to grid
e Linear programming e Cost minimisation Dynamic  |[289]
e Maximising the pricing
financial gain for selling scheme
energy to grid
e Linear programming e Utility maximisation (or Real-time | [40]
welfare maximisation) pricing
and cost minimisation
e  Convex programming e Minimising the total Real-time  |[290]
with L1 regularisation cost of energy and the pricing

users’ dissatisfaction

Use of stochastic optimisations is promising for power system uncertainty
modelling and renewable energy applications particularly for capturing uncertainty
behaviour of renewable energy systems [291] [292]. One of popular methods for
modelling uncertainty of data is MCS [293, 294]. Because MCS is considered as a
time consuming method [292], meta-heuristic methods can be used for reducing the
computational expense of optimisations [291]. Meta-heuristic methods such as PSO
are considered quick compared to ‘“Mathematical programming methods” for
complex scheduling problems [240] [295]. In addition, hybridization of PSO is
suggested by [296] for solving complex and intricate problems. Therefore, there are
many studies which have used MCS-PSO to solve complex problems especially
when uncertainty of data needs to be considered [272-274, 295, 297-300].
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2.6 Conclusion

In this chapter, the most important technologies and elements related to SHs and
end users of the SG are identified and reviewed, with a focus on the most relevant

recent investigations.

With the development of new technologies, SH penetration is increasing. SHs and
new technologies are changing people’s lifestyles. Adopting SH technology can
improve lifestyle, comfort and safety, and lead to a cleaner environment and energy
savings. Uptake also facilitates the transition of the grid towards a smart grid.

With the merging of new technologies in the SG, new factors need to be considered
in the interaction of SHs and the SG. EMSs and sizing of renewable resources
should be updated by considering new technologies and using the full capacity of
new technologies to provide the best benefit and service to energy users and energy

providers.

In the next chapter, components and data modelling for SHs, along with the

optimisation and approaches used in this thesis, are explained.
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Chapter 3 Data Modelling and
Optimisation for SHs?

3.1 Introduction

The penetration of solar generation, wind turbine, battery storage systems (BSSs)
and plug-in electric vehicles (PEVS) in the smart grid (SG) and smart homes (SHs)
has increased rapidly in the last few decades. As a consequence, there is a need to
model the associated data for studies into demand response (DR) programs, energy
management systems (EMSs), load scheduling and optimal sizing of renewable
resources for SHs. There are many complex problems in SG and SHs that need to
be solved by robust algorithms. Some popular optimisation algorithms which can
be used for solving these problems are summarised at the end of this chapter.

Determining the optimum size of renewable energy is explored here for both SHs
with a small capacity for renewable generation [139, 140, 143] and microgrids with
a large capacity for renewable generation [127, 128, 138]. However, for the studies
in the concept of SG and distributed generation (DG), it is important to consider the
probabilistic behavior of wind speed, irradiance, temperature, load, electricity rate
(ER) and availability of PEVs. Monte Carlo simulation (MCS) can be used to model
the probabilistic behavior of these data. MCS can be used along with optimisation
algorithms to find optimal solutions, and especially for finding the optimal size of
renewable resources for SHs, which is explained in the sections 4.3 and 5.3 in
following chapters. Two approaches are investigated for modelling data based on
MCS in sections 3.3.1 and 3.3.2 and the second approach is chosen for the

simulations in chapters 4 and 5.

! This chapter is mainly extracted from published papers [301] and [143] (Appendix A).

68



This chapter starts with a description of SH components. Renewable resources such
as PV, WT and BSS, along with coordinated PEV, are described. This will be
followed by a description of data modelling for SHs. Two methods of implementing
MCS with hourly probability distributions and daily data sampling are investigated
in sections 3.3.1 and 3.3.2. MCS with daily data sampling is chosen for data
modelling in the following chapters, after comparison of section 3.3.3. Finally,
optimisation methods are summarised, and particle swarm optimisation (PSO) is
precisely described to begin preparation for its use in the following chapters.

3.2  Smart home components and modellings

Figure 3.1 shows the electricity flow for a grid-connected SH with rooftop PV, WT,
BSS and PEV with the possibility of importing and exporting energy considering
dynamic electricity pricing.

»
y%éy
o3

Figure 3.1. Electricity flow between SH and SG [143].

3.2.1 Wind turbine system model

The WT output energy Ey,, during time interval At; is calculated based on the wind

speed [302]:

v, (At;) =V,
(CapWT Y (88) = Vei At Vi <Vy(Ay) <V,
Fu(at)) = { V=V

J Capyr. At V. <V, (0t) <V, G

0 otherwise

where VW(Atj), V., V., and V. denote wind speed, cut-in, cut-out and rated wind

speed (m/s), respectively.
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3.2.2 PV system model

The rooftop PV output energy Epy during At; depends on the open-circuit voltage

and short-circuiting current [136, 138]:

Epy (At;) = NpyVoc(At))Isc (Atj)Npyiny- FF (At}) (3-2)
where:
Voc(Bt)) = Vocsre + Ky (Te(At)) — Trep (At))) (3:3)
OC( ]) 0C.STC V( C( ]) ref( ])
G(At))

Isc(At)) = {sc.src + Ki[Te(At)) = Trep (At} -2 (3.4)

NCOT — 20 35

TC(Atj) = TA(Atj) + TG(Atj) (3.5)

where NCOT=45°C, T,.;(At;)=25°C, Vpc(At;) is open-circuit voltage (V),
Isc (At;) is short-circuit current (A), T¢(At;) is cell temperature (°C), T,(At;) is
ambient temperature during At;, Isc st¢ and Voc sr¢ are the PV module short-circuit
current (A) and open-circuit voltage (V) measured under standard test conditions,
Ky, is open-circuit voltage coefficient (V/°C), K, is the short-circuit current
coefficient (A/°C) and G (At;) is global irradiance during At; (W/sg.m) [136].

3.2.3 Cost of renewable energy generation

The renewable generation cost is included in the total electricity cost using the
concept of levelised cost of electricity (LCOE) by calculating levelised cost of
electricity for a PV-WT system (LCpy.y¢) at each At; as a function of LCpy, and

LCy:

LCpy+wr(At;)

(L L
Ky 2w B (8) + B (85) =0 (35)

otherwise
Epy (Atj) + Ey (Atj)
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where levelised cost of electricity for PV (LCpy) and levelised cost of electricity for
WT (LC,,) are determined by dividing PV and WT total costs (including the initial
investment, installation, maintenance and operation costs) by their total lifetime
energy production [113, 139]. They depend on SH location, wind speed, solar
radiation, PV/WT size, type, availability and cost. The cost of battery is considered
separately by including its levelised cost LCy in the formulation of SH electricity
cost (Eq. (4.3)).

3.24 Battery charge and discharge conditions

BSS is used for storing renewable energy during off-peak load hours and releasing
it during high-demand periods as well as trading with the grid by importing/
exporting electricity when the Electricity rates (ERs) are low/high. However, the
charge and discharge permissions for trading are limited as follows [139].

e To increase battery lifetime, decision intervals (DIs) are defined as the periods
with two consecutive intersections of LCpy .y (At;) (EQ. (3.6)) and ER(At;)
profiles (Figure 3.2).

e There is permission for only one charge/discharge action during each DI at the

extreme minimum/maximum point of ER, as illustrated in Figure 3.2.

_-_-LCP1+U'T_ ER ]

Electricity rate (Cents/kWh)
O — N W kR N N

25

Chdrgc trading
permission: 1 ]
Discharge trading
ienmssmn -1l

Tlme (hour)

—_—

Charge/Discharge
trading permission
e

—_

Figure 3.2. Decision intervals (DIs) and charge/discharge trading permissions.
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The battery state of charge is limited to be between minimum (SOC5;,) and
maximum (SOC2 ) state of charge of the battery and there are limitations for BSS
operation during demand supply and power trade. The following constraints are

considered for charging and discharging the battery:

(|Ez(At)| < R. x At
—Ep(Atj) < DOD X Capg
B(At;) < Capg
S0CH ., < SOCB(At)) < SOCH .

min =

3.7)

where R, = 0.2 X Capg (R, is rate of battery charge/discharge (kW) and Capjg is
capacity of battery (kwh)) and DOD=85% [139]. DOD is depth of discharge (%),
Eg(At;) is electricity charge/discharge of battery during At; (kWh) and B(At;) is
available battery charge during At; (kWh).

3.2.5 PEV charge and discharge conditions

The charge/discharge (H2V/VV2H) control of PEV is similar to the battery operation
(Section 3.2.4) with additional variables, constraints, and conditions. The additional
variables (Ty e, Taoy » SOCyfe and SOCES) i) are modelled based on their
probability density functions of Egs. (3.8)—(3.11) (Figure 3.3) and are subject to
Egs. (3.12)-(3.13). T e, Taay s SOC 5. and SOCSS) ., denote PEV arrival
time (hour), PEV departure time (hour), state of charge of PEV at arrival time (%)
and minimum state of charge of PEV at departure time (%), respectively. Based on
the data set given in [303], it was recommended in [257] that the PEV’s arrival and
departure times follow normal distributions with the means of 6 pm and 7 am and

standard deviations of 2 hours. In addition, SOCZEY,. is related to SOC,7;.) and daily

travel distance. Daily travel distance was modelled in [304] with a log-normal
distribution with a mean of 32 miles and standard deviation of 24 miles. We
considered that the minimum acceptable departure SOC for PEV follows a normal
distribution with the mean of 80% and standard deviation of 20%. Also, we
assumed that the daily travel distance and period which PEV is out of the house

during the weekends is 50% less than the weekdays.

Tfrls;‘{ve "’N(.“PEVa» UPEVa) (3.8)
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arrive

where :uPEVa = 18, O-PEVa =2and 12 < TPEV < 24.

ng;VNN (UpEV 4 OPEV 4) (3.9
Where luPEVd = 7, GPEVd =2 and 5 < TCIi’eEI‘)V < 12.
50C5£r¥ve~5065£zy - lnN(#soca' Usoca) (3.10)

Whel’e ,Llsoca = 366 and O-SOCa = 04‘2

SOCgflmin~N(usocd. Usocd) (3.11)

Whel’e ,uSOCd = 80 and O-SOCd = 20

Tiep < Tarrive (3.12)
SOCEE e < SOCLEY (3.13)

Note that based on PDFs of Figure 3.3, T2 and T.%7,. are around 7:30am and

arrive

6pm while SOCS) i and SOCEY,,, are about 80% and 65% of the total PEV
battery capacity [257, 303, 304].

0.2
0.2
L
00.1 &)
A £ 0.1 /
0 0
14 16 18 20 22 6 8 10 12
PEV arrival time (hour) PEV departure time (hour)
(@) (b)
u 0.02 -
)] 05
0.0.01 N o
0 0
90 70 50 30 10 70 80 90
Arrival SOC (%) Minimum SOC in departure (%)

(c) (d)
Figure 3.3. Probability density functions (PDFs) for the PEV.

Additional conditions for H2V and VV2H operations are:
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e Period 1 (before 5 am): PEV will be first charged from the renewable resources
and then from the SG until it reaches at least SOC}..) i PEV is not allowed to
be discharged from 1am to 5 am (Eq. (3.17)).

e Period 2 (5 am to T;,): PEV can be discharged (according to Table 4.2) until

it reaches SOCS2) i (Es. (3.14) and (3.17)).

e Period 3 (T2, to Tahise): No charge and discharge actions since PEV is not at
SH (Eg. (3.15)).

e Period 4 (after TPEY ): PEV charging and discharging are allowed (according
to Table 4.2) subject to Egs. (3.16)—(3.17).

SOCLEY im < SOCPEV(At)) < SOCHEY. Vj € [5,ThE ] (3.14)
SOCPEV(At) =0 V)€ [Tis) Tative (3.15)
SOChiy < SOCPE (At)) < SOCHEY Vj @ [Tiey Tofwe] — (316)
|Epey (At)| < REEV x At v j

{EPEV(Atj) < Cappgy Vj (3.17)

where at the beginning of each day, SOC/E/ (initial state of charge of PEV in the
start of the day (%)) is assumed to be equal to its last value in the previous day.
SOCHE, SOCFEY, Epgy(At;), REEVand Cappgy denote minimum state of charge
of PEV (%), maximum state of charge of PEV (%), electricity charge/discharge of
PEV during At; (kWh), rate of PEV charge/discharge (kW) and the capacity of PEV
(kWh), respectively. Figure 3.4 shows an example of PEV charging and discharging
operations during a typical day where the departure and arrival times are 9 am and
5 pm, respectively. Other PEV parameters are listed in Table 3.1 (

C}%Y, denotes cost of discharging PEV for sell/export (cents/kwWh)).
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Figure 3.4. PEV State of Charge (SOC) during a typical day.

Table 3.1. Input parameters for PEV.

Parameter Cappgy REEY chEv, SOCPEY. SOCHE) min SOCHEL
[KWh]  [kW]  [cents/kWh] [%0] [%] [%0]

Value 50 12 0.3 95 80 10

Associated Eq. | (3.17) | (3.17) (4.3) (3.14) and (3.16) (3.14) (3.16)

3.2.6 HVAC load

The proposed model for calculating the heating, ventilation, and air conditioning
load Lpyyac(At;) is based on the occupancy, ambient temperature (T,) and
electricity rate (ER). There is a correlation between occupancy and load
consumption [305]. Therefore, at each hour, the SH is assumed to be occupied if at
least one of the following conditions holds.

e Base load (L) is higher than the average of L,,.
e PEVis at the SH and L, is higher than 80% of the L, average.

e Thetime is between 1 am and 5 am.

If the SH is unoccupied, Lyyac(At;) is considered to be zero; otherwise, it is
obtained from Table 3.2 and is subject to Eq. (3.18). The maximum Lyy 4 (At;) is
assumed to be 2 kW for the SH and it is limited to 1 kW during the early morning

hours:
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{0 < Lyyac(At) < 1 Vvj € [1,5) 318)

0 < Lyyac(At;) <2 Vj € [5,24]
Table 3.2. Heating, ventilation, and air conditioning (HVAC) loads of SH.

T 4(At;) Conditions (°C)

Conditions  18°C < T,(Atj) < 26°C  12°C < T,(Atj) < 18°C  T,(At)) < 12°C

Or Or
26°C < T,(At;) <32°C 32°C < T,(At))
ER,,.,(DD) 0 kW 0 kW 0.5 kW
Usual ER 0 kW 0.5 kW 1 kw
ER,;n(DI) 0 kW 1kw 2 kW

3.3 Data modelling

MCS can be used for random generation of the input data for renewable energy
simulations. MCS is used in the literature to model the stochastic behavior of
renewable resources. In this section, two methods for implementing MCS are
introduced and described along with their characteristics. One of the methods for
generating data is the use of probability distributions. Probability distributions for
wind speed, global irradiance, temperature, power demand, and electricity rate in
every hour are determined. The other method is data sampling, which can be based
on real yearly data or typical meteorological year (TMY) data, which are classified
seasonally or monthly. These two methods are described and compared in this
section [301].

3.3.1 Modelling wind speed, irradiance,
temperature, load and electricity rate based
on yearly data using probability distributions
for Monte Carlo simulations

For modelling these sources of data, we can use their probability distributions in
each hour (when the simulation interval is considered to be one hour). First, we
need to determine these probability distributions for each hour for each set of data
using their TMY or yearly historical data. Then we can use these probability

distributions to generate hourly data for simulations and optimisations.
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3.3.1.1 Determine probability distributions for yearly
data in every hour

Probability distributions of wind speed, global irradiance, temperature, power
demand, and electricity rate are determined for every hour of the day. For each of
these sources of data in every hour/interval, at least one specific probability

distribution is defined.

3.3.1.1.1 Wind speed probability distribution

Wind speed for each hour is fitted to a probability distribution. One year’s hourly
historical data at a 10-metre elevation from McCook, Nebraska [306], are utilised
and indicate that a Weibull distribution is the best for describing data in each hour.
Therefore, there are 24 probability distributions with 24 shape and scale parameters.
In other words, for each hour there are one shape parameter and one scale
parameter. These probability distributions are described by Eq. (3.19). Two of

Weibull distributions are demonstrated for 9am and 2pm in Figure 3.5.

Vy(A)~WEIB(A, ,B,y;) V) € {123, ..,24} (3.19)

with Ay and B, ; illustrated in Table 3.3.

T Weibull T | [weibull distribution
- distribution or 2pm to 3pm
Y for9amto| I A
E10F 1
)
()
(]
)
- 5F KA i3
=
2
0
0 5 10 15 20 25

Time (hour)

Figure 3.5. Wind speed data modelling by hourly probability distributions.
3.3.1.1.2 Irradiance probability distribution

Global horizontal irradiance data for each hour are fitted to one or two probability
distributions. One year’s data for McCook, Nebraska, in 2014 from [307] are
collected and fitted to 14 probability distributions, which are demonstrated in
Figure 3.6.
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Hourly normalised data from 10:00 to 17:00 are best fitted to eight beta
distributions, which are described by Eq. (3.20). For other hours, data are zero or a
fraction of data is fitted to Weibull or lognormal distributions, as described by Eqgs.
(3.21) and (3.22).

G(At)~Beta(ag;, Bs;) Vj€{1011,12,..,17} (3.20)
G(Atj)~WEIB(A;,B;)) Vj€{9,18} (3.21)
G(At)~InN(ug;,05,) V€ {8,19,20} (3.22)

with ag ,BG]., Aj, B, Mg ; and 96 illustrated in Table 3.3.

~1200 T 1

Sl VY | YRV
; I Weibull ANA vy
?1000 distn'butionsI I / \ /)\ " Bet
Z 800} forsamo I A{ : dstitution fo
= YL Ve A\ pm to 3pm
S 600 | T N \{ A\ -
o (VR AN W
g 400 | SOV ]
& I
?, 200
E 0 ' p—

0 5 10 5 20 25

1
Time (hour)

Figure 3.6. Irradiance data modelling by hourly probability distributions.
3.3.1.1.3 Temperature probability distribution

Temperature data for each hour are fitted to two probability distributions. One year
data for McCook, Nebraska, in 2014 from [307] are utilised and indicate that normal
and lognormal distributions are the best to describe data in each hour. For each hour
the data are best fitted to two normal distributions, except for 15:00 and 16:00 which
are fitted to both normal and lognormal distributions. Therefore, Egs. (3.23) and
(3.24) can be used for generating temperature data as are demonstrated in Figure
3.7.

Ty(A)~N (e, 0,) V€ {12,..,14,17, .., 24} (3.23)
TA(Atj)~lnN(u’tj,a’tj) Vv j € {15,16} (3.24)

with Hejr Ot j» ﬂ'tj and a’tj illustrated in Table 3.3.
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Figure 3.7. Temperature data modelling by hourly probability distributions.

3.3.1.14 Load probability distribution

The predetermined (not schedulable) load of a US home that is considered as base
load, L, and includes lighting, freezers, refrigerators, water heaters, microwave,
ovens etc.[139, 308] for each hour is fitted to a normal distribution which is
described by Eq. (3.25) and shown in Figure 3.8.

with /,tljand 0y illustrated in Table 3.3.

Schedulable load, (L) and unpredictable load, (L,,) should be modelled separately
(Section 4.2.1). The models for HVAC and electric vehicle are described in the

previous sections (Sections 3.2.5 and 3.2.6).
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Figure 3.8. Base load data modelling by hourly probability distributions.
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3.3.1.15 Electricity rate probability distribution

Electricity rate for each hour is fitted to a probability distribution. One year’s hourly
historical data from Ameren utility [309] is utilised and indicates that normal and
lognormal distributions are the best for describing data in each hour. Therefore,
there are 24 probability distributions which are described by Egs. (3.26) and (3.27).

One year data are generated and showed in Figure 3.9.

ER(M)~InN (W', ,0")) V€ {78, ...,21} (3.27)

with My, Oy u’rjand a’rj illustrated in Table 3.3.
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Figure 3.9. Electricity rate data modelling by hourly probability distributions.
Table 3.3. Parameters of hourly probability distribution functions for wind speed,
global irradiance, temperature, base load and ER.

Wind Global Temperature**  Base load = Electricity
Hour  Speed Irradiance* (Egs. 23-24) (Eq. 25) Rate

(Eq. 19) (Egs. 20-22) (Eq. 26-27)
i Aw | By | ag A p; Bg Bog M | 0| M, | 0 m G | WM, 0.0,

1 3.78 | 3.07 N/A N/A | -04/63|184 44 1.00 0.07 247 0.66
2 4.06 2.70 N/A N/A 1 -05/6.3/18.1 42 0.85 0.07 245/ 0.57
3 3.64| 2.93 N/A N/A | -1.0/ 6.0/ 173 44 0.80 0.08 246 | 0.67
4 3.99| 2.61 N/A N/A | -16|58| 165 45 0.80 0.07 244 0.67
5 3.76| 2.41 N/A N/A | -16/58|16.1 43 0.80 0.08 259 | 1.02
6 3.28 3.10 N/A N/A | -19|57|156 44 0.86 008 295 1.24
7 3.441 2.92 N/A N/A | -20|57/16.1 4.7 0.90 0.08 1.23 | 0.48
8 419 3.47 4.33 115 -20/59 176 53095 0.09 1.21  0.35
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Wind Global Temperature**  Base load = Electricity
Hour  Speed Irradiance* (Egs. 23-24) (Eq. 25) Rate
(Eq.19)  (Egs.20-22) (Eq. 26-27)

9 459325 889377 1253 -0.7 6.4 203 5.6|100 0.09 126 0.35
10 562 | 3.84 1.20 358 16|7.0/231 55 100 010 1.29| 0.37
11 595/ 4.78 1.65 290 40|75/ 256 52 106 010 128 0.34
12 742|514 191 231 58|7.7/272 51 110 010 128 0.34
13 7.33| 451 1.92 189 | 7078282 51109 011 1.26| 0.32
14 7.17| 4.00 2.00 186 | 8482 294 48114 010 1.25]| 0.29
15 6.84| 5.03 1.99 209 81|82 34 02 120 011 122 0.32
16 7.27| 3.69 2.01 278 1 79/83| 34 02 128 011 123 0.32
17 7.09|3.53 1.69 363 6.6|82/282 48 134 011 130 031
18 6.02 2.62| 307.58 161 | 4679 268 50145 012 135 0.37
19 522 2.87| 4.95 082 29|72/246 52 159 013 137|041
20 474219, 431 090 14|73/195 33 167 013 134/ 0.38
21 428 2.33 N/A N/A | 15|68 215 46 165 012 1.25) 0.33
22 4.66 | 2.56 N/A N/A | 09|66 206 46 149 0.13 3.08  0.86
23 452 251 N/A N/A | 02|64 197 46 120 0.08 2.79 | 0.80
24 450 2.49 N/A N/A | -02/63 189 46 099 0.07 272 | 0.85

probability of 1/3. G(Aty) = G(At,g) = 0 with a probability of 1/5. G(At,,) = 0 with a
probability of 2/3. Global irradiance data between 10 am to 5 pm are normalised and divided by
1200.

** Temperature <45 °C and probability of choosing (#t,-mj) or (u’tj,a’tj) is 1/2.

3.3.1.2 Utilise probability distributions to model input
data in each hour

For every hour/interval, data can be generated based on their probability
distributions. These probability distributions can be used to apply MCS for sizing
optimisation or electricity management simulations in that location. It should be
mentioned that, because PEV is modelled based on daily PDFs and there is no sign
of the relationship between PEV availability and different seasons/months of the

year, these PDFs can be used in the second method as well.

81



3.3.2 Daily data modelling for wind speed,
irradiance, temperature, load and electricity
rate using data sampling for Monte Carlo
simulations

Repeated random sampling can be used to generate MCS input data for simulations
to model uncertainties associated with the data. These data intervals can be per hour,
per minutely etc. depending on available data, and can be chosen based on
simulation purposes. These repeated data samples can be chosen from TMY data
or real historical data. However, these data need to be classified based on seasons
or months of the year. For example, it is not practical to choose an irradiance sample
from winter and to then choose a wind speed sample from summer for the same day
simulation data, because wind speed, irradiance, temperature, load and electricity
rate data are correlated. In other words, for each day, data sampling should be
collected from similar databases based on the season (or month) of the year. In
addition, daily sampling instead of hourly/interval sampling will make it possible
to consider the correlation of every interval value with their prior interval value

more precisely during each day [301].

3.3.3 Comparison of two methods for MCS data
modelling

Use of probability distributions as given in section 3.3.1 is a good way to model the
probabilistic behavior of renewable resources. However, there are two noteworthy
matters that should be considered for simulation purposes. First, the correlation
between wind speed, irradiance, temperature, load and electricity rate should be
considered in order to improve this method. Second, the correlation between every
interval value and the prior interval value is not considered precisely (i.e. generated
data fluctuation is high). Although there is an inherent correlation between every
interval value and the prior interval value, which is generated with probability
distributions in section 3.3.1, these correlations might be insufficient for some
sensitive simulations. One of the two following options can be used to improve the

first method.
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1. Prediction or classification methods can be used for determining correlated
databases and for defining or predicting the next interval value.

2. Defining probability distributions for every season (or every month) of data
(instead of yearly data) separately. Therefore, for each interval for every season
(or month) for every database, we will have at least one probability distribution.
Although there will be an inherent correlation between every interval with the
prior interval value, prediction, or classification methods might be used for

improvement.

The second method given in section 3.3.2, which is based on data sampling,
considers the correlation between databases and data intervals more precisely. Also,
it is less expensive in terms of computing resources. Therefore, the second method
is used in the following chapters for data modelling of the simulations to determine

the optimum capacity of renewable resources for the SH.

3.4  Optimisation

There are three common approaches to solving optimisation problems:
mathematical optimisation, heuristic methods and meta-heuristic searches.
Mathematical optimisation can solve many optimisation problems. However, these
methods are relatively expensive for some difficult problems. Mathematical

optimisation includes the following.

e Linear programming problems: these are simple problems, and objectives are
affine functions of constraints.

e Quadratic programming problems: these are similar to linear programming
problems; however, they have a quadratic objective and they can be solved in
polynomial time if the objective is positive definite. Although they are
comparably simple, they will be an NP-hard problem if the objective is
indefinite.

e Convex programming problems: these are more complex than linear and
quadratic problems. They have concave inequality and linear equality
constraints along with a convex objective function. Convex problems

convergence is guaranteed if they have a solution.
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e Dynamic programming problems: these solve the sub-problems after
subdividing large complex problems. They store the solutions for sub-problems
and solve the problems recursively.

e Mixed integer linear programming problems: these have integer variables along
with other unknown variables and usually are NP-hard. However, some can be
solved by algorithms such as the cutting-plane method and branch-and-bound.

e Mixed integer nonlinear programming and nonlinear programming problems: it
can be extremely challenging to solve these problems, and there is no guarantee
of find the solution (if any solution exists).

Heuristic and meta-heuristic functions are introduced for solving difficult problems
which are impossible or expensive to solve with mathematical approaches. They

can be used to find quick and approximate solutions for many difficult problems.

Heuristic methods are knowledge-based methods that use certain rules to determine
approximate solutions. They are well-designed and useful for decreasing

computational effort.

Meta-heuristic searches may find a near-optimal solution by making few or no
assumptions. Many of these algorithms — such as particle swarm optimisation,
genetic algorithms and evolutionary algorithms — converge near a solution within a
search space by using massive population sizes which navigate semi-randomly.
These methods are used widely to solve optimisation problems, and they can
usually find good solutions by searching a wide set of possible solutions. They are

less expensive compared to mathematical methods [179].

Table 3.4. Optimisation methods.

Mathematical Meta-Heuristic Heuristic Method
Optimisation Search
Linear programming Immune clonal Mix of optimisation
selection programming and heuristics
Dynamic programming Particle swarm Artificial neural
optimisation networks
Convex programming Tabu search State-queueing model
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Mathematical Meta-Heuristic Heuristic Method
Optimisation Search

Quadratic programming ~ Genetic algorithm Backtracking-based

method
Mixed integer linear Evolutionary Constraint optimisation
programming algorithms by broadcasting
Mixed integer nonlinear Markov decision
programming processes
TOPSIS

Meta-heuristic methods are one of the best approaches for solving continuous and
combinatorial problems [240, 310-312]. For solving many multi-objective and
nonlinear optimisation problems in research, meta-heuristic methods are preferred
because of reliability, availability, cost and performance optimisation [296, 313-
315].

PSO is a meta-heuristic methods that has been extensively used for optimisation
problems in the literature. There are more than 1779 applications of PSO introduced
in the literature. PSO is recognised as one of the most suitable tools for various
optimisation problems compared to other meta-heuristic and evolutionary
algorithms, such as genetic algorithms [316, 317]. In another research study, three
different meta-heuristic optimisation methods are compared for real-time-
application optimisation in HEMS. Evaluation results demonstrated that PSO

performance was better than Tabu search (TS) and simulated annealing (SA) [318].
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3.4.1 Particle swarm optimisation (PSO)

Particle swarm optimisation (PSO) is used in the simulations to minimise the annual

cost of the SH (Eq. (4.4)). PSO is one of the most appropriate Al approaches,

making it possible to find a near-global solution for multi-dimensional problems. It

works by choosing a population of candidate solutions. These candidate solutions

(particles) move around the search space based on a few formulae to find the best

solution. This technique was introduced by Kennedy and Eberhart in 1995 based

on a simplified version of social systems in nature, such as a bird flock behavior
[319].

The steps for the PSO algorithm are as follows.

1.
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Initialise PSO parameters such as a total number of iterations, size of swarm or
population etc.

Initialise particles randomly in the problem space. Each particle has a position
(Eq. (3.28)) and velocity (Eg. (3.29)) in D dimensional space, which can be

represented as follows:

X; = [Xi1, Xiz, -, Xip] (3.28)

Vi = [Viy, Vigs -+, Vip] (3.29)

Evaluate the objective function fitness (Eq. (3.30)) for each particle, which

can be represented as follows:

F; = f(Xi1, Xi2, -, Xip) (3.30)

Obtain personal best position (p;4) and global best position (pgpese). The best
position obtained by a particle itself up to the current iteration is called personal
best position and shown with p;4. In each iteration p;, is obtained by comparing
the fitness value of the current position with the last p;; and will be updated if
the current position is better. For the first iteration the p;;will be same as the
first position (X;). The best position among all personal best positions is called
global best position (pgpest)-

In each iteration, velocity (Eq. (3.31)) for each particle updates as follows:



Vit =w XV + ¢; x rand; X (Piaf —X5) + ¢, x rand, x (pgbest —X!) (3.31)
where w is inertia weight and V;* is the velocity for particle i at iteration t, ¢,
and c, are acceleration coefficients, rand, and rand, are random numbers
between (0,1), pl-df is the best position for particle i at iteration t, X} is the
position for particle i at iteration t, pg .. is the global best position at iteration
t, and V;**1 is the velocity for particle i at iteration t+1.

6. Each particle position (Eq. (3.32)) updates in each iteration as follows:

Xt = xt+yttt (3.32)
7. Evaluate the fitness of each particle to obtain personal best positions and global
best position.

8. Repeat the process until the convergence criteria are met.

The velocity is limited to V;,,,. Each particle is pulled toward p;; and pgpes:
positions with stochastic acceleration terms which are controlled by acceleration
coefficients [319, 320]. Figure 3.10 shows the flowchart for the PSO algorithm.
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| Initialize parameters |

Vi
| Initialize particles (Positions and Velocities) |

| Evaluate objective function fitness for initial particles |

2
| Local best position = current position |

| Set global best position = min(local best positions) |

| Update velocities and positions of particles |
|

v
| Evaluate objective function fitness for each particle |
v

Current position fitness < local best position fitness

Yes |,
| Local best position = current position |
v

No

NO_—Furrent position fitness < global best position fitness

Yes |,
| Global best position = current position |

Next particle No Al particles are evaluated?
Yes |,

Stopping criteria met?
Yes

Figure 3.10. PSO algorithm.

| Next iteration | No

PSO is hybridised with MCS in the following chapters for solving optimisation
problems while considering the probabilistic behaviour of input data. In the
following chapters, the second approach given in section 3.3.2 is used for

implementing MCS and hybridisation of MCS-PSO is further explained.
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3.5 Conclusion

In this chapter, SH components and renewable resources are modelled and will be
used for optimisations and simulations in the following chapters. Furthermore, two
methods for MCS simulations are introduced. The first method is based on
probability distribution for generating data and the second on data sampling that
allows us to generate data relating to the correlation between databases and data
intervals more precisely. Therefore, the second approach given in section 3.3.2 is
chosen for further simulations in the following chapters. Finally, PSO optimisation

is described and will also be used in the following chapters for optimisations.
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Chapter 4  Optimal Sizing of
Renewable Resources in
Smart Homes!?

4.1 Introduction

In this chapter, the annual electricity cost of a SH with rooftop PV, WT, BSS, PEV
and shiftable loads is minimised by performing optimal component sizing using
Monte Carlo simulations and particle swarm optimisation (MCS-PSO) in
association with a new rule-based home energy management system (HEMS)
considering import and export of energy with V2H integration. The stochastic
behaviors of wind speed, irradiance, temperature, load and ER are considered while
the availability of PEV is projected using normal and lognormal probability density
functions. Performance of the proposed approach is evaluated by SH operation and
cost calculations with near-optimal component sizes. Simulations and sensitivity
analyses are performed to investigate the impacts of shiftable loads, V2H
integration, battery charge/discharge rates, maximum daily export energy,
maximum PV, WT and battery capacity limits as well as the possibility of
eliminating BSS for further reductions in annual cost and levelised cost of
electricity (LCOE). Finally the optimisation results for MCS-PSO and MCS-ABC
are compared for Cases B1, B2 and B3 in Section 4.4.4.

4.2  Data modelling for wind speed, irradiance,
temperature, load and ER

Annual data are used to implement MCS and perform near-optimal component

sizing of the SH in Section 4.3.

! This chapter is mainly extracted from published paper [143] (Appendix A).
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4.2.1 Input data

The typical meteorological year (TMY) data [307] for wind speed, global horizontal
irradiance and ambient temperature are used along with ER [308, 309] from
McCook, Nebraska. Also, the predetermined (not schedulable) load of a home in
the United States is considered as the base load (L) [139, 308]. It includes lighting,
freezer, refrigerator, water heater, microwave and oven loads. Schedulable and
unpredictable loads (Lg, L,,) are also modelled along with the L,. Five types of
schedulable loads are considered (Table 4.1). L,, is considered to be less than 5%
of L, and to change randomly based on a uniform distribution. Schedulable loads
can be shifted to the cheapest ER hours in their DIs while HVAC and PEV are

considered separately, as explained in the previous chapter.

Table 4.1. Schedulable loads (Ly).

Appliance Usage Frequency  Working Cycle Total Energy
(Hours) (kWh)
Dishwasher Every day 2 1.2
Clothes Dryer Twice a week 1 1.1
Washing Machine Twice a week 1 0.5
Iron Once a week 1 1
Electric Oven Once a week 1 2
4.2.2 Monte Carlo simulation (MCS)

Repeated random sampling is used to obtain numerical results since there are
uncertainties associated with the inputs. The TMY information and annual data for
wind speed, irradiance, temperature, load and ER are used as the input data for
MCS. These data are separated into four seasons in order to keep the most closely
correlated data in the same databases. Everyday input data are generated based on
daily data sampling from the associated season databases. In addition, daily data
sampling (instead of hourly) is used to consider the dependency and high
correlation of hourly data to their prior values. This method makes it possible to
apply a combination of MCS with PSO optimisation and determine the near-optimal

WT, PV and BSS capacities, as explained in Section 4.3.
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4.3 Proposed MCS-PSO for optimal
component sizing and operation of SH
with H2V and V2H integrations

This section will first introduce the new rule-based HEMS and then incorporate it
into the proposed MCS-PSO for near-optimal component sizing (Figure 4.1) and
operation (Figure 4.2) of the SH.

4.3.1 Proposed rule-based HEMS with
coordinated PEV and BSS charging and
discharging operations

The proposed HEMS (Table 4.2) considers day-ahead electricity prices to
coordinate charging/discharging activities of BSS and PEV based on renewable
generation and loads to reduce the daily cost of SH electricity consumption. Charge
and discharge costs and constraints (Sections 3.2.4-3.2.5) are considered in the
simulations. In addition, the net renewable generation surplus is stored in the battery
and PEV for future demands and electricity trading. This is done based on the

proposed seven HEMS rules of Table 4.2.

At each interval (At;), the proposed HEMS satisfies the following trading and

power flow constraints.

ESell(Atj) < ESell,max (4-1)
Epuy (Atj) — Ese (At;) — Eg(Atj) — Eppy (At)). '
4.3.2 Proposed MCS-PSO for optimal component

sizing of SH

One of the best options for solving the nonlinear SH component-sizing problem is

a meta-heuristic optimisation technique such as PSO. As explained in the previous
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chapter, PSO starts with a population of random candidate solutions (particles)
within the problem space. In each iteration, particles move toward the best global
(Pgpest) and the best local (p;4) solutions. PSO updates pgpes and p;q at the end of
each iteration until it arrives at a sufficiently good fitness or reaches the maximum

iteration number. The particle acceleration rates toward p;; and pgp,.. locations are

controlled by the cognitive parameter (c,) and social parameter (c,), respectively.
Moreover, an inertia weight coefficient (w) is used for better control of the

exploration and exploitation in PSO.

Table 4.2. Operation rules of proposed rule-based HEMS with consideration of
shiftable loads and v2h to minimise the annual cost of SH.

Rule HEMS Rule-Based Instruction
1 Acquire initial SOCs for PEV and BSS from the previous day.

2 Determine Dls (according to the instructions of Section 3.2.4 and Figure 3.2)
and move all shiftable loads to the cheapest ER hours.

3 |Schedule PEV to be charged until 5 am (Section 3.2.5).

4 At each iteration considering Egs. (4.1)—(4.2), use the following priorities to
supply the SH loads from: i) renewable resources, ii) battery, iii) PEV and iv)
SG.

5 |Ateach DI considering Eqgs. (4.1)—(4.2), sell/purchase electricity at the extreme
maximum/minimum point of ER to discharge/charge the: i) PEV and ii) battery.

6 |Ateach iteration, sell the surplus electricity to satisfy Eqgs. (4.1)-(4.2).
7 |Update initial SOCs of PEV and BSS for the next day.

The proposed MCS-PSO is executed to minimise the annual electricity cost of the
SH and determine the near-optimal sizes of PV, WT, and BSS (Figure 4.2). For

each At; of the day, the electricity cost is calculated as:

Chour (At;) = LCy. Ew (At;) + LCpy. Epy (At;)
+LCp. Capp. At + CL50,. EESY (ML) + Egyy (At)) (4.3)
x ER(At;) — Egou(At)) X ER(At;)
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where the electricity purchase rate (EPR) and the electricity selling rate (ESR) are
assumed to be equal to the ER. For the selected SH located in McCook (Nebraska,
USA), LCy,=3.5 cents/lkWh [139] and LCp,,=4.1 cents/lkWh [113] while a reduction
of 1.0 cent/kWh is also considered for the carbon capture cost [321, 322], and it is
assumed that ;%% = 0.3 cents/lkWh and LCp = 0.3 cents/lkWh/h [139].

The objective function for PSO is the minimisation of the SH annual cost of

electricity:
365
Min Cppnyar = Z . Cpay (i) (4.4)
=
24 (4.5)
Cpay = Z CHour(Atj)

Jj=1

The simulations’ convergence was ensured by a detailed analysis of PSO behavior
based on different parameters. The selected PSO parameters for the simulations are
presented in Table 4.3. For improving the effectiveness of MCS, an inertia weight
of 0.2 is used to limit particle’s velocity. The selected upper boundaries for PV, WT
and BSS are based on physical limitations of the SH. Als0, Esey; max depends on
the physical limitations and utilities contracts’ flexibility. For the simulations of this
chapter, Esq;; max 1S COnsidered to be always less than the average base load of the
SH. Figure 4.1 shows the proposed MCS-PSO algorithm for determining near-
optimal size of PV, WT and BSS.
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Initialization of Monte Carlo Simulation (MCS)
Acquire TMY data and distinguish seasons databases for load, ER, wind speed,
irradiance and temperature. Derive Egs. (3.8)-(3.11) (daily probability distribution
functions of PEV)

v
Initialization and Start of PSO
Set population and iterations numbers, initial capacities of BSS, PV and WT

%
Update Daily Input Data for MCS
Determine day-ahead profiles for PEV (Figure 3.3 using Eqgs. (3.8)-(3.11))
and generate daily input data from similar seasons databases
2
Apply Rules 1-3 of HEMS (Table 4.2)
Update SOCs, determine DIs and schedule PEV charging until 5am

v
Apply Rules 4-6 of HEMS (Table 4.2)
Supply loads, perform trading and/or charge/discharge of PEV/BSS

v
[ Next hour ——————{ Calculate hourly cost ]
v

Update initial SOCs of PEV and BSS for the next day
(Table 4.2, Rule 7). Calculate daily cost

| Next day up to 1 year

| Calculateinnual cost |

| Save MCS-PSO solution for present population |
| Next PSO population
| Update the best PSO solution |

N

Adjust sizes of PV, WT and Stop MCS-
BSS. Next PSO iteration | PSO ?

1S0D [enuuy uo paseq

Figure 4.1. Proposed MCS-PSO algorithm for optimal sizing of PV, WT, and BSS
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Optimal Component Sizing and Initialization of MCS
Run algorithm of Figure 4.1 to find optimal sizes of PV, BSS and

WT. Acquire annual data and distinguish seasons databases.
|

i\
Update Daily Input Data for MCS
Determine day-ahead profiles for PEV (Figure 3.3 using Eqs.
(3.8)-(3.11)) and the input data based on daily MCS.
1\
Apply Rules 1-3 of HEMS (Table 4.2)
Update SOCs, determine DIs & schedule PEV charging until 5am

BN

v
Apply Rules 4-6 of HEMS (Table 4.2)
Supply loads, perform trading and/or charge/discharge PEV/BSS

SO Ylm sajgemausy
pue speo J0 sinolAeyag
211Sey2031S 8y} Bul||apoN

Vv
| Next hour - Save BSS hourly szlt/atus (on, off or idle) |

Update initial SOCs of PEV and battery for next day
(Table 4.2: Rule 7). Calculate daily cost (Eqg. (4.5))

| Save Day-Aheag Schedule of BSS |
| Next day up to one year

| Calculate annual cost (Eq. (4.4)) |
| Next year up to 25 years
| Calculate LCOE (Eq. (4.6)) |

AKBiau3 jo
1S0D) PazI[ansT]

Bunenoje)
10} SO

Figure 4.2. Proposed algorithm for SH operation to determine day-ahead BSS
schedules, annual cost (Eg. (4.4)) and LCOE (Eg. (4.6)).

Table 4.3. Input parameters for PSO.

Parameter Particles K D cq cy w Boundaries
PV  WT BSS
Value 50 1000 3 1 1 0.2 | [0,15]  [0,5] [0,30]

4.3.3 Operation of SH

After determining the near-optimal component sizes (Figure 4.1), the proposed
algorithm of Figure 4.2 can be used for SH operation and day-ahead scheduling of
BSS. The algorithm can also be used for the calculation of annual cost (Egs. (4.4)—
(4.5)) and the LCOE over the lifetime of renewable resources [113, 139]:

Y. cost over life time

Y. suplied demand over life time
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where the lifetime of PV and WT is assumed to be 25 years and battery life is eight
years with the maximum of 2000 cycles [323].

4.4 Simulations results

Simulations are performed first to determine the near-optimal component sizes of
the SH shown in Figure 3.1 with the proposed PSO-MCS algorithm of Figure 4.1
and then to investigate its operation and performance with the proposed algorithm

of Figure 4.2. Simulations results (Figures. 4.3-4.8) are summarised in Table 4.4.

The optimal component sizes, annual cost, annual cost reduction and the LCOE
(Eq. (4.6)) are determined and compared for two operating conditions: without
(Table 4.4; rows 5-8) and with (Table 4.4; rows 9-12) the WT. For each case, the
impacts of shiftable loads (Cases A2 and B2), H2V and V2H integrations (Cases
A3 and B3), as well as the effect of eliminating BSS altogether (Cases A4 and B4)
are investigated. For the base case operation (without PV, BSS and WT), the annual
cost is $848, and the LCOE is 3.21 cents/kWh (Table 4.4; row 4).

4.4.1 Optimal sizing of PV and BSS without WT to
minimise annual cost of household electricity

This section does not consider WT and determines the near-optimal sizes of PV and
BSS as well as the corresponding annual and levelised costs for operating
conditions with and without shiftable loads and VV2H integration (Table 4.4, Cases
Al1-A3). In addition, the possibility of eliminating BSS altogether is also
investigated in Case A4.
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Table 4.4. Summary of simulation results (Figures. 4.3—4.8) for optimal
component sizing (Figure 4.1) and operation (Figure 4.2) of SH.

Simulated

Case Studies

Optimal Component Sizing of
SH

(Proposed MCS-PSO
Algorithm of Figure 4.1)
using Daily Monte Carlo
Generated Data

Operation of SH
(Algorithm of
Figure 4.2) using
Optimal
Component Sizes
and Daily Monte
Carlo Generated
Data

Input Optimal > > | <
. . 5 5 @ 0O
Variables | Component Sizes | 2 2 20
S| 2 | M
rlezlsl sl slg 8lg2
SIS || S s3]
P2l == 2l®] gz
=13 | &| 5| = 2 S
S | g = =3 ~
2 | > o1
o —
< S
Base Case: SH without PV, BSS, and WT | N/A [N/A| N/A | N/A | N/A |848| N/A | 3.21
Case A: Al |Nonshiftable Loads, 50 | 10 [10.73(10.27| N/A |718]| 15.3 | 2.72
SH with PV, PEV (H2V only)
PEV and .
BSS A2 |Shiftable Loads, PEV 50 7 |11.11)| 7.37 | N/A |696| 179 | 2.64
H2V onl
(Figures. ( only)
4.3-4.5) A3 |Shiftable Loads, PEV | 50 | 3 |9.85|0.79 | N/A |634| 25.2 | 2.40
(H2V and V2H)
A4 |Case A3 without BSS 50 |N/A| 988 | O N/A |636| 25.0 | 2.41
Case B: B1 |Nonshiftable Loads, 50 | 10 | 6.40 |{10.60| 4.83 |710| 16.1 | 2.68
SH with PV, PEV (H2V only)
PEV, BSS B2 |Shiftable Loads, PEV 50 |10 | 6.21|9.42| 5 |687|19.0| 2.60
and WT (H2V only)
(Figures. y
4.6-4.8) B3 [Shiftable Loads, PEV | 50 | 8 [0.08 | 6.25| 5 |612|27.8| 2.31
(H2V and V2H)
B4 |Case B3 without BSS 50 |N/A| O 0 5 |615| 275 | 2.32
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Case Al: Nonshiftable load and PEV
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Figure 4.3. Case Al (nonshiftable loads and PEV). The sensitivity of MCS-PSO
solution (Figure 4.1) to battery charge/discharge rate and maximum daily export
limit. Arrows show near-optimal solutions for the annual cost ($662), PV (10.73
kW), and battery (10.27 kWh) sizes.

In Case Al, the schedulable loads (Table 4.1) and PEV are considered to be
nonshiftable, and there is no V2H integration. The near-optimal sizes of PV and
BSS are determined based on a range of different R, and Ese; max Values for the
SH (Figure 4.3). As expected, there are different solutions for different operating
conditions. However, the minimum yearly cost is achieved when Eggj; 1qx 1S 50
kWh/day, R, is 10 kWh/hour and the capacities of PV and battery are 10.73 kW

and 10.27 kWh, respectively. This near-optimal solution for Case Al offers an
annual cost reduction of 15.3% (Table 4.4).
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Case A2: Shiftable load and PEV

Annual Cost ($
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Figure 4.4. Case A2 (shiftable loads and shiftable PEV/H2V). The sensitivity of
MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum
daily export limit. Arrows show near-optimal solutions for the annual cost ($659),
PV (11.11 kW), and battery (7.37 kWh) sizes.

Sell,max (

In Case A2, the schedulable loads (L in Table 4.1, which are less than 2% of the
total load) are considered to be shiftable and there is no V2H integration. The near-
optimal sizes of PV and BSS are determined based on a range of different R, and
Eseiymax Values for the SH (Figure 4.4). As with Case Al, there are different
solutions. However, the minimum yearly cost is attained when Es.j mqy 1S 50
kWh/day, R, is 7 kWh/hour and the capacities of PV and battery are 11.11 kW and
7.37 kKWh, respectively. This near-optimal solution for Case A2 can produce a
17.9% annual cost reduction (Table 4.4).
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Case A3: Shiftable load and PEV + V2H
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Figure 4.5. Case A3 (shiftable loads and shiftable PEV/H2V/V2H). The sensitivity
of MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum
daily export limit. Arrows show near-optimal solutions for the annual cost ($589),
PV (9.85 kW) and battery (0.79 kWh) sizes.
In Case A3, both schedulable loads and V2H integration are considered. As with
Cases A1-A2, the near-optimal sizes of PV and BSS are determined based on a
range of different R, and Eggj; mqy Values (Figure 4.5). The minimum yearly cost
corresponding to 25.2% annual cost reduction (Table 4.4) is reached when
Esetymax» Re, PV and battery ratings are 50 kWh/day, 3 kWh/hour, 9.85 kW and

0.79 kWh, respectively.
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According to the summarised results of Table 4.4 (rows 5-8), for the SH with

optimal sizes of PV and BSS:

e Introduction of PV and BSS will reduce the annual cost by 15.3% while the
LCOE reduces from 3.21 to 2.72 cents/kWh (Table 4.4; rows 4 and 5).

e Scheduling of shiftable loads by the proposed HEMS (Table 4.2) will provide
greater savings with an annual cost reduction of 17.9% and LCOE of 2.64
cents/kWh (Table 4.4; row 6).

e Integration of V2H will further reduce the optimal sizes of PV and BSS to
9.85kW and 0.79kWh while the annual cost reduction and LCOE are also
improved to 25.2% and 2.40 cents/kWh, respectively (Table 4.4; row 7).

e The proposed battery-less configuration (Table 4.4, Case A4) looks very
promising as well, with a 25% reduction in the annual cost. Comparing the
results of Cases Al and A4, LCOE is improved from 2.72 to 2.41 cents/kWh.

4.4.2 Optimal sizing of PV, WT, and BSS to
minimise annual cost of household electricity

The impacts, benefits, and limitations of introducing WT are investigated in Cases
B1-B4. They are similar to Cases A1-A4 with the inclusion of WT. Near-optimal
sizes of PV, WT, and BSS are determined for a range of R, and Egg; 14, Values as
shown in Figures. 4.6-4.8. For Case B1, the minimum yearly cost is achieved when
Esetr max 1S 50 KWh/day, R is 10 kWh/hour and the capacity of PV, WT and battery
are 6.40 kW, 4.83 kW and 10.60 kWh, respectively (Figure 4.6). This near-optimal
solution for Case B1 can create a 16.1% annual cost reduction (Table 4.4). Note
that the solution for Case B2 offers a more significant annual cost reduction of
19.0% (Table 4.4 and Figure 4.7 with Eggj; 114,=50 KWh/day, R,=10 kWh/hour,
PV=6.21 kW, WT=5 kW and BSS=9.42 kWh). While the most attractive solution
with an annual cost reduction of 27.8% (Table 4.4) is for Case B3 with Egg;; ,4,=50
kwh/day, R.=8 kWh/hour, PV=0.08 kW, WT=5 kW and BSS=6.25 kWh (Figure
4.8).
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Case B1: Nonshiftable load and PEV
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Figure 4.6. Case B1 (nonshiftable loads and PEV). The sensitivity of MCS-PSO
solution (Figure 4.1) to battery charge/discharge rate and maximum daily export
limit. Arrows show near-optimal solutions for annual cost ($646), WT (4.83 kW),
PV (6.40 kW) and battery (10.60 kWh) sizes.

104



Case B2: Shiftable load and PEV
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Figure 4.7. Case B2 (shiftable loads and shiftable PEV/H2V). The sensitivity of
MCS-PSO solution (Figure 4.1) to battery charge/discharge rate and maximum
daily export limit. Arrows show near-optimal solutions for the annual cost ($639),
WT (5 kW), PV (6.21 kW), and battery (9.42 kWh) sizes.
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Case B3: Shiftable load and PEV + V2H
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Figure 4.8. Case B3 (shiftable loads and shiftable PEV/ H2V/V2H). The sensitivity
of MCS-PSO solution to battery charge/discharge rate and maximum daily export
limit. Arrows show near-optimal solutions for annual cost ($568), WT (5 kW), PV
(0.08 kW) and battery (6.25 kWh) sizes.
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Comparison of simulations results in Table 4.4 (rows 5-12) for Cases A1-A4 and

B1-B4 reveals further improvements in annual cost and LCOE for all simulated
scenarios. For example:

e According to Table 4.4 (column 10), there are further reductions in the annual
costs from 15.3%, 17.9%, 25.2% and 25.0% (without WT; rows 5-8) to 16.1%,
19.0%, 27.8% and 27.5% (with WT; rows 9-12).

e There are also reductions in LCOE from 2.72, 2.64, 2.40, and 2.41 cents/kWh
(without WT; Table 4.4: column 11; rows 5-8) to 2.68, 2.60, 2.31, and 2.32
cents’lkWh (with WT; Table 4.4: column 11; rows 9-12).

e The proposed battery-less configuration (Table 4.4, Case B4) looks even more
attractive compared to Case A4 since the annual cost reduction and LCOE are

further improved from 25.0% to 27.5% and from 2.41 cents/lkWh to 2.32
cents/kWh, respectively.

4.4.3 Impacts of load shifting on BSS operation

For the SH considered in this study, the schedulable loads (L) are about 2% of the
total household load (Table 4.1). Figure 4.9 demonstrates the impacts of shifting Lg
on the BSS operation. The consumption, generation and, SOC of BSS before and
after shifting L, to the cheapest ER hours in their corresponding DlIs are shown in
Figure 4.9.a and Figure 4.9.b, respectively. In this particular study, shifting of the

schedulable loads did not result in significant impacts on the battery consumption,
generation and SOC.
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Figure 4.9. Consumption, generation and SOC for BSS in SH; (a) before shifting
the schedulable loads, (b) after shifting the schedulable loads.
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4.4.4 Comparing MCS-PSO results with MCS-
ABC

In this section, Artificial Bee Colony (ABC) is utilized in conjunction with MCS to
evaluate MCS-PSO results for three most complex Cases of B1, B2 and B3.

Simulation results are compared in Table 4.5.

Acrtificial Bee Colony (ABC) is one of the stochastic optimisation methods which
Is proposed by Karaboga [324] and its performance is examined and compared with
other heuristic algorithms such as PSO [325-333]. A food source position, indicates
a potential solution in ABC algorithm and the fitness/quality of this solution is
defined based on the amount of food source in that position. There are three
categories of bees in this algorithm. First category is called employed bees which
go to the food source based on their memories from their last visit and local
information. Second category is onlookers which are waiting to choose food
sources based on employed bees information. Third category is called scouts which
search randomly for new sources. In ABC algorithm, onlookers and employed bees
are responsible for exploitation of the search space and scouts are responsible for
exploration. Also a greedy selection process is utilized in each cycle for memorizing
food source position based on the comparison of fitness of the new solution and the

previous solution [325].

First step in this algorithm is generating initial population of solutions. Each
solution (x,) is a three dimensional vector. In other words, each solution or food
source position consists of 3 numbers which represent size of BSS, PV and WT in
our simulations. Number of onlooker bees or employed bees are equal to number
of population (SN) which is considered to be 50 in this section simulations. Two
other control parameters in ABC are maximum cycle number (MCN) and the value
of limit which are considered to be 3000 and 300 in our simulations. The number
of limit is defined in ABC to abandon a food source if it cannot be improved further
during that prearranged number of cycles. If a food source is abandoned, then the

scout will discover a new food source based on the following equation:

x@ = x%. +rand(0,1) (x4 — x%.) (4.7)

where d € {1, 2, ..., D} and D is equal to 3 in this section simulations.
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After initialisation, these solutions will be populated for each cycle and the position
of the employed bees will be changed based on the local information and fitness
value of the new solutions. Every employed bee in each cycle modifies her position
to check if the fitness value improves. If it is improved then, memorises the new
position/solution, otherwise, remembers the previous one. However, each onlooker
bee will get the information from employed bees after their population in each cycle
completed. She will choose a food source based on the employed bees information.
Probability of choosing food sources (p,) with higher fitness value is higher when

an onlooker bee chooses her position [325]. This probability is defined as follows:

fits

fllll fitn

bs = (4.8)

where fit; and SN are fitness of the candidate solution and the number of
candidates/food sources respectively. Fitness of the candidate solution is calculated
as follows:

fits (4.9)

a 1+ CAnnualS

where Capnuqi, IS OUr objective function which is the annual cost of electricity for

candidate x; (Eq. (4.4)).

Each candidate population in ABC is determined from the old food position based

on the following equation:

Vsqa = Xsqa + Qsa(Xsa — Xna) (4.10)
where n, d and ¢4, are chosen randomly along with d € {1,2,...,D} and n €
{1, 2, ...,SN}. In addition, n is always different from s. Also, ¢, is always between
-1 and 1 [325].
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Table 4.5. Simulation results for comparing MCS-PSO with MCS-ABC for Cases

B1, B2 and B3.
Optimal Component Sizing of | Operation of SH
SH, using Daily Monte Carlo |(Algorithm of
Generated Data along with Figure 4.2) using
PSO and ABC optimisations |Optimal
Component Sizes
and Daily Monte
Simulated Carlo Generated
Case Studies Data
Inpgt Optimal _ g :(3> =< E
Variables | Component Sizes 2 2|50
S| 8|2 M
o
m
slelsl sl slgl g8
1| || S| 5| 0|=7
3|2 = =| 7| B8
= | = z s > s |2
z |2 2| 3| = % =
S | = > &
3 5
< =
Case B: B1: Blycs—pso 50 | 10 | 6.40 |10.60| 4.83 | 710 | 16.1 | 2.68
SH with |Nonshiftable
PV Loads, PEV |Blucs-anc 50 | 10 | 6.91 |10.69| 4.71 | 691 | 18.6 | 2.61
PEV, | (H2VONlY) |icrerences o6 | - | - | 7.97 | 0.85 |-2.48|-2.68|1553| -2.61
BSS
and WT B2: B2ucs—pso 50 | 10 | 6.21 | 9.42 | 5.00 | 687 | 19.0 | 2.60
Shiftable
Loads, PEV |B2Mcs-asc 50 |10 | 6.11 | 9.40 | 464 | 688 | 18.9 | 2.60
(H2V only) |pifferences% | - | - |-1.61]-0.21[-7.20 0.15 [-0.53| 0.00
B3: B3ycs—pso 50 | 8 |0.08|6.25|5.00] 612|278 | 231
Shiftable
Loads, PEV B3ycs—aBc 50 | 8 |0.00|6.68|5.00]| 612|278 | 231
(H2Vand |pifferences% | - | - |-100 | 6.88 | 0.00 | 0.00 [ 0.00 | 0.00
V2H)
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For Case B1, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT
are 6.91 kw, 10.69 kWh and 4.71 kW which was determined by MCS-PSO to be
6.40 kW, 10.60 kWh and 4.83 kW respectively. In other words, MCS-ABC results
for PV and battery are 7.97% and 0.85% higher and for WT, it is 2.48% lower.
Also, annual cost, annual cost reduction and LCOE are determined to be $691,
18.6% and 2.61 cents/kWh which was determined by MCS-PSO to be $710, 16.1%
and 2.68 cents/kWh respectively. In other words, MCS-ABC results for annual cost
and LCOE are 2.68% and 2.61% lower and annual cost reduction is changed from
16.1% to 18.6% for Case B1 (Table 4.5; rows 4-6).

For Case B2, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT
are 6.11 kW, 9.40 kWh and 4.64 kW which was determined by MCS-PSO to be
6.21 kW, 9.42 kWh and 5 kW respectively. In other words, MCS-ABC results for
PV, battery and WT are 1.61%, 0.21% and 7.20% lower. In addition, annual cost,
annual cost reduction and LCOE are determined to be $688, 18.9% and 2.60
cents’/kWh which was determined by MCS-PSO to be $687, 19.0% and 2.60
cents/kWh respectively. It can be seen that, the differences were lower than 1% for

annual cost, annual cost reduction and LCOE in Case B2 (Table 4.5; rows 7-9).

For Case B3, based on the MCS-ABC, near-optimal sizes of PV, battery, and WT
are 0 kW, 6.68 kwWh and 5 kW which was determined by MCS-PSO to be 0.08 kW,
6.25 kWh and 5 kW respectively. In other words, MCS-ABC results for PV is
changed from 0.08 kW to 0 kW and for battery is changed from 6.25 kWh to 6.68
kWh, which is 6.88% higher, and for WT it is equal for both methods. Also, annual
cost, annual cost reduction and LCOE are determined to be $612, 27.8% and 2.31
cents’/kWh which was determined by MCS-PSO to be $612, 27.8% and 2.31
cents/kWh respectively. It can be seen that, the differences were almost 0.00% for

annual cost, annual cost reduction and LCOE in Case B3 (Table 4.5; rows 10-12).

Although the near-optimal solutions are slightly different for MCS-ABC and MCS-
PSO, they are close to each other as expected. It should be noted that the maximum
cycle number in ABC optimisation was three times more than PSO to make sure

the near-optimal solution is achieved.
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4.5  Sensitivity analyses

Detailed sensitivity analyses are performed for Cases A1-A3 and B1-B3 to
investigate impacts of the maximum daily electricity export (Ese;; max) and the rate
of battery charge/discharge (R.) as well as the maximum capacity limits for PV,
WT and BSS. These are a number of parameters that significantly affect the optimal
sizes of PV, WT and BSS for the SH. Based on the detailed sensitivity simulations
presented in Table 4.4 and Figures 4.3-4.8:

e Increasing the maximum daily electricity export will: i) decrease the annual cost
and increase the PV size for all cases, ii) increase the WT size up to an upper
limit, iii) increase the BSS size for Cases A1-A2 and B1-B2. This happens
because the SH is able to export more electricity.

e Increasing the rate of battery charge and discharge will: i) reduce annual cost
and slightly decrease the PV size for Cases B1-B2, and ii) significantly increase
the BSS size for Cases A1-A2 and B1-B2. This happens because BSS is able
to charge/discharge faster.

e Inclusion of WT in addition to PV will: i) reduce the annual cost for Cases B1-

B3, ii) decrease the PV size, particularly for Case B3.

4.6 Conclusion

This chapter performs:

i.  optimum sizing of rooftop PV, WT, and BSS for the SH with PEV using a
proposed rule-based algorithm with MCS and PSO (Figure 4.1)

ii.  performance evaluation through the operation of the SH and cost

calculations with near-optimal component sizes (Figure 4.2)

iii.  sensitivity analyses on the impacts of maximum daily electricity export, rate
of battery charge and discharge, as well as the maximum capacities of PV,
WT and BSS on their optimum sizes (Table 4.4 and Figures. 4.3-4.8)

iv.  comparing the results of MCS-PSO with MCS-ABC for Cases B1, B2 and
B3 (Table 4.5).
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The main conclusions are as follows.

Introduction of PV and BSS will provide significant annual cost reduction (over
15%) and LCOE from 3.21 to 2.72 cents/kWh, while the inclusion of WT will
provide an additional reduction in annual cost (over 16%) and LCOE to 2.68
cents/kWh (Table 4.4; rows 4, 5 and 9).

Consideration of V2H decreases initial investment (by reducing component
sizes), annual cost (over 25.2% and 27.8% without and with WT) and LCOE to
2.40 and 2.31 cents/kWh without and with WT (Table 4.4; rows 7 and 11).

It may be a good option to eliminate BSS altogether in SHs that have renewable
resources and PEVs with V2H integration. This battery-less configuration
results in annual cost and LCOE reductions (Table 4.4; rows 8 and 12).

Based on the sensitivity analyses (Figures. 4.3—-4.8), further reductions in LCOE
are possible by increasing PV, WT and BSS sizes; however, there may be
limitations associated with the initial investment, maximum daily electricity
export, battery charge, and discharge rate as well as space requirements for

installations of rooftop PV and WT.
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Chapter 5 Optimal Sizing of
Renewable Resources for
Smart Home with
Committed Exchange
Power Functionality

5.1 Introduction

In this chapter, committed exchange power functionality is considered for the SH.
Then, near-optimal sizes of rooftop PV, WT, and BSS are studied for different
conditions based on the proposed rule-based algorithm (HEMS) with MCS and PSO
(Figure 5.1). Annual cost is minimised for determining near-optimal size of rooftop
PV, WT and BSS for the committed power SH. Stochastic behaviors of renewable
resources and availability of PEV are considered the same as in the previous
chapter. After determining near-optimal sizes of rooftop PV, WT and BSS, the
performance of the SH operation is evaluated with the selected near-optimal
renewable resources. The impacts of shiftable loads, maximum daily export energy,
battery charge/discharge rates, V2H integration and maximum WT, PV and battery
capacity limits are investigated in sensitivity analyses of Sections 5.4.1 and 5.4.2.
Further investigation is conducted in Section 5.4.3 to study the effect of various
committed power exchange to the optimal sizes of rooftop PV, WT and BSS for the
SH with the shiftable load and VV2H integration.

5.2 Data modelling for temperature,
irradiance, wind speed, load and ER

Similarly to the previous chapter, MCS is used to model annual data for performing
a near-optimal component sizing of the SH with a committed exchange power

capability in Section 5.3.
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5.2.1 Input data

Input data in this chapter simulations are same as for the previous chapter and are
explained in Section 4.2.1. Similar annual data is used for ambient temperature,
global horizontal irradiance, wind speed, ER and base load while PEV, HVAC, L,
and Lg (Table 4.1) are modelled separately, as in the last chapter. However, a
committed power export is considered for the SH in this chapter during peak time

hours (7pm, 8pm and 9pm).

5.2.2 Monte Carlo simulation (MCS)

As in the previous chapter, MCS is used to model probabilistic behaviour of input
data. At the same time, the correlation between different data is considered along
with the correlation between each interval and the previous interval in each
database. Correlation between different data is considered by separating data into
four databases based on four seasons and generating data separately for each season.
Also, correlation between each interval and the prior interval is considered by use
of daily data sampling. These methods make it possible to model probabilistic
behaviour of input data to be used in optimisation algorithms, as described in the

next section.

5.3  Proposed MCS-PSO for optimal
component sizing and operation of SH
with H2V and V2H integrations and
committed power exchange functionality

In this section, we introduce the new rule-based HEMS with a committed power
exchange functionality. We then integrate it into the proposed MCS-PSO to execute
near-optimal component sizing (Figure 5.1) and operation (Figure 5.2) for the SH

with a committed power exchange functionality.
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5.3.1 Proposed rule-based HEMS with committed
power exchange, coordinated PEV and BSS
charging and discharging operations

The new HEMS is proposed to consider committed power exchange functionality
(Table 5.1). Hourly day-ahead electricity prices are considered along with
predefined hours for the SH to export predetermined power to the grid. EPR and
ESR for the committed power SH are different compared to other SHs during the
predefined committed hours, which can be defined based on the utility contracts
and agreements. This proposed HEMS will export the committed power to the grid
in the predetermined hours, which in this chapter are considered to be during peak
time hours (7pm, 8pm and 9pm). It also decreases the daily cost of SH electricity
bills by using renewable generations and coordinating BSS charge/ discharge
activities and PEV. Constraints are considered along with charge and discharge
costs (Sections 3.2.4-3.2.5) in the simulations. Furthermore, battery and PEV are
utilised to store surplus renewable generation for future demands and electricity

trading. This new HEMS is based on the proposed rules in Table 5.1.

It should be mentioned that the following power flow and trading constraints are

satisfied by the proposed HEMS at each interval (At;):

Epuy () — Egon(A;) — E (A)) — Epsy (AL,). &)
ESell(Atj) < ESell,max (5-2)
5.3.2 Proposed MCS-PSO for optimal component

sizing of SH with committed power exchange
functionality

A combination of MCS and PSO is used to solve the component-sizing problem for
the committed power SH. As mentioned in the previous chapter, PSO is one of the
best meta-heuristic optimisation techniques for solving this kind of nonlinear
problem. MCS is also used to consider the probabilistic behaviour of renewable
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resources. PSO starts with a random candidate solutions for particles, which are

size of WT, PV and BSS within the problem space. In each iteration, pgp,es: and p;q

are calculated based on the proposed HEMS and particles move toward these best
solutions. These best solutions will be updated in each iteration until PSO reaches
the maximum iteration number or reaches a sufficiently good fitness. PSO
parameters such as c;, ¢, and w are adjusted based on this problem to control
particle acceleration rates toward best solutions and better exploitation and

exploration.

Table 5.1. Operation rules for minimising annual cost of SH with V2H, shiftable
loads and committed exchange power functionality.

Rule Instructions for Rule-Based HEMS with the committed power exchange
functionality

1 | Acquire the time (intervals/hours) and the amount of power that SH is
committed to export. Also reward(a) and penalty(B) factors for these hours Eq.
(5.4).

2 Based on the previous day, acquire initial SOCs for BSS and PEV.

3 Schedule shiftable loads to the hours with the cheapest ER based on Dls (as
explained in Section 3.2.4 and Figure 3.2).

4 Schedule PEV for early morning to be charged before 5 am (Section 3.2.5).

Schedule BSS before 5 am to have enough charge for committed power hours
5 (before 5am; charging is first from renewable resources and then from SG
during cheapest hours same as PEV which is described in Section 3.2.5).

At each interval, if there is a commitment for exporting power then;

1-export the amount of power which is committed for that interval to SG (this
g can be from: first; renewable resources second; battery and third; PEV)

2-suply the load from: first; renewable resources second; battery and third; PEV
3-expensive penalty(B) applies if there is shortage to export and supply the load
Eq. (5.4).

At each interval if there is no commitment, then supply the SH loads with the
7 |following preferences: 1-renewable resources, 2-battery, 3-PEV and 4-SG with
consideration of Egs. (5.1)—(5.2).

Except for the committed power hours, at each DI; purchase/sell electricity at
g the extreme minimum/maximum point of the ER considering Egs. (5.1)—(5.2) to
charge/discharge PEV and Battery.

Surplus electricity will be sold to SG at each interval to satisfy Egs. (5.1)—(5.2)
g except for the committed power hours which all renewable resources will be
used to deliver the committed power and supply the loads.

10 At the end of the day, initial SOCs for BSS and PEV will be updated for the
next day.

118



The proposed MCS-PSO is used for defining near-optimal sizes of WT, PV and
BSS (Figure 5.1) for the committed power SH while minimising the annual cost
of electricity.

Electricity cost for each At; of the day when there is no committed power exchange

during that interval, is calculated as follows:

Crour (At;) = LCpy. Epy (At;) + LCy. Ey (AL))
+CIEV, EFEY (At;) + LCp. Capp. At (5.3)
+ ER(At;) X Epyy(At;) — ER(At;) X Egey(AL).
Electricity cost for each At; of the day when there is committed power exchange

during that interval, is calculated as follows:

Chour(At;) = LCpy. Epy (At;) + LCy . Ey (AL))
+C5 o Esdil (At)) + LCy. Capg. At + B X (5.4)
ER(At;) X Epyy (At;) — a X ER(At;) X Egeyi (At;),
where the ESR and EPR are assumed to be equivalent to the ER. However, for the
committed power exchange hours there are two factors that are considered in Eq.
(5.4) as reward (a) and penalty (8) factors. Reward and penalty factors for the
simulations are assumed to be a =3 and 8 =10. Other parameters, such as

LCy, LCpy, C5%4, LCp, are same as in the previous chapter.

The objective function for the optimisation is to minimise the annual electricity
cost of the SH:

24
Coay = ) Citour (8t (55)
]:

Min Cannuar = Zj: Cpay (D) (5.6)
PSO behaviour is analysed carefully by using different parameters to secure the
convergence of simulations. An inertia weight of 0.2 is considered to enhance the
effectiveness of MCS by limiting the particles’ velocity. Table 5.2 shows the PSO
parameters selected for simulations. Upper boundaries for WT, PV and BSS are
selected according to SH physical restrictions. In addition, Es.jmq, Can be

determined based on utilities contracts’ adaptability and physical restrictions. As
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in to the previous chapter, it is chosen to be less than the SH average base load.
Figure 5.1 illustrates the algorithm (MCS-PSO) for the committed power SH to
determine near-optimal size of WT, PV and BSS.

Initialization of Monte Carlo Simulation (MCS)
Acquire TMY data and distinguish seasons databases for load, ER, wind speed,
irradiance and temperature. Derive Eqs. (3.8)-(3.11) (daily probability distribution
functions of PEV)

N
Initialization and Start of PSO
Set population and iterations numbers, initial capacities of BSS, PV and WT
\
Apply Rule 1 of HEMS for Committed Power Exchange (Table 5.1)
Acquire the time (intervals/hours), reward (o), penalty (B) and the amount of
power that SH is committed to export for these intervals Eq. (5.4)

l
v

Update Daily Input Data for MCS
Determine day-ahead profiles for PEV (Figure 3.3 using Egs. (3.8)-(3.11))
and generate daily input data from similar seasons databases
v
Apply Rules 2-5 of HEMS (Table 5.1)
Update SOCs, determine Dls and schedule PEV/BSS charging until 5am

N
q/
No Committed power Yes
\L exchange for this interval ?
Apply Rules 7-9 of HEMS (Table 5.1) | | Apply Rule 6 of HEMS (Table 5.1)
Supply loads, perform trading and/or Export the committed power and
charge/discharge of PEV/BSS supply loads using renewable

resource, BSS and PEV
|

[
v,
[ Next hour ———{ Calculate hourly cost ]
v

Update initial SOCs of PEV and BSS for the next day
(Table 5.1, Rule 10). Calculate daily cost

| Next day up to 1 year

| Calculate innual cost |

| Save MCS-PSO solution for present population |
| Next PSO population
| Update the best PSO solution |

N
Adjust sizes of PV, WT and Stop MCS-
BSS. Next PSO iteration Now_ PSO?

Yes |, -
| Save optimal sizes of PV, WT and BSS |

150D |enuuy Uo paseg
BuiziS SS9 pue LM ‘Ad 40}
uoneziwndo waems ajoied

Figure 5.1. Proposed algorithm (MCS-PSO) for SH with committed power
exchange functionality to determine near-optimal size of WT, PV and BSS.
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Apply Rule 1 of HEMS for Committed Power Exchange (Table 5.1)
Acquire the time (intervals/hours), reward (o) and penalty (B) factors and
the amount of power that SH is committed to export for these intervals

\/ -
Optimal Component Sizing and Initialization of MCS X § g
Run algorithm of Figure 5.1 to find optimal sizes of PV, BSS and é 2 =
WT. Acquire annual data and distinguish seasons databases. Z § a
J 293
Update Daily Input Data for MCS 5 5 g
Determine day-ahead profiles for PEV (Figure 3.3 using Eqs. % § B
(3.8)-(3.11)) and the input data based on daily MCS. |93 =

7

Apply Rules 2-5 of HEMS (Table 5.1)
Update SOCs, determine DIs & schedule PEV/BSS charging until 5am

—
No Committed power Yes
l exchange for this interval ?

Apply Rules 7-9 of HEMS (Table 5.1)
Supply loads, perform trading and/or
charge/discharge of PEV/BSS

Apply Rule 6 of HEMS (Table 5.1)
Export the committed power and
supply loads using renewable
resource, BSS and PEV

N2
| Next hour  Save BSS hourly s\lt/atus (on, off or idle) |

Update initial SOCs of PEV and battery for next day
(Table 5.1: Rule 10). Calculate daily cost (Eqg. (5.5))

N
| Save Day-Ahead Schedule of BSS |

| Next day up to one year

| Calculate annual cost (Eq. (5.6)) |

| Next year up to 25 years

10} SOIN

| Calculate LCOE (Eq. (5.7)) |

ABiau3 Jo
150D pazIjana]
Buneinoe)

Figure 5.2. Proposed operation algorithm for SH with committed power exchange
functionality to determine BSS day-ahead schedules, annual cost (Eg. (5.6)) and
LCOE (Eq. (5.7)).

Table 5.2. PSO input parameters.

Parameter Particles K D cq

Value 60 1200 3 1

c, w Boundaries
PV WT BSS
1 0.2 [0,40] [0,5] [0,40]
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5.3.3 Operation of SH with committed power
exchange functionality

The SH with committed power exchange functionality exports the committed
power during the agreed time (intervals/hours) to SG. In this chapter it is assumed
that the SH is committed to export power during peak hours (7pm, 8pm and 9pm).
In Sections 5.4.1 and 5.4.2, it is assumed that the SH is committed to export 5SkWh
to SG in each hour during peak hours (Figures 5.3-5.8). Committed power
parameters used for simulations of Figures 5.3-5.8 are presented in Table 5.3.

Table 5.3. Committed power parameters and assumptions.

Parameter Committed = Committed power a B
hours for each hour
[hour] [kWh]
Value 7pm, 8pm, 9pm 5 3 10
Associated Figs. 5.3-5.17 5.3-5.8 5.3-5.17 | 5.3-5.17

For operation of the committed power SH and BSS day-ahead scheduling, the
algorithm in Figure 5.2 is proposed to be used after finding the near-optimal sizes
of PV, WT and BSS (Figure 5.1). This algorithm is also utilised for calculating the
annual cost (Eq. (5.6)) and the LCOE over the renewable resources’ lifetime [113,

139] for the committed power SH:

Y. cost over life time

Y. suplied demand over life time

where WT and PV lifetime is considered to be 25 years and the lifetime of battery

is considered to be eight years with the maximum cycles of 2000 [323].

54 Simulations results for SH with committed
power exchange

First, the near-optimal sizes of PV, WT and BSS are determined by use of the
proposed MCS-PSO algorithm (Figure 5.1) for the committed power SH (for
various cases of Es.;mqr and R.). Then, its performance and operation are
investigated by the proposed algorithm in Figure 5.2. Simulations results of Figures

5.3-5.8 and 5.9-5.17are summarised in Table 5.4 and Table 5.5 respectively.
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For the next two sections of this chapter, it is assumed that the SH is committed to
export power during 7pm, 8pm and 9pm (peak hours in this case) and 5kWh for
each hour (Figures 5.3-5.8). Electricity reward (a) and penalty (B) factors are
assumed to be 3 and 10 during this period for finding component sizes of PV, WT
and BSS.

For different operating conditions, the optimal component sizes, annual cost, annual
cost reduction and LCOE (Eq.(5.7)) are resolved and compared. In the next section,
the SH is without WT (Table 5.4; rows 5-8). For Section 5.4.2, WT is considered
as well (Table 5.4; rows 9-11). For each of these cases, the impacts of shiftable
loads (Cases A2 and B2), and integration of H2V/V2H are investigated. The effect
of eliminating BSS for Case A3 is also investigated (Case A4).

In Section 5.4.3, Case B3 is repeated for the SH with various export power
commitments to evaluate the effect of committed power exchange to the optimal
sizing (Figure 5.1) and operation (Figure 5.2) of the SH (Table 5.5). It should be
mentioned that annual cost for the base case operation (without power committed
exchange, PV, WT and BSS) is $848 and the LCOE is 3.21 cents/kWh, as presented
in Table 5.4 (row 4).

54.1 Optimal sizing of PV and BSS without WT
for the SH with committed power exchange
to minimise annual cost of household
electricity

In this section’s simulations, WT is not considered and the near-optimal sizes of PV
and BSS are determined for the committed power SH. It is assumed that the SH is
committed to export power during 7m, 8pm and 9pm (peak hours) at 5kWh for each
hour (Figures. 5.3-5.5). Electricity reward («) and penalty (f) factors are assumed

to be 3 and 10 during this period.

Different operating conditions are investigated with and without shiftable loads and
V2H integration to find near-optimal sizes by use of the MCS-PSO algorithm
(Figure 5.1). Then, annual cost and LCOE are evaluated by the algorithm of Figure
5.2 for these cases (Table 5.4, Cases A1-A3). Furthermore, elimination of BSS is

also studied in Case A4.
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In the first case (Case Al), PEV and schedulable loads (Table 4.1) are examined as
nonshiftable and VV2H integration is not considered. Based on a range of different
Eseiumax @nd R, values, near-optimal sizes of PV and BSS are determined for the
committed power SH (Figure 5.3). As can be seen from Figure 5.3, for various
operating conditions there are different solutions. However, the minimum annual
cost is achieved when R, is 10 kKWh/hour, Eggj;max 1S 50 kWh/day and the
capacities of PV and battery are 16.20 kW and 32.95 kWh, respectively. The best
achieved annual cost for Case Al is $1294, which does not offer any annual cost
reduction. After running the operation algorithm of Figure 5.2 for various ranges of
a, we found that in order to achieve an annual cost reduction we need to increase a
to almost 7 for Case Al (Table 5.4).

In the second case (Case A2), PEV and schedulable loads (Table 4.1) are examined
as shiftable and V2H integration is not considered. Based on a range of different
Esennmax @nd R, values, near-optimal sizes of PV and BSS are determined for the
committed power SH (Figure 5.4). As can be seen from Figure 5.4, for various
conditions there are different solutions. However, the minimum annual cost is
achieved when R, is 10 KWh/hour, Es.j; max 1S 45 kWh/day and the capacities of
PV and battery are 11.69 kW and 30.92 kWh, respectively. The best achieved
annual cost for Case A2 is $1260, which again does not offer any annual cost
reduction. After running the operation algorithm of Figure 5.2 for various ranges of
a, we found that in order to produce an annual cost reduction we need to increase
a to almost 7 for Case A2 (Table 5.4).

In the third case (Case A3), PEV and schedulable loads (Table 4.1) are examined
as shiftable and V2H integration is also considered. Based on a range of different
Eseiumax @nd R, values, near-optimal sizes of PV and BSS are determined for the
committed power SH (Figure 5.5). As can be seen from Figure 5.5, for various
conditions there are different solutions. However, the minimum annual cost is
achieved when R, is 3 KWh/hour, Egej; may 1S 50 KWh/day and the capacities of PV
and battery are 11.44 kW and 6.98 kWh, respectively. The best achieved annual
cost for Case A3 is $505. After running the operation algorithm of Figure 5.2, an
annual cost reduction of 24.2% is achieved with this near-optimal solution for Case
A3 (Table 5.4).
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Table 5.4. Summary of simulation results (Figures 5.3-5.8) for optimal
component sizing (Figure 5.1) and operation (Figure 5.2) of SH with the
committed power exchange.

Case Studies

Optimal Component Sizing
of SH with Committed

Power Exchange (5kWh for
each hour during 7pm, 8pm
and 9pm (a =3 and B =10)),
utilising Daily Monte Carlo
Data Generation (Proposed

Operation of SH with Committed
Power Exchange (Algorithm of

Figure 5.2) utilising Optimal
Component Sizes and Daily Monte
Carlo Data Generation

Simulations MCS-PSO Algorithm of
Figure 5.1) a=3and =10 | a=7and B =10
Ian_Jt Optimal _ % % F§('_3 % % c'}.,’(l‘)
Variables| Component Sizes 2|12/50(|2|2|Z%0
S| 8| SMis |8 | M
ololem|lolo|lem
slEl ool sl glgl2=glglg=
SIZ| S22 2ln 292|220
g s < — S s | @ s> ® || 2N
s 2| Bl = TlE|ES |23
=13 2| 5| = s|—¢ &1 25
S |E| T T = g ~ g|==
S | = 5 ] 5 =
s 'S 'S =
< =5 =5
Base Case: SH without Committed Power |N/A|N/A| N/A | N/A | N/A| 848 [N/A| 3.21 |848|N/A| 3.21
Exchange, PV, BSS, and WT
Case A: Al |Nonshiftable Loads, | 50 | 10 |16.20|32.95| N/A | 1409 [N/A| 5.33 |757|10.7| 2.86
SH with PEV (H2V only)
Committed 1 5 |shiftable Loads, PEV | 45 | 10 [11.69]30.92| N/a | 1397 [n/A| 5.25 [843| 05 3.7
Power (H2V only)
Exchange, PV,
PEVand BSS | A3 |shiftable Loads, PEV | 50 | 3 [11.44| 6.98 | N/A | 643 |24.2| 2.43 |174(79.5| 0.65
(Figures. 5.3— (H2V and V2H)
5.5)
A4 |Case A3 without BSS| 50 [N/A|13.70| 0 | N/A| 732 [13.7| 2.77 |579|31.7| 2.18
Case B:SH with | B1 [Nonshiftable Loads, | 50 | 10 [11.18{31.10| 5 |]1285|N/A| 4.86 [629(25.8| 2.38
Committed PEV (H2V only)
Power -
Exchange, Py, | B2 |Shiftable Loads, PEV | 50 | 10 | 8.48 |20.41| 5 |1267 |N/A| 478 |705/16.9| 2.66
PEV, BSS and (H2V only)
\S’Vgé':ég“res' B3 |Shiftable Loads, PEV | 45 | 4 | 919 | o |495] 571 [32.7| 2.16 |186(78.1] 0.70
6-5.8) (H2V and V2H)
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Case Al: Nonshiftable load and PEV with committed power
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Figure 5.3. Case Al (nonshiftable loads and PEV with committed power
exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export limit
and battery charge/discharge rate for SH with committed power exchange. Near-
optimal solutions are demonstrated with arrows for the annual cost ($1294), PV
(16.20 kW), and battery (32.95 kWh) sizes.
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Case A2: Shiftable load and PEV with committed power
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Figure 5.4. Case A2 (shiftable loads and shiftable PEV/H2V with committed
power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export
limit and battery charge/discharge rate for SH with committed power exchange.
Near-optimal solutions are demonstrated with arrows for the annual cost ($1260),
PV (11.69 kW), and battery (30.92 kWh) sizes.
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Case A3: Shiftable load and PEV with committed power + V2H
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Figure 5.5. Case A3 (shiftable loads and shiftable PEV/H2V/V2H with committed
power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export
limit and battery charge/discharge rate for SH with committed power exchange.
Near-optimal solutions are demonstrated with arrows for the annual cost ($505),
PV (11.44 kW), and battery (6.98 kWh) sizes.
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Based on the simulations shown in Table 5.4 (rows 5-8), for the committed power

SH with near-optimal sizes of PV and BSS:

e Introduction of PV and BSS is not sufficient to reduce the annual cost for Case
Al and we need to increase « to almost 7 for this case. (It should be mentioned
that these sizes are near optimal when a =3.)

e Although shiftable load scheduling reduced the annual cost compared to Case
Al, it is not sufficient and we need to increase a to almost 7 for this case to
produce an annual cost reduction.

e Integration of V2H decreased the near-optimal sizes of PV and BSS to 11.44kW
and 6.98kWh. It also rapidly reduced the annual cost for the committed power
SH. Annual cost reduction and LCOE for Case A3 were 24.2% and 2.43
cents/kWh, respectively (Table 5.4; row 7).

e The proposed battery-less arrangement of Case A4 (Table 5.4) reduced the
annual cost and LCOE to 13.7% and 2.77 cents/kWh, which is also promising
but not as much as Case A3.

e Choosing a=3 for the committed power SH (Eq.(5.4)) created an annual cost
reduction for Cases A3 and A4 of 24.2% and 13.7% (Table 5.4).

54.2 Optimal sizing of PV, WT, and BSS for the
SH with committed power exchange to
minimise annual cost of household electricity

In this section’s simulations, WT is also considered and the near-optimal sizes of
PV, WT and BSS are determined for the committed power SH. It is assumed that
the SH is committed to export power during 7pm, 8pm and 9pm (peak hours) at
5kWh for each hour (Figures. 5.6-5.8). Electricity reward (a) and penalty (3)

factors are assumed to be 3 and 10 during this period (as in the previous section).

As in the previous section, operating conditions are investigated with and without
shiftable loads and V2H integration to find near-optimal sizes by using the MCS-
PSO algorithm (Figure 5.1). Then, annual cost and LCOE are evaluated using the
algorithm in Figure 5.2 for these cases (Table 5.4, Cases B1-B3).
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Cases B1-B3 are similar to Cases A1-A3 but with consideration of WT to
investigate the impacts, limitations and benefits of WT inclusion. For a range of
Eseinmax @and R, values, near-optimal sizes of WT, PV, and BSS are determined, as
demonstrated in Figures 5.6-5.8. The minimum annual cost for Case B1 is attained
when R, is 10 kWh/hour, Egey;mayx 1S 50 kWh/day and the capacities of WT, PV
and battery are 5 kW, 11.18 kW and 31.10 kWh, respectively (Figure 5.6). The best
achieved annual cost for Case B1 is $1177, which does not offer any annual cost
reduction for these conditions; a should be at least equal to 6 to produce an annual
cost reduction. This near-optimal solution (for =3) can generate a 25.8% annual

cost reduction (Figure 5.2) for Case B1 if we choose a=7 (Table 5.4).

The minimum annual cost for Case B2 is attained when R, is 10 kWh/hour,
Eseirmax 18 50 kWh/day and the capacities of WT, PV and battery are 5 kW, 8.48
KW and 29.41 kWh, respectively (Figure 5.7). The best achieved annual cost for
Case Bl is $1144, which does not offer any annual cost reduction for these
conditions; a should be at least equal to 6 for achieving annual cost reduction. This
near-optimal solution (for a=3), can produce a 16.9% annual cost reduction (Figure
5.2) for Case B2 if we choose a=7 (Table 5.4).

The minimum annual cost for Case B3 is attained when R, is 4 KWh/hour, Esey; max
is 45 kWh/day and the capacities of WT, PV and battery are 4.95 kW, 9.19 kW and
0 kWh, respectively (Figure 5.8). The best achieved annual cost for Case B3 is
$379, which makes this the most attractive case among Cases A1-A3 and B1-B3.
After running the operation algorithm in Figure 5.2, an annual cost reduction of

32.7% is achieved with this near-optimal solution for Case B3 (Table 5.4).
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Case B1: Nonshiftable load and PEV with committed power
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Figure 5.6. Case B1 (nonshiftable loads and PEV with committed power
exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export limit
and battery charge/discharge rate for SH with committed power exchange. Near-
optimal solutions are demonstrated with arrows for the annual cost ($1177), WT
(5 kW), PV (11.18 kW), and battery (31.1 kWh) sizes.
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Case B2: Shiftable load and PEV with committed power
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Figure 5.7. Case B2 (shiftable loads and shiftable PEV/H2V with committed
power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export
limit and battery charge/discharge rate for SH with committed power exchange.

Near-optimal solutions are demonstrated with arrows for the annual cost ($1144),
WT (5 kW), PV (8.48 kW), and battery (29.41 kWh) sizes.
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Case B3: Shiftable load and PEV with committed power + V2H
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Figure 5.8. Case B3 (shiftable loads and shiftable PEV/H2V/V2H with committed
power exchange). The MCS-PSO sensitivity (Figure 5.1) to maximum daily export
limit and battery charge/discharge rate for SH with committed power exchange.
Near-optimal solutions are demonstrated with arrows for the annual cost ($379),
WT (4.95 kW), PV (9.19 kW), and battery (0 kWh) sizes.
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Comparing Cases A1-A3 and B1-B3 simulations — which are summarised in Table
5.4 (rows 5-11) — reveals additional improvements/reduction in annual cost and

LCOE for all cases when WT is added to the committed power SH. For example:

e According to Table 5.4, annual cost (column 9) and LCOE (column 11) are
reduced for Cases A1-A3 (without WT; rows 5-7) when WT is added (Cases
B1-B3; rows 9-11) to the committed power SH.

e Selected parameters for the committed power SH (such as a=3) can bring
annual cost reductions for Cases A3, A4 and B3 of 24.2%, 13.7% and 32.7%,
respectively.

e With the consideration of WT for SH, near-optimal sizes of PV and BSS are
reduced along with annual cost for all cases (Table 5.4).

e Adding WT to Case A3 has given us a battery-less configuration (Case B3) as

a near-optimal solution (Table 5.4) with the annual cost reduction of 32.7%.

5.4.3 Effect of committed power exchange to the
optimal size of PV, WT, and BSS for the SH

In this section’s simulations, further investigation is conducted to study the effect
of committed power exchange on the optimal size of PV, WT and BSS. Conditions
are same as for Case B3. For all cases in this section (Case C1-C10), PEV and
schedulable loads (Table 4.1) are examined as shiftable and V2H integration is
considered. Also, electricity reward (a) and penalty () factors are assumed to be
3 and 10 during committed power hours (as in previous sections). However, various
committed power export is considered for each case during the three peak hours

(7pm, 8pm and 9pm).

For each case, the near-optimal sizes of PV, WT and BSS are determined by use of
the proposed MCS-PSO algorithm (Figure 5.1) for the committed power SH (for
various cases of Ege;; max and R.); then, the performance and operation of the SH
are investigated by the proposed algorithm in Figure 5.2. Simulations results of

Figures. 5.9-5.17 are summarised in Table 5.5.

134



Table 5.5. Summary of simulation results (Figures. 5.9-5.17) for evaluating the
effect of committed power exchange to the optimal sizing (Figure 5.1) and

operation (Figure 5.2) of SH.

Case Studies

Optimal Component Sizing of
SH with Committed Power
Exchange (5kWh for each
hour during 7pm, 8pm and
9pm (a =3 and B =10)),
utilising Daily Monte Carlo
Data Generation (Proposed

Operation of SH with
Committed Power
Exchange (Algorithm
of Figure 5.2) utilising
Optimal Component
Sizes and Daily Monte
Carlo Data Generation

Simulations MCS-PSO Algorithm of
Figure 5.1) a=3and g =10
Ian_Jt Optimal _ g % < (l;
Variables | Component Sizes | 2 2 =0
5] S | L m
o
=220 slslgl £ 28
Elz|T|E|sl2 3| 3@
- I B A (R B
| 8| 2| 5| = S S
S| < = 5 N
=4 = > o
[N =
2 S
Base Case: SH without Committed Power [ N/A| N/A | N/A | N/A | N/A| 848 | N/A 3.21
Exchange, PV, BSS, and WT
Case C: Cl |1kwWwh ] 50 1 8.68 | 0.08 5 922 N/A 3.49
SH with Committed
Power Exchange, PV C2 |2kwh |45 | 8 (1042 0 |463]|844 | 05 | 3.9
PEV, BSS and WT with
Shiftable Loads, H2V and C3 [3kWh | 45| 10 | 9.15 | 0.01 5 751 114 2.84
V2H.
] . C4 |4kWh | 45 9 9.59 | 0.17 5 657 225 2.48
Various committed power
export is considered for | c5* |skwh | 45| 4 [919| 0 |4.95| 571 | 327 | 216
various cases for each
hour during peak hours C6 |6kwh |30 | 8 |710] O 5 | 509 | 40.0 1.92
(7pm, 8pm and 9pm).
(Figures. 5.9-5.17) C7 |7kwh | 50| 5 |1043| 12 | 5 | 398 | 531 | 150
C8 [8kWh | 50 3 [10.04|5.29 | 499 ] 269 | 68.3 1.02
C9 [9kWh | 35 3 [829|625| 5 235 | 72.3 0.89
C10 |10kwh] 50| 4 |8.62|8.61 |4.61] 143 | 83.1 0.54

*)Figures for Case C5 (which are same as Case B3) are not shown in this section as they are
demonstrated in the previous section (Figure 5.8).
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Case C1: Committed to export 1kWh in each hour (7pm, 8pm and 9pm)
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Figure 5.9. Case C1 (shiftable loads and shiftable PEV/H2V/V2H with 1kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($743), WT (5 kW),
PV (8.68 kW), and battery (0.08 kWh) sizes.
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Case C2: Committed to export 2kWh in each hour (7pm, 8pm and 9pm)
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Figure 5.10. Case C2 (shiftable loads and shiftable PEV/H2V/V2H with 2kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($631), WT (4.63 kW),
PV (10.42 kW), and battery (0 kWh) sizes.
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Case C3: Committed to export 3kWh in each hour (7pm, 8pm and 9pm)
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Figure 5.11. Case C3 (shiftable loads and shiftable PEV/H2V/V2H with 3kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($544), WT (5 kW),
PV (9.15 kW), and battery (0.01 kWh) sizes.
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Case C4: Committed to export 4kWh in each hour (7pm,8pm and 9pm)
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Figure 5.12. Case C4 (shiftable loads and shiftable PEV/H2V/V2H with 4kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($435), WT (5 kW),
PV (9.59 kW), and battery (0.17 kWh) sizes.
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Case C6: Committed to export 6kWh in each hour (7pm,8pm and 9pm)
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Figure 5.13. Case C6 (shiftable loads and shiftable PEV/H2V/V2H with 6kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($287), WT (5 kW),
PV (7.10 kW), and battery (0 kWh) sizes.
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Case C7: Committed to export 7kWh in each hour (7pm,8pm and 9pm)
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Figure 5.14. Case C7 (shiftable loads and shiftable PEV/H2V/V2H with 7kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($211), WT (5 kW),
PV (10.43 kW), and battery (1.2 kWh) sizes.
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Case C8: Committed to export 8kWh in each hour (7pm,8pm and 9pm)
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Figure 5.15. Case C8 (shiftable loads and shiftable PEV/H2V/V2H with 8kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($119), WT (4.99 kW),
PV (10.04 kW), and battery (5.29 kWh) sizes.
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Case C9: Committed to export 9kWh in each hour (7pm,8pm and 9pm)
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Figure 5.16. Case C9 (shiftable loads and shiftable PEV/H2V/V2H with 9kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($74), WT (5 kW), PV
(8.29 kW), and battery (6.25 kWh) sizes.
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Case C10: Committed to export 10kWh in each hour (7pm,8pm and 9pm)
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Figure 5.17. Case C10 (shiftable loads and shiftable PEV/H2V/V2H with 10kWh
committed power exchange in each hour during 7pm, 8pm and 9pm). The MCS-
PSO sensitivity (Figure 5.1) to maximum daily export limit and battery
charge/discharge rate for SH with committed power exchange. Near-optimal
solutions are demonstrated with arrows for the annual cost ($12), WT (4.61 kW),
PV (8.62 kW), and battery (8.61 kWh) sizes.
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Sensitivity analyses are performed for the selected solution of Case C7 to
investigate the annual cost reduction for this case (PV=10.43kW, WT=5kW and
BSS=1.2kwh) based on various electricity reward factors (a), as illustrated in
Figure 5.18. As can be seen, with the decrease of a from 3 to 0.8, the annual cost
reduction decreased from 53.1% to almost 0% and it is not economically beneficial
for the SH to engage in the proposed DR if « is less than 0.8. In addition, for a=1
(i.e. ESR during committed power is equal to ER), the annual cost reduction is
5.13%, which is economically beneficial for the SH. However, it is not a sufficient
incentive to encourage the SH to participate in this committed power program.
Therefore, a should be at least 1.5 for this SH with committed power functionality

(Case C7) to achieve at least 22% annual cost reduction.

60

20

Annual Cost Reduction [%]

I I I | |
0 0.5 1 1.5 2 25 3
Electricity Reward Factor (a)

Figure 5.18. Annual cost reduction for Case C7 based on various electricity
reward factors.

Based on this section’s simulations (which are summarised in Table 5.5), for a

committed power SH with near-optimal sizes of PV, WT and BSS:

e Introduction of a SH with the committed export power functionality reduced
annual cost for Case C2 to Case C10 in comparison with the base case.

e With the increase of committed power export during peak hours (7pm, 8pm and
9pm), the annual cost of the SH is decreased.

e Near-optimal size of BSS was almost 0 kwWh for Cases C1 to C6. However, after
Case C6 with the increase of committed power export during peak hours (7pm,
8pm and 9pm), the near-optimal size of BSS is increased (Cases C7-C10).
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e For almost all cases, the size of PV is increased with the increase of the

maximum daily export limit.

5.5  Sensitivity analyses

Impacts of the battery charge/discharge rate (R.), maximum daily electricity export
(Esetrmax) @and the maximum capacity limits for WT, PV and BSS are studied for

Cases A1-A3, B1-B3 and C1-C10 through a comprehensive sensitivity analysis.

Optimal sizes of WT, PV and BSS for the SH with committed power exchange
functionality can be significantly affected by a number of parameters. According to
the Table 5.4 (Cases A1-A3, B1-B3) and comprehensive sensitivity simulations of
Figures. 5.3-5.8:

e Increasing the maximum limit for daily electricity export (Ese;;maqx) for the
committed power SH will reduce the annual cost and slightly increase the size
of PV for almost all cases.

e Increasing the battery charge/discharge rate (R,) for the committed power SH
will decrease annual cost for Cases A1-A2 and B1-B2. (This was a dramatic
decrease when R, increased from 1kWh/hour to SkWh/hour in these cases.) It
also dramatically increase the size of BSS for Cases A1-A2 and B1-B2 because
of the faster battery charge and discharge ability. However, we did not see this
dramatic increase for the size of BSS when R, increased from 5kWh/hour to
10kWh/hour in these cases.

e Considering WT in addition to PV and BSS will decrease the annual cost for
the committed power SH in Cases B1, B2 and B3 and will reduce the size of
PV.

More investigation is conducted for case B3 with various ranges of committed
power for Cases C1-C10 (Case C5 is same as Case B3). According to Table 5.5

and comprehensive sensitivity simulations of Figures. 5.9-5.17:

e There is a cost reduction for Cases C2—Case C10 in comparison with the base
case. Also, with the increase of committed power export, cost reduction is

increased.
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For the cases with low committed power export, the near-optimal size of BSS
was almost 0 kWh. However, with the increase of committed power export, the
near-optimal size of BSS is increased for Cases C7-C10. For Case C10, the
near-optimal size of BSS was 8.61kWh.

Size of PV is increased by increase of maximum daily export limit for almost

all cases.

5.6 Conclusion

This chapter performs:

Optimum sizing of rooftop WT, PV and BSS for a SH with committed
power exchange and PEV integration using a proposed rule-based algorithm
with MCS and PSO (Figure 5.1).

Evaluating the performance through the operation of the SH with committed
power exchange and cost evaluation with near-optimal component size
(Figure 5.2).

Investigating the impact of Es.j; pax, Re, Maximum capacities of WT, PV

and BSS on their optimum sizes (Table 5.4 and Figures. 5.3-5.8).

Investigating the impact of various range of committed power for the SH
with shiftable load and shiftable PEV/H2V/V2H (Table 5.5 and Figures.
5.9-5.17).

The major conclusions are as follows.

Introducing PV and BSS to the committed power SH (with =3 and £=10) with
shiftable load and V2H integration will provide significant annual cost
reduction (over 24%) and LCOE from 3.21 to 2.43 cents’lkWh for Case A3,
while the inclusion of WT will provide an additional reduction in annual cost
(over 32%) and LCOE to 2.16 cents/kWh for Case B3 (Table 5.4; rows 4, 7 and
11).

Introducing PV and BSS to the committed power SH (with a=3 and $=10)
without V2H integration will not provide annual cost reduction (Cases A1-A2

and B1-B2) and we need to increase a in order to get cost reduction.
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e Consideration of V2H for the committed power SH (with a=3 and $=10)
reduces initial investment by reducing the size of PV and BSS. In addition, it
reduces annual cost (over 24% and 32% without and with WT, respectively)
and LCOE to 2.43 and 2.16 cents/kWh without and with WT, respectively
(Table 5.4; rows 7 and 11).

e Eliminating BSS for the committed power SH (with =3 and £=10) with
shiftable load, V2H integration and renewable resources may be a good option.
As can be seen for Case A4, battery-less configuration reduces LCOE and
annual cost (Table 5.4; row 8). This is more promising in Case B3 when WT is
also considered for the SH. The near-optimal size of BSS for Case B3 is OkWh
(Table 5.4; row 11).
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Chapter 6 Conclusion

SHs can be beneficial to energy consumers and providers if appropriate DR
programs are in place. The effect of different components of SHs on the size of
renewable resources and annual cost of electricity is investigated in this thesis. The
operation of a SH with the optimal size of renewable resources is also evaluated to
study the annual cost of SH. In addition, the effectiveness of SHs with committed
power functionality is studied with the aim of minimising annual electricity cost
while responding to DR programs. This study can help policy-makers establish
better electricity tariff structures and DR programs for the residential sector. With
appropriate implementation of SHs and DR programs, it is possible to further
increase the penetration of renewable resources. The conclusions and the
significance of each chapter are described in the following section.

6.1  Conclusions and significance

This thesis presented a comprehensive literature survey on state-of-the-art
technologies and elements that play significant role in the SH in the SG context. A
number of studies closely related to this research were reviewed in Chapter 2.

Investigated areas were classified into four categories. The first category was
demand-side management and demand response programs. The second category
was renewable distributed generation. PV systems, wind systems and electrical
storage systems were described under the second category. The third category was
optimal sizing of renewable resources, which included optimal sizing for
microgrids and for SHs. The final category was SH enablers, which included: (i)
power metering devices; (ii) communication network; (iii) smart appliances; (iv)
the Internet of Things; (v) smart sensors; (vi) monitoring and control systems; (vii)
cloud computing; (viii) home energy management system (HEMS) and; (ix) energy

consumption scheduling.

Data modelling and optimisation methods used for energy management and sizing
optimisation in SHs were presented in Chapter 3. Two modelling approaches were

introduced to consider stochastic behaviour of wind speed, global irradiance,
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temperature, power demand, and electricity rate based on yearly data and use of
Monte Carlo simulation (MCS). Also, components of SHs were modelled to be used
in the following chapters’ simulations. Particle swarm optimisation (PSO) was also

introduced as a method to be used for optimum sizing of components for SHs.

The work in Chapter 3 is significant because it introduced a modelling framework
for implementing stochastic behaviour of renewable resources in optimisation
problems. New models were also proposed for SH generation cost, HVAC load and
PEV charge/discharge algorithms.

Chapter 4 focused on HEMS and the optimisation problem for SHs. Optimum
component sizing for a SH with rooftop WT, PV, BSS, PEV and shiftable loads by
minimising annual electricity cost was presented in Chapter 4. A new rule-based
HEMS was proposed in association with Monte Carlo simulations and particle
swarm optimisation (MCS-PSO). Import and export of energy with VV2H integration
was considered along with stochastic behaviors of temperature, irradiance, wind
speed, load and ER. Additionally, normal and lognormal probability density
functions were used for projecting availability of PEV. After determining near-
optimal sizes of rooftop PV, WT and BSS, the performance of the SH operation
was evaluated with the selected near-optimal renewable resources. The impacts of
shiftable loads, maximum daily export energy, battery charge/discharge rates, V2H
integration and maximum PV, WT and battery capacity limits were investigated in

sensitivity analysis simulations.

The contributions in Chapter 4 are notable, with a new rule-based HEMS algorithm
proposed for a SH with rooftop PV, WT, BSS and PEV to empower households to
shift (schedule) their shiftable loads to off-peak periods based on the day-ahead and
dynamic electricity price. Additionally, optimum sizing of SH renewable resources
(including rooftop PV/BSS or rooftop PV/WT/BSS) was studied utilising the
proposed MCS-PSO approach. In addition, the effect of shiftable loads, V2H,
battery charge/discharge rate, maximum daily electricity export, and maximum
capacities of WT, PV and BSS on optimal sizes of renewable resources were
investigated. Finally, the SH operation was evaluated based on the proposed

algorithm and near-optimal renewable component sizes.
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A SH with committed exchange power functionality was proposed in Chapter 5.
Near-optimal sizes of rooftop PV, WT and BSS were studied for different
conditions based on the proposed HEMS utilising the proposed MCS-PSO
approach. Annual cost was minimised for determining the near-optimal size of
rooftop PV, WT and BSS for the SH with committed power exchange. Stochastic
behaviors of renewable resources and availability of PEV were considered. After
determining near-optimal sizes of rooftop PV, WT and BSS, the performance of the
SH operation was evaluated with the selected near-optimal renewable resources.
The impacts of shiftable loads, maximum daily export energy, battery
charge/discharge rates, V2H integration and maximum PV, WT and battery
capacity limits were investigated in sensitivity analysis simulations. Further
investigation was conducted to study the effect of various committed power
exchanges to the optimal sizes of rooftop PV, WT and BSS for the SH with the
shiftable load and VV2H integration.

There are significant contributions in Chapter 5, too. It offers an insight into the
renewable resources sizing problem and the effect of DR programs on renewable
resources penetration in the residential sector, along with the economic profits/costs
for households. This chapter focused on a SH with committed exchange power to
investigate the savings households can achieve by participating in incentive-based
DR programs along with price-based DR programs. The findings can assist
stakeholders and service providers in establishing better electricity tariff structures
and DR programs for the residential sector to increase the overall benefits for
energy producers and consumers while increasing the penetration of renewable

resources and decreasing GHG emissions.

6.2 Contributions

In terms of contributions made, this thesis has:

1. Proposed a modelling framework for implementing stochastic behaviour of
renewable resources in optimisation problems.
2. Proposed a new algorithm for PEV charge/discharge to coordinate SHs for

engaging DR programs.
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10.

11.

152

Proposed a rule-based HEMS algorithm for a SH with rooftop PV, WT, BSS
and PEV to empower households to shift (schedule) their shiftable loads to off-
peak periods based on dynamic day-ahead electricity price and minimising
electricity cost.

Proposed a new approach for finding optimum size of renewable resources
(including PV, WT and BSS) for SHs based on annual cost minimisation by use
of a proposed rule-based algorithm and MCS-PSO.

Conducted sensitivity analysis simulations to illustrate the effect of shiftable
loads, V2H, battery charge/discharge rate, maximum daily electricity export,
and maximum capacities of WT, PV and BSS on optimal sizes of renewable
resources for a SH engaged in price-based DR programs.

Evaluated the SH operation based on the proposed algorithm and near-optimal
renewable component sizes.

Proposed a rule-based HEMS algorithm for a committed power SH with rooftop
PV, WT, BSS and PEV to empower households to engage in both price-based
and incentive-based DR programs.

Determined the near-optimal size of rooftop WT, PV and BSS for a SH with
committed power exchange and PEV integration using the proposed rule-based
algorithm with MCS and PSO.

Evaluated the operation of SH with committed power exchange based on the
proposed algorithm and near-optimal renewable component sizes.

Conducted sensitivity analysis simulations to illustrate the effect of shiftable
loads, V2H, battery charge/discharge rate, maximum daily electricity export,
and maximum capacities of WT, PV and BSS on optimal sizes of renewable
resources for a SH with committed power exchange functionality.

Evaluated the impact of various ranges of committed power exchange on the
electricity cost and renewable resources size of the SH with shiftable load and
shiftable PEV/H2V/V2H. This can assist stakeholders and service providers in
establishing better electricity tariff structures and DR programs for the
residential sector to increase the overall benefits for energy producers and

consumers.



6.3 Future work

Smart homes have many different aspects to be investigated in the context of SGs.
With the development of new technologies — ICT, 10T, smart appliances, renewable
resources technologies, cloud computing, data security, smart meters — DR
programs and various government policies, along with the building characteristics,
social and psychological behaviour of residents, there are many variable to
investigate, particularly when the stability and reliability of the SG can be related

to these subjects.

This research proposed a home energy management system for a SH in a residential
environment along with a modelling framework for implementing stochastic
behaviour of renewable resources in optimisation problems. The optimal size of
renewable resources and operation was also studied for this SH along with the effect

of DR programs on the size of renewable resources and operation of the SH.

There are some areas and directions which have been identified for further research,

as follows.

1. Implementing machine learning techniques and forecasting methods in HEMS
in order to monitor, analyse and predict both SH consumers’ and devices’
behaviour (including renewable resources) along with energy providers and DR
programs. This will assist HEMS in better scheduling shiftable loads and better
allocating renewable resources in response to DR programs.

2. Investigating the effect of implementation of machine learning techniques and
forecasting methods in HEMS on the optimal size of renewable resources and
operation of SHs along with the possibility of introducing new DR programs to
the industry.

3. Modelling a virtual plant that includes a number of SHs, and then studying the
optimum size of renewable resources and the effect of different DR programs
on the operation and optimal size of renewable resources for this virtual plant.

4. Evaluating the effect of other DR programs on the operation and optimal sizing
of renewable resources for SHs. SH operation cost and sizing problems can be
studied in the concept of different DR programs, which may be beneficial for

some individual and special consumers.
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5. Investigating the implementation of scheduling algorithms for each appliance
that consumes electricity in a SH. Each appliance can be considered separately
to be modelled and scheduled based on its specific algorithm. Then a
supervisory algorithm can be applied to minimise household electricity cost
while maintaining desired comfort level.

6. Implementing advanced scheduling algorithms for HVAC load management to
investigate its effect on the size of renewable resources for SH and annual cost
of electricity for households.

7. Investigating the utilisation of SH for ancillary supports to the grid such as
injecting reactive power to the grid based on the local renewable resources and
BSS.

8. Implementing various optimisation algorithms instead of a rule-based algorithm
for operation of SHs in the sizing problem. This can be followed by
investigating the effect of these algorithms on the size of renewable resources
for SHs. Additionally, the effect of various DR programs on the annual cost and
the size of renewable resources for the SH can be evaluated with those
algorithms.

9. With the expansion of ICT infrastructure and SHs, machine learning and data-
mining technologies can be utilised to extract new rules and criteria from SHs’
big data in order to improve rule-based algorithms (for HEMS or individual

devices) and DR programs.

This chapter concludes the thesis by presenting a review of the thesis’s significance,
contributions and proposed solutions. Finally, some issues for further investigation
identified during this research are listed in the future work.
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Data Modeling for Renewable Resources and
Smart Home using Monte Carlo Simulations

Abstraer- Thi= paper imtroduces the wse of MMomie Carlo
simmlations (MC5s) for modeling stochastic behavior of wind
speed, Irradiance, load and electricity rate (ER) as
well as the availabiity of FEV. Two mefhods are mirodwoced
Probability distributions and their parameters are described in the
first method which cam be wse in the fotore researches. Second
method is imtroduced for MCS to consider the correlation between
different databases and the correlation of each interval vale with
their prior interval valne. Recommendations are provided for the
first method in the ftore stodies.

Keywords- Momte Carlo simulation, renewalile gemeration, data
modeimg, smart home, smar grid.

I INTRODUCTION

Penstration of solar generation, wind tarbine, battery storage
systems (B55s) and plog-in electric wehicles (PEVE) in smeart
zrid (53 is incressed rapidly in the last few decades As a

respomse (DE)
(5Hs) is increased. A mmber of research studies have addressed
these matters. For energy management in microgrids [1], [2] and
in buildings [3], [4] modemn network management stratezies is
used For peak shaving [5], minimization of cost and losses [4],
[7] and for reactive power compensation [8] PEV coordination
is used Determining optimmm size of renewable eperzy is
studied for both smart homes with small capacity of renewable
zeneration [4], [#], [10] and microgrids with larpe capacity of
renewable geperatiom [1], [2], [11]. For the smdies in the
concept of 5 and dismibwated penerations (DiEs), it is important
to comsider the probabilistic behavior of wind speed, immadiance,
temperanme, lead, eleciriciny rate (ER) and availability of Pluz-
in Electric Vehicle (PEV). Monte Carle Sinmlation (MCS) can
e used to model the probabilistic behavior of these data. MCS
hmbemnseda]mbgmltupﬁnnﬂmalgmﬂlmsﬁnﬁmhng
optimal solations specially, for finding optmal size
renewable respwrces for SH [4].

In this paper, two methods for implementing MCS are
mmm&mmmmiFm

power demand and alectricity rate in every hour is determined.
Also, availability of PEV is modeled based on daily probability
d:stl:lyunm Fecommendstions are provided for improve of

Gumﬁanm.glhgr—S:blnhg
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thiz method in the future studies. Second method is based on
data sampling and considers comelation berween databases and
data intervals.

I DATA MODELLING

MCS5 can be used for random generation of the input data for
renewsble enerpy simmilatons. MCS is used in the literamme to
muode] the stochastic behavior of renewable resources. Omuf
the methods for genersting data is uwse of
distributions. The other method is data sampling that can be
‘based on real yearly data or typical meteorobogical year (TMY)
data, which are classified seasonally or monthly.

A Modelling Wind Speed, Irradiance, Temperature, Load
nd Electricify Riate based on Fearly Data using Probabiliy
Distriburions for Aonte Carlo Simulanons

For modelling these sources of data, we can use their
probability distributions in each hour (in this study simmlation
interval considered to be one howr). First, we need to detemmine
their TMY or historical yearly data. Then we can mse these
‘probability distributions to generate hourly data for simmlations
and optimizations.

1) Dwtermine probability distributions for yearly data in
every hour:

Probability disoibutions of wind speed, global imadiance,
temperatare, power demand and electricity rate are determined
for every how of the day. For each of these sources of data in
every hour/mterval, at least one specific probability dismibution
is defined.

al Wind speed probability distributon

Wind speed for each hour is fited o a probability
distribution Ome year howly historical data at 10-meter
elevation from McCook, Nebraska [12] are utilized and found
that Weibull distribution is the best for describing data in each
hour. Therefore there are 24 probability distibutions with 24
shape and scale parameters which are described by (1) and
shown in Fig. 1 a.

Vi (A4}~ WEIB (A By} W€ {L23,...24] (1)
Which 4, and B, ; are illustrated in Table L
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home (HEMSs) in order
to decrease their electric wiility bills and imcrease the efficency
of Intrudve losd moniforing (ILAL) amd

Index Termys- Non-introsive load monitoring, load identification,
load disaprrepation, smart home and smart grid

I INTRODUCTION

The gzlobal rapid growth of economic development has
dramatically incressed elacimicity energy demands over the last
few wyears. In order to meet this emerging zrowth, most
electric utilities are upgrading their traditional power grids to
mmesnphrumteda:ﬂsdf—hmlmgmmgjdtedlmbgns_ﬁ
is now possible to monitor snd memage residential and
commercizl boildings and comtrol their elecmicity energy
demands on real-times bases m onder to reduce the overall zrid
efficiency. To do this, power utilities have formmlated demand
response (DE) programs to merge smart houses with the smart
grid In 3 smart house, home enerpy management System
(HEMS) can be wused to comimol and coordinate smart
spplisnces, elecimic welicles (EVs) and renewsble emergy
resources such s rooftop PV systems amd rooftop wind
torbines [1-2].
In a smart house, HEWMS interacts with all applisnces which
are comnected together with a compmmicstion network smd
performs appliance load monitoring (ATR) o use the energy
more efficiently, manage the demand curve and reduce the
cost of energy for consumers [1-35]. This can be done wsing-
» Inmisive load monitoring (LA techmigues that are

relatively acourate but require more equipment and

TESOUICES.
+* Non-intrusive load monitoring (MILM) approaches which

are more practical with acceptable acouracy.
The ITM based methods are scourate bt relatively expensive
z#nd more complicated. For example, they require at least two
sensors for every appliance. Om the other hand NILM based
spproaches have recently atiracted more attenfions amd
resesrch formses as they are more practical for smart grid and
house applications. An sttractive advantage is that NILM only
requires one meter for every building.

Thiz paper discusses NILM methods and gives a swvey on
Echmmmatmyhemdtummens

WILM are presented and their characteristics are compared
Section 1T presents a smrvey on supplementary techniques that
can be wrilized for improving the scouracy of NILM followed
by the conclusions.

0. M-INTREUSIVE LOAD MOMITORING (NILM) METHCODS
NILM is am attractive way to identify imdividusl spplisnces
and determine their energy consumption and operating
schedules. Table I presents the main types of spplisnces that
can be identifies by MILM based methods [2]:

# Typel ONOFF spplisnces with two states such as

toaster and wsusl lamp.

& TypeIl: Finite State Machines (FSM) or mmlti-state
sppliances such ac washing machine snd stove burmer
with repeatsble switching patiern.

« TypeIl: Contimmously Variable Devices (CWVI) with
oo fixed pattern of states such as dimmer lights snd
power drill.

«  Type-IV: Permanent Consumer Devices (PCDY) which
are active constantly for 2 long penocd soch as
telephome sets and hardwired smoke detector.

Ta]}lellpresmtsthemnstcmnmdamﬁ:r“lme
identification in WILM slong with their relsted reference
numabers.

The NILM methods for analyzing the measwured data are based
on one of the following three main approaches:

1) Steady-state analysis [3-5, 18-20].

2) Transient-state analysis [§, 20-23].

3) Mon-raditional spplisnce feamres [2-3, 24-27).

The main differences in these analysis approaches for NILM
applications are in the way they detect the changes in load
identification [20]. The first approach considers stable modes
(states) of appliances while the second approach mainby
conceniTaies on the ransitionsal stafe of applimces power
consumption behavior [2]. The last method is based on non-
traditional applisnce featres which is infroduced by [21] and
pEys more attention to the working style and operation of
sppliances. This sectom presents detsiled smalyses and
comparison of the above-mentoned data analysis approaches
for MILM applications.
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