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ABSTRACT 

Introduction 

The prevalence of food allergy among children is on the rise worldwide and over the 

last few decades food-related anaphylaxis admissions have increased in developed 

countries. This has created an urgent need to understand the underlying mechanism of 

food allergy because this is essential for the development of better diagnostics tools 

and more effective prevention and treatments. 

At present there is a growing appreciation that the host transcriptome and the various 

host microbiomes play a significant role in allergic diseases, and that the host-microbe 

interplay is associated with disorders of the immune system. Therefore, elucidation of 

the specific differences in the host transcriptome and microbiome profiles between 

food-allergic children and non-food allergic children will advance our understanding 

of the aetiology of food allergy. 

Aim and objectives 

The overall aim of this thesis is to systematically elucidate the association of gene 

expression and microbiome with food allergy. In order to achieve this, this thesis 

consists of six specific objectives. The first objective is to identify novel genes related 

to food allergy. The second objective is to identify gene network patterns in children 

with nut allergy. The third objective is to investigate changes in cellular immune 

response between children with and without nut allergy. The fourth objective is to 

identify gut microbiome and pathways associated with food allergy. The fifth objective 

is to investigate the association between oral microbiome and food allergy. And the 

last objective is to investigate the house dust microbiome and pathways associated 

with food allergy. 



 

x 

Methods 

Food-allergic children (n = 210) were recruited from the outpatient clinic of the 

Immunology Department, Perth Children’s Hospital while non-food allergic children 

(n = 69) were recruited with matched age range and gender frequency from the 

outpatient clinic of the Immunology Department, Perth Children’s Hospital and the 

local community. Peripheral blood, stool samples, saliva samples and house dust 

samples were collected and questionnaires, which contained demographic and 

environmental data, were administered.  

Transcriptome profiling of whole blood cells was compared between children with 

(n=23) and without nut allergy (n=7). The expression levels of three upregulated genes 

with nut allergy were validated on a larger cohort of samples (n=86) by RT-qPCR. The 

composition of immune cells was inferred from the transcriptomic data using the 

CIBERSORTx algorithm. Selected genes of the transcriptomic data were then used to 

construct a co-expression network by using the Weighted Gene Co-expression 

Networks Analysis (WGCNA) package of R. The gene co-expression modules were 

subsequently interrogated with pathways analysis tool (InnateDB) and correlated with 

clinical phenotypes and cellular immune responses. 

In parallel, the community composition of gut, oral and house dust were assessed via 

16S rRNA gene sequencing of the V3 and V4 variables regions. Microbial alpha and 

beta diversity as well as relative abundance of the operational taxonomic units (OTUs) 

were compared between food-allergic children and non-food allergic children using 

QIIME. OTUs obtained from 16S rRNA gene sequencing were used to construct a co-

abundance network via WGCNA and mapped onto Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways using Tax4Fun. 

 Results 



 

We found for the first time that the IFIH1, DRAM1 and ZNF512B genes were novel 

nut allergy susceptibility genes. These genes were enriched with functions related to 

type 1 interferon signalling. Our study also demonstrated that the cellular immune 

response in children with nut allergy was characterised by a significantly lower CD4+ 

T cells/Treg response and a higher neutrophil response when compared to children 

without nut allergy.  

We also observed a significant difference in the beta diversity of the saliva microbiome 

although this was absent for the gut microbiome. Our results indicated the enrichment 

of Ruminococcaceae UCG-002 in the gut microbiome as well as the depletion of 

Streptococcus in the oral microbiome of food-allergic children. Further pathway 

analysis showed the enrichment of methane and glycerolipid metabolism in the gut 

microbiome of food-allergic children and the enrichment of ubiquinone and other 

terpenoid-quinone biosynthesis in the gut microbiome of non-food allergic children.  

We also found that the house dust microbiome was different for food-allergic and non-

food allergic children. Particularly, the house dust microbiome of food-allergic 

children was shown to be enriched with pathogenic microbial taxa, such as 

Streptococcus, Gemella, Haemophilus, Neisseriaceae_unclassified, Actinomyces, 

Rothia, Alloprevotella and Prevotella 7, and these taxa were involved in the pathways 

of replication and repair as well as the cofactors and vitamin metabolism. In contrast, 

the house dust microbiome of non-food allergic children was involved in the amino 

acid metabolism. 

Conclusion 

The integration of transcriptional profiling and network analysis identifies several 

novel genes and associated immune cells that are different between children with and 

without nut allergy. There is a different microbiome profile in the gut and oral cavity 



 

xii 

between food-allergic children and non-food allergic children. A distinct house dust 

microbiome profile exists in the bedrooms of food-allergic and non-food allergic 

children. These results of this thesis suggest that the host transcriptome as well as the 

gut, oral and house dust microbiomes are correlated with food allergy. The 

transcriptome and microbiomes exhibit co-existence relationships and demonstrate 

complex correlation patterns, likely resulting to have an association with food allergy.  

The overall findings of this thesis emphasize that the transcriptome and microbiome 

profiles should be investigated as a linked entity, i.e. a network, to systematically gain 

a better understanding of the aetiology of food allergy. These data can assist in the 

intervention, management, treatment and possible prevention of food allergy. 
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1 INTRODUCTION 

This chapter evaluates the current state of knowledge on food allergy and is a preface 

to the contents of this thesis. Specifically, the prevalence, the definition and aetiology, 

and the risk factors of food allergy are described in sections 1.1, 1.2 and 1.3 

respectively. Section 1.3 includes genetic (section 1.3.1) and environmental risk 

factors (section 1.3.2). This chapter also describes the application of transcriptome 

analysis (section 1.4) and microbiome analysis (section 1.5) for advancing our 

understanding of food allergy. The aims and research questions of my PhD research 

projects are outlined in this chapter. Sections 1.3.2 and 1.5 are reformatted from Lee, 

K.H., Song, Y., Wu, W. et al. The gut microbiota, environmental factors, and links to 

the development of food allergy. Clin Mol Allergy 18, 5 (2020). 

https://doi.org/10.1186/s12948-020-00120-x, published under a Creative Commons 

BY license (http://creativecommons.org/licenses/by/4.0/)  
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1.1 The prevalence of food allergy 
The prevalence of food allergy among children is on the rise worldwide and food-

related anaphylaxis admissions in developed countries, including Australia, have 

increased over the last few decades (1). Such increases are well documented in the 

United Kingdom (2), United States (3, 4) and Australia (5). For example, the 

prevalence of food allergy is now thought to affect approximately 7% of children in 

the United Kingdom (2). In the United States, a population-based survey showed that 

around 8% of children have a food allergy (3). Additionally, hospital admissions 

caused by food-related anaphylaxis for children aged up to 18 years old were doubled 

from 2000 to 2009 in the United States (4). In Australia 11% of 1 year old children 

and around 4% of 4 year old children are diagnosed with food allergy (2, 5). Hospital 

admissions caused by food-related anaphylaxis for children up to 14 years old 

increased at annual rates of more than 10% between 1997 and 2013 (6) in Australia.  

At present there is still no cure for food allergy (7). Immunotherapy is the only 

promising treatment in desensitizing food allergy and is not recommended for clinical 

practice. Hence, the best management for food allergy is to strictly avoid specific food 

allergen. The ever increasing prevalence of food allergy and its potential anaphylactic 

reactions have created an urgent need to understand the underlying mechanism of food 

allergy. This is necessary to develop better diagnostics tools and more effective 

prevention or treatment.  
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1.2 The definition and aetiology of food allergy 
Food allergy is defined as an adverse immune reaction to ingested food antigens. These 

adverse immune reactions are categorized into Immunoglobulin E (IgE) mediated 

reactions and non-IgE mediated reactions (8, 9). IgE-mediated reactions usually occur 

immediately upon exposure to the food allergen, and its symptoms typically occur in 

different organs, such as gastrointestinal, skin, respiratory and cardiovascular system 

(8). In contrast, non-IgE mediated reactions are usually delayed and occur few hours 

or even 24 hours following exposure to a food allergen. Its symptoms include 

eosinophilic oesophagitis, food protein-induced enterocolitis and allergic proctocolitis 

(9). This thesis primarily focuses on understanding the molecular mechanism of IgE-

mediated food allergy. 

1.2.1 Epicutaneous exposure to food allergens and food allergy 
Besides oral exposure, there is growing evidence that skin is an important route for 

allergic exposure. For example, studies have shown that food sensitization can occur 

through the topical application of products containing food allergens to the skin such 

as peanut oil (10) and wheat (11). In addition, studies have also revealed the 

coexistence of eczema and food allergy (12-15). A study conducted by Martin et al. 

showed that infants with diagnosed eczema had a 6 times higher risk of developing 

hen’s egg allergy and 11 times higher risk of developing peanut allergy at the age of 

12 months compared to infants without eczema (16).  
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The importance of epicutaneous exposure to allergens has been well demonstrated in 

mice studies. Mice with epicutaneous ovalbumin sensitization have a decreased 

expression of Filaggrin and an increased expression of pro-inflammatory cytokines 

such as interleukin-17, interleukin-23, interferon-gamma (17), interleukin-6 and 

interleukin-4 (17-19), which in turn promotes T helper 2 (Th2) cell responses (19) and 

IgE levels (18), leading to altered mucosal immunity and breakdown of oral tolerance.  

1.2.2 Common food allergens and natural history of food allergies 
Although food allergy can arise from any food, a large scale population-based cohort 

study of food allergy has revealed peanut (8.9%), hen’s egg (16.5%), sesame (2.5%) 

and cow's milk (5.6%) are the most common food allergens in Australia (20). Besides 

these, tree nuts (3.3%) were also found a common food allergen in Australia (21). The 

clinical onset of food allergy usually occurs in the first year of life. Some children 

eventually outgrow their food allergies in childhood (22, 23), while others have 

persistent food allergies (24-26). For instance, studies have reported that 47% of 

children have outgrown their hen’s egg allergy by 2 years of age and 80% by age 4 

years of age (22) while 52.6% of children have outgrown their cow’s milk allergy by 

5 years of age (23). In contrast, peanut, tree nut and sesame allergy generally remain 

persistent during life. The likelihood for children to outgrow their peanut, tree nut and 

sesame allergy is 22%, 10% and 20%, respectively (24-26). In addition, peanuts and 

tree nuts are responsible for most fatal anaphylactic reactions (27, 28). 
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1.3 The risk factors for food allergy 
Until now, the mechanisms that determine why some children develop food allergies 

whilst others do not are not well understood. It is generally believed that food allergy 

is caused by complex interactions of genetic and environmental factors (2).  

1.3.1 Genetic studies of food allergy 
The genetic cause of food allergy has been extensively investigated. Parent(s) with a 

history of atopy are more likely to have infants with food allergy. For example, a 

population-based cohort study revealed infants of women with atopic allergy were 

shown to have greater chances of developing food allergy when compared to infants 

of women without atopic allergy (29). The genetic predisposition for food allergy was 

also evidenced by previous familial aggregation studies (30, 31) and more recently, a 

twin study found that identical twins had higher concordance rates (64.3%) of 

developing food allergy compared with dizygotic twins (6.8%) (32).  

Candidate-gene studies were historically employed to examine the genetics of food 

allergy. Here a limited number of genetic variants are tested in candidate genes that 

show association with food allergy based on previous knowledge (33). Now studies 

have progressed to genome-wide association studies (GWAS) which have become a 

valuable method to characterize the genetic basis of food allergy. The first GWAS of 

food allergy identified rs7192 and rs9275596 of the HLA-DR and HLA-DQ gene 

regions as determinants of food allergy, particularly peanut allergy (34). The 

associations of HLA-DR and HLA-DQ gene regions with food allergy were further 
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confirmed (35-38) in several ethnical populations. Marenholz et al. conducted a 

GWAS with children with food allergy, who were identified by their failed oral food 

challenges, and their matched controls, and identified variants in the SERPINB gene 

cluster that are associated with food allergy (39). A meta-analysis of food allergy for 

GWAS conducted from Canadian, American, Australian, German, and Dutch 

populations identified a novel food allergy-susceptible locus in C11orf30 (rs7936434) 

(40). Despite the success of GWAS showing which genes are involved in the 

development of food allergy, these findings only provide limited knowledge on the 

mechanism of food allergy. It has restricted clinical significance for several reasons. 

First, the identified single nucleotide polymorphisms by GWAS only represent a small 

proportion of the overall genetic contribution (41). Second, they are rarely located in 

protein-coding regions or have known significant impact on gene expression. Most of 

them are not related to clear causal variants in adjacent genes. 

1.3.2 Environmental and other risk factors with food allergy 
It is generally agreed that the environment plays a critical role in the development of 

allergic diseases including food allergy. The hygiene hypothesis (42) states that early 

childhood exposure to particular microorganisms protects against allergic diseases, 

and has been one of many prevalent explanations for the significant increase of allergic 

diseases in modern societies over the past several decades. Recent studies have 

revisited the hygiene hypothesis to include dietary intake (43-48), daycare attendance 
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(49-52), pet contact (53, 54), and antibiotic intake (55, 56) as factors that affect the 

pathogenesis of allergic diseases such as food allergy. 

Diet plays an essential role in the development of food allergy. The dietary intake of 

infants starts with milk, either breast milk or formula (57). Although recent systematic 

reviews and meta-analysis show no evidence of protection from food allergy by 

breastmilk (58-60), there are some evidences that breastmilk has the potential to 

modulate the risk of food allergy depending on its composition, which  could influence 

microbiota composition and oral tolerance induction (61, 62).Breastmilk is suggested 

to have a role in prevention of allergic diseases through shaping neonatal gut 

microbiota (61). Breastmilk can directly affect the early microbiota composition by 

favouring the growth of Bifodobacteria and Lactobacillus and affecting the metabolic 

function of microbiota, which in turn affect immune development and maturation. 

Additionally, the duration of breastfeeding influences the development of food allergy 

as infants that receive breastfeeding for a brief period have a higher risk of developing 

cow’s milk allergy (47).  

Other than the feeding method and the duration of breastfeeding, the timing of solid 

food introduction is also seen as a key factor that may influence the development of 

food allergy. Several studies, including randomized controlled trials (RCT), have 

demonstrated that early introduction of allergenic foods such as peanuts and eggs may 

actually be beneficial in preventing food allergy and a delayed introduction of 

allergenic food may contribute to allergic disease(65-68). The most compelling 

evidence to date comes from the Learning Early About Peanut (LEAP) study, which 
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randomized 640 children with severe eczema and/or egg allergy to either early (age 4 

to 11 months) or delayed  (age 5 years) introduction of peanut (65). The LEAP study 

found that the early introduction of peanut was associated with a 86% reduction of 

developing peanut allergy by 5 years of age. Similar to this, Enquiring about Tolerance 

(EAT) trial also found that early introduction of peanut and hen’s egg would 

significantly lower the relative risks of developing peanut allergy and hen’s egg allergy 

(66). In contrast, two randomized controlled trials (67, 69) found no significant 

association between early introduction of hen’s egg and reduced risk of developing 

hen’s egg allergy. Although the results of hen’s egg allergy studies have been 

inconclusive, a recent systematic review of randomized controlled trials investigating 

the timing of allergenic food introduction and the risk of developing food allergy found 

moderate-certainty evidence that early introduction of cooked egg (age 6 to 9 months) 

reduced the risk of egg allergy (59). This systematic review also found moderate-

certainty evidence that early introduction of peanut (age 4 to 11 months) reduced the 

risk of peanut allergy by 5 years of age.  

Daycare attendance is also proposed to be protective against food allergies. Several 

cross-sectional studies demonstrated that early childhood attendance is inversely 

associated with atopy (49, 50) and IgE levels (51). When compared with infants who 

did not attend daycare, infants who attended daycare showed an increase in gut 

microbiome diversity, species richness values as well as butyrate producers, including 

Clostridiales and Lactobacillus (Firmicutes phylum), which in turn reduced allergic 

inflammation and increased oral tolerance (70). In contrast, another study revealed a 
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positive association between early childhood daycare attendance and the development 

of food allergy (52). The discrepancy between these studies might be caused by the 

different allergy phenotypes or the heterogeneity of study design including study 

methodology. 

Pet contact is another factor contributing to the protection of food allergy. For example, 

a study conducted by Koplin et al showed that children with a pet dog at home have a 

reduced risk of developing hen’s egg allergy by one year of age (54). Another study 

also found that pet exposure during the first three months of life reduces the odds of 

developing food allergy (53). This protective effect might be due to increased 

microbial exposure from the pet (71). Pets increase exposure to endotoxin, which is 

commonly “found on the outer membrane of Gram-negative bacteria” (72). Some 

studies have reported an inverse association between high‐endotoxin environments 

and allergic diseases (73, 74), while other studies have reported a positive association 

(75-77). The host response to environmental endotoxin appears to depend on the pre-

existence of allergic disease and genetic inheritance (atopy condition) of the host. 

Emerging data suggests a positive association between antibiotic intake in early life 

and food allergy (55, 56). Antibiotic administration can reduce the microbiota diversity 

and alter the microbiota composition (55, 78, 79), resulting in failure of the signal 

transmission via Toll-like receptor 4 (78). The inability to signal via Toll-like receptor 

4 resulted in markedly increased peanut-specific IgE and Th2 cytokine responses. 

Nevertheless, the association of antibiotic intake in early life and the development of 
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food allergy is debated (14). A large family cohort study did not find an association 

between antibiotic intake in the first year of life and food allergy (14).  

In summary, there is clear evidence that the development of food allergy involves a 

complex multifactorial process and heterogeneous aetiology. Both genetic and 

environmental factors, as well as the human microbiome, are involved in the 

development of food allergy. With the recent advances in molecular biological 

techniques, unbiased or hypothesis-generating multi-omics approaches have been 

proposed to characterize the underlying molecular mechanism of food allergy. Next 

generation high-throughput technologies are being used to systematically and 

comprehensively characterize biological systems at multiple levels (80-82). This 

allows the exploration of the underlying physiology and pathophysiology mechanisms 

of diseases including food allergy. The following sections (1.4 and 1.5) review the 

application of transcriptomic and microbiome analysis in the studies of allergic 

diseases, particularly food allergy. 

1.4 Transcriptome analysis 
Transcriptome analysis is used to predict and understand the pathogenesis of allergic 

diseases. The host transcriptome consists of all RNA molecules that are transcribed 

from the host genome (83), and includes coding RNA, such as messenger RNA, and 

noncoding RNA (84). Gene expression profiling is a quantitative measurement of 

messenger RNA for thousands of genes at once and has been used to identify gene 

signatures and pathways related to diseases (83). Microarrays first made the 
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transcriptomic analysis available. Microarrays are still in use but they can only 

quantify predefined transcripts or genes (85, 86). More recently, RNA sequencing has 

emerged as a powerful method for characterizing the transcriptional profiles. It allows 

for full sequencing of the transcriptome in the organism, detection of low-expressed 

genes and improves gene-level quantification accuracy in phenotypes (85, 86).  

Transcriptome analysis in food allergy generally uses peripheral blood and peripheral 

blood mononuclear cells as blood is easily accessible. Several studies have 

investigated the transcriptome of peripheral blood mononuclear cells in patients with 

food allergy. They have identified gene signatures, associated immune cells and 

pathways related to food allergy (87-90). For example, Kosoy et al (90) performed 

blood transcriptome profiles using microarray and found that children with baked egg 

allergy showed an increased expression of interleukin 5, interleukin 9 and tumor 

necrosis factor alpha when compared to children without baked egg allergy. By 

comparing epigenome and transcriptomic profiling analysis of CD4+ T-cells in 

children with and without hen’s egg allergy, Martino et al. identified a disrupted 

expression of metabolic (RPTOR, PIK3D, MAPK1, FOXO1) and inflammatory genes 

(IL1R, IL18RAP, CD82) in children with hen’s egg allergy (88). This study also found 

that the upregulated genes from CD4+ T-cells in children with hen’s egg allergy were 

involved in contractile response (myogenesis, apical junction, epithelial transition), 

signal transduction (STAT and WNT signalling), and fatty acid metabolism 

(cholesterol homeostasis). Watson et al (87) conducted a RNA sequencing analysis of 

transcriptomic profiles from a cohort of peanut allergic children before, during, and 



 

 

 

32  Khui Hung Lee - February 2021 

 

 

after randomized, double-blind, placebo-controlled oral peanut challenges. This study 

found six genes (LTB4R, PADI4, IL1R2, PPP1R3D, KLHL2, and ECHDC3) 

associated with severe peanut responses through the regulation of the Rel/ Nuclear 

factor kappa B (NF-κB) transcription factor family. They also found increased 

proportions of macrophages and neutrophils, and reduced proportions of naive CD4+ 

T-cells upon peanut challenges. Another study conducted by Do et al identified 

NFKBIA and ARG1 as the key genes responsible for peanut severity through 

integrative analysis of whole-blood transcriptomic and epigenomic (89). The authors 

also found these upregulated genes were associated with neutrophil activation and 

neutrophil-mediated immunity.  

Overall, these studies suggest the involvement of multiple genes in multiple cell 

populations, such as CD4+ T-cells and neutrophils, in the pathogenesis of food allergy. 

CD4+ T-cells play a crucial role in the initiation and regulation of IgE-mediated food 

reactions (88, 91, 92). The induction of regulatory T cells, a subset of CD4+ T-cells, 

is known to express transcription factor forkhead box P3 in response to foreign 

antigens (92) and these cells perform a suppressive function by secreting anti-

inflammatory cytokines (93). Hence, reduced CD4+ T cells, especially regulatory T 

cells, could result in the failure of oral tolerance. 

Neutrophils are the first responders of the immune system to the site of inflammation 

and react to invading pathogens (94). Other than infection and inflammation, 

neutrophils have also been linked to allergic diseases (95-98). Mice models 

demonstrated that FcγRIIIA and FcγRIV (96), which are expressed by neutrophils, 
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increase the reaction severity while the depletion of neutrophils inhibits acute allergic 

reactions. In addition, human studies also identified several markers of neutrophil 

activation to be associated with acute anaphylaxis, such as S100A8, S100A9, TLR4, 

TREM1, S100A9 (97) as well as interleukin 17A (99).  

1.5 Microbiome Analysis 
The human microbiome plays a critical role for the health or disease of its host. The 

mucosal surfaces in the human body are native to complex communities of 

microorganisms. The human body is estimated to consist of 10-100 trillion microbes, 

and more than 1,000 bacterial species (100). These microbes do not only interact with 

each other but also interact with the host and its environment, shaping the local 

immune system and maintaining homeostasis (101).  

The microbiome was first suggested to be associated with the development of food 

allergy through an epidemiological study, which found children from a smaller 

household size were associated with a higher rate of developing allergic diseases 

compared to children from a larger household size (102). The application of next-

generation high-throughput sequencing, such as 16S rRNA gene sequencing, has 

advanced our understanding of host-microbe interactions. 16S rRNA gene sequencing 

has highly conserved regions for primer design and hypervariable regions (103) which 

allows for identifying thousands of new microorganisms that were not identified 

previously.  
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1.5.1 Gut microbiome and food allergy 
The human gut contains the highest number of microbes (104) of which 90% are 

Bacteroidetes and Firmicutes (105). This gut microbiome is known to affect the course 

of food allergies. This is particularly evidenced in human studies (106-109). For 

example, a study conducted by Ling et al. (106) found a reduced abundance of 

Bacteroidetes and an increased abundance of Firmicutes in infants with food allergy 

when compared to healthy controls. Another study found enrichment of Firmicutes in 

children with egg allergy when compared to controls (107). Yet another study also 

found enrichment of Firmicutes in food-allergic children compared to non-allergic 

siblings and healthy controls (108). In contrast, a large observational cohort study in 

the United States showed that children with persistent cow’s milk allergy had a higher 

abundance of Bacteroidetes and a lower abundance of Firmicutes than control subjects 

(109). These data seem to be inconsistent due to heterogeneity in study design, such 

as different techniques to characterize the gut microbiota, different sampling time 

points, and different allergic phenotypes. Hence, the microbe(s) associated with food 

allergy require further investigation.  

The role of the gut microbiome has been demonstrated in both human studies (110)  

and animal models (111-115). The gut microbiome may modulate the immune system 

and oral tolerance by affecting host metabolism (111, 112) and the alteration of 

adaptive immunity (113).  

Major attention has been directed to the possible role of short-chain fatty acids, such 

as butyrate, propionate, and acetate in affecting the immune system (70, 116-118),  
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since short-chain fatty acids are the main product of the digestive action of the gut 

microbiota [29, 30]. Production of short-chain fatty acids, particularly butyrate, is able 

to enhance the Vitamin A metabolism, in turns inducing the activity of ALDH in 

CD103+MLN DCs, and increasing the percentages of T regulatory (Tregs) cells and 

increasing IgA production (114). Meanwhile, short-chain fatty acids are able to inhibit 

histone deacetylases activity, resulting in regulation of aldh1a1 expression, which 

contributes to immune tolerance. Other than this, short-chain fatty acids can bind 

metabolite-sensing G-protein coupled receptors, GPR43 or GPR109A (119), in turn 

promoting the tolerogenic CD103+ DC function and protecting against food allergies 

(120). Moreover, short-chain fatty acids can reduce the production of pro-

inflammatory cytokines including IL-1β, IL-6, IL-17 (110), and meanwhile increase 

the production of anti-inflammatory mediators including IL-10 (110, 121). Thus, 

short-chain fatty acids are viewed as a key factor in promoting immunological 

tolerance towards harmless antigen and preventing inflammation.  

Adaptive immune responses are divided into two types: humoral immunity, regulated 

by B cells (122, 123), and cell-mediated immunity, regulated by T cells. The role of 

Tregs, subset of CD4+ T cells in oral tolerance development to food allergen, have 

been confirmed in animal models (124, 125) as well as human studies (126, 127) in 

which the induction of allergen-specific Treg cells is highly associated with a 

favourable allergy outcome. Microbiota, especially Clostridia species, in this case, 

were shown to be able to induce the production of Tregs (115, 128), which helps to 

inhibit allergic inflammation and promote oral tolerance (109, 112, 129, 130).  
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1.5.2 Oral microbiome and food allergy 
In addition to the gut microbiome, the oral microbiome is also relevant for the health 

and disease of its host. This was first proposed by oral microbiologist W. D. Miller in 

the 1890s (131). According to Miller, oral microbes and their products can profoundly 

affect the development of diseases. Pathogenic bacteria enter into the blood circulation 

through the oral mucosal barrier which can later result in chronic gut inflammation 

(132) through the reduction of Th17 cells and faecal IgA levels as well as an induction 

in the ratio of M1 to M2 macrophages (133).  

Since the oral microbiome contributes to host immune responses and inflammation, it 

is reasonable to propose that the oral microbiome may also affect the development of 

food allergy. A murine model of food allergy identified a reduced diversity of oral 

microbiome in ovalbumin sensitized mice compared with controls (134). This study 

identified a reduced diversity of oral microbiome in ovalbumin sensitized mice 

compared with controls. It also showed that the oral microbiome is dominated by 

Streptococci spp., including Streptococcus sanguinis and Streptococcus gordonii, as 

well as Lactobacillus spp. In addition, significantly higher IgA levels in ovalbumin 

sensitized mice were reported. This association between oral dysbiosis and food 

allergy (134) encourages further understanding of oral microbiome modulation and its 

impact on the pathogenesis of food allergy, as this is still in its infancy stage. 

1.5.3 House dust microbiome and food allergy 
Indoor environments contribute significantly to the human exposure to environmental 

microbes, as people spend most of their time indoors (135). One of the most common 
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generated indoor pollutants is house dust. House dust contains an average of 9,000 

different species of microbes (135). To be specific, the average household has more 

than 2,000 different types of fungi and 7,000 different types of bacteria. Therefore, 

transmission of house dust microbes, either through inhalation, ingestion or cutaneous, 

may be contributing to the onset of allergic diseases. 

To understand the association between house dust microbiome exposure and allergy 

outcomes, researchers have initially compared the endotoxin concentrations in house 

dust of children with and without allergic diseases (73, 136). These studies reveal that 

exposure to a high level of house dust endotoxin has a negative association with 

development of allergic diseases. Contradictory results are also reported, where 

exposure to high levels of house dust endotoxin shows an increased rate of developing 

allergic diseases (76, 77). Despite these discordant results, house dust endotoxin may 

under circumstances protect against allergic diseases and the development of allergic 

diseases.  

Recent studies using 16S rRNA gene sequencing have found that several taxa from 

house dust microbiome are associated with allergic diseases in children (72, 137, 138). 

For example, a case-control study of 104 children showed that reduced exposure to 

house dust microbiome, particularly Firmicutes and Bacteriodetes, in the first year of 

life may have a higher chance of developing atopy developing atopy and atopic wheeze 

(137). Another study identified Lactococcus genus as a risk factor for asthma and 

twelve bacterial genera (mostly from the Actinomycetales order) as a protective factor 

towards asthma (138). Loo et al. identified the indoor microbes of children with 
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allergic diseases are enriched with Anaplasmataceae, Bacteroidaceae, and 

Leptospiraceae (72). Although these studies have reported an association between 

house dust microbiome and allergy, there is very limited data examining the 

association between house dust microbiome and food allergy. 

1.6 Overall aim and objectives 
This thesis explores the molecular mechanism of food allergy among children in Perth, 

Australia. The overall aim of this thesis is to systematically elucidate the association 

of gene expression and microbiome with food allergy. Food-allergic children are those 

with a clinical history of allergic reactions towards at least one type of food, while 

non-food allergic children are those without any clinical history of food allergic 

reactions.  

The specific objectives of this thesis are to: 

1. identify novel genes related to food allergy; 

2. identify gene network patterns in children with nut allergy;  

3. investigate changes in cellular immune response between children with and 

without nut allergy;  

4. identify gut microbiome and pathways associated with food allergy; 

5. investigate the association between oral microbiome and food allergy; 

6. investigate the house dust microbiome and pathways associated with food 

allergy. 
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1.7 Public Health Relevance 
Food allergy affects 1 in 11 infants and 1 in 4 children in Australia (2, 5). Our aim is 

to systematically elucidate the association of gene expression and microbiome with 

food allergy. We compare the profiles of host transcriptome, gut microbiome, saliva 

microbiome and house dust microbiome between food-allergic children and non-food 

allergic children. The results of this thesis contribute towards a greater understanding 

of mechanisms underlying food allergy and may have utility in providing targets or 

biomarkers for better prediction and early identification of food allergy, thus 

improving management and prevention strategies for this unpleasant, sometimes fatal 

sickness in children. 
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2 STUDY DESIGN AND 
METHODOLOGY  

 

 

 

 

 

 

 

 

 

This chapter briefly describes the study design and methodology, which underpinning 

the conduct of the whole Ph.D. project. 
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Figure 2-1 Study Overview 

2.1 Study Population 
A total of 279 individuals were recruited from the outpatient clinic of the Immunology 

Department, Perth Children’s Hospital (previously known as Princess Margaret 

Hospital for Children) and local communities.  

There were two different groups of controls being used as comparison. For chapter 4, 

children with suspected or diagnosed allergies to nuts were recruited from the 

outpatient clinic of the Immunology Department, Perth Children’s Hospital and they 

were grouped into children without nut allergy and children with nut allergy based on 

the diagnoses outcome of the patients on the day of recruitment. Food allergy was 

defined by immediate symptoms (1–2 h) after food allergen ingestion combined with 

either failed oral food challenge or with positive skin prick test wheal diameter ≥
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 3 mm to nuts, hen’s egg and cow’s milk. In contrast, a negative skin prick test and/or 

a passed oral food challenge defined the subject as children without a food allergy. 

While for chapters 5,6,7, gut, oral and house dust microbiome were compared between 

children who currently diagnosed to have an allergic reaction to nuts, hen’s egg and 

cow’s milk and those who never have any allergic reaction to any food allergens 

(Figure 2-1). 

2.2 Sample collection and processing 

2.2.1 Blood Sample Collection and RNA extraction 
4 ml peripheral whole blood was collected into PAXgene RNA blood tubes (Qiagen, 

Mississauga, Ontario, Canada) and serum tube by trained phlebotomists in the 

Pathology Department at Perth Children’s Hospital. Total RNA samples were 

extracted using the PAXgene Blood RNA Kit in accordance with the manufacturer’s 

instructions (Qiagen). The concentration and purity of total RNA were measured by 

determining the A260/280 and A260/230 ratios, respectively (NanoDrop, Thermo 

Scientific, Wilmington, DE, USA). 

2.2.2 Faecal sample collection and processing 
Faecal sample was collected from participating child by the parent(s) using a provided 

faecal collection kit, which included a screw cap faecal container (SARSTEDT, 

Nümbrecht, Germany), an underpad sheet, a pair of disposable gloves, a white paper 

bag and a sealed plastic bag with labels. The faecal sample was then transported back 

to the laboratory in an esky cooler and stored at -80°C freezers by a researcher within 
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2 hours of collection. DNA was later extracted using the QIAamp DNA Stool Mini 

Kit (Qiagen) following the manufacturer’s instructions. The eluted DNA was stored at 

-80 ˚C until analysis. 

2.2.3 Saliva sample collection and processing 
Saliva sample was collected from participating children by the parent(s) using a 

provided saliva collection kit, which included a sterile plastic container with yellow 

lid, a pair of disposable gloves and a sealed plastic bag with labels. The saliva sample 

was then transported on ice to the laboratory -80°C freezers for storage by a researcher 

within 2 hours of collection. DNA was later purified using a PureLink™ Microbiome 

DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) in accordance 

with the manufacturer’s instructions. The eluted DNA was kept refrigerated at -80 ˚C 

freezers until further analysis. 

2.2.4 House dust sample collection and processing 
House dust sample was collected from the hard surface of the participant’s bedroom, 

mainly on a cupboard by a researcher using a sterile cotton swab moistened with sterile 

saline. The cotton swab was then placed immediately back to its sterile tube and 

transported on ice to the laboratory -80°C freezers for storage by the researcher within 

2 hours of collection. DNA was later purified using a PureLink™ Microbiome DNA 

Purification Kit (Thermo Fisher Scientific) in accordance with the manufacturer’s 

instructions. The eluted DNA was kept refrigerated at -80 ˚C freezers until analysis. 
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2.3 Quantitative reverse transcription-polymerase chain 
reactions (RT-qPCR) 
Whole blood RNA was reverse transcribed to cDNA with the QuantiTect Reverse 

Transcription Kit (Qiagen) in accordance with manufacturer’s instruction. RNA-

specific primers for quantitative reverse transcription-polymerase chain reactions (RT-

PCR) were designed on the specific region of the genes in house and tested on 

AMPLIFY Version 1.0 (Bill Engels, University of Wisconsin, Genetics, USA). RT-

qPCR was performed on a ViiA7 ™ Real-Time PCR System (Thermo Fisher 

Scientific). 

2.4 Library preparation and sequencing 
30 RNA samples were sent to Australian Genome Research Facility to perform RNA 

sequencing. The library of RNA sequencing was prepared using Illumina's TruSeq 

stranded RNA Library Prep Kit and then sequenced on Illumina HiSeq 2500 platform 

(Illumina, San Diego, CA, USA). 

60 stool samples, 34 saliva samples and 23 house dust samples were sent to Novogene 

Bioinformatics Technology Co., Ltd (Beijing, China) for library preparation and 

sequencing. The libraries, which targeted the V3-V4 region of the 16S rRNA gene, 

were prepared using Ion Plus Fragment Library Kit (Thermo Fisher Scientific) and 

sequenced on the Ion S5 XL platform (Thermo Fisher Scientific). 



 

 

 

Khui Hung Lee -February 2021   45 

 

 

2.5 Bioinformatics analysis 

2.5.1 Quantification of immune cells 
CIBERSORTx (139), a deconvolution algorithm, was then used to estimate the 

abundance of different cell types from RNA-Seq data based on cell type specific 

reference gene expression profiles. CIBERSORTx provides 22 types of functionally 

defined human immune cells (LM22 signature matrix) as a reference, and we focused 

on proportions of 12 human immune cells. Cell type proportions in children with and 

without nut allergy were compared by employing an independent t-test and were 

correlated with co-expression modules derived from WGCNA analysis. 

2.5.2 Gene expression profile of RNA sequencing 
The gene count data were imported, organised, filtered and later normalized based on 

trimmed mean of M values (TMM) method using edgeR package of R. Counts were 

then converted to log2-counts-per-million (logCPM) with precision weights, based on 

voom method using Limma package of R prior to statistical analysis. Gene expression 

profile was then identified by comparing between children with nut allergy and 

children without nut allergy.  

2.5.3 Quantitative Insights into Microbial Ecology (QIIME)  
The raw sequences of microbiome data were demultiplexed and quality filtered using 

Quantitative Insights into Microbial Ecology (QIIME) (1). Operational taxonomic 

units (OTUs) were clustered at 97% similarity level against the SILVA reference 

database (release 128) (2). Alpha diversity, which included Chao1, observed OTUs, 
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and the Shannon index, were estimated using the alpha_rarefaction.py script in QIIME. 

Beta diversity (weighted and unweighted UniFrac distance matrices) was measured 

using the beta_diversity.py script in QIIME. Principal Coordinate Analysis (PCoA) 

was obtained to visualise unweighted and weighted Unifrac distances in a two-

dimensional structure. A comparison of the relative abundance of OTUs between 

groups (phylum to genus levels) was computed using the 

summarize_taxa_through_plots.py script in QIIME.  

2.5.4 Construction of co-expression and co-abundance network 
Genes with high coefficient of variation from RNA sequencing data were used to 

construct a co-expression network and OTU count data with 97% identity, which 

undergone Hellinger transformation, were used to construct a co-abundance network 

by using the WGCNA (15). Highly co-expressed genes and co-occurred microbial taxa 

were then assigned into several module memberships. After that, module trait 

association analysis was used to calculate the correlation between the modules and the 

phenotype to detect the module(s) with the greatest susceptibility to food allergy. Next, 

hub genes and hub taxa were determined based on the high absolute value of the 

GeneSignificance and Module Membership obtained from intramodular analysis. 

These hub genes and hub taxa of the significant modules were then visualized using 

Cytoscape v3.8.0 (140). 
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2.5.5 Functional enrichment analysis 

Biological function and associated pathways enriched in each module modules were 

also characterized employing Gene Ontology (GO) and InnateDB(141). 

In parallel, the generated OTUs table and OTUs taxonomy was mapped onto Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways using R package, Tax4Fun. 

Linear discriminant analysis (LDA) effect size (LEfSe) analysis 

(http://huttenhower.sph.harvard.edu/lefse/) was performed to detect biomarkers of the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that differed 

significantly between non-food allergic children and food-allergic children.  

2.6 Administration of the questionnaires 
A standard questionnaire was administered to parents or guardians of children to 

collect general information such as age and gender, children and family history of 

allergic diseases as well as infant feeding regime and other environmental exposure 

such as pet exposure. 

A separate set of questionnaire on dietary intake and antibiotic intake was administered 

to those parents or guardians, who provided faecal, saliva and house dust samples of 

their children. 
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3 CHARACTERISTICS OF 
THE STUDY POPULATION 
WITH FOOD ALLERGY AND 
RISK FACTORS 

 

 

 

 

 

 

This chapter described the demographics characteristics and risk factors of children 

and without food allergy living in Perth, Australia. 

3.1 Characteristics of the study population 
A total of 279 children were recruited in the study, of which 164 blood samples, 69 

faecal samples, 47 saliva samples and 46 house dust samples were collected and 279 

questionnaires were administered.  
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Sixty-one percent of the subjects were boys, with the median age for non-food allergic 

children and food-allergic children of 6.0 years and 8.5 years, respectively. Two 

hundred and ten of the 279 children had physician-diagnosed food allergies. One 

hundred and forty-six children were diagnosed with a nut allergy, 14 children were 

diagnosed with a hen’s egg allergy, 3 children were diagnosed with a cow’s milk 

allergy, and 47 children were diagnosed with multiple food allergies. Multiple food 

allergies are defined as the presence of food allergies from two different food 

categories; for example, allergies to hen’s egg and nuts meet the criterion, whereas a 

child who is allergic to only several tree nuts would not meet the criterion for multiple 

food allergies. Detailed characteristics of the study population are listed in Table 3-1. 

Table 3-1 Characteristics of the study population 

Characteristic 
Non-food allergic 

children (n=69) 

Food-allergic 

children (n=210) 

Male, n (%) 40.0 (58.0) 129.0 (61.4) 

Female, n (%) 29.0 (42.0) 81.0 (38.6) 

Age, (mean ± SD) 6.9±4.3 8.6±4.3* 

Type of food allergies, n    

     Nut allergy - 146 

     Multiple food allergies - 47 

     Hen’s egg allergy - 14 

     Cow’s milk allergy - 3 
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*p less than 0.05 

3.2 Results of skin prick test (SPT) and specific IgE (sIgE) 
Of the 210 food-allergic children, 61 (21.9%) children had positive reactions to one 

food allergen (either SPT ≥ 3mm or sIgE ≥ 0.35 IU/ml) and 118 (42.3%) had positive 

reactions to multiple food allergens. The positive results of SPT and sIgE for food-

allergic children were shown in Table 3-2. 

Table 3-2 Positive results of SPT and sIgE for food-allergic children 

  
Positive SPT result 

n (%) 

Positive sIgE 

n (%) 

At least one food allergen (n) 169 67 

  Egg yolk 22.0 (13.0) 9.0 (13.4) 

  Egg white 35.0 (20.7) 17.0 (25.4) 

  Egg 2.0 (1.2) 1.0 (1.5) 

  Almond 17.0 (10.1) 19.0 (28.4) 

  Brazil Nut 15.0 (8.9) 15.0 (22.4) 

  Cashew 74.0 (43.8) 27.0 (40.3) 

  Hazelnut 17.0 (10.1) 19.0 (28.4) 

  Macadamia 10.0 (5.9) 14.0 (20.9) 

  Pecan 13.0 (7.7) 17.0 (25.4) 

  Pistachio 60.0 (35.5) 23.0 (34.3) 
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  Walnut 33.0 (19.5) 27.0 (40.3) 

  Pinenut 16.0 (9.5) 15.0 (22.4) 

  Coconut 3.0 (1.8) 2.0 (3.0) 

  Peanut 112.0 (66.3) 42.0 (62.7) 

  Cow's milk 12.0 (7.1) 3.0 (4.5) 

3.3 Result of oral food challenge 
Although oral food challenge is “the gold standard to diagnose food allergy”, it is not 

common practice in the daily clinical setting due to its anaphylactic reactions (142). 

Considering peanuts and tree nuts are responsible for most fatal anaphylactic reactions, 

hence those children with a history of recent anaphylaxis (within 12 months) and/or 

high levels of IgE specific to nut(s) are excluded from oral food challenge. The 

decision was made by clinical doctors as common clinical practice. Therefore, only 54 

(25.7%) children had the OFC tested. The results of the positive oral food challenge 

were shown in Table 3-3.   

Table 3-3 Positive oral food challenge in the study population 

  
Food-allergic 

children (n=54) 

Positive oral food challenge result, n (%)  

  Egg 13.0 (24.1) 

  Brazil Nut 1.0 (1.9) 
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  Cashew 3.0 (5.6) 

  Pecan 1.0 (1.9) 

  Walnut 3.0 (5.6) 

  Peanut 13.0 (24.1) 

3.4 Atopic history of children and parent(s) 
Eczema history was known for 165 children, 140 (66.7%) of whom were diagnosed 

with food allergy (Table 3-4). Eczema (p = 0.001) was significantly associated with 

food allergy. In contrast, there were no significant differences found in parental atopy 

history between non-food allergic children and food-allergic children. 

Table 3-4 Atopic history of child and parent(s) 

  

Non-food allergic 

children (n=69) 

Food-allergic 

children (n=210) 

 

  N % N % P 

Personal eczema history 25.0 42.4 140.0 66.7 0.001 

Parental atopy history 50.0 83.3 182.0 91.5 0.071 

3.5 Infant dietary intake and childhood dietary intake 
Among the infant dietary intake and childhood dietary intake, colostrum feeding (p 

<0.001) and the duration of breastfeeding period (p =0.015) were found to be 

significantly associated with food allergy (Table 3-5). In contrast, there were no 

significant differences found in another infant's dietary intake and childhood dietary 
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intake, including the type of first feed, breastfeeding and timing of solid food 

introduction between non-food allergic children and food-allergic children. 

Table 3-5 Infant dietary intake and childhood dietary intake 

  

Non-food 

allergic children 

(n=69) 

Food-allergic 

children 

(n=210) 
 

  N % N % P 

First feed     0.960 

    Breastmilk 56.0 86.2 183.0 87.1  

    Formula 4.0 6.2 11.0 5.2  

    Other 5.0 7.7 16.0 7.6  

Colostrum 28.0 46.7 163.0 82.7 < 0.001 

Breastfeed 54.0 98.2 183.0 94.3 0.239 

Breastfeeding period (months): mean (SD) 9.5 6.9 12.6 8.3 0.015 

Timing of solid food introduction: mean 

(SD) 
6.3 2.9 5.9 4.1 0.526 

3.6 Living lifestyle 
Pet contact when born (p = 0.006) showed a significant association with food allergy 

(Table 3-6). In contrast, pet contact regularly, attending daycare and kindergarten were 

not associated with food allergy. 
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Table 3-6 Other living characteristics 

3.7 Dietary intake and antibiotics intake 
There were no significant differences observed in fruit daily intake, vegetable daily 

intake and antibiotic intake between non-food allergic children and food-allergic 

children (Table 3-7). However, non-food allergic children were found to have 

significantly higher daily consumption of yogurt (p = 0.033) compared to food-allergic 

children.  

Table 3-7 Dietary intake and antibiotics intake 

  

Non-food allergic 

children (n=69) 

Food-allergic 

children (n=210) 
 

  N % N % P 

Day care attendance 37.0 61.7 110.0 54.7 0.342 

Kindergarten attendance 42.0 70.0 156.0 79.2 0.138 

Pet contact when born 18.0 30.0 99.0 50.0 0.006 

Pet contact regularly 36.0 60.0 144.0 72.7 0.060 

  

Non-food allergic 

children (n=37) 

Food-allergic 

children (n=38) 
 

  N % N % P 

Fruit daily intake     0.659 
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3.8 Multivariate model 
In a multivariate model, personal eczema history and pet contact when born were 

associated with an increased risk of food allergy after adjusted for age and gender 

(Table 3-8). Cow’s milk allergy was additionally included as a potential confounder 

for colostrum and breastfeed. Colostrum remains statistically significantly associated 

with food allergy after adjustment.  

In the unadjusted analysis, yogurt daily intake was inversely associated with food 

allergy. However, this factor was no longer associated with food allergy in the adjusted 

model. 

Table 3-8 Logistic regression of factors associated with food allergy 

  Unadjusted  Adjusted† 

  OR (95% CI) P OR 95% CI p 

     0~2 kinds  23.0 76.7 30.0 81.1  

     >= 3 kinds 7.0 23.3 7.0 18.9  

Vegetable daily intake     0.463 

     0~2 kinds  24.0 80.0 26.0 72.2  

     >= 3 kinds 6.0 20.0 10.0 27.8  

Yogurt daily intake 17.0 56.7 11.0 30.6 0.033 

Antibiotics intake last 2 weeks 0.0 0 2.0 5.4 0.228 
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Personal eczema history 2.72 
(1.51-4.91) 0.001 3.19 (1.72-5.91) < 0.001 

Parental atopy history 2.14 (0.92-4.97) 0.076 2.01 (0.86-4.72) 0.107 

Colostrum 5.48 
(2.93-10.26) < 0.001 5.10 (2.57-10.11) < 0.001^ 

Breastfeed 0.31 (0.04-2.44) 0.265 0.32 (0.04-2.62) 0.287^ 

Day care attendance 0.75 (0.42-1.36) 0.342 0.71 (0.39-1.30) 0.269 

Kindergarten attendance 1.63 (0.85-3.13) 0.141 1.11 (0.51-2.44) 0.794 

Pet contact when born 2.33 
(1.26-4.33) 0.007 2.30 (1.23-4.31) 0.009 

Pet contact regularly 1.63 (0.85-3.13) 0.141 1.61 (0.87-2.98) 0.129 

Fruit daily intake   0.659   0.661 

     0~2 kinds  1   1   

     >= 3 kinds 0.77 (0.24-2.50)  0.76 (0.22-2.59)  

Vegetable daily intake   0.464   0.711 

     0~2 kinds  1   1   

     >= 3 kinds 1.54 (0.49-4.88)  1.27 (0.36-4.48)  

Yogurt daily intake 0.34 
(0.12-0.93) 0.035 0.35 (0.12-1.01) 0.052 

† adjusted with age and gender only 

^ Colostrum and breastfeed were additionally adjusted for cow’s milk allergy. 

3.9 Discussion 
This chapter described the clinical and demographics characteristics of children living 

in Perth, Australia and evaluated the impact of previously identified risk factors on the 

onset of food allergy in this study population, including the personal and parental 
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history of atopy, infant dietary intake and childhood dietary intake, living lifestyle and 

dietary intake in Perth, Australia.  

Our study showed that eczema was highly associated with food allergy. This finding 

was consistent with previous studies, which revealed infants with early onset of 

eczema had a higher risk of developing food allergies (12-14, 16). One possible 

mechanism leading to this association could be mutations in the filament aggregating 

protein (filaggrin) gene (143, 144). The barrier defect caused by filaggrin deficiency 

makes the study subjects more likely to have cutaneous sensitization via antigen-

presenting cells and systemic atopic response (145). Therefore, direct skin contact with 

food allergens in those with impaired skin barriers, caused by filaggrin mutations or 

eczema, could facilitate sensitization, leading to the onset of a food allergy.  

Existing evidence suggests that colostrum (146) and pet contact (54, 147, 148) have 

protective effects on food allergy. Colostrum, which is the first human milk produced 

by mothers after delivery, is rich in immunologic components such as secretory IgA 

(149). Colostrum is shown to increase IgA levels, which in turn induces expression of 

tolerogenic cytokines such as transforming growth factor and Interleukin 10 (150) as 

well as promote gut-microbiota symbiosis and immune homeostasis (151), leading to 

oral tolerance. Pet exposure during the first three months of life was suggested to have 

a lower odd of developing food allergy (53). In contrast, our data indicated that 

colostrum and pet contact when born might be associated with an increased risk of 

food allergy. With 91.7% of food-allergic children in our study were found to have at 
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least an atopic parent, the observed positive association between these two factors and 

food allergies in our study might be caused by reverse causation. 

The timing of solid food introduction was previously investigated as one of the 

environmental factors that could influence the development of food allergy. The results 

are conflicting with a study that revealed a significant association between the timing 

of solid food introduction and food allergy (48), while other studies found no 

significant association (12, 152, 153). This discrepancy could be explained by the 

difference in types of food allergy being investigated. The frontier study focused on 

peanut allergy only while the latter studies covered various types of food allergy. 

Consistent with latter studies, our findings also did not find any association between 

the timing of solid food introduction and food allergy.  

In addition, there are incongruent results for daycare attendance as a possible 

environmental factor in increasing the risk of food allergies, with some studies 

showing a negative association between early daycare attendance and allergic disease, 

particularly food allergy (49, 50, 154) while other study showing a positive association 

between the daycare attendance and food allergy (52). Our findings also provided 

supporting evidence to the latter study that there was no association between daycare 

attendance and food allergy.   

Growing evidence proposed a fundamental role for yogurt consumption in protecting 

against food allergy (155). Yogurt, which contains Lactobacillus species, is suggested 

to regulate intestinal microbiota abundance and immune response as well as improve 

intestinal barrier function (155). Lactobacillus species such as Lactobacillus 



 

 

 

Khui Hung Lee -February 2021   59 

 

 

rhamnosus GG can increase the expression of proinflammatory cytokines (Tumor 

necrosis factor alpha and Interleukin 6) or anti-inflammatory cytokines (Interleukin 10) 

(156) as well as increase colonic regulatory T cells in the intestine (157). In our study, 

univariate analysis revealed that non-food allergic children were likely to have a higher 

daily intake of yogurt. However, after adjusting for age and gender, there was no 

association between yogurt daily intake and food allergy. 

Notably, this study has three limitations. First, the study subjects were recruited from 

the Department of Immunology, Perth Children and local communities. They were not 

randomly selected from the whole population; therefore, they are not well 

representative of the population. A convenience sampling strategy was used for the 

subject recruitment with the aim to collect blood and microbiome samples for further 

transcriptomic and microbiome investigations. Although we analysed several common 

risk factors for the association with food allergy in the population as above-mentioned 

in the chapter this analysis is not the aim of my thesis. I acknowledge that the 

convenience sampling method can have selection bias for this association analysis. 

Second, this is a cross-sectional cohort and not a birth cohort; therefore, there may be 

recall bias inherent in the study design. Third, this is a high-risk cohort with 80-90% 

of the parents having a history of atopy. This genetic background may influence risk 

factors. Hence, the associations between these risk factors and food allergy should be 

interpreted in light of these limitations. 
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4 IDENTIFYING GENE 
NETWORK PATTERNS AND 
ASSOCIATED CELLULAR 
IMMUNE RESPONSES IN 
CHILDREN WITH OR 
WITHOUT NUT ALLERGY  

This chapter described Aims1, 2 and 3, the aims of which were to identify novel genes 

related to food allergy, identify gene network patterns in children with nut allergy and 

investigate changes in cellular immune response between children with and without 

nut allergy. This chapter is presented in the manuscript format that has been submitted 

to the journal of Scientific Reports. The manuscript is still under peer review at the 

time of submission of this thesis. Some of the contents of this chapter have been 

presented at the World Allergy Congress 2019, held in Lyon, France, December 2019. 

It was also presented at a poster session at the Mark Liveris Symposium held in Perth, 

Australia, October 2018. 
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4.1 Abstract 
Although evidence suggests that the immune system plays a key role in the 

pathophysiology of nut allergy, the precise immunological mechanisms of nut allergy 

have not been systematically investigated. The aim of the present study was to identify 

gene network patterns and associated cellular immune responses in children with or 

without nut allergy. Transcriptome profiling (n=30) of whole blood cells was 

compared between children with and without nut allergy. Three genes were selected 

to be validated on a larger cohort of samples (n=86) by RT-qPCR. The composition of 

immune cells was inferred from the transcriptomic data using the CIBERSORTx 

algorithm. A co-expression network was constructed employing WGCNA on the top 

5000 most variable transcripts. The modules were interrogated with pathway analysis 

tool (InnateDB) and correlated with clinical phenotypes and cellular immune 

responses. Proportions of neutrophils were positively correlated and CD4+ T-cells and 

regulatory T-cells (Tregs) were negatively correlated with modules of nut allergy. We 

also identified two upregulated genes, namely IFIH1, DRAM1 and a downregulated 

gene ZNF512B as hub genes for nut allergy. Further pathway analysis showed 

upregulation of type 1 interferon signalling in nut allergy. Our findings suggest that 

upregulation of type 1 interferon signalling and neutrophil responses and 

downregulation of CD4+ T-cells and Tregs are a hallmark of the pathogenesis of nut 

allergy. 
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4.2 Introduction 
Today, food allergy affects up to 11% of infants and 3.8% of children, with 

progressively increasing prevalence over the last few decades (5). Children with food 

allergy are at risk for potentially life-threatening allergic reactions including breathing 

difficulties, swollen tongue, throat tightness and wheezing, particularly when exposed 

to nut allergens (158). Moreover, some food allergies such as nut allergy tend to be 

persistent over the full duration of a person’s lifetime and can cause anaphylactic 

reactions (158, 159). With the exception of treatment of peanut allergy (160), 

immunotherapy for desensitizing in food allergy is still not recommended for clinical 

practice (7). Hence, the best management for food allergies is to strictly avoid specific 

food allergens. As such, it is crucially essential to elucidate the fundamental 

mechanisms of food allergy to help develop effective prevention and treatment for this 

condition in children.  

Food allergy is mechanistically characterized by the development of an overactive 

immune response to an otherwise harmless allergen, resulting in a T helper 2 (Th2) 

polarized cytokine response to the allergen and the production of an Immunoglobulin 

E (IgE) antibody response. Upon recognition of food allergens by antigen presenting 

cells, mainly dendritic cells (DCs), naïve T-cells are instructed to differentiate into 

allergen-specific Th2 cells (161), which are characterized by the expression of type-2 

cytokines including interleukin (IL)-4, IL-5, and IL-13 (162). These cytokines then 

mediate immune responses to food allergens by supporting B-cell proliferation (163-

165), promoting IgE isotype switching, and inducing the activation of mast cells and 
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basophils (166-169). Given that immune responses to food allergens are complex and 

involve multiple cell populations, we reasoned that an unbiased systems biology 

approach could reveal a unique level of insight into the underlying immunological 

mechanisms. RNA sequencing has been widely used for investigating the pathogenesis 

of complex human diseases (170), because it enables the systematic study of the 

molecular states that underpin pathogenic states (171). RNA sequencing data can be 

analysed with systems biology methods such as weighted gene co-expression network 

analysis (WGCNA), to elucidate the global architecture of the gene expression 

program and unmask systems-level properties of the biological systems under study 

(172). In the current study, we applied an RNA sequencing approach coupled with cell 

deconvolution and weighted gene co-expression network analysis to identify gene 

network patterns and associated cellular immune responses in children with or without 

nut allergy, in order to better understand immunological mechanisms of nut allergy. 

4.3 Methods 
This study was approved by the Curtin Human Research Ethics Committee (Curtin 

HREC 10718) and Child and Adolescent Health Service (CAHS) Human Research 

Ethics Committee (CAHS HREC 2016046EP) and conducted in accordance with the 

National Health and Medical Research Council National Statement on Ethical Conduct 

in Human Research. Written informed consent was obtained from all parents on behalf 

of participants. Our study included a total of 86 individuals (79 children with a nut 

allergy and 7 children without a nut allergy). Children (aged 1-16 years old) with 
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suspected or diagnosed allergies to nuts were recruited from the outpatient clinic of 

the Immunology Department, Perth Children’s Hospital. Diagnoses of food allergy 

were determined by an immunologist on the day of recruitment based on the clinical 

outcomes of the patients. Venous blood was collected into PAXgene RNA blood tubes 

(PreAnalytiX, Qiagen, Hilden, Germany) by a trained phlebotomist.  

4.3.1 RNA extraction 
Total RNA samples were extracted using PAXgene Blood RNA Kit according to the 

manufacturer’s instructions (Qiagen). Total RNA concentration and purity were 

assessed by determining the A260/280 and A260/230 ratios, respectively (NanoDrop).  

4.3.2 Library preparation, RNA sequencing and Quality control (QC) 
The library preparation, sequencing read, QC and read alignment of 30 samples were 

performed at the Australian Genome Research Facility (AGRF). Briefly, the library 

was prepared using Illumina's TruSeq stranded RNA Library Prep Kit as per the 

manufacturer’s instructions. The library was then sequenced on Illumina HiSeq 2500 

platform. The raw reads were processed by the Illumina bcl2fastq 2.20.0.422 pipeline. 

The sequence reads from all the samples were analysed according to AGRF quality 

control measures. The cleaned sequence reads were aligned against the Homo sapiens 

genome (Build version HG38) by the Tophat aligner (v2.1.1). The reads corresponding 

to each gene were summarized using the featureCounts v1.5.3 utility of the subread 

package (http://subread.sourceforge.net/). 

http://subread.sourceforge.net/
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4.3.3 Gene expression profile of RNA sequencing 
The count data were imported, organised, filtered and later normalized based on 

trimmed mean of M values (TMM) method using edgeR package. Counts were then 

converted to log2-counts-per-million (logCPM) with precision weights, based on 

voom method using Limma package of R prior to statistical analysis (173). Empirical 

Bayes statistics were applied to compute model statistics and calculate log-fold change 

(log2FC) of differential expressed genes. The cut-off criterion for significant analysis 

was: |log2FC| > 0.3 and p< 0.05. 

4.3.4 RT-qPCR 
RNA was reverse transcribed to cDNA using the QuantiTect Reverse Transcription 

Kit (Qiagen, Germany). One μg of the total RNA from each sample was mixed with 

gDNA wipeout buffer and RNase-free water to prepare annealing mix, followed by 

incubation at 42 °C for 2 mins. The annealing mix was stored on ice until reverse 

transcription master mix was added. The final mixture was incubated for 30 min at 

42°C and 3 min at 95°C to inactivate reverse transcription reaction before storing at 

−80°C.  

RNA-specific primers for reverse transcription-polymerase chain reactions (RT-qPCR) 

were designed on the specific region of the genes. Quantitative PCR was performed 

on a ViiA7 ™ Real-Time PCR System (Thermo Fisher Scientific). qPCR thermal 

cycling was set as follows: initial denaturation at 95°C for 5min, followed by 40 cycles 

at 95°C for 10s and 55°C for 30s and a final extension at 95°C for 15s, 60°C for 1min 

and 95°C for 15s. 18s rRNA was measured as the housekeeping gene for qPCR. The 
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fold change in the expression of targeted genes was computed using the ΔΔCt method 

(174). 

4.3.5 Quantification of immune cells 
The RNA-Seq data was then used to estimate the cellular composition of the whole 

blood samples using CIBERSORTx (139). CIBERSORTx is a deconvolution 

algorithm, which can estimate the abundance of different cell types from RNA-Seq 

data based on cell type specific reference gene expression profiles. CIBERSORTx 

provides 22 types of functionally defined human immune cells (LM22 signature matrix) 

as a reference, and we focused on proportions of 12 human immune cells (B cells, 

CD8+ T-cells, CD4+ T-cells, follicular helper T-cells, Tregs, gamma delta T-cells, NK 

cells,  monocytes, dendritic cells, mast cells, eosinophils and neutrophils). The cell 

type proportions in children with and without nut allergy were compared employing 

an independent t-test, and were correlated with coexpression modules derived from 

WGCNA. 

4.3.6 Gene co-expression network construction 
Genes with low variation from RNA sequencing data were then filtered out using a 

coefficient of variation cutoff (CV>0.05). This resulted in the identification of 9462 

stably expressed genes in all the samples. Top 5000 genes with high coefficient of 

variation values were selected for additional analysis. 

The selected genes were then used to construct a co-expression network by using the 

WGCNA (140). First, the soft-thresholding power was calculated by using a scale-free 
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topology and the soft-thresholding power was selected based on a scale-free topology 

index (R2) of 0.85 (Supplemental figure S 4-1). Next, the selected soft-thresholding 

power of 8 was used to calculate the adjacency matrix, which was then transformed 

into a Topological Overlap Matrix (TOM). TOM was then used to perform average 

linkage hierarchical clustering in order to identify modules of highly coexpressed 

genes. Network modules were subsequently identified using a dynamic tree cut 

algorithm with a minimum cluster size of 30 and merge cut height of 0.25 (default) 

and later assigned to clusters of highly co-occurred genes with different colours for 

visualization.  

4.3.7 Module trait relationship construction 
Module eigengenes were used to perform principal component analysis of the 

expression matrix from each module. The correlation between module eigengenes 

(ME), proportions of immune cells, phenotype as well as demographics traits such as 

age, gender, and batch effect were calculated using Pearson correlation coefficient. 

Modules, which have p-value <0.05, were identified to have significant correlations 

with nut allergy and these modules were selected for further analysis.  

4.3.8 Hub Genes Selection and Visualization 
Next, an intramodular analysis was performed to determine the hub genes in the 

selected modules by summing the connection strengths with other module genes. Hub 

genes were defined based on the standard cut off of module membership (MM) > 0.8 
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and gene significance (GS) > 0.5. Genes of the significant modules were then 

visualized using Cytoscape v3.8.0 (175). 

4.3.9 Functional enrichment analysis 
The biological function and associated pathways enriched in each module was 

characterized by employing gene ontology (GO) and using InnateDB (141). 

4.4 Results 

4.4.1 Study Population 
A total of 79 whole blood samples (23 whole blood samples for RNA sequencing and 

79 whole blood samples for RT-qPCR) were obtained from children with nut allergy, 

and 7 whole blood samples were obtained from children without nut allergy. Sixty four 

percent of the subjects were boys, with the median age for children without nut allergy 

and children with nut allergy of 9.1 years and 9.6 years, respectively. The groups did 

not significantly differ from each other with regard to age (p=0.794) and gender 

(p=0.667). Several participants in children with and without nut allergy had self-

reported eczema. Clinical diagnoses for environmental allergens were not sought for 

this study. 

4.4.2 Gene expression profiling of whole blood in children with or 
without nut allergy 
We utilized RNA sequencing to assess gene expression patterns on 30 whole blood 

samples of children with and without nut allergy. RNA sequencing produced a total of 

520 million reads with an average of 17 million mapped reads per sample. A total of 
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12,523 genes were detected in both samples with and without nut allergy. Differential 

expression analysis adjusted for age, sex, and batch effect identified 184 upregulated 

genes (log2FC >0.3) and 490 downregulated genes (log2FC <-0.3) (Figure 4-1). 

However, it is noteworthy that these results were not significant after adjusting for 

multiple testing. 

 

Figure 4-1 The volcano plot for differentially expressed genes. The horizontal axis 

represents the log2 fold change, and the vertical axis represents the -

log10(pvalue). Red denotes upregulated genes with log2FC > 0.3 and p-value < 

0.05 while blue denotes downregulated genes with log2FC < -0.3 and p-value < 

0.05. The top 15 differentially expressed genes are labelled. 
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4.4.3 Validation of RNA sequencing results with RT‑qPCR 
We selected three genes for validation (GNB4, GASK1B and LYSMD2) by RT-qPCR 

on a larger cohort of samples according to the following criteria: 1) dysregulated genes 

based on RNA-seq; 2) High abundance based on logCPM of RNA-seq data; 3)These 

genes are particularly interesting, associating with infection and inflammation based 

on literature. We observed the results of RT-qPCR were significantly correlated with 

RNA sequencing (p<0.01) (Supplemental figure S 4-2). These results suggested that 

our RNA-Seq data was reliable. 

4.4.4 Gene co-expression network construction 
We constructed a coexpression network on the top 5000 most variable genes as 

described in the methods. Through WGCNA, we identified 12 modules of co-

expressed genes, and each module comprised between 71 to 1807 genes (Table 4-1). 

Among the highly variable genes, only 536 genes (10%) were not assigned to any 

module, and these genes were clustered into the grey module as per default. Pathways 

analysis of the modules with InnateDb demonstrated that the modules were 

significantly enriched for coherent biological functions (Table 4-1).  

Table 4-1 Modules and associated biological processes 

Module 

colours 

No. of 

genes 
Associated biological processes 

Adjusted p-

value 

Black 190 
malonyl-CoA biosynthetic process 0.020 
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Blue 643 
innate immune response <0.001 

Brown 384 
negative regulation of dendritic cell differentiation 0.032 

Green 266 positive regulation of humoral immune response 0.122 

Greenyellow 90 
chronic inflammatory response to antigenic stimulus 0.003 

Magenta 132 
establishment of T-cell polarity 0.037 

Pink 187 
gene expression 0.001 

Purple 116 
regulation of cytokine secretion 0.015 

Red 229 IMP biosynthetic process 0.174 

Tan 71 
type 1 interferon signaling pathway <0.001 

Turquoise 1807 
transcription, DNA-templated <0.001 

Yellow 349 protein import into peroxisome matrix, translocation 0.211 

4.4.5 Module trait relationship construction 
The module eigengenes were further compared between children with and without nut 

allergy using module trait association analysis to identify the nut allergy-associated 

modules. Three modules out of 12 modules were identified to be significantly 

associated with nut allergy (Figure 4-2), which included tan module (r = 0.43, p = 0.03), 

purple module (r = 0.4, p = 0.04) and green module (r = -0.48, p = 0.01). The 

upregulated modules (tan and purple modules), were negatively correlated to CD4+ T-

cells and positively correlated to neutrophils. In addition, the purple module was also 

negatively correlated to Tregs. In contrast, the downregulated module (green module) 
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was positively correlated to CD4+ T-cells and Tregs as well as negatively correlated 

to neutrophils. However, two modules that were not significantly associated with nut 

allergy (red and greenyellow modules) were also observed to be strongly correlated 

with neutrophils.  
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Figure 4-2 Module-trait associations. Each row corresponds to a module 

eigengene (ME) while each column corresponds to either phenotype (NA: nut 

allergy) or demographic traits such as age and gender. Each cell contains the 

corresponding correlation coefficient (display at the top of the cell) and 

corresponding p-values for each module (display at the bottom of the cells within 

parentheses). Blue and red colours of the spectrum on the right denote low and 

high correlation, respectively. 
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Figure 4-3 Differential immune cell type expression was observed between 

children with and without nut allergy. Blue colour represents children without 

nut allergy, while red colour represents children with nut allergy. 

The proportions of the 12 human immune cells in children with or without nut allergy 

are shown in Figure 4-3. The cellular composition was dominated by neutrophils, 

Monocytes, CD8+ T- cells, CD4+ T-cells, B cells and Tregs. Among all the cell types, 

CD4+ T-cells and macrophages were observed to have a significant difference 

between children with and without nut allergy. 
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4.4.6 Significant modules and associated biological process 
The Tan module was revealed to have the highest positive correlation with nut allergy. 

In the tan module, 71 genes were identified to be correlated with food allergy and these 

genes were found to be involved in type 1 interferon signalling pathway. Particularly, 

IFIH1 was identified as a hub gene of the tan module (GeneSignificance > 0.5 and 

Module Membership > 0.8, Figure 4-4). 

The purple module was also positively correlated with nut allergy. In the purple 

module, 116 genes were identified to be correlated with food allergy and these genes 

were found to be involved in the regulation of cytokine secretion. Particularly, DRAM1 

was identified as a hub gene within the purple module (GeneSignificance > 0.5 and 

Module Membership > 0.8, Figure 4-4). 

In contrast, the green module was found to have a negative correlation with nut allergy. 

In the green module, 266 genes were identified to be correlated with food allergy and 

these genes were found to be involved in the positive regulation of humoral immune 

response. Particularly, ZNF512B was identified as a hub gene of the green module 

(GeneSignificance > 0.5 and Module Membership > 0.8, Figure 4-4). 
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Figure 4-4 Co-expression network of top 30 genes in 3 distinct modules (purple, 

tan and green), hub gene is indicated with yellow triangle shapes and other linked 

genes are in round shapes and colour coded according to the module colour. 

4.5 Discussion 
Nut allergy can cause severe, life-threatening anaphylactic reactions. Here, we profiled 

the transcriptome of immune cells to provide a window into the regulation of immune 

function in the context of food allergy and anaphylaxis. The application of WGCNA 

identifies the global connectivity structure of the gene expression program, and 

unmasks systems-level features of the underlying biology (176, 177). Herein, we 
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analysed gene expression profiles obtained from whole blood transcriptome of 

children with and without nut allergy using WGCNA to identify molecular and cellular 

immune features associated with nut allergy. In the present study, we identified 

upregulation of the type I interferon production (tan) and cytokine production (purple) 

modules and downregulation of the humoral immune responses (green) module in 

children with nut allergy. These changes were positively correlated with proportions 

of neutrophils and negatively correlated with proportions of CD4 T cell/Treg. The 

upregulated modules were characterized by hub genes, namely IFIH1, DRAM1, which 

were involved in type 1 interferon signalling pathway and the regulation of cytokine 

secretion while the downregulated module was characterized by a hub gene, namely 

ZNF512B, which was involved in the positive regulation of humoral immune response. 

Together, our data suggest that the nut allergy is associated with the upregulation of 

type 1 interferon and neutrophil responses, and downregulation of CD4 T cell/Treg 

responses. Consistent with our studies, previous studies have also identified the 

enrichment of type 1 interferons in subjects with allergic diseases compared to control 

(90, 178). The exposure to allergens activates toll like receptors, which in turn 

mediates the production of type 1 interferons, inducing phosphorylation of STAT1 and 

inducing expression of pro-inflammatory cytokines (178). 

A limitation of gene expression profiles obtained from whole blood transcriptome is 

that the data are potentially confounded by variations in cellular composition. The 

integration of the co-expression network and cell deconvolution approaches allowed 

us to link co-expression patterns within each module with specific immune cells. 
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CD4+ T-cells and Tregs are already the focus of investigation in studies of food allergy 

(88, 91, 92). Mouse models of food allergy demonstrated a critical role for 

CD4+Foxp3+ Treg cells in suppressing food allergy. These studies observed a 

significant increase in the percentage of CD4+Foxp3+ Treg cells in ovalbumin 

sensitized mice with mucosal tolerance induction compared to the intolerant group 

(126, 179, 180). In addition, CD4+Foxp3+ Treg cells were found to inhibit the 

activation of dendritic cells, mast cells, basophils, and eosinophils, suppress the 

production of allergen-specific IgE, inhibit Th1, Th2, and Th17 migration patterns and 

effector functions as well as promote the secretion of IgG4 (181). Consistent with these 

studies, we also observed a downregulation of CD4+ T-cell and Treg responses in the 

pathogenesis of nut allergy. 

Our analysis also pointed to a possible contribution of neutrophils to the pathogenesis 

of nut allergy. However, we also observed a significant association of neutrophils with 

other modules that were not associated with nut allergy. These contrasting results 

could be due to the heterogeneity of neutrophils as previous studies have revealed 

variations in phenotype and functions of neutrophils in the development of allergic 

diseases. On the one hand, neutrophil Fc gamma receptors, FcγRIIIA and FcγRIV as 

well as several markers of neutrophil activation, S100A8, S100A9, TLR4, TREM1, 

S100A9 (97) and interleukin 17A (99), are shown to induce acute anaphylaxis (95, 96). 

On the other hand, neutrophils are revealed to be a source of anti-inflammatory and 

immunomodulatory cytokines, such as interleukin-10 (182). Moreover, neutrophils 

can suppress NF-kB activation in the macrophage, which in turn reduces the 
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expression of pro-inflammatory cytokines (tumor necrosis factor, chemokine ligand 8 

and interleukin-6), leading to the resolution of inflammation (183). Considering the 

heterogeneity of neutrophils and only limited information is available on the roles of 

neutrophils, our findings require further research on neutrophils-related gene networks 

with nut allergy. 

Our study adds to the growing body of literature describing the association of 

upregulation of type 1 interferon and neutrophil responses, and downregulation of CD4 

T cell/Treg responses with food allergy, particularly nut allergy by suggesting these 

immune cells responses were not driven by single genes, but networks of co-regulated 

genes via direct/ indirect interactions with IFIH1, DRAM1 and ZNF512B. However, 

our results should be interpreted with caution due to the following limitations: First, 

the sample sizes used for RNA sequencing are small (n=30), but gene expression levels 

of three selected genes are validated using RT-qPCR in a larger sample (n=86). Second, 

it is not known if the observed patterns of gene expression are related to the 

mechanisms that drive nut allergy or alternatively are reacting to nut allergy due to the 

cross-sectional nature of our study. Third, our study only focused on nut allergy, and 

therefore it is not known if the mechanisms we identified are relevant to other food 

allergies. Fourth, flow cytometry-based assays to target multiple cell populations were 

not feasible due to the volume restriction on blood collection from children. However, 

we have applied an unbiased deconvolution approach to infer the proportions of 12 

human cells in whole blood transcriptome. In addition, our study does not define 

whether changes in cellular proportions precede or follow transcriptomic changes. 
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Further experiments are needed to identify the cellular origin of the gene expression 

signals associated with nut allergy. 

4.6 Conclusion 
To conclude, our study identified upregulation of two gene network modules and 

downregulation of one gene network module in children with nut allergy. We 

identified neutrophils, CD4+ T-cells and Tregs to be highly correlated with nut allergy. 

We also identified IFIH1, DRAM1 and ZNF512B as hub genes for nut allergy and 

these hub genes were related to type 1 interferon signaling pathways, cytokine 

signaling, and positive regulation of humoral immune responses, respectively. Our 

findings may provide a valuable reference for further elucidation of the mechanisms 

of nut allergy. Furthermore, these hub genes and immune-related cells may become 

important therapeutic targets for treating nut allergy. 
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4.7 Supplemental Information 

4.7.1 Supplemental figures 

 

Supplemental figure S 4-1 Determination of soft-thresholding power in the 

WGCNA. (a) The plot shows the scale-free topology fit index (y-axis) for different 

soft-thresholding powers (β) (x-axis). The higher the RɅ2 value, the closer to 

scale-free topology. Scale-free topology at β=8 (b) Analysis of the mean 

connectivity (degree, y-axis) for various soft-thresholding powers (x-axis). 
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Supplemental figure S 4-2 Pearson correlation between expressions of RNA 

Sequencing and RT-qPCR in a) GNB4, b) GASK1B, c) LYSMD2 (P<0.01). 
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5 DYSFUNCTIONAL GUT 
MICROBIOME NETWORKS 
IN CHILDHOOD IGE-
MEDIATED FOOD 
ALLERGY 

 

 

This chapter described Aim4, the aim of which was to identify gut microbiome and 

pathways associated with food allergy. This Chapter is reformatted from Lee, K.H., 

Guo, J., Song, Y. et al. Dysfunctional Gut Microbiome Networks in Childhood IgE-

Mediated Food Allergy. Int J Mol Sci 22, 4 (2021). 

https://doi.org/10.3390/ijms22042079, published under a Creative Commons BY 

license (http://creativecommons.org/licenses/by/4.0/) 

https://doi.org/10.3390/ijms22042079
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5.1 Abstract 
The development of food allergy has been reported to be related with the changes in 

the gut microbiome, however the specific microbe(s) associated with food allergy 

remains elusive. This study aimed to comprehensively characterize the gut 

microbiome and identify individual or group gut microbes relating to food-allergy 

using 16S rRNA gene sequencing with network analysis. Faecal samples were 

collected from children with IgE-mediated food allergies (n=33) and without food 

allergy (n=27). Gut microbiome was profiled by 16S rRNA gene sequencing. OTUs 

obtained from 16S rRNA gene sequencing were then used to construct a co-abundance 

network using Weighted Gene Co-expression Network Analysis (WGCNA) and 

mapped onto Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We 

identified a co-abundance network module to be positively correlated with IgE-

mediated food allergy and this module was characterized by a hub taxon, namely 

Ruminococcaceae UCG-002 (phylum Firmicutes). Functional pathway analysis of all 

the gut microbiome showed enrichment of methane metabolism and glycerolipid 

metabolism in the gut microbiome of food-allergic children and enrichment of 

ubiquinone and other terpenoid-quinone biosynthesis in the gut microbiome of non-

food allergic children. We concluded that Ruminococcaceae UCG-002 may play 

determinant roles in gut microbial community structure and function leading to IgE-

mediated food allergy.  
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5.2 Introduction 
Emerging evidences has pointed towards the critical role of microbial communities in 

human health and disease, including regulation of the mucosal barrier function (184-

187), metabolism (188-190) and host immune responses (186, 187, 191). This is 

particularly evident in the gastrointestinal (GI) tract, where the diversity and richness 

of microorganisms are highest (192). Gut dysbiosis, which is defined by a lack of 

short-chain fatty acids/butyrate-producing bacteria, in particular members of the 

phylum Firmicutes, is commonly associated with low levels of short-chain fatty acids. 

The low levels of short-chain fatty acids may reduce the tolerogenic CD103+ DC 

function (114), decrease the percentage of T regulatory cells (Tregs) (114), decrease 

the production of IgA (114), increase histone deacetylases activity (193), increase the 

production of pro-inflammatory cytokines (IL-1β, IL-6, IL-17) (110), and decrease the 

secretion of anti-inflammatory cytokines (IL-10) (110), all leading to the development 

of food allergy.  

Previous studies have started to unveil an association between the gut microbiome and 

food allergy. A large observational cohort study in the United States showed that food-

allergic children had a higher abundance of Bacteroidetes and a lower abundance of 

Firmicutes than children with resolved food allergy (109), while some studies showed 

the opposite results (106, 107).  

Considering the complexity of structure, function and compositional variability, the 

gut microbiome can be modelled and expressed as networks to infer the dynamic 

nature of the host–microbe interactions (101). One approach to construct co-
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abundance network modules is to apply weighted gene co-expression network analysis 

(WGCNA) to quantify the co-abundance of operational taxonomic units (OTUs) 

across multiple samples. Developed by Horvath and colleagues, WGCNA was initially 

used to construct gene networks based on their similar biological functions and identify 

the hub gene that may associated with phenotypic traits (140). We used WGCNA in 

this study to analyse the association between gut microbiome and disease phenotype 

by forming the complex microbial communities into different co-abundance network 

modules in order to identify hub taxa, the centralities of these co-abundance modules. 

Through this, we expect that WGCNA will identify potential target microbes, which 

may play a key role in regulating/ influencing the microbe-microbe interactions, 

leading to the onset of food allergy. 

5.3 Methods 

5.3.1 Study subject 
From January 2018 to March 2019, children with immunologist-diagnosed food 

allergy were recruited from Immunology Outpatient Clinic, Perth Children's Hospital. 

Children from 1 year old to 7 years of age with immunologist-diagnosed food allergy 

were eligible for participation. Non-food allergic children, with age and gender 

matched were recruited from the local community.  

All parents of the subjects gave their informed consent for inclusion before they 

participated in the study. The study was conducted in accordance with the National 

Health and Medical Research Council National Statement on Ethical Conduct in 
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Human Research, and the protocol was approved by the Human Research Ethics 

Committee (HREC), Perth Children's Hospital (RGS151 / HREC 2017060EP) and 

Curtin University (HRE2017-0712).  

5.3.2 Faecal sample collection and processing 
Parents/ guardians of the participants were provided a faecal collection kit, which 

included a protocol of faecal collection, a screw cap faecal container (Sarstedt, 

Germany), an underpad sheet, a pair of disposable gloves, a white paper bag and a 

sealed plastic bag with labels. Once collected, the faecal sample would then be 

transported on ice by a researcher within 2 hours of collection to the laboratory -80°C 

freezers for storage. 

DNA was then extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Germany) 

in accordance with the manufacturer’s instructions. The PCR amplication and 

sequencing of sixty stool samples were performed by Novogene Bioinformatics 

Technology Co., Ltd (Beijing, China). Briefly, PCR was carried out using Phusion® 

High-Fidelity PCR Master Mix and GC Buffer (New England Biolabs, Beijing, China) 

in accordance with the manufacturer’s instruction. PCR thermal cycling was set as 

follows: initial denaturation at 98°C for 1min, followed by 35 cycles at 98°C for 10 s, 

50°C for 30 s and 72°C for 90 s, and a final extension at 72°C for 5 min. The samples 

were then subjected to electrophoresis on a 2% agarose gel for detection. Samples with 

a bright main strip between 400 and 450 bp were chosen for further analysis. The PCR 

products were purified using the Gene JET Gel Extraction kit (Thermo Scientific), and 
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the sequencing libraries were constructed using Ion Plus Fragment Library Kit 

(Thermo Fisher Scientific, USA) in accordance with the manufacturer’s instruction. 

The library quality was monitored using a Qubit 2.0 Fluorometer (Thermo Fisher 

Scientific, St. Louis, MO, USA) and a Bioanalyzer 2100 system (Agilent Technologies, 

Santa Clara, CA, USA). Lastly, the library, which targeted the V3-V4 region of the 

16S rRNA gene was sequenced on the Ion S5 XL platform (Thermo Fisher). A total 

of 4,858,507 sequences reads that passed the quality check (>Q20, error rate < 1%) 

were generated. 

5.3.3 Quantitative Insights into Microbial Ecology (QIIME) 
The raw sequences were then demultiplexed and quality filtered using QIIME (194) 

by removing those raw sequences with read-quality score less than 19, setting length 

fall below 3bp and consecutive quality base below 75%. The filtered sequences were 

then screened for chimeras using the usearch61 algorithm (195) and putative chimeric 

sequences were removed from the data set. Sequences were clustered into operational 

taxonomic units (OTUs) at a 97% similarity level against the SILVA reference 

database (release 128) (196). The OTUs with low relative abundance (less than 0.005%) 

were removed. All further analyses were performed at a rarefied depth of 22178 

sequences per sample to correct for differences in the read depth across samples. 

Alpha diversity and beta diversity of microbial communities were analysed using 

QIIME. Alpha diversity was estimated using two different indices: 1) Chao1, which 

takes into accounts only the abundance; 2) observed OTUs, which takes into accounts 
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only the observed species; 3) the Shannon index, which takes into accounts the 

abundance and evenness of OTUs. Beta diversity was measured using the weighted 

and unweighted UniFrac distance matrices. Principal Coordinate Analysis (PCoA) was 

obtained to visualise unweighted and weighted Unifrac distances in a two-dimensional 

structure. The Adonis permutational multivariate analysis (Adonis/PERMANOVA) 

was performed to compare beta diversity dissimilarity matrices. A comparison of the 

relative abundance of OTUs between groups was computed using the Mann Whitney 

test. A probability value of p< 0.05 was considered statistically significant. 

5.3.4 Construction of microbial co-abundance network 
In order to have a better understanding of the co-abundance network of the microbial 

taxa, Weighted Gene Correlation Network Analysis (WGCNA) package of R (140) 

was then performed to conduct network analysis by using OTU count data (with 97% 

identity threshold), which has undergone Hellinger transformation, by transforming 

OTU count data from absolute to relative abundance that gives low weights to 

variables with low counts and many zeros (197).   

Taking into account that the use of correlation analysis in analysing the microbiome 

data can lead to a spurious association, WGCNA applied few steps to reduce the 

number of false positive connections introduced by spurious associations. A soft 

thresholding power β was determined based on scale-free topology index (R2) of 0.85. 

The most appropriate soft thresholding power was then used to construct a weighted 

adjacency matrix to which the co-abundance similarity has been raised. By raising the 
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absolute value of the correlation to a soft thresholding power (β≥1), this step 

emphasized a strong correlation coefficient. Then, to further minimize the effects of 

noise and spurious associations, the adjacency matrix was transformed into a 

topological overlap matrix and the corresponding dissimilarity was calculated. This 

topological overlap matrix was particularly useful when the original adjacency matrix 

was sparse or susceptible to noise by replacing the isolated connections with weighted 

neighbourhood overlaps, thus, reducing the effects of spurious associations leading to 

a more robust network. The modules were subsequently identified using a dynamic 

tree cut algorithm with a minimum cluster size of 30 and merge cut height of 0.25 and 

later assigned the clusters of highly co-occurred taxa to different colours for 

visualization.  

After that, module trait association analysis was used to calculate the correlation 

coefficient between modules and food allergy as well as demographics traits such as 

age and gender. Modules with P values < 0.05 were regarded significant food allergy-

related modules. 

5.3.5 Hub taxa selection and visualization 

Next, an intramodular analysis was performed to determine the hub taxa by summing 

the connection strengths with other module taxa. Moreover, the hub taxa have to meet 

the absolute value of the TaxaSignificance > 0.2 and Module Membership (MM) > 0.8. 

Taxa of the significant modules were then visualized using Cytoscape v3.8.0 (198). 

5.3.6 Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis  
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All OTUs table and OTUs taxonomy were mapped onto Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways using R package, Tax4Fun. Linear discriminant 

analysis (LDA) effect size (LEfSe) analysis (http://huttenhower.sph.harvard.edu/lefse/) 

was performed to detect biomarkers of the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways that differed significantly between non-food allergic children and 

food-allergic children. Default settings (alpha = 0.05, effect-size threshold of 2) were 

applied. 

5.4 Result 

5.4.1 Gut microbial alpha diversity 
A total of 60 samples were included in our final analysis (33 food-allergic children and 

27 non-food allergic children). Thirty-nine percent of the subjects were boys, with the 

median age for non-food allergic children and food-allergic children of 5.9 years and 

5.0 years, respectively. The groups did not significantly differ from each other with 

regard to age (p=0.200) and gender (p=0.525). The food allergies noted in the food-

allergic children included nuts (n = 23), egg (n = 4) and mixed allergies (n = 6).  

To determine the average species diversity in a habitat or specific area, alpha diversity 

was evaluated using Chao1, Shannon index and observed OTUs matrices. Chao1 

showed that non-food allergic children had lower species richness compared to food-

allergic children, while Shannon index and observed OTUs showed that non-food 

allergic children and food-allergic children had similar gut microbial community 

richness and evenness (Table 5-1). 
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Table 5-1 Comparison of gut microbial alpha diversity between food-allergic 

children and non-food allergic children. Values represent mean ± SD. 

  
Non-food allergic 

children 

Food-allergic 

children 
p 

Chao1  565.7±91.7 622.3±87.4 0.020 

Observed OTUs 458.9±86.0 502.8±83.9 0.058 

Shannon diversity index 5.3±0.7 5.5±0.7 0.395 

5.4.2 Gut microbial beta diversity 
To determine the degree of inter-group dissimilarity, beta diversity was evaluated 

using unweighted and weighted UniFrac distance matrices. Beta diversity did not show 

a significant difference between food-allergic children and non-food allergic children 

(Supplemental figure S 5-1). 

5.4.3 Gut microbial composition 
OTU dataset for food-allergic children and non-food allergic children consisted of 7 

phyla, 14 classes, 16 orders, 28 families and 105 genera. At the phyla level, the gut 

microbiota was dominated by Firmicutes and Bacteroidetes, with lower abundance of 

Proteobacteria, Verrucomicrobia, Actinobacteria, Tenericutes and Cyanobacteria 

(Supplemental figure S 5-2) in children with and without food allergy. There was no 

significant difference in the phylum level between food-allergic children and non-food 

allergic children (Supplemental Table S 5-1). 
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One hundred and five genera were identified, and only 18 genera were accounted for 

more than 1% across all samples (Supplemental Table S 5-2). There was no significant 

difference in the genera level between food-allergic children and non-food allergic 

children. 

5.4.4 Microbial co-abundance network 
To better characterize gut microbial taxa in food-allergic children, we applied 

WGCNA to identify clusters of microbial taxa whose differential representation was 

correlated with food allergy. Each cluster was represented as a colour module. 

Through WGCNA, we were able to identify 14 modules of co-abundant taxa and the 

number of taxa within modules ranged from 32 to 167 (Table 5-2). Among all the taxa, 

only 167 taxa (17%) were not included in any colour module, and these taxa were 

grouped into the grey module as per default.  

Table 5-2 The number of taxa in the 14 modules 

Module colours Freq 

Black 54 

Blue 88 

Brown 88 

Green 67 

green-yellow 34 

Grey 167 
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Magenta 48 

Pink 51 

Purple 47 

Red 66 

Salmon 32 

Tan 33 

Turquoise 114 

Yellow 82 

5.4.5 Hub taxa associated with food allergy 
The module eigengenes between children with and without food allergy were further 

compared with using module trait association analysis to identify the food allergy-

associated modules.  

Our results showed that a co-abundance network module (turquoise) was positively 

correlated with food allergy (r = 0.27 p = 0.04) (Figure 5-1). Particularly, 

Ruminococcaceae UCG-002 was identified as the hub taxa (TaxaSignificance > 0.2 

and Module Membership > 0.8) (Figure 5-2) for this module. In addition, 10 dominant 

taxa (> 1% relative abundance across all samples) were also identified in the module. 

The majority of the dominant taxa came from Firmicutes phylum, including the genera 

of Ruminococcaceae UCG-002, Eubacterium oxidoreducens group, Eubacterium 

coprostanoligenes group and Lachnospiraceae (NK4A136 and UCG-008). Other than 

this, the dominant taxa also included genera taxa from the phyla of Bacteroidetes 
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(Bacteroides, Alistipes, Parabacteroides and Prevotella 2) as well as Proteobacteria 

(Rhodospirillaceae).  

 

Figure 5-1 Module-trait associations. Each row corresponds to a module 

eigengene (ME) while each column corresponds to either phenotype (FA: food 

allergy) or demographic traits such as age and gender. Each cell contains the 

corresponding correlation coefficient (display at the top of the cell) and 

corresponding p-values for each module (display at the bottom of the cells within 

parentheses). Blue and red colours of the spectrum on the right denote low and 

high correlation, respectively. 
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Figure 5-2 Network analysis identifies a distinct module of co-associated taxa. 

The highly correlated taxa in the comparisons of food allergic children and non-

food allergic children are indicated and colour coded according to the phylum. 

Green colour represents Bacteroidetes phylum, pink colour represents 

Firmicutes phylum while orange colour represents Proteobacteria phylum. Hub 

taxon is indicated with yellow triangle shape and other connector taxa are in 

round shapes. 
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5.4.6 Predicted functional pathway of gut microbial taxa associated with 
food allergy 
In order to have a better understanding of the functional pathway of gut microbial taxa 

that are associated with food allergy, linear discriminant analysis effect size (LEfSe) 

was performed by using the Tax4fun output. Using the threshold values (LDA > 2.0, 

p< 0.05), LEfSe revealed distinct KEGG pathway differences between gut microbiota 

of food-allergic children and non-food allergic children (Figure 5-3). Specifically, 

methane metabolism and glycerolipid metabolism were found to be enriched in food-

allergic children. In contrast, ubiquinone and other terpenoid-quinone biosynthesis, as 

well as Vibrio cholerae pathogenic cycle were found to be enriched in non-food 

allergic children. 

 

Figure 5-3 LEfSe analysis revealed distinct KEGG pathway differences in gut 

microbiota between food-allergic children and non-food allergic children. KEGG 

pathway enriched in food-allergic children was indicated with red while the 

KEGG pathway enriched in non-food allergic children was indicated with green. 

Only the taxa that met a LDA significant threshold of >2 are displayed. LEfSe: 
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Linear discriminant analysis effect size. LDA: Linear discriminant analysis. 

KEGG: Kyoto Encyclopedia of Genes and Genomes. 

5.5 Discussion 
There is increasing evidence that alterations in the gut microbiome are related to the 

development of food allergy (106, 107, 109, 199), although the specific microbe 

associated with food allergy remains elusive. Our objective for this study was to 

perform 16S rRNA gene sequencing in integration with network analysis to 

characterize the gut microbiome and identify individual gut microbes or network 

modules of them that differ between food-allergic children and non-food allergic 

children. To our knowledge, this is the first study to characterize the gut microbiome 

of food-allergic children by applying network analysis.  

Through network analysis, we identified a co-abundance network module (turquoise) 

to be positively correlated with food allergy and this module was characterized by a 

hub taxa, Ruminococcaceae UCG-002 (Firmicutes phylum). Our finding is consistent 

with the results of previous studies demonstrating that a high relative abundance of 

Ruminococcaceae is associated with both food allergies (107), and high fat diet in 

murine models (200-202), a factor which is known for its association with food allergy. 

Taken together, these findings suggest that the high relative abundance of 

Ruminococcaceae, induced by a high fat diet, may produce acetic and propionic acid 

that promote the synthesis of lipogenesis and cholesterol (203), which in turn cause 
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disruption of intestinal effector mast cell responses as well as induction of intestinal 

permeability and gut dysbiosis (204), leading to exacerbations of allergic responses. 

We also identified a number of dominant taxa in this co-abundance network module 

that were highly related with food allergy, with the majority of them coming from 

phylum Firmicutes. Firmicutes has been suggested to play a role in modulating the 

immune system and subsequent development of allergic diseases (106, 205). A case-

control study was conducted to investigate the association of gut microbiome and food 

allergy by comparing the gut microbiota composition between 34 infants with food 

allergy and 45 healthy controls (106). The data revealed that the relative abundance of 

Firmicutes in food-allergic subjects was higher than that of the control subjects. 

Another study conducted by Chen et al. (205) also showed that Firmicutes was 

enriched in food–sensitized children. 

The enrichment of pathways related to methane metabolism and glycerolipid 

metabolism (a subcategory of lipid metabolism) in the gut microbiome of food-allergic 

children was observed. However, KEGG pathways related to metabolism of cofactors 

and vitamins (ubiquinone and other terpenoid-quinone biosynthesis) was significantly 

enriched in the gut microbiome of non-food allergic children. Methane is the anaerobic 

fermentation product of endogenous and exogenous carbohydrates through intestinal 

microbiota (206). The increase production of methane caused by high fat diet (207) 

may cause gastrointestinal disorders (206, 208). Our finding of enriched glycerolipid 

metabolism in food-allergic children was consistent with recognized roles of dietary 

lipid in regulating inflammation and food allergy (204, 209). A high-fat diet has been 
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previously shown to change gut microbiota composition, leading to inflammation and 

food-allergic reactions. In contrast, the key role of ubiquinone in protecting against 

food allergy has been gaining attention lately. The deficiency of coenzyme Q10, which 

is a kind of ubiquinone, may develop and worsen the progress of food allergy in 

children (210). 

Our finding of increased gut microbiota diversity in food-allergic children when 

compared with non-food allergic children appears contrary to several other food 

allergy studies, in which gut microbiota diversity was higher in healthy controls than 

food-allergic subjects. However, a study conducted by Fazlollahi et al (107) has also 

shown that gut microbiota diversity could be higher in children with egg allergy 

compared to controls. Some other studies reported no association between gut 

microbiota diversity and food allergy (106, 211). This has indicated a subtle 

relationship between gut microbiota diversity and food allergy. Hence, the role of 

microbiome in food allergy was suggested to be considered along with the interplay 

between different taxa and their metabolic effects rather than only examining a single 

dimension, bacterial diversity.  

Taken together, we speculate that that increased abundance of Ruminococcaceae along 

with other dominant microbial taxa, may remodel the normal gut microbial ecosystem 

into a state of dysbiosis through the pathways of methane metabolism and glycerolipid 

metabolism, which in turn may elicit a host IgE-mediated allergic response. Our 

findings highlight the usefulness of network analysis in disentangling the hub taxa, 

Ruminococcaceae that may play determinant roles in gut microbial community 
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structure and functions leading to IgE-mediated food allergy. The differences in the 

co-abundance patterns of gut microbiome between children with and without food 

allergy may help us to understand the complex interrelationships between gut 

microbiome and food allergies. This information potentially aids targeted dietary or 

probiotic strategies for clinical practice to improve food allergy outcomes. Although 

our study revealed there was an association between gut microbiome network and food 

allergy, there were several limitations in the study. Firstly, the sample size was small. 

However, the application of network analysis in our study has deciphered key 

microbial populations that may be associated with food allergy, including those with 

low relative abundance but highly relevant to the onset of food allergy through 

characterizing the interactions of microbes at the community scale. Secondly, 16S 

rRNA gene sequencing is only sensitive to the genus level, but not species and strains. 

Thirdly, as this was a cross-sectional study, our results could not indicate a causal 

relationship between the gut microbiome and food allergy. Finally, as our study aimed 

to construct a microbial network through 16S rRNA gene sequencing and weighted 

correlation network analysis, the actual roles of these taxa predicted to be related to 

food allergy have not yet been evaluated. Therefore, further studies utilizing 

metagenomic analysis or real-time PCR in larger cohorts are required to confirm our 

results. 
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5.6 Conclusion 
Our study provides a better understanding of the gut microbiome with respect to the 

presence of Ruminococcaceae UCG-002 interacting with other dominant taxa 

including Eubacterium oxidoreducens group, Eubacterium coprostanoligenes group, 

Lachnospiraceae (NK4A136 and UCG-008), Bacteroides, Alistipes, Parabacteroides, 

Prevotella 2 as well as Rhodospirillaceae and these interactions are associated with 

food allergy. Integrative view of gut microbial ecology in our study may help to 

understand the microbial interactions associated with IgE-mediated food allergy. 

5.7 Supplemental Information 

5.7.1 Supplemental tables 
Supplemental Table S 5-1 The comparison of gut microbiota at the phyla level 

between food-allergic children and non-food allergic children. 

Phylum 
Non-food allergic 

children 

Food-allergic 

children 
p 

Proteobacteria 4.55 3.08 0.071 

Tenericutes 0.01 0.17 0.127 

Firmicutes 38.9 44.84 0.169 

Actinobacteria 0.35 0.26 0.231 

Bacteroidetes 55.77 51.19 0.274 

Verrucomicrobia 0.38 0.41 0.312 
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Cyanobacteria 0.01 0.02 0.51 

Values expressed as relative abundance (%). 

p: p-value. 

Supplemental Table S 5-2 Relative abundance of predominant genera in gut 

microbiota between food-allergic children and non-food allergic children (≥ 1% 

across all samples) 

Genus 
Non-food allergic 

children 

Food-

allergic 

children 

p 

Ruminococcaceae UCG-002 1.33 3.41 0.071 

Eubacterium oxidoreducens group 0.74 1.15 0.073 

Prevotella 9 7.74 5.84 0.155 

Eubacterium eligens group 1.20 1.63 0.193 

Alistipes 6.45 5.58 0.209 

Subdoligranulum 1.70 2.69 0.243 

Faecalibacterium 11.56 10.26 0.268 

Barnesiella 1.19 1.41 0.323 

Lachnospiraceae NK4A136 group 0.83 1.47 0.353 

Ruminococcus 1 1.39 1.11 0.368 

Lachnospiraceae UCG-008 5.91 5.28 0.409 

Roseburia 2.11 3.34 0.444 

Lachnospira 0.65 1.32 0.518 
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Eubacterium coprostanoligenes group 1.40 1.46 0.682 

Sutterella 1.26 0.86 0.783 

Bacteroides 35.13 34.05 0.899 

Parasutterella 1.87 1.35 0.958 

Parabacteroides 3.80 2.88 0.994 

Values expressed as relative abundance (%). 

p: p-value. 

5.7.2 Supplemental figures 

 

Supplemental figure S 5-1 PCoA plots of individual gut microbiota in food-

allergic children (red) and non-food allergic children (blue) derived from (a) 

unweighted and (b) weighted UniFrac distances. Each symbol represents a 

sample. PCoA:  Principal Coordinate Analysis. 
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Supplemental figure S 5-2 Relative abundance of gut microbial phyla 
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6 CHARACTERIZATION OF 
ORAL MICROBIOME IN 
FOOD-ALLERGIC 
CHILDREN  

 

 

 

 

This chapter described Aim5, the aim of which was to investigate the association 

between oral microbiome and food allergy. This chapter is presented in the manuscript 

format. 
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6.1 Abstract 
Introduction: Oral microbiome has been previously shown to influence 

predisposition to allergic disease but not food allergy. The aim of this study was to 

perform 16S rRNA gene sequencing in integration with network analysis to compare 

the oral microbial compositions in food-allergic and non-food allergic children. 

Method: Saliva samples (n=34) were collected from children with IgE-mediated food 

allergies and non-food allergic controls. The characterization of saliva samples was 

performed via 16S rRNA gene sequencing of the V3 and V4 variables regions. 

Microbial alpha and beta diversity as well as relative abundance of the operational 

taxonomic units (OTUs) were compared between the two groups using QIIME. OTUs 

obtained from 16S rRNA gene sequencing were then used to construct a co-expression 

network using WGCNA and mapped onto Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways using Tax4Fun. 

Results: Our study revealed food-allergic children have a distinct oral microbiome 

compared to non-food allergic children. The co-abundance module of food-allergic 

children was dominated by Prevotella 7 and Haemophilus while the co-abundance 

module of non-food allergic children was dominated by Abiotrophia, Gemella, 

Granulicatella, Bergeyella, Porphyromonas, Prevotella, Neisseria, Rothia and 

Leptotrichia. Furthermore, our data suggested that Streptococcus was the hub taxa of 

the co-abundance network module for non-food allergic children.  
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Conclusion: Dysbiotic oral microbiome network may play a role in food allergy. This 

study advanced our understanding of the dynamic oral microbiome network and its 

correlation to food allergy. 

6.2 Introduction 
Oral cavity, which is revealed as the first site of encounter between the immune system 

and foreign antigens (212), has received attention for its association with health and 

disease (186, 187, 191). Oral microbiome harbours complex and diverse microbial 

communities, which comprises over 700 prevalent taxa (212). The roles of oral 

microbes in regulating health and diseases were first proposed by oral microbiologist 

W. D. Miller in the 1890s (131). According to Miller, oral microbes and their products 

might profoundly affect the development of diseases. In recent decades, the advances 

of high-throughput next-generation sequencing technologies, has widened 

tremendously our knowledge of this theory. Precisely, several studies have explored 

the possible roles of oral microbiome in the manifestation of diseases such as diabetes 

(213, 214), cancer (215, 216), inflammatory bowel disease (217, 218) and asthma (219, 

220). Pathogenic bacteria enters into the blood circulation via the oral mucosal barrier 

can later result in chronic gut inflammation (132) through the induction of and 

reduction of Th17 cells and faecal IgA levels as well as an increase in the M1/M2 

macrophage ratio (133). Other than its pathophysiological roles, oral microbiome is 

viewed as promising diagnostic biomarker for diseases due to its non-invasive 

sampling method (221) as well as its long term stability characteristics (222). 
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Food allergy is defined as an adverse immunologic response to ingested food antigens 

that associated with a range of disorders from IgE-mediated anaphylaxis to delayed 

cell-mediated reactions (223). Food allergy affects up to 10% of infants in some 

countries, some of the food allergies remain persistent for life time; furthermore, the 

prevalence of food allergy is increasing in industrialized regions (2). At present, there 

is no cure for food allergy, although immunotherapy option is available for treatment 

(7). The most common reactions to food allergy are gastrointestinal symptoms, which 

includes abdominal cramps, nausea, vomiting, and diarrhoea as well as cutaneous 

symptoms, which include hives, itching, and eczema (224). Although the etiology of 

food allergy is still not fully understood, previous studies have identified reduced 

diversity and altered composition of gut communities are clearly associated with food 

allergy (106, 107, 199).  

Viewing that previous studies found an association between oral microbiome and the 

manifestation of diseases, it is reasonable to believe that the oral microbiome might 

play a role in affecting the pathogenesis of food allergy. Although oral dysbiosis has 

previously been associated with the alterations of immune responses and subsequent 

development of food allergy (134), the understanding of oral microbiome modulation 

and its impact on food allergy is still in its infancy stage and requires to be further 

addressed. In addition, the associations between oral microbiome and food allergy can 

be investigated further by network analysis (101), which offers an approach for 

identifying highly interconnected taxa within oral microbial communities rather than 
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individual taxa associated with food allergy by taking into account the complex 

interplay between oral microbial taxa and their hosts. 

Herein, the purpose of this study is to apply 16S ribosomal RNA (rRNA) sequencing 

to comprehensively characterize the oral microbiome of food-allergic children in 

integration with network analysis by using weighted gene co-expression network 

analysis (WGCNA).  

6.3 Methods 

6.3.1 Study subject 
This study was approved by the Human Research Ethics Committee (HREC), Perth 

Children's Hospital (RGS151 / HREC 2017060EP) and Curtin University (HRE2017-

0712) and conducted in accordance with the National Health and Medical Research 

Council National Statement on Ethical Conduct in Human Research. Informed written 

consent was provided by the parents or guardians of the participants. This study 

included food-allergic children (n = 18), who were treated as outpatients at Perth 

Children's Hospital and non-food allergic children (n=16) from local community.  

Diagnoses of food allergy were determined by an immunologist on the day of 

recruitment based on the clinical outcomes of the patients. Food allergy was defined 

by immediate symptoms (1–2 h) after food allergen ingestion combined with either 

failed oral food challenge or with positive skin prick test wheal diameter ≥ 3 mm to 

any food allergen. In contrast, a negative skin prick test and/or a passed oral food 
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challenge or never have a reaction to any food allergens defined the subject as children 

without a food allergy. 

6.3.2 Saliva sample collection and processing 
Parents/ guardians of the participants were provided a saliva collection kit, which 

included a protocol of saliva collection, a sterile plastic container with yellow lid, a 

pair of disposable gloves and a sealed plastic bag with labels. The saliva sample would 

then be transported on ice by a researcher within 2 hours of collection to the laboratory 

-80°C freezers for storage.  

DNA was then purified using a PureLink™ Microbiome DNA Purification Kit 

(Thermo Fisher Scientific, United States) in accordance with the manufacturer’s 

instructions. Briefly, the sample was centrifuged at 14,000 x g for 10 minutes to pellet 

the microorganisms. The microbial pellet was resuspended in 800 μL of S1—Lysis 

Buffer before transferred to the bead tube. The suspension was then added with 100 

µL of S2–Lysis Enhancer and incubated at 95°C for 10 min and later homogenized by 

the vortex mixer for 10 minutes at maximum speed. The sample was then centrifuged 

at 14,000 x g for 1 minute. The supernatant (500 µL) was transferred into a new tube 

and vortexed along with 900 µL of S4–Binding buffer. 700 μL of the sample mixture 

was transferred into a spin column-tube and centrifuged for 1 minute. After discarding 

the flow-through, the column was then washed with 500 µL of S5–Wash Buffer and 

centrifuged for 1 min. S6-Elution Buffer (100 µL) was added and incubated at room 
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temperature for 1 minute before centerifuge. The eluted DNA was stored at -80 ˚C 

until processing. 

6.3.3 PCR amplication and sequencing 
The PCR amplication and sequencing of thirty-four saliva samples were conducted by 

Beijing Novogene Bioinformatics Technology Co., Ltd. Briefly, PCR was conducted 

using Phusion® High-Fidelity PCR Master Mix and GC Buffer (New England Biolabs, 

Beijing, China) in accordance with manufacturer’s instruction. PCR thermal cycling 

included an initial denaturation of 60s at 98°C, 35 cycles of 10s at 98°C, 30s at 50°C 

and 90s at 72°C, as well as a final extension of 5min at 72°C. The PCR sequencing of 

the V3-V4 region was performed on the Ion S5 XL platform (Thermo Fisher). A total 

of 2,497,798 sequences reads that passed the quality check (>Q20, error rate < 1%) 

were generated. 

6.3.4 Quantitative Insights into Microbial Ecology (QIIME) 
The raw sequences were demultiplexed and quality filtered using Quantitative Insights 

Into Microbial Ecology (QIIME) (194). The high quality reads were then assigned to 

operational taxonomic units (OTUs) using the open reference method in QIIME with 

the SILVA reference database (release 128) at a 97% similarity level (196). The Chao1 

index, the observed OTUs index and the Shannon diversity index were used as 

measures of Alpha diversity while Beta diversity were measured using the weighted 

and unweighted UniFrac distance matrices. Beta diversity was then visualized with 

Principal Coordinate Analysis (PCoA). Differences of Alpha diversity between the 
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two groups were compared using Wilcoxon rank-sum test and inferences of Beta 

diversity were permuted using the Adonis permutational multivariate analysis 

(Adonis/PERMANOVA). A comparison of the relative abundance of OTUs between 

groups was computed using the Mann Whitney test. The sample size was not sufficient 

for multiple comparison adjustment; hence, p< 0.05 was considered statistically 

different.  

6.3.5 Construction of microbial co-abundance network 
In order to have a better understanding of the co-abundance network of the microbial 

taxa, Weighted Gene Correlation Network Analysis (WGCNA) package of R (140) 

was performed by using Hellinger transformation of the OTU count data (197) (with 

97% identity threshold), as previously mentioned in chapter 5. Briefly, an adjacency 

matrix was constructed and a topological overlap matrix (TOM) was calculated based 

on the predefined soft-thresholding parameter. Highly co-occurred taxa were merged 

into different module clusters based on the default parameter (a minimum cluster size 

of 30 and merge cut height of 0.25) and these different module clusters were then 

assigned to different colours for visualization. Lastly, module trait association analysis 

was used to calculate the correlation coefficient between modules and food allergy as 

well as demographics traits such as age and gender. Modules with p-value <0.05 were 

considered as significant. 
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6.3.6 Identification of hub taxa 
Next, an intramodular analysis was performed to determine the hub taxa by summing 

the connection strengths with other module taxa. Considering the small sample size of 

the present study, a more stringent cut-off for hub taxa (absolute value of the 

TaxaSignificance >0.5 and Module Membership >0.8) was applied. Taxa of the 

significant modules were then visualized using Cytoscape v3.8.0 (198). 

6.3.7 KEGG Pathway Analysis 
The generated OTUs table and OTUs taxonomy was mapped onto Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways using R package, Tax4Fun (225). Linear 

discriminant analysis (LDA) effect size (LEfSe) analysis 

(http://huttenhower.sph.harvard.edu/lefse/) was performed to detect biomarkers of the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that differed 

significantly between non-food allergic children and food-allergic children. Default 

settings (alpha = 0.05, effect-size threshold of 2) were applied. 

6.4 Result 

6.4.1 Oral microbial alpha diversity 
Saliva samples were obtained from 34 participants, which included 18 food-allergic 

children and 16 non-food allergic children. Seventy six percent of the subjects were 

boys, with the median age for non-food allergic children and food-allergic children of 

6.1 years and 7.2 years, respectively. The groups did not differ from each other with 
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regard to age (p=0.137) and gender (p=0.317). The food allergies noted in the food-

allergic children included nuts (n = 12), egg (n = 3) and mixed allergies (n = 3). 

To determine the average species diversity in a habitat or specific area, alpha diversity 

was evaluated using Chao1, Shannon index and observed OTUs matrices. Chao1, 

Shannon index and observed OTUs showed that non-food allergic children and food-

allergic children had similar average estimates for oral microbial community richness 

and evenness (Table 6-1). 

Table 6-1 Comparison of oral microbial alpha diversity between food-allergic 

children and non-food allergic children. Values represent mean ± SD. 

 
Non-food allergic 

children 

Food-allergic 

children 
p 

Chao1 544.1±50.1 546.9±50.8 0.848 

Observed OTUs 473.7±51.7 471.0±55.3 0.896 

Shannon diversity index 5.1±0.5 5.4±0.4 0.099 

6.4.2 Oral microbial beta diversity 
To determine the degree of inter-group dissimilarity, beta diversity was evaluated 

using unweighted and weighted UniFrac distance matrices. The weighted-UniFrac 

PCoA showed that oral microbiome of food allergic children was clearly separated 

from the oral microbiome of non-food allergic children (Figure 6-1). Similar to the 

PCoA plots results, the permutational multivariate analysis (Adonis) also revealed a 
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significant difference in oral microbial communities between food-allergic children 

and non-food allergic children (p< 0.05). 

 

Figure 6-1 PCoA plots of individual oral microbiota in food-allergic children (red) 

and non-food allergic children (blue) derived from (a) unweighted and (b) 

weighted UniFrac distances. Each symbol represents a sample. 

6.4.3 Oral microbial composition 
OTU dataset for food-allergic children and non-food allergic children consisted of 9 

phyla, 20 classes, 27 orders, 43 families and 80 genera. At the phyla level, the oral 

microbiota was dominated by Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria and Fusobacteria (Figure 6-2). Smaller contributions of 

Absconditabacteria (SR1), Saccharibacteria, Gracilibacteria and Cyanobacteria were 

also detected in the oral microbiota, which represented <2% of the total reads analyzed. 
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There was no significant difference in the phyla level between food-allergic children 

and non-food allergic children (Table 6-2). 

 

Figure 6-2 Relative abundance of oral microbial phyla 

 

Table 6-2 The comparison of oral microbiota at the phyla level between food-

allergic children and non-food allergic children. 

Phylum 
Non-food allergic 

children  

Food-allergic 

children  p 

Cyanobacteria 0.02 0.00 0.125 

Bacteroidetes 13.69 20.47 0.157 
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Eighty 

genera 

were identified, and only 16 genera were accounted for more than 1% across all 

samples (Table 6-3). The relative abundance of Prevotella 7 was marginally higher 

and the abundance of Bergeyella and Granulicatella was marginally lower in children 

with food allergy compared with children without food allergy. After adjusting for 

multiple comparisons, there was no significant difference in the genera level between 

food-allergic children and non-food allergic children. 

Table 6-3 Relative abundance of predominant genera in oral microbiota between 

food-allergic children and non-food allergic children (≥ 1% across all samples) 

Genus 

Non-food allergic 

children  

Food-allergic 

children  P FDR_p 

Bergeyella 1.2 0.09 0.032 0.153 

Firmicutes 60.08 52.75 0.202 

Proteobacteria 10.35 14.40 0.469 

Fusobacteria 2.97 2.80 0.704 

SR1 (Absconditabacteria) 0.10 0.92 0.756 

Saccharibacteria 0.38 0.50 0.783 

Actinobacteria 12.41 8.07 0.809 

Gracilibacteria 0.01 0.08 0.971 

Values expressed as relative abundance (%). 

p: p-value. 
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Prevotella 7 4.17 9.62 0.053 0.225 

Granulicatella 4.13 2.9 0.058 0.231 

Actinomyces 1.99 2.75 0.129 0.412 

Prevotella 0.94 1.64 0.147 0.436 

Abiotrophia 1.15 0.83 0.202 0.538 

Streptococcus 48.56 42.22 0.301 0.611 

Haemophilus 3.65 4.56 0.334 0.611 

Veillonella 0.67 1.27 0.352 0.611 

Alloprevotella 2.16 2.32 0.427 0.700 

Neisseria 4.39 6.05 0.512 0.728 

Rothia 10.03 4.54 0.535 0.728 

Porphyromonas 4.65 4.69 0.535 0.728 

Gemella 4.64 4.03 0.730 0.823 

Neisseriaceae_unclassified 1.16 1.66 0.783 0.858 

Leptotrichia 2.26 1.76 0.945 0.969 

Values expressed as relative abundance (%). 

p: p-value. 

FDR_p: adjusted p-value 

6.4.4 Microbial co-abundance network 
To better characterize saliva microbial taxa in food-allergic children, we applied 

WGCNA to identify clusters of microbial taxa whose differential representation was 

correlated with food allergy. 
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Through WGCNA, we were able to identify 8 modules of co-expressed taxa and the 

number of taxa within modules ranged from 30 to 214 (Table 6-4). Among all the 

genes, only 146 taxa (22%) were not included in any colour module, and these taxa 

were grouped into the grey module as per default.  

Table 6-4 The number of taxa in the 8 modules 

Module colours Freq 

Black 30 

Blue 105 

Brown 56 

Green 38 

Grey 146 

Red 36 

Turquoise 214 

Yellow 49 

6.4.5 Modules of saliva microbial taxa associated with food allergy 
We further compared the module eigengenes between food-allergic children and non-

food allergic children with using module trait association analysis to identify the food 

allergy-associated modules. Our results showed that a module (red) (r = 0.38 p = 0.03) 

to be positively correlated with food allergy and a module (turquoise) to be negatively 

correlated with food allergy (r = -0.43, p = 0.01) (Figure 6-3).  
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Figure 6-3 Module-trait associations. Each row corresponds to a module 

eigengene (ME) while each column corresponds to either phenotype (FA: food 

allergy) or demographic traits such as age and gender. Each cell contains the 

corresponding correlation coefficient (display at the top of the cell) and 

corresponding p-values for each module (display at the bottom of the cells within 

parentheses). Blue and red colours of the spectrum on the right denote low and 

high correlation, respectively. 

Red module was revealed to be positively correlated with food allergy. In this module, 

2 out of 36 taxa (> 1% relative abundance across all samples) were identified as 

dominant taxa, which included Haemophilus (Proteobacteria phylum) and Prevotella 
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7 (Bacteroidetes phylum).  However, no hub taxa was identified to have the absolute 

value of the TaxaSignificance > 0.5 and Module Membership > 0.8 (Figure 6-4). 

 

Figure 6-4 Network analysis identifies red module as a distinct module of co-

associated taxa. The highly correlated taxa in the comparisons of food allergic 

children and non-food allergic children are indicated and colour coded according 

to the phylum. Green colour represents Bacteroidetes phylum, pink colour 

represents Firmicutes phylum while orange colour represents Proteobacteria 

phylum. 

Turquoise module was revealed to be negatively correlated with food allergy. In this 

module, 10 out of 17 taxa were identified (> 1% relative abundance across all samples) 

as dominant taxa. The majority of the dominant taxa came from Firmicutes phylum, 

https://www.google.com/search?client=firefox-b-d&q=Bacteroidetes&stick=H4sIAAAAAAAAAONgVuLUz9U3MEqON01bxMrrlJhcklqUn5mSWpJaDADpmwwvHQAAAA&sa=X&ved=2ahUKEwjIxuDuhLjrAhUS7HMBHSK6B5kQmxMoATAXegQIChAD
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which included the genera of Abiotrophia, Gemella, Granulicatella and Streptococcus. 

Other than this, the dominant taxa also included genera taxa from the phyla of 

Bacteroidetes (Bergeyella, Porphyromonas, and Prevotella), Proteobacteria 

(Neisseria), Actinobacteria (Rothia) as well as Fusobacteria (Leptotrichia). 

Particularly, Streptococcus was identified as be hub taxa of turquoise module, which 

had the absolute value of the TaxaSignificance > 0.5 and Module Membership > 0.8 

(Figure 6-5). 

 

Figure 6-5 Network analysis identifies turquoise module as a distinct module of 

co-associated taxa. The highly correlated taxa in the comparisons of food allergic 

children and non-food allergic children are indicated and colour coded according 

to the phylum. Green colour represents Bacteroidetes phylum, pink colour 
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represents Firmicutes phylum, orange colour represents Proteobacteria phylum, 

blue colour represents Actinobacteria phylum while magenta colour represents 

Fusobacteria phylum. Hub taxa are indicated with yellow triangle shapes and 

other connector taxa are in round shapes. 

6.4.6 Predicted functional pathway of oral microbial taxa associated with 
food allergy 
To specifically identify functional pathway of oral microbial taxa associated food 

allergy, we performed LEfSe to compare KEGG functional pathway. No differentially 

KEGG categories were enriched in oral microbial taxa of food-allergic children when 

compared to non-food allergic children.  

6.5 Discussion 
While gut microbiome has previously been linked with the immune dysfunction and 

food allergy (106, 107, 109, 199), oral microbiome has also recently gained attention 

as a possible regulator of food allergy (134).  

Our objective for this study was to perform 16S rRNA gene sequencing in integration 

with network analysis to compare the oral microbial compositions in food-allergic and 

non-food allergic children. To our knowledge, this is the first study comparing the oral 

microbiome in food-allergic children and non-food allergic children by using network 

analysis. In present study, we found the composition of oral microbiome in food-

allergic children was different from that in non-food allergic children. Although we 

observed a marginally higher relative abundance of Prevotella 7 and a marginally 
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lower relative abundance of Bergeyella and Granulicatella in children with food 

allergy compared with children without food allergy, the relative abundance of these 

taxa were not significantly different between children with and without food allergy. 

The confounded microbial composition analysis at the relative abundance was perhaps 

due to small sample size. In contrast, interrogation of the same data using network 

analysis, unmasked several taxa associated with food allergy including those microbial 

populations with low relative abundance but highly relevant to the onset of food 

allergy. Specifically, the co-abundance module of food-allergic children was 

dominated by Prevotella 7 and Haemophilus while the co-abundance module of non-

food allergic children was dominated by Abiotrophia, Gemella, Granulicatella, 

Bergeyella, Porphyromonas, Prevotella, Neisseria, Rothia and Leptotrichia. 

Furthermore, our data suggested that Streptococcus was the hub taxa of the co-

abundance network module for non-food allergic children.  

The oral microbiome has a high diversity of microbiota taxa, consisting of over 700 

identified taxa at the species level (212). Firmicutes, Bacteroidetes, Actinobacteria, 

Proteobacteria, Fusobacteria were previously identified as the dominant taxa in the 

oral microbiome (217, 226). Similar to these studies, we also observed oral 

microbiome was dominated by Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria and Fusobacteria. Further to this, we also observed smaller 

contributions of Absconditabacteria (SR1), Saccharibacteria, Gracilibacteria and 

Cyanobacteria in the oral microbiome.  
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Through network analysis, we identified the co-abundance network module for non-

food allergic children was characterized by a hub taxa, Streptococcus. Streptococcus, 

which belongs to Firmicutes phylum, is the dominant genus in human oral microbiome 

(134, 227). Consistent with our studies, a study conducted by Matsui et al also 

observed the counts of Streptococcus to be reduced in oral cavity of mice sensitized 

with ovalbumin compared with control mice and this reduction was found to be 

associated with increased levels of immunoglobulin A (134).   

We also identified the co-abundance network module for non-food allergic children 

was more likely to be dominated by Bergeyella, Granulicatella, Prevotella, Neisseria, 

Rothia, Leptotrichia, Abiotrophia and Gemella. Our observations were largely 

consistent with the findings of Dzidic et al (219) in a longitudinal study, who noted 

that the oral cavity of children with allergic diseases were less colonized by genera 

Bergeyella, Granulicatella, Prevotella, Rothia, Leptotrichia and Abiotrophia, 

suggesting the protective roles of these taxa towards allergic diseases. However, this 

study also revealed the positive association of Neisseria and Gemella with allergy 

development, which was in contrast with our findings. Further studies are required to 

investigate if these inconsistencies were caused by the heterogeneity of study design.  

Other than the above-mentioned taxa, we also found enrichment of Porphyromonas in 

the co-abundance network for non-food allergic children. Porphyromonas gingivalis, 

a species of Porphyromonas genus is usually found in the oral cavity of healthy 

children (228). A murine model with asthma demonstrated that Porphyromonas 



 

 

 

Khui Hung Lee -February 2021   127 

 

 

gingivalis could reduce the airway expression of Interleukin 4, Interleukin 5, 

Interleukin 13, resulting in reduced airway eosinophilia and inflammation (229).  

In contrast, the co-abundance network module for food-allergic children was more 

likely to be Haemophilus and Prevotella 7 dominated. Haemophilus, which is the 

abundant genera in the oral cavity, is known for its pathogen role in causing 

inflammation. Enrichment of Haemophilus in the oral cavity region was previously 

revealed to be associated with increased activity of Eosinophilic Esophagitis (230). 

Likewise, relative abundance of Haemophilus in the sputum and airway has been 

associated with asthma exacerbation (231). The exact role of Prevotella 7 in affecting 

the onset of allergic diseases remains unknown, but Prevotella 7 was shown to have a 

positive correlation with bacterial antigen P6 (232).  

Although our study found an association between dysbiotic oral microbiome network 

and food allergy, there were several limitations. First, our study can only be classified 

down to the genus level, but not species and strains. Secondly, causality cannot be 

inferred due to the cross-sectional of this study. Considering oral and gut are 

contiguous mucosal surfaces encompassing the whole GI tract, future studies with 

larger sample sizes could consider to apply a multi-omics approach by integrating gut 

and oral microbiome signature from same samples in order to explore further on the 

mechanisms behind this, and how oral microbiome changes impact food allergy 

development. 
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6.6 Conclusion 
Much work remains to be done in order to better understand the association of oral 

microbiome to food allergy. Although the differences in oral microbiome that we 

identified in our study were not be able to directly linked to food allergy development, 

our findings suggested that the oral microbiome might have a potential association 

with food allergy. 
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7 CHARACTERIZATION OF 
HOUSE DUST 
MICROBIOME IN FOOD-
ALLERGIC CHILDREN  

 

 

This chapter described Aim6, the aim of which was investigate the house dust 

microbiome and pathways associated with food allergy. In this chapter, house dust 

microbiome profile was compared between households with food-allergic children and 

non-food allergic children. This chapter is presented in the manuscript format. 
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7.1 Abstract 
Introduction: Exposure to diverse environmental microbes appears to affect the 

pathogenesis of allergic diseases. So far, only a few studies have considered the 

assessment of the indoor microbes in house dust and most of these studies focused on 

other allergic diseases instead of food allergy.  

Method: At the present study, we analyzed house dust microbiome obtained from 23 

participants (16 food-allergic children and 7 non-food allergic children) using 16S 

rRNA gene sequencing. WGCNA was used to construct a microbial co-abundance 

network and to identify microbial modules associated with food allergy. The microbial 

taxa were later mapped onto Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways using Tax4Fun. 

Results: Our findings revealed food-allergic children have a distinct house dust 

microbiome compared to non-food allergic children. Our data suggested that 

Streptococcus, Gemella, Haemophilus, Neisseriaceae_unclassified, Actinomyces, 

Rothia, Alloprevotella and Prevotella 7 were the hub taxa of the co-abundance network 

modules for house dust microbiome of food-allergic children. Further pathway 

analysis showed house dust microbiome of food allergic children were involved in the 

pathways of replication and repair as well as cofactors and vitamins metabolism while 

house dust microbiome of non-food allergic children were involved in the amino acid 

metabolism. 
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Conclusion: Obvious discrepancies were observed in the co-abundance network of 

house dust microbiome between food-allergic children and non-food allergic children. 

These discrepancies may be related to pathways of replication and repair as well as 

cofactors and vitamins metabolism. 

7.2 Introduction 
It is well known that there are variations in the prevalence of childhood allergic 

diseases in different geographic regions with higher prevalence of allergic diseases 

generally observed in Western, industrialized regions while lower prevalence of 

allergic diseases generally observed in Eastern, non-industrialized regions (2, 233, 

234). Variations in the prevalence of allergic diseases in different geographic regions 

suggested a potential role of the environmental microbiome in modulating allergic 

responses. 

Compared with outdoor environments, indoor environments contribute significantly 

to human exposure to environmental microbes, as people spend most of their time 

indoors. Indoor pollutant emissions are more likely to be inhaled than outdoor 

emissions, and one of the common generated indoor pollutants is house dust. The 

microbial communities of house dust in urban areas are less spatially variable than 

those found in more rural areas (235). House dust contains an average of 9,000 

different species of microbes (235). To be specific, the average household has more 

than 2,000 different types of fungi and 7,000 different types of bacteria. Therefore, 
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horizontal transmission of house dust microbes, either through inhalation, ingestion or 

cutaneous, may be contributing commensal microbes to the onset of allergic diseases. 

To understand the association between house dust microbiome exposure and allergy 

outcomes, researchers have initially compared the endotoxin concentrations in house 

dust of children with and without allergic diseases (73, 136). These studies revealed 

that exposure to high level of house dust endotoxin had a negative association with 

development of allergic diseases. Contradictory results also existed that exposure to 

high levels of house dust endotoxin had an increased rate of developing allergic 

diseases (76, 77). Nevertheless the discordant results, house dust endotoxin has an 

association with protection towards allergic diseases and the development of allergic 

diseases.  

Recent studies using 16S rRNA gene sequencing have found several taxa from house 

dust microbiome associated with allergic diseases in children (72, 137, 138). For 

example, a case-control study of 104 children shown that reduced exposure to house 

dust microbiome, particularly Firmicutes and Bacteriodetes, in the first year of life is 

associated with an increased risk of developing atopy and atopic wheeze (137). 

Another study identified Lactococcus genus as a risk factor for asthma and twelve 

bacterial genera (mostly from the Actinomycetales order) as a protective factor 

towards asthma (138). Loo et al. identified an enrichment of Anaplasmataceae, 

Bacteroidaceae, and Leptospiraceae in house dust samples of allergic subjects (72). 

Although these studies have found an association between house dust microbiome and 

allergy, studies examining associations of house dust with food allergy are limited. 
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In this study, we would like to characterize the microbial composition in the house 

dust samples of food-allergic children and non-food allergic children by performing 

16S rRNA gene sequencing in integration with network analysis of bacterial taxa in 

house dust.  

7.3 Methods 

7.3.1 Study subject 
16 children with immunologist-diagnosed food allergy were recruited from the 

outpatient clinic at Perth Children's Hospital. Non-food allergic children (n=7) were 

recruited from the local community. All subjects were recruited under a protocol 

approved by the Human Research Ethics Committee (HREC), Perth Children's 

Hospital (RGS151 / HREC 2017060EP) and Curtin University (HRE2017-0712). 

Informed written consent was obtained from the parents or guardians upon enrolment. 

7.3.2 House dust sample collection 
House dust samples were collected from the participants’ bedroom by a researcher. 

Prior to house dust sample collection, the parents of the participants were advised not 

to clean their children's bedroom. The researcher then used a sterile cotton swab to 

wipe across the smooth surface of the participant’s bedroom, mainly on a cupboard 

using an even pressure and holding the swab flat against the surface. The cotton swab 

was then placed immediately back to its sterile tube, which was labelled with the 

participant’s name. The house dust sample was then transported on ice by the 

researcher within 2 hours of collection to the laboratory -80°C freezers for storage. A 
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sterile scissor was used to cut the cotton from the swab stick and place the tip into the 

provided bead tube. 

7.3.3 DNA extraction and sequencing 
Total DNA was purified using PureLink™ Microbiome DNA Purification Kit 

(Thermo Fisher Scientific, United States) according to the manufacturer’s procedure. 

The V3-V4 region of the 16S rRNA gene was amplified by PCR using barcoded 

primers and was sequenced using Ion S5 XL platform (Thermo Fisher). A total of 

1,600,618 sequences reads that passed the quality check (>Q20, error rate < 1%) were 

generated. 

7.3.4 Microbial co-abundance network construction and network 
visualization 
Microbial co-abundance network was constructed with WGCNA package of R by 

using Hellinger transformation of the OTU count data (14) (197). The soft thresholding 

power was obtained based on the scale-free topology index (R2). Highly co-occurred 

bacterial taxa were then assigned into several module memberships. Next, the 

association of these module memberships were quantified with food allergy as well as 

demographics traits such as age and gender. Modules with p-value < 0.05 were 

regarded as significant food allergy-related modules. Considering the small sample 

size of the present study, a more stringent cut-off for hub taxa (absolute value of the 

TaxaSignificance >0.5 and Module Membership >0.8) was applied. These taxa were 

then visualized using Cytoscape v3.8.0 (198). 
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7.3.5 Quantitative Insights into Microbial Ecology (QIIME) 
The 16S rRNA sequence analyses were performed using 7.3.4 Quantitative Insights 

Into Microbial Ecology (QIIME) (194). The operational taxonomic units (OTUs) were 

assigned with the SILVA reference database (release 128) based on 97 % similarity 

level(196). As previously described in chapter 5, relative abundance was calculated 

with the Chao1 index, observed species was evaluated with observed OTUs while 

relative abundance and evenness were measured with Shannon index. The comparison 

of beta diversity was calculated using the weighted and unweighted UniFrac distance 

matrices and later visualized in a two-dimensional structure using Principal Coordinate 

Analysis (PCoA). The Adonis permutational multivariate analysis 

(Adonis/PERMANOVA) was performed to compare beta diversity dissimilarity 

matrices while Mann Whitney test was performed to compare the relative abundance 

of OTUs between groups. The sample size was not sufficient for multiple comparison 

adjustments; hence, p< 0.05 was considered statistically different. 

7.3.6 Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway 
Analysis 
7.1.12 Predictive functional analysis was performed using Tax4Fun with Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathway abundance classification and 

biomarkers of KEGG pathways were analysed by Linear discriminant analysis (LDA) 

effect size (LEfSe) analysis (http://huttenhower.sph.harvard.edu/lefse/) with default 

settings (alpha = 0.05, effect-size threshold of 2). 
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7.4 Result 

7.4.1 House dust microbial alpha diversity  
House dust samples were obtained from 23 participants, including 16 food-allergic 

children and 7 non-food allergic children. Seventy percent of the subjects were boys, 

with the median age for non-food allergic children and food-allergic children of 3.7 

years and 5.1 years, respectively. The groups did not differ from each other with regard 

to age (p=0.179) and gender (p=0.266). The food allergies noted in the food-allergic 

children included nuts (n = 12), egg (n = 3) and mixed allergies (n = 1). 

Chao1, Shannon index and observed OTUs showed that there were no significant 

differences between the two groups by Mann Whitney U Test (p > 0.05) (Table 7-1).  

Table 7-1 Comparison of house dust microbial alpha diversity between food-

allergic children and non-food allergic children. Values represent mean ± SD. 

  
Non-food allergic 

children 

Food-allergic 

children 
P 

Chao1 1014.4±127.7 1073.1±136.5 0.393 

Observed OTUs 810.4±165.8 895.4±135.5 0.223 

Shannon diversity index 6.5±1.4 7.0±0.7 0.316 

7.4.2 House dust microbial beta diversity 
The weighted-UniFrac PCoA showed that house dust microbiome of food allergic 

children was clearly separated from the house dust microbiome of non-food allergic 

children (Figure 7-1). Similar to the PCoA plots results, the permutational multivariate 
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analysis (Adonis) also revealed a significant difference in the house dust microbiome 

of food-allergic children and non-food allergic children (p< 0.01). 

 

Figure 7-1 PCoA plots of individual house dust microbiome in food-allergic 

children and non-food allergic children derived from (a) unweighted and (b) 

weighted UniFrac distances. Each symbol represents a sample. PCoA:  Principal 

Coordinate Analysis. 

7.4.3 Microbial composition of house dust samples 
OTU dataset for food-allergic children and non-food allergic children consisted of 

1465 OTUs, which classified to 20 phyla, 44 classes, 86 orders, 181 families and 428 

genera. 

The most predominant phyla were Firmicutes, Bacteroidetes, Proteobacteria, and 

Actinobacteria, which characterize the house dust microbiome. Other phyla were also 
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detected at relatively low abundances (<1%) including Fusobacteria, Saccharibacteria, 

Nitrospirae, Tenericutes. Absconditabacteria (SR1), Cyanobacteria, Acidobacteria, 

Planctomycetes, Spirochaetae, Synergistetes, Deinococcus-Thermus, Ambiguous taxa, 

Verrucomicrobia, Ignavibacteriae, Chloroflexi and Gemmatimonadetes (Figure 7-2). 

There was no significant difference in the phylum level between food-allergic children 

and non-food allergic children (Table 7-2).  

 

Figure 7-2 Relative abundance of house dust microbial phyla 
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Table 7-2 The comparison of house dust microbiome at the phylum level between 

food-allergic children and non-food allergic children 

Phylum 
Non-food allergic 

children  

Food-allergic 

children  
P FDR_p 

Fusobacteria 0.26 0.94 0.006 0.123 

Actinobacteria 8.74 14.68 0.045 0.237 

Saccharibacteria 0.12 0.25 0.045 0.237 

Nitrospirae 0.01 0.02 0.051 0.237 

Tenericutes 0.00 0.03 0.067 0.237 

Firmicutes 27.17 41.16 0.071 0.237 

Absconditabacteria (SR1) 0.042 0.11 0.109 0.311 

Proteobacteria 40.48 19.89 0.124 0.311 

Cyanobacteria 0.57 1.13 0.285 0.632 

Acidobacteria 0.05 0.09 0.316 0.632 

Planctomycetes 0.05 0.00 0.494 0.782 

Spirochaetae 0.08 0.00 0.494 0.782 

Synergistetes 0.00 0.01 0.508 0.782 

Deinococcus-Thermus 0.11 0.19 0.593 0.847 

Bacteroidetes 21.35 20.18 0.789 0.911 

Verrucomicrobia 0.33 0.13 0.789 0.911 

Ignavibacteriae 0.06 0.02 0.819 0.911 
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Chloroflexi 0.00 0.03 0.909 0.920 

Gemmatimonadetes 0.01 0.01 0.92 0.920 

Values expressed as relative abundance (%). 

p: p-value. 

FDR_p: adjusted p-value 

 

Four hundred and twenty-eight genera were identified, and only 28 genera were 

accounted for more than 1% across all samples (Table 7-3). There was no significant 

difference in the genera level between food-allergic children and non-food allergic 

children after adjusting for multiple comparisons.  

Table 7-3 Relative abundance (%) of predominant genera in house dust 

microbiome between food-allergic children and non-food allergic children (≥ 1% 

across all samples) 

Genus 

Non-food allergic 

children  

Food-allergic 

children  p FDR_p 

Streptococcus 7.50 24.27 0.001 0.146 

Actinomyces 0.53 1.58 0.001 0.146 

Rothia 0.82 2.30 0.005 0.146 

Granulicatella 0.85 2.09 0.0065 0.146 

Alloprevotella 0.49 1.33 0.008 0.162 

Acidovorax 1.06 0.01 0.009 0.162 
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Gemella 0.76 2.22 0.009 0.162 

Haemophilus 0.69 1.80 0.009 0.162 

Prevotella 7 0.60 2.38 0.011 0.170 

Neisseria 0.55 1.92 0.016 0.198 

Bartonella 10.15 0.10 0.019 0.206 

Faecalibacterium 3.90 1.79 0.023 0.206 

Ruminococcus 2 1.12 0.31 0.023 0.206 

Porphyromonas 0.62 1.64 0.033 0.253 

Brevundimonas 2.20 0.19 0.071 0.372 

Lachnospiraceae UCG-008 2.00 0.68 0.082 0.401 

Pseudomonas 3.94 0.820 0.082 0.401 

Bacteroides 13.95 7.36 0.095 0.414 

Neisseriaceae_unclassified 0.41 1.71 0.095 0.414 

Alistipes 1.26 0.76 0.124 0.463 

Prevotella 9 1.08 3.38 0.181 0.532 

Corynebacterium 1 1.42 3.85 0.256 0.605 

Staphylococcus 0.78 1.96 0.285 0.632 

Massilia 7.16 0.36 0.462 0.725 

Comamonadaceae_unclassified 2.27 0.08 0.504 0.746 

Paracoccus 1.00 1.36 0.548 0.779 

Sphingomonas 2.29 1.57 0.593 0.816 
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Acinetobacter 3.26 2.88 0.738 0.868 

Values expressed as relative abundance (%). 

p: p-value. 

FDR_p: adjusted p-value 

7.4.4 Microbial co-abundance network 
To better characterize house dust microbial taxa in food-allergic children, we applied 

WGCNA to identify clusters of microbial taxa whose differential representation was 

correlated with food allergy. 

Through WGCNA, we were able to identify 10 modules of co-expressed taxa and the 

number of taxa within modules ranged from 43 to 424 (Table 7-4). Among all the taxa, 

only 96 taxa (6%) were not included in any colour module, and these taxa were 

grouped into the grey module as per default.  

Table 7-4 The number of taxa in the 10 modules 

Module colours Freq 

Black 78 

Blue 280 

Brown 207 

Green 94 

Grey 96 

Red 43 
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Pink 61 

Red 79 

Turquoise 424 

Yellow 103 

7.4.5 Modules associated with food allergy 
We further compared the module eigengenes between children with and without food 

allergy with using module trait association analysis to identify the food allergy-

associated modules. Our results showed that two modules were significantly 

associated with food allergy (Figure 7-3), which were brown module (r = 0.60 p = 

0.003) and green module (r = 0.49, p = 0.02). 
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Figure 7-3 Module-trait associations. Each row corresponds to a module 

eigengene (ME) while each column corresponds to either phenotype (FA: food 

allergy) or demographic traits such as age and gender. Each cell contains the 

corresponding correlation coefficient (display at the top of the cell) and 

corresponding p-values for each module (display at the bottom of the cells within 

parentheses). Blue and red colours of the spectrum on the right denote low and 

high correlation, respectively. 

Taxa from brown module were revealed to have the highest positive correlation with 

food allergy. In this module, 11 out of 42 taxa (> 1% relative abundance across all 

samples) were identified as dominant taxa, and all these taxa were correlated with each 

other. Particularly, Streptococcus, Gemella, Haemophilus, Neisseriaceae_unclassified, 

Actinomyces and Rothia were identified to be hub taxa of brown module with high 

TaxaSignificance and Module Membership (Figure 7-4).  
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Figure 7-4 Network analysis identifies brown module as a distinct module of co-

associated taxa. The highly correlated taxa in the comparisons of food allergic 

children and non-food allergic children are indicated and colour coded according 

to the phylum. Green colour represents Bacteroidetes phylum, pink colour 

represents Firmicutes phylum, orange colour represents Proteobacteria phylum, 

blue colour represents Actinobacteria phylum while baby blue colour represents 

Saccharibacteria phylum. Hub taxa are indicated with yellow triangle shapes and 

other connector taxa are in round shapes. 

Taxa from green module were also revealed to have a positive correlation with food 

allergy. In this module, 7 taxa out of 28 taxa (> 1% relative abundance across all 
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samples) were identified as dominant taxa, and all these taxa were correlated with each 

other. Particularly, Actinomyces, Alloprevotella, Prevotella 7 and Streptococcus were 

identified to be hub taxa with high TaxaSignificance and Module Membership (Figure 

7-5). 

 

Figure 7-5 Network analysis identifies green module as a distinct module of co-

associated taxa. The highly correlated taxa in the comparisons of food allergic 

children and non-food allergic children are indicated and colour coded according 

to the phylum. Green colour represents Bacteroidetes phylum, pink colour 

represents Firmicutes phylum, red colour represents Fusobacteria phylum, blue 
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colour represents Actinobacteria phylum while baby blue colour represents 

Saccharibacteria phylum. Hub taxa are indicated with yellow triangle shapes and 

other connector taxa are in round shapes. 

7.4.6 Predicted functional pathway of house dust microbial taxa 
associated with food allergy 
Linear discriminant analysis effect size (LEfSe) performed on the Tax4fun output 

showed several KEGG categories differentially present in each group (Figure 7-6). 

Using the threshold values (LDA > 2.0, p< 0.05), we found that replication and repair 

(nucleotide excision repair and base excision repair) and metabolism of cofactors and 

vitamins (folate biosynthesis, Nicotinate and nicotinamide metabolism as well as 

riboflavin metabolism) were enriched in food-allergic children. In contrast, we found 

amino acid metabolism (arginine and proline metabolism, histidine metabolism, as 

well as valine, leucine and isoleucine biosynthesis) was enriched in non-food allergic 

children.  
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Figure 7-6 LEfSe analysis revealed distinct KEGG pathway differences in house 

dust microbiota between food-allergic children and non-food allergic children. 

KEGG pathway enriched in food-allergic children was indicated with red while 

the KEGG pathway enriched in non-food allergic children was indicated with 

green. Only the taxa that met a LDA significant threshold of >2 are displayed. 

LEfSe: Linear discriminant analysis effect size.  LDA: Linear discriminant 

analysis. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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7.5 Discussion 
Other than gut and saliva microbiome, exposure to diverse environmental microbes 

appears to modulate mucosal immunity (236, 237), which in turn affects the 

pathogenesis of allergic diseases (72, 137, 138, 238). So far, only a few studies have 

considered the assessment of the indoor microbes in house dust (72, 137, 138). Most 

of these studies focused on other allergic diseases, instead of food allergy. Our 

objective for this study was to perform 16S rRNA gene sequencing in integration with 

network analysis to compare the house dust microbial compositions in food-allergic 

and non-food allergic children. The present study demonstrated that food-allergic 

children showed a distinct house dust microbial composition and a significant shift in 

microbial function when compared to non-food allergic children. 

The house dust microbiome has a high diversity of microbial taxa, consisting of 

approximately 1000 identified taxa at the species level (239). Firmicutes, 

Bacteroidetes, Proteobacteria and Actinobacteria were previously identified as the 

dominant taxa in the house dust microbiome (72, 106, 240, 241). Similar to these 

studies, we also observed house dust microbiome to be dominated by Firmicutes, 

Bacteroidetes, Proteobacteria and Actinobacteria. Further to this, we also observed 

smaller contributions of Fusobacteria, Saccharibacteria, Nitrospirae, Tenericutes. 

Absconditabacteria (SR1), Cyanobacteria, Acidobacteria, Planctomycetes, 

Spirochaetae, Synergistetes, Deinococcus-Thermus, Verrucomicrobia, 

Ignavibacteriae, Chloroflexi and Gemmatimonadetes in the house dust microbiome.  
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Through network analysis, we were able to identify two co-abundance network 

modules to be positively correlated with food allergy and these modules were 

characterized by several hub taxa, Streptococcus, Gemella, Haemophilus, 

Neisseriaceae_unclassified, Actinomyces, Rothia, Alloprevotella and Prevotella 7. 

Among these taxa, Streptococcus (242, 243), Gemella (219, 244), Haemophilus (245), 

Neisseria (246), Alloprevotella (219) and Prevotella (246) had been previously shown 

to be enriched in subjects with allergic diseases. Although Actinomyces (247) and 

Rothia (248-250) were not previously associated with allergy, they are known for their 

roles in exacerbating inflammation and causing infectious conditions. A mouse study 

demonstrated Actinomyces naeslundii, a species of Actinomyces genus was able to 

stimulate the secretion of pro-inflammatory cytokines such as interleukin 1β, 

interleukin 6 and tumour necrosis factor (251). Another study revealed Rothia 

dentocariosa, a species of Bacteroidetes, was able to activate toll-like receptors 2 and 

Nuclear factor kappa B, which induced the production of tumor necrosis factor alpha, 

leading to infection(252). Collectively, the above results showed an increase of 

pathogenic microbes in food-allergic children, which suggested that dysbiosis of the 

house dust microbiome was involved in the development of food allergy. 

The KEGG pathway analysis indicated that these perturbed house dust microbiome in 

food-allergic children were strongly associated with dysregulation of cofactors and 

vitamins metabolic processes such as folate, nicotinate and nicotinamide. Viewing that 

gut microbiome is known for its role in modulating DNA methylation in host cells via 

production of epigenetically active metabolites such as folate (253), hence, exposure 
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to specific microbes in the indoor environment may affect gut microbiome to produce 

epigenetically active metabolites and later cause changes in DNA methylation patterns, 

leading to the pathogenesis of food allergy. 

In contrast, the KEGG pathway analysis indicated that house dust microbiome in non-

food allergic children were strongly associated with amino acid metabolism (arginine 

and proline metabolism, histidine metabolism, as well as valine, leucine and isoleucine 

biosynthesis). Considering that gut microbiome produces amino acids that modulate 

the intestinal immunity functions (254), hence, the exposure to specific microbes in 

the indoor environment may affect gut microbiome to produce amino acids, which 

may regulate the intestinal immunity functions, contributing to protection against food 

allergy. 

Although we observed obvious discrepancies in the co-abundance network of house 

dust microbiome and predicted metagenome functions between food-allergic children 

and non-food allergic children, the relative abundance of these taxa was not 

significantly different between children with and without food allergy after multiple 

testing. This was likely due to a relatively small sample size, which affected the 

statistical power. In addition, we caution that our results cannot determine causality. 

Besides, we were aware that other environmental factors, such as cleaning practice, 

diet and pet contact might also be related to observations made in this study.  Another 

limitation of our study is the single dust sample from each house as we assume this 

sample reflects the usual home condition. To the extent that a single sample is not a 

good reflection of the usual exposure, this limitation would tend to bias our results 
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toward the null rather than result in false-positive associations. Further studies should 

consider to use vacuum devices with filters to collect house dust samples with several 

locations in the house along with the standardization of sampled location and the 

collected data should be analysed in conjunction with environmental factors to further 

elucidate the association between food allergy and the house dust microbiome.  

Despite these limitations, the findings of this study are valuable for understanding the 

association of house dust microbiome and food allergy due to two reasons: First, the 

present study is the first study to thoroughly characterize the house dust microbiome 

of food-allergic children by applying network analysis. This approach allowed a 

relatively comprehensive characterization of house dust microbial communities 

associated with food allergy including those microbial populations with low relative 

abundance but highly relevant to food allergy. Second, rather than assessing endotoxin 

levels as an indirect measurement of house dust microbiome, we utilized 16S rRNA 

gene sequencing approach to identify specific house dust microbial composition. 

7.6 Conclusion 
Our findings indicate that the microbiome in food-allergic children is different from 

that in non-food allergic children. We also found enrichment of Streptococcus, 

Gemella, Haemophilus, Neisseriaceae_unclassified, Actinomyces, Rothia, 

Alloprevotella and Prevotella 7 in the house dust microbiome of food-allergic children. 

The house dust microbiome of these food-allergic children was mainly involved in 
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cofactors and vitamins metabolism. In contrast, house dust microbiome of non-food 

allergic children was mainly involved in amino acid metabolism.  

  



 

 

 

154  Khui Hung Lee - February 2021 

 

 

8 GENERAL DISCUSSION 
AND CONCLUSION  
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8.1 Overall findings 
The prevalence of food allergies and food-related anaphylaxis admissions have 

increased dramatically over the last few decades and this bears a globally significant 

health burden (1). The underlying mechanisms that contribute to food allergy are 

thought to be heterogeneous (2). Several risk factors, particularly related to genes and 

the human microbiome, have been previously reported to play a role in the 

pathogenesis of food allergy. At present there are no clear food allergy related 

diagnostic biomarkers and the pathophysiology of food allergy remains poorly 

understood. Notably there are no studies that report a comprehensive evaluation of 

food allergy susceptibility with the host transcriptome and microbial composition of 

multiple sites at once. The present study aims to fill this knowledge gap by exploring 

both the host transcriptome profile and microbiome profiles of food-allergic children 

and non-food allergic children, and seeks to systematically elucidate the association of 

gene expression and microbiomes with food allergy. We also investigated the house 

dust microbiome in the bedroom of these children with and without food allergy.   

The present study finds significant differences in the profiles of both the host 

transcriptome and the microbiomes in children with and without food allergy, thereby 

extending opportunities to identify prognostic biomarkers as well as therapeutic 

interventions. In particular, we demonstrate for the first time that the IFIH1, DRAM1 

and ZNF512B genes are nut allergy susceptibility genes. Our study also demonstrates 

that the cellular immune response in children with nut allergy is characterised by a 

significantly lower CD4+ T-cell /Treg response and a higher neutrophil response 
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compare to children without nut allergy. This finding significantly improves the 

understanding of the detailed molecular mechanism of food allergy. Moreover, we also 

observe a significant difference in the beta diversity of both the saliva microbiome and 

the house dust microbiome when comparing food-allergic children and non-food 

allergic children. We identify an enrichment of pro-inflammatory microbial taxa in the 

gut and house dust microbiome and a depletion of anti-inflammatory microbial taxa in 

the saliva of food-allergic children when compared to non-food allergic children. 

Collectively, our study suggests that the pathogenesis of food allergy is connected to 

an upregulation of the food allergy susceptibility genes, to dysregulated immune cell 

responses, including upregulated neutrophil responses and downregulated CD4+ T-

cells /Treg responses, and to alterations of the gut and oral microbiome configuration, 

including a perturbed taxonomic composition, along with the environmental house 

dust microbiome.  

The host transcriptome has received much attention in order to understand the 

pathogenesis of allergic diseases (87-90). Detailed functional studies are needed to 

determine the functional roles of the novel genes, IFIH1, DRAM1 and ZNF512B, 

which are identified in present study. So far pathway analysis shows that these genes 

are enriched with type 1 interferon signalling. Type 1 interferons can activate 

interferon-alpha receptors, as well as Janus kinase/signal transducers and activators of 

the transcription pathway, leading to the secretion of inflammatory cytokines (178). 

Attenuation of type 1 interferon responses has been previously observed in subjects 

who achieved oral tolerance (90).  
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In addition to an enrichment of type 1 interferon-related pathways in nut allergy, we 

also observed a downregulation of the CD4+ T-cells /Treg response in nut allergy. 

CD4+ T-cells /Treg responses have been previously shown to play a critical role in 

immune response and oral tolerance, and downregulation of CD4+ T-cells /Treg 

responses are commonly associated with the pathogenesis of allergic diseases, 

including food allergy (88, 91, 92). CD4+Foxp3+ Treg cells can inhibit the activation 

of dendritic cells, mast cells, basophils, and eosinophils, suppress the production of 

allergen-specific IgE, inhibit effector functions and the migration patterns of Th1, Th2, 

and Th17 cells, as well as promote the secretion of IgG4. Hence, a reduced 

CD4+Foxp3+ Treg cell responses can result in the breakdown of oral tolerance.  

We also observed an upregulation of neutrophil responses in nut allergy. Consistent 

with our findings, previous studies identified that neutrophils play an important role in 

inducing anaphylactic reactions (87, 89). The exposure to allergens can trigger the 

activation of neutrophils which in turn produce interleukin 1, interleukin 6, interleukin 

8 and interleukin 12, tumour necrosis factor‐α, and transforming growth factor‐β. The 

activation of neutrophils can also express the high‐affinity receptor for both 

immunoglobulin E and immunoglobulin G, leading to the amplification of the allergic 

reaction (255). Our and previous findings collectively support that targeting type 1 

interferons, CD4+ T-cells /Treg responses and neutrophil activity may help to advance 

therapy of food allergy and to identify biomarkers associated with food allergy. 

Other than host gene regulation, the microbiomes of multiple sites in the human body 

are also involved in the development of allergic diseases, including food allergy (72, 
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106-109, 134). To investigate the potential association between these microbiomes and 

food allergy, we compared the microbiome composition between food-allergic 

children and non-food allergic children in the gut and oral cavity, and characterized 

the functional capacity of these microbiomes using network analysis. The gut 

microbiome of the food-allergic children is characterized by a hub taxon, namely 

Ruminococcaceae UCG-002, and the other dominant taxa are mainly from Firmicutes 

phylum, which have been previously associated with allergic diseases (106, 107, 205). 

These gut microbial taxa are involved in functions related to methane metabolism and 

glycerolipid metabolism. A high-fat diet has been shown to stimulate the production 

of methane and glycerolipid (207), which in turn induces gut dysbiosis and gut 

permeability, stimulates mast cell accumulation, and promotes total IgE responses, 

contributing to the development of food allergy (204). In contrast, the gut microbiome 

of non-food allergic children is enriched in the metabolism of cofactors and vitamins, 

particularly in ubiquinone and other terpenoid-quinone biosynthesis. Coenzyme Q10, 

which is a kind of ubiquinone, has been previously suggested to have an inverse 

association with allergic diseases (210, 256). Coenzyme Q10 has been suggested to 

have protective effects towards allergic diseases through decreasing the accumulation 

of eosinophils (210) as well as reducing IgE levels (257) and inflammation (258). 

The oral microbiome improves the host immunity and contributes to modulating 

inflammation (131) and allergic reactions (134). Streptococcus, one of the most 

predominant genera of the oral cavity, is identified as the hub taxon for the oral cavity 

of the non-food allergic children in this study. Consistent with our findings, a study 
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conducted by Matsui et al also observed that the counts of Streptococcus increased in 

the oral cavity of control mice compared with mice sensitized with ovalbumin (134). 

Mouse studies have further demonstrated that Streptococcus aids to suppress allergic 

inflammation (259-261). Streptococcus was shown to redirect the Type 2 T helper 

(Th2) allergic response to a Type 1 T helper (Th1) regulatory response (262), to 

increase the proportion of regulatory T cells (Treg) (259), to increase the expression 

of anti-inflammatory cytokines such as Interleukin 10, to decrease the expression of 

pro-inflammatory cytokines such as Interleukin 5 and Interleukin 13 as well as to 

decrease the total circulating Immunoglobulin E (259), which in turn attenuated 

allergic immune responses. These observations show that certain oral microbial taxa 

take part in regulating the allergic inflammation. 

There are several possible explanations for the correlation of the gut and oral 

microbiome with food allergy outcomes. The human gut microbiome is unstable in the 

first few years of life during the initial colonization and development of the gut, and 

gut microbial colonization have previously been associated with immune development 

(263-265), allergic disease (266), and the response to food allergens (267). Our study 

identifies an alteration of the oral microbiome in food-allergic children and a previous 

study demonstrates that oral microbes can modify the gut microbiome to induce 

inflammatory responses (132). These results suggest that oral microbial dysbiosis can 

interact with the gut microbiome and contribute to the susceptibility to food allergy. 

Our study could not investigate this crosstalk between the oral and gut microbiome in 

further detail due to the limited sample size of children participating in both studies. 
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The microbial abundance of house dust influences the host immune system and has a 

complex interaction with the development of allergic diseases (72, 137, 138). The 

present study shows the enrichment of Streptococcus, Gemella, Haemophilus, 

Neisseriaceae_unclassified, Actinomyces, Rothia, Alloprevotella and Prevotella 7 in 

the house dust microbiome of food-allergic children. These taxa are involved in 

functions related to the inflammation and dysregulation of cofactors as well as vitamin 

metabolic processes such as folate, nicotinate and nicotinamide. It has been suggested 

that a high concentration of unmetabolized folic acid and an abnormal nicotinate and 

nicotinamide metabolism in the host body can increase oxidative stress (268). Such 

excessive expression of oxidative stress may enhance the activity of Nuclear factor 

kappa B, which in turn increases the production of inflammatory cytokines, such as 

tumor necrosis factor alpha and interleukin 6, as well as acute phase reactants (269), 

leading to inflammation. 

In contrast, the house dust microbiome of non-food allergic children is strongly 

associated with amino acid metabolism. Amino acid metabolism is known for its 

protective role towards food allergy. Mice model demonstrated that an amino acid 

based diet can help to alleviate allergic symptoms through an increase of FoxP3+ cell 

counts and reduction of serum IgG2a and IgG1 levels (270). Thus, we speculate that 

the environmental exposure to these house dust microbial taxa may modulate the host 

immune system via the dysregulation of cofactors, vitamin metabolic processes and 

amino acid metabolism, and as a consequence potentially cause the pathogenesis of 

food allergy. How exactly the domestic exposure to these house dust microbial taxa 
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affects the regulation of the host immune response and the development of food allergy 

remains to be determined. 

8.2 Key findings 
• Nut allergy was associated with the upregulation of neutrophil responses, and 

downregulation of CD4 T cell/Treg responses. 

• IFIH1, DRAM1 and ZNF512B were identified as hub genes for nut allergy. 

• The InnateDB pathway analysis revealed that the upregulated genes were 

associated with type 1 interferons.  

• Ruminococcaceae UCG-002 was identified as the hub taxon of the gut 

microbiome co-abundance network module for food-allergic children and this 

network module was involved in the methane metabolism and glycerolipid 

metabolism. 

• Functional prediction showed an enrichment of ubiquinone and other 

terpenoid-quinone biosynthesis in the gut microbiome of non-food allergic 

children. 

• Food-allergic children had a distinct oral microbiome compared to non-food 

allergic children. 

• Streptococcus was identified as the hub taxon of the oral microbiome co-

abundance network module for non-food allergic children. 

• Streptococcus, Gemella, Haemophilus, Neisseriaceae_unclassified, 

Actinomyces, Rothia, Alloprevotella and Prevotella 7 were identified as the 
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dominant taxa of the house dust microbiome in bedrooms of food-allergic 

children and these microbiome taxa were mainly involved in cofactors and 

vitamins metabolism.  

• Functional prediction showed an enrichment of amino acid metabolism in 

house dust microbiome of non-food allergic children. 

8.3 Strengths of the study 
One of the strengths of this thesis study was the robust phenotyping of the study 

population using clinically proven food allergy. The diagnosis of food allergy was 

based on the clinical examination by an immunologist on the day of recruitment. 

Another strength of this thesis study was the unbiased and comprehensive approach 

for the identification of the key genes and the microbial taxa for food allergy. RNA 

sequencing detected low-expressed genes and improved the quantification accuracy at 

the gene level of the phenotype while 16S rRNA gene sequencing allowed for a robust 

identification and profiling of the microbial communities. In addition, the application 

of network analysis identified the global connectivity structure of the gene expression 

and microbial taxa, and distinguished system-level features of the underlying biology 

for food allergy. 

8.4 Limitations of the study 
We discuss several limitations of this study and directions for future studies.  

First, this study identified several key genes and microbiome taxa that are associated 

with food allergy, yet the gene expression and the relative abundance of the taxa were 
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not significantly different between children with and without food allergy after 

adjusting for multiple comparisons. This was likely due to the relatively small sample 

size which affects the statistical power. In addition, this is a cross-sectional study that 

adopt convenience sampling method, hence causal inference in regards the role of gene 

expression and microbiome taxa in the pathogenesis of food allergy cannot be made. 

Future study should consider applying a longitudinal study approach to investigate the 

association of multiple environmental factors, such as mode of delivery, presence of a 

sibling, maternal history of atopy, eczema, timing of allergenic food introduction, 

consumption of yoghurts and probiotic supplements with the pathogenesis of food 

allergy as well as the effects of these risk factors on the gene expression and 

microbiome composition. 

Second, the primary aim of this thesis study was to utilize transcriptomic and 

microbiome signatures and to integrate those with network analysis to identify key 

genes and microbial taxa associated with nut allergy. Hence, this thesis did not address 

the functional roles of the identified key genes and microbial taxa and we discussed 

their possible roles based on published literature. Therefore, future mechanistic studies 

are needed to understand the role of the identified key genes and microbial taxa in 

more detail. The key genes and microbiome taxa identified in this thesis could inform 

the selection of targets for future mechanistic studies, which might involve in germ-

free mice models to better illustrate the function of those targeted genes and 

microbiome taxa. 
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Third, using flow cytometry-based assays to target multiple cell populations was not 

feasible because the volume of blood collection from children was restricted. Instead 

we have applied an unbiased deconvolution approach to infer the proportions of 12 

types of human cells in the whole blood transcriptome. In addition, our study cannot 

determine whether changes in cellular proportions precede or follow transcriptomic 

changes. Further experiments are needed to identify the cellular origin of the gene 

expression signals associated with nut allergy. 

Forth, the studies described in chapters 5, 6 and 7 of this thesis have utilised 16S rRNA 

gene sequencing to comprehensively characterize the gut, saliva and house dust 

microbiome profile of children with and without food allergy. 16S rRNA gene 

sequencing allows for a cost effective, easy and robust identification and profiling of 

the microbial communities, yet can only identify and profile microbial communities 

down to the genus level, and not specific species and strains (271, 272). Moreover, 

16S rRNA gene sequencing is unable to identify the microbial taxa directly and can 

only predict their functional profile. In contrast, shotgun metagenomics is able to 

identify and profile all genomic DNA (from bacteria to viruses) at a species or even 

strain level. In addition, shotgun metagenomics is also able to provide a functional 

characterization of microbial taxa (271, 272). Therefore, shortgun metagenomics 

should be utilized in future studies to further elucidate the association between food 

allergy and the microbiome at a species and strain level as well as identify the potential 

role of these microbial taxa.  
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Lastly, our samples were collected from different study subsets and we were unable to 

study the whole blood and microbiome samples from the same participants. Hence, we 

are unable to directly correlate the results of the genes and the microbiome. Future 

studies can apply a multi-omics approach by integrating transcriptomic and 

microbiome signatures for a better understanding of the immune mechanism of food 

allergy. To better characterize mechanisms of host–microbiome dysregulation during 

food allergy, future studies could consider to apply an integrated longitudinal 

molecular profiles of microbial and host activity. To the extent possible, multiple 

molecular profiles should be obtained from the same sets of samples, including 

transcriptomes, gut microbiome, oral microbiome and house dust microbiome profile, 

allowing concurrent changes to be observed in multiple types of host and microbial 

molecular over time. 

8.5 Concluding remarks 
In conclusion, integration of transcriptional profiling and network analysis identified 

several novel genes and associated immune cells that were different between children 

with and without nut allergy. This thesis study also identified a different microbiome 

profile in the gut and oral cavity of food-allergic children when compared to non-food 

allergic children. In addition, this thesis study also found a distinct house dust 

microbiome profile in the children’s bedroom between food-allergic and non-food 

allergic children. Taken together, the results of this thesis suggest that the host 

transcriptome as well as gut, oral and house dust microbiomes are correlated with food 
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allergy, and that the transcriptome and microbiome exhibit a co-existence relationship 

with a complex correlation pattern likely resulting in the pathogenesis of food allergy.  

The overall findings of this thesis emphasize that the transcriptome and microbiome 

profiles have to be investigated as a linked entity, i.e. as a network, to gain a better and 

systematic understanding about the aetiology of food allergy. These data can assist in 

the intervention, management, treatment and possible prevention of food allergy. 

 

  



 

 

 

Khui Hung Lee -February 2021   167 

 

 

9 REFERENCES 

1. Prescott S, Allen KJ. Food allergy: riding the second wave of the allergy 
epidemic. Pediatric allergy and immunology : official publication of the European 
Society of Pediatric Allergy and Immunology. 2011;22(2):155-60. 
2. Loh W, Tang MLK. The Epidemiology of Food Allergy in the Global Context. 
International journal of environmental research and public health. 2018;15(9). 
3. Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, et 
al. The Public Health Impact of Parent-Reported Childhood Food Allergies in the 
United States. Pediatrics. 2018;142(6). 
4. Rudders SA, Arias SA, Camargo CA, Jr. Trends in hospitalizations for food-
induced anaphylaxis in US children, 2000-2009. The Journal of allergy and clinical 
immunology. 2014;134(4):960-2 e3. 
5. Peters RL, Koplin JJ, Gurrin LC, Dharmage SC, Wake M, Ponsonby AL, et 
al. The prevalence of food allergy and other allergic diseases in early childhood in a 
population-based study: HealthNuts age 4-year follow-up. The Journal of allergy and 
clinical immunology. 2017;140(1):145-53 e8. 
6. Mullins RJ, Wainstein BK, Barnes EH, Liew WK, Campbell DE. Increases 
in anaphylaxis fatalities in Australia from 1997 to 2013. Clinical and experimental 
allergy : journal of the British Society for Allergy and Clinical Immunology. 
2016;46(8):1099-110. 
7. Burks AW, Sampson HA, Plaut M, Lack G, Akdis CA. Treatment for food 
allergy. The Journal of allergy and clinical immunology. 2018;141(1):1-9. 
8. Waserman S, Begin P, Watson W. IgE-mediated food allergy. Allergy, 
asthma, and clinical immunology : official journal of the Canadian Society of Allergy 
and Clinical Immunology. 2018;14(Suppl 2):55. 
9. Connors L, O'Keefe A, Rosenfield L, Kim H. Non-IgE-mediated food 
hypersensitivity. Allergy, asthma, and clinical immunology : official journal of the 
Canadian Society of Allergy and Clinical Immunology. 2018;14(Suppl 2):56. 
10. Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of P, 
Children Study T. Factors associated with the development of peanut allergy in 
childhood. The New England journal of medicine. 2003;348(11):977-85. 
11. Fukutomi Y, Taniguchi M, Nakamura H, Akiyama K. Epidemiological link 
between wheat allergy and exposure to hydrolyzed wheat protein in facial soap. 
Allergy. 2014;69(10):1405-11. 
12. Shoda T, Futamura M, Yang L, Yamamoto-Hanada K, Narita M, Saito H, et 
al. Timing of eczema onset and risk of food allergy at 3 years of age: A hospital-based 
prospective birth cohort study. J Dermatol Sci. 2016;84(2):144-8. 



 

 

 

168  Khui Hung Lee - February 2021 

 

 

13. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. 
Exposure to food allergens through inflamed skin promotes intestinal food allergy 
through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immun. 
2014;133(5):1390-U643. 
14. Gupta RS, Singh AM, Walkner M, Caruso D, Bryce PJ, Wang X, et al. 
Hygiene factors associated with childhood food allergy and asthma. Allergy Asthma 
Proc. 2016;37(6):140-6. 
15. Ben-Shoshan M, Soller L, Harrington DW, Knoll M, La Vieille S, Fragapane 
J, et al. Eczema in early childhood, sociodemographic factors and lifestyle habits are 
associated with food allergy: a nested case-control study. International archives of 
allergy and immunology. 2015;166(3):199-207. 
16. Martin PE, Eckert JK, Koplin JJ, Lowe AJ, Gurrin LC, Dharmage SC, et al. 
Which infants with eczema are at risk of food allergy? Results from a population-based 
cohort. Clinical and Experimental Allergy. 2015;45(1):255-64. 
17. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-
dominated skin inflammation and permissiveness to epicutaneous sensitization with 
protein antigen. The Journal of allergy and clinical immunology. 2009;124(3):485-93, 
93 e1. 
18. Bartnikas LM, Gurish MF, Burton OT, Leisten S, Janssen E, Oettgen HC, et 
al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion 
and food-induced anaphylaxis. The Journal of allergy and clinical immunology. 
2013;131(2):451-60 e1-6. 
19. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, 
et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. The 
Journal of clinical investigation. 2014;124(11):4965-75. 
20. Osborne NJ, Martin PE, Gurrin LC, Matheson MC, Ponsonby A, Wake M, et 
al. Prevalence of challenge-proven IgE-mediated food allergy using population-based 
sampling and predetermined challenge criteria in infants. J Allergy Clin Immun. 
2011;127(3):668-76. 
21. McWilliam V, Peters R, Tang MLK, Dharmage S, Ponsonby AL, Gurrin L, 
et al. Patterns of tree nut sensitization and allergy in the first 6 years of life in a 
population-based cohort. The Journal of allergy and clinical immunology. 
2019;143(2):644-50 e5. 
22. Peters RL, Dharmage SC, Gurrin LC, Koplin JJ, Ponsonby AL, Lowe AJ, et 
al. The natural history and clinical predictors of egg allergy in the first 2 years of life: 
a prospective, population-based cohort study. The Journal of allergy and clinical 
immunology. 2014;133(2):485-91. 
23. Wood RA, Sicherer SH, Vickery BP, Jones SM, Liu AH, Fleischer DM, et al. 
The natural history of milk allergy in an observational cohort. The Journal of allergy 
and clinical immunology. 2013;131(3):805-12. 
24. Peters RL, Allen KJ, Dharmage SC, Koplin JJ, Dang T, Tilbrook KP, et al. 
Natural history of peanut allergy and predictors of resolution in the first 4 years of life: 



 

 

 

Khui Hung Lee -February 2021   169 

 

 

A population-based assessment. The Journal of allergy and clinical immunology. 
2015;135(5):1257-66 e1-2. 
25. Weinberger T, Sicherer S. Current perspectives on tree nut allergy: a review. 
Journal of asthma and allergy. 2018;11:41-51. 
26. Tuano KT, Dillard KH, Guffey D, Davis CM. Development of sesame 
tolerance and cosensitization of sesame allergy with peanut and tree nut allergy in 
children. Annals of allergy, asthma & immunology : official publication of the 
American College of Allergy, Asthma, & Immunology. 2016;117(6):708-10. 
27. Liew WK, Williamson E, Tang ML. Anaphylaxis fatalities and admissions in 
Australia. The Journal of allergy and clinical immunology. 2009;123(2):434-42. 
28. Sasaki M, Koplin JJ, Dharmage SC, Field MJ, Sawyer SM, McWilliam V, et 
al. Prevalence of clinic-defined food allergy in early adolescence: The SchoolNuts 
study. The Journal of allergy and clinical immunology. 2018;141(1):391-8 e4. 
29. Koplin JJ, Allen KJ, Gurrin LC, Peters RL, Lowe AJ, Tang ML, et al. The 
impact of family history of allergy on risk of food allergy: a population-based study of 
infants. International journal of environmental research and public health. 
2013;10(11):5364-77. 
30. Al-Hammadi S, Zoubeidi T, Al-Maskari F. Predictors of childhood food 
allergy: significance and implications. Asian Pacific journal of allergy and 
immunology. 2011;29(4):313-7. 
31. Tsai HJ, Kumar R, Pongracic J, Liu X, Story R, Yu Y, et al. Familial 
aggregation of food allergy and sensitization to food allergens: a family-based study. 
Clinical and experimental allergy : journal of the British Society for Allergy and 
Clinical Immunology. 2009;39(1):101-9. 
32. Sicherer SH, Furlong TJ, Maes HH, Desnick RJ, Sampson HA, Gelb BD. 
Genetics of peanut allergy: a twin study. The Journal of allergy and clinical 
immunology. 2000;106(1 Pt 1):53-6. 
33. Hirschhorn JN, Daly MJ. Genome-wide association studies for common 
diseases and complex traits. Nature reviews Genetics. 2005;6(2):95-108. 
34. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, et al. Genome-
wide association study identifies peanut allergy-specific loci and evidence of 
epigenetic mediation in US children. Nature communications. 2015;6:6304. 
35. Martino DJ, Ashley S, Koplin J, Ellis J, Saffery R, Dharmage SC, et al. 
Genomewide association study of peanut allergy reproduces association with amino 
acid polymorphisms in HLA-DRB1. Clinical and experimental allergy : journal of the 
British Society for Allergy and Clinical Immunology. 2017;47(2):217-23. 
36. Khor SS, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, et al. 
Genome-wide association study of self-reported food reactions in Japanese identifies 
shrimp and peach specific loci in the HLA-DR/DQ gene region. Scientific reports. 
2018;8(1):1069. 
37. Asai Y, Eslami A, van Ginkel CD, Akhabir L, Wan M, Yin D, et al. A 
Canadian genome-wide association study and meta-analysis confirm HLA as a risk 



 

 

 

170  Khui Hung Lee - February 2021 

 

 

factor for peanut allergy independent of asthma. The Journal of allergy and clinical 
immunology. 2018;141(4):1513-6. 
38. Noguchi E, Akiyama M, Yagami A, Hirota T, Okada Y, Kato Z, et al. HLA-
DQ and RBFOX1 as susceptibility genes for an outbreak of hydrolyzed wheat allergy. 
The Journal of allergy and clinical immunology. 2019;144(5):1354-63. 
39. Marenholz I, Grosche S, Kalb B, Ruschendorf F, Blumchen K, Schlags R, et 
al. Genome-wide association study identifies the SERPINB gene cluster as a 
susceptibility locus for food allergy. Nature communications. 2017;8(1):1056. 
40. Asai Y, Eslami A, van Ginkel CD, Akhabir L, Wan M, Ellis G, et al. Genome-
wide association study and meta-analysis in multiple populations identifies new loci 
for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food 
allergy. The Journal of allergy and clinical immunology. 2018;141(3):991-1001. 
41. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and 
limitations of genome-wide association studies. Nature reviews Genetics. 
2019;20(8):467-84. 
42. Strachan DP. Hay fever, hygiene, and household size. Bmj. 
1989;299(6710):1259-60. 
43. Ohsaki A, Venturelli N, Buccigrosso TM, Osganian SK, Lee J, Blumberg RS, 
et al. Maternal IgG immune complexes induce food allergen-specific tolerance in 
offspring. The Journal of experimental medicine. 2018;215(1):91-113. 
44. Manti S, Lougaris V, Cuppari C, Tardino L, Dipasquale V, Arrigo T, et al. 
Breastfeeding and IL-10 levels in children affected by cow's milk protein allergy: A 
restrospective study. Immunobiology. 2017;222(2):358-62. 
45. Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. 
Attenuation of food allergy symptoms following treatment with human milk 
oligosaccharides in a mouse model. Allergy. 2015;70(9):1091-102. 
46. Yamamoto T, Tsubota Y, Kodama T, Kageyama-Yahara N, Kadowaki M. 
Oral tolerance induced by transfer of food antigens via breast milk of allergic mothers 
prevents offspring from developing allergic symptoms in a mouse food allergy model. 
Clinical & developmental immunology. 2012;2012:721085. 
47. Gil F, Amezqueta A, Martinez D, Aznal E, Etayo V, Dura T, et al. Association 
between Caesarean Delivery and Isolated Doses of Formula Feeding in Cow Milk 
Allergy. Int Arch Allergy Immunol. 2017;173(3):147-52. 
48. Bedolla Barajas M, Alcala-Padilla G, Morales Romero J, Camacho Fregoso 
J, Rivera Mejia V. Peanut allergy in Mexican children: what is the effect of age at first 
consumption? Iranian journal of allergy, asthma, and immunology. 2016;15(1):53-61. 
49. Haby MM, Marks GB, Peat JK, Leeder SR. Daycare attendance before the 
age of two protects against atopy in preschool age children. Pediatric pulmonology. 
2000;30(5):377-84. 
50. de Meer G, Janssen NA, Brunekreef B. Early childhood environment related 
to microbial exposure and the occurrence of atopic disease at school age. Allergy. 
2005;60(5):619-25. 



 

 

 

Khui Hung Lee -February 2021   171 

 

 

51. Rothers J, Stern DA, Spangenberg A, Lohman IC, Halonen M, Wright AL. 
Influence of early day-care exposure on total IgE levels through age 3 years. The 
Journal of allergy and clinical immunology. 2007;120(5):1201-7. 
52. Hagerhed-Engman L, Bornehag CG, Sundell J, Aberg N. Day-care 
attendance and increased risk for respiratory and allergic symptoms in preschool age. 
Allergy. 2006;61(4):447-53. 
53. Marrs T, Logan K, Craven J, Radulovic S, McLean W, Lack G, et al. Dog 
ownership at three months of age is associated with protection against food allergy. 
Allergy. 2019;74(11):2212-9. 
54. Koplin JJ, Dharmage SC, Ponsonby AL, Tang MLK, Lowe AJ, Gurrin LC, 
et al. Environmental and demographic risk factors for egg allergy in a population-
based study of infants. Allergy. 2012;67(11):1415-22. 
55. Love BL, Mann JR, Hardin JW, Lu ZK, Cox C, Amrol DJ. Antibiotic 
prescription and food allergy in young children. Allergy, asthma, and clinical 
immunology : official journal of the Canadian Society of Allergy and Clinical 
Immunology. 2016;12:41. 
56. Li M, Lu ZK, Amrol DJ, Mann JR, Hardin JW, Yuan J, et al. Antibiotic 
Exposure and the Risk of Food Allergy: Evidence in the US Medicaid Pediatric 
Population. The journal of allergy and clinical immunology In practice. 
2019;7(2):492-9. 
57. Grummer-Strawn LM, Scanlon KS, Fein SB. Infant feeding and feeding 
transitions during the first year of life. Pediatrics. 2008;122:36-42. 
58. Greer FR, Sicherer SH, Burks AW, Committee On N, Section On A, 
Immunology. The Effects of Early Nutritional Interventions on the Development of 
Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, 
Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic 
Complementary Foods. Pediatrics. 2019;143(4). 
59. de Silva D, Halken S, Singh C, Muraro A, Angier E, Arasi S, et al. Preventing 
food allergy in infancy and childhood: Systematic review of randomised controlled 
trials. Pediatric allergy and immunology : official publication of the European Society 
of Pediatric Allergy and Immunology. 2020;31(7):813-26. 
60. Halken S, Muraro A, de Silva D, Khaleva E, Angier E, Arasi S, et al. EAACI 
guideline: Preventing the development of food allergy in infants and young children 
(2020 update). Pediatric allergy and immunology : official publication of the European 
Society of Pediatric Allergy and Immunology. 2021. 
61. van den Elsen LWJ, Garssen J, Burcelin R, Verhasselt V. Shaping the Gut 
Microbiota by Breastfeeding: The Gateway to Allergy Prevention? Frontiers in 
pediatrics. 2019;7:47. 
62. Munblit D, Verhasselt V. Allergy prevention by breastfeeding: possible 
mechanisms and evidence from human cohorts. Current opinion in allergy and clinical 
immunology. 2016;16(5):427-33. 
63. Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM, 
et al. Breast Milk Transforming Growth Factor beta Is Associated With Neonatal Gut 



 

 

 

172  Khui Hung Lee - February 2021 

 

 

Microbial Composition. Journal of pediatric gastroenterology and nutrition. 
2017;65(3):e60-e7. 
64. Morita Y, Campos-Alberto E, Yamaide F, Nakano T, Ohnisi H, Kawamoto 
M, et al. TGF-beta Concentration in Breast Milk is Associated With the Development 
of Eczema in Infants. Frontiers in pediatrics. 2018;6:162. 
65. Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. 
Randomized trial of peanut consumption in infants at risk for peanut allergy. The New 
England journal of medicine. 2015;372(9):803-13. 
66. Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J, et al. Randomized 
Trial of Introduction of Allergenic Foods in Breast-Fed Infants. The New England 
journal of medicine. 2016;374(18):1733-43. 
67. Wei-Liang Tan J, Valerio C, Barnes EH, Turner PJ, Van Asperen PA, 
Kakakios AM, et al. A randomized trial of egg introduction from 4 months of age in 
infants at risk for egg allergy. The Journal of allergy and clinical immunology. 
2017;139(5):1621-8 e8. 
68. Krawiec M, Fisher HR, Du Toit G, Bahnson HT, Lack G. Overview of oral 
tolerance induction for prevention of food allergy-Where are we now? Allergy. 2021. 
69. Bellach J, Schwarz V, Ahrens B, Trendelenburg V, Aksunger O, Kalb B, et 
al. Randomized placebo-controlled trial of hen's egg consumption for primary 
prevention in infants. The Journal of allergy and clinical immunology. 
2017;139(5):1591-9 e2. 
70. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker 
BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, 
and host energy metabolism. J Lipid Res. 2013;54(9):2325-40. 
71. Koplin JJ, Wake M, Dharmage SC, Matheson M, Tang ML, Gurrin LC, et al. 
Cohort Profile: The HealthNuts Study: Population prevalence and 
environmental/genetic predictors of food allergy. International journal of 
epidemiology. 2015;44(4):1161-71. 
72. Loo EXL, Chew LJM, Zulkifli AB, Ta LDH, Kuo IC, Goh A, et al. 
Comparison of microbiota and allergen profile in house dust from homes of allergic 
and non-allergic subjects- results from the GUSTO study. The World Allergy 
Organization journal. 2018;11(1):37. 
73. Oluwole O, Rennie DC, Senthilselvan A, Dyck R, Afanasieva A, Kirychuk S, 
et al. The association between endotoxin in house dust with atopy and exercise-
induced bronchospasm in children with asthma. Environmental research. 
2018;164:302-9. 
74. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm 
dust and endotoxin protect against allergy through A20 induction in lung epithelial 
cells. Science. 2015;349(6252):1106-10. 
75. Mendy A, Wilkerson J, Salo PM, Cohn RD, Zeldin DC, Thorne PS. Exposure 
and Sensitization to Pets Modify Endotoxin Association with Asthma and Wheeze. 
The journal of allergy and clinical immunology In practice. 2018;6(6):2006-13 e4. 



 

 

 

Khui Hung Lee -February 2021   173 

 

 

76. Tsuang A, Grishin A, Grishina G, Do AN, Sordillo J, Chew GL, et al. 
Endotoxin, food allergen sensitization, and food allergy: A complementary 
epidemiologic and experimental study. Allergy. 2020;75(3):625-35. 
77. Yen YC, Yang CY, Wang TN, Yen PC, Ho CK, Mena KD, et al. Household 
airborne endotoxin associated with asthma and allergy in elementary school-age 
children: a case-control study in Kaohsiung, Taiwan. Environmental science and 
pollution research international. 2020;27(16):19502-9. 
78. Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 
signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 
2004;172(11):6978-87. 
79. Hirsch AG, Pollak J, Glass TA, Poulsen MN, Bailey-Davis L, Mowery J, et 
al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic 
diseases. Clinical and experimental allergy : journal of the British Society for Allergy 
and Clinical Immunology. 2017;47(2):236-44. 
80. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al. 
Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics 
Research Community. Metabolites. 2019;9(4). 
81. Nguyen ND, Wang D. Multiview learning for understanding functional 
multiomics. PLoS computational biology. 2020;16(4):e1007677. 
82. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nature 
reviews Genetics. 2018;19(5):299-310. 
83. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. 
Transcriptome Profiling in Human Diseases: New Advances and Perspectives. 
International journal of molecular sciences. 2017;18(8). 
84. Huang R, Han M, Meng L, Chen X. Transcriptome-wide discovery of coding 
and noncoding RNA-binding proteins. Proceedings of the National Academy of 
Sciences of the United States of America. 2018;115(17):E3879-E87. 
85. Merrick BA, Phadke DP, Auerbach SS, Mav D, Stiegelmeyer SM, Shah RR, 
et al. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 
treated rats. PloS one. 2013;8(4):e61768. 
86. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq 
and microarray in transcriptome profiling of activated T cells. PloS one. 
2014;9(1):e78644. 
87. Watson CT, Cohain AT, Griffin RS, Chun Y, Grishin A, Hacyznska H, et al. 
Integrative transcriptomic analysis reveals key drivers of acute peanut allergic 
reactions. Nature communications. 2017;8(1):1943. 
88. Martino D, Neeland M, Dang T, Cobb J, Ellis J, Barnett A, et al. Epigenetic 
dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nature 
communications. 2018;9(1):3308. 
89. Do AN, Watson CT, Cohain AT, Griffin RS, Grishin A, Wood RA, et al. Dual 
transcriptomic and epigenomic study of reaction severity in peanut-allergic children. 
The Journal of allergy and clinical immunology. 2020;145(4):1219-30. 



 

 

 

174  Khui Hung Lee - February 2021 

 

 

90. Kosoy R, Agashe C, Grishin A, Leung DY, Wood RA, Sicherer SH, et al. 
Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype. PloS 
one. 2016;11(10):e0163831. 
91. Martino DJ, Bosco A, McKenna KL, Hollams E, Mok D, Holt PG, et al. T-
cell activation genes differentially expressed at birth in CD4+ T-cells from children 
who develop IgE food allergy. Allergy. 2012;67(2):191-200. 
92. Papatriantafyllou M. Tolerance: the origins of colonic TReg cells. Nature 
reviews Immunology. 2013;13(6):394. 
93. Abdel-Gadir A, Massoud AH, Chatila TA. Antigen-specific Treg cells in 
immunological tolerance: implications for allergic diseases. F1000Research. 
2018;7:38. 
94. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the 
activation and regulation of innate and adaptive immunity. Nature reviews 
Immunology. 2011;11(8):519-31. 
95. Gillis CM, Jonsson F, Mancardi DA, Tu N, Beutier H, Van Rooijen N, et al. 
Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice. 
The Journal of allergy and clinical immunology. 2017;139(4):1253-65 e14. 
96. Jonsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen 
N, et al. Mouse and human neutrophils induce anaphylaxis. The Journal of clinical 
investigation. 2011;121(4):1484-96. 
97. Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, MacDonald SPJ, et 
al. Markers Involved in Innate Immunity and Neutrophil Activation are Elevated 
during Acute Human Anaphylaxis: Validation of a Microarray Study. Journal of innate 
immunity. 2019;11(1):63-73. 
98. Zbikowska-Gotz M, Palgan K, Gawronska-Ukleja E, Kuzminski A, 
Przybyszewski M, Socha E, et al. Expression of IL-17A concentration and effector 
functions of peripheral blood neutrophils in food allergy hypersensitivity patients. Int 
J Immunopathol Pharmacol. 2016;29(1):90-8. 
99. Zbikowska-Gotz M, Palgan K, Gawronska-Ukleja E, Kuzminski A, 
Przybyszewski M, Socha E, et al. Expression of IL-17A concentration and effector 
functions of peripheral blood neutrophils in food allergy hypersensitivity patients. Int 
J Immunopathol Pharmacol. 2016;29(1):90-8. 
100. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: 
implications for health outcomes. Nat Med. 2016;22(7):713-22. 
101. Layeghifard M, Hwang DM, Guttman DS. Disentangling Interactions in the 
Microbiome: A Network Perspective. Trends in microbiology. 2017;25(3):217-28. 
102. Strachan DP. Hay fever, hygiene, and household size. Bmj. 
1989;299(6710):1259-60. 
103. Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable 
regions in 16S rRNA genes in phylogenetic analysis. BMC bioinformatics. 
2016;17:135. 



 

 

 

Khui Hung Lee -February 2021   175 

 

 

104. Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y. Linking the 
Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol Metab. 
2016;27(12):831-43. 
105. van den Elsen LW, Poyntz HC, Weyrich LS, Young W, Forbes-Blom EE. 
Embracing the gut microbiota: the new frontier for inflammatory and infectious 
diseases. Clin Transl Immunology. 2017;6(1):125. 
106. Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota 
composition associated with food allergy in infants. Appl Environ Microbiol. 
2014;80(8):2546-54. 
107. Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, et al. 
Early-life gut microbiome and egg allergy. Allergy. 2018;73(7):1515-24. 
108. Kourosh A, Luna RA, Balderas M, Nance C, Anagnostou A, Devaraj S, et al. 
Fecal microbiome signatures are different in food-allergic children compared to 
siblings and healthy children. Pediatric allergy and immunology : official publication 
of the European Society of Pediatric Allergy and Immunology. 2018;29(5):545-54. 
109. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. 
Early-life gut microbiome composition and milk allergy resolution. The Journal of 
allergy and clinical immunology. 2016;138(4):1122-30. 
110. Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty 
Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood 
Mononuclear Cells in vitro. Immunol Invest. 2016;45(3):205-22. 
111. Shi Y, Xu LZ, Peng K, Wu W, Wu R, Liu ZQ, et al. Specific immunotherapy 
in combination with Clostridium butyricum inhibits allergic inflammation in the 
mouse intestine. Scientific reports. 2015;5:17651. 
112. Zhang J, Su H, Li Q, Wu H, Liu M, Huang J, et al. Oral administration of 
Clostridium butyricum CGMCC0313-1 inhibits beta-lactoglobulin-induced intestinal 
anaphylaxis in a mouse model of food allergy. Gut Pathog. 2017;9:11. 
113. Liu Z, Liu W, Ran C, Hu J, Zhou Z. Abrupt suspension of probiotics 
administration may increase host pathogen susceptibility by inducing gut dysbiosis. 
Sci Rep. 2016;6:23214. 
114. Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, et al. Diet-
Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce 
Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198(5):2172-81. 
115. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. 
Treg induction by a rationally selected mixture of Clostridia strains from the human 
microbiota. Nature. 2013;500(7461):232-6. 
116. Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-
Gavilan CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet 
and Human Health. Front Microbiol. 2016;7:185. 
117. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. Restricted 
distribution of the butyrate kinase pathway among butyrate-producing bacteria from 
the human colon. J Bacteriol. 2004;186(7):2099-106. 



 

 

 

176  Khui Hung Lee - February 2021 

 

 

118. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott 
KP, et al. Phylogenetic distribution of three pathways for propionate production within 
the human gut microbiota. Isme J. 2014;8(6):1323-35. 
119. Cait A, Cardenas E, Dimitriu P, Amenyogbe N, Dai D, Cait J, et al. Reduced 
genetic potential for butyrate fermentation in the gut microbiome of infants who 
develop allergic sensitization. J Allergy Clin Immunol. 2019. 
120. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, et 
al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against 
Food Allergy through Diverse Cellular Pathways. Cell Rep. 2016;15(12):2809-24. 
121. Zhu Z, Zhu B, Hu C, Liu Y, Wang X, Zhang J, et al. Short-chain fatty acids 
as a target for prevention against food allergy by regulatory T cells. JGH Open. 
2019;3(3):190-5. 
122. Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-
L1hi B cells are critical regulators of humoral immunity. Nat Commun. 2015;6:5997. 
123. van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role 
of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin 
Immunol. 2016;138(3):654-65. 
124. Noval Rivas M, Burton OT, Wise P, Charbonnier L-M, Georgiev P, Oettgen 
HC, et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs 
oral tolerance and promotes food allergy. Immunity. 2015;42(3):512-23. 
125. Nagata Y, Yamamoto T, Hayashi M, Hayashi S, Kadowaki M. Improvement 
of Therapeutic Efficacy of Oral Immunotherapy in Combination with Regulatory T 
Cell-Inducer Kakkonto in a Murine Food Allergy Model. PLoS One. 2017;12(1). 
126. Smaldini PL, Orsini Delgado ML, Fossati CA, Docena GH. Orally-Induced 
Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral 
Antigens and Effectively Dampened Food Allergic Reactions. PloS one. 
2015;10(10):e0141116. 
127. Dang TD, Allen KJ, D JM, Koplin JJ, Licciardi PV, Tang ML. Food-allergic 
infants have impaired regulatory T-cell responses following in vivo allergen exposure. 
Pediatr Allergy Immunol. 2016;27(1):35-43. 
128. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. 
Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 
2011;331(6015):337-41. 
129. Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb 
H, et al. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway 
to suppress food allergy. Nat Med. 2019;25(7):1164-74. 
130. Ma JY, Zhang J, Li QH, Shi ZL, Wu HJ, Zhang HQ, et al. Oral administration 
of a mixture of probiotics protects against food allergy via induction of CD103(+) 
dendritic cells and modulates the intestinal microbiota. J Funct Foods. 2019;55:65-75. 
131. Miller WD. Diseases of the Human Body Which Have Been Traced to the 
Action of Mouth-Bacteria. The American journal of dental science. 1891;25(7):311-9. 



 

 

 

Khui Hung Lee -February 2021   177 

 

 

132. Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. 
Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and 
inflammation. Science. 2017;358(6361):359-65. 
133. Kobayashi R, Ogawa Y, Hashizume-Takizawa T, Kurita-Ochiai T. Oral 
bacteria affect the gut microbiome and intestinal immunity. Pathogens and disease. 
2020;78(3). 
134. Matsui S, Kataoka H, Tanaka JI, Kikuchi M, Fukamachi H, Morisaki H, et al. 
Dysregulation of Intestinal Microbiota Elicited by Food Allergy Induces IgA-
Mediated Oral Dysbiosis. Infection and immunity. 2019;88(1). 
135. Barberan A, Dunn RR, Reich BJ, Pacifici K, Laber EB, Menninger HL, et al. 
The ecology of microscopic life in household dust. Proceedings Biological sciences. 
2015;282(1814). 
136. Gehring U, Bischof W, Fahlbusch B, Wichmann HE, Heinrich J. House dust 
endotoxin and allergic sensitization in children. American journal of respiratory and 
critical care medicine. 2002;166(7):939-44. 
137. Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, 
et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and 
atopy in urban children. The Journal of allergy and clinical immunology. 
2014;134(3):593-601 e12. 
138. Karvonen AM, Kirjavainen PV, Taubel M, Jayaprakash B, Adams RI, 
Sordillo JE, et al. Indoor bacterial microbiota and development of asthma by 10.5 years 
of age. J Allergy Clin Immun. 2019;144(5):1402-10. 
139. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et 
al. Determining cell type abundance and expression from bulk tissues with digital 
cytometry. Nature biotechnology. 2019;37(7):773-82. 
140. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC bioinformatics. 2008;9:559. 
141. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. 
InnateDB: systems biology of innate immunity and beyond--recent updates and 
continuing curation. Nucleic acids research. 2013;41(Database issue):D1228-33. 
142. Asero R, Fernandez-Rivas M, Knulst AC, Bruijnzeel-Koomen CA. Double-
blind, placebo-controlled food challenge in adults in everyday clinical practice: a 
reappraisal of their limitations and real indications. Current opinion in allergy and 
clinical immunology. 2009;9(4):379-85. 
143. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao YW, Liao HH, et al. Loss-
of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. 
J Allergy Clin Immun. 2011;127(3):661-7. 
144. Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, Holloway JW, 
Karmaus W, Ewart SL, et al. Filaggrin loss-of-function mutations are associated with 
food allergy in childhood and adolescence. J Allergy Clin Immun. 2014;134(4):876-
U483. 
145. Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, Holloway JW, 
Karmaus W, Ewart SL, et al. Filaggrin loss-of-function mutations are associated with 



 

 

 

178  Khui Hung Lee - February 2021 

 

 

food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876-
82. 
146. Matsumoto N, Yorifuji T, Nakamura K, Ikeda M, Tsukahara H, Doi H. 
Breastfeeding and risk of food allergy: A nationwide birth cohort in Japan. Allergol 
Int. 2020;69(1):91-7. 
147. Marrs T, Logan K, Craven J, Radulovic S, McLean WHAI, Lack G, et al. 
Dog ownership at three months of age is associated with protection against food 
allergy. Allergy. 2019;74(11):2212-9. 
148. Peters RL, Allen KJ, Dharmage SC, Lodge CJ, Koplin JJ, Ponsonby AL, et 
al. Differential factors associated with challenge-proven food allergy phenotypes in a 
population cohort of infants: a latent class analysis. Clinical and Experimental Allergy. 
2015;45(5):953-63. 
149. Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. 
Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. 
Frontiers in nutrition. 2018;5:52. 
150. Sugimoto M, Kamemura N, Nagao M, Irahara M, Kagami S, Fujisawa T, et 
al. Differential response in allergen-specific IgE, IgGs, and IgA levels for predicting 
outcome of oral immunotherapy. Pediatric allergy and immunology : official 
publication of the European Society of Pediatric Allergy and Immunology. 
2016;27(3):276-82. 
151. Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M, Son A, et al. 
IgA regulates the composition and metabolic function of gut microbiota by promoting 
symbiosis between bacteria. The Journal of experimental medicine. 
2018;215(8):2019-34. 
152. Tham EH, Lee BW, Chan YH, Loo EXL, Toh JY, Goh A, et al. Low Food 
Allergy Prevalence Despite Delayed Introduction of Allergenic Foods-Data from the 
GUSTO Cohort. The journal of allergy and clinical immunology In practice. 
2018;6(2):466-75 e1. 
153. McGowan EC, Bloomberg GR, Gergen PJ, Visness CM, Jaffee KF, Sandel 
M, et al. Influence of early-life exposures on food sensitization and food allergy in an 
inner-city birth cohort. The Journal of allergy and clinical immunology. 
2015;135(1):171-8. 
154. Tokinobu A, Yorifuji T, Yamakawa M, Tsuda T, Doi H. Association of early 
daycare attendance with allergic disorders in children: a longitudinal national survey 
in Japan. Arch Environ Occup H. 2020;75(1):18-26. 
155. Shoda T, Futamura M, Yang LM, Narita M, Saito H, Ohya Y. Yogurt 
consumption in infancy is inversely associated with atopic dermatitis and food 
sensitization at 5 years of age: A hospital-based birth cohort study. J Dermatol Sci. 
2017;86(2):90-6. 
156. Jensen H, Dromtorp SM, Axelsson L, Grimmer S. Immunomodulation of 
monocytes by probiotic and selected lactic Acid bacteria. Probiotics Antimicrob 
Proteins. 2015;7(1):14-23. 



 

 

 

Khui Hung Lee -February 2021   179 

 

 

157. Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal 
regulatory T cells. Nat Rev Immunol. 2016;16(5):295-309. 
158. Iweala OI, Choudhary SK, Commins SP. Food Allergy. Current 
gastroenterology reports. 2018;20(5):17. 
159. Renz H, Allen KJ, Sicherer SH, Sampson HA, Lack G, Beyer K, et al. Food 
allergy. Nature reviews Disease primers. 2018;4:17098. 
160. Hsiao KC, Ponsonby AL, Axelrad C, Pitkin S, Tang MLK, Team PS. Long-
term clinical and immunological effects of probiotic and peanut oral immunotherapy 
after treatment cessation: 4-year follow-up of a randomised, double-blind, placebo-
controlled trial. The Lancet Child & adolescent health. 2017;1(2):97-105. 
161. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell 
polarization. Nature reviews Immunology. 2003;3(12):984-93. 
162. Turcanu V, Maleki SJ, Lack G. Characterization of lymphocyte responses to 
peanuts in normal children, peanut-allergic children, and allergic children who 
acquired tolerance to peanuts. The Journal of clinical investigation. 2003;111(7):1065-
72. 
163. Croote D, Darmanis S, Nadeau KC, Quake SR. High-affinity allergen-
specific human antibodies cloned from single IgE B cell transcriptomes. Science. 
2018;362(6420):1306-9. 
164. Kiewiet MBG, van Esch B, Garssen J, Faas MM, de Vos P. Partially 
hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse 
model and enhance regulatory T and B cell frequencies. Molecular nutrition & food 
research. 2017;61(11). 
165. Hoh RA, Joshi SA, Lee JY, Martin BA, Varma S, Kwok S, et al. Origins and 
clonal convergence of gastrointestinal IgE(+) B cells in human peanut allergy. Science 
immunology. 2020;5(45). 
166. Benede S, Berin MC. Mast cell heterogeneity underlies different 
manifestations of food allergy in mice. PloS one. 2018;13(1):e0190453. 
167. Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Kartashov AV, et al. Induction 
of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-
Mediated Experimental Food Allergy. Immunity. 2015;43(4):788-802. 
168. Polukort SH, Rovatti J, Carlson L, Thompson C, Ser-Dolansky J, Kinney SR, 
et al. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the 
Development of Experimental Food Allergy in IL-10-Deficient Mice. J Immunol. 
2016;196(12):4865-76. 
169. Hussain M, Borcard L, Walsh KP, Pena Rodriguez M, Mueller C, Kim BS, 
et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant 
with the development of food allergy. The Journal of allergy and clinical immunology. 
2018;141(1):223-34 e5. 
170. Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex 
diseases: recent accomplishments and future perspectives. European journal of human 
genetics : EJHG. 2013;21(2):134-42. 



 

 

 

180  Khui Hung Lee - February 2021 

 

 

171. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for 
transcriptomics. Nature reviews Genetics. 2009;10(1):57-63. 
172. Read JF, Bosco A. Decoding Susceptibility to Respiratory Viral Infections 
and Asthma Inception in Children. International journal of molecular sciences. 
2020;21(17). 
173. Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, et al. RNA-seq 
analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2018. 
174. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 
2001;25(4):402-8. 
175. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecular interaction 
networks. Genome research. 2003;13(11):2498-504. 
176. Hurgobin B, de Jong E, Bosco A. Insights into respiratory disease through 
bioinformatics. Respirology. 2018;23(12):1117-26. 
177. Jones C, Bosco A. Using Network Analysis to Understand Severe Asthma 
Phenotypes  Am J Respir Crit Care Med. 2017;195(11):1409-11. 
178. Diez D, Goto S, Fahy JV, Erle DJ, Woodruff PG, Wheelock AM, et al. 
Network analysis identifies a putative role for the PPAR and type 1 interferon 
pathways in glucocorticoid actions in asthmatics. BMC medical genomics. 2012;5:27. 
179. Bae MJ, Shin HS, See HJ, Jung SY, Kwon DA, Shon DH. Baicalein induces 
CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of 
food allergy. Scientific reports. 2016;6:32225. 
180. Rupa P, Mine Y. Oral immunotherapy with immunodominant T-cell epitope 
peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy. Allergy. 
2012;67(1):74-82. 
181. Zhang H, Kong H, Zeng X, Guo L, Sun X, He S. Subsets of regulatory T cells 
and their roles in allergy. Journal of translational medicine. 2014;12:125. 
182. De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, et al. Invariant 
NKT cells modulate the suppressive activity of IL-10-secreting neutrophils 
differentiated with serum amyloid A. Nature immunology. 2010;11(11):1039-46. 
183. Marwick JA, Mills R, Kay O, Michail K, Stephen J, Rossi AG, et al. 
Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing 
NF-kappaB activation. Cell death & disease. 2018;9(6):665. 
184. Martens EC, Neumann M, Desai MS. Interactions of commensal and 
pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 
2018;16(8):457-70. 
185. Kuhn KA, Pedraza I, Demoruelle MK. Mucosal Immune Responses to 
Microbiota in the Development of Autoimmune Disease. Rheum Dis Clin N Am. 
2014;40(4):711-+. 
186. Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and 
pathobionts by the gut microbiota. Nature immunology. 2013;14(7):685-90. 



 

 

 

Khui Hung Lee -February 2021   181 

 

 

187. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis 
with the intestinal microbiota (vol 10, pg 159, 2010). Nature Reviews Immunology. 
2015;15(5). 
188. Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal Crosstalk 
between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 
2016;24(1):41-50. 
189. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the Microbiome in 
Energy Regulation and Metabolism. Gastroenterology. 2014;146(6):1525-33. 
190. Joyce SA, Gahan CGM. The gut microbiota and the metabolic health of the 
host. Curr Opin Gastroen. 2014;30(2):120-7. 
191. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and 
disease. Nature. 2016;535(7610):75-84. 
192. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, 
stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-30. 
193. Licciardi PV, Ververis K, Karagiannis TC. Histone deacetylase inhibition and 
dietary short-chain Fatty acids. ISRN allergy. 2011;2011:869647. 
194. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello 
EK, et al. QIIME allows analysis of high-throughput community sequencing data. 
Nature methods. 2010;7(5):335-6. 
195. Edgar RC. Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics. 2010;26(19):2460-1. 
196. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The 
SILVA ribosomal RNA gene database project: improved data processing and web-
based tools. Nucleic acids research. 2013;41(Database issue):D590-6. 
197. Wilson JM, Litvin SY, Beman JM. Microbial community networks 
associated with variations in community respiration rates during upwelling in 
nearshore Monterey Bay, California. Environmental microbiology reports. 
2018;10(3):272-82. 
198. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 
Integration of biological networks and gene expression data using Cytoscape. Nature 
protocols. 2007;2(10):2366-82. 
199. Goldberg M, Gershon H, Appel M, Nachshon L, Levy MB, Youngster I, et 
al. Distinctive Gut Microbiota Signature in Persistent IgE-mediated Food Allergy. J 
Allergy Clin Immun. 2019;143(2):Ab189-Ab. 
200. Wang Z, Lam KL, Hu J, Ge S, Zhou A, Zheng B, et al. Chlorogenic acid 
alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food science & 
nutrition. 2019;7(2):579-88. 
201. Liu Z, Wang N, Ma Y, Wen D. Hydroxytyrosol Improves Obesity and Insulin 
Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. 
Frontiers in microbiology. 2019;10:390. 
202. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut 
microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling 
pathway. PloS one. 2012;7(10):e47713. 



 

 

 

182  Khui Hung Lee - February 2021 

 

 

203. Kieler IN, Shamzir Kamal S, Vitger AD, Nielsen DS, Lauridsen C, Bjornvad 
CR. Gut microbiota composition may relate to weight loss rate in obese pet dogs. 
Veterinary medicine and science. 2017;3(4):252-62. 
204. Hussain M, Bonilla-Rosso G, Kwong Chung CKC, Bariswyl L, Rodriguez 
MP, Kim BS, et al. High dietary fat intake induces a microbiota signature that 
promotes food allergy. The Journal of allergy and clinical immunology. 
2019;144(1):157-70 e8. 
205. Chen C-C, Chen K-J, Kong M-S, Chang H-J, Huang J-L. Alterations in the 
gut microbiotas of children with food sensitization in early life. Pediatric allergy and 
immunology : official publication of the European Society of Pediatric Allergy and 
Immunology. 2016;27(3):254-62. 
206. Monasta L, Pierobon C, Princivalle A, Martelossi S, Marcuzzi A, Pasini F, et 
al. Inflammatory bowel disease and patterns of volatile organic compounds in the 
exhaled breath of children: A case-control study using Ion Molecule Reaction-Mass 
Spectrometry. PloS one. 2017;12(8):e0184118. 
207. Mathur R, Kim G, Morales W, Sung J, Rooks E, Pokkunuri V, et al. Intestinal 
Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain 
in rats. Obesity. 2013;21(4):748-54. 
208. Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Hache C, Bourdages R, 
et al. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel 
diseases. PloS one. 2014;9(2):e87734. 
209. Lopez-Fandino R. Role of dietary lipids in food allergy. Critical reviews in 
food science and nutrition. 2020;60(11):1797-814. 
210. Miles MV, Putnam PE, Miles L, Tang PH, DeGrauw AJ, Wong BL, et al. 
Acquired coenzyme Q10 deficiency in children with recurrent food intolerance and 
allergies. Mitochondrion. 2011;11(1):127-35. 
211. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O'Connor 
G, et al. A prospective microbiome-wide association study of food sensitization and 
food allergy in early childhood. Allergy. 2018;73(1):145-52. 
212. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The 
human oral microbiome. J Bacteriol. 2010;192(19):5002-17. 
213. Xiao E, Mattos M, Vieira GHA, Chen S, Correa JD, Wu Y, et al. Diabetes 
Enhances IL-17 Expression and Alters the Oral Microbiome to Increase Its 
Pathogenicity. Cell host & microbe. 2017;22(1):120-8 e4. 
214. Chen B, Wang Z, Wang J, Su X, Yang J, Zhang Q, et al. The oral microbiome 
profile and biomarker in Chinese type 2 diabetes mellitus patients. Endocrine. 
2020;68(3):564-72. 
215. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. 
Human oral microbiome and prospective risk for pancreatic cancer: a population-based 
nested case-control study. Gut. 2018;67(1):120-7. 
216. Yang Y, Cai Q, Shu XO, Steinwandel MD, Blot WJ, Zheng W, et al. 
Prospective study of oral microbiome and colorectal cancer risk in low-income and 
African American populations. International journal of cancer. 2019;144(10):2381-9. 



 

 

 

Khui Hung Lee -February 2021   183 

 

 

217. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis 
of salivary microbiota in inflammatory bowel disease and its association with oral 
immunological biomarkers. DNA research : an international journal for rapid 
publication of reports on genes and genomes. 2014;21(1):15-25. 
218. Docktor MJ, Paster BJ, Abramowicz S, Ingram J, Wang YE, Correll M, et al. 
Alterations in diversity of the oral microbiome in pediatric inflammatory bowel 
disease. Inflammatory bowel diseases. 2012;18(5):935-42. 
219. Dzidic M, Abrahamsson TR, Artacho A, Collado MC, Mira A, Jenmalm MC. 
Oral microbiota maturation during the first 7 years of life in relation to allergy 
development. Allergy. 2018;73(10):2000-11. 
220. Cherkasov SV, Popova LY, Vivtanenko TV, Demina RR, Khlopko YA, 
Balkin AS, et al. Oral microbiomes in children with asthma and dental caries. Oral 
diseases. 2019;25(3):898-910. 
221. Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for 
children's health. International journal of oral science. 2020;12(1):12. 
222. Wang J, Jia Z, Zhang B, Peng L, Zhao F. Tracing the accumulation of in vivo 
human oral microbiota elucidates microbial community dynamics at the gateway to 
the GI tract. Gut. 2020;69(7):1355-6. 
223. Shin HS, Eom JE, Shin DU, Yeon SH, Lim SI, Lee SY. Preventive Effects of 
a Probiotic Mixture in an Ovalbumin-Induced Food Allergy Model. Journal of 
microbiology and biotechnology. 2018;28(1):65-76. 
224. Husain Z, Schwartz RA. Food allergy update: more than a peanut of a 
problem. International journal of dermatology. 2013;52(3):286-94. 
225. Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting 
functional profiles from metagenomic 16S rRNA data. Bioinformatics. 
2015;31(17):2882-4. 
226. Idris A, Hasnain SZ, Huat LZ, Koh D. Human diseases, immunity and the 
oral microbiota-Insights gained from metagenomic studies. Oral Sci Int. 
2017;14(2):Cp4-32. 
227. Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, et al. 
Biology of Oral Streptococci. Microbiology spectrum. 2018;6(5). 
228. Arbes SJ, Jr., Matsui EC. Can oral pathogens influence allergic disease? The 
Journal of allergy and clinical immunology. 2011;127(5):1119-27. 
229. Card JW, Carey MA, Voltz JW, Bradbury JA, Ferguson CD, Cohen EA, et 
al. Modulation of allergic airway inflammation by the oral pathogen Porphyromonas 
gingivalis. Infection and immunity. 2010;78(6):2488-96. 
230. Hiremath G, Shilts MH, Boone HH, Correa H, Acra S, Tovchigrechko A, et 
al. The Salivary Microbiome Is Altered in Children With Eosinophilic Esophagitis and 
Correlates With Disease Activity. Clinical and translational gastroenterology. 
2019;10(6):e00039. 
231. Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN, et al. 
Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled 
asthma. The European respiratory journal. 2016;47(3):792-800. 



 

 

 

184  Khui Hung Lee - February 2021 

 

 

232. Guo J, Zhang X, Saiganesh A, Peacock C, Chen S, Dykes GA, et al. Linking 
the westernised oropharyngeal microbiome to the immune response in Chinese 
immigrants. Allergy, Asthma & Clinical Immunology. 2020;16(1):67. 
233. Matricardi PM. Prevalence of atopy and asthma in eastern versus western 
Europe: why the difference? Annals of allergy, asthma & immunology : official 
publication of the American College of Allergy, Asthma, & Immunology. 2001;87(6 
Suppl 3):24-7. 
234. Lai CK, Beasley R, Crane J, Foliaki S, Shah J, Weiland S, et al. Global 
variation in the prevalence and severity of asthma symptoms: phase three of the 
International Study of Asthma and Allergies in Childhood (ISAAC). Thorax. 
2009;64(6):476-83. 
235. Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, et al. 
Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of 
the National Academy of Sciences of the United States of America. 
2015;112(18):5756-61. 
236. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, et al. 
Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 
2014;159(2):253-66. 
237. Liddicoat C, Sydnor H, Cando-Dumancela C, Dresken R, Liu J, Gellie NJC, 
et al. Naturally-diverse airborne environmental microbial exposures modulate the gut 
microbiome and may provide anxiolytic benefits in mice. The Science of the total 
environment. 2020;701:134684. 
238. Kirjavainen PV, Karvonen AM, Adams RI, Taubel M, Roponen M, 
Tuoresmaki P, et al. Farm-like indoor microbiota in non-farm homes protects children 
from asthma development (vol 25, pg 1089, 2019). Nat Med. 2019;25(8):1319-. 
239. Shan Y, Wu W, Fan W, Haahtela T, Zhang G. House dust microbiome and 
human health risks. International microbiology : the official journal of the Spanish 
Society for Microbiology. 2019;22(3):297-304. 
240. Dong YR, Fei P, Han Y, Guo L. Characterization of Fecal Microbiota, Short-
Chain Fatty Acids and Lactic Acid Concentrations in 5-8-Year-Old Children with Cow 
Milk Protein Allergy. Iran J Pediatr. 2018;28(4). 
241. Birzele LT, Depner M, Ege MJ, Engel M, Kublik S, Bernau C, et al. 
Environmental and mucosal microbiota and their role in childhood asthma. Allergy. 
2017;72(1):109-19. 
242. Peng X, Wu Y, Kong X, Chen Y, Tian Y, Li Q, et al. Neonatal Streptococcus 
pneumoniae Pneumonia Induces an Aberrant Airway Smooth Muscle Phenotype and 
AHR in Mice Model. BioMed research international. 2019;2019:1948519. 
243. Yang B, Liu R, Yang T, Jiang X, Zhang L, Wang L, et al. Neonatal 
Streptococcus pneumoniae infection may aggravate adulthood allergic airways disease 
in association with IL-17A. PloS one. 2015;10(3):e0123010. 
244. Chng KR, Tay ASL, Li CH, Ng AHQ, Wang JJ, Suri BK, et al. Whole 
metagenome profiling reveals skin microbiome-dependent susceptibility to atopic 
dermatitis flare. Nat Microbiol. 2016;1(9). 



 

 

 

Khui Hung Lee -February 2021   185 

 

 

245. Essilfie AT, Simpson JL, Horvat JC, Preston JA, Dunkley ML, Foster PS, et 
al. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic 
airways disease. PLoS pathogens. 2011;7(10):e1002244. 
246. Chiu CY, Chan YL, Tsai YS, Chen SA, Wang CJ, Chen KF, et al. Airway 
Microbial Diversity is Inversely Associated with Mite-Sensitized Rhinitis and Asthma 
in Early Childhood. Scientific reports. 2017;7. 
247. Valour F, Senechal A, Dupieux C, Karsenty J, Lustig S, Breton P, et al. 
Actinomycosis: etiology, clinical features, diagnosis, treatment, and management. 
Infect Drug Resist. 2014;7:183-97. 
248. Lu HF, Li A, Zhang T, Ren ZG, He KX, Zhang H, et al. Disordered 
oropharyngeal microbial communities in H7N9 patients with or without secondary 
bacterial lung infection. Emerg Microbes Infec. 2017;6. 
249. Laufer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. 
Microbial communities of the upper respiratory tract and otitis media in children. mBio. 
2011;2(1):e00245-10. 
250. de Steenhuijsen Piters WA, Huijskens EG, Wyllie AL, Biesbroek G, van den 
Bergh MR, Veenhoven RH, et al. Dysbiosis of upper respiratory tract microbiota in 
elderly pneumonia patients. The ISME journal. 2016;10(1):97-108. 
251. Sato T, Watanabe K, Kumada H, Toyama T, Tani-Ishii N, Hamada N. 
Peptidoglycan of Actinomyces naeslundii induces inflammatory cytokine production 
and stimulates osteoclastogenesis in alveolar bone resorption. Archives of oral biology. 
2012;57(11):1522-8. 
252. Kataoka H, Taniguchi M, Fukamachi H, Arimoto T, Morisaki H, Kuwata H. 
Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. 
Pathogens and disease. 2014;71(1):65-8. 
253. Hesson LB. Gut microbiota and obesity-related gastrointestinal cancer: a 
focus on epigenetics. Translational Gastrointestinal Cancer. 2013;2(4). 
254. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut 
microbiome: major fermentation by-products and their impact on host health. 
Microbiome. 2019;7. 
255. Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, Nagree Y, et al. 
Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. 
Clinical and experimental allergy : journal of the British Society for Allergy and 
Clinical Immunology. 2017;47(3):361-70. 
256. Gazdik F, Gvozdjakova A, Nadvornikova R, Repicka L, Jahnova E, 
Kucharska J, et al. Decreased levels of coenzyme Q(10) in patients with bronchial 
asthma. Allergy. 2002;57(9):811-4. 
257. Sakat MS, Kilic K, Kandemir FM, Yildirim S, Sahin A, Kucukler S, et al. 
The ameliorative effect of berberine and coenzyme Q10 in an ovalbumin-induced 
allergic rhinitis model. European archives of oto-rhino-laryngology : official journal 
of the European Federation of Oto-Rhino-Laryngological Societies. 
2018;275(10):2495-505. 



 

 

 

186  Khui Hung Lee - February 2021 

 

 

258. Lee BJ, Tseng YF, Yen CH, Lin PT. Effects of coenzyme Q10 
supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary 
artery disease patients during statins therapy: a randomized, placebo-controlled trial. 
Nutrition journal. 2013;12(1):142. 
259. Preston JA, Thorburn AN, Starkey MR, Beckett EL, Horvat JC, Wade MA, 
et al. Streptococcus pneumoniae infection suppresses allergic airways disease by 
inducing regulatory T-cells. The European respiratory journal. 2011;37(1):53-64. 
260. Thorburn AN, Foster PS, Gibson PG, Hansbro PM. Components of 
Streptococcus pneumoniae suppress allergic airways disease and NKT cells by 
inducing regulatory T cells. J Immunol. 2012;188(9):4611-20. 
261. Thorburn AN, Tseng HY, Donovan C, Hansbro NG, Jarnicki AG, Foster PS, 
et al. TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and 
Streptococcus pneumoniae-Induced Suppression of AAD. PloS one. 
2016;11(6):e0156402. 
262. Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G. Oral 
therapeutic administration of a probiotic mixture suppresses established Th2 responses 
and systemic anaphylaxis in a murine model of food allergy. Allergy. 2011;66(4):499-
508. 
263. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The 
intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. 
264. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, 
Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. The 
Journal of allergy and clinical immunology. 2012;129(2):434-40. 
265. Hooper LV, Littman DR, Macpherson AJ. Interactions between the 
microbiota and the immune system. Science (New York, N Y ). 2012;336(6086):1268-
73. 
266. Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Muller G, 
et al. Reduced diversity of the intestinal microbiota during infancy is associated with 
increased risk of allergic disease at school age. The Journal of allergy and clinical 
immunology. 2011;128(3):646-52. 
267. Bridgman SL, Kozyrskyj AL, Scott JA, Becker AB, Azad MB. Gut 
microbiota and allergic disease in children. Annals of allergy, asthma & immunology : 
official publication of the American College of Allergy, Asthma, & Immunology. 
2016;116(2):99-105. 
268. Kelly RS, Sordillo JE, Lasky-Su J, Dahlin A, Perng W, Rifas-Shiman SL, et 
al. Plasma metabolite profiles in children with current asthma. Clinical and 
experimental allergy : journal of the British Society for Allergy and Clinical 
Immunology. 2018;48(10):1297-304. 
269. Valacchi G, Caccamo D, Pelle E, De Luca C. Innovative approaches in 
environmental medicine: redox/detoxification biomarkers in environmental 
intolerances. Oxidative medicine and cellular longevity. 2013;2013:691624. 
270. van Sadelhoff JHJ, Hogenkamp A, Wiertsema SP, Harthoorn LF, Loonstra R, 
Hartog A, et al. A free amino acid-based diet partially prevents symptoms of cow's 



 

 

 

Khui Hung Lee -February 2021   187 

 

 

milk allergy in mice after oral sensitization with whey. Immunity, inflammation and 
disease. 2020;8(1):93-105. 
271. Mas-Lloret J, Obon-Santacana M, Ibanez-Sanz G, Guino E, Pato ML, 
Rodriguez-Moranta F, et al. Gut microbiome diversity detected by high-coverage 16S 
and shotgun sequencing of paired stool and colon sample. Scientific data. 2020;7(1):92. 
272. Rausch P, Ruhlemann M, Hermes BM, Doms S, Dagan T, Dierking K, et al. 
Comparative analysis of amplicon and metagenomic sequencing methods reveals key 
features in the evolution of animal metaorganisms. Microbiome. 2019;7(1):133. 
 Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged. 

  



 

 

 

188  Khui Hung Lee - February 2021 

 

 

10 APPENDICES 

APPENDIX A FOR CHAPTER 1 ..................................................................................... 189 

APPENDIX B FOR CHAPTER 5 ..................................................................................... 201 

APPENDIX C ............................................................................................................... 212 

 



 

 

 

Khui Hung Lee -February 2021   189 

 

 

APPENDIX A FOR CHAPTER 1 

Chapter 1 has been reformatted from Lee, K.H., Song, Y., Wu, W. et al. The gut 

microbiota, environmental factors, and links to the development of food allergy. Clin 

Mol Allergy 18, 5 (2020). https://doi.org/10.1186/s12948-020-00120-x, published 

under a Creative Commons BY license (http://creativecommons.org/licenses/by/4.0/)  

  

http://creativecommons.org/licenses/by/4.0/


 

 

 

190  Khui Hung Lee - February 2021 

 

 

 

 



 

 

 

Khui Hung Lee -February 2021   191 

 

 

 



 

 

 

192  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   193 

 

 

 



 

 

 

194  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   195 

 

 

 



 

 

 

196  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   197 

 

 

 



 

 

 

198  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   199 

 

 

 



 

 

 

200  Khui Hung Lee - February 2021 

 

 

 

 



 

 

 

Khui Hung Lee -February 2021   201 

 

 

APPENDIX B FOR CHAPTER 5 

Chapter 5 has been reformatted from Lee, K.H., Guo, J., Song, Y., Ariff, A., 

O’Sullivan, M., Hales, B., Mullins, B.J., Zhang, G. Dysfunctional gut microbiome 

networks in childhood IgE-mediated food allergy. International Journal of Molecular 

Sciences, published under a Creative Commons BY license 

(http://creativecommons.org/licenses/by/4.0/). 

  



 

 

 

202  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   203 

 

 



 

 

 

204  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   205 

 

 



 

 

 

206  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   207 

 

 



 

 

 

208  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   209 

 

 

 



 

 

 

210  Khui Hung Lee - February 2021 

 

 

 



 

 

 

Khui Hung Lee -February 2021   211 

 

 

 



 

 

 

212  Khui Hung Lee - February 2021 

 

 

APPENDIX C 

This appendix contains one first-authorship paper published during candidature which 

is not included by the thesis. This appendix only includes the accepted manuscript 

version of the article, but not the published version. The published version is available 

on Lee, K.H., Song, Y., O'Sullivan, M. et al. The Implications of DNA Methylation 
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