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ABSTRACT. GNSS cartier phase ambiguity resolution is the key to fast and high- pre-
cision satellite positioning and navigation It applies to a great variety of cuwient and
future models of GPS, modernized GPS and Galileo In [Teunissen, 2003] we described
the general principle of integer aperture (IA) ambiguity estimation. In the present con-
tribution we will derive the optimal IA-estimator. The optimal IA-estimator is defined
as the estimator which has the largest possible success 1ate given a user-defined fail rate.
Hence, it is the optimal estimator for which the fail rate can be controlled.
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1 INTRODUCTION

In [Teunissen, 2003] we introduced the class of integer aperture (I A) estimators for carrier
phase ambiguity resolution. This class allows one to design ambiguity estimators such
that the ambiguity resolution process will have a user-defined fail-rate. Examples of such
estimators have been given in [Teunissen, 2003a, 2005]. In this contnbutzon we will denve :
the optimal IA-estimator. The optimal IA-estimator is defined as the estimator which
has the laigest possible success rate given a usei-defined fail 1ate. We first discuss in
section 2 integer estimation in relation to integer aperture estimation. The differences
and similarities between the two type of estimatois are discussed, and it is shown how -
their performances can be measured. In section 3 we derive the optimal IA estimator. This
is done for an arbitary distribution of the fioat ambiguities. The der ivation is presented
in two steps. In the first step, only the aperture space is assumed unknown, but not -
the pull-in region The result obtained is optimal for those cases where one already has
chosen the integer estimator In the second step, we assume both the aperture space and
the pull-in region unknown The resulting IA-estimator is the one which has the largest
possible success 1ate given a fixed fail rate. We also give the optimal IA-estimator in
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case the float ambiguities are normaﬂy distributed ' In this case, it is again the integer
least-squares estimator which plays a prominant role.

2 INTEGER ESTIMATION AND INTEGER APERTURE ESTIMATION

2.1 THE CLASSES OF I- AND IA-ESTIMATORS

In order to understand the principle of integer aperture (IA) estimation properly, we first
consider the principle of integer (I) estimation Let & € R™ be the unbiased real-valued
float estimator of the GNSS ambiguity vector Thus F(&) = a, where E(.) denotes the
mathematical expectation operator and a € Z» denotes the unknown integer ambiguity
vector In order to estimate a as an integer vector, a mapping S : R* i» Z" is introduced
such that & = 5(a) is the integer estimator of a. The mapping S will be a many-to-one
map due to the discrete natwe of Z™. This implies that different real-valued vectors will
be mapped by S to one and the same integer vector. One can therefore assign a subset

S, C R™ to each integer vector € Z™
S;,={reR"|z2=8(x)}, zeZ" (1)

This subset is referred to as the pull-in region of z. It is the region in which all vectors are
pulled to the same integer vector z. One can now define a class of integer estimators by
imposing certain conditions on the pull-in 1egions For instance, it seems reasonable that
the pull-in regions cover R" without gaps and overlaps. Furthermore, it is reasonable to
require the puH—m regions to be translationally invariant This implies that when the float
solution d is pertuxbed by z € Z", the corresponding integer solution is perturbed by the
same amount. This property a]lows one to apply the integer remove-restore technique:

S(é—z)+z = 5(a) It therefore allows one to work with the fi actional parts of the entries

of 4, instead of with its complete entries.
The pull-in regions are translationally invariant and cover B® without gaps and over-

laps, if they satisty the following three conditions:
("i) UZEZ“ S, =R"
(14)  Int(S,)NInt(S,) =0, Vo, 2 € 27 2 # 2 (2)
(g} S, =2+ 5, VzeZzZ»

Using these pull-in regions, one can now give an explicit definition of I-estimators, It
reads

Definition 1 (Integer estimators)
Integer estimators are defined as

L Ay s . 1 if aes,
=Y zs,(a) with s,(&) ={ e o (3)
o 0 if a8,
with the pull-in regions S, satisfying the three conditions of (2)

Note that the s,(a) can be interpreted as weights, since Y,cz+ 5,(@) = 1. Any integer
estimator & is therefore equal to a weighted sum of integer vectors with binary weights.
Examples of integer estimators are, for instance, those obtained by integer rounding,

integer bootstrapping or intemer least-sauares.
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The outcome of an I-estimator is always integer. It may happen, however, that one is
not willing to accept the integer outcome. This will be the case when one is doubtfil about
the correctness of the integer outcome. The class of integer aperture (IA) estimators has
been introduced so as to relax the condition that the outcome of the ambiguity estimator
should always be an integer. The pull-in regions of IA-estimators are therefore allowed to
have gaps, thus making it possible that their outcomes could be equal to the float solution
as well. Thus instead of B®, now a subset ¥ C R® is taken as the region for which 4 is
mapped to an integer if @ € . It seems reasonable to ask of the region {2 that it has
the property that if 4 € Q then also 4+ z € ©, for all z € 2. If this property would
not hold, then float solutions could be mapped to integers whereas their fractional parts
would not. We thus require £ to be translationally invariant with respect to an arbitrary
integer vector: Q+z = , for all z € Z* Knowing §2 is however not sufficient for defining
our TA-estimator. Q only determines whether or not the float solution is inapped to an
integer, but it does not tell us yet to which integer the float solution is mapped We

therefore define
: Q,=0Nn8,,Vze 2™ (4)

whete S, is a pull-in region satisfying the three conditions of (2). Then

(1'?’) Q-?!1 ﬂﬂzz = (Qnﬂzl) n(anzz) = Qﬂ(szz nSzz) = ma VZI:ZZ € Zﬂ:zl 7é 22
(#4) Q+2z=0QNS%)+z=0+2)N(S%+2)=0QNS,=Q,, Vze 2"

This shows that the subsets {2, C S, satisfy similar conditions as are satisfied by S,, be
it that ™ has now been replaced by 2 ¢ R™ Hence, the mapping of the IA-estimator
can now be defined as follows. The IA-estimator maps the float solution & to the integer
vector z when & € Q. and it maps the float solution to itself when & ¢ 2. The class of
[A-estimators can therefore be defined as follows.

Definition 2 (Integer aperture estimators)
Integer aperture estimators are defined as

Gra=a+ 3 (2 - B)ws(8) (5)
zeZ"

with w,(z) the indicator function of Q, = 2N S, and © C R™ translationally invariant.

Note, since the indicator functions s,(z) of the pull-in regions S, sum up to umity,
> zezn Sz{x) = 1, that any I-estimator can be written as

i=at Y (-l ©

zZeZn

This shows that the class of I-estimators is a subset of the class of IA-estimators. A
comparison shows that the difference between the two type of estimators lies in their
binary weights, s.{x) versus w,(z). Since the s,(z) sum up to unity for all z € R", the
outcome of an I-estimator will always be integer. This is not true for an IA-estimator,
since the binary weights w,(z) do not sum up to unity for all # € R®. The IA-estimator
is therefore an hybrid estimator having as outcome either the real-valued float solution &
or an integer solution. The IA-estimator returns the float solution if & ¢ Q and it will
be equal to z when & € , Note, since {2 is the collection of all Q, = (5 + z, that the
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IA-estimator is completely determined once §)g is known. Thus €y C S, plays the same
role for the IA-estimators as Sy does for the I-estimators. By changing the size and shape
of £ one changes the outcome of the IA-estimator. The subset 2 can therefore be seen
as an adjustable pull-in region with two limiting cases The limiting case in which Q is
empty and the limiting case when g equals Sp. In the first case the IA-estimator becomes
identical to the float solution &, and in the second case the IA-estimator becomes identical
to an I-estimator. The subset )y therefore determines the aperture of the pull-in region.

2.2 EVALUATION OF I- AND IA-ESTIMATORS

For the evaluation of the I- and TA-estimators we need the distributions of & and d;4,
respectively. For the I-estimator this distribution is of the discrete type and it will be
denoted as P(& = z). This distribution is obtained from integrating the probability
density function (PDF) of &, fs{z), over the pull-in 1egions S,

Pa=2)= [ fl@)de, z€ 2" ™

This distribution is of course dependent on S, and thus on the chosen integer estimator.
Since various integer estimators exist which are admissible, some may be better than
others. Having the problem of GNSS ambiguity resolution in mind, one is particularly
interested in the estimator which maximizes the probability of correct integer estimation,
the success-rate Ps. This probability equals Ps = P(& = a), but it will differ for dif-
ferent ambiguity estimators. The answer to the question which estimator maximizes the
probability of correct integer estimation is given by the following theorem.

Theorem 1 (Optimal integer estimation)
Let fi(z | a) be the PDF of the float solution & and let

Gyr = argmax fa(a | o) (8)
be an integer estimator. Then
P{ipyg, = a) > PG = a) 9)

for any arbitrary integer estimator &.
Proof see [Teunissen, 1999]
Note that we have denoted the PDF of & for the occasion as fi(zr | a) instead of as
fa(x). This has been done to explicitly show the dependence of the PDF on the true bus
unknown ambiguity vector @ € Z™. In this contribution we will make a limited use of this
notation. We will use the notation f;(z | a} only when it is really needed to show the
dependence on a explicitly.

The above theorem holds true for an atbitrary PDF of the float ambiguity vector &.
In most GNSS applications however, one assumes the data to be normally distributed.
The estimator & will then be normally distributed too, with mean a € Z® and variance-
covariance (ve-) matrix (s, & ~ N(a,@;). In this case the optimal estimator becomes
identical to the integer least-squares (ILS) estimator

- _ ) . 2
Grs = argmin ||z~ a |, (10)
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The above theotem therefore gives a probabilistic justification for using the ILS estimator
when the PDF is Gaussian For GNSS ambiguity resolution it shows, that one is better
off using the ILS estimator than any other admissible integer estimator. In contrast to
integer rounding and integer bootstiapping, an integer search is needed to compute drs.
The ILS procedure is mechanized in the LAMBDA method, [Teunissen, 1993, 1995]. Note
that the IS pull-in region of z € Z™, is the set described by all € R™ satislying

(11)

z=arg Eéfzn | z—ul,

Hence, it consists of all those points which are closer to z than to any other integer vector
in B", Sps,={z e R | {lz—z )5, <e—ulj,,VueZ}

Since the outcome of an I-estimator is always integer, the outcome is either correct or
wrong Hence, for an I-estimator, the probability of a correct integer outcome {success),
Ps = P(& = a), and the probability of an incorrect integer outcome (failure), Pr =
Yrezm\(a} P(@ = z), add up to one: Fs+ Pp =1 This, however, will not be the case
for an IA-estimator In case of an [A-estimator, we have to take thiee diflerent possible
outcomes into account They are

aeZ” (correct integer)
dr4 =< z€ Z"\{a} (incorrect integer) (12}
de R*\Z" (no integer)

The respective probabilities are therefore given as

Ps = P(ars = a) = Jo, fara(x)dz = jﬂa fa(z)dz (success)
Pr = Yo Plira=2) = Tiralo. faa(2)dz = Yoo, falz)dz {failure)
Py = Plars = &) = 1— Jo fa,a(@)dz = 1—=Ps--Pr (undecided)

(13)
All three probabilities are completely governed by f3(z), the PDF of the float solution,
and by g, the aperture pull-in region which uniquely defines the IA-estimator. Hence,
one can proceed with the evaluation of JA-estimators once this information is available.

3 IA-ESTIMATION WITH OPTIMALLY CONTROLLED FAILURE-RATE

Since the outcome of an I-estimator is always integer and therefore Py = 0, the fail-1ate of
an l-estimator equals one minus its success-rate. Thus although the optimal I-estimator
has the largest possible success-rate, one can not excercise any control over its fail-1ate.
That is, the fail-rate of an I-estimator is determined completely by the strength, or the
lack of strength for that matter, of the underlying mathematical model It can not be
fixed a priori independently of the model This situation changes however in case of JA-
estimation. Due to the fact that IA-estimators allow one to excercise control over the
aperture of the pull-in region, it also gives one the possibility to excercise control over the
fail-rate. The idea is therefore to constrain the fail-1ate to a user-defined fixed value and
then to find the size and shape of the pull-in region which maximizes the success-rate
Hence, the optimization problem which needs to be solved is a constrained maximization

problem. It reads
max Py subject to given Pg (14)
Q
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Recall that the aperture pull-in region {2, is governed by the choice made for the trans-
lationally invariant aperture space §2 and by the choice made for the pull-in region Sy,
Qs = NSy This implies that we can think of three different maximization problems.
One where we keep Sy fixed and vary €. Another where we keep © fixed and vary S,.
And a third where we vary both  and S; Note, however, that the second maximization
problem is not of much use Since the sum Ps + Pr is independent of Sp, it follows, when
FPr and Q are given, that Ps can not be varied by varying So. Hence, this leaves us with
two different maximization problems. We will now consider them separately.

3.1 OPTIMAL JA-ESTIMATION FOR A GIVEN INTEGER ESTIMATOR

In this section we will solve the maximization problem

max Ps subject to given Sy and Pr (15)

Since the objective function and one of the constraints are both integrals, one may think
of the well-known Neyman-Pearson lemma as a way to find the solution of (15) This

lemma reads as follows.

Neyman-Pearson Lemma
Let f{z) and g(z) be integrable functions over B* Then the region

O={zeR|f(z) 2 ra(z)}, AeR (16)
solves the constrained maximization problem

maxocme fo f(2)dz subject to [g g{a)dx = constant (17

if A is chosen so as to satisfy the integral constraint.

Proof. See e.g. (Rao, 1973, p. 446)

Unfortunately, however, one can not make a direct use of the Neyman-Pearson lemma,
since in our case the region of integration € has to satisfy the additional constraint that
it is translationally invariant A modification of the Neyman-Pearson lemima is therefore
needed in order to suit our purposes. This modification is given in the following lemma.

Lemma 1 {modified Neyman-Pearson lemma)
Let f(z) and g(z) be integrable functions over B". Then the 1egion

Q={zch" |3 fz+2)2A Y glz+2)}, AR (18)

_ZEZn ZEZ"

solves the constrained maximization problem

Lnax Q f(z}dz (19)

subject to the two constraints

/Qg(a:)dx =constant and Q=0+ 2, Vze 2"

if X is chosen so as to satisfv the integral constraint.
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Proof: Tt is clear that {1 satisfies both constraints. Now let {2 be any region that also
satisfies both constraints. Then

fo f(z)dz —~ [ f(z)dz >ozezn Jéns, f(z)dz — Fiezn fans, f(z)dz
[Qnso > zezn flz+ 2)dz — fnnsg Seezn flz+ .z)dm
fig—anayns, Lzezn f (z + 2)dz — [io-anayns, 2zezn | (z + z)dz
A J(@-aneynse zezn 9(% + 2)dr — A fig_anayns, 2sezn 9(z + 2)dx
A oo 9(@)dr — A fo_gng g(z)dz =0

il

v

The first equality follows fiom using the property that the pull-in regions S, cover R®
without gaps and overlap, while the second equality follows from using the property of
t1anslational invariance In the third equality the common part of the two integrals has
been canceled. The inequality follows from using the definition of ), while the last equality
follows from again using the property of translational invariance and the fact that both

0 and 0 satisfy the same integral constraint. End of proof

In order to apply Lemma 1 for solving (15), first note that (15) is equivalent to maxq (Ps -+ Pr)
subject to given Pp and Sy. With Ps + Pr = fg fa(z)dz and Pr = [q\q, fa(z)dz =

Ja fa(z) (1 — 84(x)) dz, where s,(z) denotes the indicator function of S;, we obtain the
equivalent optimization problem

g flede st o { g AL

This formulation is now suitable for an application of the above lemma, where f;(z) (1 — sq(z))
plays the 10le of the function g(z) As aresult we get Q= {z € R*| T ,ez~ falz +2) >
AY ez falz + 2) (1 — so(z + 2))} and therefore, with Qo = QN Sy, Oy = {z € So |
Yoezn falz + 2) < $25fa(z +a)}. We therefore have the following theorem

Theorem 2 (optimal IA-estimation for a given I—estimdtor‘)
Let fa(z) be the PDF of the float solution 4, and let Ps and Pr be 1espectively the
success-rate and the fail-rate of the IA-estimator. Then the solution to

Qorils%r)wcsu Ps subject to given Pr and Sy (21)
is given as
Qo={ze S| D falz+2) <Arsfalz+a)} (22)

zeZm
with App chosen so as to satisfy the a priori fixed fail-1ate Pp
This theorem is applicable to the situation where we have already decided which I-
estimator to use (recall that Sy defines the I-estimator). This could, for instance, be
integer rounding, integer bootstrapping or integer least-squares. Given the I-estimator
chosen, the theorem shows how we need to choose the aperture pull-in region in order to
have the largest possible success rate for a user-defined given fail rate.

3.2 OPTIMAL IA-ESTIMATION

So far the pull-in region Sp has been chosen arbitrarily We therefore still need to find
the best choice for Sy. Since Py + Pr is independent of Sy, but Pg and Pp are not, the
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best choice for .Sy is the pull-in region that maximizes Ps. This leads to the answer as to
what the optimal [A-estimator is.

Theorem 3 (opitimal IA-estimation)
Let fa{x) be the PDF of the float solution &, and let Ps and Pr be respectively the
success-rate and the fail-rate of the IA-estimator. Then the solution to

onax FPg subject to given Pp (23)

is given by

{ (2) Qo={zr€ S| Tiezn fale +2) < Aprfalz +a)} o4
24

(it) with Sp = {z € B*| 0 = argmax,epn fa(z | 2)}
and App chosen so as to satisfy the a priori fixed fail-rate Pp.

Proof We have already proven (24i) for an arbitrary given pull-in region in Theorem 2.
What remains to be shown is that the choice (2441} maximizes the success rate. The
success rate is given as Pp = [ong fa(® + a | a)dz. From Theorem 1 it follows that
So of (244%) satisfies g fa(z +a | a)dr > Is; falx + a | a)dx for any arbitrary pull-in
region S satisfying the conditions of (2). We therefore also have [y, fa(z +a | a)dz >
Jons; falz + a | a)dz. End of proof.

The above result shows that the optimal IA-estimator reduces to the optimal I-estimator
in case the volume of the aperture pull-in region reaches is maximum volume of one

3.3 THE GAUSSIAN CASE

The above results have been given for an arbitrary PDF of the float solution. In most
GNSS applications, however, one assume the float solution to be Gaussian distributed,
& ~ N{a,@s). In that case the PDF is given as

fule | 0) = Ggmmmmexpi— | 2 =a I} (25)

The corresponding optimal aperture pull-in region is then given as

1 1
(o = {93 € 5| ZZ\:{ }eXP{*'§ Iz =23} < (rr - Dexp{-3 Il = “2Qa}} (26)
z€Z™\{0

in which Sp is the ILS pull-in region. Note that the contribution of the exponentials in
the sum will get smaller the more peaked the PDF of the float solution is. The aperture
pull-in region £y will therefore get larger the more peaked the PDF is. This is also what
one would expect. -

The computational steps in computing the optimal IA-estimator are now as follows.
First we compute the ILS-solution from the float solution, drs = argmin,ez» || é—2 ||3,
Then we form the ambiguity residual vector €z = & — &zg and check whether é75 € §2g.
If this is the case, then the outcome of the optimal IA-estimator is d;g, otherwise the
outcome is @. For the purpose of computational efficiency it is advisable to compute drs
with the LAMBDA method and use the LAMBDA-{ransformed ambiguities also for the
evaluation of &5 € £.



227

4 REFERENCES

Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins (2001): Global Positioning System:
Theory and Practice 5th edition Springer Verlag

Leick, A (1995): GPS Satellite Surveying. 2nd edition, John Wiley, New York.

Misra, P, P. Enge (2001): Global Positioning System: Signals, Measurements, and
Performance Ganga-Jamuna Press, 2001.

Parkinson, B, J J. Spilker (eds) (1996): GPS: Theory and Applications, Vols 1 and 2,
ATAA, Washington DC.

Rao, C.R. (1973): Linear statistical inference and its applications. John Wiley and
Sons, 2nd edition.

Strang, G, K. Borre (1997): Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge
Press

Teunissen, PJ G , A Kleusberg (eds) (1998): GPS for Geodesy, 2nd enlarged edition,
Springer Verlag.

Teunissen, P.J.G (1993): Least-squares estimation of the integer GPS ambiguities. In-
vited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beljing,
China, August 1993 Alsoin: LGR Series, No. 6, Delft Geodetic Computing Centre.

Teunissen, PJ.G. (1995): The least-squares ambiguity decorrelation adjustment: a
method for fast GPS integer ambiguity estimation Journal of Geodesy, 70: 65-82.

Teunissen, P.J.G (1999): An optimality property of the integer least- squares estimator
Journal of Geodesy, 73: 587-593

Teunissen, P.J G. (2003): Integer aperture GNSS ambiguity resolution. Artificial Satel-
lites, 38(3): 79-88
Teunissen, P.J G (2003a): A carrier phase ambiguity estimator with easy-to-evaluate

fail rate Artificial Satellites, 38(3): 88-98.

Teunissen, P.J.G. (2005): Integer aperture least-squares estimation. Submitted to Ar-
tificial Satellites.

Received: 2005-07-13,
Reviewed: 2005-07-25, by W. Pachelski,
Accepted; 2005-11-17. '




