Revisiting the “C-type adakites” in the Lower Yangtze River Belt, central eastern China: *in-situ* zircon Hf-O isotope and geochemical constraints

Xian-Hua Li¹*, Zheng-Xiang Li², Wu-Xian Li³, Xuan-Ce Wang², Yuya Gao¹

1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. ARC Center of Excellence for Core to Crust Fluid Systems and The Institute for Geoscience Research, Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

3. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Resubmitted to Chem Geol

*Corresponding author
E-mail: lixh@gig.ac.cn
Phone: 86-10-82998512
Fax: 86-10-62010846
Abstract

Adakites, or adakitic rocks in a broad sense, have been used to cover a large range of igneous rocks with a common feature of high Sr/Y and La/Yb ratios that can be achieved though different mechanisms. Amongst them, the continental, or C-type, adakitic rocks are particularly controversial in terms of their sources and genesis. In this study we revisit both Cu-Au ore-bearing and barren “C-type adakitic rocks” in the Lower Yangtze River Belt (LYRB) of central eastern China, including comprehensive analyses of their in-situ zircon Hf-O isotopes, whole-rock geochemistry and Sr-Nd isotopes. These “C-type adakitic rocks” consist of monzodiorite, granodiorite and quartz monzonite that are classified as shoshonitic to high-K calc-alkaline series in terms of their chemical compositions. They are characteristically high in potassium (K₂O = 2.4–4.5%, K₂O/Na₂O = 0.6–1.3), with continental crust-like isotopic compositions, i.e., whole-rock εNd(T) = -3.9 to -7.7, initial ⁸⁷Sr/⁸⁶Sr = 0.7054–0.7085, zircon εHf(T) = 0 to -11, and δ¹⁸O = 6‰ to 9‰. The ore-bearing and barren rocks are cogenetic. Fractional crystallization of hornblende, titanite, magnetite and apatite plays a major role in their chemical variations, with the ore-bearing rocks being more felsic (SiO₂ = 63.3–69.6%) and higher in Sr/Y (41.2–75.6) than the barren rocks (SiO₂ = 57.3–65.0%, Sr/Y =30.4–51.8). All these geochemical and isotopic features, in combination with regional geological data, suggest that the LYRB “C-type adakitic rocks” were unlikely to have been formed by melting of either a thickened and/or delaminated lower continental crust, or an altered oceanic crust as previously thought. These rocks are in general akin in geochemistry and isotopes to the Archean
sanukitoids and the Setouchi high-Mg andesites in Japan, and are thus interpreted as being formed by melting of an enriched mantle source metasomatized by dewatering from a delaminated flat-slab. The flat subduction of an oceanic plateau and its subsequent delamination and foundering since early Mesozoic beneath southeastern China (Li and Li, 2007) thus not only explain the temporal and spatial propagation of widespread Yanshanian igneous rocks regionally since ca. 195 Ma, but also the formation of a series of enigmatic “adakitic” rocks in the region, including the LYRB potassium-rich rocks that were inappropriately called the “C-type adakitic rock” by previous workers.

Keywords: adakites; granites; mineralization; zircon Hf-O isotopes; Yangtze River; China
The term "adakite" was first coined by Defant and Drummond (1990) to describe a group of intermediate to felsic volcanic or intrusive rocks in Cenozoic arcs associated with subduction of young (<25 Ma) oceanic lithosphere. These rocks have salient geochemical and isotopic features (e.g., sodic, aluminous, strongly depleted in HREE and Y, high in Sr/Y and La/Yb and MORB-like Sr and Nd isotopes) believed to be the results of partial melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. Adakite genesis and their implications for tectonic environments and porphyry copper mineralization have gained wide interests in the past two decades, and the term of “adakite” has been increasingly used for a much wider range of rock types than originally defined. In addition to slab melting, adakites, and/or adakitic rocks with similar geochemical features to the oceanic slab-derived adakites, are now believed to have been generated by other petrogenetic processes as well, such as (1) partial melting of thickened mafic lower crust triggered by underplating of hot basaltic magmas, (2) melting of delaminated lower crust in the mantle, (3) high-pressure fractionation of garnet and amphibole from hydrous basaltic magma, and (4) crustal assimilation and fractional crystallization of basaltic magmas (e.g., Castillo, 2006, 2012 and references therein). Among the numerous adakites and/or adakitic rocks that have been investigated, the “continental” (also named “C-type” or “potassic”) adakitic rocks, i.e., rocks formed through genesis 1 and 2 above (e.g., Zhang et al., 2001; Rapp et al., 2002; Xu et al., 2002; Wang et al., 2004a; Xiao and Clemens, 2007), have caused some confusions and debates. Despite being
geochemically similar to the modern slab-derived adakites, most “C-type” adakitic rocks are potassium-rich and isotopically akin to the continental crust.

The Lower Yangtze River Belt (LYRB) in central eastern China is one of the type localities where the “C-type” adakitic rocks were first proposed (e.g., Zhang et al., 2001; Xu et al., 2002). Because the LYRB “C-type” adakitic rocks are closely associated with Cu-Au mineralization, their genesis has attracted wide attention in the past decades. Models for their generation usually invoke partial melting of thickened and/or delaminated lower continental crust (e.g., Zhang et al., 2001; Xu et al., 2002; Wang et al., 2004a, b, 2006a, 2007). Alternatively, some other workers suggested, on the basis of geochemical and isotopic investigations, that the LYRB ore-bearing adakitic rocks represent partial melts of altered oceanic crust associated with assimilation of enriched components in the lithospheric mantle and/or crustal materials (Liu et al., 2010; Ling et al., 2009, 2011; Sun et al., 2010). To clarify the genesis of the LYRB “C-type” adakitic rocks, we carried out an integrated in-situ zircon Hf-O isotope, bulk-rock geochemistry and Sr-Nd isotope study on both ore-bearing and barren “C-type” adakitic rocks in the Edong and Jiurui mining districts of the western LYRB. The aims of our work include: (1) understanding the genetic relationship between the LYRB ore-bearing and barren “C-type” adakitic rocks, (2) providing further constraints on the source of these LYRB adakitic rocks by comparing these “C-type” adakitic rocks with other high Sr/Y rocks, and (3) exploring regional petrotectonic implications.
The eastern part of the Yangtze Craton is separated by the Dabie-Sulu Orogen from the North China Craton in the north, and by the Jiang-Shao Fault from the Cathaysia Block in the south (Fig. 1A). The basement rocks of the Yangtze Craton are exposed in the Kongling area near the Yangtze Gorge Dam, consisting of the Archean to Paleoproterozoic high-grade metamorphic TTG (tonalite, trondhjemite and granodiorite) gneisses, metasedimentary rocks and amphibolites (e.g., Gao et al., 1999, 2011; Jiao et al., 2009). The LYRB is situated along the Yangtze River Valley in the northeastern part of the Yangtze Block (Fig. 1B). There are no pre-Neoproterozoic rocks exposed in the LYRB; stratigraphic units in this area include late Neoproterozoic low-grade metasedimentary rocks and intercalated metavolcanic rocks, latest Neoproterozoic to Middle Triassic marine clastic sedimentary rocks and carbonates, Upper Triassic to Jurassic lacustrine and swamp-facies sedimentary rocks and intercalated coal beds, and Cretaceous evaporates, red beds and terrestrial volcanic rocks. Magmatic rocks dated at ca. 146–120 Ma (e.g., Mao et al., 2006; Zhou et al., 2008; J.W. Li et al., 2009; X.H. Li et al., 2010a) are concentrated in seven mining districts along the LYRB, including more than 260 intrusions with individual outcrop areas >0.2 km² (e.g., Chang et al., 1991; Zhai et al., 1992). Ore mineralization associated with the igneous rocks can be grouped into two major series: (1) relatively Si-rich, high-K calc-alkaline rock series related to Cu-Au-Mo-Pb-Zn-(Fe) polymetallic mineralization, and (2) relatively Si-poor, high-Na calc-alkaline rock series related to the “Daye-type” Fe (Cu, Co, S) and “Ningwu-type” Fe (S, V, Ti, P)
mineralization (Chang et al., 1991). Granodioritic porphyries with adakite-like geochemistry are the most important intrusions associated with the first series of Cu-Au-(Mo) polymetallic mineralization (e.g., Wang et al., 2001, 2004a, b, c, 2006a, 2007; J.W. Li et al., 2008, 2009; Ling et al., 2009).

The Jiurui and Edong mining districts are located at the western part of the LYRB (Fig. 1B). In the Jiurui district, numerous small porphyries intruded the Paleozoic to Lower Triassic clastic sedimentary rocks and carbonates (Fig. 1C). Among them, granodioritic porphyries at the Chengmenshan, Wushan and Fengshan areas host important porphyry-skarn type Cu-Au-(Mo) polymetallic mineralization (e.g., Pan and Dong, 1999). These rocks display porphyritic texture; phenocrysts are mainly plagioclase and quartz as well as subordinate hornblende and biotite, with a typical grain size of 0.8–2 mm. The matrix shows a fine-microcrystalline texture, consisting of quartz, K-feldspar, plagioclase, hornblende and biotite. Accessory minerals include magnetite, apatite, zircon and titanite. Molybdenite Re-Os and zircon U-Pb isotopic dating results indicate that these porphyries and associated mineralization formed synchronously at ca. 146–144 Ma (Xie et al., 2006a; J. Li et al., 2007; X.H. Li, 2010a).

In the Edong district, several major intrusions associated with two series of mineralization were emplaced into the Paleozoic to Lower Triassic clastic sedimentary rocks and carbonates. The “Daye-type” skarn Fe (Cu, Co, S) mineralization is associated with the Echeng, Tieshan and Jinshandian plutons dated at ca. 136–120 Ma (J.W. Li et al., 2009) in the northern Edong district. The
porphyry-skarn type Cu-Au polymetallic mineralization at the Tonglushan and Tongshankou mines is associated with the Yangxin and Lingxiang plutons, respectively, in the southern Edong district (Fig. 1D). The Yangxin and Lingxiang plutons are composed of predominant medium-grained diorite and subordinate quartz diorite and granodiorite. The Tonglushan and Tongshankou granodioritic porphyries show porphyritic textures. Phenocrysts are mainly plagioclase and biotite, with a typical grain size of 0.5–1.5 mm. The matrix consists of plagioclase, K-feldspar, quartz, hornblende and biotite as well as accessory minerals including magnetite, titanite, zircon and apatite. The Yangxin pluton and the associated Tonglushan Cu-Au-(Fe) mineralized porphyry were dated at ca. 140 Ma, whilst the Liangxiang pluton and the associated Tongshankou Cu-Mo mineralised porphyry were dated at ca. 145 Ma (X.H. Li et al., 2010).

The Yinzu pluton, located in the southernmost Edong district (Fig. 1D), is the sole intrusion that is not related to any mineralization in the Edong mining district. Medium-grained granodiorite dominates the pluton. Rock-forming minerals include plagioclase, K-feldspar, quartz, biotite and hornblende; the accessory minerals include magnetite, titanite, zircon, and apatite. It was dated at ca. 146 Ma (X.H. Li et al., 2010), synchronous with the adjacent Liangxiang pluton and Tongshankou porphyry.

In-situ zircon Hf-O isotopes and whole-rock geochemistry and Sr-Nd isotopes were analyzed in this study for the previously-recognized “C-type” adakitic rocks. These rocks include the Cu-Au-(Mo) ore-bearing porphyries (Chengmenshan, Wushan, Dongleiwan and Dengjiashan in the Jiurui district and Tonglushan and
Tongshankou in the Edong district) and their coeval ore-barren plutons (Yangxin, Lingxiang and Yinzu in the Edong district).

3 Analytical methods

3.1 SIMS zircon oxygen isotopes

Oxygen isotope measurements were conducted on the zircons previously used for SIMS U-Pb dating (X.H. Li et al., 2010a). After U-Pb dating, the sample mount was re-ground and re-polished to ensure that any oxygen implanted in the zircon surface from the O$_2^-$ beam used for U-Pb analysis was removed. Zircon oxygen isotopes were measured using the Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGG-CAS) in Beijing, with analytical procedures similar to those reported by X.H. Li et al. (2010b). The Cs$^+$ primary ion beam was accelerated at 10 kV, with an intensity of ca. 2 nA corresponding to a beam size of 10 μm in diameter. A normal incidence electron flood gun was used to compensate for sample charging. Negative secondary ions were extracted with a -10 kV potential. Oxygen isotopes were measured using the multi-collection mode.

Uncertainties on individual analyses are reported at 1σ level. The internal precision of a single analysis is generally better than 0.2‰ (2σ standard error) for 18O/16O ratio.

The instrumental mass fractionation factor (IMF) is corrected using the 91500 zircon standard with δ^{18}O$_{VSMOW} = 9.9$‰ (Wiedenbeck et al., 2004). Measured 18O/16O is normalized using the Vienna Standard Mean Ocean Water compositions (VSMOW, 18O/16O = 0.0020052), and reported in standard per mil notation. The instrumental
mass fractionation factor (IMF) is corrected as follows:

\[
(\delta^{18}O)_M = \left(\frac{^{18}O}{^{16}O}\right)_M - 1 \times 1000 \quad (\%)
\]

\[
IMF = (\delta^{18}O)_{M(standard)} - (\delta^{18}O)_{VSMOW}
\]

\[
\delta^{18}O_{Sample} = (\delta^{18}O)_M - IMF
\]

During the course of this study, Temora 2 zircon standard was also measured as an unknown to monitor the external precision. Forty measurements of Temora 2 yielded a weighted mean \(\delta^{18}O = 8.18 \pm 0.36\%\) (2\(\sigma\) standard deviation), which is consistent within errors with the reported value of 8.20\%\(\) (Black et al., 2004). SIMS oxygen isotopic data are listed in Appendix Table 1.

3.2 LA-MC-ICPMS Hf isotopes

In-situ zircon Lu-Hf isotopic analysis was carried out on a Neptune MC-ICPMS equipped with a Geolas-193 laser-ablation system at the IGG-CAS. Lu-Hf isotopic analyses were obtained on the same zircon grains that were previously analyzed for U-Pb and O isotopes, with ablation pits of 63 \(\mu\)m in diameter, ablation time of 26 seconds, repetition rate of 10 Hz, and laser beam energy density of 10 J/cm\(^2\). The detailed analytical procedures were similar to those described by Wu et al. (2006). The isobaric interference of \(^{176}\)Lu on \(^{176}\)Hf was corrected by measuring the intensity of the interference-free \(^{175}\)Lu isotope and using a recommended \(^{176}\)Lu/\(^{175}\)Lu ratio of 0.02655 (Machado and Simonetti, 2001). The isobaric interference of \(^{176}\)Lu on \(^{176}\)Hf is minor since the measured \(^{176}\)Lu/\(^{177}\)Hf for unknowns are normally lower than 0.003 in this study. On the other hand, the interference of \(^{176}\)Yb on \(^{176}\)Hf must be carefully...
corrected since the contribution of ^{176}Yb to ^{176}Hf could affect the accuracy of the measured $^{176}\text{Hf}/^{177}\text{Hf}$ ratio. The mean $^{173}\text{Yb}/^{172}\text{Yb}$ ratio of the individual spots was used to calculate the fractionation coefficient (β_{Yb}) and the contribution of ^{176}Yb to ^{176}Hf by applying ratios of $^{176}\text{Yb}/^{172}\text{Yb} = 0.5887$ and $^{173}\text{Yb}/^{172}\text{Yb} = 0.73925$ (Wu et al., 2006, 2010). The measured $^{176}\text{Yb}/^{177}\text{Hf}$ ratios, apart from a few analyses from samples 08YZ9.1 and 08YZ14.5, are between 0.01-0.03 for unknowns in this study. They are generally lower than the $^{176}\text{Yb}/^{177}\text{Hf}$ ratio of ~0.03 for Temora 2 standard zircon, thus have little effect on the accuracy of the $^{176}\text{Hf}/^{177}\text{Hf}$ ratios (Wu et al., 2006).

Measured $^{176}\text{Hf}/^{177}\text{Hf}$ ratios were normalized to $^{179}\text{Hf}/^{177}\text{Hf} = 0.7325$. No further external adjustments were applied for the unknowns because our determined $^{176}\text{Hf}/^{177}\text{Hf}$ ratios for 91500 zircon (0.282302 ± 0.000020, 2σ standard deviation) and Temora 2 zircon (0.282676 ± 0.000018, 2σ standard deviation) were in good agreement with the reported values (e.g. Goolaerts et al., 2004; Wu et al., 2006; Blichert-Toft, 2008). Initial $\varepsilon_{\text{Hf}}(T)$ values are calculated by using the U-Pb ages with the reference to the chondritic reservoir (CHUR) at the time of zircon crystallization from magmas. Because of extremely low $^{176}\text{Lu}/^{177}\text{Hf}$ ratios, the difference between the measured and the age-corrected initial $^{176}\text{Hf}/^{177}\text{Hf}$ ratios is mostly between 0.000002 and 0.000005 for the unknowns. Zircon Lu-Hf isotopic data are also listed in Appendix Table 1.

3.3 Major and trace elements

After petrographic examinations, the least-altered whole-rock samples, except for
3 samples from the Chengmenshan and Wushan Mines that show strong potassium alteration, were selected for geochemical and Sr-Nd isotopic analyses. Major-element oxides were analyzed using a Rigaku RIX 2000 X-ray fluorescence spectrometer at the Guangzhou Institute of Geochemistry (CAS) on fused glass beads. Calibration lines used in quantification were produced by bivariate regression of data from 36 reference materials encompassing a wide range of silicate compositions (X.H. Li et al., 2005), and analytical uncertainties are between 1% and 5%. Trace elements were analyzed using a Perkin-Elmer Sciex ELAN 6000 ICP-MS at the Guangzhou Institute of Geochemistry (CAS). Analytical procedures are similar to those described by X.H. Li et al. (2000). About 50 mg of each powdered sample was dissolved in a high-pressure Teflon bomb for 24 hr using a HF + HNO₃ mixture. An internal standard solution containing the single element Rh was used to monitor signal drift during counting. A set of USGS and Chinese national rock standards were chosen for calibration, and analytical precision is typically <5%. Major and trace element data are listed in Appendix Table 2.

3.4 Sr and Nd isotopes

Whole-rock powders for Sr and Nd isotopic analyses were dissolved using mixed HF+HNO₃ acid in Teflon bombs at ca. 200 °C for two days. Sr and rare earth elements (REEs) were separated using the columns filled with 2 mL of AG50W×12 cation-exchange resin. The detailed chemistry procedures for separation of Sr and REEs from the sample matrix are as same as those reported by C.F. Li et al. (2012).
Nd fractions were further separated by bis(2-ethylhexyl) hydrogen phosphate (HDEHP)-coated teflon columns. Strontium and Nd isotopic ratios were measured using a Finnigan MAT262 multi-collector mass spectrometer at the IGG-CAS. Detailed analytical procedures are similar to those described by Yang et al. (2004). The whole procedure blank for Nd and Sr is lower than 0.07 ng and 0.2 ng, respectively. Measured \(^{87}\text{Sr}/^{86}\text{Sr}\) and \(^{143}\text{Nd}/^{144}\text{Nd}\) ratios were normalized to \(^{86}\text{Sr}/^{88}\text{Sr} = 0.1194\) and \(^{146}\text{Nd}/^{144}\text{Nd} = 0.7219\), respectively. The measured values for the NBS987 Sr standard and JNdI-1 Nd standard were \(^{87}\text{Sr}/^{86}\text{Sr} = 0.710253 \pm 20\) (2\(\sigma\) standard deviation, \(n = 5\)) and \(^{143}\text{Nd}/^{144}\text{Nd} = 0.512115 \pm 12\) (2\(\sigma\) standard deviation, \(n = 5\)), respectively. The USGS reference material BCR-2 was measured as an unknown to monitor the accuracy of the analytical procedures. Three measurements yielded \(^{87}\text{Sr}/^{86}\text{Sr} = 0.704989 \pm 20\) (2\(\sigma\) standard deviation, \(n = 3\)) and \(^{143}\text{Nd}/^{144}\text{Nd} = 0.512629 \pm 14\) (2\(\sigma\) standard deviation, \(n = 3\)), indistinguishable within reported errors with the recommended values (Raczek et al., 2003). Sr and Nd isotopic data are listed in Appendix Table 3.

4 Results

4.1 Whole-rock geochemistry

Twenty-eight ore-bearing and eighteen barren rock samples were analyzed for major and trace elements. Apart from three ore-bearing samples (08YZ9.1, 08YZ9.2 and 08YZ12.6) that are strongly altered as shown by high LOI value of 4.0-6.4% and exceptionally low \(\text{Na}_2\text{O}\) content of \(\sim 0.2\%\) (Appendix Table 2), the remaining 43
samples are relatively fresh (LOI value mostly <2%), and their geochemical compositions are used for discussions below. The ore-barren samples have relatively low SiO$_2$ content between 57.3% and 65.0%. With increasing SiO$_2$, TiO$_2$, MgO, Fe$_2$O$_3^T$, CaO, P$_2$O$_5$, MnO, Sc and Y decrease, and Al$_2$O$_3$ (16-17%) and Na$_2$O (3.5-4.3%) remain roughly constant (Fig. 2). On the TAS (K$_2$O + Na$_2$O vs. SiO$_2$) diagram (Fig. 3), samples with SiO$_2$ ≤61% plot in the monzodiorite field of the shoshonitic series, whilst the remaining samples with SiO$_2$ of 63-65% plot in the granodiorite and quartz monzonite field of the high-K calc-alkaline series.

The ore-bearing samples have relatively high SiO$_2$ content (63.3-69.6%) and follow the same geochemical trends as the barren samples (Fig. 2), but with slightly higher K$_2$O (2.6-4.5%) and lower Al$_2$O$_3$ (14-17%). Most of them plot in granodiorite and quartz monzonite field of the high-K calc-alkaline series. The highly coherent behaviors in major and trace elements (Fig. 2, 3) indicate that the ore-bearing and barren rocks are likely cogenetic.

The ore-barren rocks show similar Chondrite-normalized REE patterns, with variable LREE enrichment (La$_N$ = 113-220, Yb$_N$ = 7.3-11.7 and La$_N$/Yb$_N$ = 12.1-23.1, subscript N denotes the Chondrite-normalized) and insignificant Eu anomaly (Eu/Eu* = 0.81-0.99) (Fig. 4A). Thus, crystal fractionation of feldspars must have played an insignificant role in the magmatic evolution, consistent with the roughly constant Al$_2$O$_3$ contents (Fig. 2). In the primitive mantle-normalized incompatible trace element spidergrams (Fig. 4B), these rocks show strong positive Pb anomaly and variable enrichment in Rb, Ba, Th, U, Pb, Sr and LREE and depletion in Nb, Ta, P,
and Ti. Similarly, the ore-bearing rocks also display LREE-enriched patterns without obvious Eu anomaly (Eu/Eu* = 0.82-1.02) (Fig. 4C). Compared with the barren rocks, the ore-bearing rocks have slightly higher abundances in LREE (LaN = 121-298) and lower in HREE (YbN = 5.3-10.4), consequently they display more fractionated LREE/HREE (LaN/YbN = 16.7-49.7). In the primitive mantle-normalized spidergrams, the ore-bearing rocks display similar trace element patterns to the barren rocks, with relatively low abundances in HREE (Fig. 4D). On the Sr/Y vs. Y and La vs. (La/Yb)N diagram (Fig. 5), the ore-barren rocks straddle the overlapping field of adakite and “normal” andesite-dacite-rhyolite, whereas the ore-bearing rocks have relatively higher Sr/Y and lower Y than the barren ones, mostly plotting in the adakite field.

4.2 In-situ zircon O and Hf isotopes

One hundred and eleven in-situ O and Hf isotope analyses were conducted on 111 zircons from the ca. 145 Ma ore-bearing rocks (including the Tongshankou, Chengmenshan, Wushan, Dongleiwan and Dengjiashan porphyries), and 38 analyses on 38 zircons from the ore-barren rocks (including the Liangxiang and Yinzu plutons. All these zircons crystallized at ca 145 Ma (X.H. Li et al., 2010), and most of them are euhedral, transparent, and 100-300 μm in length with aspect ratios between 2:1 and 3:1. They are all characterized by euhedral concentric zoning in cathodoluminescence (CL) images (Fig. 6). For the ore-bearing rocks, the measured zircon 176Hf/177Hf ratios range from 0.282343 to 0.282705, corresponding to the εHf(T) values from −12.1 to 0.5; the measured δ18O values are between 6.4‰ and
9.2‰ (Fig. 7A and B, Appendix Table 1). Zircons from the ore-barren rocks have 176Hf/177Hf ratios ranging from 0.282414 to 0.282695, corresponding to the εHf(T) values from −9.5 to 0.4, and δ^{18}O values from 6.6‰ to 8.2‰ (Fig. 7A and B, Appendix Table 1). Overall, zircons from the ca. 145 Ma ore-bearing and barren rocks have similar ranges of Hf and O isotopes, apart from a few grains from the ore-bearing rocks that have εHf(T) value lower than −10 and δ^{18}O value higher than 8.5‰. There is no obvious correlation between εHf(T) and δ^{18}O values (Fig. 7C).

Eighteen and 39 *in-situ* zircon O and Hf isotopes were conducted on one ca. 140 Ma Tonglushan ore-bearing porphyry (08YZ33.4) and two ore-barren rocks (08YZ15.1 and 08YZ16.5) from the Yangxin pluton, respectively. The Tonglushan zircons have 176Hf/177Hf ratios ranging from 0.282387 to 0.282544, corresponding to the εHf(T) values from −10.6 to −5.0, and δ^{18}O values from 6.0‰ to 8.6‰ (Fig. 7D and E, Appendix Table 1). The Yangxin zircons have relatively high 176Hf/177Hf ratios, ranging from 0.282460 to 0.282571, corresponding to the εHf(T) values from -8.9 to 0.4, and low δ^{18}O values of between 5.8 ‰ and 7.8‰ (Fig. 7D and E, Appendix Table 1). The combined dataset form a weak, negative correlation between εHf(T) and δ^{18}O values (Fig. 7F).

4.3 Whole-rock Sr-Nd isotopes

Seventeen ore-bearing and 11 barren rock samples were analyzed for Sr and Nd isotopes. Apart from 3 altered ore-bearing rocks (08YZ9.1, 08YZ9.2 and 08YZ12.6), the remaining samples have a limited range of Sr and Nd isotopic compositions (Fig.
8), with the initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio (I_{Sr}) = 0.7054 to 0.7085 and $\varepsilon \text{Nd}(T)$ = –3.9 to –7.7 (Appendix Table 3). Three altered ore-bearing rocks exhibit comparable $\varepsilon \text{Nd}(T)$ values with the least-altered rocks, but much higher I_{Sr} values of 0.7118 to 0.7160, indicating that alteration processes significantly influenced the Rb-Sr isotopic system, but had little, if any, effect on the Sm-Nd system of these rocks.

5 Discussions

While the LYRB ore-bearing adakitic rocks have been widely investigated, less attention has been paid to the genesis of the associated barren rocks, and the relationship between the ore-bearing and barren rocks is also an issue of debate. Wang et al. (2004b, c) proposed that the ore-bearing adakitic porphyries at Tongshankou originated from partial melting of delaminated lower crust with garnet being the main residual mineral, whereas the nearby Yinzu barren rocks resulted from partial melting of thickened lower crust with residual garnet ± plagioclase ± hornblende. Contrarily, J.W. Li et al. (2009) interpreted that the Yinzu rocks were generated by low-pressure fractional crystallization of mantle-derived mafic magmas in response to the late Mesozoic lithospheric extension and thinning in eastern China.

The barren rocks are not only closely associated in time and space with the ore-bearing porphyries, but also volumetrically dominant. Therefore, integrated and comparative investigations of whole-rock geochemistry and Sr-Nd isotopes, and in-situ zircon Hf-O isotopes for these barren and rocks, will not only provide robust constrain on their genesis, but also shed new light on the sources of the coeval
ore-bearing adakitic porphyries.

5.1 Magmatic processes

Major and trace element data for the studied ore-bearing and barren rocks show coherent trends (Fig. 2 and 3), with the barren rocks being relatively more mafic (SiO$_2$ = 57.3-65.0%) than the ore-bearing porphyries (SiO$_2$ = 63.3-69.6%). Such geochemical variations could be attributed to different magmatic processes such as fractional crystallization of common parental magmas, partial melting of mafic igneous sources, and magma mixing. Because of their limited Sr and Nd isotopic variations and the lack of any correlation between Sr-Nd isotopes and SiO$_2$ (not shown), magma mixing and/or assimilation of crustal materials, as indicated by the existence of a few old xenocrystal zircons (X.H. Li et al., 2010), were unlikely the dominant mechanisms for the chemical variations of the studied rocks. Figure 9 is a log-log diagram (Cocherie, 1986) of correlation between compatible and incompatible trace elements, which has been demonstrated to be an effective way of distinguishing fractional crystallization from partial melting. It shows that Sc decreases rapidly with a relatively small increase in Rb, suggesting that fractional crystallization played a major role in the chemical variations of the studied rocks. Decreases in MgO, Fe$_2$O$_3$, CaO, TiO$_2$, P$_2$O$_5$ and Sc with increasing SiO$_2$ (Fig. 2) indicate fractional crystallization of hornblende, titanite, magnetite and apatite. The lack of obvious Eu negative anomaly (Fig. 4A and C) and nearly constant Al$_2$O$_3$ over a wide range of SiO$_2$ content (Fig. 2) suggest insignificant fractional crystallization of feldspars.
Therefore, the parental magmas of the studied rocks should be more mafic than the least-evolved Yangxin monzodiorite sample 08YZ16.5 (SiO$_2$ = 57.3%). If this deduction is correct, the parental magmas should be potassium-rich basalt to basaltic andesite in compositions.

We performed a modeled Rayleigh fractionation of hornblende, titanite and magnetite from an andesite melt (SiO$_2$ = 57%, Sr = 690 ppm, Y = 23 ppm, Sc = 25 ppm, Yb = 2.5 ppm, La = 36 ppm, Rb = 80 ppm). Because REE, high field strength elements (HFSE) and transition element (Sc) are highly compatible into titanite and hornblende (Bachmann et al., 2005; Klein et al., 1997; LaTourrette et al., 1995; Prowatke and Klemme, 2005; Richards and Kerrich, 2007; Sisson, 1994), their partition coefficients are important parameters for geochemical modeling of petrogenetic processes. Experimental studies have demonstrated that melt compositions strongly affect the partitioning of trace elements between titanite and silicate melt (Prowatke and Klemme, 2005). Compilation of experiment determined hornblende-melt partition coefficient dataset (LaTourrette et al., 1995; Richards and Kerrich, 2007; Sisson, 1994) indicates that melt silicate contents also affect the partition coefficients of Sc, Yb and Y between hornblende and melts. These three elements behave moderately incompatible to slightly compatible in hornblende at basalt-basaltic andesite system (SiO$_2$<57 wt.%). By contrast, with increasing silica content, Sc, Yb and Y are highly compatible into hornblende. Therefore, geochemical modeling of petrogenetic processes must consider the effect of melt compositions on the melt-mineral partition coefficients. As a consequent, a two-stage modeled
Rayleigh fractionation is applied to constrain the effect of hornblende associated with titanite and magnetite. The modeling results are plotted in Figs. 5 and 10, and the partition coefficients from Sisson (1994) and Prowatke and Klemme (2005) are listed in Appendix Table 5.

The first-stage involves fractionation of 10% hornblende and 5% magnetite. Experimental data showed that hornblende crystallized from basaltic to andesitic samples possess SiO$_2$ = 40-44% and Fe$_2$O$_3^T$ = 7-12 wt.% (Klein et al., 1997; LaTourrette et al., 1995; Sisson, 1994). As shown in Fig. 2, decreasing SiO$_2$ from 57% to 65% corresponds to ~4 wt.% depletion of Fe$_2$O$_3^T$. This requires ~5% magnetite fractional crystallization if Fe$_2$O$_3^T$ is 70% and 20% in magnetite and hornblende, respectively. When the magma evolved from an andesitic melt with SiO$_2$ = 57% (the lowest silicate sample in this study), mass-balance suggests fractional crystallization of 10% hornblende associated with 5% of magnetite would result in a residual melt with ~64 wt.% SiO$_2$ and ~4 wt.% Fe$_2$O$_3^T$. Because La, Yb, Y, Sr and Rb are highly incompatible in magnetite in all melts, Sc is incompatible in magnetite within basalt-andesite melt, but only slightly compatible within high-silica melt, the effect of magnetite fractionation on La, Yb, Y, Sr, Rb and Sc is ignored.

The second-stage involves fractionation of 7.2% hornblende, 0.1% titanite and 2.7% magnetite (proportions relative to the original magma system) from the residual melt (SiO$_2$ = 64%). Because Yb, Y and Sc behave highly compatible in siliceous melt, the modeling shows that ~10% fractionation of hornblende, titanite and magnetite at the second-stage will significantly deplete Yb, Y and Sc. This modeling results match
well with the observed geochemical trends (Figs. 5 and 9), indicating that fractional
crystallization of ~17.2% hornblende, ~0.1% titanite and ~5.7% magnetite from an
andesitic melt (SiO$_2$ = 57%) could account for the adakite-like Sr/Y and La/Yb ratios
for the LYRB ore-bearing rocks.

5.2 Magma sources

The magma sources for the LYRB “adakitic rocks” are highly controversial. Many previous workers invoked thickened and/or delaminated lower continental crust
as the sources for these rocks (Zhang et al., 2001; Xu et al., 2002; Rapp et al., 2002;
Wang et al., 2004a, b, c, 2006a, 2007). More recently, it has been proposed that the
LYRB “adakitic rocks” were generated by partial melting of altered oceanic crust,
possibly in a slab window created by a subducted mid-ocean ridge (Ling et al., 2009,
2011; Liu et al., 2010; Sun et al., 2010). J.W. Li (2009) further speculated that some
of these rocks from the Edong mining district were derived from an enriched
lithospheric mantle.

5.2.1 Melting of thickened continental crustal model

In comparison with typical slab-derived adakites that are characteristically
sodium-rich (Na$_2$O >3.5%, K$_2$O/Na$_2$O ≈ 0.4) with MORB-like isotopic compositions
(such as 87Sr/86Sr <0.7045) (see compilation of Richards and Kerrich, 2007), the
LYRB “adakitic rocks” are potassium-rich (Fig. 10 for results of this study, where
K$_2$O/Na$_2$O = 0.6-1.3) with continental crust-like isotopic compositions (I_{Sr} = 0.7054 to
0.7085 and εNd(T) = -4.3 to -7.7). Such distinct geochemical and isotopic features prompted some researchers (e.g., Zhang et al., 2001; Xu et al., 2002; Wang et al., 2004a, b, c, 2006a, 2007) to propose that the LYRB “adakitic rocks” were formed by partial melting of a thickened or delaminated lower continental crust (“C-type” adakites). Wang et al. (2004b, c) further proposed two groups of “C-type” adakites for the ore-bearing and barren intrusions in the Edong district. One group is typified by the Cu-bearing Tongshankou porphyry that is characterized by relatively high SiO$_2$ and Sr/Y but low Fe$_2$O$_3^T$; it was interpreted to be formed by melting of delaminated lower continental crust materials in the lithospheric mantle. Another group is typified by the Yinzu barren pluton that is relatively low in SiO$_2$ and Sr/Y but high in Fe$_2$O$_3^T$, which is thought to be formed by melting of a thickened lower continental crust. Such a petrogenic interpretation requires the existence of a thickened lower continental crust (LCC) prior to the formation of these rocks.

However, the required LCC thickening is inconsistent with the regional basin history, i.e. changing from a foreland basin south of the Dabie Orogen in early Mesozoic (Grimmer et al., 2003) to extensional basins in late Mesozoic (Ling et al., 2009). There is also no evidence for regional crustal uplifting responding to the delamination of a thickened lower crust. The Nd isotopic compositions of the studied adakitic rocks are also inconsistent with such a model. The LCC basement rocks for the Yangtze craton, represented by the Archean Kongling Group rocks (Gao et al., 1999) and the LCC-derived granitoid rocks from the Dabie Orogen and northeastern Yangtze Block (Liu et al., 2010 and references therein), have significantly lower Nd
isotopic compositions than the studied LYRB adakitic rocks (Fig. 8). The LYRB
“adakitic” rocks have a restricted Th/U ratio of 3-7, which is significantly lower than
that of the lower continental crust, or lower crust-derived melts (Th/U = 3–50) in the
Dabie Orogen (Ling et al., 2011). More recently, He et al. (2011) demonstrated that
the early Cretaceous high Sr/Y granitoids (HSG) from the Dabie Orogen were
generated by high-pressure partial melting of the thickened (>50 km) LCC. These
HSG are characterized by higher Sr and Sr/CaO at given SiO$_2$ than the normal
calc-alkaline rocks. It is noted that the LYRB rocks of this study are similar to the
normal calc-alkaline rocks, rather than the HSG, on the Sr vs. SiO$_2$ and Sr vs. CaO
diagrams (Fig. 11). Overall, the integrated geological, geochemical and isotopic
observations argue against a LCC origin for the LYRB adakitic rocks.

5.2.2 Melting of subducted oceanic crust model

An alternative model for the generation of the LYRB “adakitic” rocks by melting
of subducted oceanic slab was proposed based on the following arguments. (1) Ling et
al. (2011) demonstrated that the LYRB “adakitic” rocks have a restricted range of
Th/U ratios (mostly around 3–6), which is consistent with our new data for the Jiurui
and Edong rocks with Th/U = 2.9–7.0 and a mean of 4.5 ± 1.2 (1σ) (Appendix Table
2). Such a range of Th/U ratios is consistent with that of oceanic crust-generated melts
(Th/U ≈ 3), but significantly lower than that of the lower continental crust or its
derived melts, or lower crust-derived adakitic rocks (Th/U = 3–50), in the Dabie
Orogen (Ling et al., 2011). (2) The LYRB ore-bearing “adakitic” rocks have relatively
lower and more restricted La/Yb (14–49) and Sr/Y (29–185) ratios than those of the Dabie adakitic rocks (La/Yb = 21–402, Sr/Y = 6.5–1300), consistent with them being slab-derived and lower continental crust-derived adakites, respectively (Liu et al., 2010; Ling et al., 2011). (3) Liu et al. (2010) demonstrated that the LYRB ore-bearing adakitic rocks from Yueshan and Tongguanshan have more radiogenic Pb isotopes (206Pb/204Pb = 17.74–17.90, 207Pb/204Pb = 15.48–15.55, and 208Pb/204Pb = 37.94–38.06) than those (206Pb/204Pb = 16.26–16.38, 207Pb/204Pb = 15.34–15.40, and 208Pb/204Pb = 36.56–36.90) of the barren adakitic rocks from the STLF (South Tan-Lu Fault including Dabieshan). The less radiogenic Pb of the STLF adakites are consistent with that of the ancient lower continental crust of the Yangtze Craton, whilst the more radiogenic Pb of the LYRB adakitic rocks overlap with those of MORB. These authors interpreted that the continental crust-like Sr-Nd isotopes of the LYRB rocks are attributed to involvement of sediments in the magma source, and the LYRB ore-bearing adakitic rocks therefore represent partial melts of a hydrous oceanic crust with sediments.

Our integrated in-situ zircon Hf-O isotopic data, together with whole-rock geochemical and Sr-Nd isotopic data, however, do not support such an interpretation. Apart from a few analyses, the LYRB “adakitic” rocks have zircon δ^{18}O values mostly between 6.5‰ and 8.0‰ (Fig. 3). Taking into account of the SiO$_2$ contents of the host rocks and using the equation of δ^{18}O$_{WR} \approx \delta^{18}O_{Zir} + 0.0612$ (wt.% SiO$_2$) – 2.5 (Valley et al., 2005), the δ^{18}O values for the ore-barren and ore-bearing magmas are calculated at 7.2–9.3‰ and 8.0–9.5‰, respectively. Slightly higher magmatic δ^{18}O
values in the ore-bearing rocks than the barren ones might be attributed to fractional

crystallization of hornblende, titanite and magnetite (as these minerals have lower

δ^{18}O values than the equilibrium melt). Contamination of upper crustal materials is

negligible, as only two xenocrystic zircons are found among 222 dated zircons (Li XH

et al., 2010). Therefore, the oxygen isotopic compositions are mainly reflective of the

nature of their sources. It is noted that the calculated magmatic δ^{18}O values are clearly

lower than that of the partial melts of the basaltic rocks and/or sediments at the upper

part of a oceanic crust that typically have δ^{18}O values of ca. 9–20‰, but significantly

higher than that of melts from hydrothermally altered gabbros at the interior of an

oceanic crust which typically have δ^{18}O values of ca. 2–5‰ (Bindeman et al., 2005).

While the oxygen isotopic compositions could be attributed to mixing of the upper

and interior/lower oceanic crust portions, several lines of evidence argue against this

possibility. First, the continental crust-like whole-rock Sr-Nd and zircon εHf isotopic

compositions of the LYRB rocks are clearly inconsistent with their predominant

derivation from oceanic crust. Second, the LYRB “adakitic” rocks are

characteristically potassium-rich, in contrast to the oceanic crust-derived melts that

are potassium-depleted. Third, lack of correlations between the whole-rock Sr-Nd

isotopes and geochemistry (not shown) is inconsistent with the binary mixing process.

Fourth, magmatic δ^{18}O values of the LYRB “adakitic” rocks are clearly higher than

those (δ^{18}O = 6.4–7.3‰) of typical slab-derived adakites whose compositions could

be a result of a mixture of the slab sources in terms of oxygen isotopes (Bindeman et

al., 2005). Our geochemical modeling results confirm that fractional crystallization
played a major role in magmatic processes of these rocks, which accounts for their "adakitic" geochemical features (e.g. high Sr/Y and La/Yb). Therefore, the integrated isotopic and geochemical data do not support the interpretation that the LYRB adakitic rocks resulted from partial melts of the subducted oceanic crust.

5.2.3 Melting of a subduction-enriched mantle source model

As noted, the parental magmas of the barren rocks are likely potassium-rich basalt to basaltic andesite in compositions, which are usually considered to be derived from a mantle enriched by subduction-related metasomatism (e.g., Müller and Groves, 1995). This is consistent with the interpretation of J.W. Li et al. (2009) who suggested that the Edong plutonic rocks were derived from an enriched mantle source. The continental crust-like Sr and Nd isotopic compositions of these rocks (Fig. 8) are indistinguishable from those of the regional Cretaceous basalts (Xie et al., 2006b), likely reflective of the isotopic compositions of their mantle sources. Figure 12 shows a comparison of the calculated magmatic δ¹⁸O values of the LYRB "adakitic" rocks with the world’s island arc volcanic rocks, adakites, high-Mg andesites, geochemically exotic melts from Setouchi (Japan), and Archean orogenic TTGs and post-orogenic sanukitoids (compiled by Bindeman et al., 2005). Inferred magmatic δ¹⁸O values of the LYRB adakitic rocks are not only considerably higher than those of mid-ocean ridge basalts (MORB) (5.5-5.8‰) and island arc volcanic rocks (5.7-6.4‰), but also clearly higher than those of slab-derived adakites (6.4-7.3‰), TTG suites (6.3-7.4‰) and high-Mg andesites (HMAs) (6.8-7.7‰). On the other
hand, their magmatic δ^{18}O values, particularly those of the barren rocks, largely overlap those of the Setouchi lavas (6.8-8.2‰) in SW Japan and the Archean post-orogenic sanukitoids (7.3-8.8‰).

Figure 13 compares the K$_2$O/Na$_2$O, Sr and Rb+Ba compositions of some high Sr/Y rocks (including slab-melt adakites, Archean post-orogenic sanukitoids, the Setouchi high-Mg andesites and high Ba-Sr granites) with that of the LYRB “adakitic” rocks of this study. Slab-melt adakites are characteristically high in Sr but low in K$_2$O/Na$_2$O and Rb+Ba, whereas Archean sanukitoids, high Ba-Sr granites and the Setouchi lavas are relatively higher in K$_2$O/Na$_2$O and Rb+Ba and lower in Sr than the slab-melt adakites. The term “sanukitoid” was coined by Shirey and Hanson (1984) to describe a suite of Late Archaean diorites to granodiorites from the Superior Province that display similar major element geochemistry to the Miocene high-Mg andesite (sanukite) from the Setouchi volcanic belt of Japan (e.g., Tatsumi and Ishizaka, 1982). In general, sanukitoids have intermediate major and trace element compositions between typical Archaean TTG and modern arc granitoids. They are characterized by high Mg# (>70), high Ni and Cr contents; Ba > 800 ppm; Sr > 800 ppm, enrichment in alkali (Na$_2$O + K$_2$O > 3% for SiO$_2$ = 50%) and strongly fractionated REE patterns (Ce$_N$/Yb$_N$ = 10-50, Ce$_N$ > 100) (Moyen et al., 2003; Martin et al., 2009). The genesis for sanukitoids is often thought to be linked, directly or indirectly, to TTG melts derived from partial melting of basaltic crust in two scenarios: (1) TTG melts react with peridotite to give a sanukitoid liquid; (2) TTG melts are entirely consumed by metasomatic reactions with the peridotite, and
subsequent malting of the metasomatized mantle results in sanukitoids (e.g., Martin et al., 2009; Laurent et al., 2011). The Setouchi high-Mg andesite lavas were considered to be modern analogues of the Archean sanukitoids (Tomlinson et al., 2002). They have lower Sr/Y and La/Yb ratios, but much higher magmatic δ^{18}O (6.8-8.2‰) and initial I_{Sr} (0.7041-0.7060) values than those of typical adakites and high-Mg andesites, suggesting addition of silicic melt from subducted sediments to their peridotite mantle sources (e.g., Tatsumi 2001; Bindeman et al., 2005). High Ba-Sr granites are generally associated with coeval appinites; they are considered to be formed by AFC (assimilation-fractional crystallization) process of evolved appinite magmas that were derived from enriched mantle sources metasomatised by previous subduction (e.g., Fowler and Henney, 1996; Ye et al., 2008). Such enriched mantle sources in the Caledonian Orogen of northern Scotland are characteristically high in initial I_{Sr} (~0.7061) and δ^{18}O (~8‰) (Fowler and Henney, 1996).

The LYRB “adakitic” rocks are generally comparable with the Archean sanukitoids, high Ba-Sr granites and the Setouchi lavas in terms of K$_2$O/Na$_2$O, Sr and Rb+Ba compositions. Overall, they share similar geochemical and isotopic compositions with the Archean sanukitoids, high Ba-Sr granites and the Setouchi lavas, but differ from slab-derived adakites. Similar to Archean sanukitoids, the Setouchi lavas and high Ba-Sr granites, the LYRB “adakitic” rocks display typical continental crust-like isotopic compositions: high initial I_{Sr} (0.7054 to 0.7085) and magmatic δ^{18}O (7.2–9.5‰) and low εNd(T) (−3.9 to −7.7) and zircon εHf(T) = 0.5 to −12 (Appendix Table 1 and 3). These isotopic features suggest a significant
involvement of continental crustal materials in the magma by either crustal contamination or source-contamination. We use an I_{Sr} vs. magmatic $\delta^{18}O$ plot (Fig. 14) (James, 1981) to distinguish these two different possibilities. It can be seen that the Caledonian high Ba-Sr granites from northern Scotland display crustal contamination trend, i.e., $\delta^{18}O$ increases quickly with small increase of I_{Sr}, implying a crustal contamination process for their genesis (Fowler and Henney, 1996). On the contrary, the LYRB rocks and the Setouchi lavas form a coherent positive correlation; their I_{Sr} increases quickly with slight increases in $\delta^{18}O$ (Fig. 14). It is noteworthy that magmatic fractionation could result in oxygen isotopic fractionation. However, \sim5% SiO$_2$ difference between the ore-bearing and barren rocks only causes \sim0.3‰ difference in their magmatic $\delta^{18}O$ values on the basis of the quantitative correlation of $\delta^{18}O_{WR} \approx \delta^{18}O_{Zir} + 0.0612 \times $ (wt.% SiO$_2$) – 2.5 (Valley et al., 2005). Such small difference could not change the Sr-O isotopic trend of source-contamination. This is consistent with the genesis of the Setouchi lavas whose mantle source was contaminated by sedimentary melts (Bindeman et al., 2005). Therefore, the continental crust-like isotopic signatures in the LYRB adakitic rocks can best be attributed to source-contamination, whereas crustal contamination played little, if any, role in their genesis. Compared with the Setouchi lavas, the LYRB rocks have higher $\delta^{18}O$ and I_{Sr} values, possibly reflecting the involvement of a larger fraction of sedimentary melts in their mantle source.

In summary, we conclude that the parental magmas of the LYRB ore-barren intrusive rocks were derived from an enriched mantle source that had been
metasomatized by sedimentary melts. Ore-bearing “adakitic” porphyries were
generated by fractional crystallization of the barren magmas with little, if any, crustal
contamination. Fractional crystallization of hornblende, titanite, magnetite and apatite
from the melts resulted in the adakite-like geochemical features such as high Sr/Y and
La/Yb in the ore-bearing porphyries. This petrogenesis has significant implications
for the mechanism of Cu-Au mineralization in the differentiated felsic rocks, though it
is beyond the scope of present study. Relatively high Sr/Y and La/Yb characteristics
of the ore-bearing porphyries reflect the hydrous and evolved nature of these rocks
through hornblende + titanite over plagioclase fractionation. The mineral assemblage
of hornblende, biotite, magnetite, apatite and titanite suggest a high oxidization state
for the origin of these rocks. Thus, we consider that the mineralization is likely
attributed to fractional crystallization, with or without crustal assimilation, of high-K
calc-alkaline basaltic andesite magmas sourced by partial melting of the
metasomatized mantle wedge under hydrous, oxidized condition, which is highly
advantageous to Cu-Au metallogenesis (Richards and Kerrich, 2007).

5.3 Regional tectonic implications: flat-slab subduction or ocean-ridge subduction?

Mesozoic magmatism, including the LYRB magmatism, is widespread in eastern
South China (Fig. 15) and present a rich source for W-Sn-Mo-Bi-Be-Nb-Ta and
Cu-Fe-Au-Mo-Zn-Pb-Ag mineral deposits (e.g., Chang et al., 1991; Zhai et al., 1992;
Pei and Hong, 1995). However, the tectonic driver that caused such an
intracontinental large magmatic province has been an enigma for many years. The
traditional wisdom was that the magmatic province represent a continental magmatic arc (e.g., Jahn et al., 1990). However, the ca. 1000 km width of the magmatic province, and their complex chemical/petrological compositions (i.e. the presence of large amount of A-type granites and other extensional continental magmatism, with only a minor amount of andesite) argue against a simple arc model (Li, 2000; Li and Li, 2007). Zhou and Li (2000) recognize a coastward younging trend in the Jurassic-Cretaceous magmatism in the eastern half of the magmatic province, and proposed that the subduction angle changed from shallow to steep in that time interval. However, the model explains neither the western half of the magmatic province, nor the non-arc characteristics of the bulk of the magmatism or the pre-Jurassic magmatism.

Li and Li (2007) proposed a flat-slab subduction to explain (1) the propagation of a Permian-Triassic orogenic front from the coastal region to ca. 1300 km into the continental interior, featuring a widening fold-and-thrust belt with a small amount of syn-orogenic magmatism, and (2) the development of a broad sag basin on top of the orogeny between late Triassic and early Jurassic. Their model suggests that the foundering of the flat-slab caused a post-orogenic magmatic flare-up that started from central-southern south China at ca. 190 Ma, and propagated to the entire southeastern China by ca. 90 Ma, accompanied by a crustal rebound and extension (see contours of post-orogenic magmatic front at 180 Ma, 160 Ma and 140 Ma, respectively, in Fig. 13 and Appendix 4 that shows the central and northern part of the Mesozoic magmatic province).
Cretaceous magmatism in the Dabie Orogen (Fig. 13) has in the past been interpreted as a result of orogenic collapse after the collision between the South and North China blocks (e.g., Li, 1994; Wu et al., 2007; Zhang et al., 2010). However, as shown in Figure 13 and Appendix 4, the age distribution of Mesozoic magmatism in both the Dabie Orogen, and the LYRB to its south and east, is consistent with the broad outward-younging trend for the entire eastern south China. Their genesis may thus be linked to the foundering of the flat-slab too.

We illustrate in Figure 16 how this may work. At ca. 200 Ma, near the end of the Indosinian Orogeny caused by the initiation of the subduction along the coast (Li et al., 2006) and then the flat-subduction of a young and hot oceanic plateau (Li and Li, 2007), continuing slow eclogization of the oceanic plateau at relatively low temperatures drove the slow dewatering of the plateau basalts, which metasomatized the subcontinental lithospheric mantle (Fig. 16A). At the same time, a section of the normal oceanic lithosphere under the Dabie Orogen and the region to its east in the LYRB, which traveled with the flat-slab all the way from the subduction zone >500 km away, had already gone through much of its dewatering process at that P-T condition before reaching the Dabie mantle region, and was thus unable to drive significant metasomatism of the rocks above it. The delamination of the flat-slab after ca. 190 Ma (Fig. 16B) caused fast dewatering of the oceanic plateau and melting of both some of the plateau basalts to generate the Dexing adakitic granites (Wang Q et al. 2006b), and the metasomatised lithospheric mantle and mantle wedge to generate the high-K calc-alkaline intrusive rocks in the study region. Melts of the sediments on
the oceanic plateau likely caused the enrichment in ^{87}Sr and ^{18}O of the metasomatised mantle. At that time (ca. 170-140 Ma, Fig. 16B), little was happening in the mantle beneath the Dabie Orogen and the region to its east.

After ca. 140 Ma, the entire subducted slab became detached from the continental lithosphere (Fig. 16C). The increased pressure and elevated ambient mantle temperature would have allowed further dehydration of the entire oceanic slab (including a small amount of dewatering from the normal oceanic crust). This, together with the heat conducted by the asthenospheric upwellings, would have driven further melting above the foundering oceanic plateau. Similar conditions, together with a thinned lithosphere due to orogenic erosion and orogenic collapse, would also have driven the melting of the thickened lower crust under the Dabie Orogen to form high Sr/Y granites (lower crust-derived barren adakitic rocks) at ca. 140-130 Ma (Fig. 16C), followed by emplacement of normal calc-alkaline granites and mafic-ultramafic intrusions in response to removal of the eclogitic mountain root at ca. 130-120 Ma (e.g., Li et al., 1999; Zhao et al., 2005; Liu et al., 2010; He et al., 2011).

As an alternative to the flat-slab foundering model, Ling et al. (2009) and Sun et al. (2010) proposed a ridge subduction model for the generation of the LYRB magmatism and related mineralization. However, such a model would predict a younging trend of magmatism from the coastal region to the continental interior, which is opposite to the trend as shown in Figure 15. In addition, the ridge-subduction model predicts a slab window and formation of slab-derived adakites (Ling et al., 2009). Slab windows formed by ridge-subduction have been identified as important
sites for slab melting, and adakitic melts form proximal to the slab window margins at depths of 25-90 km (e.g., Thorkelson and Breitsprecher, 2005). It is noted that most Cenozoic adakites related to ridge subduction were formed in the near-trench locations (Cole and Stewart, 2009). Contrarily, the spatial distribution of the LYRB “adakitic” rocks is broadly within the continental interior perpendicular to the continental margin. In particular, the “adakitic rocks” in the Edong mining district are >1000 km away from the present continental margin. Provided the “adakitic” rocks in the Edong were formed at depths of 25-90 km, it would invoke a flattened subduction with an angle of <5°. Considering the synchronous formation of adakitic rocks (X.H. Li et al., 2010) and development of rift basins (Zhu et al., 2010) along the whole LYRB, such a flat ridge subduction is unlikely feasible. Our integrated geochemical and isotopic data demonstrate that the studied “adakitic rocks” are most likely derived from the metasomatised mantle sources, rather than the subducting oceanic crust.

6 Conclusions

We draw the following conclusions based on our comprehensive analyses of situ zircon Hf-O isotopes and whole-rock geochemistry and Sr-Nd isotopes as well as regional geological data.

(1) The LYRB “C-type adakitic rocks” consist of monzodiorite, granodiorite and quartz monzonite. Characteristically high in potassium (K₂O = 2.4–4.5%, K₂O/Na₂O = 0.6–1.3), they belong to shoshonitic to high-K calc-alkaline series. The ore-bearing
and barren rocks are most likely cogenetic products of common parental magmas. Fractional crystallization of hornblende, titanite, magnetite and apatite plays a major role in their chemical variations, with the ore-bearing rocks being more felsic (SiO₂ = 63.3–69.6%) and higher in Sr/Y (41.2–75.6) and (La/Yb)ₙ (17–50) than the barren rocks (SiO₂ = 57.3–65.0%, Sr/Y =30.4–51.8 and (La/Yb)ₙ = 12–23). High Sr/Y and (La/Yb)ₙ ratios of the ore-barren porphyries are more likely attributed to hornblende fractionation than their primary features formed by high-pressure melting with residual garnet ± hornblende ± clinopyroxene.

(2) The LYRB “C-type adakitic rocks” have typical continental crust-like isotopic compositions, i.e., whole-rock εNd(T) = −3.9 to −7.7, Iₛₑ = 0.7054 to 0.7085; zircon εHf(T) = 0 to −11, and zircon δ¹⁸O = 6‰ to 9‰. Integration of geochemistry, zircon Hf-O and whole-rock Sr-Nd isotopes and regional geological data suggests that the LYRB “C-type adakitic rocks” are unlikely formed by either melting of thickened and/or delaminated lower crust, or altered oceanic crust as previously thought. They are akin in geochemistry and isotopes to the Archrean sanukitoids and the Setouchi high-Mg andesites, and most likely generated by melting of an enriched mantle source metasomatized by subduction processes. These potassium-rich rocks are genetically different from those sodic adakitic rocks generated by melting of eclogites and/or garnet amphibolites in the thickened, orogenic lower crust in Tibet (Chung et al., 2003) and Andes (Petford and Atherton, 1996). Thus, they could not be classified as the “C-type adakites” as previously thought.

(3) As the northern part of the Yanshanian intracontinental large magmatic
province in southeastern China, the model of flat-slab subduction of oceanic plateau since early Mesozoic beneath southeastern China and subsequent delamination and foundering of the flat-slab can best account for the formation of the metasomatised mantle source for generating the LYRB potassium-rich intrusive rocks.

Acknowledgement

We thank Guo-Qiang Tang, Yu Liu, Yue-Heng Yang and Ying Liu for their assistance in geochemical and isotope analyses. Comments from two anonymous reviewers and the editor-in-chief Laurie Reisberg improved the paper greatly. This work was supported by the Chinese Ministry of Science and Technology (grant 2012CB416702), the Chinese Academy of Sciences (grant KZCX2-YW-15-2), and the Australian Research Council (DP110104799). This is TIGeR (The Institute for Geoscience Research) publication xxx and contribution xxx from the ARC Centre of Excellence for Core to Crust Fluid Systems.
References

Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lee, T.Y., Qian, Q,

When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chem. Geol. 197, 87-110.

James, D.E., 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annu. Rev. Earth Planet. Sci. 9, 311-344.

Laurent, O., Martin, H., Doucelance, R., Moyen, J.F., Paquette, J.L., 2011. Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton,
Central Limpopo Belt, South Africa: Implications for geodynamic changes at the
Archaean–Proterozoic boundary. Lithos 123, 73-91.

determination of Sr and Nd isotopic ratios in geological samples from the same
filament loading by thermal ionization mass spectrometry employing a

Li, J., Li, X., Pei, R., Mei, Y., Wang, Y., Qu, W., Huang, X., Zhan, W., 2007. Re-Os
age of molybdenite from the southern ore zone of the Wushan copper deposit,

Li, J.W., Zhao, X.F., Zhou, M.F., Vasconcelos, P., Ma, C.Q., Deng, X.D., de Souza,
Cu-Mo deposit, eastern Yangtze craton, Eastern China: geochronological,

Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages,
petrogenesis, and geodynamic implications. Contrib. Mineral. Petrol. 157,
383-409.

Li, S.G., Hong, J.A., Li, H.M., Jiang, L.L., 1999. Zircon U-Pb dating of
pyroxenite–gabbro intrusions in the Dabie orogen and their geological
abstract).

Li, X.H., 2000, Cretaceous magmatism and lithospheric extension in Southeast China.
J. Asian Earth Sci. 18, 293-305.

Li X.H., Sun M., Wei G.J., Liu Y., Lee C.Y., Malpas J.G., 2000, Geochemical and
Sm-Nd isotopic study of amphibolites in the Cathaysia Block, SE China:
evidence for extremely depleted mantle in the Paleoproterozoic. Precambrian Res.
102, 251-262.

Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios.

Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic
crust: the Cordillera Blanca Batholith, Peru. J. Petrol. 37, 1491-1521.

Prowatke, S., Klemme, S., 2005. Effect of melt composition on the partitioning of
trace elements between titanite and silicate melt. Geochimica et Cosmochimica

Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4):
537-576.

Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion
microprobe. Chem. Geol. 117, 331-344.

Shirey, S.B., Hanson, G.N., 1984. Mantle derived Archaean monzodiorites and

high-Mg andesites revisited: geochemical evidence for melting of subducting

Smithies, R.H., Champion, D.C., 1999. Late Archaean felsic alkaline igneous rocks in
the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower

origin of Archaean sanukitoid suites: Western Superior Province, Canada.
Precambrian Res. 96, 83-99.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
basalt: implications for mantle composition and processes. In: Saunders, A.D.,
Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society Special
Publication, No. 42, pp. 528-548.

subduction and porphyry copper-gold mineralization: An overview. Sci. China

Tatsumi, Y., Ishizaka, K., 1982. Origin of high-magnesian andesites in the Setouchi
volcanic belt, southwest Japan: I. Petrographical and chemical characteristics.
Earth Planet. Sci. Lett. 60, 293-304.

and subsequent melt-mantle interaction: Generation of high-Mg andesites in the

Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, X.L., Ma, J.L., 2006b. Petrogenesis of adakitic porphyries in an extensional tectonic setting,
Dexing, South China: implications for the genesis of porphyry copper mineralization. J. Petrol. 47, 119-144.

China: implications for lithosphere subduction and underplating of mafic magmas.

Tectonophysics 326, 269-287.

Figure captions

Fig. 1 (A) a tectonic sketch of China; (B) simplified geologic map of the central-eastern China showing the distribution of latest Jurassic to early Cretaceous adakitic rocks, modified after Wang et al. (2007) and Liu et al. (2010); (C) distribution of adakitic rocks in the southern Edong mining district; (D) distribution of adakitic rocks in the Jiurui mining district. TLF = Tan-Lu Fault; JSF = Jiang-Shao Fault; TSK = Tongshankou.

Fig. 2 Harker-type chemical variation diagrams for the Jiurui and Edong “adakitic” plutonic rocks. The fields of metabasaltic and eclogite experimental melts and subducted oceanic crust-derived adakites in the SiO$_2$ vs. MgO plot are after a compilation by Q. Wang et al. (2006a).

Fig. 3 (A) Total alkali vs. silica (TAS) diagram, and (B) K$_2$O vs. SiO$_2$ diagram for the Jiurui and Edong “adakitic” plutonic rocks. The calc-alkaline, high-K and shoshonitic fields in the K$_2$O vs. SiO$_2$ plot are after Peccerillo and Taylor (1976).

Fig. 4 Chondrite-normalized REE diagrams and primitive mantle-normalized spidergrams for the Jiurui and Edong “adakitic” plutonic rocks. Normalization values are from Sun and McDonough (1989).

Fig. 5 (A) Sr/Y vs. Y (after Defant et al., 2002) and (B) (La/Yb)$_N$ vs. Yb$_N$ diagram (after Drummond and Defant, 1990) for the Jiurui and Edong “adakitic” plutonic rocks. A two-stage modeled Rayleigh fractionation from a calc-alkaline andesite melt is shown. Blue line indicates the first stage of magmatic fractionation (from andesite to dacite); green line implies the second stage of magmatic fractionation (from dacite to rhyolite). FC = fractional crystallization. Detailed discussion of the modeling is given in the text.

Fig. 6 Cathodoluminescence (CL) images for typical zircons from the Jiurui and Edong “adakitic” plutonic rocks. The small ellipses in the CL images
represent the spots of SIMS U-Pb and O isotope analyses; the large ellipses represent the spots of LA-MC-ICPMS Hf isotope analyses. The numbers in white, orange and yellow color fonts are the U-Pb dates (Ma), \(\varepsilon \) Hf(T) and \(\delta^{18} \) O values, respectively. The white bars are 100 microns in length for scale. U-Pb dates are from X.H. Li et al. (2010).

Fig. 7 Histograms of zircon \(\varepsilon \) Hf(T) and \(\delta^{18} \) O values and plot of zircon \(\varepsilon \) Hf(T) vs. \(\delta^{18} \) O values for the ca. 145 Ma (A-C) and ca. 140 Ma (D-F) “adakitic” plutonic rocks from Jiurui and Edong mining districts.

Fig. 8 Initial \(^{87} \) Sr/\(^{86} \) Sr (\(I_{Sr} \)) vs. \(\varepsilon \) Nd(T) plot for the Jiurui and Edong “adakitic” plutonic rocks. The fields of Sr-Nd isotopes for the LYRB Cretaceous basaltic rocks, the low-Mg adakitic rocks in Dabie Orogen and NE Yangtze Block and the Archean Kongling Group metamorphic rocks are after compilation of J.W. Li et al. (2009), Liu et al. (2010) and Ames et al. (1996).

Fig. 9 Rb vs. Sc plot for the Jiurui and Edong “adakitic” plutonic rocks. A two-stage modeled Rayleigh fractionation from a calc-alkaline andesite system is shown. Blue line indicates the first stage of magmatic fractionation (from andesite to dacite); green line implies the second stage of magmatic fractionation (from dacite to rhyolite). PM = partial melting; FC = fractional crystallization. Detailed discussion of the modeling is given in the text.

Fig. 10 K2O vs. Na2O plot for the Jiurui and Edong “adakitic” plutonic rocks. Slab-derived adakites are plotted (gray cross) for comparison (Data source: GEOROC at http://georoc.mpch-mainz.gwdg.de/georoc/).

Fig. 11 Correlations of (A) Sr vs. SiO2, and (B) Sr vs. CaO for the Jiurui and Edong “adakitic” plutonic rocks, in comparison with those of the Dabie lower continental crust-derived high Sr/Y granitoids (HSG) and normal calc-alkaline granitoids (He et al., 2011).

Fig. 12 Comparison of calculated magmatic \(\delta^{18} \) O values between the LYRB adakitic
rocks and normal island arc volcanic rocks as well as other high Sr/Y rocks (slab-derived adakites, Archean orogenic TTGs, Archean post-orogenic sanukitoids, high-Mg andesites (HMAS) and the Setouchi lavas in SW Japan. Data are after compilation by Bindeman et al. (2005).

Fig. 13 K_2O/Na_2O-Sr-(Rb+Ba) triangle plot for comparison of the LYRB adakitic rocks to Archean post-orogenic sanukitoids (Krogstad et al., 1995; Smithies and Champion, 1999; Stevenson et al., 1999; Laurent et al., 2011), high Ba-Sr granites (Fowler and Henney, 1996; Qian et al., 2003; Ye et al., 2008; Choi et al., 2009), Setouchi lavas (Shimoda et al., 1998) and slab-derived adakites (data sources: GEOROC at http://georoc.mpch-mainz.gwdg.de/georoc/).

Fig. 14 Magmatic $\delta^{18}O$ vs. initial I_{Sr} plot for comparison of the LYRB adakitic rocks to Setouchi lavas (Shimoda et al., 1998; Bindeman et al. 2005) and Caledonian high Ba-Sr granites (Fowler and Henney, 1996). Distinct trends of source-contamination by sediment melt vs. crustal assimilation are after James (1981).

Fig. 15 Temporal and spatial distribution of the Yanshanian (Jurassic and Cretaceous) magmatism in eastern South China. Compilation of radiometric ages of the igneous rocks and their locations is presented in Appendix 4. Representative ages (Ma) are shown for well-dated magmatic rocks. The Yanshanian magmatism was initiated at 195-180 Ma around the Southern Jiangxi-Northeastern Guangdong Provinces (within the contour of 180 Ma magmatic front), and propagated with an outward-younging trend for the entire region (shown as contours of 160 Ma and 140 Ma magmatic front).

Fig. 16 A geodynamic modal accounting for the genesis of the Yanshanian magmatism in eastern South China during the Jurassic and early Cretaceous time. Detailed discussions are presented in the text.
Archean Kongling gneiss (Ames et al. 1996),

- LYRB Mesozoic basaltic rocks
- Low-Mg adakitic rocks in Dabie Orogen & NE Yangtze Block
- Archean Kongling Group rocks
- Alteration
A. 200 Ma: near the end of flat-slab subduction

- South China Foldbelt
- Sichuan Basin
- Dabieshan
- Continental crust
- Continental lithospheric mantle
- Metasomatism
- Oceanic plateau
- Slow dewatering
- Oceanic lithospheric mantle
- Already dehydrated normal crust

B. 170–140 Ma

- Dexing
- Metasomatism
- Both mineralized and barren intrusions
- Continental lithosphere
- Oceanic plateau
- Already dehydrated normal crust
- Hot asthenospheric flows
- Fast dewatering

C. 140–110 Ma

- LYRB: Both mineralized and barren intrusions
- Barren intrusions
- Continental lithosphere
- Metasomatism
- Hot asthenospheric flows
- Fast dewatering
- Minor dewatering due to higher temperature
- Heat