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Abstract 
The analytical capacity of MSSV pyrolysis has been used to extend the structural 

characterisation of aquatic natural organic matter (NOM). NOM can contribute to 

various potable water issues and is present in high concentrations (> 5 mg L-1) in 

many Australian source supplies. NOM can also impede the filtration performance 

of ultrafiltration or other membranes used in the increasingly popular practices of 

desalination and wastewater treatment. Characterisation studies that provide a 

detailed understanding of the origins, structural features and reactivity of NOM in 

source waters will help predict its impact on potable supplies and allow targeted 

treatment.  

 

MSSV pyrolysis GC-MS analyses were conducted on XAD fractions of NOM from 

selected rivers, reservoirs, ground waters and biologically treated waste waters.  The 

analytical sensitivity of the MSSV Py approach was demonstrated by the detection 

of high concentrations and complex distributions of pyrolysates. These included 

many additional products to those detected by corresponding flash pyrolysis GC-MS 

analysis, which is often limited by excessive degradation or poor chromatographic 

resolution of pyrolysates of high structural polarity. Nevertheless, flash pyrolysis did 

lead to several unique products from some samples, reflecting the complementary 

nature of the two methods.   

 

Despite the high product concentrations detected by MSSV pyrolysis of NOM,  

primary structural fragments are prone to further alteration due to the confined 

nature and extended (e.g. 72 hr) application of the moderate thermal conditions (e.g. 

300˚C). This approach has not been widely applied to the characterisation of recent 

or immature OM. Consequently, the mechanistic formation of many NOM 

pyrolysates is poorly understood, seriously limiting interpretation of their source and 

significance. As articulated in CHAPTER 1, these issues are specifically addressed 

by the present research, which aims to extend the application of MSSV pyrolysis to 

the characterisation of NOM and related environmental organic materials rich in 

intact biochemical inputs. To gain a better understanding of product formation 

pathways, several samples, including soil leachates, the organic foulant of ultra 

filtration membranes and a suite of standards representing potential biochemical 
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precursors of NOM were separately analysed by MSSV Py.  The effect of thermal 

conditions on product distributions was also addressed by analysis of a small sub-set 

of the samples at several different temperatures (260 – 330˚C for 72 hours).   

 

The capacity of MSSV Py to convert functionalised biochemical precursors into 

hydrocarbon products more amenable to GC resolution was initially demonstrated by 

the conversion of bacterial hopanepolyols of several surface and ground water NOM 

fractions, a bacterial isolate and biomass growth from an ultrafiltration membrane 

into corresponding hopane biomarkers as described in CHAPTER 2. The 

significance and integrity of the hopane distribution of the MSSV data was assessed 

by analyses of the same samples by flash pyrolysis and the advanced analytical 

techniques of hydropyrolysis (HyPy) GC-MS and liquid chromatography (LC)-MS 

with atmospheric pressure chemical ionisation. Flash pyrolysis showed no evidence 

of hopanes.  

 

In comparison to the distributions of intact biohopanoids detected by LC-MS,  the 

microbial hopane biomarker signatures detected by MSSV Py and HyPy were 

generally consistent, although HyPy did produce higher concentrations of 

ββ−diastereoisomers and higher MW fragments indicating a lower degree of 

structural alteration. Hopane products were detected in very low concentrations in 

the NOM samples, hence bacterial contribution may be more conveniently detected 

with biological methods (e.g., microbial arrays, bacterial counts). Nevertheless, 

MSSV pyrolysis represents a simple, low cost analytical method able to confirm the 

occurrence of diagnostic bacterial biomarkers in complex environmental settings, 

such as source waters and surrounding catchments, and may be a useful screening 

method prior to more involved characterisation possible with LC-MS. Moreover, this 

application represents an elegant demonstration of the capacity of MSSV pyrolysis 

to provide new information concerning functionalised biological precursors which 

have historically proved difficult to analyse by GC(MS). 

 

Additional source diagnostic molecular features detected by MSSV Py of the 

membrane biofoulant included sterane biomarkers of eukaryote triterpenoids (i.e. 

steroids), n-alkanes of fatty acids and C16-C19 phenylalkanes indicative of common 
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surfactants used to clean the membranes. The vastly improved molecular 

characterisation of the polar lipid constituents of membrane foulants, including the 

identification of industrial chemicals used in cleaning processes, suggests that this 

analytical capacity might also be applicable to monitoring the fate of organic 

constituents through the entire potable water system, from source through treatment 

and distribution to tap.   

 

Unlike the established bacterial hopanoid source of hopane biomarkers, the origins 

of most of the major products from MSSV pyrolysis of the NOM samples are not 

clear. Subsequent chapters were separately dedicated to a detailed investigation of 

several of the major product classes.  

 

CHAPTER 3 focused on the alkyl aromatic pyrolysates of NOM. The multitude of 

potential precursors of alkyl substituted benzenes and polycyclic aromatics (e.g. 

naphthalenes, phenanthrenes) significantly limits their diagnostic potential, 

nevertheless they represented a major proportion (20 – 50 % of total GC amenable 

pyrolysate signal) of the MSSV, and to a lesser degree, the flash pyrolysates of the 

HPO fractions of several NOM samples. The more highly substituted alkyl aromatics 

(and heteroatom products) of potentially greater source diagnostic value were better 

preserved by MSSV Py. Distinctive distributions of alkyl aromatics were detected by 

MSSV Py of the HPO fractions of several surface waters and a lysimetric plate 

collected ground water. All samples showed high alkyl benzene (AB) concentrations, 

whilst the ground water showed higher alkyl naphthalene (AN) concentrations than 

the surface waters. Correlation of several isopropyl substituted benzenes indicative 

of plant resin terpenoids in a bark sample, suggested these may be a significant 

source of the alkyl aromatics products of NOM. Furthermore, several higher plant 

derived polycyclic aromatic terpenoid biomarkers (e.g. cadalene, eudalene, retene 

and dehydroabietins) were also identified in the NOM fractions. Allochthonous and 

autochthonous sourced terpenoids have been proposed to be significant precursors of 

aquatic NOM; however diagnostic flash pyrolysis information about these types of 

contributors is typically limited.  

 

HPO fractions of two waste waters also showed consistently high concentration of 

alkyl aromatics, reflecting the general recalcitrance of their precursors to biological 
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treatment. The distributions of these products differed from the natural surface and 

ground waters. Resistant aliphatic biomolecules derived from algal and bacterial 

biomass, susceptible to cyclisation and aromatization during MSSV Py, were 

tentatively assigned as the source of these distinctive pyrolysates. 

 

MSSV pyrolysis proved particularly sensitive to detection of heteroatom containing 

products of the NOM samples, and O products (25 – 50 %) and S products (1 – 5 %) 

were the focus of CHAPTER 4. The alkyl (≤ C4) phenols (APs) of the HPO fractions 

of the humic rich Gartempe and Uruguay rivers accounted for ca. 40 % of the total 

product signal. Similarly high concentrations of APs were detected by MSSV Py of a 

lignin standard, demonstrating the laboratory simulated thermal transformation of 

methoxy phenolic structures into alkyl phenols. The high concentrations of APs and 

low concentrations of methoxyphenol biomarkers of lignin typically detected in 

NOM (e.g. by flash pyrolysis, 13C NMR) suggests that a similar structural change 

may also be diagenetically mediated. The detection of APs, therefore, may be a more 

sensitive indicator of lignin input than guiaicyl or syringyl based biomarkers. The 

polyphenol structural units of selected tannin standards did not survive MSSV Py 

treatment, so are not likely responsible for the AP MSSV pyrolysates of the NOM 

samples. The HPO fraction of the waste waters showed similarly high concentrations 

of APs and alkyl aromatics (as discussed in Chapter 3), suggesting these products are 

recalcitrant to biological treatment. The Naintré waste waters also contained 

additional higher MW C4-10 alkyl substituted phenols not detectable by flash 

pyrolysis. Several of these products were indicative of industrial chemicals of 

potential health concern.  

 

The TPI and COL fractions showed significant concentrations of alkyl furans which 

along with cyclic ketones were present in much lower abundance than APs in the 

HPO fractions. These products were attributed to carbohydrate sources following 

correlation with mono- and polysaccharide standards including glucose, cellulose 

and chitin. Trace or low relative abundances of these products in the biologically 

treated wastewaters reflects their vulnerability to mineralization. The HPO fractions 

of the NOM samples also showed low concentrations of alkyl benzofurans, similar 

distributions of which were detected in the SRFA standard, suggesting these are 
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more stable polysaccharide metabolites, but still prone to further biodegradation as 

evident by only trace concentrations detected in the waste waters.   

 

Whilst MSSV provided increased access to several S-structural constituents of NOM, 

their relatively low concentrations and as yet undefined structural origins remain a 

challenge to source characterisation.  Nevertheless, similar alkyl thiophene (AT) 

distributions were also generated from an S-containing amino acid standard.  

Notably higher concentrations of S-products in the waste waters may reflect 

additional anthropogenic sources (e.g. sewerage, industrial chemicals), which may 

also involve thermally catalysed reaction between H2S and humic substances, 

analogous to the interaction of inorganic S and functionalised lipids during 

sedimentary diagenesis.  

 

CHAPTER 5 was concerned with the notably high concentrations of N products (3 - 

50 %) detected by MSSV Py GC-MS of the NOM samples.  These products included 

a large range of alkyl- pyrroles, pyridines, pyrazines and pyridinamines, as well as 

amine substituted mono-aromatics and condensed N-heterocyclics. They were 

consistently detected over a broader range of MSSV Py conditions. Many of these 

products, particularly those with increased alkyl substitution were not detected by 

flash pyrolysis; leading to an historic underestimation of their contribution to NOM. 

Highest concentrations of N-products were detected in the COL fraction of NOM. 

Similarly high concentrations and distributions were also detected from the organic 

material prone to foul ultrafiltration membranes, confirming the colloid rich nature 

of this material. The distinctive low MW N-heterocyclic products of the COL 

fractions were correlated with the N-products of the amino sugar standard, and to a 

lesser extent the protein standards. The occurrence in high concentrations of low 

MW heterocyclics also provides potentially rare evidence for the environmental 

occurrence of Maillard reactions. The interaction of sugars and amino acids via 

Maillard processes may be an important contributor to humic substances, although 

there is much doubt about whether this process is supported by ambient or near 

surface temperatures. As these reactions are more favourable at high temperatures 

they may be artefacts of the MSSV Py process. However, MSSV Py of mixtures of 

carbohydrate and amino acid standards showed no evidence for the production of 

additional low MW heterocyclics. The waste waters showed relatively high 
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concentrations of alkyl carbazoles and β-carbolines, potentially derived from 

alkaloid precursors of plants, algae and bacteria, which have been implicated in toxic 

N-DBPs from potable water treatment.   

 

To practically assess the analytical benefits of MSSV pyrolysis for NOM 

characterisation, it was used in combination with other established analytical 

methods to holistically characterise the NOM of the North Pine (NP) reservoir, a 

major source of the potable water supplies of Brisbane and SE Queensland. The NP 

water is of low colour and has moderate dissolved organic carbon (DOC; 5 mg L-1) 

levels, but is impacted by algae which periodically occur in bloom proportions. The 

hydrophobic (HPO; 65 % initial DOC) and transphilic (TPI; 12 %) fractions from 

XAD resin separation of the DOC both showed high (>1) H/C values, low UVabs 

characteristics and low aromatic-C measured by NMR, which are all indicative of a 

relatively low degree of aromaticity. However, MSSV Py of both fractions, in 

particular the HPO fraction, yielded prolific distributions of alkyl substituted 

aromatic hydrocarbon (i.e., benzenes, naphthalenes) and hydroaromatic (e.g. tetralins) 

products. These were attributed to aromatisation of aliphatic structural precursors, 

including terpenoids of algae and plants, which are usually difficult to detect by 

analytical pyrolysis. MSSV Py of both fractions also yielded high concentrations of 

alkyl phenols, which likely reflect contribution from non-methoxylated lignin units 

of catchment grasses, consistent with the vast forest cleared grassland regions of the 

NP catchment, but may also derive from algal biopolymers. None of the analytical 

methods used showed any significant evidence of dihydroxy or methoxy aromatic 

structures of wood lignin or tannin inputs. 

 

MSSVpy of the TPI fraction showed very high abundances of N-products (e.g., alkyl 

pyrroles, pyridines, indoles) reflecting the structural significance of diagenetically 

altered proteins, most likely derived from algal biomass. In contrast, much fewer N-

products were detected by flash Py. This demonstrates the analytical capacity of 

MSSV to access the significant N content of this fraction, which was quantitatively 

indicated by low C/N ratio, measured by elemental analysis, and high amide and 

amine signals by 13C NMR and FTIR spectroscopy. 
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Whilst MSSV generated much higher product concentrations than flash Py or 

TMAH thermochemolysis, the latter methods did include unique product 

information demonstrating the complementary nature of different pyrolysis methods. 

Overall, this case study demonstrates the significant contribution MSSV Py has 

made to characterising the structure and sources of the Brisbane source water, clearly 

distinguishing it from humic black waters such as the Gartempe, Arroyo Sanchez 

and Suwannee Rivers studied in preceding chapters. 

 

This PhD project represents the first detailed study of the potential of using MSSV 

Py to assist the organic speciation and molecular characterisation of biochemically 

rich NOM. Important additional pyrolysis information can be released with this 

analytical method which represents an obvious complement to conventional flash 

pyrolysis techniques where chromatographic resolution of polar biochemicals can be 

limited. The full realization of this approach, however, will need much further 

development as briefly alluded to in the closing comments of CHAPTER 7. It is 

hoped that the present project makes a significant early step in the realization of this 

potential.     
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        Introduction 
 

 

1.1 Aquatic natural organic matter  
Natural organic matter (NOM) is ubiquitous in terrestrial (e.g. soils), aquatic (e.g. 

riverine, marine) and sedimentary (e.g. kerogens) environments and represents one 

of the largest active organic carbon reservoirs in the biosphere (Amon and Benner, 

1996). NOM broadly refers to organic molecules originating from fresh and 

decomposing plant and animal biomass. Dissolved organic matter (DOM) is the 

water-soluble component of NOM present in freshwater aquifers and marine systems 

(Croué et al., 1999). It is operational defined as the quantity of organic matter that 

passes through a 0.45 μm membrane (Croué et al., 1999). DOM is often measured as 

dissolved organic carbon (DOC) using combustion based carbon analysers. 

Conversions between the two measurements are made by assuming that DOM is 45-

55 % organic carbon by mass (McDonald et al., 2004). DOM can account for 

approximately 90 % of the NOM in natural waters (Amy, 1993). The remaining 

NOM consists of higher MW fractions including colloids, which are suspended 

solids associated with mineral phases that are operationally considered solutes 

(Aiken, 2002), and insoluble coarse and fine particulate organic matter (POM; 

Leenheer and Croué, 2003). NOM is typically more abundant in freshwater systems 

(e.g. 1-50 mg/L DOC in groundwaters, rivers, lakes and marshes; Thurman, 1985), 

than in marine environments (e.g. 1 mg/L DOC; Hedges and Oades, 1997) due to the 

more substantial input from terrigenous sources (Wershaw, 2004; Pancost and Boot, 

2004). The present research is concerned with NOM of freshwaters, the most 

common source of drinking waters. 

 

The chemical characteristics of aquatic NOM are dependent on many factors 

including source, hydrology, primary productivity, photolytic (Frimmel, 1994; 1998, 
Engelhaupt et al., 2002) and biological degradation (Kalbitz et al., 2003), 

transformation, sedimentation, sequestration and other  biogeochemical conditions 

encountered during flow or reservoir storage. Consequently, the chemical nature of 
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NOM is extremely complex and heterogenous and can vary significantly with spatial 

and seasonal patterns.  
 

NOM plays a significant role in the biogeochemical functioning of aquatic 

ecosystems. It is a major carbon and energy source for biota (Hunt et al., 2000; 

Aiken, 2002), and influences nutrient availability (Aiken, 2002), turbidity and pH 

buffering capacity (McDonald et al., 2004). NOM can serve as an electron donor in 

metal complexation reactions (Howe et al., 1997; Lu and Johnson, 1997; Lu et al., 

1998; Frimmel, 1998; Haitzer et al., 2002), increasing the biological availability of 

metal ions. In addition, NOM affects the degradation and transport of hydrophobic 

organic contaminants (Carter and Suffet, 1982; Murphy et al., 1990) and aromatic 

hydrocarbons (e.g. crude oil pollution; Johnsen and Gribbestad, 1988) by sorption 

and sequestration.  

 

1.1.1 Implications of NOM on potable water resources 

The concentration and properties of dissolved NOM can directly impact many 

aspects of drinking water systems. Declining annual rainfall as a result of global 

warming in recent decades has severely affected the availability and quality of 

Australia’s source waters, many of which now contain very high concentrations of 

NOM (e.g. > 20 mg L-1 DOC; Davidson, 1995; Fabri et al., 2008). High NOM levels 

in source waters can increase consumption of treatment chemicals, reduce the 

performance efficiency of treatment processes (e.g. filtration, coagulation, oxidation 

and adsorption), promote fouling of ultra- and nano-filtration membranes, increase 

microbial regrowth during water distribution (Franzmann et al., 2001), and reduce 

the aesthetic qualities of taste, colour and odour (Heitz et al., 2000; 2002; 

Franzmann et al., 2001).  

 

In addition to operational and aesthetic considerations, NOM is also a precursor of 

potentially toxic by products formed on reaction with chemical disinfectants such as 

chlorine and monochloramine (e.g. Rook, 1974; 1976; 1977). Many classes of 

disinfection byproducts (DBPs) have been identified and several, including 

trihalomethanes (THMs), haloacetic acids (HAAs), haloketones, and 

haloacetonitriles (HANs), are regulated in Australian drinking water supplies. The 

current total THM limit in Australian drinking water is 250 μg L-1 (NHMRC and 
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NRMMC, 2004), however this value may be further reduced to align with the stricter 

United States guideline value of 80 μg L-1 (United States Environmental Protection 

Agency, 2001). Despite intensive research and analysis, there is still suspicion that a 

significant proportion of the DBPs produced by chlorination or chloramination 

treatments remain unknown. Drinking water guidelines continue to change and the 

list of regulated compounds extends as new DBPs of human health significance are 

identified. 

 

The removal, reactivity and recalcitrance of aquatic NOM in drinking water sources 

is dependent on physicochemical properties such as molecular weight (MW), 

elemental composition, aromaticity, and functional group content (Cabaniss et al., 

2000). Molecular characterisation techniques that can provide a detailed 

understanding of the structural chemistry of NOM are important for predicting its 

source and diagenetic formation pathways, as well as its behaviour and reactivity in 

source reservoirs and treatment plants. A better chemical definition of NOM may 

also provide insight into the precursory sources and formation of DBPs, and will 

help in the development of improved catchment management strategies and targeted 

treatment technologies. 

 

1.1.2 Sources and composition of aquatic NOM 

NOM consists of a complex mixture of selectively preserved, partially degraded and 

chemically transformed compounds derived from the breakdown of naturally 

occurring biochemicals present in plants, animals and microbes.  The major 

biochemical classes of freshwater NOM precursors include polysaccharides (e.g. 

cellulose), amino sugars, amino acids, proteins, lignins, tannins, terpenoids, fatty 

acids, lipids and waxes (e.g. Thurman, 1985; Kaiser et al., 2003; Wershaw, 2004; 

Filley et al., 2006, Lee et al., 2006; Mao et al., 2007). These derive predominantly 

from allochthonous sources, such as leachate from surrounding soils, riparian 

vegetation and grasses, but also include autochthonous microbial and algal 

metabolites. Anthropogenic pollutants from domestic and industrial wastes, 

agricultural activities and storm water run-off (e.g. polycyclic aromatic 

hydrocarbons, pharmaceuticals, surfactants) and their degradation products may also 

contribute to DOC by incorporation into NOM macromolecules (Kruge et al., 1998; 

Kruge and Permanyer, 2004). 
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1.1.3 Humic and non-humic substances 

NOM is commonly described in terms of two fractions termed humic (i.e. 

hydrophobic) and non-humic (i.e. hydrophilic) substances. Non-humic substances 

(NHSs) consist of unaltered biochemicals such as amino acids, proteins, 

carbohydrates, lipids and resins. Typically, labile organic biomolecules present in 

soils and aquatic systems, such as proteins and carbohydrates, are rapidly 

mineralised by microbial processing during early diagenesis (Hedges et al., 1985; 

Stout et al., 1988; Hatcher et al., 1989a; Huang et al., 1998; Knicker and Skjemstad, 

2000; Westerhoff and Mash, 2002; Wershaw, 2004). However, more refractory 

molecules may be selectively preserved. Detailed studies of chemically resistant 

humic materials revealed the presence of biologically resistant aliphatic biopolymers 

derived from plant cuticles (Tegelaar et al., 1989b; Nierop, 1998) and algal cell 

walls (de Leeuw et al., 1991; Derenne et al. 1991). Proteins may also be preserved 

by physical encapsulation within humic macromolecules, which can provide 

resistance to chemical hydrolysis (Knicker and Hatcher, 1997; Zang et al., 2000). 

Primary biochemical structures typically represent only a minor proportion (ca. 20 %; 

Thurman, 1985) of DOC, however it is often very difficult to distinguish between the 

novel chemical structures formed by humification and partially degraded 

biomolecules (Wershaw et al., 2004). Kelleher and Simpson (2006) reported that 

most of the NMR signals in soil humic substances (HS) could be assigned to intact 

biopolymers and their degradation products. 

 

Humic substances account for a much higher proportion of DOC, typically 50 – 75 

% in freshwaters (Aiken, 1985) and up to 90 % in highly coloured waters (Croué et 

al., 1999). Humification involves a combination of complex microbially (e.g. 

enzymatic) and abiotically (e.g. photochemical, Maillard reaction) driven processes. 

These result in the degradation and alteration of natural biochemicals, as well as the 

formation of new products by random polymerisation of small reactive intermediates 

released during metabolic processing (e.g. Hedges, 1988; Malcolm, 1990; Hedges et 

al., 2000; Wershaw, 2004). Aquatic HS represent a complex mixture of aliphatic and 

aromatic structures possessing extensive alkyl and other functional group (e.g. 

carboxylic, hydroxyl, ester, ether, phenol, methoxyl, ketone, amide, N-heterocycle) 

substitution over a wide MW range (e.g. 100 - 100000 Dalton; Leenheer and Croué, 

2003). HS are essentially highly altered or newly synthesised organic products (Lu et 
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al., 2000; Leenheer et al., 2003b), which often bear little structural relationship with 

the biochemicals from which they originate (Clapp and Hayes, 1999). These 

heterogeneous, macromolecular, polyfunctional molecules (Schulten and Gleixner, 

1999) are highly refractory to biodegradation (McDonald et al., 2004). Various 

models have been proposed to describe the structure and diagenetic formation of 

humic substances and aquatic NOM. These include simple conceptual models, as 

well as more detailed structures based on computer modelling of molecular data 

from analytical techniques such as NMR spectroscopy, thermal and chemical 

degradation and electron microscopy (Schulten et al. 1991; Schulten and Leinweber, 

1996; Schulten, 1999; Diallo et al., 2003; Leenheer, 2004; Wershaw, 2004; Cabaniss 

et al., 2005). A structural model of aquatic humic substances proposed by Schulten 

and Leinweber (1996) is shown in Figure 1.1. 

 

 

 
Figure 1.1  Humic acid structure proposed by Schulten and Leinweber (1996). 
 

 

1.2 Isolation and characterisation of aquatic NOM 
The inherent complexity, recalcitrance, and high biologically inherited chemical 

functionality of aquatic NOM pose significant challenges to analytical 
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characterisation. A variety of complementary analytical tools are typically required 

for robust and holistic characterisation (Abbt-Braun et al., 2004). Since a significant 

proportion of NOM remains poorly characterised or unexplored (Hedges et al., 

2000), innovative new technologies able to provide additional insight into these 

globally significant materials are continually sought. Despite considerable progress 

over recent decades in the application of advanced spectroscopic techniques such as 

mass spectrometry (e.g. GC-MS, LC-ESI-MS,  FT-ICR-MS; e.g. Schulten and 

Gleixner, 1999; McIntyre et al., 1997; Leenheer et al., 2001b; Kujawinski et al., 

2002; 2004) and solid state nuclear magnetic resonance (NMR) spectroscopy (e.g. 

Knicker et al., 1996a; Leenheer et al., 2003a; 2003b; Kelleher and Simpson, 2006; 

Mao et al., 2007), detailed information about the molecular structure, source and 

diagenetic formation of aquatic NOM remains limited (Lu et al., 2000; González-

Vila et al., 2001; Abbt-Braun et al., 2004; Nimmagadda et al., 2007a) 

 

Few analytical techniques possess sufficient sensitivity to directly detect NOM in the 

typically low concentration in which it occurs in freshwater sources. A variety of 

methods have been successfully used to concentrate and/or isolate NOM from 

aquatic environments, each with their own advantages and limitations. The isolation 

protocol plays an important role in determining the properties of the sample (Abbt-

Braun et al., 2004). Therefore the method employed should address the specific 

analytical requirements of the intended application. Membrane and sorption based 

techniques are most commonly used to isolate NOM (Croué et al., 2000).  

 

1.2.1. Membrane separation of NOM fractions 

Membrane filtration using reverse osmosis, ultrafiltration or nanofiltration, followed 

by lyophilisation (freeze-drying) of the retentate, is an efficient protocol for 

extracting NOM from aquatic environments (Croué et al., 2000). Large volumes of 

water can be processed quickly. Furthermore it is not necessary to control as is often 

required for sorption based isolation methods. pH alteration has the potential to 

change the structural properties of NOM (Croué et al., 2000). DOC recovery using 

membrane techniques is typically high (e.g. > 85%), however several researchers 

have reported significant DOC losses due to organic fouling of the membrane (Amy 

and Cho, 1999; Cho et al., 1999). The major disadvantage of this isolation method is 
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the non-removal of salts, resulting in undesirably high concentrations of inorganic 

species, which can interfere with analytical characterisation. 

 

1.2.2 Resin adsorption separation of NOM fractions 

Removal of inorganic salts can be achieved with sorption based separation 

techniques. Presently, the most common sorption technique is the XAD resin 

procedure (Leenheer and Huffman 1976; Thurman and Malcolm, 1981; Leenheer, 

1981; Leenheer and Noyes; 1984, Aiken, 1985; Croué et al., 2000). Elution of raw or 

pre-concentrated sample through serially positioned non-ionic macroporous sorbents 

composed of styrene divinylbenzene (e.g. XAD-4) and acrylic esters (XAD-8) 

separates NOM constituents into several fractions based on their polarity and acid-

base properties. 

 

Adsorption of DOC at acidic pH on XAD-8 resin separates the hydrophobic (HPO) 

and hydrophilic (HPI) moieties (Leenheer, 1981). These basic fractions provide an 

indication of the relative proportion of humic and non-humic substances. A 

transphilic (TPI) fraction can be further obtained from the XAD-8 eluent/HPI 

fraction by adsorption on XAD-4 resin. Typically, greater than 90 % (Croué et al., 

2000) of the HPO material sorbed on the XAD-8 resin can be recovered with base or 

organic solvents and ca. 80 % of the TPI fraction can be desorbed from the XAD-4 

resin with base (Malcolm and MacCarthy, 1992, Croué et al., 1993). The HPO and 

TPI fractions can be further separated with additional resins to obtain acidic, basic 

and neutral fractions, however this requires considerable effort and may offer only 

low yields (Croué et al., 2000).  

 

The main advantage of the XAD sorption technique is the separation of NOM into 

more homogenous organic rich fractions (HPO, TPI), relatively free from inorganic 

species. However, the procedure is more laborious than membrane techniques 

(Leenheer, 1981, Croué et al., 2000) and usually no more than 75 % of the total 

NOM is recovered. The HPI fraction which passes through both resins under acid 

conditions is enriched in salts. Isolation of this material requires advanced 

procedures such as ion-exchange and precipitation or co-precipitation (Leenheer and 

Noyes, 1984; Croué et al., 2000; Leenheer, 2004). However, colloidal OM present in 

the HPI fraction can be isolated by dialysis prior to XAD resin fractionation 
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(Leenheer et al., 2000), thereby increasing the total recovery of DOM. The HPI 

fraction typically consists of non-humic substances and low MW, polyelectrolytic 

organic acids (Leenheer et al., 1981).  

 

1.3 Analytical characterisation of aquatic NOM 
A multitude of analytical techniques have been used to assist the quantitative and 

qualitative characterisation of aquatic NOM in solution or isolated forms (Abbt-

Braun et al., 2004). Spectrophotometry (UV/Vis, fluorescence spectroscopy) can 

effectively provide a basic characterisation of NOM in solution (Korshin et al., 

1997; Weishaar et al., 2003; Hudson et al., 2007). The molecular weight profile of 

NOM in whole waters can be measured by high performance size exclusion 

chromatography (e.g. Chin et al., 1994; Allpike et al., 2005). Molecular structural 

elucidation requires the coupling of degradative (pyrolysis, oxidation, hydrolysis, 

chemical), chromatographic (GC, LC), and spectroscopic (FTIR, NMR, mass 

spectrometry) procedures. Several of the commonly employed NOM characterisation 

methods are described in more detail below. 

 

1.3.1 Spectrophotometric analysis 

Ultraviolet/visible (UV/vis) spectroscopy and fluorescence absorbance spectroscopy 

are both routinely used to characterise aqueous NOM. Absorbance of UV light, 

typically at λ = 254 nm, is attributed to aromatic chromophores present in NOM 

molecules, while absorbance at λ = 400 nm, possibly due to quinone like and 

conjugated ketonic C=O structures (Stevenson, 1982), is used as a measure of 

colour. Colour can be due to the presence of natural metallic ions (e.g. iron, 

manganese), humic substances and peat materials, plankton, weeds and industrial 

contamination (Wang et al., 1990; Clesceri et al., 1998). 

 

Specific UV absorbance (SUVA) describes the ratio of UV254 absorbance to DOC 

concentration and provides an indication of the aromaticity of the sample (Weishaar 

et al., 2003). SUVA values (Leenheer and Croué, 2003) are often used for basic 

monitoring of the chemical nature of NOM in source waters, through treatment 

processes and during distribution. High SUVA waters are generally enriched in HPO 

NOM and humic substances (Croué et al., 1999). SUVA has also been correlated 
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with disinfection by product formation potential (Reckhow et al., 1990) and is often 

used as a surrogate indicator of disinfection byproduct precursors (Croué et al., 

2000). 

 

Fluorescence spectroscopy can also reveal certain chemical aspects of aquatic humic 

substances and has also helped study the interactions between HS and metals 

(Senesi, 1990; Wang et al., 1990). Although < 1 % of the aromatic moieties in NOM 

emit fluorophores (Lapen and Seitz, 1982), high resolution three dimensional 

fluorescence spectroscopy is an order of magnitude more sensitive than UV 

absorbance (Leenheer and Croué, 2003). The most efficient fluorophores in DOM 

correspond to humic and protein (e.g. tyrosine and tryptophan) aromatic structures 

(Coble, 1996; Hudson et al., 2007) and /or highly unsaturated aliphatic chains 

(Senesi, 1990).  

 

1.3.2 High performance size exclusion chromatography  

High performance size exclusion chromatography (HP-SEC) is used to determine the 

organic MW distribution of NOM (Chin et al., 1994). Ease of operation, simplicity 

of sample preparation and high sensitivity (i.e. minimal sample volumes) have led to 

its wide application in NOM characterisation studies. However, the complexity and 

heterogeneity of NOM limits chromatographic resolution and average MWs, rather 

than specific MWs are determined.  Aquatic NOM typically elutes as a broad, 

monomodal distribution with subtle shoulders and small peaks (Chin et al., 1994). 

UV absorbance is the traditional method of detection. However many NOM 

structures such as proteins, sugars, amino sugars and aliphatic acids, have low UV-

molecular-absorption. UV detection is therefore not quantitative for all organic 

carbon. The recent development of HP-SEC with dedicated DOC detectors has 

allowed quantitation of all organic constituents of NOM (Huber and Frimmel, 1994; 

Her et al., 2002; Allpike et al., 2005), irrespective of their functionality.  

 

The monitoring of MW distribution dynamics by SEC can help assess the 

effectiveness of drinking water treatment processes. For example, low MW fractions 

are thought to be the most difficult to remove using conventional coagulation 

treatment (Chow et al., 1999; Aoustin et al., 2001; Drikas et al., 2003). They 

contribute disproportionately to bioavailable organic matter and the promotion of 
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biofilm formation in drinking water distribution systems (Volk et al., 2000, Hem and 

Efraimsen, 2001). Higher MW HPO fractions on the other hand, represent major 

DBP precursor sites (Leenheer and Croué, 2003).  

 

1.3.3 Fourier transform infra red spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is commonly used for qualitative 

detection of organic functional groups. Various structural functionalities have been 

assigned to specific infra-red absorbance bands (Silverstein and Webster, 1997), 

however the complexity of NOM renders spectral interpretation difficult and since 

only the strongest bands can be identified the data is often not quantitatively 

representative (Croué et al., 1999). FTIR characterisation can be particularly useful 

for identifying the proteinaceous component of NOM, which is difficult to identify 

using 13C-NMR. In addition, the relative abundances of hydrocarbons and 

carbohydrates moieties can be used as an indicator of the hydrophobic/hydrophilic 

nature of NOM (Croué et al., 2000). 

 

1.3.4 13Carbon nuclear magnetic resonance spectroscopy 

NMR spectroscopy is an extremely valuable tool for characterising the complex 

naturally occurring organic constituents of soil, sedimentary and aquatic 

environments and has significantly enhanced the understanding of the structure of 

aquatic NOM and humic substances. NMR is a non-destructive method providing 

qualitative and semi-quantitative organic structural information about molecular 

environments of hydrogen (1H), carbon (13C) and nitrogen (15N) in solution or solid 

state (Wilson, 1987). 13C-NMR chemical shifts have been assigned to various carbon 

structural features of NOM including methyl, methylene, aromatic, carbonyl, 

carboxyl, hydroxyl, amide and amine groups. Analysis of isolated aquatic NOM is 

more commonly performed by solid-state 13C cross-polarisation magic angle 

spinning (13C CP/MAS) NMR. The typically low solvent solubility of NOM and the 

differential solubility of various NOM components have limited the application of 

solution NMR (Smernik and Oades, 2000a; 2000b). 

 

NMR studies of NOM are usually conducted in parallel with other complementary 

analytical techniques including FTIR spectroscopy or pyrolysis GC-MS for holistic 

characterisation. NMR, like FTIR, preserves the sample for further investigation. 
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However, NMR is not as sensitive as FTIR or pyrolysis GC-MS, which are both able 

to provide molecular speciation information on ca. 50 times less sample. 

Quantitative issues with solid-state 13C CPMAS NMR spectra of complex organic 

materials also include long-spin lattice relaxation times, strong C-H and N-H dipolar 

interactions, chemical shift anisotropy, spectral alterations by paramagnetic materials 

and poor quantitation at high fields (Nanny et al., 1997; Smernik et al., 2000a; 

2000b; Hatcher et al., 2001). All of these issues can complicate the quantitative 

interpretation of 13C-NMR data. Literature on the application of 13C-NMR for 

structural investigations of humic substances, aquatic NOM and other environmental 

organics is extensive and comprehensive reviews can be found in Kögel-Knabner 

(1997) and Cardoza et al. (2004). 

 

Solid state 15N-NMR has also been used to characterise the structural forms and 

diagenetic and thermal alteration of organic nitrogen in humic substances, 

predominantly in soil and algal derived OM (e.g. Knicker and Lüdemann, 1995; 

Knicker et al., 1995, 1996a, 1996b; Knicker and Hatcher, 1997, Knicker and 

Skjemstad, 2000; Knicker et al., 2002; Almendros et al., 2003; Templier et al., 

2005b; Mao et al., 2007). Major peaks for amide, amine and heterocyclic nitrogen 

structures have been observed in the 15N NMR spectra of soil and aquatic humic 

substances. However the spectra are often compromised by the low natural 

abundance of 15N and are not as well resolved as that of 13C-NMR (Knicker and 

Lüdemann, 1995). 

 

1.3.5 Liquid chromatography mass spectrometry  

High performance liquid chromatography (HPLC) coupled with soft ionisation 

techniques (e.g. electrospray ionisation (ESI) or atmospheric pressure chemical 

ionisation; APCI) and high resolution (e.g. time of flight) or multi dimensional mass 

spectrometry (e.g. ion trap, triple quadrupole, Fourier transform ion cyclotron 

resonance) have significantly progressed the molecular level characterization of 

complex macrobiomolecules. The powerful utility of these techniques for the trace 

detection of polar biochemicals (e.g. Talbot et al., 2001; 2003a; 2003b) and 

xenobiotics such as pharmaceuticals, personal care products (e.g. Gros et al., 2006; 

Göbel et al., 2004; Pojana et al. 2004; Busetti et al., 2008) and other priority 

pollutants (e.g. Gimeno et al., 2002; Grosse and Letzel, 2007) in recent sedimentary, 
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aquatic and aerosol environments has been demonstrated. ESI is particularly well 

suited to the analysis of polar compounds, whereas APCI is very effective in the 

analysis of medium-polarity and low-polarity substances. 

 

There is also growing interest in LC-MS characterisation of humic substances (e.g. 

McIntyre et al., 1997; 2002; Fievre et al., 1997; Kujawinski et al., 2002; 2004; 

Hatcher et al., 2001; Leenheer et al., 2001b; Kim et al., 2003). ESI-MS has been the 

main direct MS approach for obtaining molecular information from humic 

substances (Hatcher et al., 2001). This method allows direct mass measurement 

whilst minimising fragmentation, and has been used to provide detailed molecular 

level mass data for polycarboxylic acids from aquatic fulvic acids (e.g. McIntyre et 

al., 1997; 2002). It is also useful for determining exact formula weights from which 

elemental formulas and possible structures can be elucidated (Leenheer et al., 2001b; 

Kujawinski et al., 2002). However, the extremely complex and heterogenous nature 

of NOM again presents a major challenge to molecular level characterisation by this 

approach. Low chromatographic, and in some cases MS resolution can complicate 

mass spectral interpretations. In fact, even if humic substances can be ionized readily 

by ESI or APCI techniques, the subsequent MS spectra are extremely complex 

because of the presence of peaks virtually at every m/z value. In addition, the 

possible production of multiply charged ions and sodium or potassium adducts, and 

the dependence on various parameters such as cone voltage and LC mobile phase, 

can further complicate MW determinations by ESI-MS (McIntyre et al., 2002). The 

application of ESI-MS to NOM characterisation is still at a developmental stage and 

further research will be required to realise the full analytical potential of this 

technique. 

 

1.3.6 Gas chromatography mass spectrometry  

Gas chromatography mass spectrometry (GC-MS) coupled with a variety of sample 

introduction devices including vapourised injection of liquid samples, analytical 

pyrolysis, and solid phase micro-extraction (SPME), is routinely used to identify and 

quantify many individual organic constituents present in modern and 

palaeoenvironments (e.g. Philp, 1985; Philp and Gilbert, 1987; Peters and 

Moldowan, 1993). The largely macromolecular nature of aquatic NOM is 

recalcitrant to direct GC-MS analysis of solvent extracts but can be thermally or 
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chemically degraded into smaller fragments compatible with the MW/size 

limitations of this gaseous phase procedure. A wide variety of chemical reagents 

have proved useful for oxidative (e.g. Ertel et al., 1984; Quénéa et al., 2005b), 

reductive (e.g. Eglite et al., 2003; Nimmagadda et al., 2007a) and hydrolytic 

(Parsons, 1989) cleavage of macromolecular bonds. Oxidative treatment of aquatic 

NOM with alkaline cupric oxide (CuO) has helped characterise lignin structures in 

complex organic mixtures (Ertel et al., 1984; Ertel and Hedges; 1984, Lehtonen et 

al., 2004). Chemical degradation is typically performed off-line and often requires 

additional preparation such as separation of polarity fractions by stationary phase 

column chromatography and/or chemical derivatisation prior to GC analysis. 

However, chemical or enzymatic degradation methods are often laborious and 

typically afford only low product yields due to limited access of the substrate to 

active sites in the macromolecule, or analyte loss during the extensive work-up 

procedures required (Farrimond et al., 2003). Nevertheless, these preparative 

approaches can support higher chromatographic resolution of individual products, 

which is important for advanced levels of molecular characterisation or other 

complementary analytical methods such as compound specific isotope analysis 

(CSIA), where baseline chromatographic resolution is required.  

 

1.3.7. Analytical pyrolysis GC-MS 

Analytical pyrolysis (Py) coupled with GC-MS is frequently used to assist the 

molecular characterisation of aquatic NOM and other complex bio- and 

geomacromolecules from terrestrial (e.g. Saiz-Jimenez and de Leeuw, 1984a; 1986b, 

Schulten, 1999), aquatic (e.g. Bruchet, 1985, Gadel and Bruchet, 1987; Bruchet et 

al., 1990, Abbt-Braun et al., 1989, Schulten and Gleixner, 1999, González-Vila et 

al., 2001, Templier et al., 2005a) and sedimentary systems (e.g. Larter and Senftle, 

1985, Sinninghe Damsté et al., 1992a; Hartgers et al., 1992; Peulve et al., 1996, 

Garcette-Lepecq et al., 2000). Thermal energy is used to dissociate NOM into 

fragments amenable to GC analysis. It generally acts in a relatively non-selective 

manner compared to the specific molecular interactions targeted by chemical 

reagents, often resulting in complex product distributions. A range of different 

pyrolysis approaches have been used to characterise aquatic NOM. Pyrolysis 

typically involves a dedicated thermal control device integrated to the GC injector 

that is carefully controlled to give reasonably reproducible results. The approach is 
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simple, rapid and sensitive, requires only small sample quantities (nanogram to sub 

mg range; Saiz-Jimenez, 1994), and does not involve complicated and time-

consuming extraction, fractionation and derivatisation procedures (Saiz-Jimenez, 

1994). 

 

Fast pyrolysis techniques such as flash or Curie-point pyrolysis are most commonly 

used. High amounts of thermal energy are applied in an inert environment to 

ballistically heat the sample to high temperatures (> 500˚C). High MW OM 

dissociates into a wide range of lower MW fragments, which can be detected by GC-

MS and provide insight into the composition and source of the parent 

macromolecules. Fast pyrolysis is generally performed ‘on-line’ in open-system 

configurations, facilitating rapid and direct transfer of the pyrolysis products 

(pyrolysates) from the heated zone of the pyrolysis chamber to the GC column. 

Rapid pyrolysate transfer and the use of inert carrier gases (e.g. helium) reduce the 

impact of secondary reactions which can alter the structure of pyrolysates (del Rio et 

al., 1996). Off-line analysis with purpose built apparatus is also possible if further 

preparative treatments are required prior to analysis. The combination of off-line 

pyrolysis and stationary phase column chromatography can provide less complex 

polarity based fractions of the pyrolysates. 

 

Numerous flash pyrolysis products of aquatic NOM and humic substances have been 

correlated with a wide range of biomolecular precursors, including amino acids, 

proteins, carbohydrates, amino sugars, lignin and tannin (e.g. Saiz-Jimenez and de 

Leeuw, 1986 b; Bruchet, 1985, Gadel and Bruchet, 1987; Bruchet et al., 1990; Page 

et al., 2002). The pyrolysis of lignin for example, produces a characteristic 

distribution of hydroxy- and methoxy- aromatic products, which are unique 

indicators of vascular plant matter (Hedges and Mann, 1979a; Saiz-Jimenez and de 

Leeuw, 1984b; 1986a; Opsahl and Benner, 1997). Carbohydrates typically yield 

furans and furaldehydes (Pouwels et al., 1987; 1989; Pastorova et al., 1994), proteins 

generate low MW nitrogen compounds such as pyridines and pyrroles (Bruchet, 

1985; Saiz-Jimenez and de Leeuw, 1986b; Chiavari and Galletti, 1992), and amino 

sugars yield acetamide derivatives (Bruchet, 1985; Stankiewicz et al., 1996; Christy 

et al., 1999). The peak areas of pyrolysis products can thus be used to estimate the 

relative proportions of the major biopolymers present in NOM (Bruchet et al., 1990). 



 

Chapter 1 - Introduction 15

Whilst fast pyrolysis can provide detailed structural information on complex aquatic 

macromolecules, the recalcitrance and high structural polarity of these materials 

represents a significant analytical challenge (Saiz-Jimenez, 1994, del Rio et al., 

1996; Hedges et al., 2000). GC-MS identification of polar pyrolysis fragments is 

limited because of their low thermal volatility, and generally poor chromatographic 

behaviour (Dignac et al., 2006) as a result of intermolecular hydrogen bonds that 

inhibit separation (Leenheer and Noyes, 1989). In addition, certain moieties of NOM 

macromolecules (e.g. black carbon; Hedges et al., 2000) are thermally intractable 

even at excessive pyrolysis temperatures. A large proportion of semi- or non-volatile 

compounds may condense within the sample tube or inlet system reducing the 

proportion of pyrolysis products transferred from the pyrolysis unit to the GC 

column (Saiz-Jimenez, 1994). Nevertheless, for mature samples such as kerogen, 

which have lost much of the chemical functionality of primary precursors via 

sedimentary thermal maturation, the hydrocarbon products of fast pyrolysis appear to 

provide compositional information representative of gross structure and not about 

atypical, readily volatised moieties (Larter and Senftle, 1985). 

 

Conversely, thermally susceptible chemical bonds and functionalities may be 

extensively degraded or modified during pyrolytic heating, resulting in the loss of 

structural information. For example, whilst FTIR and 13C NMR spectroscopic 

studies have identified that aliphatic and aromatic carboxylic groups are major 

components of humic substances and aquatic DOM (e.g. Leenheer et al., 1995; 

Leenheer et al., 2003b), decarboxylation results in very minor yields of these 

products by fast pyrolysis (Saiz-Jimenez, 1993; Saiz-Jimenez, 1994; del Rio et al., 

1996). Furthermore, flash pyrolysis of fatty acids in the presence of clay minerals 

and/or sulphur can produce alkyl benzenes, indenes and naphthalenes via cyclisation 

and aromatisation reactions (Saiz-Jimenez, 1994; 1995; Faure et al., 2006a; 2006b). 

Structural alterations due to secondary processes can limit the diagnostic value and 

significance of the pyrolysis products detected. As such, the GC resolvable products 

of flash pyrolysis may represent only a quantitatively small fraction of the parent 

material (Saiz-Jimenez, 1994), only partially reflect the precursory structures of 

NOM, and contribute to misinterpretations and biased conclusions.  
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1.3.8 Thermochemolysis GC-MS  

Thermochemolysis is an adjunct pyrolysis technique performed in the presence of 

tetramethylammonium hydroxide (TMAH; Challinor, 1989; Challinor, 1991). It has 

been applied to the characterisation of a very wide range of natural biopolymers 

including the lignin component of fresh and biodegraded wood (e.g. Challinor, 1995; 

2001; Martin et al., 1995a; Hatcher and Minard, 1996; McKinney and Hatcher, 1996; 

Filley et al., 1999; Filley et al., 2000), polyphenolics from plant tannins (e.g. Galletti 

et al., 1995; Filley et al., 2006; Nierop and Filley,  2007), carbohydrates (Fabbri and 

Helleur, 1999), aliphatic polymers such as cutin and suberin (González-Vila et al., 

1996; del Rio and Hatcher, 1998), higher plant resins (Anderson and Winans, 1991), 

peptides and amino acids (Zang et al., 2001; Gallois et al., 2007). Thermochemolysis 

has also been particularly successful for structural characterisation of complex NOM 

in aquatic systems (del Rio et al., 1998; Lehtonen et al., 2000a; 2000b; González-

Vila et al., 2001; Frazier et al., 2003) as well as soils (Hatcher and Clifford, 1994; 

Martin et al., 1994; 1995b; Chefetz et al., 2002; Ikeya et al., 2004), recent sediments 

(Mansuy et al., 2001; Simpson et al., 2005), kerogens and coals (Kralert et al., 1995). 

 

Thermochemolysis overcomes some of the limitations of traditional analytical 

pyrolysis, allowing the separation and detection of many additional pyrolysates of 

structural and source significance. It promotes the highly selective cleavage of ester 

and ether linkages in macromolecules via saponification/transesterifcation reactions 

(de Leeuw and Baas, 1993; Martin et al., 1994). Subsequent methylation of the 

pyrolysates yields methylated ester or ether derivatives of many polar constituents of 

NOM including fatty acids, aromatic and phenolic carboxylic acids and alcohols. 

Methylation of acidic functional groups reduces the formation of intermolecular 

hydrogen bonds that typically inhibit separation of polar compounds by GC 

(Leenheer and Noyes, 1989) and minimises secondary reactions (e.g. 

decarboxylation, aromatisation) and alterations of primary pyrolysates (Martin et al., 

1994). Off-line thermochemolysis performed in sealed glass tubes at relatively 

moderate pyrolysis temperatures (e.g. 250-300˚C; McKinney et al., 1995) has also 

been developed. This allows removal of TMAH byproducts and quantitation of 

pyrolysate yields using internal standards. Application of these additional 

preparative procedures can improve chromatographic separation and minimise the 



 

Chapter 1 - Introduction 17

deterioration of injection systems and column stationary phases by attack from 

aggressive reagents or byproducts (Joll et al., 2004). 

 

One of the main limitations of the TMAH thermochemolysis procedure, however, is 

the inability to distinguish between pre-existing methoxyl groups and those produced 

by methyl derivatization of hydroxy groups. This is a significant drawback for the 

characterisation of microbially degraded lignin (Filley et al., 2000; 2006). Filley et al. 

(1999; 2000; 2006) recently demonstrated the use of 13C labelling of TMAH, 

allowing distinction between lignin, demethylated lignin, hydrolysable tannin, and 

other phenolic acid constituents of soil organic matter (SOM). Partial 

decarboxylation of susceptible carboxylic groups is also possible (Joll et al., 2003), 

whilst oxidation of hydroxy functional groups can yield secondary carboxylic acid 

products (Hatcher and Minard, 1995), both of which can lead to incorrect 

interpretation of precursory structures. It is also important to note that TMAH 

thermochemolysis is not capable of analysing highly humified structures (del Rio et 

al., 1994; Lehtonen et al., 2000a) or condensed tannins where acidic decomposition 

is required (Hernes and Hedges, 2000). 

 

1.4 Present research 
The focus of this PhD study is to assess and develop the analytical capability of 

micro-scale sealed vessel (MSSV) pyrolysis as an alternative thermal degradation 

approach for the molecular characterisation of aquatic NOM. MSSV pyrolysis 

involves closed system heating of OM using much lower temperatures over longer 

time periods than conventional open-system fast pyrolysis. The closed system and 

relatively moderate thermal conditions of this approach may facilitate the analysis of 

a variety of constituents that are traditionally recalcitrant to characterisation using 

conventional analytical pyrolysis approaches. This should provide additional 

molecular information useful for evaluating the origins and structural features of 

NOM in source waters.  
 

1.4.1 MSSV pyrolysis GC-MS  

Micro-scale sealed vessel (MSSV) pyrolysis is performed on small amounts (0.1 – 5 

mg) of sample in 10 μL closed tubes, typically at temperatures of 250-350˚C for 
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periods of several hours or days. Unlike the open system configuration of fast 

pyrolysis, the pyrolysates are confined within the sealed MSSV tube. Online GC-MS 

analysis of the volatile gaseous and higher MW (C1-C35) hydrocarbon products is 

performed by cracking the tube in a purpose built injector port (Horsfield et al., 

1989). Figure 1.2 shows the MSSV Py instrument configuration. Dead volume is 

removed by packing the tubes with pre-annealed glass beads allowing high partial 

pressures up to 10 bar to be maintained (Horsfield and Dueppenbecker, 1991). This 

supports thermally promoted hydrogenation reactions critical to the conversion of 

immature sedimentary macromolecules into liquid hydrocarbons (Monthioux et al., 

1985, Landais et al., 1993). MSSV pyrolysis has proved very useful for laboratory 

simulation of the kinetic formation of petroleum, natural gas and other hydrocarbons 

in diagenetic and catagenetic sedimentary processes such as humification, 

peatification and coalification (Horsfield et al., 1989; 1992; Horsfield, 1990; 

Horsfield and Dueppenbecker, 1991; van Aarssen et al., 1991). 

 

Hydrous pyrolysis is a related closed pyrolysis method that is performed in the 

presence of excess water (Lewan et al., 1979). It is also very useful for simulating 

fossil fuel generation from source OM (Lewan, 1985; Lewan, 1993; Lewan, 1997; 

Barth, 1999; Behar et al., 2003), and for releasing hydrocarbon biomarkers weakly 

bound by sulfur or oxygen linkages to the kerogen moiety of immature, sulfur-rich 

organic sediments (Koopmans et al., 1995, 1996, 1997, 1998). Another closely 

related method is confined gold tube pyrolysis, which is performed in pressurised 

gold vessels (Monthioux et al., 1985; Landais and Monthioux, 1988; Mansuy et al., 

1995; Michels et al., 2000). The benefit of this approach is that the inert nature of 

gold limits secondary reactions. 

 

MSSV pyrolysis has been widely used for kinetic studies of liquid petroleum HC 

formation from sedimentary source rocks, kerogens and coals (Horsfield et al., 1989; 

Horsfield, 1990; Horsfield and Dueppenbecker, 1991; Schenk and Horsfield, 1993; 

Diekmann et al., 1998; 2000). It has also been used to release hydrocarbon 

biomarkers from very early oil charges trapped and preserved within asphaltene 

fractions of heavily biodegraded or altered oils (Ruble et al., 2000a 2000b), as well 

as the characterisation of suspended organics from urban dust (Hall et al., 1999). The 
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maturation behaviour and oil generating potential of certain biopolymers have also 

been addressed by MSSV Py (Tegelaar et al., 1989a; van Aarssen et al., 1991).  

 

 
Figure 1.2 MSSV pyrolysis instrument configuration taken from Horsfield et al., 
  (1991). a) Injector system coupled to GC inlet, b) Position of sample 
  tube and inner sleeve (plunger) prior to analysis, c) Analysis of  
  volatile products generated by off-line MSSV heating is performed by 
  cracking the sample tube with the plunger, d) MSSV capillary tube 
  containing sample and glass beads. 
 

 

MSSV pyrolysis offers broader potential for the molecular characterisation of the 

complex, immature OM of more recent aquatic and terrestrial (e.g. soil OM) 

environments. The application of MSSV as a more general characterisation tool has 

received relatively little attention. In contrast to the widespread fragmentation 

associated with fast pyrolysis methods, the lower thermal energies of MSSV Py may 

provide control over fragmentation processes, facilitating the softer pyrolytic release 

of hydrocarbon products. Application of progressively higher thermal energy can be 

Sample tube 
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Sample
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a) 

b) 

d) 

c) 
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used to sequentially target NOM moieties on the basis of their thermodynamic 

susceptibility. Hydrogen transfer reactions (Mansuy et al., 1995, Landais et al., 

1993), which can partially reduce the chemical functionality of immature polar 

organics, may also be supported by the thermal conditions of MSSV Py. MSSV can 

potentially facilitate the thermal defunctionalisation of a wide variety of biochemical 

constituents of aquatic NOM, yielding hydrocarbon products that are more amenable 

to GC-MS analysis. This may effectively enable characterisation of an increased 

proportion of the material, including structural constituents which have historically 

proved recalcitrant to conventional fast pyrolysis analysis. 

 

1.4.2 Catalytic hydro-pyrolysis GC-MS 

Catalytic hydropyrolysis (HyPy) is another emerging pyrolysis technique with 

similar attributes to MSSV pyrolysis. HyPy involves open-system, temperature-

programmed pyrolysis (300-550˚C) in the presence of a dispersed sulphided 

molybdenum catalyst under high hydrogen pressure (> 10 Mpa). The pyrolysis 

products are collected off-line in a cold-trap, allowing polarity based fractions to be 

separated by column chromatography prior to GC-MS analysis. HyPy can promote 

cleavage and reductive removal of heteroatomic bonds, including ether, sulfide, 

carboxyl, hydroxyl, thiols, and simple thiophenic groups (Love et al., 2005). It has 

been shown to generate very high yields of liquid hydrocarbon products (typically > 

85 wt. %) from Type I-III kerogens (Snape et al., 1989; 1994).   

 

The open-system configuration, rapid removal of products from the heated zone of 

the reactor and use of moderate heating rates (e.g. 10˚C/min), has been shown to 

preserve much of the structural, isomeric and isotopic integrity of the hydrocarbon 

precursors (Love et al., 1995, 1997, 2005; Sephton et al., 2005). Catalytic HyPy has 

proven effective for accessing vital biomarker profiles in circumstances where 

information from free hydrocarbons is limited. Geochemical applications include the 

generation of biomarker profiles from asphaltene fractions of heavily biodegraded 

crude oils to reconstruct oil charge history (Russell et al., 2004). In recent years 

catalytic HyPy has been increasingly applied to the characterisation of immature 

organic macromolecules, such as the organic nitrogen and bacterial biohopanepolyol 

constituents of immature lacustrine sediments (Bishop et al., 1998, Bennett et al., 

2004) and extant algal and bacterial biomass (Bennett et al., 2004; Love et al., 
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2005), as well as functionalised model compounds such as steroids and fatty acids 

(Sephton et al., 2005; Meredith et al., 2006). In the present project, the innovative 

HyPy technique is directly compared with MSSV pyrolysis by separate analysis of 

several extant biological materials in Chapter 2. 

 

1.5 Scope and objectives of the present research project 

The aim of this PhD research project is to assess, develop and optimise the analytical 

capacity of MSSV pyrolysis to extend the structural characterisation of aquatic 

NOM. Comprehensive MSSV analyses of a suite of aquatic NOM samples from 

several diverse freshwater environments, including those rich in specific organic 

precursors (e.g. lignin, protein, amino sugar, terpenoid) have been conducted. XAD 

resin and colloid fractions of NOM from pristine source reservoirs, black water 

rivers, groundwater aquifers, soluble soil leachates, post treated wastewater effluents 

and biological foulants of high pressure ultra filtration membranes have been 

separately studied. All NOM fractions were isolated by dialysis (colloids) and/or 

XAD resin adsorption (HPO/TPI), ensuring analytical consistency and direct 

comparability of the data.  

 

The MSSV pyrolysate distributions were rigorously evaluated and scrutinised for 

evidence of additional or complementary molecular information to that provided by 

other pyrolytic (e.g. flash pyrolysis, thermochemolysis, hydropyrolysis), 

chromatographic (e.g. LC-MS), and advanced spectroscopic (e.g. 13C-NMR) 

characterisation of the samples. This provided a robust assessment of the integrity, 

utility and value adding capacity of the MSSV technique. A major focus was to 

assess the ability of MSSV pyrolysis to discern differences in the chemical nature, 

structural features and biomolecular sources of NOM from different aquatic 

environments. The extended analytical capability provided by MSSV pyrolysis may 

help rectify some of the large knowledge gaps with respect to the composition, 

origins and early diagenetic processes of recent and extent NOM.  
 

Confined thermal treatment of NOM can result in a variety of complex chemical 

reactions and the mechanistic formation of most MSSV pyrolysates is not 

particularly well understood. This presents a significant challenge to the realization 
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of the full characterisation potential of this approach. A better understanding of 

structural precursors of MSSV products was sought by corresponding analysis of a 

variety of selected model compounds of simple sugars, amino acids, fatty acids, 

peptides, porphyrins, lignin and tannin monomers and representative materials 

including polysaccharide, amino sugar, protein, lignin, wood, bark and cultured 

bacteria. This systematic analytical approach will help establish product-source 

relationships and facilitate a more robust interpretation of the data, including 

recognition of both selectively preserved biochemical structures, and products 

arising from secondary thermal processes.  

 

The effect of temperature on MSSV pyrolysate distributions needs to be considered. 

The thermal properties of the organic constituents of NOM can influence both the 

nature and yield of the pyrolysates detected, with the generation of products 

proceeding at different rates according to variations in the thermal properties and 

stabilities of their structural precursors. MSSV experiments over a range of different 

thermal conditions were performed on selected samples and standard precursors to 

investigate the thermal profiles of several major MSSV product classes. This should 

help elucidate mechanistic formation pathways and provide insight into the optimal 

thermal conditions for targeting different biomolecular constituents of NOM.  
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Chapter 2 
           

 

 Thermal release of hopane biomarkers 

  from bacterial terpenoids by MSSV 

pyrolysis of aquatic NOM  
 

Some of the work in this chapter has been published as: 

 
Berwick, L.J., Greenwood, P.F., Meredith, W., Snape, C., Talbot, H.M., 2009. 

 Comparion of microscale sealed vessel pyrolysis (MSSVpy) and 

 hydropyrolysis (Hypy) for the characterisation of extant and sedimentary 

 organic matter. Journal of Analytical and Applied Pyrolysis, in press. 

Greenwood, P.F., Leenheer, J.A., McIntyre, C., Berwick, L., Franzmann, P., 

 2006. Bacterial biomarkers thermally released from dissolved organic 

 matter. Organic Geochemistry 37, 597-609. 

 

2.1 Introduction 
Biomarkers are organic compounds possessing unique and identifiable structures 

whose biological distribution is limited to specific plants or organisms (Lu et al., 

2000). The basic structural skeleton of a biomarker preserves an unambiguous link to 

its biological origin, despite the possibility of some structural alteration due to 

diagenetic or other processes. Biomarkers are commonly used molecular tools for 

assessing the source inputs, degree of degradation and thermal maturity of 

sedimentary OM (sedOM), and for reconstructing palaeoenvironmental conditions 

that prevailed in the water column during sediment deposition (e.g. Philp, 1985; 

Philp and Gilbert, 1987, Peters and Moldowan, 1993, Ertel et al., 1993, van Aarssen 

et al., 2000, Pancost and Boot, 2004; Peters et al., 2005). Lu et al. (2000) suggested 

that there are a broad range of unique biomarkers in aquatic humic substances; 

however, high chemical functionality and macromolecular binding may limit their 

analysis by fast pyrolysis and conventional extraction methods.  
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Hopanes are a group of saturated triterpane biomarkers derived from amphiphilic 

polyhydroxy hopanoids (bacteriohopanepolyols; BHPs) present in the lipid cell 

membrane of many bacterial species (Ourisson et al., 1982). The ubiquity of 

microbes and the relative stability of the hydrocarbon skeleton of hopanes have 

resulted in their extensive use as maturity and source indicators in organic 

geochemical studies of crude oils and ancient sedimentary rocks (e.g. Philp and 

Gilbert, 1987; Bennett and Abbot, 1999; Farrimond et al., 2002). 

 

Hopanes in sedOM are formed over geological timeframes through natural thermal 

maturation processes (diagenesis/catagenesis), which reduce the polyhydroxy 

functionality of the biohopanoid precursors. Free hopane products in the bitumen 

fraction are amenable to solvent extraction while those bound within the kerogen 

fraction may be thermally released by flash pyrolysis. However, the polar side chain 

moiety of hopanoid precursors, which can inhibit their direct GC-MS detection, is 

largely maintained in immature materials of recent environmental OM. As such, 

there has been little evidence of hopane occurrence in flash pyrolysis studies of 

aquatic NOM (Leenheer et al., 2003a), although high concentrations of 

hopene/hopane products have been detected in the direct flash pyrolysis GC-MS 

analysis of bacterial biomass (Sugden et al., 2005). The general absence of hopanes 

in pyrolytic studies of NOM isolates is likely attributed to their modest 

concentrations in these materials, compared with hopanoid-producing bacterial 

cultures. 

 

Our initial investigation here is focused on the thermal reduction of hydroxylated 

biohopanoids into saturated hopane biomarkers. This well-defined maturation 

process serves as an appropriate natural model to demonstrate the controlled thermal 

alteration of biological precursors into GC amenable hydrocarbons by MSSV 

pyrolysis. The MSSV approach is less expensive and labour intensive than chemical 

degradation or derivatisation methods (e.g. methylation of side-chain hydroxyl 

groups), which have been used previously to render more of the BHP content of 

fossilized OM amenable to GC detection (Mycke et al., 1987, Richnow et al., 1992, 

Abbott et al., 2001). Although chemical reagents offer highly selective covalent 

bond cleavage and better preservation of structural and stereochemical features, they 

are relatively time-consuming and the yields are typically lower than that obtained 
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by pyrolysis, particularly for highly macromolecular matrices recalcitrant to reagent 

access such as kerogen and NOM (Farrimond et al., 2003). 

 

To robustly interpret the source and mechanistic formation of the hopanes detected 

by MSSV pyrolysis it is necessary to understand the effect of different pyrolysis 

parameters on their composition, particularly in relation to isomerisation and carbon 

number distributions. In this study, a cultured sample of a hopanoid-containing 

bacterium (Frateuria aurantia), an organic biofoulant isolated from a high-pressure 

membrane filtration system, and two aquatic NOM samples isolated from bacterially 

impacted waters (Great Salt Lake, Utah, United States; Tomago Sand Beds 

groundwater, NSW, Australia) were analysed by MSSV pyrolysis GC-MS over the 

temperature range 260 – 340˚C/72hrs. Flash pyrolysis analyses of the same samples 

were undertaken for comparative purposes.  

 

Previous elemental, pyrolytic (flash pyrolysis, thermochemolysis) and spectroscopic 

(FTIR, 13C-NMR) analyses of the bio-foulant indicated a strong microbial signature 

with a protein and carbohydrate rich composition (Croué et al., 2003b). Likewise, 

evidence of bacterial and higher plant terpenoid precursors of the Tomago Sand 

Beds (TSB) NOM was recently inferred using NMR, stable carbon isotope ratios and 

electrospray ionisation MS (Leenheer et al., 2003a, McIntyre et al., 2005). However, 

whilst bacterial contribution is expected in any aquatic system, none of these 

analytical methods provided definitive biomarker evidence of bacterial input to the 

macromolecular structure of the NOM studied.  

 

A key factor in determining source specific structural information is the ability of the 

analytical technique employed to preserve the main structural and stereochemical 

features of the precursor material. To assess the significance and integrity of the 

hopane signature obtained by MSSV Py, the hopanoid-rich bacterium and biofoulant 

were additionally analysed using the advanced methods of LC-MS and 

hydropyrolysis (HyPy) GC-MS. Both of these techniques have demonstrated 

considerable utility for characterising the polar constituents of extant biomass and 

recent sedimentary OM, and have been shown to provide an accurate representation 

of the hopanoid composition of bacterial sources.  
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Like MSSV pyrolysis, catalytic HyPy promotes the reductive release of hydrocarbon 

biomarkers from functionalised and macromolecularly bound precursors (Love et al., 

2005). Love et al. (1995) demonstrated the ability of this technique to maximise the 

yields of covalently bound biomarkers in pyrolysates, without adversely affecting 

their structure and stereochemistry. The hopane distributions detected from bacterial 

cultures (Love et al., 2005), recent sediments (Bishop et al., 1998, Farrimond et al., 

2003) and kerogens of different thermal maturity (Love et al., 1995, Murray et al., 

1998) have been shown to be dominated by extended hopanes up to C35 with the 

biologically inherited but thermodynamically unstable 17β(H), 21β(H) configuration. 

 

Recent developments in the application of LC-MS have facilitated the direct 

detection of intact BHPs from bacterial species and recent sedimentary environments 

(Talbot et al., 2001; 2003 a,b; Talbot and Farrimond, 2007). A range of BHP 

structures differing subtly in the nature and positioning of the functional groups on 

their alkyl side chains have been exhibited by different taxonomic classes of bacteria 

(Talbot and Farrimond, 2007). These biomarkers can be used to fingerprint 

hopanoid-producing bacterial populations, and monitor microbial processes (Talbot 

and Farrimond, 2007) in geological as well as modern aquatic and terrestrial 

environments. Compositional data measured by LC-MS will be used to scrutinise the 

integrity of the hopane distributions formed by MSSV Py and HyPy.  

 

2.2 Experimental 
2.2.1 Samples  

2.2.1.1 Frateuria aurantia 

An acetic-acid bacterium Frateuria aurantia DSM 6220T (DSM = German National 

Culture Collection, Braunschweig, Germany) known to contain hopanoids (Joyeux et 

al., 2004) was grown at 30˚C for 24 hours in yeast-peptone-mannitol medium that 

consisted of yeast extract, 5.0 g; peptone, 3.0 g; mannitol, 25.0 g, in 1 litre distilled 

water, sterilized at 121˚C for 15 min. After growth, the cell density was 4.0±0.6 x 

109 cells mL-1. Cells were harvested from 1850 mL of medium by centrifugation at 

10 000 g, washed in distilled water, recollected by centrifugation and the resultant 

pellet was freeze dried, to produce a dry weight of 0.7503 g. The pellet contained 

9.86 x 109 cells (mg dry wt)-1. 
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2.2.1.2 Membrane biofoulant  

Membrane sheets were obtained from spiral-wound modules taken at different stages 

of the train of a high-pressure membrane filtration unit of a drinking water treatment 

plant. The biofoulant (BF) material was physically removed from the membrane, 

sonicated in MQ water and centrifuged to separate the soluble and insoluble 

fractions (Croué et al., 2003b). The insoluble fraction is discussed in this Chapter. 

 

2.2.1.3 Aquatic NOM  

Polarity-based fractions of lake and ground water NOM were the hydrophobic acid 

(HPO-A) fraction of Tomago Sand Beds (Australia) and the hydrophobic neutral 

fraction (HPO-N) of Great Salt Lake (US). Brief descriptions of the geographical 

locations and environmental settings of the water samples and the isolation 

procedures used to obtain the organic fractions are given below. 

 

Great Salt Lake (GSL) Utah, USA, is highly saline and dominated by primary 

phytoplanktonic production and secondary bacterial production although terrigenous 

inputs, from coniferous and deciduous plants from the Wasatch Mountains to the 

east, occur during the spring snowmelt (Domalgalski et al., 1989). Water was 

sampled on April 1, 2002 at the lake surface in the south arm of the GSL at latitude 

N40˚53’56”, longitude W112˚20’56” (Leenheer et al., 2004).  Sampling occurred 

prior to the annual green algae bloom that is responsible for the majority of annual 

biomass productivity (Stephens and Gillespie, 1976). 38 litres of water, filtered 

through an alum porosity glass fibre filter, was passed through a 1 L bed-volume 

XAD-8 column. Following passage of the sample, the column was rinsed with 4 L of 

0.01 M hydrochloric acid (HCl) and desorbed with 800 mL of 75% acetonitrile/25% 

water, which was evaporated and freeze-dried to isolate the HPO-N fraction. 

 

Tomago Sand Beds (TSB) are located 200 km north of Sydney, Australia and are a 

dune system of reworked Pleistocene marine sands that have developed podsol soil 

profiles since stabilisation (12,000 BP). The groundwater is used as a source of 

potable water for nearby populations. Dry sclerophyll forests dominate the overlying 

vegetation at the site with low areas containing swamps. The vegetation is rich in 

terpenoid resins and pine plantations are within 1 km of the sampling site (Prosser 

and Roseby, 1995). Groundwater was sampled on March 18, 2002 from a control 
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piezometer located at UTM 56H 372940 1371020 (Leenheer et al., 2003a). NOM 

was isolated by adsorption onto XAD-7 resin using a modified method of Thurman 

and Malcolm (1981), which is detailed in McIntyre et al. (1997). This yielded a 

hydrophobic acid fraction determined to be 98% fulvic acid, which was analysed 

without further fractionation. The isolated HPO-A fraction had an elemental 

composition of 52.3% C, 4.1% H and 41.5% O. A full characterisation of this sample 

is given in McIntyre et al. (2005). 

 
2.2.1.4 AGSO standard oil 2  

AGSO Standard Oil 2 was used as an instrument calibration and chromatogram peak 

reference standard. This sample comprises a branched and cyclic hydrocarbon 

fraction derived from a mixture of five crude oils that collectively contain the full 

suite of terpenoid (e.g. hopane) and sterane biomarkers typically found in Australian 

crude oils (Sandison and Edwards, 2003).  

 

2.2.2 Molecular analysis  

2.2.2.1 MSSV pyrolysis GC-MS  

Small amounts of sample (~ 0.1-1.0 mg) were loaded into the middle of 5 cm long x 

5 mm i.d. glass tubes. Glass beads were added above and below the sample to fill the 

void volume and the ends of the tubes were flame sealed, taking care to avoid direct 

heating of the sample. The sealed vessels were then heated isothermally in an oven 

for a period of 72 hrs.  The Frateuria aurantia bacterium, TSB fraction and 

biofoulant were separately heated at several temperatures within the range 240-

340˚C. Limited quantities of GSL NOM precluded its analysis at different 

temperatures so a single analysis was performed at 300˚C, which was the optimal 

temperature for hopane generation from the TSB NOM fraction (see R&D section 

below).    

 

The sealed vessel was inserted into the MSSV injector port installed on the top of a 

GC oven and subjected to a two stage analytical procedure (Horsfield et al., 1992).  

Two separate analyses referred to henceforth as analysis I and analysis II, were run 

for selected samples in the following manner. 

I. The first procedure involved cracking the tube with the plunger whilst 

keeping the injector port isothermal at 300˚C. Under these conditions the 
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MSSV pyrolysates generated by the off-line heating were released and 

transferred by the helium carrier gas to the GC column. The products were 

initially trapped at the beginning of the column in liquid nitrogen for 1 

minute. The GC-MS analysis was started on removal of the liquid nitrogen 

trap. 

II. The second procedure involved heating the residue from analysis I in the 

injector port from 300˚C to 540˚C at a rate of 40˚C min-1 to induce fast 

pyrolysis of the residue. A liquid nitrogen trap at the beginning of the GC 

column was used throughout the heating process to trap the released volatiles. 

The GC-MS analysis was started on removal of the liquid nitrogen trap.   

 

Fresh aliquots of unheated samples were also subjected to the first analytical 

procedure (I) to help distinguish MSSV pyrolysates from volatile products of the 

fresh sample at the 300˚C temperature of the MSSV injector port. The GSL fraction 

was not analysed in this manner due to very limited sample quantities. 

GC-MS analysis was performed with a Hewlett Packard (HP) 5890 Series II GC 

interfaced to an Autospec (UltimaQ) double focusing mass spectrometer. A 25 m x 

0.32 mm x 0.52 µm film DB5 capillary column was used with helium carrier gas at a 

constant pressure of 55 kPa. The bacterial extract was typically run with a 100 mL 

min-1 split flow and the NOM fractions and bio-foulant with a 20 mL min-1 split flow. 

One of two GC oven temperature programmes was used. 

 

1. An initial temperature of 40˚C, 2 minutes isothermal, then programmed at 4˚C 

min-1 to 300˚C with 20 minutes isothermal – typically used when investigating the 

full range of products. 

2. An initial temperature of 40˚C, 2 minutes isothermal, then increased at 10˚C min-1 

to 240˚C then 4˚C min-1 to 300˚C and held isothermal for 20 minutes – typically 

used when specifically monitoring the high molecular weight (MW) hopane products. 

Full scan (FS), selected ion recording (SIR) and multiple (metastable) reaction 

monitoring (MRM) data were separately acquired for the bacterial extract and NOM 

fractions. FS analyses were performed over the range m/z 50 – 550 at ~3 scans s-1. 

Ions analysed by SIR in magnet stepping mode were m/z 123.1, 172.1, 177.1, 183.1, 

191.1, 205.2, 217.2, 218.2 and 231.2. MRM analyses of spontaneous field free 
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region (FFR1) transitions of the molecular ions of the C27-C31 hopanes (m/z 370, 384, 

398, 412 and 426) to their diagnostic m/z 191 fragment ion were conducted using the 

linked B/E scan approach. Other generally standard mass spectral conditions were 

typically applied: e.g., electron energy = 70 eV; filament current = 200 µA, source 

temperature = 250˚C; accelerating potential = 8 kV, electron multiplier = 200 V for 

FS and SIR analyses and 350 V for MRM analyses; mass resolution = 1000 for FS 

and 500 for SIR and MRM. 

 

2.2.2.2 Flash pyrolysis GC-MS   

Flash pyrolysis of 0.5-1 mg sample was performed at ca. 600˚C (heating rate ca. 

20˚C/ms) for 20 seconds using a Chemical Data Systems analytical Pyroprobe 5250 

with the pyrolysis chamber maintained at 300˚C. Pyrolysates were analysed using an 

HP 6890 gas chromatograph coupled with an HP 5973 mass selective detector 

(MSD). A 30 m x 0.25 mm i.d. ZB5-MS column with 1 µm phase (J&W Scientific) 

was used with helium as the carrier gas (93 kPa) in split mode (split ratio 20:1 - 

50:1). The GC oven temperature was initially held at –20˚C for 1 min, increased at 

4˚C/min to a final temperature of 320˚C and held isothermal for 20 min. Full scan 

mass spectra were acquired between m/z 20-620 at ca. 4 scans sec-1. The mass 

spectrometer operated in electron impact mode at 70 eV with a transfer line 

temperature of 320˚C and a source temperature of 230˚C. Tentative peak 

identification was based on retention time, mass spectral comparison with library 

spectra (Wiley 275 and NIST 05 databases) and literature data. 

 

2.2.2.3 Liquid chromatography-mass spectrometry  

Following the procedure outlined in Talbot and Farrimond (2007) the freeze-dried 

samples of F. aurantia (50 mg) and BF (57 mg) were ground to a fine powder and 

extracted with dichloromethane/methanol (180 mL, 2:1 v/v). The extract was 

evaporated under a stream of N2 and an aliquot was acetylated (acetic anhydride-

pyridine, 4 mL; 1:1 v/v; 50˚C, 1 h). The reagents were removed by rotary 

evaporation and the derivatised sample dried under a stream of N2, and then 

dissolved in ca. 1 mL methanol/2-propanol (60/40 v/v) prior to LC-MS analysis.  

Reverse-phase HPLC analysis was carried out as described by Talbot et al. (2003 a,b) 

using a Surveyor HPLC system (Thermofinnigan, Hemel Hempstead, UK) fitted 

with a Genesis (Jones Chromatography, Hengoed, UK) C18 4 μm column (150 mm x 
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4.6 mm i.d.) and a 4 μm pre-column (10 mm x 4.6 mm) of the same material. 

Separation was performed at ambient temperature with a flow rate of 0.2 mL min-1 

and the following gradient profile: 90% A and 10% B (0-3 min); 59% A, 1% B and 

40% C (at 25 min), then isocratic to 60 min (where A = methanol, B = water and C = 

2-propanol; all HPLC grade, from Fisher [Loughborough, UK]).  

 

LC-MS was performed using a ThermoFinnigan LCQ ion trap mass spectrometer 

equipped with an atmospheric pressure chemical ionization (APCI) source operated 

in positive ion mode. LC-MS parameters included a capillary temperature of 155˚C, 

APCI vaporizer temperature of 400˚C, corona discharge current of 8 μA, sheath gas 

flow of 40 and auxiliary gas of 10 (arbitrary units). The instrument was tuned as 

described by Talbot et al., 2003a. LC-MS analysis was carried out in data-dependent 

mode with three scan events: SCAN 1. Full mass spectrum (400-1300 Da); SCAN 2. 

Data dependent MS2 spectrum of the most intense ion from SCAN 1; SCAN 3. Data 

dependent MS3 spectrum of the most intense ion from SCAN 2. Detection was 

performed at an isolation width of m/z 3.0 and fragmentation with normalized 

collisional dissociation energy of 35%. Structures were assigned by comparison with 

authentic standards and published spectra (Talbot et al., 2003 a,b) or by comparison 

of APCI MS2 and MS3 spectra with those of known compounds. 

 

2.2.2.4 Catalytic hydropyrolysis GC-MS  

2.2.2.4.1 Catalytic hydropyrolysis  

The apparatus and procedure for fixed bed hydropyrolysis has been described in 

detail elsewhere (Love et al., 1995; Meredith et al., 2006). Prior to hydropyrolysis, 

the samples were mixed with a dispersed sulphided molybdenum catalyst 

[(NH4)2MoO2S2, 10 mg, dissolved in a minimum of 20% methanol in water], dried 

gently and then transferred into the pyrolysis reactor. The catalyst-loaded samples 

(38 mg F. aurantia, 30 mg BF) were then heated in a stainless steel reactor tube from 

ambient temperature to 250˚C at 300˚C min-1, then to 500˚C at 8˚C min-1. A constant 

hydrogen flow of 5 L min-1, measured at ambient temperature and pressure, ensured 

that the volatile products were quickly removed from the reactor vessel. The 

products were collected in a silica gel-filled trap cooled with dry ice as described in 

Meredith et al. (2004).  
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2.2.2.4.2 Fractionation of hydropyrolysates using liquid chromatography 

Silica gel 60 (0.063 – 0.200 mm, Merck) used for column chromatography was 

activated at 120˚C for more than 8 hours, and pre-rinsed with solvent prior to use. 

The hydropyrolysate (adsorbed on silica gel) was introduced to the top of a large 

column (20 cm x 0.9 cm i.d.) of activated silica gel. The aliphatic hydrocarbon 

(saturate) fraction was eluted with purified n-pentane (35 mL), the aromatic fraction 

with a solution of purified dichloromethane in n-pentane (30%, 40 mL) and the polar 

fraction with equal parts dichloromethane and methanol (40 mL). The extracts were 

then concentrated to small volume (ca. < 1mL) prior to GC-MS analysis by 

evaporation of the solvent on a sand bath at 60˚C.  

 

2.2.2.4.3 GC-MS analysis of hydropyrolysis fractions 

GC-MS analysis of the aliphatic hydrocarbon fractions was performed using a 

Hewlett-Packard 6890 GC interfaced to a Hewlett-Packard 5973 mass selective 

detector (electron energy 70eV, source temperature 230˚C, electron multiplier 1800 

V, transfer line 310˚C). Data acquisition was performed in full scan (m/z 50-550 at ~ 

2 scan s-1) or selected ion mode (26 ions, 20 ms dwell time). The sample (1 μL) was 

injected by an HP 6890 autosampler fitted to the vaporizing injector, which was 

operated in pulsed splitless mode (207 kPa, 0.5 min) using helium as carrier gas 

(constant flow, 1 mL min-1). GC separation was performed on a 60 m x 0.25 mm i.d. 

x 0.25 μm Phenomenex ZB-5 fused silica capillary column. The GC oven 

temperature was programmed from 40˚C (1 min) to 310˚C (30 min) at a rate of 3˚C 

min-1. 
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2.3 Results and Discussion 
2.3.1 MSSV pyrolysate distributions of aquatic NOM and membrane biofoulant  

2.3.1.1 Tomago Sand Beds and Great Salt Lake NOM  

The GC-MS total ion chromatograms (TIC) generated by off-line MSSV thermal 

treatment (300˚C/72hr, analysis I), and subsequent fast pyrolysis of the residue (300 

– 540˚C @ 20˚C/min, analysis II), for the Great Salt Lake (GSL) and Tomago Sand 

Beds (TSB) NOM samples are shown in Figure 2.1. MSSV pyrolysis yielded large 

and complex distributions of GC amenable products and exhibited excellent 

reproducibility for repeat analyses. The TICs obtained from three replicate 

300˚C/72hr analyses (I) of SRFA are provided in Appendix 1. Quantitatively, the 

MSSV data (I) showed generally higher product abundances compared to the residue 

pyrolysates (II). This was more pronounced for the GSL data (Fig. 2.1 a-b).  

Qualitatively similar product distributions were detected from the TSB and GSL 

NOM fractions. The major products identified on the basis of mass spectral 

interpretation were alkyl substituted aromatics including benzenes, phenols, 

naphthalenes and phenanthrenes. Hopane biomarkers were generally minor 

pyrolysates. However, unlike the well defined hopanoid precursor, hopane product 

relationship, source assignment of many pyrolysates can be challenging due to the 

largely undefined MSSV thermal behaviour of their precursors and potential 

derivation from multiple sources. A preliminary assessment of the potential origins 

of some of the prominent aromatic products is given here, however more detailed 

investigations of the thermal formation and structural precursors of several major 

MSSV product classes is provided in Chapters 3, 4 and 5. 

 
Alkyl phenols (AP) were major pyrolysates of both NOM fractions. These products 

are also commonly detected by flash pyrolysis of aquatic and terrestrial NOM (e.g. 

van Heemst et al., 1999). APs are most often attributed to polyphenolic lignin and 

tannin constituents of plant tissues. Previous flash pyrolysis and thermochemolysis 

GC-MS analyses of TSB NOM also yielded low concentrations of lignin derived 

products (McIntyre et al., 2005). The aromatic substitution patterns of the phenolic 

constituents of lignin and tannin are different (Leenheer and Rostad, 2004) and this 

may be reflected in the isomeric distribution of AP MSSV products, provided the 

isomeric integrity is preserved during thermal treatment (see Chapter 4).  
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Figure 2.1 Total ion chromatograms from 300˚C/72 hr MSSV pyrolysis GC-MS analysis of Great Salt Lake (GSL) and 
  Tomago Sand Beds (TSB) DOM. a) analysis I of GSL; b) analysis II of GSL; c) analysis I of TSB and d) 
  analysis II of TSB. B=benzene; P=phenol; N=naphthalene; Ac=acetophenone; Ph=phenanthrene; A=anthracene;  

B2 etc. = C2-benzene (e.g. ethylbenzene, dimethylbenzene). Relative abundances of a-d indicated in italics. 
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Alkyl naphthalenes (AN) were also identified in high abudnance from the TSB and 

GSL fractions. These products possibly derive from land plant terpenoids present in 

plant resins, bark and leaf tissues, which are recognized as a major source of 

aromatic hydrocarbons in thermally mature sediments, coals and crude oils (Smith et 

al., 1995; Watson et al., 2005). The TSB site, for example, is dominated by plant 

species rich in terpenoid resins (Prosser and Roseby, 1995). Several recent 

spectroscopic studies (FTIR, 13C-NMR; Leenheer et al., 2003a, Leenheer and Rostad, 

2004; Leenheer et al., 2004) have identified the significant precursor contribution of 

terpenoids in certain aquatic fulvic acids, including TSB, despite an absence of 

diagnostic products from flash pyrolysis and thermochemolysis. MSSV pyrolysis of 

TSB yielded low concentrations of the plant terpenoid biomarkers retene and 

cadalene, which were identified by their diagnostic fragment ions (m/z 219 and m/z 

183 respectively; Greenwood et al., 2006). Sesquiterpenoid precursors (e.g. cadinane, 

cadinol) of cadalene are ubiquitous in higher plants (van Aarssen et al., 1991), while 

retene is a characteristic thermal maturation product of abietane diterpenoids present 

in conifer resins (Simoneit, 1985). The MSSV formation and terpenoid origins of 

several aromatic product classes are discussed in detail in Chapter 3. 

 

2.3.1.2 Biofoulant 

The TIC from MSSV pyrolysis analysis I (300˚C/72hr) of the membrane biofoulant 

(BF) is shown in Figure 2.2a. The BF yielded a very different product distribution to 

the aquatic NOM, dominated by C10 – C31 n-alkanes and low MW alkyl substituted 

nitrogen and oxygen heterocycles, including furans, pyrroles, pyridines and indoles. 

Hopane biomarkers were detected in higher relative abundance than in the TSB and 

GSL fractions, reflecting the more significant contribution from extant microbial 

biomass. 

 

A fresh aliquot (i.e. unheated) of the BF was also analysed (Fig. 2.2b) to distinguish 

MSSV pyrolysates from the volatile products of the fresh sample at the MSSV 

injector port temperature of 300˚C. The fresh sample was weighed and sealed inside 

an MSSV capillary tube but was not subjected to the off-line heating. Several 

volatile products were detected from the fresh material, however the higher 

abundances and many additional products observed in MSSV analysis I can be 

attributed to the off-line thermal treatment. It has previously been reported that 
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approximately 10% of Type I or II kerogen/OM is volatilized with the MSSV 

conditions of 300˚C/72hr (Horsfield and Dueppenbecker, 1991), however this value 

may be significantly higher for immature thermally labile biomass such as the BF. 

Unfortunately, the on-line nature of MSSV pyrolysis does not lend itself to simple 

quantitative determination of pyrolysate yields. 

 

 
Figure 2.2 TICs from MSSV pyrolysis GC-MS analysis I of the bio-foulant  
  sample; a) 300˚C/72 h, and b) fresh non-matured sample (300˚C  
  injector temperature). F=furan, B=benzene, Py=pyrrole, H=hopanes, 
  S=steranes, * = n-alkanes. Numbers refer to carbon number of alkyl 
  substituents. Relative abundances of a-b are indicated in italics. 
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Retention time (0 – 88 min) 

b) 4.5e6 

F1 

F2 

a) 4.5e6 

* * 
* 

* 
* 

* 

* 
* 

* 
* 

* 

* 
* 

* * 

n-C20

n-C26

n-C15

H+S 

F1 

F2 

B1 

B2 

Py

PyPy

Retention time (0 – 88 min) 

R
el

at
iv

e 
ab

un
da

nc
e

 

R
el

at
iv

e 
ab

un
da

nc
e

 



 

Chapter 2 – Hopane biomarkers 37

The steroid and sterol precursors of several steranes identified in sedimentary 

environments and oil asphaltenes have been well defined (Mackenzie et al., 1982). 

 
Figure 2.3 Selected ion chromatograms from MSSV pyrolysis GC-MS analysis I 
  (300˚C/72 hr) of the biofoulant showing the distribution of a) C27  
  and C29 steranes and sterenes (:) b) C16-C19 phenylalkanes   
  (numbers indicate position of the phenyl substitution on the alkyl  
  chain), and c) n-alkanes. * = monomethyl alkanes. Relative   
  abundances of a-c are indicated in italics. 
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An interesting feature of the MSSV pyrolysate of the BF was the detection of a 

prominent series of C16 – C19 phenylalkanes, highlighted in the m/z 91 + 105 

summed ion chromatogram of Figure 2.3b. These compounds are environmental 

markers for common detergents produced from linear alkylbenzenesulfonates and 

are often found in wastewater effluents (Eganhouse et al., 1983, Takada and 

Ishiwatari, 1987). The incorporation of these compounds into the macromolecular 

structure of the biofoulant probably occurs during membrane cleaning processes. 

Isomers with the phenyl substitution towards the interior of the chain, such as the 5- 

and 6-phenylalkanes, are more resistant to biodegradation than the 2- and 3-phenyl 

isomers (Takada and Ishiwatari, 1990). The prominence of the 2-phenylalkanes thus 

indicates that the detergent residues in the BF are only partially biodegraded. Kruge 

and Permanyer (2004) previously reported similar long chain phenylalkanes in flash 

pyrolysates of contaminated marine sediments. However, these products were not 

detected by flash pyrolysis of the BF, which can be attributed to the polarity of the 

sulfonate group or excessive thermal degradation of the alkyl side chains. MSSV Py 

facilitates the analysis of these amphiphilic compounds by reductive removal of the 

sulfonate group, whilst preserving the parent hydrocarbon structure.  

 

Similarly, controlled MSSV reduction of the fatty acid moiety of the BF yielded a 

distinctive distribution of C9-C30 n-alkanes and C10-C19 mono-methyl alkanes, which 

are well resolved by the m/z 85 selected ion chromatogram shown in Figure 2.3c. 

The < C16 n-alkanes reflect an odd–over-even carbon preference, which reverses to 

an even over-odd-carbon preference above n-C19. Corresponding flash pyrolysis 

revealed only trace levels of n-alkanes and the precursor fatty acids, although 

previous thermochemolysis analysis (Croué et al., 2003b) revealed a distinctive fatty 

acid methyl ester (FAME) distribution reflecting a smooth Gaussian profile from n-

C22 to n-C36 (n-C30 maximum) with no notable carbon number preferences. The 

distinctive carbon trends evident in the n-alkane distribution of the MSSV data is 

indicative of a biosynthetic source, possibly including long chain fatty acid 

precursors loosely bound by ester/ether linkages within microbial or algal precursors 

(Grice et al., 2003). Similarly, mono-methylated alkane series are common among 

bacterial lipids (Koster et al. 1999), reflecting the significant microbial element of 

the foulant structure.  
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The remainder of this chapter is focused on the MSSV detection of hopane 

biomarkers. Functionalised bacteriohopanepolyols constitute a minor part of the lipid 

cell membrane and the total cell biomass of certain bacterial species; hence their 

concentrations in aquatic NOM are likely to be relatively low. This is consistent with 

the low abundance of hopanes detected from the TSB and GSL pyrolysates. Despite 

accounting for less than 1% of the total hydrocarbon signal, the thermal formation of 

hopanes represents an elegant model with which to monitor the controlled 

transformation of functionalised NOM precursors. The structural alterations of 

biohopanoids during geothermal maturation are very well defined (e.g. Mackenzie et 

al., 1980; Rohmer et al., 1992), allowing the integrity of the hopane data obtained by 

MSSV Py to be robustly evaluated.   

 

2.3.2 LC-MS identification of intact bacteriohopanepolyols   

LC-MS was used to assess the bacteriohopanepolyol (BHP) structural constituents of 

F. aurantia and the biofoulant. Compositional data measured by LC-MS will be used 

to evaluate the integrity of the hopane signatures generated from these BHP 

precursors by MSSV pyrolysis. The aquatic NOM fractions (TSB, GSL) were not 

analysed by this technique due to insufficient sample quantities. 

 

The relative abundances of the major bacteriohopanepolyols (as their acetylated 

derivatives) detected by LC-MS analysis of F. aurantia and the biofoulant are shown 

in the mass chromatograms of Figure 2.4 and 2.5. Corresponding structural 

assignments of the parent BHPs are given in Figure 2.6. The major BHPs from F. 

aurantia were bacteriohopanepentol cyclitol ether (9) and bacteriohopanetetrol 

cyclitol ether (7) as well as bacteriohopanetetrol (1) and minor quantities of 

bacteriohopanetetrol glucosamine (8). Each of these BHPs possesses a basic C35 

hydrocarbon skeleton, although F. aurantia is also known to biosynthesise C30 

hopanoids including the monounsaturated diploptene, hop-17(21)-ene and fern-7-ene 

(Joyeux et al., 2004), which lack alkyl side-chain hydroxylation. 
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Figure 2.4 Mass chromatograms of acetylated BHPs obtained by LC-APCI-MS 
  of Frateuria aurantia. The abundance relative to the most intense  
  component is shown in parentheses. 
 

 

 

Figure 2.5 Mass chromatograms of acetylated BHPs obtained by LC-APCI-MS
  of the biofoulant. The abundance relative to the most intense  
  component is shown in parentheses. 
 
 

  

  

  

 

m/z 655 

m/z 1002 

m/z 1060 

BASE 
PEAK 

Time (min) 10 30 

1 
(9%) 

8  
(< 1%) 

7 
(36%) 

9 
(100%) 

1 

7 
9 

8 

m/z 655 

Time (min) 18 32 

m/z 669 

m/z 714 

m/z 746 

m/z 830 

m/z 943 

m/z 1002 

m/z 1060 

m/z 1118 

1 
(100%) 

2 (2%) 

3 (48%) 

4 (36%) 

5 (< 2%)  

6 (7%) 

7 (11%) 

10 (3%) 

11 (5%) 



 

Chapter 2 – Hopane biomarkers 41

The diverse bacterial community of the biofoulant reflects a more complex hopanoid 

profile (Fig. 2.5) with at least 7 known BHPs detected, together with two tentatively 

identified novel compounds. The C35 hopanoids bacteriohopanetetrol (1) and 

bacteriohopanetetrol cyclitol ether (7), also detected in F. aurantia, as well as peak 3 

(35-aminobacteriohopanetriol) may derive from a variety of possible source 

organisms (Talbot and Farrimond, 2007). More source diagnostic information may 

be inferred from the detection of 35-aminobacteriohopanepentol (5), which is only 

found in Type I methane oxidising bacteria (Talbot et al., 2001) and  

adenosylhopane (4) a suspected indicator of soil microbes (Talbot and Farrimond, 

2007; Cooke et al., 2008). Compound 6 (tentatively named bacteriohopanetetrol 

pseudopentose; Talbot et al., 2008) has also only previously been reported in one 

species of cyanobacteria, although additional sources of these particular markers 

may also exist. Two additional novel compounds, bacteriohopanepentol glucosamine 

(10; Coolen et al., 2008) and bacteriohopanehexol glucosamine (11), were tentatively 

identified in the BF, both of which have no known source at present.  
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Figure 2.6 Parent BHPs identified by LC-APCI-MS analysis of F. aurantia and 
  membrane biofoulant. 
 

 

2.3.3 Detection of hopane biomarkers by MSSV pyrolysis GC-MS 

The isomeric identities of the major hopane products detected by both MSSV 

pyrolysis and catalytic hydropyrolysis from the bacterial culture, biofoulant and 

NOM fractions are listed in Table 2.1. These were assigned based on GC-MS 

correlation with AGSO Standard Oil 2 and separate selected ion recording (SIR) of 

m/z 191 and multiple (metastable) reaction monitoring (MRM) analyses. SIR and 

MRM analyses offer greater sensitivity over full scan acquisition with MRM also 

providing an additional dimension of selectivity. 
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Table 2.1 Hopane and hopene compounds identified in MSSV pyrolysis and  
  hydropyrolysis analyses of Frateuria aurantia, bio-foulant and aquatic 
  NOM fractions. Ions comprising a 4-point mass spectrum (i.e. the 4 
  most abundant ions) are also shown. 
 

Peak No. Abbrev. MW Compound 4pt. Mass Spectrum 
1 Ts 370 18α(H)-22, 29, 30-trisnorhopane 370, 355, 191, 149 
2 C27H: 368 Monounsaturated C27 hopene 368, 231, 191, 147 
3 Tm 370 17α (H)-22, 29, 30-trisnorhopane 370, 355, 191, 149 
4 27β 370 17β (H)-22, 29, 30-trisnorhopane 370, 355, 191, 149 
5 C29H: 396 Monounsaturated C29 hopene 396, 379, 191, 121 
6 C29H 398 17α, 21β-30-norhopane 398, 383, 191, 177 
7 C29H: 396 Monounsaturated C29 hopene 396, 367, 231, 191 
8 C30H: 410 Monounsaturated C30 hopene 410, 367, 231, 191 
9 C29βα 398 17β, 21α-30-normoretane 398, 383, 191, 177 

10 C30H 412 17α, 21β-hopane 412, 397, 191, 95 
11 C29ββ 398 17β, 21β-30-norhopane 398, 383, 191, 177 
12 C30βα 412 17β, 21α -moretane 412, 397, 369, 191 
13 C30H: 410 Monounsaturated C30 hopene 410, 367, 231, 191 
14 C31H(S) 426 17α, 21β-30-homohopane (22S) 426, 411, 205, 191 
15 C31H(R) 426 17α, 21β-30-homohopane (22R) 426, 411, 205, 191 
16 C30ββ 412 17β, 21β-hopane 412, 397, 369, 191 
17 C31βα(R)  426 C31 17β, 21α-hopane (22R) 426, 411, 205, 191 
18  C32H(S)  440 C32 17α, 21β-hopane (22S)  440, 425, 219, 191 
19 C32H(R)  440 C32 17α, 21β-hopane (22R) 440, 425, 219, 191 
20 C32βα(R)  440 C32 17β, 21α-hopane (22R)  440, 425, 219, 191 
21 C31ββ 426 17β, 21β-30-homohopane  426, 369, 205, 191 
22 C33H(S)  454 C33 17α, 21β-hopane (22S)  454, 439, 233, 191 
23 C33H(R)  454 C33 17α, 21β-hopane (22R)  454, 439, 233, 191 
24 C33βα(R)  454 C33 17β, 21α-hopane (22R) 454, 439, 233, 191 
25 C32ββ 440 C32 17β, 21β-hopane 440, 369, 219, 191 
26  C34H(S)  468 C34 17α, 21β-hopane (22S) 468, 453, 247, 191 
27 C34H(R)  468 C34 17α, 21β-hopane (22R) 468, 453, 247, 191 
28 C33ββ 454 C33 17β, 21β-hopane 454, 369, 233, 191 
29  C35H(S)  482 C35 17α, 21β-hopane (22S) 482, 467, 261, 191 
30 C35H(R)  482 C35 17α, 21β-hopane (22R) 482, 467, 261, 191 
31 C35βα(R)  482 C35 17β, 21α-hopane (22R) 482, 467, 261, 191 
32 C34ββ 468 C34 17β, 21β-hopane 468, 369, 247, 191 
33 C35:H 480 Monounsaturated C35 hopene 480, 369, 259, 191 
34 C35:H 480 Monounsaturated C35 hopene 480, 367, 259, 191 
35 C35ββ 482 C35 17β, 21β-hopane 482, 369, 261, 191 
36 C35:H 480 Monounsaturated C35 hopene 480, 367, 259, 191 
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2.3.3.1 Hopanes from Frateuria aurantia 

Freeze-dried cells of the bacterium Frateuria aurantia were analysed at several 

different MSSV pyrolysis temperatures over the range 260 – 340˚C (72hrs). As 

expected, the full scan GC-MS analysis I (300˚C/72hr) of the hopanoid-rich bacteria 

detected hopanes in much higher abundance than the aquatic NOM fractions and BF. 

The m/z 191 selected ion chromatogram in Figure 2.7a shows the hopane profile of 

F. aurantia. Separate SIR and MRM analyses (Fig. 2.8a-f) were conducted to aid 

specific identification of the compounds. 

 

C27 – C33 hopanes were detected with the major isomers being the C29 and C30 17β, 

21α hopanes (9 and 12) and the C27 and C29–C33 (22R)-17β, 21β hopane series (4, 11, 

16, 21, 25 and 28). The prominent 22R-ββ stereochemical isomers are inherited from 

the precursor BHPs biosynthesised by F. aurantia, however, some isomeric 

rearrangement is evident from the abundance of βα and αβ stereoisomers. The 

relatively low proportion of hopane products >C33 also indicates that thermal 

degradation of the alkyl side chain has occurred. Several C27 and C29-C30 

monounsaturated hopanes (2, 7, 8, and 13) were also detected by MSSV pyrolysis, 

although their exact isomeric configuration was not confirmed. Joyeux et al. (2004) 

previously identified trace quantities of mono-unsaturated triterpenes based on the 

C30 carbon skeleton (e.g. diploptene, hop-17(21)-ene and fern-7-ene) by 

derivatisation and GC-MS of extracted F. aurantia cells.  

 

No hopane products were detected from the analysis of a fresh aliquot of F. aurantia 

as shown by the m/z 191 selected ion chromatogram in Figure 2.7b. This can be 

attributed to macromolecular binding and high structural polarity of the precursor 

hopanoids, which significantly inhibits their direct GC analysis. Flash pyrolysis (Fig. 

2.7c) of the bacterium detected low concentrations of several C27 and C29-C31 hopane 

and hopene products (2, 4, 7, 9, 11, 16 and 21), which likely derive predominantly 

from the hydroxyl free unsaturated triterpenes (diploptene, hop-17(21)-ene and fern-

7-ene) present in F. aurantia. The much higher abundances and additional hopane 

products identified by MSSV Py can be attributed to the more efficient thermal 

reduction of hydroxylated BHP precursors, rendering a greater proportion of the 

BHP content amenable to GC analysis. 
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Figure 2.7  Partial m/z 191 chromatogram from a) 300˚C/72 h MSSV pyrolysis 

GC-MS (scan mode); b) fresh unheated sample (300˚C injector 
temperature); and c) flash pyrolysis (550˚C/20 seconds) GC-MS of 
Frateuria aurantia. The insert shows the structure of the C3017α, 21β 
hopane, with indication of the AB ring fragment responsible for the 
prominent m/z 191 ion. Relative abundances of a-c are indicated in 
italics. Hopane assignments are listed in Table 2.1. 
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Figure 2.8  Hopane distributions from the 300˚C/72 h MSSV pyrolysis GC-MS 

analysis I of F. aurantia: a) Partial m/z 191 chromatogram from SIR 
analysis (* = hopenes); and partial chromatograms from MRM 
analysis showing; b)∑ (M to m/z 191) where M = parent ion of C27 & 
C29– C32 hopanes; c) m/z 370 – 191; d) m/z 398 – 191; e) m/z 412 – 
191; f) m/z 426 – 191 and g) m/z 440 – 191. Hopane assignments are 
listed in Table 2.1. 
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 The m/z 191 selected ion chromatograms highlighting the hopane distribution of F. 

aurantia at separate MSSV temperatures of (a) 260, (b) 300 and (c) 340˚C/72hr are 

shown in Figure 2.9. At 260˚C the distribution is dominated by monounsaturated 

C27, C29 and C30 hopenes (2, 7 and 8) and the C27 and C29-C32 17β, 21β hopanes (4, 

11, 16, 21 and 25). At 300˚C there is an increase in the overall abundance of hopane 

products and a notable increase in the relative abundance of the C29-C32 βα and αβ 

isomers (6, 9, 10, 12, 17 and 20). At 340˚C significant changes in the distribution are 

evident, most notably a loss of the C29-C32 ββ products and a significant reduction in 

the abundance of unsaturated products as a result of hydrogenation of the double 

bonds. Conversely, an increase in the relative abundance of the αβ and βα isomers 

(14, 15, 17, 19, 20 and 24) was evident at the higher pyrolysis temperature.  

 

 The changes observed in the hopane distribution with more severe thermal 

conditions are largely consistent with geothermally controlled isomeric transitions of 

hopanes. Mackenzie et al. (1980) demonstrated the conversion of ββ isomers to the 

more thermodynamically stable αβ series in sedimentary OM of increasing thermal 

maturity. Separate artificial maturation studies using hydrous pyrolysis conducted at 

various temperatures from 220˚C - 330˚C also showed a general decrease of ββ 

isomers with increasing temperature (Koopmans et al., 1996). However, the MSSV 

data needs to be considered with some caution since the molecular maturity 

indicators from natural and artificial heating are not always identical and can vary 

with different sample matrices. For example, Sugden and Abbott (2002) showed that 

the closed system pyrolysis temperature of 330˚C for just 8 hours was sufficient to 

induce epimerisation of ββ isomers into βα and αβ forms from thermally immature 

oil shales. 
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Figure 2.9 Partial m/z 191 chromatogram from MSSV pyrolysis GC-MS (scan 
  mode) of Frateuria aurantia with MSSV pyrolysis conditions of a)  
  260˚C/72 h; b) 300˚C/72 h; and c) 340˚C/72 h. Relative abundances 
  of a-c are indicated in italics. Hopane assignments are listed in Table 
  2.1. 
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hopanoid products were not detected in the volatile components of the fresh (i.e. 

unheated) bio-foulant. Flash pyrolysis (data not shown) also failed to detect hopanes 

which rules out the likelihood that those observed following the off-line MSSV 

thermal treatment were due to contamination from fossil fuels (Rowland and 

Maxwell, 1984).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.10 Partial m/z 191 chromatogram from MSSV pyrolysis GC-MS (scan 
  mode) of biofoulant with MSSV pyrolysis conditions of a) 260˚C/72h 
  ; b) 280˚C/72 h; c) 300˚C/72 h; and d) 340˚C/72 h. Relative  
  abundances of a-d are indicated in italics. Hopane assignments are  
  listed in Table 2.1. 
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The thermal profile of the hopanoid distributions from the bio-foulant was similar to 

the bacterial culture. At 260˚C/72h relatively few hopanes were detected. Low 

temperatures may partially inhibit the GC detection of hopanoid products due to 

insufficient reduction of the polyhydroxy side chain or only partial thermal release 

from the macromolecular network of the foulant. From 280-300˚C/72h the 

distribution is relatively stable apart from a decrease in the relative abundance of the 

hopenes (2, 7 and 8) at the higher temperature. By 340˚C, isomeric rearrangements 

include a reduction in ββ forms and loss of all unsaturated products. Thermal 

cracking reactions are also more pronounced at the higher temperature, with a 

reduction in abundance of the >C31 products.  

 

2.3.3.3 Hopanes from Tomago Sand Bed and Great Salt Lake NOM 

The full scan GC-MS data of TSB and GSL NOM revealed much lower 

concentrations of hopane biomarkers compared to the bacterial culture and bio-

foulant. As such, these products were subsequently targeted by selected ion 

recording (SIR) and multiple (metastable) reaction monitoring (MRM) experiments.  

The SIR (m/z 191) profiles of TSB NOM for MSSV analysis I at pyrolysis 

temperatures over the range 280 - 310˚C (at a constant 72h) are shown in Figure 

2.11. 

 

Compared to the bacterial culture and bio-foulant, hopanes were observed over the 

narrower temperature window of 290-310˚C, with highest abundances at 

300˚C/72hrs. This is likely due to the much lower concentrations of BHP precursors 

in aquatic NOM but may also reflect synergistic effects imposed by the heterogenous 

sample matrix, which may inhibit the thermal release and reduction of hopanoid 

products or contribute to thermal degradation. These influences may be subtle and 

less apparent for samples containing high hopanoid concentrations, accounting for 

the wider temperature range at which hopanes were detected from F. aurantia and 

the BF. An offline temperature of 300˚C was previously identified to provide greater 

yields of hopanes than higher temperatures from the asphaltene fraction of 

biodegraded oils over a 72-hour period (Ruble et al., 2000a; 2000b). Pyrolysis of the 

MSSV residues (analysis II) of both TSB and GSL (300˚C/72hrs) showed similar 

hopane distributions (data not shown), but of lower abundance by a factor of 3-10 

compared to the MSSV analysis I pyrolysates (Greenwood et al., 2006). This is 
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attributed to the pyrolytic release and reduction of additional macromolecularly 

bound hopanoid structures. As observed for the BF, hopanes were absent in analysis 

I and II of the fresh (i.e. unheated) TSB sample. Flash pyrolysis GC-MS analyses of 

the fresh GSL and TSB NOM samples similarly revealed no hopane products, 

indicating that an oil contamination origin was unlikely. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Partial m/z 191 chromatogram from MSSV pyrolysis GC-MS (SIR 
mode) of Tomago Sand Beds (TSB) NOM with MSSV pyrolysis 
conditions of a) 280˚C/72 h; b) 290˚C/72 h; c) 300˚C/72 h and d) 
310˚C/72 h. Hopane assignments are listed in Table 2.1. 
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TSB may be due to subtle maturity differences between the two samples. 
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Figure 2.12 Hopane distributions from the 300˚C/72 h MSSV pyrolysis GC-MS analysis I of Great Salt Lake (GSL) 
NOM and Tomago Sand Beds (TSB) NOM: a) Partial m/z 191 chromatogram from SIR analysis (* = 
hopenes); Partial chromatograms from MRM analysis showing; b) ∑ (M to m/z 191) where M = parent 
ion of C27 & C29– C31 hopanes; c) m/z 370 – 191; d) m/z 398 – 191; e) m/z 412 – 191; and f) m/z 426 – 
191. Hopane assignments are listed in Table 2.1.
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Relatively high concentrations of terpenes may occur in OM of low thermal maturity, 

as seen for both the F. aurantia and BF data, but the absence of terpenes from TSB, 

even at lower MSSV temperatures (e.g. 290˚C) suggests specific differences in the 

hopanoid precursors present in the two samples.  

 

The less thermally stable ββ and βα hopane isomers were not detected in either the 

TSB or GSL NOM fractions, despite being major components of the hopane 

distributions of the extant bacterium and BF. In addition, much lower proportions of 

higher MW (> C31) hopanes were detected from the NOM samples. This may 

indicate that the BHP precursors of aquatic NOM are more susceptible to alkyl chain 

degradation and isomeric rearrangements during thermal treatment than those 

present in extant biological material. Although significant reduction or complete loss 

of ββ isomers at higher pyrolysis temperature (e.g. 340˚C/72 hours) was observed for 

the bacterium and bio-foulant (Fig. 2.9 and 2.10), the absence of these biologically 

inherited products in the TSB and GSL data even under the milder pyrolysis 

conditions of 280-300˚C/72hr suggests more extensive epimerisation to the stable αβ 

forms. Alternatively, isomeric transitions may have occurred prior to the off-line 

MSSV thermal treatment during early diagenetic transformation of BHPs in the 

water column, however this is considered unlikely. 

 

The MSSV pyrolysis GC-MS detection of hopanes provides unequivocal evidence of 

the presence of hopanoid structural units in the TSB and the GSL NOM, confirming 

previous studies in which bacterial terpenoid contribution in these waters had been 

inferred (Leenheer et al., 2003a; 2004). Whilst hopane biomarkers provide 

qualitative evidence of BHP precursors, their occurrence does not allow an 

informative quantitative assessment of microbial contribution to NOM. The bacterial 

levels in GSL are known to be relatively high (Leenheer et al., 2004), however the 

degree of bacterial input into GSL or TSB NOM cannot be distinguished on the basis 

of these data alone. A better indication of the level of bacterial input might be 

provided by the use of GC-MS standards and a relative quantification on the basis of 

total hopane yields. 
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2.3.4 Complementary detection of hopane biomarkers by catalytic 

hydropyrolysis GC-MS 

The complementary technique of catalytic hydropyrolysis (HyPy) was applied to the 

cultured bacteria and biofoulant samples to help assess the significance and integrity 

of the molecular data obtained by MSSV Py. The hopane distributions identified by 

HyPy GC-MS of F. aurantia and the bio-foulant are shown in Figure 2.13, and were 

similar to hopane distributions identified in previous HyPy studies of bacterial 

cultures (Bishop et al., 1998; Love et al., 2005). For both samples, the C35-17β, 21β 

(22R) homohopane (35) was the major product. This hydrocarbon structure is 

directly inherited from the C35 BHP structural moieties of F. aurantia and the BF 

identified by LC-MS, which demonstrates the preservation of structural and 

stereochemical integrity by the relatively ‘soft’ pyrolytic release of BHP structural 

units. 

 
 
Figure 2.13 Partial m/z 191 chromatogram showing the distributions of hopanes 
  detected by hydropyrolysis GC-MS of a) Frateuria aurantia (full  
  scan); and b) biofoulant (selected ion recording of m/z 191).  
  Relative abundances of a-b are indicated in italics. Hopane   
  assignments are listed in Table 2.1. 
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The presence of C29-C34 hopanes and βα and αβ isomers in the HyPy GC-MS data of 

both samples reflects the occurrence of some thermal cracking and molecular 

rearrangement, however the biological ββ(22R) configuration was still the dominant 

isomer of the lower MW hopane products (11, 16, 21, 25, 28, 32).  

Similar distributions of C27-C31 hopanes were observed by both HyPy and MSSV Py 

(300˚C/72hr) of F. aurantia and the BF, including the presence of several 

monounsaturated C27-C30 hopenes. However, generally higher proportions of the 

higher MW hopanes and ββ stereochemical isomers were detected by HyPy. In 

comparison, the extended heating times and confined nature of MSSV Py led to 

more extensive cracking of the alkyl side-chain (lower concentrations of >C31 

hopanes), and more pronounced isomeric rearrangement (higher proportions of more 

thermodynamically stable βα and αβ isomers ) of the weakened C-C covalent bonds 

adjacent to hydroxyl groups in the hopanoid extended side-chain (Rohmer et al., 

1984). Nevertheless the different biohopanoid content of F. aurantia and the bio-

foulant samples is reflected by different hopane product distributions. Although not 

as effective as hydropyrolysis at preserving the biological configuration of the 

hopane precursors, the MSSV analysis still provides valuable diagnostic information 

and might be considered an appropriate screening method to establish the presence 

of certain bacteria prior to more complex characterisation methods such as gene 

specific biological assays or LC-MS. The micro-scale quantities (i.e. < 1 mg) of 

sample required for MSSV pyrolysis (Cf > 30 mg for HyPy) represents an important 

advantage over HyPy where sample quantities are low, such is typical of NOM 

analyses where isolation of large samples is very time-consuming and labour 

intensive. 

 

2.3.5 Correlation of other pyrolysates detected by MSSV Py and HyPy  

The distribution of some of the other prominent product classes detected from the BF 

by MSSV and catalytic HyPy were also compared. The selected ion chromatogram 

(m/z 85) in Figure 2.14c shows the n-alkane profile obtained by hydropyrolysis of 

the biofoulant. The distribution is qualitatively similar to the n-alkane distribution of 

the MSSV data (Fig. 2.14a), however HyPy yielded higher concentrations of high 

MW n-alkanes and a more pronounced even over odd carbon preference across the 

entire carbon number range (C12 – C34). This is again attributed to the relatively soft 
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thermal release of structural fragments using HyPy. On the other hand MSSV Py and 

HyPy of the BF yielded almost identical distributions of the C27 and C29 sterane 

biomarkers (Figure 2.14b,d), suggesting that steroid structural precursors exhibit 

similar thermal behaviour by both pyrolysis protocols. 

 

2.4 Conclusions 
Hopane products diagnostic of bacterial triterpenoids were detected in relatively high 

abundance by MSSV pyrolysis GC-MS analysis of Frateuria aurantia (cultured 

bacteria) and the biofoulant (BF) recovered from a membrane filtration system. 

Lower hopane concentrations were also detected in aquatic NOM fractions of Great 

Salt Lake (GSL) and Tomago Sand Beds (TSB). Hopanes were not detected in 

analysis I of a fresh (i.e. unheated) aliquot of these samples, or in the corresponding 

flash pyrolysis analyses. Their detection following MSSV thermal treatment is 

attributed to the controlled thermal release and reduction of the poly-hydroxy side 

chain moiety of bacteriohopanepolyols (BHP), yielding saturated hopane products 

which are more amenable to GC-MS detection than their functionalised precursors.  

 

The MSSV pyrolysates of the NOM fractions and biofoulant also included several 

other source diagnostic molecular features such as sterane biomarkers of eukaryote 

triterpenoids (i.e. steroids), aromatic biomarkers of higher plant terpenoids, even 

carbon preferred n-alkanes of fatty acids, and C16-C19 phenylalkanes characteristic of 

common detergents, demonstrating the utility of MSSV for the relatively ‘soft’ 

thermal release and reduction of a wide variety of polar organic constituents of NOM. 

Flash pyrolysis, which can be limited by excessive degradation or poor 

chromatographic resolution of pyrolysates of high structural polarity, showed no 

evidence (e.g. hopanes and steranes of aquatic NOM and BF) or much lower 

concentrations (e.g. hopanes of the bacterial culture, n-alkanes of the BF) of these 

molecular markers. MSSV pyrolysis can complement the characterisation afforded 

by traditional flash pyrolysis, providing additional molecular information useful for 

establishing the structures and source inputs of NOM of aquatic environments.  
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Figure 2.14 Selected ion chromatograms showing the distribution of n-alkanes (m/z 85) and steranes (m/z 215 + 217) from    
  MSSV Py GC-MS (a, b) and HyPy GC-MS of the bio-foulant (c, d). (C27 and C29 = steranes; C27: and C29: = sterenes). 
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Complementary characterisation of the biomass samples by catalytic hydropyrolysis 

(HyPy) revealed comparable qualitative features to MSSV Py. The microbial 

signature of the hopane biomarkers was altered less by the former technique (i.e. 

higher concentration of ββ diastereoisomers and higher MW fragments), attributed to 

the softer nature of HyPy bond cleavage. However, neither HyPy nor MSSV Py 

provides the same level of intact BHP speciation afforded by LC-MS. Nevertheless, 

the respective hopane distributions still reflect the different biohopanoid content of F. 

aurantia and the biofoulant. MSSV pyrolysis may therefore represent an appropriate 

screening method to establish the presence of bacterially-derived terpenoids prior to 

more complex characterisation methods such as LC-MS or gene specific biological 

assays. The micro-scale quantity (i.e. < 1 mg) of sample required for MSSV 

pyrolysis (cf > 30 mg for HyPy) is an important advantage for the characterisation of 

aquatic organic materials that are difficult to isolate in large quantities (e.g. NOM, 

biofoulants). Further studies of the MSSV approach are warranted to investigate the 

release and origins of other major product classes and to establish optimal thermal 

conditions for targeting different biomacromolecular constituents of NOM.
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Chapter 3 
            

 

Thermal release of aromatic hydrocarbons 

by MSSV pyrolysis: Insight into terpenoid 

structural precursors of aquatic NOM 
 
Some of the work in this chapter has been published as: 
 
Lavaud, A., Berwick, L., Chabbi, A., Greenwood, P., Croué, J-P., 2008. Isolation 

 and characterization of groundwater (Lysimetric plate collected water) 

 NOM:  Comparison with surface water NOM. Proceedings of 4th IWA 

 Specialist Conference: Natural Organic Matter Research Conference: From 

 Source to Tap, Bath, UK, June 2-4 2008. 

  
3.1 Introduction 
The high pyrolysate yields afforded by MSSV pyrolysis contributes to very complex 

distributions of products, the majority of which lack the well defined precursory 

origins of the classical hopane and sterane biomarkers (Chapter 2), which are 

typically detected in low relative abundance. A detailed evaluation of the entire 

pyrolysate distribution will contribute to a more holistic characterisation of NOM 

structural features. At present however, specific source assignment of many MSSV 

products is challenging due to potential derivation from multiple structural 

precursors, and the largely undefined closed-system pyrolysis behaviour of thermally 

immature biomacromolecules of modern environments. This chapter focuses on the 

potential structural precursors and mechanistic formation of low molecular weight 

(MW) alkyl substituted aromatic hydrocarbons. Alkyl benzenes, naphthalenes and 

phenanthrenes represented some of the major products of the HPO fractions of the 

NOM isolated from the Great Salt Lake and Tomago Sand Bed samples (Chapter 

2.3.1).  

 

Aromatic hydrocarbons (HCs) are often reported from fast pyrolysis analyses of 

aquatic NOM (e.g. Saiz-Jimenez, 1993, Schulten and Gleixner, 1999, van Heemst et 
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al., 2000, González-Vila et al., 2001, Templier et al., 2005a). However, they are 

common pyrolysates of many different types of biomacromolecules, including 

higher plant materials (Saiz-Jimenez, 1993), phenylalanine-containing proteins 

(Chiavari and Galletti, 1992; Wang et al., 2004) and algae (van Heemst et al., 2000) 

and are rarely assigned to specific structural precursors or given source significance 

(Lu et al., 2000; Chefetz et al., 2002; Guo et al., 2003, White et al., 2003; Page et al., 

2003). Furthermore, aromatic hydrocarbons have also been identified as secondary 

rearrangement products of the thermal degradation of cellulose (Pastorova et al., 

1994) or via decarboxylation and aromatisation of fatty acids (Saiz-Jimenez, 1994, 

Page et al., 2002, Faure et al., 2006a; 2006b). This uncertainty limits the source 

diagnostic value of alkyl aromatic hydrocarbon pyrolysates. 

 

Aromatic hydrocarbons are major constituents of sedimentary OM. High 

concentrations of many different aromatic compounds have been detected in solvent 

extracts of sediments (van Aarssen et al., 2000; Watson et al., 2005; Hautevelle et al., 

2006a) and crude oils (Alexander et al., 1983; 1985; van Aarssen et al., 1990; 1992; 

Bastow et al., 1999) and in flash pyrolysates of humic substances present in kerogen 

(Hartgers et al. 1994a; Hoefs et al., 1995; Garcette-Lepecq et al., 2000) and coals 

(e.g. Hayatsu et al., 1990; Sinninghe Damste et al., 1992b; Hartgers et al., 1992; 

1994b; Lu et al., 2000). Biosynthesised terpenoids of plants, algae and bacteria are 

common precursors of many of the mono- and polycyclic aromatic hydrocarbons 

(PAHs) present in geological environments (Hayatsu et al., 1990; Hartgers et al., 

1994a; 1994b; Pancost and Boot, 2004; Hautevelle et al., 2006a). Bacterial 

terpenoids include the high MW bacteriohopanepolyols (triterpenoids), which give 

rise to the fully saturated hopane products as discussed Chapter 2. Higher plant 

terpenoids are abundant constituents of resins, bark and leaf tissues and include 

terpene hydrocarbons like pinene (monoterpenoid), resin acids such as abietic acid 

(diterpenoids), and essential oils like menthol (monoterpenoid) and farnesol 

(sesquiterpenoid).  

 

Numerous diagenetic pathways have been proposed for the sedimentary formation of 

aromatic HCs from natural terpenoids (Smith et al., 1995). These processes may lead 

to structural alteration; however many aromatic products often maintain sufficient 

structural integrity to allow assignment of their biomolecular source. This source 
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dependence is often used as a diagnostic tool for terrestrial organic matter supply 

(van Aarssen et al., 1992; van Aarssen et al., 2000; Pancost and Boot, 2004; 

Hautevelle et al., 2006a; 2006b), palaeoenvironmental reconstuction (Hautevelle et 

al., 2006a) and oil-source rock correlation (Alexander et al., 1992). The formation of 

many aromatic HCs is also maturity dependent and the relative proportions of 

specific compounds have thus been used to establish geochemical maturity levels 

(Alexander et al., 1985; Strachan et al., 1988; Alexander et al., 1992). 

 

Recent 13C-NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS) 

and chemical reduction studies have shown that terpenoids derived from 

allochthonous (e.g. land plants) and autochthonous (e.g. microbial) sources can be 

major potential precursors of humic fractions of ground and surface water NOM 

(Leenheer et al., 2003a; 2004; Leenheer and Rostad, 2004; Leenheer, 2004; 

McIntyre et al., 2005; Nimmagadda et al., 2007). 13C-NMR spectra of NOM isolates 

derived from terpenoids were generally characterised by high contents of aliphatic 

and aromatic polycyclic structures, extensively substituted with carboxylic and 

branched alkyl groups (Leenheer et al., 2003a; Leenheer, 2004; Leenheer and Rostad, 

2004; McIntyre et al., 2005).  

 

Minor elements of terrestrial vegetation such as terpenoid resin acids (e.g. abietic 

acid), which are highly soluble, stable, or resistant to degradation during transport 

through the catchment, may be concentrated in aquatic NOM at levels greater than 

typically found in plant biomass (Page et al., 2002). Terpenoids have been shown to 

be resistant to aerobic degradation processes (McDonald et al., 2004) and can readily 

infiltrate potable groundwater sources with little removal by soil/aquifer treatment 

(Leenheer et al., 2003a; Leenheer, 2004). In the context of potable water treatment, 

terpenoid derived NOM is difficult to remove by coagulation/flocculation treatment 

but produces relatively low DBP concentrations upon chlorination (Hwang et al., 

2001; Leenheer, 2004). 

Flash pyrolysis typically provides very limited molecular information about 

terpenoid precursors of recent OM (Leenheer and Rostad, 2004; McIntyre et al., 

2005). This may be attributed to 1) excessive thermal degradation of terpenoid 

derived structures, which dissipates source specificity, or 2) high structural polarity 
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resulting from functional group substitution, which can hinder chromatographic 

resolution and detection of terpenoid pyrolysates. MSSV pyrolysis of immature 

NOM may facilitate the analysis of terpenoid constituents via reduction and 

aromatisation, in an analogous manner to the formation of aromatic HCs from 

terpenoids during natural sedimentary maturation.  

 

In the present study, the aromatic HC distributions from the MSSV pyrolysis GC-

MS analysis of several NOM samples, including humic surface waters, soluble soil 

leachates (i.e. ground waters) and post-treated wastewater effluents, were scrutinised 

in search of molecular features characteristic of these particular aquatic 

environments. Representative standards and plant elements were also separately 

analysed to help establish more definitive biomacromolecular origins, with particular 

attention on the identification of alkyl aromatics diagnostic of higher plant and other 

natural terpenoids.  

 

3.2 Experimental 
3.2.1 Samples  

Polarity-based hydrophobic (HPO), transphilic (TPI) and colloid (COL) fractions of 

NOM isolated from Arroyo Sanchez (Uruguay) and Gartempe (France) Rivers, 

Poitiers groundwater (France), and St. Julien and Naintré waste water (WW) 

effluents (both France) were analysed. A brief description of the geographical 

location and the environmental setting of these waters and the isolation procedures 

used to obtain their organic fractions are given below. Model compounds (e.g. amino 

acids, fatty acids, syringic acid), standards (e.g. lignin, cellulose, protein, chitin) and 

specific plant elements (e.g. wood and bark) were also analysed to investigate the 

MSSV behaviour of potential precursors of aromatic hydrocarbon products. 

 

3.2.1.1 Surface water NOM  

The Arroyo Sanchez River is located in Rio Negro, a rural area to the northwest of 

Montevideo, Uruguay. This unprotected catchment receives significant input from 

terrigenous plant and soil leachate, resulting in highly coloured water with a DOC 

concentration of 9.2 mg L-1 (SUVA 4.23 m-1 L mg C-1). The Gartempe River, 
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located in Vienne, France, contains a DOC concentration of 6.5 mg L-1 (SUVA = 4.4 

m-1 L mg C-1). Both of these source waters are considered humic waters. 

 

Isolation of solid NOM fractions from these waters was conducted using the XAD-

8/XAD-4 resin extraction protocol developed by Croué et al. (1999), at the 

Laboratoires Chimie de l’Eau et de l’Environment (LCEE), École Supérieure 

d’Ingénieurs de Poitiers (ESIP), University of Poitiers, France. In brief, the raw 

water was successively passed through a 10 µm Polygard CR filter, a 0.45 µm 

milligard cartridge filter and a sodium exchanger unit. The samples were then 

acidified to pH 2 and pumped through two superimposed XAD-8 and XAD-4 resins 

to yield HPO and TPI fractions, as termed by Croué et al. (1999). The NOM 

adsorbed onto the resins was recovered with a 75% water/25% acetonitrile mixture 

and lyophilized. The DOC distribution of these samples was 38 % HPO, 25 % TPI 

and 37 % hydrophilic (HPI) for the Arroyo Sanchez River and 66 % HPO, 19 % TPI 

and 15 % HPI for Gartempe River. 

 

3.2.1.2 Ground water NOM  

The Observatory for Environmental Research (ORE; Lusignan-Vienne) is located 

near Poitiers, France. The site is divided in several plots equipped with lysimetric 

plates which can recover water passing through the soil to a depth of 105 cm. The 

plates were positioned with an inclination of 5 degrees for natural drainage. Samples 

were collected continuously over 24 hours and then combined after 6 months. All 

samples were stored in a cold room at 4°C. Lysimetric plate samples collected 

during the first semester of 2007 were mixed together to provide a sufficient volume 

of water (40 litres, DOC = 1.2 mg L-1, SUVA = 1.2 m-1 L mg C-1) from which DOM 

fractions were isolated using the same XAD-8/XAD-4 resin extraction protocol used 

to isolate the surface water NOM fractions. The DOC distribution of the 

groundwater was 49 % HPO, 14 % TPI, and 37 % HPI. Only the HPO fraction was 

analysed here. 

 

3.2.1.3 Waste water effluent OM   

Secondary effluents were collected from French waste water treatment facilities in 

the cities of Saint Julien l’Ars (DOC = 5.9 mg L-1) and Naintré (DOC = 14.4 mg L-1). 

The process train of both these activated sludge plants consists of primary treatment, 
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aerobic basins, and secondary clarification, after which the effluent is discharged 

into a canal. St. Julien WWTP additionally employs anoxic basins and a longer 

contact time for biological treatment than Naintré WWTP. Part of the settled sludge 

from the secondary clarifiers is re-circulated to the anoxic/aerobic basins whilst the 

excess sludge is drained and stored in a sludge tank before further utilization in 

agricultural practices.  

 

Isolation of the effluent OM (Ef-OM) was conducted at the Laboratoires Chimie de 

l’Eau et de l’Environment (LCEE), École Supérieure d’Ingénieurs de Poitiers (ESIP), 

University of Poitiers, France (Jarusutthirak, 2002) using a procedure adapted from 

Leenheer et al. (2000). In brief, 100 L of the wastewater effluent was collected and 

sequentially filtered through pre-rinsed 10 μm and 1 μm cartridge filters (Millipore) 

to remove particulate material. The filtered sample was then reduced to ca.1-L using 

a rotary evaporator and acidified to pH 1. Membrane dialysis (3500 Da) was used to 

separate the colloidal fraction. During this step, salts and lower MW Ef-OM were 

removed by dialysis against 0.1 M hydrochloric acid (HCl). Silica was removed by 

dialysis against 0.2 M hydrofluoric acid (HF), and excess HF was removed by 

dialysis against distilled water (Leenheer et al., 2000). The contents of the dialysis 

bag were freeze-dried to yield the colloid fraction. The lower MW Ef-OM separated 

from the colloids was then pumped through two superimposed XAD-8 and XAD-4 

resins to yield HPO and TPI acid fractions, respectively. The HPO, TPI and colloid 

fractions accounted for 25 %, 19 % and 27 % of the DOC of St. Julien Ef-OM and 

30 %, 18 % and 24% of Naintré Ef-OM, respectively.  

 

3.2.1.4 Suwannee River fulvic acid  

Suwannee River fulvic acid (SRFA) was purchased from the International Humic 

Substances Society (IHSS). At its headwaters in the Okefenokee Swamp (Georgia, 

USA), the blackwater Suwannee River has DOC concentrations ranging from 25-75 

mg L-1 and pH values of less than 4.0. The Okefenokee Swamp contains extensive 

peat deposits and decomposing coniferous vegetation (Malcolm et al., 1989), which 

is believed to provide most of the DOC to the river. Water was sampled (8104 L) at 

this outlet in 1983 (Leenheer and Noyes, 1984). The NOM was processed onsite into 

HPO and hydrophilic (HPI) fractions by filtration and preferential adsorption on 

XAD-8 resin. The adsorbed HPO fraction was subsequently eluted by alkaline 
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extraction with aqueous NaOH, followed by precipitation of humic acid at low pH 

and a desalting step employing cation exchange to obtain the fulvic acid (Leenheer 

and Noyes, 1984). The fulvic acid fraction (SRFA) constituted 66 % of the DOC 

concentration, which was 38.4 mg L-1 at the time of sampling.  

 

3.2.1.5 Plant elements 

Fresh samples of wood and bark were collected from two higher plant species, 

Wandoo eucalyptus (angiosperm, hardwood) and Pinus radiata (gymnosperm, 

softwood), in bushland near the Mundaring Weir Dam in Perth, Western Australia 

(Miles, 2005). The samples were ground to a fine powder prior to analysis. 

 

3.2.1.6 Representative standards  

Cellulose (polysaccharide), lignin, bovine serum albumin (BSA, protein), chitin 

(amino sugar), syringic acid (lignin monomer), phenylalanine (amino acid) and 

stearic acid (fatty acid) were commercially sourced from Sigma-Aldrich.  

 

3.2.2 Molecular analysis 

3.2.2.1 MSSV pyrolysis GC-MS 

MSSV pyrolysis of < 0.1 - 1 mg sample was performed according to the procedure 

described in section 2.2.2.1 of the previous chapter. All data correspond to MSSV 

analysis I at an off-line pyrolysis temperature of 300˚C for 72 hr, with the MSSV 

injector at a constant 300˚C. The lignin standard and Uruguay HPO fraction were 

studied at several additional temperatures over the range 260 – 340˚C. Fresh (i.e. 

unmatured) aliquots of selected samples were also analysed to distinguish MSSV 

pyrolysates from volatile products of the fresh material at the 300˚C of the MSSV 

injector port.  

 

GC-MS analysis of the volatile MSSV pyrolysates was typically performed with a 

Hewlett-Packard (HP) 6890 GC coupled to a 5973 mass selective detector (MSD). 

Pyrolysates were separated using a 30 m x 0.32 mm i.d. x 0.25 μm DB5-MS 

capillary column (J&W Scientific). Helium carrier gas was used at 34 kPa head 

pressure with a split of between 20 – 50 mL minute-1. The GC oven was held for 1 

min at an initial temperature of -20˚C (using liquid CO2 cryogenic control), then 

increased at 8˚C min-1 to 40˚C, then 4˚C min-1 to 310˚C and held isothermal for 20 
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minutes. Full scan analyses were performed over the range m/z 50 – 550 at ca. 4 

scans s-1. The mass spectrometer operated in positive ion electron impact mode at 70 

eV with a transfer line temperature of 310˚C and a source temperature of 250˚C. 

Tentative peak identifications were based on GC elution times and order, mass 

spectral comparisons with library spectra (Wiley 275 and NIST 05 databases) and 

published data (Hartgers et al., 1992, 1994a; 1994b; Sinninghe-Damsté et al., 1992b). 

 

3.2.2.2 Flash pyrolysis GC-MS 

Flash pyrolysis of 0.5–1 mg sample was performed in pre-annealed quartz tubes at 

550˚C for 20 seconds using a Chemical Data Systems 160 Pyroprobe with the 

pyrolysis chamber held at 250˚C. A HP 5890 Series II gas chromatograph coupled to 

a 5971 MSD was used for GC-MS analysis. The products were cryo-focused for 1.5 

minutes at the start of the GC column using liquid nitrogen prior to starting the GC-

MS analysis. Analyses were performed with a split of 20 ml min-1 using a 30 m x 

0.25 mm i.d. x 1 µm phase ZB5-MS capillary column (Phenomenex), with helium 

carrier gas at 55 kPa. The GC oven was initially held for 2 minutes at 40˚C, 

increased at 4˚C min-1 to a final temperature of 310˚C, held isothermal for 20 min. 

Full scan mass spectra were acquired between m/z 50 –550 at ca. 4 scans sec-1. The 

mass spectrometer operated in positive ion electron impact mode at 70 eV with a 

transfer line temperature of 310˚C and a source temperature of 230˚C. Tentative 

peak identification was based on retention time, mass spectral comparison with 

library spectra (Wiley 275, NIST 05) and literature data. 

 

3.2.2.3 TMAH thermochemolysis GC-MS 

U-HPO NOM (1 mg) was transferred into a pre-annealed quartz tube sealed at one 

end. Tetramethylammonium hydroxide (TMAH; Sigma-Aldrich) was added as a 

methanolic solution (5 μL, 25% w/w) and the open end plugged with pre-cleaned 

glass wool. Pyrolysis was performed at 650˚C for 20 seconds using a Chemical Data 

Systems 160 Pyroprobe, with the pyrolysis chamber held at 150˚C. GC-MS 

parameters were the same as for flash pyrolysis, but also included a 3-minute solvent 

delay to allow elution of methanol solvent and excess TMAH reagent. 
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3.3 Results and Discussion 

3.3.1 Alkyl aromatic product distributions detected by MSSV and flash 

pyrolysis of aquatic NOM  

High concentrations of alkyl aromatic products were detected by MSSV pyrolysis 

GC-MS analysis of the hydrophobic NOM fractions. The major aromatic HC 

products included homologous series of alkyl (≤ C6) benzenes, alkyl (≤ C5) phenols 

and alkyl (≤ C5) naphthalenes, as well as lower concentrations of alkyl (C1-C4) 

phenanthrenes, alkyl (C1-C3) indenes and hydrogenated aromatics such as indanes 

and hydronaphthalenes (tetralins). Isomeric assignments of the major alkyl benzene, 

naphthalene and phenanthrene pyrolysates are provided in Table 3.1. Alkyl phenols 

(APs) were consistently detected in high abundance in all the NOM fractions 

analysed. Detailed evaluation of these products is provided in Chapter 4. 

 

The total ion chromatograms (TIC) obtained by 300˚C/72hr MSSV pyrolysis GC-

MS and flash pyrolysis (550˚C/20 seconds) GC-MS of the HPO fraction of NOM 

from the Arroyo Sanchez River (Uruguay; U-HPO) are given in Figure 3.1a-b. 

MSSV Py generated significantly higher overall concentrations of GC-MS detectable 

pyrolysates than flash pyrolysis. Prominent peaks for benzene, phenol and their C1-

C2 alkylated derivatives were detected by flash Py, however, the higher substituted 

benzenes and phenols and the polycyclic aromatics were either absent, or present in 

very low abundance compared to MSSV Py. Several methoxy aromatic pyrolysates 

diagnostic of lignin structures detected by flash pyrolysis of U-HPO were not 

evident, or were detected in low abundance from the MSSV data. These products are 

addressed in further detail in Chapter 4. 

 

Fresh (i.e. unmatured) aliquots of U-HPO (Fig. 3.1c), as well as SRFA (data not 

shown), were analysed to distinguish thermally labile aromatic components of the 

fresh material at the 300˚C temperature of the MSSV injector port. Phenol, guaiacol 

(2-methoxy phenol), dimethoxy phenol and methyl (C1-C2) furans were identified 

amongst the small number of thermally desorbed products of the fresh samples, 

reflecting the presence of free or loosely bound lignocellulose structures. Toluene 

and alkyl (C2-C3) benzenes, which may also derive from thermally labile aromatic 

ring structures were detected in very low abundance, however the lack of other alkyl 
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aromatic hydrocarbons rules out the likelihood of a petroleum or crude oil 

contamination. 

 

 
Figure 3.1 TICs from GC-MS analysis of U-HPO following a)  300˚C/72hr  
  MSSV pyrolysis; b) 550˚C/20sec flash pyrolysis; and c) fresh non- 
  matured analysis (300˚C injector temperature). Relative abundances 
  of a-c are indicated in italics.   = alkyl benzenes,    = alkyl phenols,    
     /C1-5N = alkyl naphthalenes,     = alkyl phenanthrenes, MF = methyl 
  furan, G = guaiacol, M = methoxy aromatics, FA = fatty acids. 
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Table 3.1 Aromatic hydrocarbon products identified by MSSV pyrolysis GC- 
  MS analyses of aquatic NOM fractions and representative plant  
  elements, model compounds and standard materials. A 4-point mass 
  spectrum comprising the 4 most abundant ions is also shown to  
  provide an indication of assignment integrity. Base peaks are  
  indicated in bold. Abbreviations correspond to products identified 
  within the text and in Figures 3.4-3.13. 
 

 
Compound Identification 

 
MW Abbreviation 

 
4 pt. mass spectrum 

Alkyl Benzenes       
Toluene 92 T 92, 91, 65, 51 
Ethylbenzene 106 E 106, 91, 65, 51 
m-xylene (1,3-dimethylbenzene) 106 13 106, 105, 91, 77 
p-xylene (1,4-dimethylbenzene) 106 14 106, 105, 91, 77 
o-xylene (1,2 dimethylbenzene) 106 12 106, 105, 91, 77 
Isopropylbenzene (cumene) 120 iP 120, 105, 77, 79 
n-propylbenzene 120 n-propyl 120, 91, 92, 65 
1-methyl-3-ethylbenzene 120 1M-3E 120, 105, 91, 77 
1-methyl-4-ethylbenzene 120 1M-4E 120, 105, 91, 77 
1,3,5-trimethylbenzene 120 135 120, 119, 105, 77 
1-methyl-2-ethylbenzene 120 1M-2E 120, 105, 91, 77 
1,2,4-trimethylbenzene 120 124 120, 119, 105, 77 
sec-butylbenzene 134  sec-butyl 134, 105, 91, 77 
1,2,3-trimethylbenzene 120 123 120, 119, 105, 77 
1-methyl-3-isopropylbenzene (m-cymene) 134 m-cymene 134, 119, 117, 91 
1-methyl-4-isopropylbenzene (p-cymene) 134 p-cymene 134, 119, 117, 91 
1,3-diethylbenzene 134 13-DEB 134, 119, 105, 91 
1,4-diethylbenzene 134 14-DEB 134, 119, 105, 91 
n-butylbenzene 134  n-butyl 134, 105, 92, 91 
Dimethylethylbenzenes (unspecified 
isomers) 134 DMEB 134, 119, 91, 77 
sec-pentylbenzene 148  sec-pentyl 148, 105, 91, 77 
n-pentylbenzene 148 n-pentyl  148, 105, 92, 91 
1,2,4,5-tetramethylbenzene 134 1245 134, 119, 91, 77 
1,2,3,5-tetramethylbenzene 134 1235 134, 119, 91, 77 
1,2,3,4-tetramethylbenzene 134 1234 134, 119, 91, 77 
sec-hexylbenzene 162 sec-hexyl  162, 105, 91, 77 
n-hexylbenzene 162 n-hexyl  162, 105, 92, 91 
C5 benzenes (unspecified isomers) 148  148, 133, 105, 91 
Ethylisopropylbenzenes (unspecified 
isomers) 148 EiPB 148, 133, 105, 91 
Dimethylisopropylbenzene 148 DMiPB 148, 133, 105, 91 
Pentamethylbenzene 148 PMB 148, 133, 105, 91 

    
Alkyl Naphthalenes       

1-methylnaphthalene 142 1-MN 142, 141, 115, 71 
2-methylnaphthalene 142 2-MN 142, 141, 115, 71 
1-ethylnaphthalene 156 1-EN 156, 141, 128, 115 



 

Chapter 3 – Aromatic hydrocarbon products 70

2-ethylnaphthalene 156 2-EN 156, 141, 128, 115 
3,6-dimethylnaphthalene 156 36-DMN 156, 141, 128, 115 
2,7-dimethylnaphthalene 156 27-DMN 156, 141, 128, 115 
1,3-dimethylnaphthalene 156 13-DMN 156, 141, 128, 115 
1,7-dimethylnaphthalene 156 17-DMN 156, 141, 128, 115 
1,6-dimethylnaphthalene 156 16-DMN 156, 141, 128, 115 
1,4-dimethylnaphthalene 156 14-DMN 156, 141, 128, 115 
2,3-dimethylnaphthalene 156 23-DMN 156, 141, 128, 115 
1,5-dimethylnaphthalene 156 15-DMN 156, 141, 128, 115 
1,2-dimethylnaphthalene 156 12-DMN 156, 141, 128, 115 
1-propylnaphthalene 170 1-PN 170, 141, 128, 115 
Ethyl methyl or isopropylnaphthalenes  170  170, 155, 128, 115 
Trimethylnaphthalenes ( unspecified 
isomers) 170 

 
170, 155, 128, 115 

1,3,6-trimethylnaphthalene 170 136-TMN 170, 155, 128, 115 
1,4,6-trimethylnaphthalene 170 146-TMN 170, 155, 128, 115 
1,3,5-trimethylnaphthalene 170 135-TMN 170, 155, 128, 115 
1,2,7-trimethylnaphthalene 170 127-TMN 170, 155, 128, 115 
1,6,7-trimethylnaphthalene 170 167-TMN 170, 155, 128, 115 
1,2,6-trimethylnaphthalene 170 126-TMN 170, 155, 128, 115 
1,2,5-trimethylnaphthalene 170 125-TMN 170, 155, 128, 115 
1,2,3-trimethylnaphthalene 170 123-TMN 170, 155, 128, 115 
1-butylnaphthalene 184 1-BN 184, 155, 128, 115 
Methylpropylnaphthalenes  184 MPN 184, 155, 128, 115 
Methylisopropylnaphthalene (eudalene) 184 MiPN 184, 168, 154, 141 
C4 naphthalenes (unspecified isomers) 184  184, 169, 153, 141 
1,6-dimethyl-4-isopropylnaphthalene  198 Cadalene (C) 198, 183, 168, 153  
C5 naphthalenes (unspecified isomers) 198 C5N 198, 183, 168, 153  
        

Alkyl Phenanthrenes and Derivatives       
3-Methylphenanthrene 192 3-MP 192, 191, 189, 165 
2-Methylphenanthrene 192 2-MP 192, 191, 189, 165 
9-Methylphenanthrene 192 9-MP 192, 191, 189, 165 
1-Methylphenanthrene 192 1-MP 192, 191, 189, 165 
Dimethylphenanthrenes  206 DMP 206, 205, 191, 189 
1,7-dimethylphenanthrene 206 17-DMP 206, 205, 191, 189 
Trimethylphenanthrenes (unspecified 
isomers) 220 TMP 220, 205, 189, 101 
18-norabieta-8,11,13-triene  256 DHA 256, 241, 185, 159 
19-norabieta-8,11,13-triene  256 DHA 256, 241, 185, 159 
1,2,3,4-tetrahydroretene 238 THR 238, 223, 181, 165 
1-methyl-7-isopropylphenanthrene  234 Retene (R) 234, 219, 204, 189  
C4 phenanthrenes 234 C4P 234, 219, 204, 189  
Methyl retene 248 MeR 248, 233, 218, 203 
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3.3.2 Alkyl aromatic product distributions of surface, ground and waste waters 

Variation in the relative abundances of the major alkyl aromatic products detected by 

MSSV Py was evident between the HPO fractions from different source 

environments. Figure 3.2 shows the TICs from the MSSV pyrolysis GC-MS 

(300˚C/72hr) of the HPO fractions of Gartempe River (G-HPO), the lysimetric plate 

collected groundwater (L-HPO) and the Saint Julien (S-HPO) and Naintré (N-HPO) 

wastewater effluents. The relative abundances of the major aromatic product groups 

are quantitatively shown in Figure 3.3. Peak areas were calculated by integrating up 

to 200 of the most abundant peaks from those that were greater than 0.5% of the base 

peak. The peak areas from these ≤ 200 peaks were then summed to yield the total 

integrated peak area. Individual peak areas were expressed as percentages of the total 

integrated pyrolysate area. The abundances of the major product groups relative to 

the total peak area (i.e. ≤ 200 peaks)  were calculated by summing the individual 

percentages for all peaks within a given product class. 

 

3.3.2.1 Surface water NOM 

Similar aromatic product distributions were observed by MSSV Py of the U-HPO 

(Fig. 3.1 a), G-HPO (Fig. 3.2 a) and SRFA (Appendix 2) surface water fractions, all 

of which are highly humic black waters. Alkyl phenols were the most abundant 

pyrolysates and are likely derived from phenolic lignin precursors (see Chapter 4). 

Flash pyrolysis (Fig. 3.1b) and thermochemolysis (data not shown) analyses of U-

HPO and G-HPO (Templier et al., 2005a) confirmed the presence of lignin derived 

methoxyphenol products. Alkyl benzenes (ABs) were also detected in similar 

abundance from both surface waters; however U-HPO yielded a significantly higher 

proportion of alkyl naphthalenes (ANs) and alkyl phenanthrenes (APhs). ABs were 

also detected in similar abundance from the Uruguay TPI fraction, however APs, 

ANs and APhs were present in much lower concentrations, with the latter two 

product classes detected at only trace levels.  
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Figure 3.2  TICs from 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) G-HPO, b) L-HPO, c) S-HPO and d) N-HPO. Relative   
  abundances of a-d indicated in italics.    = alkyl benzenes,    = alkyl phenols,   /C1-5N = alkyl naphthalenes,    = alkyl   
  phenanthrenes, * = n-alkanes.
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Figure 3.3 Relative abundances of alkyl phenol, alkyl benzene and   
  combined alkyl naphthalene and phenanthrene product classes  
  detected by 300˚C/72hr MSSV pyrolysis GC-MS of several NOM  
  fractions.  
 

 

3.3.2.2 Ground water NOM 

The lysimetric plate groundwater NOM (L-HPO; Fig. 3.2 b) showed a very different 

distribution of alkyl aromatics to the humic surface waters, characterised by higher 

concentrations of ANs and much lower proportions of APs. The lower proportion of 

phenolic products of L-HPO (cf. G-HPO) was separately confirmed by 

corresponding flash pyrolysis (Lavaud et al., 2008). Likewise, diagnostic markers of 

lignin metabolites were detected at only trace levels by thermochemolysis analysis of 

L-HPO. McIntyre et al. (2005) previously showed that TMAH thermochemolysis 

products of degraded lignin components in ground water fulvic acids accounted for 

less than 1% of the total product yield. The removal of humic substances through the 

first soil horizon, due to preferential adsorption or biodegradation by soil microbiota, 

probably accounts for the different character of the ground and surface water NOM 

(Lavaud et al., 2008). Previous characterisation using size exclusion chromatography 

with ultraviolet (UV) and DOC detection demonstrated that the L-HPO fraction was 

depleted in humic like materials (Lavaud et al., 2008). 
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Similarly, solid state 13C-NMR spectroscopy revealed that carboxyl, phenolic and 

aromatic carbon bands were proportionally less abundant for L-HPO than the humic 

waters (e.g. Gartempe R.), whilst the aliphatic C-C and C-H bands were 

proportionally enriched (Lavaud et al., 2008). The 13C-NMR spectra and FTIR 

spectra of the L-HPO and G-HPO fractions were similar to previously characterised 

HPO-neutral and HPO-acid fractions of Anaheim Lake, respectively (Leenheer, 

2004). Leenheer (2004) and Leenheer and Wershaw (2005) suggested that the HPO-

acid fraction corresponded to fulvic acid like structures (high carboxyl and aromatic 

C contents) whilst the HPO-neutral fraction was rich in terpenoid precursors. Thus 

the L-HPO groundwater fraction may be considered to contain substantial input from 

terpenoid derived OM. Terpenoids have been shown to be resistant to aerobic 

degradation processes (McDonald et al., 2004) and can readily infiltrate ground 

waters with little removal by soil/aquifer treatment (Leenheer et al., 2003a). Detailed 

investigation of the MSSV pyrolysates, and in particular the high concentrations of 

alkyl naphthalenes from this sample may provide important insight into terpenoid 

structural precursors of aquatic NOM.  

 

3.3.2.3 Waste water effluent OM 

The HPO fractions of Saint Julien and Naintré Ef-OM (Fig 3.2 c-d) also showed 

high concentrations of aromatic products. Parallels in the composition of the 

wastewaters with surface water humic and fulvic acids have been previously 

observed from flash pyrolysis, elemental analysis, infra-red spectroscopy and size 

exclusion chromatography data (Jarusutthirak, 2002). Waste water effluents 

comprise highly refractory, non-biodegradable OM, which persists in potable water 

supplies following most potable water treatment strategies (Dignac et al., 2000; 

Drewes et al., 2003), as well as microbial metabolites that are retained in discharge 

effluents of biologically treated wastewater (Jarusutthirak, 2002). Namour and 

Müller (1998) found that the HPO fraction of Ef-OM was the most recalcitrant 

fraction to biological treatment and corresponded to humic substances.  

 

Several differences were evident in the relative abundances of the aromatic 

pyrolysate distribution detected by MSSV Py of the two Ef-OM fractions. The N-

HPO sample showed APs > ABs > ANs/APhs, closely resembling the product 

distributions of the surface waters. In contrast the reverse trend of ANs > ABs > APs 
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was observed for S-HPO. The longer biological treatment times used at the St. Julien 

WWTP may account for these quantitative differences. This suggests that the 

precursors of ANs, which were the most abundant products of S-HPO, are more 

resistant to degradation than the precursors of alkyl phenols.  

 

3.3.3 Alkyl benzenes 

3.3.3.1 Alkyl benzene distributions of aquatic NOM fractions 

a) Surface and ground waters  

Minimal variation was evident in the AB distributions of the HPO fractions of the 

ground and surface waters. The ABs (≤ C5) detected by MSSV Py of U-HPO, U-TPI 

and L-HPO are highlighted in the summed ion chromatograms of Figure 3.4. Many 

AB isomers have very similar mass spectra and require additional GC retention time 

correlation with authentic standards for unequivocal identification (Hartgers et al., 

1992). Therefore several of the isomeric assignments given in Figure 3.4-3.6 and 

Table 3.1 are tentative only.  

 

High relative concentrations of toluene and C2 benzenes (ethylbenzene, o-, m- and p-

xylene) were detected in all three NOM fractions. These low molecular weight (MW) 

ABs are also common flash pyrolysates of aquatic NOM (e.g. Saiz-Jimenez, 1993; 

Schulten and Gleixner, 1999; van Heemst et al., 2000; González-Vila et al., 2001; 

Lu et al., 2001; Guo et al., 2003; Templier et al., 2005a). Since they can derive from 

several biomolecular sources they offer very limited source diagnostic value. The 

greater structural specificity of more highly substituted benzenes may provide more 

valuable precursory information. MSSV Py consistently detected higher 

concentrations of C3-C5 ABs than flash pyrolysis, which generally showed 

decreasing abundance with increasing alkyl substitution. 

 

Several C3 and C4 alkyl benzenes, including 1,2,3- and 1,2,4-trimethylbenzene 

(TMB), 1,2,3,4-tetramethylbenzene (TeMB) and p-cymene (1-methyl-4-

isopropylbenzene) were detected in high abundance from both the ground (L-HPO; 

Fig. 3.4a) and surface water (U-HPO; Fig. 3.4b) hydrophobic fractions. The major 

difference between these samples was the detection of higher concentrations of 

several additional ABs from L-HPO, including isopropyl benzene, 1,3,5-TMB, 

1,2,4,5-TeMB, 1,2,3,5-TeMB, and several dimethylethylbenzenes (DMEB) and C5 
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isomers. The major AB products of the U-TPI fraction (Fig 3.4c) were ethyl 

substituted isomers including ethylbenzene, 1M-3EB, 1M-4EB, 13-DEB and 14-

DEB. This contrasted with the HPO fractions in which the polymethylated benzenes 

were detected in higher concentrations. This suggests that different AB precursors 

can be separated on the basis of polarity by the XAD procedure.  

 

 
Figure 3.4  Summed m/z 91+105+106+119+120+133+134+148 chromatograms 
  showing the alkyl (C1-C5) benzene distributions from the 300˚C/72hr 
  MSSV pyrolysis GC-MS analysis of a) L-HPO, b) U-HPO and c) U-
  TPI fractions. Peak assignments correspond to products listed in 
  Table 3.1. Relative abundances of a-c are indicated in italics.   
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b) Waste water effluents 

The AB distributions detected from the HPO fractions of the two waste waters are 

shown in Figure 3.5. 1,2,4-TMB, 1,2,3-TMB and p-cymene were detected in 

similarly high concentrations to the surface and ground waters. However, the 

presence of C3-C6 n-alkyl benzenes and sec-alkyl benzenes distinguished the AB 

profiles of the waste water effluents. With the exception of n-propyl and isopropyl 

benzene, these products were not detected from the surface and ground water 

fractions. They may be indicative of specific waste water inputs, such as industrial or 

domestic chemicals or metabolites of unique microbial or algal communities. The 

generally lower concentration of ABs detected by flash pyrolysis, including absence 

of n-alkyl (≥ C4) and sec-alkyl benzene products from the waste waters 

(Jarusutthirak, 2002), did not reflect any obvious variation between the samples. 

 

 
 
Figure 3.5  Summed m/z 91+105+106+119+120+133+134+148 chromatograms 
  showing the alkyl (C1-C5) benzene distributions from the 300˚C/72hr 
  MSSV pyrolysis GC-MS analysis of a) S-HPO and b) N-HPO. Peak 
  assignments correspond to products identified in Table 3.1. Relative 
  abundances of a-b are indicated in italics.   
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3.3.3.2 Alkyl benzene distributions of representative standards  

Very few ABs have obvious natural biomolecular origins (Bastow, 1998). They have 

been proposed as primary structural units of humic substances (Schulten, 1993; 

1996a; 1996b), but can also arise from the secondary thermal alteration of other 

NOM constituents. MSSV pyrolysis of model compounds and representative 

materials can provide information on potential AB precursors, thereby establishing 

the primary versus secondary nature of these pyrolysates with greater reliability.  

 

Toluene and the C2 benzenes were prominent products in the MSSV pyrolysates 

(300˚C/72hr) of all the standards, except stearic acid. This fatty acid yielded no 

aromatic products. The general prevalence of the low MW ABs significantly limits 

their diagnostic value. Low relative abundances of the C1-C2 ABs, and also isopropyl 

benzene, were detected from the amino sugar (chitin) and lignin monomer (syringic 

acid; Appendix 3). The albumin protein (BSA; Fig. 3.6d) and aromatic amino acid 

phenylalanine (Appendix 3) yielded high concentrations of toluene, ethylbenzene 

and n-propylbenzene, which are also common flash pyrolysates of these materials 

(Chiavari and Galetti, 1992). These products were the only major aromatic HCs 

detected from the colloid fractions of the waste waters (Appendix 2), consistent with 

the typically high proteinaceous and low humic content of colloidal OM (Rostad et 

al., 1997; Leenheer et al., 2001a). 

 

a) Alkyl benzenes from lignin and cellulose 

MSSV pyrolysis (300˚C/72hr) of cellulose (Fig. 3.6 a), lignin (Fig. 3.6 b) and extant 

wood samples of Pinus radiata and Wandoo eucalyptus yielded mostly oxygenated 

products such as alkyl furans, alkyl phenols and alkylmethoxy aromatics, but also 

included low concentrations of alkyl (≥ C3) benzenes (Appendix 3). The AB 

products of cellulose cannot be ascribed to indigenous structural moieties but are 

instead produced by thermal degradation and rearrangement during off-line MSSV 

treatment. The dominant AB product of lignin and the wood samples was toluene, 

which is likely produced by depolymerisation and thermal cleavage of the methoxy 

and hydroxy aromatic ring substituents of lignin structural units. Lower 

concentrations of 1-M-3-EB, 1,2,4-TMB, 1,2,3-TMB and p-cymene were also 

detected. 
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Figure 3.6 Summed m/z 91+105+106+119+120+133+ 134+148 chromatograms
  showing the alkyl (C1-C5) benzene distributions from the 300˚C/72hr 
  MSSV pyrolysis GC-MS analysis of a) cellulose, b) lignin, c) Pinus 
  radiata bark and d) BSA protein. Peak assignments correspond to the 
  products listed in Table 3.1. Relative abundances of a-d are indicated 
  in italics.  
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The thermal formation of aromatic hydrocarbons from methoxy phenol lignin 

structures following extended maturation processes (e.g. coalification) has been 

demonstrated both in natural environments (Hayatsu et al., 1986, Stout et al., 1988, 

Hatcher, 1988, Bates and Hatcher, 1989, Hatcher et al., 1989b) and by analogous 

closed system pyrolysis experiments of extant and fossilized wood (Behar and 

Hatcher, 1995) and immature coals (Mansuy et al., 1995; Michels et al., 2000). 

Bracewell et al. (1980) also demonstrated that the abundance of ABs in flash 

pyrolysates of relatively immature soil OM correlated with an increasing degree of 

humification, in parallel with the degradation of lignin-derived structures. However, 

humification of lignin structural moieties during hydrological transportation and 

water column residence would not be expected to account for the significantly higher 

abundances of alkyl benzenes in the NOM fractions compared with fresh 

lignocellulose biomass. Furthermore, although flash pyrolysis and thermochemolysis 

of the humic surface waters (i.e. U-HPO and G-HPO) yielded several diagnostic 

lignin markers, these products were detected in very low abundance from the flash 

pyrolysates of the ground (i.e. L-HPO; Lavaud et al., 2008) and waste waters 

fractions (Jarusutthirak, 2002). The MSSV data of all these fractions yielded 

abundant alkyl benzenes, indicating an alternative origin to lignin.  

 

b) Alkyl benzenes from terpenoids 

MSSV pyrolysis of the Pinus radiata bark produced relatively high concentrations of 

C3-C5 ABs (Fig. 3.6c). The major products included isopropyl benzene, 1,2,3-TMB, 

p-cymene, ethylisopropylbenzene (EiPB), methyl(methylpropyl)benzene and 

dimethylisopropylbenzene (DMiPB), several of which were also prominent in the 

MSSV data of the NOM fractions. Correlation with the Pinus radiata bark sample 

suggests these NOM products may derive from terpenoid constituents of plant resins.  

 

Naturally occurring terpenoids occur in an extremely wide variety of structural 

configurations making it difficult to unequivocally identify specific terpenoid 

precursors of individual AB pyrolysates. Nevertheless, several possible terpenoid 

sources may be inferred for some of the dominant C3-C5 AB products presently 

detected by MSSV Py. For example, p-cymene is a naturally occurring aromatic 

monoterpenoid found in essential oils of many higher plants and was detected in 

high concentration from all the NOM fractions. This compound may therefore 
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represent a primary terpenoid product of higher plants. The sedimentary occurrence 

of p-cymene has also been attributed to diagenetic aromatisation and reduction of 

several structurally related higher plant (Radke, 1987; van Aarssen et al., 1990) and 

fungal terpenoids (Hartgers et al., 1994b), including unsaturated (e.g. limonene), 

functionalised (e.g. terpineol, menthol) and polymeric (e.g. polycadinene) 

compounds. The thermal release of mono- and sesquiterpenoids precursors of p-

cymene may proceed without significant structural alteration (Peters et al., 2005). A 

number of C5 benzenes present in the U-HPO, L-HPO and pine bark pyrolysates 

were also tentatively identified as alkylated derivatives of p-cymene (i.e. ethyl- and 

dimethylisopropylbenzenes). 

 

Both 1,2,3,4- and 1,2,3,5-TeMBs, major MSSV pyrolysates of all HPO fractions, 

have been previously considered primary kerogen fragments on the basis of flash 

pyrolysis studies (Hartgers et al., 1994b). Their formation has been attributed to 

cleavage of macromolecularly-bound diaromatic carotenoids such as isorenieratene 

(Hartgers et al., 1994a; 1994b; 1994c; Pedentchouk et al., 2004). Carotenoids are 

tetraterpenoid organic pigments found widely in plants and other photosynthetic 

organisms like algae and some types of fungi and bacteria. 1,2,3,4-TeMB, in 

addition to 1,3- and 1,4-DMB and 1,2,3- and 1,2,4-TMB, have also been attributed 

to bound non-aromatic carotenoid precursors such as ββ-carotene present in the cell 

membranes of microalgae. These ABs were thought to form during diagenesis by 

cyclisation, aromatisation and possibly loss of methyl groups (Hartgers et al., 1994b; 

Koopmans et al., 1997; Brown et al., 2000; Pedentchouk et al., 2004). 

 

c) Other non-terpenoid sources of alkyl benzenes 

Monosubstituted C3-C6 n-alkylbenzenes (e.g. propyl-, butyl-, pentyl-, hexylbenzene) 

were abundant pyrolysates of the waste water fractions only. In flash pyrolysis 

studies of sedimentary OM (Derenne et al., 1991; Hartgers et al., 1994a; 1994b; Han 

and Kruge, 1999) and algal biomass (Hoefs et al. 1995), these products were thought 

to be formed by cyclisation and aromatisation of selectively preserved aliphatic 

biopolymers derived from algal cell walls (Douglas et al., 1991; Sinninghe Damsté 

et al., 1991; 1993). Hence, the high concentrations of n-alkyl benzenes of the HPO 

Ef-OM fractions may be attributed to aliphatic algal precursors. Algal contribution in 
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riverine and ground water NOM, on the other hand, is typically very low compared 

to input from terrigenous higher plant sources. 

 

3.3.4 Alkyl naphthalenes 

3.3.4.1 Alkyl naphthalene distributions of aquatic NOM fractions 

a) Surface and ground waters 

The distribution patterns of the alkyl (C1-C5) naphthalenes (ANs) detected by MSSV 

pyrolysis of the hydrophobic fractions of the Uruguay surface water (U-HPO) and 

the ground water (L-HPO) are shown in the summed ion chromatograms of Figure 

3.7. The high concentrations and broad isomeric distribution of ANs from the L-

HPO data suggests that many of these products originate from terpenoid derived 

structural moieties rich in this ground water. Polymethylated naphthalenes 

dominated the distribution but several higher MW alkyl isopropyl naphthalenes (e.g. 

eudalene, cadalene) were also prominent. Like ABs, isomeric ANs have very similar 

mass spectra and require additional retention time distinction, and often correlation 

with authentic standards, for unequivocal identification. Hence, several of the 

isomeric assignments given in Figures 3.7-3.9 and Table 3.1 are tentative only. 

 

U-HPO was also characterised by high relative abundances of polymethylated 

naphthalenes. 1,6-dimethyl naphthalene (DMN), 1,2,5- and 1,2,7-

trimethylnaphthalene (TMN) and 1,2,3,4-tetramethylnaphthalene (TeMN) were the 

major C2-C4 isomers. Cadalene was the major C5 product; but was detected in much 

lower abundance relative to the C1-C4 polymethyl naphthalenes. The G-HPO and U-

TPI fractions showed a similar distribution of ANs, but of lower relative abundance 

by factors of approximately two and ten, respectively (Fig. 3.3). This may reflect 

lower contribution from terpenoid OM.  

 

b) Waste water effluents 

The C1-C5 AN distributions detected by MSSV pyrolysis (300˚C/72hr) of the waste 

water HPO fractions are shown in the summed ion chromatograms of Figure 3.8. 

ANs were the most abundant group of pyrolysates from S-HPO, indicating that their 

precursory structures are recalcitrant to biological degradation. The AN distributions 

of the wastewater effluents, like the AB profiles, were very different to the surface 

and ground waters.  
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Figure 3.7 Summed m/z 141+142+155+156+169+170+183+184+198   
  chromatograms showing the alkyl (C1-C5) naphthalene distributions 
  detected from the 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) 
  L-HPO (groundwater) and b) U-HPO (river water). Peak assignments 
  correspond to products listed in Table 3.1. Relative abundances of a-b 
  are indicated in italics. x = non-AN pyrolysates. 
 

 

The major products of the waste waters included n-alkyl- (C1-C4), methylethyl- and 

methylpropylnaphthalenes. These products were detected in higher relative 

concentrations than the polymethylated products, which were the major ANs of the 

surface and ground water fractions. The prominence of n-alkylnaphthalenes mirrors 

the high concentrations of n-alkyl benzenes detected from the waste waters. These 

differences were not detected by flash pyrolysis, which consistently showed low AN 

concentrations, in which the parent and mono-methyl compounds were dominant. 
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MSSV Py may facilitate the softer thermal release of the precursory constituents of 

these products from the macromolecular network, allowing better preservation of 

their alkyl substitution patterns. 

 

 
 
Figure 3.8 Selected m/z 141+142+155+156+169+170+183+184+198   
  chromatograms showing the alkyl (C1-C5) naphthalene distributions 
  detected by the 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) S-
  HPO and b) N-HPO. Peak assignments correspond to products listed 
  in Table 3.1. Relative abundances of a-b are indicated in italics.  
 

 

3.3.4.2 Alkyl naphthalene distributions of representative standards 

Of the representative materials analysed by MSSV pyrolysis, only the Pinus radiata 

and Wandoo eucalyptus bark samples afforded high concentrations of ANs. ANs 
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materials. Mono- and condensed aromatics are often considered to be secondary 

products of functionalised aliphatic biopolymers. Flash pyrolysis of fatty acids in the 

presence of clay minerals and/or sulphur, for example, produced alkyl benzenes, 

indenes and naphthalenes via decarboxylation and secondary cyclisation and 

aromatisation reactions (Saiz-Jimenez, 1994; 1995, Faure et al., 2006a; 2006b). The 

closed system conditions of MSSV may invoke similar secondary reactions; 

however MSSV analysis of stearic acid, an n-C18 alkanoic acid, gave no evidence for 

the formation of aromatic byproducts (data not shown). Aromatisation processes 

associated with flash pyrolysis may not be promoted to the same extent by the milder 

thermal conditions of the MSSV experiment. Several fatty acids (as methyl esters) 

were detected by thermochemolysis of U-HPO and L-HPO (Lavaud et al., 2008) but 

they are unlikely precursors of the aromatic hydrocarbons detected by MSSV Py. 

 

A lignin origin for the ANs detected from the NOM fractions is also unlikely. MSSV 

pyrolysis (300˚C/72hr) of lignin showed very low concentrations of ANs. Artificial 

maturation studies of immature coals (Mansuy et al., 1995) and fossil woods (Behar 

and Hatcher, 1995), analogous to the MSSV pyrolysis procedure, have demonstrated 

that severe thermal heating, thought to represent extended maturation processes in 

natural systems, is necessary to generate aromatic HCs from methoxyphenol 

moieties of lignin (Hatcher, 1988). MSSV analysis of the lignin standard at 

340˚C/72hr (Appendix 4) yielded higher abundances of naphthalenes (and benzenes) 

compared to the 300˚C experiment, however these pyrolysates were still minor 

compared to phenolics. The low abundance of ANs from lignin, even under more 

severe thermal treatment, does not account for the high concentrations observed in 

the aquatic NOM pyrolysates. 

 

Higher plant terpenoids present in resins, bark and leaf tissues are often preserved as 

source specific AN biomarkers in sediments, coals and crude oils (Hayatsu et al., 

1990, Smith et al., 1995; Watson et al., 2005). The C1-C5 AN distributions of the 

MSSV pyrolysed conifer and eucalyptus bark samples are shown in Figure 3.9. The 

pine bark was characterised by high concentrations of 1,6-DMN, 1,2,5-TMN, 

eudalene (methylisopropylnaphthalene; MiPN), cadalene and an isomer of TeMN. 

The major products of the Wandoo bark were TeMN, 1,6,7-TMN and 1,2,6-TMN. 

All of the major ANs identified in the bark pyrolysates were also detected in high 
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abundance in the surface and ground waters (Fig 3.7), providing evidence that these 

aquatic NOM pyrolysates originate from higher plant terpenoids.  

 

 
Figure 3.9 Summed m/z 141+142+155+156+169+170+183+184+198   
  chromatograms showing the alkyl (C1-C5) naphthalene distributions 
  detected from the 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) 
  Pinus radiata and b) Wandoo eucalyptus bark. Peak assignments  
  correspond to products listed in Table 3.1. Relative abundances of a-b 
  are indicated in italics.   
 

 

3.3.4.3 Higher plant terpenoid precursors of alkyl naphthalenes 

Naturally occurring terpenoids comprise an extremely wide variety of aliphatic 

alicyclic, unsaturated, aromatic, and polymeric structures, often possessing 

functional group substituents. The biodegraded or otherwise diagenetically altered 
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products of terpenoids in aquatic ecosystems are not well established. Many higher 

plant terpenoids are cyclic and unsaturated and tend to undergo aromatisation during 

natural or artificial maturation (van Aarssen et al., 2000). Aromatisation of alicyclic 

terpenoids during MSSV thermal treatment may contribute to the high 

concentrations of aromatic HCs detected in several of the NOM samples (e.g. L-

HPO and U-HPO). This thermal formation pathway would be consistent with the 

higher aliphatic and lower aromatic content of L-HPO identified by 13C-NMR 

spectroscopy (Chapter 3.3.2.2). Whilst thermally promoted reactions during closed 

system pyrolysis may result in structural alteration, specific biomolecular sources 

can be inferred for some major AN products.  

 

The higher plant biomarkers eudalene (MiPN) and cadalene were (tentatively) 

identified in the ground and surface water fractions (Fig 3.7). They are diagenetically 

formed in sediments from naturally occurring sesquiterpenoids possessing 

eudesmane and cadinene HC skeletons, which are ubiquitously present in many 

higher plant species (Simoneit, 1985). Cadalene may also derive from polycadinene, 

a component of dammar resin synthesized by some angiosperms such as 

Dipterocarpaceae (van Aarssen et al., 1994).  

 

Other ANs previously detected in extracts and flash pyrolysates of oil, coal and 

sediments have also been attributed to further alteration of polycadinene (Hatcher 

and Clifford, 1997). Artificial maturation of fossilized and extant dammar resins by 

closed system isothermal pyrolysis demonstrated that cadinenes preferentially lose 

the isopropyl group with increasing maturity, corresponding to a higher relative 

abundance of 1,6-DMN compared to cadalene (van Aarssen et al., 1991). 1,6-DMN 

was the major C2 naphthalene identified from the ground and surface water fractions. 

An increase in the relative abundance of this product was also observed by MSSV 

thermal treatment of U-HPO over the temperature range 260 - 340˚C (72hr), as 

shown in Figure 3.10. It is likely derived via aromatisation of sesquiterpenoids 

possessing the cadinene skeleton to form cadalene, followed by loss of the isopropyl 

group. The lower relative concentration of cadalene is consistent with its 

transformation to 1,6-DMN. 
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Figure 3.10 Summed m/z 141+156+183+198 chromatograms showing             
  the relative abundances of 1,6-dimethylnaphthalene and cadalene  
  detected from U-HPO at MSSV pyrolysis temperatures of a) 260˚C, 
  b) 300˚C and c) 340˚C/72h. The 1,6-DMN/cadalene ratio calculated 
  from the integrated peak areas are indicated in the boxed values.  
  Relative abundances of a-c are indicated in italics.   
 

 

Several other prominent ANs identified from the NOM fractions (Fig 3.7) may be 

attributed to higher plant terpenoids. 1,2,5-TMN, which was the most abundant C3 

isomer of the U-HPO, L-HPO and conifer bark samples, can derive from bicyclic 

diterpenoids (e.g. agathic acid) and resins common in conifers, or the compound 

onocerane, which has been found in vascular plants including ferns, horsetails and 
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lycopods (Pearson and Obaje, 1999; Watson et al., 2005). 1,2,5-TMN and 1,2,7-

TMN, also prominent in the NOM pyrolysates, are diagenetic products of oleanane 

type pentacyclic triterpenoids (e.g. β-amyrin), which are specific to flowering plants 

(Strachan et al., 1988, Watson et al., 2005). In addition, 1,2,6-TMN can be formed 

by isomerization of the 1,2,5-TMN isomer (Strachan et al., 1988). TeMNs may 

derive from oxygenated triterpenoids such as arborene and fernene or from 

bicyclanes (Bastow, 1998). 

 

3.3.4.4 Other non-terpenoid sources of alkyl naphthalenes 

The major ANs of the St. Julien and Naintré HPO waste water fractions (Fig. 3.8), 

including ethyl, ethylmethyl, n-propyl, propylmethyl and n-butylnaphthalenes, were 

not detected from the natural waters and barks suggesting an alternative biochemical 

source. Audino et al. (1996) attributed the ubiquitous occurrence of 

ethylmethylnaphthalenes in crude oils to a microbial origin. Han and Kruge (1999) 

suggested an algal origin for n-alkylnaphthalenes due to their relative enrichment in 

flash pyrolysates of Botryococcus related alginites. n-Alkylnaphthalenes were 

thought to derive from the same straight chain aliphatic precursors as n-ABs, also 

enriched in the waste waters (section 3.3.4.2), via additional cyclisation and 

aromatisation steps (Hartgers et al., 1994b; Han and Kruge, 1999). In addition, 2,3- 

and 1,4-DMN have also been strongly correlated with algal derived OM (Han and 

Kruge, 1999) and were found to be the most abundant DMN isomers of both the N-

HPO and S-HPO fractions. The AN data suggest the incorporation of algal and 

bacterial biomass into HPO fractions of the influent waste water stream, and 

subsequently the effluent OM.  

 

3.3.5 Alkyl phenanthrenes 

3.3.5.1 Alkyl phenanthrene distributions of aquatic NOM fractions 

Alkyl phenanthrenes (APhs) were detected in significant abundance only from the 

MSSV pyrolysis of the Uruguayan surface water and the ground water. The C1-C3 

APh distributions of these fractions are shown in Figure 3.11. Alkyl phenanthrenes 

are not common flash pyrolysates of aquatic NOM, but along with mono-aromatics 

and other condensed PAHs, may be molecular sub-units of humic substances 

(Schulten and Gleixner, 1999). 1-methylphenanthrene (1-MP) and 1,7-

dimethylphenanthrene (1,7-DMP) were prominent in both samples. Sedimentary 
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occurrence of these compounds has been attributed to aromatisation of tricyclic 

diterpenoid constituents of conifer resins (Alexander et al., 1992; Smith et al., 1995). 

Several additional phenanthrene biomarkers diagnostic of diterpenoids were also 

detected in these samples and are discussed in the flowing section (3.3.5.2). 

 
 
Figure 3.11 Summed m/z 192+206+220 chromatograms showing the distribution 
  of C1-C3 alkyl phenanthrenes from the 300˚C/72hr MSSV pyrolysis 
  GC-MS analysis of a) U-HPO and b) L-HPO. Peak  assignments  
  correspond to products listed in Table 3.1. Relative abundances of a-b 
  are indicated in italics. 
 

PAHs can also arise from inert aromatic NOM moieties (e.g. black carbon) 

generated by biomass or fossil fuel burning. Recent research (Almendros et al., 1998; 
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petroleum or combusted fossil fuels (Blumer and Youngblood, 1975; Saiz-Jimenez, 

1994; Deshmukh et al., 2001; Kruge and Permanyer, 2004; Simpson et al., 2005). 

PAH contaminants have been shown to bind rapidly to aquatic humic substances 

(Schlautman and Morgan, 1993).  

 

Phenanthrene products were not identified amongst the thermal desorption products 

(MSSV injector 300˚C) or flash pyrolysates of the fresh NOM samples (Fig. 3.1b-c), 

suggesting their occurrence following MSSV pyrolysis is not due to readily labile  

free or surface adsorbed hydrocarbon constituents derived from forest fires or 

petroleum/oil contamination. Furthermore, if combusted biomass or fuels were 

significant contributors to the NOM samples a variety of other combustion derived 

PAHs (e.g. flourenes, chrysenes, pyrenes), dominated by the parent and mono-alkyl 

substituted hydrocarbons, would be expected (Watson et al., 2005).  

 

3.3.5.2 Higher plant terpenoid precursors of alkyl phenanthrenes 

Several branched and partially hydrogenated APhs were identified from the MSSV 

pyrolysis (300˚C/72hr) of the U-HPO fraction, as shown in the summed ion 

chromatograms of Figure 3.12. Retene (1-methyl-7-isopropyl phenanthrene) was 

most prominent and was detected in similar abundance to the major polymethyl 

naphthalene products. Retene, as well as cadalene, was common to the full suite of 

NOM fractions analysed in this study but the U-HPO fraction yielded this product in 

highest abundance. Retene is a generic biomarker of conifer input, derived 

predominantly from aromatisation of tricyclic diterpenoids possessing an abietane or 

phyllocladane hydrocarbon skeleton (Bastow et al., 2001). In sedimentary OM, 

retene is most commonly attributed to abietanoic acids present in pine resins 

(Wakeham, 1980). It is also a known diagenetic product of other diterpenoids such 

as phenolic and ketophenolic abietanes, which occur in non-Pinaceae conifer 

families. Several other biomarkers of abietic acid, including 18- and 19-norabieta-

8,11,13-triene (dehydroabietins; DHAs), 1,2,3,4-tetrahydroretene (THR) and methyl 

retene (MeR), were also detected in the U-HPO fraction. The occurrence of these 

diterpenoid pyrolysates confirms the presence of pine resin acids and demonstrates 

the diagnostic information that established biomarkers can provide regarding the 

source of aquatic NOM. These products were not detected by corresponding flash 

pyrolysis. Likewise, thermochemolysis analysis of U-HPO detected only trace 
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amounts of methylated dehydroabietic acid (data not shown), although an isomeric 

phenanthrene carboxylic acid likely related to retene was tentatively identified from 

the thermochemolysate of L-HPO. 

 
Figure 3.12 Summed m/z 223+238+241+256 (a) and m/z 219+234+233+248 (b) 
  chromatograms showing the distribution of diterpenoid biomarkers 
  from the 300˚C/72hr MSSV pyrolysis GC-MS analysis of U-HPO  
  NOM. Peak assignments correspond to products listed in Table 3.1. 
  Relative abundances of a-b are indicated in italics. 
 

 

The diagenetic transformation of abietic acid to partially and fully aromatised 

terpenoid HCs has been well established from sedimentary studies (Hayatsu et al., 

1990; Bastow et al., 2001; Hautevelle et al., 2006a; 2006b). MSSV pyrolysis of the 
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(i.e. DHAs, THR) suggests that full aromatisation of abietic acid is promoted by the 

MSSV conditions. Previous GC-MS analyses of the extractable fraction of conifer 

pyrolysates from large-scale confined gold tube pyrolysis (analogous to the MSSV 

procedure) showed a very similar distribution of aromatic biomarkers (Hautevelle et 

al., 2006b) as observed in this study. MSSV pyrolysis has the unique advantages of 

analysis of small sample quantities and on-line detection, allowing analysis of 

gaseous and low MW hydrocarbon products. 

 
Figure 3.13  TIC obtained by 300˚C/72hr MSSV pyrolysis GC-MS analysis of  
  Pinus radiata bark. The expanded region highlights the major  
  diterpenoid biomarkers identified. Peak assignments correspond to  
  products listed in Table 3.1. Relative  abundances are indicated in  
  italics. 
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MSSV pyrolysis of the conifer bark revealed much higher concentrations of retene 

and other alkyl phenanthrene products than alkyl naphthalenes. ANs such as 

cadalene and eudalene are typically associated with sesquiterpenoids of both 

angiosperms and gymnosperms. However, gymnosperm resins are known to contain 

significantly higher concentrations of abietane class diterpenoids (van Aarssen et al., 

2000). In sedimentary OM the retene to cadalene ratio has been shown to reflect the 

relative contribution of angiosperm and gymnosperm vegetation, and has proved a 

very useful parameter for palaeoenvironmental reconstructions (van Aarssen et al., 

2000; Hautevelle et al., 2006a). The higher relative abundance of retene identified 

from the U-HPO fraction is therefore indicative of more significant input from 

gymnosperms terpenoids. Conversely the much lower abundance of retene from the 

L-HPO fraction, relative to cadalene and other AN products, may indicate more 

significant contribution from angiosperm terpenoids. 

 

3.3.6 Other aromatic hydrocarbons 

A variety of other aromatic and hydroaromatic products, including alkyl (C1-C4) 

indenes, dihydroindenes and tetrahydronaphthalenes (tetralins), were also detected in 

high concentration by MSSV pyrolysis of the HPO NOM fractions (data not shown). 

Almendros et al. (2001) identified several alkyl-substituted indenes and tetralins in 

flash pyrolysates of gymnosperm fossils and coals. Confined gold tube pyrolysis of 

coal indicated that plant resins yielded a range of hydronaphthalene products 

(Michels et al., 2000), which are very efficient hydrogen donors and contribute 

significantly to the generation of petroleum hydrocarbons from coal (Hayatsu et al., 

1990; Michels et al., 2000). Hydroaromatics probably represent an intermediate 

stage in the aromatisation of alicyclic terpenoid structural moieties (Wakeham, 1980; 

Simoneit et al., 1986; Hayatsu et al., 1987).  

 

3.4 Conclusions 
Alkyl aromatic hydrocarbons, including benzenes, naphthalenes and phenanthrenes, 

were major MSSV pyrolysis products of the HPO NOM fractions studied. The high 

concentrations of these products in the pyrolysates of several different aquatic 

environments, such as riverine surface waters, ground water, and secondary waste 

water effluents, facilitated a detailed investigation of their structural precursors. 
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Comparison of the aromatic product distributions of the NOM samples with several 

standard materials helped establish more definitive biomacromolecular origins.  

 

Alkyl naphthalenes and phenanthrenes were strongly correlated with terpenoid 

constituents of higher plants. All of the of the major AN and APh products of the 

NOM fractions were detected in high abundance from the extant bark samples, but 

not from the other standards analysed, providing strong evidence for a terpenoid 

origin. Several aromatic higher plant terpenoid biomarkers of the bark samples were 

also detected in relatively high concentrations from the ground and surface water 

NOM fractions.  These included cadalene and eudalene, diagnostic of 

sesquiterpenoids such as cadinene and cadinol, and retene, tetrahydroretene and 

dehydroabietin, diagnostic of tricyclic diterpenoids such as abietic acid. Flash 

pyrolysis consistently yielded much lower concentrations of ANs and APhs, with the 

distribution typically dominated by the parent and mono-methyl analogues. None of 

the terpenoid biomarkers were detected by flash pyrolysis. The MSSV detection of 

these products can be attributed to thermal defunctionalisation and aromatisation of 

their alicyclic precursors. This maturation pathway has been well established from 

studies of natural geochemical sequences.  

 

The biodegraded or otherwise diagenetically altered products of terpenoids in 

aquatic ecosystems are not well established, making source assignment challenging. 

Nevertheless, several additional AN and APh products prominent in the ground and 

surface waters were also tentatively assigned to the thermal alteration higher plant 

terpenoids. Variation in the AN and APh distributions revealed distinctions in the 

terpenoid contribution between the two surface waters and the ground water. The 

ground water HPO fraction was dominated by ANs, which are typically attributed to 

angiosperm terpenoids. In contrast, the higher relative concentrations of 

phenanthrene biomarkers from the Uruguay surface black water indicate more 

significant input from diterpenoids present in pine resins. The other black water 

studied (Gartempe) showed much lower concentrations of AN and APh products, 

attributed to relatively minor terpenoid input. 
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Alkyl benzenes were generally detected in very similar concentrations from all the 

HPO fractions studied. Source assignment of these pyrolysates is difficult due to 

their common occurrence in the pyrolysates of several of the standard materials. 

Low MW alkyl benzenes (≤ C2) were ubiquitous pyrolysates and offer little 

diagnostic information. However, several of prominent higher MW benzenes were 

tentatively correlated with terpenoid precursors from terrestrial higher plant sources 

(e.g. cymene; MIPB, EI) or aquatic micro-organisms (e.g. 1,2,3,4-TeMB). 

 

The high concentration of aromatic pyrolysates from the HPO fractions of the St. 

Julien and Naintré secondary waste water effluents suggests their precursors are 

resistant to biodegradation. Many of the prominent aromatic products of the surface 

and ground waters, including retene, cadalene, and polymethylated benzenes and 

naphthalenes, were also common to the waste waters. However the separate 

occurrence of high concentrations of n-alkyl- and sec-alkylbenzenes (C3-C6) and n-

alkyl- (≤ C4), methylethyl- and methylpropylnaphthalenes clearly distinguished the 

AB and AN profiles of the waste waters. These specific isomeric products were 

either not detected or were present in minor concentrations in the natural waters. The 

origins of these products were tentatively attributed to the incorporation of resistant 

aliphatic biomolecules derived from algal and bacterial biomass into HPO fractions 

of the effluent OM.  

 

The different aromatic pyrolysate signatures detected from the natural and effluent 

samples by MSSV Py were not evident from the flash pyrolysis data, which 

consistently showed much lower concentrations of the higher MW ABs (≥ C3) and 

ANs (≥ C2). MSSV Py is a promising tool for distinguishing the different structural 

characteristics and precursor origins of aquatic NOM. However, further investigation 

is required to expand the diagnostic capacity of the aromatic MSSV pyrolysates of 

NOM. This will allow more definitive interpretation of their structural significance, 

and improve the overall molecular characterisation potential of the MSSV pyrolysis 

approach.
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Chapter 4 
            

 

Distribution and structural origins of 

oxygen- and sulfur-containing MSSV 

pyrolysates of aquatic NOM 
 

 
4.1 Introduction 
 
This chapter focuses on the oxygen (O-) and sulfur (S-) containing products from the 

MSSV pyrolysis GC-MS analysis of aquatic NOM. Advanced structural elucidation 

of NOM and humic substances with such techniques as 13C-NMR and FT-IR have 

identified them to contain a broad range of O-functional constituents.  These include 

carboxylic acid, phenol, methoxyl, alcohol, ketone, aldehyde, ester, ether, O-

heterocyclic and quinone (e.g. Leenheer et al., 1987; Leenheer et al., 1995; Diallo et 

al., 2003; Cardoza et al., 2004). Carboxylic and phenolic groups of humic substances 

are able to complex and reduce metal ions, increasing their solubility and biological 

availability (Howe et al., 1997; Lu and Johnson, 1997). Organic-S typically 

represents less than 1% of aquatic NOM (Abbt-Braun et al., 2004). However, 

definition of the S-speciation of such samples is important for understanding the 

biogeochemical cycling of S. Organic sulfides and mercapto groups, with lone 

electron pairs, are also known to form stable complexes with metals (Abbt Braun et 

al., 2004). 

 

Many characteristic O-products from the thermal degradation of recent aquatic 

NOM have been attributed (often tentatively) to structural moieties derived from 

specific biopolymeric precursors. The pyrolysis of lignin for example, typically 

shows a characteristic distribution of hydroxy- and methoxy- aromatic products, 

which are unique indicators of vascular plant matter (Hedges and Mann, 1979a; 

Opsahl and Benner, 1997). However, alteration of the biochemical precursors of 

aquatic humic substances by microbial degradation or other diagenetic processes 

may significantly hinder the detection of traditional source diagnostic biomarkers 
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(Hedges et al., 1985). Unlike oxygenated NOM moieties, the structural precursors of 

S-compounds, such as S-containing amino acids (e.g. cystine) are not well 

documented, probably due to the low concentrations in which they have been 

detected in NOM using pyrolysis and other methods. The intrinsic polarity of S and 

O groups can limit the GC resolution of structurally intact S and O-pyrolysates from 

flash pyrolysis (Templier et al., 2005a). They can also undergo complex thermal 

reactions such as decarboxylation, rearrangement and condensation; which can lead 

to loss of structural information and underestimation of their structural contribution 

to NOM (del Rio et al., 1996; Saiz-Jimenez, 1994). 

 

The emergence of TMAH thermochemolysis, in which acid and hydroxyl 

functionalities are methylated to reduce their polarity, has partially addressed this 

limitation.  It has proved effective at detecting certain O-structures, including lignin 

phenols and fatty acids (e.g. Challinor, 1995; Martin et al., 1995a; Hatcher and 

Minard, 1996; McKinney and Hatcher, 1996; Filley et al., 1999; Filley et al., 2000; 

del Rio et al., 1998; Frazier et al., 2003).  

 

The soft fragmentation provided by pyrolysis methods such as MSSV, hydrous 

pyrolysis and hydropyrolysis may also assist the O- and S-structural elucidation of 

NOM. These techniques have been shown to support the release and reduction of 

heteroatomic groups, including ether, carboxyl, hydroxyl, sulfide, thiols and simple 

thiophenic groups (e.g. Koopmans et al., 1995; 1996; 1997; Love et al., 1995; 1997; 

2005; Putschew et al., 1998) from sedimentary macromolecules. The MSSV 

formation of saturated hopanes, steranes and aromatic hydrocarbons from O-

containing structural precursors (i.e. bacteriohopanepolyols, sterols and resin acids, 

respectively) was demonstrated in Chapters 2 and 3. Natural humification and 

geological maturation of organic matter leads to gradual loss of oxygen and 

hydrocarbons are usually the major pyrolysates of sedimentary materials such as 

kerogens and coals. However, a significant portion of the O- and S-functionality of 

biochemical precursors may be retained in recent or immature sediments. Several O- 

and S-products, including alkyl furans, alkyl phenols, methoxy aromatics, cyclic 

ketones and alkyl thiophenes were prominent products from the MSSV pyrolysis 

GC-MS analysis of NOM. 
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Here, the O- and S-product distributions from the MSSV Py of NOM fractions 

isolated from several surface and two waste water effluents are evaluated. The 

pyrolysis of HPO and COL fractions will provide information about lignin/humic 

substances and polysaccharides, respectively. The NOM pyrolysates are compared to 

corresponding data from several selected standards reflecting potential O- and S-

organic precursors of aquatic NOM. The identification of common pyrolysates from 

these standards may help establish the MSSV formation pathways of O- and S-

pyrolysates of NOM. Flash pyrolysis GC-MS analyses of the same NOM fractions 

were also conducted to provide traditional O- and S-pyrolysate distributions of the 

samples. 

 

4.2 Experimental 
4.2.1 NOM Samples 

The O- and S-pyrolysate distributions of several surface water and waste water 

NOM fractions were scrutinised for environmental or source characteristics. Further 

details of the HPO, TPI and COL fractions of the NOM samples follow.  

 

4.2.1.1 Surface water NOM 

The collection, fractionation and isolation of the HPO and TPI fractions of the NOM 

from the Gartempe (Vienne, France) and Arroyo Sanchez (Rio Negro, Uruguay) 

rivers and also the fulvic acid standard of the Suwannee River (Georgia, U.S.) were 

detailed in Chapter 3.2.1. As a complement to these humic sources, the COL fraction 

of the eutrophic Brittany Reservoir (Brittany, France) was additionally analysed. The 

Brittany reservoir experiences periodic algal blooms, and is dominated by 

autochthonously derived NOM (Lee et al., 2006). The COL fraction (49.5 % of DOC) 

of this NOM source was isolated by 3.5 kDa membrane dialysis (Lee et al., 2006); 

following the same procedure (Leenheer et al., 2000) described for the wastewater 

effluent fractions in Chapter 3.2.1.3. 

 

4.2.1.2 Waste water effluent OM 

Isolation of the COL and XAD resin fractions of Saint Julien (Saint Julien l’Ars, 

France) and Naintré (Naintré, France) secondary waste water effluent organic matter 

(Ef-OM) was described in Chapter 3.2.1.3. 
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4.2.2 Standards 

4.2.2.1 Plant elements 

Fresh samples of wood and bark were collected from two higher plant species, 

Wandoo eucalyptus (angiosperm/hardwood) and Pinus radiata (gymnosperm/ 

softwood), in bushland near the Mundaring Weir Dam in Perth, Western Australia 

(Miles, 2005). The samples were ground to a fine powder prior to analysis. 

 

4.2.2.2 Model compounds and biochemical precursors  

Lignin, syringic acid (lignin monomer), quercetin (tannin), ellagic acid (tannin), D-

glucose (monosaccharide), cellulose (polysaccharide), N-acetyl-D-glucosamine 

(amino sugar monomer), chitin (amino sugar polymer), tyrosine (amino acid) and 

bovine serum albumin (BSA, protein) were commercially sourced from Sigma-

Aldrich. All chemicals were used without further purification. 

 

4.2.3 Molecular analysis 

4.2.3.1 MSSV pyrolysis GC-MS 

MSSV pyrolysis of 0.1-1 mg sample was performed following the same procedure 

as described in Chapter 2.2.2.1. All reported data correspond to MSSV analysis I. 

The lignin and quercetin standards were also studied at several additional 

temperatures over the range 260 – 340˚C. GC-MS analysis of the volatile MSSV 

pyrolysates was typically performed with a Hewlett-Packard (HP) 6890 GC coupled 

to a 5973 mass selective detector (MSD). Pyrolysates were separated using a 30 m x 

0.32 mm i.d. x 0.25 μm DB5-MS capillary column (J&W Scientific). Helium carrier 

gas was used at 34 kPa head pressure with a split of between 20 – 50 mL min-1. The 

GC oven was cryogenically held for 1 min at an initial temperature of -20˚C using 

liquid CO2, then increased at 8˚C min-1 to 40˚C, then 4˚C min-1 to a final 310˚C and 

held isothermal for 20 minutes. Full scan analyses were performed over the range 

m/z 50 – 550 at ca. 4 scans s-1. The mass spectrometer was operated in positive ion 

electron impact mode at 70 eV with a transfer line temperature of 310˚C and a 

source temperature of 250˚C. Peak identifications (many tentative) were based on 

GC elution times and order, mass spectral comparisons with library spectra (Wiley 

275 and NIST 05 databases) and published data (van Heemst et al., 1996; Iopollo et 

al., 1992; Iopollo-Armanos et al., 1995; Bastow et al., 2005) 
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4.2.3.2 Flash pyrolysis and thermochemolysis GC-MS 

Flash pyrolysis and tetramethylammonium hydroxide (TMAH) thermochemolysis 

GC-MS analyses were performed following the procedures described in Chapter 

3.2.2.2 and 3.2.2.3, respectively.  
 

4.3 Results and Discussion 
4.3.1 Oxygen- and sulfur-containing product distributions of aquatic NOM  

MSSV Py GC-MS of the NOM fractions showed a large range of O- and S- 

pyrolysates. Total ion chromatograms (TIC) from the analysis of the HPO fractions 

of the Gartempe (G-HPO) and Arroyo Sanchez (U-HPO) rivers and the Naintré (N-

HPO) and St. Julien (S-HPO) waste waters, together with the COL fraction of the 

Brittany reservoir (B-COL) and the Suwannee River fulvic acid (SRFA) are shown 

in Figure 4.1. The major O- products included alkyl (≤ C4) and acetyl furans, alkyl 

(≤ C2) benzofurans, alkyl (≤ C6) phenols and low MW cyclic (e.g. alkyl 

cyclopentenones and cyclopentanones) and aliphatic (e.g. 2-butanone, 2-pentanone) 

ketones. The prominent S-products included alkyl (≤ C4) thiophenes, alkyl (≤ C1) 

thioanisoles and low MW alkyl sulfides and thiols. S-products were detected in 

much lower abundance than the O-products, reflecting the typically low 

concentration of organic S in NOM (Lu et al., 2001). Consequently, they were given 

less attention in this study than the more abundant O-products.  

 

The major O- and S-products detected by MSSV pyrolysis of the surface water and 

waste water samples are listed in Table 4.1. The relative abundance of the alkyl 

furans, phenols, ketones and S-products are semi-quantitatively compared in Figure 

4.2. These values were calculated as described in Chapter 3.3.2 (pg 71). Many 

qualitative differences were evident between the surface and waste waters. The 

concentrations of O-products in the HPO, TPI and COL fractions of the surface 

waters and the waste waters varied between 25 – 50 % and 18-35 % of the total 

pyrolysate signal based on integrated peak areas, respectively. Their distributions 

also reflected many qualitative differences.  
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Figure 4.1 TICs from 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) Gartempe River HPO, b) Uruguay HPO, c) Suwannee River 

fulvicacid, d) Naintré HPO e) St. Julien HPO and f) Brittany colloids. Relative abundances of a-f are indicated in italics. Px = alkyl 
phenols,    = alkyl cyclopentenones. Other peak assignments correspond to products listed in Table 4.1. 
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Table 4.1 Major O- and S-containing products identified by MSSV pyrolysis GC-MS of surface and waste water NOM fractions.  A 4-point 
mass spectrum is included; bold = molecular ion, underline = base peak. The relative abundance of each product is indicated as a 
proportion of the total pyrolysate area; * = < 0.5%, ** = 0.5-1%, *** = 1-2%, **** = > 2%, t = trace, - = not detected. 

 
Compound Identification 4 pt. mass spectrum Peak Label Surface waters         Waste waters   
      U-HPO G-HPO SRFA U-TPI G-TPI B-COL S-HPO N-HPO S-COL 

Furans                       
furan 68, 40, 39, 38 F * * * ** ** ** * * - 
2-methylfuran 82, 81, 53, 39 2MF ** ** t **** **** **** - * *** 
3-methylfuran 82, 81, 53, 39 3MF * * - * * * - t * 
tetrahydrofuran 72, 71, 42, 41 THF *** - - * - - - - - 
2-ethylfuran 96, 81, 67, 53 EF * * - * ** * - * * 
2,5-dimethylfuran 96, 95, 81, 53 25dMF * * t *** *** **** - * *** 
2,4-dimethylfuran 96, 95, 81, 53 24dMF * * t ** ** * - - - 
2-propylfuran 110, 81, 53, 39 PF - - - * * * - - t 
2-acetylfuran 110, 95, 67, 41 AcF ** ** * ** *** **** * * * 
trimethylfuran 110, 109, 95, 67 tMF * * * ** ** ** - * - 
2-propionylfuran 124, 96, 95, 39 pF - - - * * *** - - * 
tetramethylfuran 124, 123, 109, 82 teMF * * * * * - - - - 
2-methylbenzofuran 132, 131, 103, 77 MBF ** ** ** * *** ** * t - 
dimethylbenzofuran 146, 145, 131, 115 dMBF * * ** * * - - - - 
dimethylbenzofuran 146, 145, 131, 115 dMBF * * * - * - t - - 
dimethylbenzofuran 146, 145, 131, 115 dMBF * ** ** * ** * t - - 
dimethylbenzofuran 146, 145, 131, 115 dMBF * ** ** - ** - * * - 
2,2'-methylenebis-(5-methyl)-furan 176, 161, 133, 105   - - - -   * - - - 
Proportion of pyrolysate area (%)     5.2 5.3 5.3 7.9 12.5 17.5 < 1.0 1.6 4.7 
Phenols                       
phenol  94, 66, 65, 55 P **** **** **** ** *** * *** *** ** 
2-methylphenol 108, 107, 79, 77 2MP **** **** **** ** **** * **** *** **** 
3- and 4-methylphenol 108, 107, 79, 77 3MP, 4MP **** **** **** ** *** * *** *** *** 
2,6-dimethylphenol 122, 121, 107, 91 26 *** ** ** ** ** - *** ** t 
2-ethylphenol 122, 107, 77, 79 2EP *** **** *** ** **** - *** **** *** 
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2,4-dimethylphenol 122, 121, 107, 77 24 **** **** *** *** *** ** *** *** *** 
2,5-dimethylphenol 122, 121, 107, 77 25 *** ** ** * ** - ** ** ** 
4-ethylphenol 122, 108, 107, 77 4EP **** **** *** ** *** - * *** ** 
3-ethylphenol 122, 108, 107, 77 3EP * ** * * * - * * * 
3,5-dimethylphenol 122, 121, 107, 77 35 ** *** ** * * - * t * 
2,3-dimethylphenol 122, 121, 107, 77 23 ** ** ** * * - * t * 
isopropylphenol 136, 121, 103, 77 iPP ** ** * * ** - ** ** ** 
3,4-dimethylphenol 122, 121, 107, 77 34 ** *** ** ** *** * * t * 
2,4,6-trimethylphenol 136, 135, 121, 91 246 *** *** ** * ** * *** ** *** 
2-propylphenol 136, 107, 79, 77 2PP * ** * * * - * ** ** 
C3 phenol  136, 121, 91, 77 P31 *** *** *** *** *** - *** *** *** 
C3 phenol  136, 121, 91, 77 P32 * ** *** * * - * * - 
C3 phenol  136, 121, 91, 77 P33 *** *** *** ** ** *** *** *** *** 
C3 phenol  136, 121, 91, 77 P34 * ** * * * - * - t 
4-propylphenol 136, 107, 79, 77 4PP * * * t t - * * t 
C3 phenol  136, 135, 121, 91 P35 ** ** ** ** ** - ** ** * 
C3 phenol  136, 135, 121, 91 P36 *** ** ** ** *** - - * - 
C3 phenols (unspecified isomers) 136                    
diethylphenol 150, 135, 121, 91 P41 * * t * * t *** ** *** 
4-methyl-2-isopropylphenol (thymol) 150, 135, 115, 91 P42  t * t t t - **** **** ** 
C3 phenol 136, 135, 121, 91 P37 * * * t ** - - - - 
2-methyl-4-isopropylphenol (carvacrol) 150, 135, 115, 91 P43  ** ** ** ** * t ** **** ** 
 trimethylphenol 136, 135, 121, 91 P38 * * * t t - - - - 
sec-butylphenol 150, 121, 91, 77 P44 t - t * * - * *** * 
C4 phenol 150, 121, 91, 77 P45 * t - - - - * ** * 
C4 phenol 150, 135, 121, 91 P46 * * * * * - t t - 
tetramethylphenol 150, 135, 105, 91 teMP ** ** * * * - - - - 
tetramethylphenol 150, 135, 107, 91 teMP ** ** * ** * - - - - 
C4 phenols (unspecified isomers) 150                    
tert-butylmethylphenol 164, 149, 121, 107 P51 - - - - - - ** *** ** 
tert-pentylphenol 164, 135, 121, 91 P52 - - - - - - ** *** * 
C5 phenols (unspecified isomers) 164  - - - - - - * *** t 
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C6 phenols (unspecified isomers) 178  - - - - - - t * - 
C7 phenols (unspecified isomers) 192                *   
4-tert-octylphenol 206, 136, 135, 107 t-OP ** * - * t - - * - 
4-tert-octyl-2-methyl-phenol  220, 150, 149, 121 M-t-OP - - - - - - - * - 
4-tert-octyl-dimethylphenol  234, 163, 149, 135 dM-t-OP - - - - - - - * - 
nonylphenols (unspecified isomers)   NP - - - - - - - * - 
Proportion of pyrolysate area (%)     40.0 42.3 28.2 17.4 23.3 3.7 20.5 29.8 20.1 
Aliphatic and Cyclic Ketones                       
2-butanone 72, 57, 50, 43 2b * * ** ** ** t * * *** 
3-methyl-2-butanone 86, 71, 55, 43 M2b * - * * * t * * * 
2-pentanone 86, 71, 58, 43 2p * * * * * * * * * 
3-pentanone 86, 71, 57, 29 3p * * * * * * * * * 
4-methyl-2-pentanone 100, 85, 58, 43 M3p * * * * * * * * * 
2-methyl-3-pentanone 100, 71, 57, 43 M3p * * * * t * t * t 
3-hexanone 100, 71, 57, 43 3h * * * * * * * * * 
2-hexanone 100, 85, 58, 43 2h - - * - t * t * * 
methylcyclopentanone 98, 70, 69, 55 MC * * * t t - - - - 
ethylcyclopentanone 112, 84, 56, 55 EC * * * * t - - - - 
dimethylcyclopentanone 112, 97, 69, 56 dMC t t * t t - - - - 
2,3-dimethyl-2-cyclopenten-1-one   110, 95, 82, 67 dMC= ** ** *** ** *** ** - t t 
trimethyl-2-cyclopenten-1-one   124, 109, 96, 81 tMC= * ** ** * * * - t t 
trimethyl-2-cyclopenten-1-one   124, 109, 96, 81 tMC= * * ** t * * - t t 
tetramethyl-2-cyclopenten-1-one   138, 123, 95, 67 teMC= t t * t t - - - - 
Proportion of pyrolysate area (%)     3.6 3.2 6.7 4.2 4.2 3.3 1.9 1.7 4.0 
Other oxygen-containing products                       
p-dioxane 88, 87, 58, 57  * - - ** - - ** * - 
dimethyl-p-dioxane 116, 101, 72, 59  - - - * - - ** * - 
dimethyl-p-dioxane 116, 101, 72, 59  - - - * - - * * - 
p-benzodioxane 136, 108, 80, 52  - - - - - - - ** - 
methoxybenzene (anisole) 108, 93, 78, 65 A ** * * * * - - - - 
methylmethoxybenzene 122, 121, 107, 77 MA * * - - - - - - - 
ethylmethoxybenzene 136, 121, 91, 77 EA ** * - - - - - - - 
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acetophenone 120, 105, 77, 51   * * * - * - - - - 
Proportion of pyrolysate area (%)     1.2 1.4 < 1.0 < 1.0 < 1.0 nd 1.5 1.5 nd 
Sulfur-containing products                        
thiophene 84, 58, 57, 45 T * * * * * t * * * 
2-methylthiophene 98, 97, 53, 45 2MT ** * * * * * * * * 
3-methylthiophene 98, 97, 53, 45 3MT * * * * * * * * * 
ethylthiophene 112, 97, 53, 45 ET * * * * * * * * * 
2,4-dimethylthiophene 112, 111, 97, 45 24dMT * * * * * - * * * 
3,4-dimethylthiophene 112, 111, 97, 45 34dMT * * * * * - * * * 
2,3-dimethylthiophene 112, 111, 97, 45 23dMT * * * * * - * * * 
2,5-dimethylthiophene 112, 111, 97, 59 25dMT t t t * t - * * t 
propylthiophene 126, 97, 53, 45 PT * t t t t - t * t 
trimethylthiophenes (unspecified isomers) 126 tMT * * t t * - * * t 
ethylmethylthiophenes (unspecified isomers) 126 EMT * * t t t - * * * 
C4 thiophenes (unspecified isomers) 140 C4T t - t t - - * * t 
thiophenol 110, 109, 77, 66 TP - - - - - - * *   
thioanisole 124, 109, 91, 78 TA - - - *** - - * *** t 
4-methylthioanisole 138, 123, 91, 45 MTA - - - - - - * *** - 
2-methylbenzothiazole 149, 148, 121, 108 MBT - - - - - - ** *** - 
2,4-diphenylthiophene 236, 202, 191, 121 dPT - -   * - - - - - 
Proportion of pyrolysate area (%)     3.6 3.5 2.1 4.7 3.8 < 1.0 4.4 7.5 4.3 
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Figure 4.2 Relative abundances of the major O- and S-product groups from  
  300˚C/72hr MSSV pyrolysis GC-MS of XAD fractions of surface and 
  waste water NOM. 
 

 

4.3.1.1 Surface water NOM 

The alkyl phenols (≤ C4) of the Gartempe and Uruguay HPO fractions accounted for 

ca. 40 % of the total product signal. Phenolic pyrolysates of river humic substances 

have been attributed to lignin, tannin and other terrestrial plant sources leached from 

adjacent soils (e.g. Hedges et al., 1985; Malcolm, 1990; Hedges and Oades, 1997).  

Other O-products of lower concentration included alkyl furans, benzofurans and 

cyclic ketones indicative of polysaccharide inputs (Saiz-Jimenez and de Leeuw, 

1984a; Helleur et al., 1985; Pouwels et al., 1987), and methoxy aromatics. Alkyl 

thiophenes were the dominant S-products. The distribution of O- and S- products 

from G-HPO, U-HPO and Suwannee River fulvic acid (Fig 4.1a-c) were generally 

similar, consistent with a common humic nature. 

 

Compared to the HPO fractions, the TPI fractions of the Gartempe and Uruguay 

rivers yielded much higher concentrations of alkyl furans and nitrogen-products (see 

Chapter 5), and lower concentrations alkyl phenols and aromatic hydrocarbons 

(Chapter 3). Both fractions showed similar concentrations of alkyl thiophenes, 

benzofurans and aliphatic and cyclic ketones. 
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The Brittany River colloids (Fig. 4.1f) showed distinctively high concentrations of 

alkyl and acetyl substituted furans with only minor quantities of alkyl phenols, alkyl 

thiophenes and other aromatic pyrolysates. The low abundance of phenolic and 

aromatic pyrolysates is consistent with non-humic OM.  

 

4.3.1.2 Waste water effluent OM 

MSSV pyrolysis of the HPO fractions of both the Naintré and St. Julien waste water 

effluents (Fig. 4.1 d-e) showed high concentrations of alkyl phenols (29.8 % and 

20.5 %, respectively) and alkyl aromatics (see Chapter 3) as well as several other 

features similar to the data of the HPO fractions of the river waters. The occurrence 

of alkyl phenols and related products in the HPO effluent OM may reflect humic 

NOM not removed during potable water treatment. This recalcitrant material may 

enter wastewater streams from drinking water inputs. Drewes et al. (2003) 

demonstrated that the chemical character of soil/aquifer treated effluent waters 

resembled that of recalcitrant NOM in drinking water.  

 

The composition of the waste waters did show several significant differences to the 

river waters. Alkyl furans, benzofurans and cyclic ketones were detected in 

significantly lower concentrations in the waste waters. The waste water HPO 

fractions also showed prominent p-dioxane and dimethyl-p-dioxane products. p-

benzodioxane was also detected in the N-HPO fraction. None of these dioxane 

products were detected by flash pyrolysis. These products likely derive from dioxane 

and dioxolane impurities arising during the manufacture of polyester resins (Romero 

et al., 1998).  Polychlorinated dibenzo-p-dioxins, formed as industrial byproducts of 

organo-chlorine manufacture, paper bleaching and in the burning of chlorine-

containing substances such as PVC, may also contribute.  These compounds are well 

known endocrine disrupting compounds and have been previously detected in low 

concentrations in waste waters (Petrovic et al., 2002).  

 

Sulfur products were detected in higher concentrations in the HPO fractions of the 

waste waters than the river sources, although these were not as abundant as N-

products (Chapter 5). The major products included alkyl (≤ C4) thiophenes, alkyl (≤ 

C1) thioanisoles and 2-methylbenothiazole. S-organic inputs to the waste waters 
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likely include domestic (e.g. sewage) and industrial wastes, and may provide an 

important bioavailable substrate for the high microbial activity reflected by the high 

concentrations of protein and amino sugar attributed N-products (Chapter 5). S-

pyrolysates were particularly rich in the Naintré HPO fraction. The shorter contact 

time of the biological treatment at the Naintré treatment plant (cf. St Julien; 

Jarusutthirak, 2002) may result in lower mineralisation of waste water derived S-

organics. 

 

The O-product distributions of the COL fractions of the waste and surface waters 

also showed several distinctive features. The waste waters yielded alkyl thiophenes 

and alkyl phenols in higher relative abundance and alkyl furans in lower relative 

abundance than Brittany River. Interestingly, polyphenols from terrestrial plants (e.g. 

lignin and tannin) are not typically concentrated in the colloidal fractions of NOM, 

although humic substances may adsorb to mineral surfaces of colloids (Wershaw, 

2004). The alkyl phenols of the waste water colloids may reflect a separate pool of 

phenol structural precursors. It is possible they could derive from algal phlorotannins 

(van Heemst et al., 1996) or the proteinaceous component of treatment microbes 

(van Heemst et al., 1999; Dignac et al., 2000).  

 

The distributions of the major O- and S-pyrolysate groups of the NOM fractions and 

several selected standards representative of potential biological precursors have been 

compared to help establish their origins and diagenetic or thermal formation 

pathways. The alkyl- furan, benzofuran, cyclopentenone, phenol and thiophene data 

are separately discussed below.  

 

4.3.2 Furan distributions of NOM fractions  

Alkyl (≤ C4) and acetyl substituted furans were prominent MSSV products of all the 

surface water NOM fractions. They were detected in highest concentrations in the 

Brittany River colloids. Summed ion chromatograms highlighting the furan 

distributions of the Brittany colloids and the HPO and TPI fractions of the Uruguay 

River are shown in Figure 4.3. Major furan pyrolysates of all samples were furan, 2-

methylfuran, 2-ethylfuran, 2,5-dimethylfuran, 2-acetylfuran, trimethylfuran and 2-

propionylfuran. Little variation in the furan distribution of the TPI and COL 
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fractions was evident. However, the U-HPO data showed distinctively high 

concentrations of tetrahydrofuran and slightly higher proportions of 2-ethyl-, 

trimethyl- and tetramethylfuran. The HPO and COL fractions of both waste water 

effluents yielded similar furan distributions, but in much lower concentrations (ca. 1 

% for HPO and 5 % for COL) relative to the corresponding surface water fractions. 

 

 
 
Figure 4.3 Summed m/z 68+72+81+82+95+96+109+110+123+124 

chromatograms showing the alkyl furan distribution detected by 
300˚C/72hr MSSV pyrolysis GC-MS analysis of a) Brittany COL, b) 
Uruguay TPI and c) Uruguay HPO fractions. Peak assignments 
correspond to products listed in Table 4.1. Relative abundances of a-c 
are indicated in italics. 

 

Furans are common pyrolysates of soil and aquatic NOM (e.g. Bruchet, 1985; Saiz-

Jimenez and de Leeuw 1984a ; 1986b; Christy et al., 1999; Lehtonen et al., 2000b; 

Dignac et al., 2005; 2006; Templier et al., 2005a). They are typically attributed to 

polysaccharides (PS) derived from the cellular material of plants and aquatic micro-
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organisms (e.g. cellulose, hemicellulose, pectin, amino sugars), as well as simple 

sugars (e.g. glucose, fructose) of microbial metabolism (Pouwels et al., 1987, Hayes 

et al., 1989; Pastorova et al., 1994, Almendros et al., 1997, Reeves and Francis, 

1997, Paine et al., 2008). Carbohydrates and amino sugars are typically concentrated 

in colloid or TPI fractions of NOM (Rostad et al., 1997; Leenheer et al., 2000; 

Leenheer et al., 2001a; Jarusutthirak, 2002; Guo et al., 2003; Mao et al., 2003; 

Croué et al., 2006). This is reflected by the relatively high concentrations of 

heterocyclic O- and N-products (Chapter 5) in the B-COL, U-TPI and G-TPI 

fractions (Figure 5.2). Previous 13C-NMR and Curie point flash pyrolysis data for 

Gartempe River (Templier et al., 2005a) also showed high occurrences of 

polysaccharides in the TPI fraction, whilst the HPO fraction contained more 

substantial input from lignin. 

 

Carbohydrates, a major energy source for microbiota, are rapidly mineralised during 

early diagenesis (Hedges et al., 1985; Stout et al., 1988; Hatcher et al., 1989a; 

Almendros et al., 1997; Huang et al., 1998; Lu et al., 2001). Solid state 13C-NMR 

spectroscopy of artificially matured swamp and soil humic substances showed 

progressive loss of carbohydrates with increasing humification, which was at least 

partially attributed to the preferential mineralisation of polysaccharides over lignins 

and terpenoids (Zech et al., 1997; Lu et al., 2001). Similarly, declining 

concentrations of carbohydrate structures have been reported during the coalification 

of plant biomass in sedimentary systems (Hatcher et al., 1981; Hedges et al., 1985; 

Wilson, 1987; Hatcher, 1988). Microbial degradation of carbohydrates would 

contribute to the lower proportion of furan pyrolysates in the humic HPO fractions 

of the surface waters.  

 

However, some carbohydrate units may be incorporated into the aromatic or humic 

structures of NOM (Abbt-Braun et al., 1989; Almendros et al., 1997; Lu et al., 2000; 

2001). The AFs of the Uruguay and Gartempe HPO fractions may therefore derive 

from the macromolecular incorporation of diagenetically altered carbohydrates, as 

opposed to intact polysaccharides and sugars typically found in the COL fraction. 

The alteration of plant polysaccharides into polymeric material yielding abundant 

furan pyrolysates was previously demonstrated during the formation of aquatic 

NOM from upland soils (Huang et al., 1998).  
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The relatively low furan concentrations in the HPO and COL fractions of both waste 

water effluents (cf. the surface waters) probably relates to limited input of cellulose 

and other polysaccharide material from terrestrial sources. Additionally, advanced 

biological treatment of these waters would have contributed to a significant 

reduction in bioavailable carbohydrates.  

 

High furan concentrations were also detected by flash pyrolysis of the surface water 

fractions. However, aside from 2-methylfuran and 2,5-dimethylfuran, the major 

furan products of flash Py, which included furancarboxaldehyde, 

methylfurancarboxaldehyde, methylfuranone, hydroxydimethylfuranone, 

methylfurandione, benzofuranone and 1,3-isobenzofurandione, were different to 

those detected by MSSV Py. Several other PS-derived products were also detected 

by flash pyrolysis but not MSSV pyrolysis, including acetic acid, 5,6-dihydro-4-

methyl-pyran-2-one, 5-hydroxy-2-hydroxymethyl-4-pyrone, 1,4:3,6-dianhydro-α-D-

glucopyranose, levoglucosenone and levoglucosan (Helleur et al., 1985; Pouwels et 

al., 1987; Dignac et al., 2005), some of which are evident in the flash Py data of B-

COL shown in Figure 4.4. The latter three compounds are indicative of intact 

carbohydrate structures (Pouwels et al., 1987, Pastorova et al., 1994).  

 

 
Figure 4.4 TIC obtained by 550˚C/20s flash pyrolysis GC-MS analysis of  
  Brittany colloids. Relative abundance is indicated in italics. AA =  
  acetic acid, Lge = levoglucosenone, Lga = levoglucosan, Fc =  
  furancarboxaldehyde, MFc =  methylfurancarboxaldehyde,     =  
  other polysaccharide related products. Additional peak assignments 
  correspond to products listed in Table 4.1.    
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The different thermal conditions of MSSV and flash pyrolysis no doubt contribute to 

the different polysaccharide products detected with each approach. Cellulose is 

prone to two thermal decomposition pathways (Pouwels et al., 1989). The very high 

thermal energies applied by flash pyrolysis favour depolymerisation and production 

of anhydro sugars such as levoglucosan and levoglucosenone (Pouwels et al., 1989; 

Saiz-Jimenez, 1994; Wershaw, 2004), as well as pyranones, furanones and furans. 

Lower thermal energies (< 300˚C) promote bond scission, dehydration and 

formation of CO, CO2 and char via carbonyl, carboxyl and hydroperoxide 

intermediates (Wershaw, 2004). The more moderate but confined thermal conditions 

of MSSV pyrolysis appear to favour the formation of thermodynamically stable alkyl 

furan products (Templier et al., 2005a). Despite the qualitative distinctions both 

MSSV and flash pyrolysis of the NOM fractions showed quantitatively similar 

trends with the concentrations of polysaccharide products detected in the order 

surface COL > surface TPI > waste COL > surface HPO > waste HPO.  

 

4.3.3 Furan distributions of standards 

MSSV analyses were conducted on several potential precursors of the carbohydrate 

structural units of NOM including glucose, N-acetyl-D-glucosamine, cellulose and 

chitin. Cellulose is a major structural component of wood (Hedges et al., 1985). 

Chitin is a natural polymeric amino sugar present in insect exoskeletons and fungal 

cell walls (Stankiewicz et al., 1996) and is similar in structure to the N-acetyl amino 

sugars (e.g. peptidoglycans) of microbial cell walls.  

 

The TICs from the MSSV pyrolysis (300˚C/72hr) of cellulose and chitin are shown 

in Figure 4.5. The major cellulose products included the same alkyl and acetyl 

substituted furans (32 %) detected from the NOM fractions, as well as alkyl 

cyclopentenones (14 %), cyclopentanones and cyclohexanones (9 %). Low MW 

aliphatic and alicyclic products (12 %), such as alkyl (≤ C3) substituted butanes, 

pentanes, hexanes and their corresponding alkenes and also alkyl (≤ C4) 

cyclopentenes and cyclohexenes were also prominent. Aliphatic products may be 

attributed to the removal of hydroxy groups from glucose units with concomitant 

unsaturation and ring opening, as previously observed in pyrolysates of thermally 

modified carbohydrates (Almendros et al., 1997). Several alkyl indanes, thought to 
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be formed by rearrangement, aromatisation and depletion of oxygen-containing 

groups (Almendros et al., 1997), were also detected. 

 

 
 
Figure 4.5 Partial TICs and relative abundances of the major O-products  
  detected by 300˚C/72hr MSSV pyrolysis GC-MS of a) cellulose and 
  b) chitin. Peak assignments correspond to products listed in Table 4.1. 
  Relative peak abundances in italics and a pie chart reflecting relative 
  proportions of major pyrolysate groups are both indicated for a and b. 
 

The MSSV pyrolysate of chitin was dominated by nitrogen-containing products (ca. 

60 %), which are discussed in detail in Chapter 5. Alkyl furan products (14.4 %) 

were also significant; however cyclic ketones and aliphatic products were very 

minor, suggesting their occurrence in NOM is probably due to cellulose precursors. 

Alkyl furans were also major MSSV products of the monosaccharides glucose and 

N-acetyl-D-glucosamine (Appendix 5).  
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The alkyl furan products from the MSSV analysis of cellulose, chitin and lignin are 

highlighted in the summed ion chromatograms of Figure 4.6.  The broad 

distributions detected from the cellulose and chitin standards (and glucose and N-

acetyl-D-glucosamine standards) were very similar to those detected from the NOM 

fractions, providing convincing evidence that carbohydrates are the major source of 

these NOM pyrolysates. The low yields of alkyl furans (2 %) observed by MSSV Py 

of the lignin standard (Fig 4.6c) are likely derived from residual hemicellulose. 13C-

NMR and pyrolysis analyses of refractory soil OM have shown that hemicellulose 

can survive acid treatment by protection from the lignin complex (Quenea et al., 

2005a).  

 

 
Figure 4.6 Summed m/z 68+72+81+82+95+96+109+110+123+124  
  chromatograms showing the alkyl furan distribution from 300˚C/72hr 
  MSSV pyrolysis GC-MS analysis of a) cellulose, b) chitin and c)  
  lignin. Peak assignments correspond to products listed in Table 4.1. 
  Relative abundances of a-c are indicated in italics. 
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Tetrahydro furan, which is a component of the lignin structural network (Leenheer et 

al., 2003b), was detected in high concentration from the U-HPO fraction (Fig. 4.3c). 

However this product was not detected from the lignin standard, suggesting its 

MSSV Py detection may be dependent on biodegradation to first release this 

structural unit from the lignin macromolecule. Polycarboxylated tetrahydrofurans 

may be produced by opening the aromatic moieties of the lignin structure during 

diagenetic mineralization (Leenheer et al., 2003b). Tetrahydro furan was not 

detected from B-COL, consistent with a limited contribution from lignin. 

 

4.3.4 Benzofurans 

The summed ion chromatograms of Figure 4.7 show the distribution of methyl and 

dimethyl benzofurans detected from the Suwannee River fulvic acid standard and the 

G-TPI and B-COL fractions. Flash pyrolysis also yielded alkyl benzofurans but in 

lower abundance than MSSV Py. The HPO fractions generally produced the highest 

concentrations of benzofurans. These products were particularly abundant from 

SRFA, whilst much lower concentrations of the previously discussed alkyl and 

acetyl furans were detected. In contrast, benzofurans were relatively minor products 

of the B-COL fraction and the cellulose standard compared to AFs (Figure 4.5).   

 

These results suggest that benzofurans are thermally formed from diagenetically 

altered polysaccharide structures that are sequestered into HPO NOM fractions. 

Benzofurans were shown to be major products of humic-like material produced by 

acid catalysed dehydration of glucose (Almendros et al., 1997). They have also been 

found to be relatively stable pyrolysis products of the residues of thermally treated 

cellulose and humic substances (Almendros et al., 1997; Lu et al., 2001). This has 

been attributed to the transformation of carbohydrates into heterocyclic aromatic 

structures during heating (Lu et al., 2001).  

 

Benzofurans were detected in only trace quantities from the HPO fractions of the 

waste water effluents and not at all from the colloids. The degradation of 

carbohydrate precursors during biological treatment would account for the much 

lower concentrations of these products from the waste waters. 
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Figure 4.7 Summed m/z 131+132+145+146 chromatograms showing the  
  distribution of alkyl (C1-C2) benzofurans detected by 300˚C/72hr  
  MSSV pyrolysis GC-MS of a) SRFA, b) Gartempe TPI and c)  
  Brittany COL. Peak assignments correspond to products listed in  
  Table 4.1. Relative abundances of a-c are indicated in italics. 
 

4.3.5 Alkyl cyclopentenones 

Alkyl 2-cyclopenten-1-ones were detected in similar concentrations in each of the 
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Bruchet, 1985; Saiz-Jimenez and De Leeuw, 1986b; Bruchet et al., 1990; Reeves 

and Francis, 1997; Christy et al., 1999; van Heemst et al., 2000; Page et al., 2002; 

2003), although they may also derive from other NOM precursors. Cyclisation of 
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aliphatic polycarboxylic acids represents one alternative formation pathway 

(Bracewell et al., 1980). Guo et al. (2003) showed that the abundance of 

cyclopentenone pyrolysates increased with decreasing molecular size of riverine 

NOM fractions, whereas furan based carboxaldehyde products decreased, which was 

attributed to different sources for cyclopentenone and alkyl furan products.  It is also 

possible that the cyclopentenones are products of humified sugars. 

 

The dimethyl to tetramethyl cyclopentenone distributions from the MSSV pyrolysis 

of cellulose and SRFA are shown in Figure 4.8. These distributions were very 

similar to each other as well as the corresponding polymethyl cyclopentenone 

distribution of the other surface water NOM samples, providing convincing evidence 

of a carbohydrate origin for these NOM pyrolysates. Alkyl cyclopentenones were 

not detected from the COL and HPO fractions of the waste waters, consistent with 

the quantitative trends observed for the other polysaccharide pyrolysates.  

 
Figure 4.8 Summed m/z 67+109+110+123+124+138 chromatograms showing 
  the distribution of alkyl (C2-C4) 2-cyclopenten-1-ones detected by  
  300˚C/72hr MSSV pyrolysis GC-MS analysis of a) SRFA and b)  
  cellulose. Peak assignments correspond to products listed in Table  
  4.1. Relative abundances of a-b are indicated in italics. 
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MSSV pyrolysis of the NOM fractions also yielded several short chain C4-C6 

aliphatic ketones, including 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3-

pentanone, 4-methyl-3-pentanone, 2-methyl-3-pentanone, 3-hexanone and 2-

hexanone. These low MW products were not correlated with any specific sources, 

although several were previously reported to be pyrolysates of thermally treated 

carbohydrates (Almendros et al., 1997). The cellulose standard showed low 

concentrations of 2-pentanone and 3-hexanone. However, these products were 

detected in all of the surface and waste water NOM fractions in high concentrations, 

implying non-carbohydrate origins. 

 

4.3.6 Alkyl phenols 

4.3.6.1 Alkyl phenol distributions of surface waters  

Alkyl phenols (APs) were the most abundant O-pyrolysates of the HPO and TPI 

fractions of the surface waters. The AP distribution detected from the HPO fractions 

of the Uruguay and Gartempe River as well as the SRFA standard are shown in 

Figure 4.9. The low MW alkyl (≤ C2) phenols showed the highest abundances and 

were able to be assigned by mass spectral comparison with library spectra and 

literature data (van Heemst et al., 1996; Iopollo et al., 1992; Iopollo-Armanos et al., 

1995; Bastow et al., 2005). However, the isomeric identities of the C3 and C4 

alkylated phenols detected in lower concentrations, were difficult to assign on this 

basis alone. Nevertheless, characteristic mass fragmentation patterns provide some 

degree of product differentiation, as shown in Table 4.1. The river HPO fractions 

and the SRFA standard showed very similar AP distributions, suggesting a common 

origin. The corresponding TPI fractions of Uruguay and Gartempe Rivers showed 

similar AP distributions, however their abundance was approximately half that of the 

HPO fractions. The Brittany COL showed very few APs, consistent with the low 

polyphenolic content of COL fractions. 

 

Much higher concentrations of APs were consistently detected by MSSV Py of the 

NOM fractions compared to flash pyrolysis. The AP profiles detected by flash 

pyrolysis of all NOM fractions were similar, and the SRFA data is shown (Fig. 4.9d). 

Phenol and methyl phenols were prominent flash pyrolysates, but C2-C3 substituted 

phenols were present in much lower abundance and no larger alkyl (≥ C4) phenols 
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were detected. Similarly, no APs with > C3 substituents were detected (Templier et 

al., 2005a) by previous Curie point pyrolysis of the Gartempe fractions. 

Nevertheless, the relative AP concentrations of the respective NOM fractions 

detected by both MSSV and flash Py were consistent, with surface HPO > surface 

TPI > surface COL. 

 

 
 
Figure 4.9 Summed m/z 94+107+108+121+122+135+136+150 chromatograms 
  showing the distribution of alkyl (≤ C4) phenols detected by  
  300˚C/72hr MSSV pyrolysis GC-MS of a) Uruguay HPO; b)  
  Gartempe HPO; and c) SRFA. The inset chromatogram (d)  shows the 
  alkyl phenol distribution from flash pyrolysis of SRFA. Peak  
  assignments correspond to products listed in Table 4.1. Relative  
  abundances of a-d are indicated in italics. 
 

 

4.3.6.2 Alkyl phenol distributions of standards 

Alkyl phenols are commonly detected products from the flash pyrolysis analysis of 

aquatic NOM and humic substances, as well as sedimentary OM and crude oils. 
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They have been attributed to a range of different sources including lignin (Saiz-

Jimenez and de Leeuw, 1986b, Bruchet et al., 1990; Templier et al., 2005a), 

tyrosine-containing proteins and peptides (Chiavari and Galletti, 1992), hydrolysable 

and condensed tannins (Galletti and Reeves, 1992), polycarboxylic acids (Bracewell 

et al., 1980) and algal-derived polyphenols (van Heemst et al., 1996). However, the 

capacity to distinguish the origins of phenolic pyrolysates by flash pyrolysis has 

typically been limited (van Heemst et al., 1999). Terrestrially derived vascular plant 

biopolymers such as lignin and tannin are thought to be a major source of the 

phenolic structural constituents of refractory humic substances of black waters, such 

as the Gartempe, Uruguay and Suwannee Rivers (e.g. Hedges et al., 1985; Malcolm, 

1990; Leenheer, 2004; Templier et al., 2005a). To investigate the source diagnostic 

value of the APs detected by MSSV Py of aquatic NOM fractions, several selected 

standards representative of potential AP precursors were additionally analysed by 

MSSV pyrolysis. 

 

4.3.6.2.1 Lignin  

The TICs obtained by MSSV pyrolysis (300˚C/72hr) of the lignin and syringic acid 

standards are show in Figure 4.10. Alkyl phenols were major MSSV products of 

lignin, accounting for ca. 36 % of the pyrolysate signal. Other key products of this 

sample included methoxy benzenes and tricyclic aromatic hydrocarbons, the latter 

probably from adsorbed terpenoids. The characteristic methoxyphenol structural 

units of lignin were absent. Syringic acid, a monomeric sub-structure of biodegraded 

lignin (Pancost and Boot, 2004), also showed low concentrations of APs but these 

were relatively minor compared to alkyl methoxybenzenes and methoxyphenols.    

 

The high concentrations of methoxylated phenols and benzenes from syringic acid, 

and the absence of the former and low concentrations of the latter from the lignin 

standard were curious.  The lignin macromolecule contains a number of 

methoxylated phenolic units similar to the dimethoxyphenol structure of syringic 

acid. Like the present syringic acid data, large scale MSSV pyrolysis of pure 2-

methoxyphenol (guaiacol) or 2,6-dimethoxyphenol also reported preservation of the 

methoxy functional groups in the products (Vane and Abbot, 1999). However, the 

greater structural complexity of the lignin matrix compared to pure methoxyphenol 

compounds will likely contribute to many secondary interactions and synergistic 
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effects. Methoxy groups may be more readily reduced in a more hydrogen rich 

environment. 

  

 
 
Figure 4.10 Partial TICs detected by 300˚C/72hr MSSV pyrolysis of a) syringic 

acid; and b) standard lignin. Relative peak abundances in italics and a 
pie chart reflecting relative proportions of major pyrolysate groups 
are both indicated for a and b. * = dimethylmethoxybenzenes, G = 
guaiacol, dMB = dimethoxybenzene, dMT = dimethoxytoluene, tMT 
= trimethoxytoluene, MG = methylguaiacol, tMG = trimethylguaiacol. 
Other peak assignments correspond to the products listed in Table 4.1. 

 

 

The summed ion chromatograms of Figure 4.11a highlight the distribution of APs 

detected from the MSSV pyrolysis of lignin at 300˚C (72hr). The major AP products 

included 2-methylphenol, 2,6-, 2,4- and 2,5-dimethylphenol, 2,4,6-trimethylphenol. 
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and several unspecified C3–C4 alkyl substituted phenols (P31, P35-6 and 

tetramethylphenol). These products were also detected in high concentrations in the 

surface water NOM fractions, signifying that lignin is a likely precursor of many of 

the AP pyrolysates of NOM. 

 

 
 
Figure 4.11 Summed m/z 94+107+108+121+122+135+136+150 chromatograms 

showing the distribution of APs detected by MSSV pyrolysis of the 
lignin standard at a) 300˚C/72h and b) 340˚C/72h. Peak assignments 
correspond to products listed in Table 4.1. Relative abundances of a-b 
are indicated in italics. * = C2 alkyl methoxybenzenes. 
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those typically detected by flash pyrolysis. Distinctive flash pyrolysates of lignin 

include methoxyphenols (guaiacols), which are unique indicators of this vascular 

plant biopolymer (e.g. Hedges and Mann, 1979; Ertel et al., 1984), whilst alkyl 

phenols are generally detected in lower abundance (van Heemst et al., 1999). 
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The flash pyrolysis detection of methoxyphenols in environmental samples provides 

unequivocal evidence of lignin contribution (e.g. Ertel et al., 1984; Ertel and Hedges, 

1984; Saiz-Jimenez and de Leeuw; 1986a; 1986b; Opsahl and Benner, 1997; 

Pancost and Boot, 2004). Lignin input to the Uruguay surface water (HPO) was 

confirmed by both flash pyrolysis and thermochemolysis (Figure 4.12). 

Characteristic methoxyphenol products included 2-methoxyphenol (guaiacol), 4-

ethyl-2-methoxyphenol (ethylguaiacol), 2,6-dimethoxyphenol (syringol), 2-

methoxy-4-vinylphenol (4-vinylguaiacol), 2-methoxy-4-propenylphenol (eugenol) 

and 1,2-dimethoxy-4-propenylbenzene (methyl eugenol). Separate Curie-point 

pyrolysis and TMAH thermochemolysis analyses of the Gartempe HPO fraction by 

Templier et al. (2005a) also confirmed the presence of these lignin sourced 

pyrolysates. However, direct evidence of lignin biomarkers in aquatic NOM samples 

is often limited (Leenheer et al., 2003a; McIntyre et al., 2005).  For example, the 

extensively characterised SRFA has shown limited evidence of lignin products 

(Leenheer and Rostad, 2004). The relatively high concentrations of the 

methoxyphenol products of U-HPO reflect exceptionally high lignin concentrations 

of this NOM. 

 

Some methoxylated aromatics (e.g. anisole, methylanisole and dimethylanisoles) 

were detected by MSSV pyrolysis of the lignin standard; however these products 

were present in significantly lower abundance than the APs. Closed system thermal 

treatment may result in chemical transformations of the lignin structural framework, 

analogous to the catagenesis of lignin in sedimentary systems. Previous 

characterisation studies of sedimentary maturity sequences, using 13C-NMR, flash 

pyrolysis and chemical oxidation, have shown that methoxy phenol structures of 

lignin are transformed into alkyl phenols with increasing maturation (Hayatsu et al., 

1986; Hatcher, 1988; Hatcher et al., 1988; Stout et al., 1988; Bates and Hatcher, 

1989; Hartgers et al., 1994b). 
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Figure 4.12 TICs from the GC-MS analysis of Uruguay HPO following a) 

550˚C/20s flash pyrolysis and b) TMAH thermochemolysis. Relative 
abundances of a-b are indicated in italics. G = guaiacol, vP = vinyl 
phenol, EG = ethylguaiacol, vG = 4-vinylguaiacol , S = syringol, E = 
eugenol, ME = methyleugenol, C = catechol, 4MBA = 4-
methoxybenzoic acid, VA = vanillic acid, VeA = veratric acid, 
MVeA = 4-methoxyveratric acid, dMVeA = 3,4-dimethoxyveratric 
acid, tMBA = 3,4,5 trimethoxy-benzoic acid, FA = fatty acids, * = 
methoxy benzylic ketones, x = benzenedicarboxylic acids (possible 
contaminants). Additional peak assignments correspond to the 
products listed in Table 4.1. Products in bold were detected as their 
methyl esters by thermochemolysis. 

 

 

Coalification involves the diagenetic and catagenetic alteration of sedimentary 

organic remains of plants by microbial activity, burial, and geothermal heating 

(Behar and Hatcher, 1995). A number of sequential chemical reactions occur with 

increasing maturity. With respect to lignin structures, these include thermal cleavage 

of aryl alkyl ethers, transalkylation, demethylation of methoxyls to form catechols, 
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subsequent dehydroxylation to form alkyl phenols and both oxidation and reduction 

of the aromatic side-chain groups to form carboxylic acids and propyl substituents, 

respectively (Botto, 1987; Hatcher et al., 1988; 1989b; Hatcher, 1990; Behar and 

Hatcher, 1995; Hatcher and Clifford, 1997; Payne and Ortoleva, 2001). Guaiacols 

and catechols are prominent constituents of thermally immature fossil woods and 

coals (e.g. less than lignite rank; Hatcher, 1990). However, they are significantly 

diminished or absent  in thermally mature type III kerogens and higher rank 

bituminous and subbitumous coals, where APs are the dominant products  (e.g. Stout 

et al., 1988; Hatcher et al., 1988; 1989a; 1992; Sinninghe-Damsté et al., 1992b; 

Hartgers et al., 1994b; Hatcher and Clifford, 1997; Almendros et al., 1998).  

 

MSSV thermal treatment appears to parallel the natural diagenetic and catagenetic 

alteration of lignin, resulting in the reduction of methoxy groups and the formation 

of high concentrations of APs. These structural trends increase with thermal 

maturity and the 340˚C/72hr MSSV Py of lignin resulted in complete removal of 

methoxy functional groups and higher concentrations of APs (Fig. 4.11b). Similar 

results have been observed from previous confined pyrolysis studies of extant and 

naturally coalified fossil woods (Ohta and Venkatesan, 1992; Behar and Hatcher, 

1995), immature coals (Mansuy et al., 1995; Michels et al., 2000) and swamp humic 

substances (Lu et al., 2001). The molecular composition of a lignin derived biofuel, 

produced by high pressure closed system pyrolysis/solvolysis, has also been shown 

to include major alkyl (C1-C4) phenol products with only minor occurrences of 

methoxy phenols (Barth and Kleinert, 2008; Kleinert and Barth; 2008a; 2008b).  

 

Whilst APs dominated the MSSV Py data of the lignin standard several alkyl (≤ C2) 

methoxy benzenes (8 %) were still detected.  However, only minor concentrations (< 

2 %) of these methoxy aromatics (e.g. A, MA, EA, see Table 4.1) were detected 

from the U-HPO and G-HPO fractions, in which lignin input was confirmed by flash 

pyrolysis and thermochemolysis. This discrepancy between the MSSV data of the 

NOM fractions and the fresh lignin may be attributed to early microbial degradation 

of lignin derived moieties, which involves demethylation of methoxy groups to form 

catechols and oxidative degradation of the C3 side chain to form aromatic carboxylic 

acids (Saiz-Jimenez and de Leeuw, 1984b; Kirk and Farrell, 1987; Huang et al., 

1998; Filley et al., 2000; Leenheer et al., 2003b). The presence of demethoxylated 
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lignin structures is supported by the detection of catechol in high concentration by 

flash pyrolysis of U-HPO (Fig. 4.12a).In addition to the intact lignin biomarkers 

detected by flash pyrolysis of U-HPO, several thermochemolysis products also 

reflected a high degree of microbial degradation of lignin (Fig. 4.12b). These 

included a variety of benzylic ketones (e.g. 4-methoxybenzaldehyde, 3,4-

dimethoxybenzaldehyde, 3,4-dimethoxyacetophenone, 3,4,5-

trimethoxybenzaldehyde) and methyl esters of aromatic carboxylic acids (e.g. 3- and 

4-methoxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid (vanillic acid), 3,4-

dimethoxybenzoic acid (veratric acid), 3-(4-methoxyphenyl)-2-propenoic acid (4-

methoxycinnamic acid), 3-(3,4-dimethoxyphenyl)-2-propenoic acid (3,4-

dimethoxycinnamic acid) and 3,4,5-trimethoxybenzoic acid). Similar distributions of 

oxidised lignin products were detected by previous thermochemolysis analysis of G-

HPO (Templier et al., 2005a).  

 

Apart from low concentrations of vanillic acid, phenolic benzenecarboxylic acids 

were not detected by flash Py analysis of the NOM samples due to thermal 

decarboxylation of carboxyl groups (Saiz-Jimenez, 1994; del Rio et al., 1996). 

Likewise, these products were not detected by MSSV Py. This may be due to the 

similar occurrence of thermal decarboxylation (Behar and Hatcher, 1995; Lu et al., 

2001) or reduction of acidic functional groups to alkyl groups. The latter process is 

supported by the much high concentrations of alkylated phenols in the MSSV data. 

The AP products of the riverine HPO fractions may therefore reflect highly modified 

lignin structures derived from surrounding vascular plant vegetation. It has been 

shown from various studies that lignin in natural waters is substantially degraded 

prior to entry into aquatic systems (Frazier et al., 2003; Huang et al., 1998; Cotrim 

da Cunha et al., 2001), with the structural changes affording solubility to typically 

insoluble lignin biopolymers (del Rio et al., 1998). 

 

Detailed analysis of the MSSV Py, flash Py and thermochemolysis data provides 

convincing evidence that intact or partially degraded lignin structural moieties are 

the major source of the high concentrations of APs from the MSSV pyrolysis of the 

Gartempe and Uruguay HPO fractions. Furthermore, lignin moieties of NOM 

subject to diagenetic processes may reflect much higher concentrations of AP 

metabolites than their methoxyphenol structural precursors, in which case the MSSV 
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Py detection of APs may be a more sensitive indicator of lignin input than 

unequivocal guaiacol and syringyl based biomarkers.  

 

4.3.6.2.2 Tannin 

Plant tannins, natural polyphenolic compounds concentrated in bark and leaf tissues 

(Hernes and Hedges, 2004), are another potential source of the AP products of 

surface water NOM. Condensed tannins are polymers and oligomers of three ring 

flavanols (e.g. quercetin) linked by C–C bonds, while hydrolysable tannin is made 

up of gallic acid units or its derivatives, often ester-linked to sugars such as glucose 

(Hernes and Hedges, 2000; Hernes and Hedges, 2004). 13C NMR analysis has 

identified condensed and hydrolysable tannins in refractory soil OM (Quénéa et al., 

2005a; Nierop and Filley, 2007), black water humic substances (Leenheer, 2004, 

Leenheer and Rostad, 2004) and sediments (Wilson and Hatcher, 1987).  

 

Although tannins are more soluble than lignin, they are also more reactive in both 

biotic and abiotic humification processes (Filley et al., 2006) and often undergo 

oxidative coupling reactions leading to new structures (Wershaw 2004). Tannins can 

be incorporated into aquatic humic substances via quinone intermediates which can 

undergo subsequent condensation reactions with proteins and amino acids (Hernes 

and Hedges, 2000; Leenheer and Rostad, 2004). The ready bioavailability and 

extensive diagenetic alteration of tannins means they preserve little information 

about plant source or microbial processes (Lorenz et al., 2000). Tannin phenols do 

not contain methoxy substituents and their aromatic substitution patterns are 

different to lignin (Leenheer and Rostad, 2004).  

 

MSSV pyrolysis was conducted on several tannin monomers including gallic acid, 

ellagic acid and quercetin. These standards yielded very few GC-MS detectable 

products. Figure 4.13 a-b shows the TICs obtained by MSSV pyrolysis of quercetin, 

a flavanol unit present in condensed tannins, at the off-line MSSV temperatures of 

300 and 340˚C (72hr). At 300˚C only 2-propanone, 2-butanone, 2-pentanone, 

benzene, toluene and ethylbenzene were detected. The 340˚C analysis yielded higher 

concentrations of these products, as well as several additional products including 

isopropylbenzene, phenol, 4-methylphenol, methylbenzofuran and 

dimethylbenzofuran. However, these products provide little diagnostic utility. In 
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comparison, flash pyrolysis of quercetin yielded several characteristic polyphenols 

including catechol, 4-methylcatechol and 1,3,5-benzenetriol. 

 

These results suggest that the polyphenol structures of tannins are not amenable to 

characterization by MSSV pyrolysis. Their different structures may contribute to 

very different thermal behaviour during MSSV pyrolysis compared to lignin. Thus, 

the contribution of tannin precursors to the AP distributions detected by MSSV Py 

of the NOM fractions may be minimal. However, it is possible that diagenetically 

altered tannin structures will have very different MSSV Py behavior than the 

monomers studied here, particularly if incorporated into a more stable humic form. 

 

 
Figure 4.13 TICs from the MSSV pyrolysis (72 hr) of quercetin at a) 300˚C, b) 
  340˚C; and c) 550˚C/20sec flash pyrolysis of quercetin. Bx = alkyl (≤ 
  C3) benzenes, 2p = 2-propanone, C = catechol, mC = methyl catechol, 
  BT = 1,3,5-benzenetriol. Other peak assignments correspond to  
  products listed in Table 4.1. Relative abundances of a-c are indicated 
  in italics.  
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4.3.6.2.3 Amino acid and protein 

Proteinaceous material containing the phenolic amino acid tyrosine is another major 

source of phenolic pyrolysates of aquatic organic matter (Bruchet, 1985; van Heemst 

et al., 1999). The MSSV pyrolysis data of D-tyrosine and bovine serum albumin 

(BSA) protein are both shown in Figure 4.14. Tyrosine comprises ca. 5 % of the 

amino acid composition of BSA (Stein and Moore, 1949). Phenols accounted for > 

96% of the total pyrolysate of tyrosine. The major products of both samples were 

phenol, 2- and 4-methylphenol and 2- and 4-ethylphenol. A previous flash pyrolysis 

study of tyrosine also reported predominant phenol and 4-methylphenol (van Heemst 

et al., 1999). BSA also showed low concentrations of several additional C3 and C4 

APs. Phenolic products accounted for ca. 18 % of the integrated peak area of BSA.  

 

 
Figure 4.14 Summed m/z 94+107+108+121+122+135+136+150  chromatograms 
  showing the distribution of alkyl phenols detected by 300˚C/72hr  
  MSSV pyrolysis of a) D-tyrosine; and b) BSA protein. Peak  
  assignments correspond to products listed in Table 4.1. Relative  
  abundances of a-b are indicated in italics.  
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The phenol distributions of these standards contrasts the low concentrations of 

phenol, 2-ethyl- and 4-ethyl phenol detected from the lignin standard (Fig. 4.11).  

These were amongst the significant AP products of the river HPO samples, 

suggesting combined contribution of lignin and proteinaceous sources. Proteins and 

amino acids are not typically concentrated in the humic material of rivers, but they 

can be preserved by sequestration or occlusion within recalcitrant humic structures 

(Knicker and Hatcher, 1997; Zang et al., 2000). However the lack of co-occurring 

nitrogen products of protein precursors in the HPO fractions of the river waters 

suggests this is unlikely (Chapter 5).  

 

4.3.6.3 Alkyl phenol distributions of waste waters  

High concentrations of alkyl phenols were also detected from the MSSV Py analysis 

of the HPO fractions of the St. Julien and Naintré waste water effluents. Their 

prevalence in the post treated waste waters suggests their structural precursors are 

resistant to biological treatment. The summed ion chromatograms of Figure 4.15 

show the AP distribution of these samples. The ≤ C3 AP profile of both S-HPO and 

N-HPO closely resembled the AP distribution of the surface water HPO fractions, 

although isopropyl phenol was enriched in the Naintré data.  

 

The general similarity of the (≤ C3) AP profiles of the surface (Fig. 4.9) and waste 

waters may indicate a similar precursory origin from lignin derived humic 

substances, despite the absence of products containing methoxy functional groups 

from flash pyrolysis of N-HPO and S-HPO (Jarusutthirak, 2002). Refractory humic 

substances of drinking water inputs in waste waters have been shown to be 

recalcitrant to treatment (Namour and Müller, 1998; Drewes et al., 2003). 

Alternatively, phenolic metabolites of algae or treatment biota (van Heemst et al., 

1996; 1999) may also contribute to the AP products detected in the waste waters.  
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Figure 4.15 Summed m/z 94+107+108+121+122+135+136+150+149+   
  163+164+177+178+192 chromatograms showing the distribution of 
  alkyl (≤ C7) phenols detected by 300˚C/72hr MSSV  pyrolysis GC-MS 
  analysis of a) St. Julien HPO and b) Naintré HPO. Peak assignments 
  correspond to products listed in Table 4.1. Relative abundances of a-f 
  are indicated in italics. 
 

 

The N-HPO fraction additionally yielded many extended C4-10 alkyl substituted 

phenols. The C4-C7 APs were detected in relatively high concentration and are 

highlighted in Figure 4.15. Although the specific isomeric identities of these 

additional products were not assigned, the mass spectra suggest the presence of 
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MW APs (C8-C10) were detected and are highlighted in the summed ion 

chromatograms of Figure 4.16. Several of these products were tentatively assigned 

as t-octylphenol, methyl-t-octylphenol, dimethyl-t-octylphenol and unspecified 

isomers of nonylphenol. Octyl- and nonylphenols are components of alkylphenol 

ethoxylates used as industrial surfactants (Petrovic et al., 2002). These chemicals are 
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of significant health concern because they are endocrine disrupting compounds and 

are not efficiently degraded in WWTPs (di Corcia et al., 1998; Petrovic et al., 2002). 

 

Although some of the C8-C9 APs can be correlated with industrial surfactants 

(Petrovic et al., 2002), the origins of most of the high MW branched alkyl (≥ C5) 

phenols of N-HPO are unconfirmed. The ≤ C7 AP products may reflect partial 

microbial degradation of the alkyl side chains of the octyl- and nonylphenols. The 

high degree of alkyl substitution evident in N-HPO may alternatively reflect a 

significant refractory alkyl linked macromolecular component. Their exclusive 

detection from the waste water HPO fractions indicates that they may derive from 

phenolic metabolites of microbiota (van Heemst et al., 1996; 1999). An alternative 

source may be tyrosine moieties of cross-linked melanoidin-type structures (Dignac 

et al., 2000; van Heemst et al., 1999; 2000). Dignac et al. (2000) suggested that 

chemically and biologically refractory OM present in waste water effluents may be 

formed by recondensation reactions between degraded peptides and carbohydrates, 

enhanced by the intense activity during biological treatment. Waste water 

hydrophobic fractions may contain substantially higher protein input from microbial 

biomass, than surface water humic substances. 

 
Figure 4.16 Summed m/z 135+149+163+206+220+234 chromatograms showing 
  the distribution of C8-C10 alkyl phenols from the 300˚C/72hr MSSV 
  pyrolysis of N-HPO. Relative abundance is indicated in italics. Peak 
  assignments correspond to products listed in Table 4.1.    = C10 APs 
  identified by a molecular ion of m/z 234. 
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No APs with substituents ≥ C4 were detected from the surface waters and only a few 

of the C5-6 products were present in low concentrations from the S-HPO data. This 

suggests the high MW alkyl (≥ C4) phenols reflect an important distinction between 

the phenolic constituents of the surface and waste waters, as well as between the 

different waste waters. In contrast, the AP distributions from the flash pyrolysis 

analyses of all the samples showed little distinction (Jarusutthirak, 2002). The flash 

pyrolysis data was consistently dominated by the lower MW alkyl (≤ C2) phenols, 

and no highly substituted ≥ C4 alkyl phenols were detected. The milder thermal 

conditions of MSSV pyrolysis may facilitate the softer macromolecular release of 

more highly alkylated phenolic structural constituents, analogous to the high 

concentrations of more highly substituted alkyl aromatic products detected by MSSV 

Py compared to flash Py (Chapter 3).  

 

4.3.7 Sulfur-containing pyrolysates 

Similar proportions of sulfur-containing products (ca. 2-5%) were generally detected 

from the MSSV pyrolysis of all of the NOM fractions. Exceptions were the Brittany 

COL (< 1 %) and Naintré waste water HPO fractions (7.5 %%, Figure 5.2) which 

produced very low and high S-product concentrations, respectively.  

 

Alkyl thiophenes (ATs) were the major S-pyrolysates detected in higher 

concentrations by MSSV Py than flash Py. Reduced organic S compounds (e.g. thiol, 

sulfide and thiophene) have been reported to account for more than 50% of the S 

content of aquatic and soil humic substances (Xia et al., 1998). Low MW ATs are 

often detected from the flash pyrolysis of soil and aquatic humic substances (Saiz-

Jimenez and de Leeuw, 1986b, Lu et al., 2001) but are not generally associated with 

any specific precursor. The MSSV distribution of the alkyl (≤ C4) thiophenes 

detected from the HPO fractions of the Uruguay surface water and Naintré waste 

water are shown in Figure 4.17. Similar distributions were detected from both 

samples, however the U-HPO data showed enhanced abundance of 3-

methylthiophene, whilst the C4 ATs were detected only from the N-HPO fraction. 

 

Alkyl thiophenes may derive from the thermal alteration of sulfur-containing amino 

acids such as cysteine and methionine. High concentrations of ATs were detected by 
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MSSV pyrolysis of the S-containing amino acid L-cysteine (Fig. 4.18), confirming 

this as a potential precursor.  

 

 

 
Figure 4.17 Summed m/z 97+98+111+112+125+126+140 chromatograms  
  showing the distribution of alkyl thiophenes detected by 300˚C/72hr 
  MSSV pyrolysis of a) Naintré HPO; and b) Uruguay HPO. Peak  
  assignments correspond to products listed in Table 4.1. Relative  
  abundances of a-b are indicated in italics. 
 
 

 
Figure 4.18 Summed m/z 97+98+111+112+125+126+140 chromatograms  
  showing the distribution of alkyl thiophenes detected by 300˚C/72hr 
  MSSV pyrolysis of L-cysteine. Peak assignments correspond to  
  products listed in Table 4.1. Relative abundance is indicated in italics. 
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Koopmans et al., 1995; 1996; 1997; 1998; Putschew et al., 1998; Zhiguang et al., 

1998). The occurrence of ATs in geological environments is thought to result from 

inter- and intramolecular interaction of inorganic sulfur (i.e. H2S, polysulfides) with 

functionalised lipids during early diagenesis (Hartgers et al., 1994b). The same 

origin was also attributed to ATs detected in recent marine sediments by flash 

pyrolysis (Deshmukh et al., 2001). Thermal formation of these products during 

MSSV Py probably accounts for their high concentrations in the waste waters, in 

which H2S and biomass are both expected to be at high levels. 

 

With increasing thermal maturity organic sulphides are converted to 

dibenzothiophenes via thiophene and benzothiophene intermediates (Schmid et al., 

1987). The dominance of alkylthiophenes and absence of alkylbenzothiophenes in 

the MSSV pyrolysates of the NOM fractions is consistent with a low level of thermal 

maturity following 300˚C/72 hrs thermal treatment (Sinninghe Damsté et al., 1992b). 

The distribution patterns of the ATs in the MSSV pyrolysis data of the NOM 

fractions were also qualitatively similar to those previously reported from flash 

pyrolysates of immature sulfur rich coals (Sinninghe Damsté et al., 1992b). 

 

Several additional S-pyrolysates were detected from the waste water HPO fractions, 

including thiophenol, thioanisole, methylthioanisole and methylbenzothiazole. These 

products are highlighted in the summed ion chromatograms of Figure 4.19. 

Thiophenol was also detected in particularly high abundance in the TPI fraction of 

the Uruguay River. Further investigation is required to establish the thermal 

formation mechanisms and origins of these S-pyrolysates, but they may correspond 

to metabolites of sewage organics or pharmaceuticals (Göbel et al., 2004), possibly 

also reflecting an interaction with humic NOM. Whilst MSSV pyrolysis has 

provided increased access to several S-structural constituents of NOM, their 

relatively low concentrations and as yet undefined precursory origins remain a 

challenge to source characterization studies. 
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Figure 4.19 Summed m/z 110+124+138+149 chromatograms showing the 

distribution of thiophenol, alkyl (C1) thioanisoles and 
methylbenzothiazole detected by 300˚C/72hr MSSV pyrolysis of a) 
Naintré HPO and b) St. Julien HPO waste water fractions. Peak 
assignments correspond to products listed in Table 4.1. Relative 
abundances of a-b are indicated in italics. 

 

 

4.4 Conclusions 
The O- and S-product distributions detected in high concentrations by MSSV 

pyrolysis of HPO, TPI and COL fractions of several riverine surface waters (SW) 

and two waste water (WW) effluents were evaluated. The major O- products 

included alkyl (≤ C4) and acetyl furans, alkyl (≤ C2) benzofurans, alkyl (≤ C10) 

phenols and low MW cyclic ketones (e.g. alkyl cyclopentenones and 

cyclopentanones). The prominent S-products included alkyl (≤ C4) thiophenes, alkyl 

(≤ C1) thioanisoles (C0-C1) and low MW alkyl sulfides and thiols. Comparison of the 

O- and S-product distributions of the NOM samples with several standard materials 

helped establish more definitive biomolecular origins. 
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Alky furans (AFs), benzofurans and cyclic ketones, consistently detected by both 

MSSV and Flash pyrolysis, were attributed to carbohydrate sources following 

correlation of their high concentrations with several carbohydrate standards, 

including glucose, cellulose and chitin. In the NOM fractions, AF concentrations 

followed the order SW COL > SW TPI > SW HPO > WW COL > WW HPO. Their 

enrichment in the SW COLs confirms the significant contribution of polysaccharide-

rich soluble microbial products. The HPO and TPI surface water fractions showed 

the highest concentrations of alkyl benzofurans and cyclic ketones, thus attributed to 

diagenetically altered polysaccharide structures sequestered into humic NOM 

fractions. The reduced concentration of these products in the HPO fraction of the 

waste waters and the low concentrations of AFs in the COL fractions of the waste 

waters reveals the rapid biodegradation of carbohydrates during advanced biological 

treatment.  

 

Alkyl (≤ C10) phenols (APs) were the dominant O-pyrolysates of the HPO and TPI 

fractions of the surface and waste waters. The MSSV AP concentrations followed 

the general order SW HPO > SW TPI ~ WW HPO > WW COL > SW COL. Flash 

pyrolysis also consistently yielded APs; however their distribution was dominated 

by low MW parent and mono-substituted products. The much higher MSSV Py 

concentrations of more highly substituted phenols carrying greater structural detail 

allowed for a more comprehensive evaluation of structural origins than previously 

possible.   

 

In the surface waters, APs were strongly correlated with lignin structural moieties.  

MSSV pyrolysis of lignin yielded high concentrations and similar distributions of 

APs to those detected from the NOM fractions. In contrast, MSSV analysis of several 

tannin standards produced very few GC-MS detectable products, suggesting these 

precursors are not amenable to the MSSV thermal conditions. The thermally driven 

formation of APs from methoxyphenol structures of lignin seemed analogous to the 

transformations of these biochemical precursors during well studied diagenetic 

processes (e.g. within soils and aquatic sediments) and geothermal heating in 

subsurface environment (i.e. coals and kerogen). The generation of easily detectable 

alkyl phenol products of less accessible microbial degradation products of lignin by 
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MSSV pyrolysis represents an important analytical attribute for NOM 

characterisation studies.   

 

The ≤ C3 AP distributions of both waste waters were very similar to the surface 

waters, possibly indicating a common lignin source. The Naintré HPO fraction 

additionally yielded many extended C4-10 alkyl substituted phenols, possibly 

reflecting a significant refractory alkyl linked macromolecular component of the 

humic substances from source waters or phenolic metabolites of indigenous or 

treatment microbiota. Several of the larger alkyl substituted phenols, including alkyl 

(≤ C2) tert-octyl phenols and nonylphenols, indicated the presence of industrial 

chemicals used in surfactants. Octyl and nonyl phenols are considered endocrine 

disrupting compounds (EDCs). Additional evidence for the presence of industrial 

byproducts in the waste waters was evident by the detection of several low MW 

dioxanes, possibly derived from polychlorinated dibenzo-p-dioxins, also considered 

EDCs.  None of the highly substituted ≥ C4 alkyl phenol products detected by MSSV 

pyrolysis were detected by flash pyrolysis of the waste water fractions. 

 

The NOM fractions showed several distinctive S-products in relatively low 

concentrations (cf. O-products) consistent with low organic S levels of aquatic NOM. 

Alkyl thiophenes (ATs) were detected from all NOM fractions but were present in 

highest concentrations in the waste waters. These products may derive from S-

containing amino acids or may reflect interaction between inorganic sulfides and 

functionalised humic moieties in these waters or during MSSV thermal treatment. 

Additional S-pyrolysates, including thiophenol, thioanisole, methylthioanisole and 

methylbenzothiazole, were also significant products of the waste waters. Their origin 

remains unclear, but they may be potential indicators of microbial metabolites of 

sewage organics or pharmaceuticals.
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Chapter 5 
              

 

 Thermal release of nitrogen products 

from aquatic NOM by MSSV pyrolysis  
 

Some of the work in this chapter has been published as: 

 
Berwick, L.J., Greenwood, P.F., Kagi, R.I., Croué, J-P., 2007. Thermal release of 

 nitrogen-organics from natural organic matter (NOM) by micro-scale sealed 

 vessel (MSSV) pyrolysis. Organic Geochemistry 38, 1073-1090. 

 

5.1 Introduction 
Organic nitrogen (N) constituents of NOM are efficiently released by the thermal 

conditions of MSSV pyrolysis. Their sensitive detection by this approach can help to 

identify N-organic precursors of NOM, including those that may lead to the 

formation of N-containing disinfection by-products (N-DBPs) during potable water 

treatment. N-DBPs of drinking waters have attracted considerable attention, as some 

(e.g. N-nitrosodimethylamine, NDMA) may pose a greater health risk than 

trihalomethanes, haloacetic acids and other commonly regulated DBPs (Shang et al., 

2000; Najm and Trussel, 2001; Westerhoff and Mash, 2002; Lee et al., 2007). DBPs 

of toxicological significance continue to be a major challenge to water utilities, 

regulators and policy makers. A better understanding of the structure and origin of 

nitrogen moieties of NOM, and their behaviour during water treatment processes, 

will improve the management and quality of potable water resources. 

 

Major organic nitrogen precursors of NOM include proteins, peptides, amino sugars, 

amino acids, nucleic acids, alkaloids and porphyrins. These are common 

biochemicals of vascular plant, algal and microbial sources. Freshwater resources 

may also be impacted by anthropogenic organic N-compounds from agricultural 

chemicals (e.g. fertilisers) and wastewater effluents. However, the degradation, 
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incorporation and role of these chemicals during the diagenetic formation of aquatic 

NOM are not well understood. 

 

The precise structure and origin of organic nitrogen components of aquatic, soil and 

sedimentary NOM is often ambiguous (Schulten et al., 1997; Schulten and Schnitzer, 

1998), partly due to the analytical challenges imposed by their low abundance (0.5-

10 % by weight but typically at the lower end; Westerhoff and Mash, 2002) and 

structural functionality. Solid-state 13C- and 15N-NMR spectroscopy has shown that 

much of the organic nitrogen incorporated during soil humification occurs in the 

amide form (Knicker et al., 1995; 1996; 1997). Flash pyrolysates of proteins, 

peptides and simple amino acids have shown a variety of aliphatic and aromatic 

amines, nitriles and N-heterocyclic products, often containing alkyl or other 

functional group substituents (e.g. Bruchet, 1985; Boon and de Leeuw, 1987; 

Chiavari and Galletti, 1992; Stankiewicz et al., 1996; Basiuk and Douda, 2000). 

Accordingly, N-pyrolysates are frequently attributed to amino acid and 

proteinaceous precursors in flash pyrolysis studies of aquatic and soil NOM (e.g. 

Saiz-Jimenez and de Leeuw, 1986b; Bruchet et al., 1990; Templier et al., 2005a).  

 

Biodegradation or other diagenetic processes can lead to the alteration of 

biomolecular nitrogen precursors of terrestrial soil and aquatic NOM, resulting in the 

incorporation of very different N-structures. N-heterocyclic compounds, including 

pyrroles, pyridines and pyrrolidines, were identified by flash pyrolysis of 

diagenetically altered macromolecular soil N intractable to wet chemical (e.g. acid 

hydrolysis) and other spectroscopic analyses (Schulten et al., 1997). Furthermore, 

chemical degradation and pyrolysis GC-MS studies have indicated that N-

heterocycles are also significant contributors to humic substances of aquatic and 

recent sedimentary environments (Ikan et al., 1992; Patience et al., 1992; Schulten 

and Schnitzer, 1998; Schulten and Gleixner, 1999).  

 

To extend the molecular characterisation of the nitrogen constituents of NOM, 

MSSV pyrolysis was conducted on the hydrophobic (HPO), transphilic (TPI) and 

colloid (COL) fractions of NOM from several surface waters and two secondary 

waste water effluents, including some rich in nitrogen or containing specific N-

organic functionalities. Comparison of the N-product distributions of NOM with a 
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variety of standard materials representing potential N-organic precursors was also 

performed to help improve the source diagnostic value of N-pyrolysates. Flash 

pyrolysis analyses were conducted to provide a more traditional fast pyrolysis data 

set for comparative purposes.  

 

5.2 Experimental 
5.2.1 NOM samples 

XAD resin and colloid fractions of selected surface water and waste water samples 

characteristic of particular aquatic environments were studied.  

 

5.2.1.1 Surface water NOM 

Gartempe River (Vienne, France) and Arroyo Sanchez River (Rio Negro, Uruguay) 

were selected to represent humic source waters. Detailed descriptions of the 

collection, fractionation and isolation of the HPO and TPI fractions of these waters 

were provided in Chapter 3.2.1.1. The colloid fraction of Brittany Reservoir 

(Brittany, France), representative of a eutrophic surface water environment, was also 

analysed. This reservoir experiences periodic algal blooms, and is dominated by 

autochthonous NOM (Lee et al., 2006). The HPO (24 %), TPI (26.5 %) and colloid 

fractions (49.5 %) of the Brittany source water NOM were isolated by 3.5 kDa 

membrane dialysis followed by XAD resin separation (Lee et al., 2005), following 

the same procedure (Leenheer et al., 2000) described for the wastewater effluent 

fractions in Chapter 3.2.1.3. 

 

5.2.1.2 Waste water effluent OM 

Isolation of the colloid and XAD resin fractions of Saint Julien (Saint Julien l’Ars, 

France) and Naintré (Naintré, France) secondary wastewater effluent OM (Ef-OM) 

was described in Chapter 3.2.1.3. 

 

5.2.2 Representative samples and standards 

5.2.2.1 Membrane biofoulant and cultured Frateuria aurantia 

A membrane filtration biofoulant and an isolate of the acetic acid bacterium 

Frateuria aurantia were selected to be representative of extant microbiota rich in 
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proteins and polysaccharides. The collection, isolation and general characteristics of 

the organic fractions of these samples were described in Chapter 2.2.1. 

 

5.2.2.2 Nitrogen standards 

The nitrogen-containing model compounds and standards analysed included a 

protein (bovine serum albumin, BSA), a peptide (pentaglycine), an amino sugar 

(chitin), amino acids (D-tyrosine, D-tryptophan, L-proline, L-glutamic acid, L-

cysteine, L-phenylalanine, L-arginine, L-leucine) and a porphyrin 

(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). All were commercially sourced 

from Sigma-Aldrich and analysed without further purification. A mixture of D-

glucose and D-tyrosine was also separately analysed to specifically investigate the 

potential occurrence of Maillard processes during MSSV pyrolysis. 

 

5.2.3 Molecular analysis 

5.2.3.1 MSSV pyrolysis GC-MS 

MSSV pyrolysis of < 0.1 - 1 mg of sample was performed according to the 

procedure described in Chapter 2.2.2.1. All data correspond to MSSV analysis I (i.e. 

300˚C for 72 hr with the MSSV injector at a constant 300˚C). The peptide, protein 

and porphyrin standards and the Naintré colloid fraction were all studied at several 

additional temperatures over the range 260 – 340˚C/72 hr. GC-MS analysis of the 

volatile MSSV pyrolysates was performed using one of two instrument 

configurations, depending on availability.  

1. Hewlett-Packard (HP) 6890 GC coupled to a 5973 mass selective detector (MSD), 

helium carrier gas at 34 kPa head pressure, 30 m x 0.32 mm i.d. x 0.25 μm DB5-MS 

capillary column (J&W Scientific).  

2. HP 5890 Series II GC coupled to a 5971 MSD, helium carrier gas at 55 kPa head 

pressure, 30 m x 0.25 mm i.d. x 1 μm phase ZB5-MS capillary column 

(Phenomenex). 

 

Samples were run with splits of between 20 – 50 mL min-1 and one of two GC oven 

temperature programmes.  

1. An initial temperature of 40˚C, 2 minutes isothermal, then programmed at 4˚C 

min-1 to 310˚C with 20 minutes isothermal. In this case the products were 
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cryogenically trapped for 1 minute at the start of the column using liquid nitrogen 

prior to commencing the GC-MS analysis. 

2. An initial temperature of -20˚C (using liquid CO2 cryogenic control), 1 min 

isothermal then increased at 8˚C min-1 to 40˚C, then 4˚C min-1 to 310˚C, held 

isothermal for 20 minutes. The latter was used to improve the chromatographic 

resolution of early eluting components.  

 

Full scan analyses were performed over the range m/z 50 – 550 at ca. 4 scans s-1 for 

both instruments. The mass spectrometer was operated in positive ion electron 

impact mode at 70 eV with a transfer line temperature of 310˚C and a source 

temperature of 250˚C. Tentative peak identifications were based on GC elution times 

and mass spectral comparisons with library spectra (Wiley 275 and NIST 05 

databases) and previously published data. 

 

5.2.3.2 Flash pyrolysis GC-MS 

Flash pyrolysis GC-MS analyses (550˚C/20s) of the sample suite were performed 

according to the procedure describe in Chapter 3.2.2.2. 
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5.3 Results and Discussion 
5.3.1 Nitrogen-product distributions detected by MSSV and flash pyrolysis  

The suite of NOM fractions yielded a wide variety of nitrogen-containing 

pyrolysates (N-products). The major N-products of MSSV pyrolysis, tentatively 

identified on the basis of mass spectral interpretation, were low MW alkyl 

substituted pyrroles (≤ C5), pyridines (≤ C4), pyrazines (≤ C3) and pyridinamines (≤ 

C2), as well as amine substituted mono-aromatics such as aniline and amino phenols. 

Condensed N-heterocyclic products, including alkyl quinolines (≤ C1), indoles (≤ C4), 

carbazoles (≤ C3), β-carbolines (≤ C1) and aminonaphthalenes (≤ C1) were detected 

in lower concentrations.  

 

The overall N-product distributions detected by MSSV and flash pyrolysis GC-MS 

of the colloid fraction of the Saint Julien waste water effluent (S-COL) and the 

membrane filtration biofoulant (BF) are shown in Figure 5.1. Both pyrolysis 

techniques generated rich product distributions, including a variety of N-products.  

The generally high proportions of N-pyrolysates from these analyses parallel the 

high organic nitrogen content of S-COL (5.95 %; Jarusutthirak, 2002) and the BF 

(4.30 %; Croué et al., 2003b). MSSV pyrolysis consistently yielded much higher 

concentrations of N-products than flash pyrolysis from these, and the other TPI and 

COL fractions analysed in this study, indicating the release of additional N-structural 

units with the more moderate thermal conditions of the MSSV experiment. The 

higher MSSV abundance of N-products was particularly pronounced for the 

biofoulant. N-products were difficult to identify from the flash pyrolysate of this 

sample due to co-elution or poor quality of mass spectra. The high proportion of 

structurally polar primary fragments released by fast pyrolysis of extant biomass 

probably contributes to the complexity of this data.
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Figure 5.1 TICs obtained by 300˚C/72hr MSSV pyrolysis and 550˚C/20s flash pyrolysis GC-MS analysis of a-b) St. Julien colloids and c-d) 
  membrane biofoulant. MF = methylfuran; DMF = dimethylfuran; P0-1 = alkyl (≤ C1) phenols; B1-2 = alkyl (≤ C2) benzenes,  
  nCx = n-alkanes. Other peak assignments correspond to N-products listed in Table 5.1 or within the text of section 5.3.1. Relative 
  abundances of a-d are indicated in italics.  
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The flash pyrolysates of both the S-COL fraction and BF did reveal several N-

products not detected by MSSV pyrolysis, including acetamides (acetamide, 3-

acetamidofuran; AF, 2-acetamidopyridine; AP, N-(2,4-dihydroxyphenyl)-acetamide; 

HPA, N-(3-aminophenyl)-acetamide; APA, and 3-acetamido-5-acetylfuran; AAF), 

aromatic nitriles (e.g. benzeneacetonitrile; BAN, 1,2-benzenediacetonitrile; BDAN, 

and benzenepropanenitrile; BPN) and oxygenated N-heterocyclic compounds (e.g. 

methyl hydantoin; MH, N-acetylpyrrole; AcP, pyrrole-2-carboxaldehyde; PC, 2,5-

pyrrolidinedione; PD). This demonstrates the complementary N-organic structural 

data that can be obtained using the two methods.  

 

5.3.2 N-product distributions of surface and waste water NOM 

The different N-product profiles detected by MSSV pyrolysis of the surface and 

waste water fractions reflect variation in the nature and abundance of their N-

precursors. TICs from the MSSV pyrolysis of selected samples, including Gartempe 

River hydrophobic (G-HPO) and transphilic (G-TPI) fractions, Brittany reservoir 

colloids (B-COL) and Naintré wastewater colloids (N-COL), are shown in Figure 

5.2. The major N-products identified are listed in Table 5.1. The relative abundances 

of all N-products detected by MSSV pyrolysis of each of the NOM fractions are 

provided in Figure 5.3. These values were calculated as described in Chapter 3.3.2 

(pg 71). The N-product distributions and semi-quantitative data of the various 

samples will be referred to in detail in the following sub sections. 

 

5.3.2.1 HPO and TPI fractions of surface water NOM 

Alkyl pyridines and pyrroles were the only N-products detected from the HPO 

fractions of the Arroyo Sanchez (data not shown) and Gartempe Rivers (Fig. 5.2 a). 

These products accounted for a relatively minor proportion of the total pyrolysates 

(ca. 4.2 % and 3.4 % respectively), with alkyl phenols detected in much higher 

concentrations (see Chapter 3 and 4). A high proportion of phenolic products, 

attributed to lignin precursory input, was also previously reported from Curie-point 

pyrolysis of the G-HPO fraction (Templier et al., 2005a). Flash pyrolysis of both 

surface water HPO fractions produced slightly higher concentrations of N-products 

than MSSV Py, possibly indicating the presence of thermally resistant N-moieties. 
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Figure 5.2 TICs obtained by 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) Gartempe HPO, b) Gartempe TPI, c) Brittany colloids and
  d) Naintré waste water colloids. MF = methylfuran; DMF = dimethylfuran; P0-3 = alkyl (≤ C3) phenols; B0-3 = alkyl (≤ C3)  
  benzenes. Other peak assignments correspond to N-products listed in Table 5.1. Relative abundances of a-d are indicated in  
  italics. 
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Table 5.1 Major nitrogen products detected by 300˚C/72hr MSSV pyrolysis  
  GC-MS analyses of aquatic NOM fractions.  
 

Compound Identification MW Peak Label 

Pyrrole 67 Pl 
Pyrazine 80 Pz 
Pyridine 79 Pd 
Methylpyrroles 81 x 
Methylpyrazines 94  

Methylpyridines 93 * 
Ethylpyrroles 95  

Ethylpyrazines 108  

Ethylpyridines 107  

Dimethylpyrroles 95  

Dimethylpyrazines 108  

Dimethylpyridines 107  

Ethylmethylpyrroles 109  

Ethylmethylpyridines 121  

Ethylmethylpyrazines 122  

Trimethylpyrroles 109  

Trimethylpyridines 121  

Aniline 93  An 
1-methyl-2-pyrrolidinone 99  MP 
Ethyldimethylpyrroles 123  

Tetramethylpyrroles 123  

C4 pyridines 135  

Pyridinamine 94 PA 
Methylpyridinamine  108 MPA 
C5 pyrroles 137  

Dimethylpyridinol 123 DMPO 
Dimethyl pyridinamine 122 DMPA 
Dimethyl aminophenols 137 DMAP 
1-(1-cyclopenten-1-yl)-pyrrolidine 137 cPl 
1-(1-cyclopenten-1-yl)-piperidine  151 cPi 
Quinoline 129 Q 
Methylquinoline 143 MQ 
Indole 117 In 
Methylindole 131 MIn 
Ethylindole 145 EIn 
Dimethylindoles 145 DMIn 
3-acetylindole 159 AcIn 
Trimethylindoles 159 TMIn 
1-naphthalenamine 143 NA 
2-methyl-1-naphthalenamine 157 MNA 
C4 indoles 173 C4In 
Carbazole 167 C 
Methylcarbazoles 181 MC 
1-methyl-9H-Pyrido[3,4-b]indole (harman) 182 H 
9H-Pyrido[3,4-b]indole (β-carboline) 168 nH 
2-ethylperimidine 195  EP 
Dimethylcarbazoles 195 DMC 
Ethylcarbazoles 195 EC 
Trimethylcarbazoles 209 TMC 
Aminocarbazole 182 AC 

 

 



 

Chapter 5 - Nitrogen products 150

 
Figure 5.3 Proportion of N-products in the total pyrolysates detected by  
  300˚C/72hr MSSV pyrolysis GC-MS of several NOM fractions and 
  the biofoulant. 
 

 

Amide was the only nitrogen form detected by 15N-NMR spectroscopic analysis of 

the G-HPO fraction (Templier et al., 2005b). The low concentration of N-

pyrolysates from this sample suggests that amide moieties are relatively recalcitrant 

to thermal degradation. The high thermal resistance of certain amide components of 

plants (peptides) and algae (algaenans) has been established by characterisation 

studies of sedimentary OM (sed-OM) using 15N-NMR and pyrolysis techniques 

(Derenne et al., 1991; 1993; Knicker et al., 1996a; 1996b). Interestingly, 13C- and 
15N-NMR studies have shown that protein-derived amides (Knicker et al., 1996; 

1997) represent most of the organic nitrogen incorporated during humification in soil 

and sed-OM. During diagenesis, peptides and proteins are generally rapidly 

degraded or mineralised by microbial and/or enzymatic degradation; however, part 

of their nitrogen can be incorporated into a recalcitrant organic form (Knicker and 

Skjemstad, 2000). Intact proteinaceous material has been identified in humic acids 

(Zang et al., 2000), ancient sediments (Knicker et al., 1996) and fossil remains 

(Poinar and Stankiewicz, 1999). The preservation of proteins in humic acids has 

been linked to sequestration by encapsulation or occlusion within non-extractable 
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pyrolysis methods means analytical characterisation may quantitatively under 

represent the nitrogen component of humic fractions of NOM. 

 

MSSV pyrolysis of the TPI fractions of the surface waters yielded much higher 

concentrations of N-products than their HPO fractions (23.2% for G-TPI and 27.2 % 

for U-TPI), despite the similar nitrogen contents (e.g. G-HPO – 1.9 % N, G-TPI – 

2.6 % N). The higher N-pyrolysate concentration of G-TPI (Fig. 5.2b) parallels the 

more significant amide, amine and pyrrole structural moieties of this sample 

previously identified using 15N-NMR analysis (Templier et al., 2005b). The ability 

of amino acid and peptide groups, major functionalities of N-organic NOM 

precursors, to form hydrogen bonds with surrounding water molecules contributes to 

the hydrophilic character of NOM (Westerhoff and Mash, 2002). Hence, organic 

nitrogen is concentrated in the more polar HPI and TPI fractions (Croué et al., 

2003a). Flash pyrolysis of the G-TPI and U-TPI fractions showed significantly fewer 

N-products than MSSV pyrolysis. Nevertheless, higher concentrations of N-products 

from the TPI compared to the HPO fractions were consistently observed by both 

MSSV and flash pyrolysis. 

 

5.3.2.2 Colloid fractions of surface water NOM 

N-products were detected in highest concentration from the Brittany River colloid 

fraction (Fig. 5.2c), accounting for ca. 52 % of the total pyrolysate area. Colloid 

fractions of NOM typically contain high organic N content (Sigleo et al., 1982; 

Rostad et al., 1997; Croué et al., 2006). Soluble microbial products (SMPs), 

including proteins, peptides, amino acids, amino sugars and carbohydrates, derived 

from the decomposition of cellular material of aquatic micro-organisms, have been 

shown to concentrate in colloids (Rostad et al., 1997; Leenheer et al., 2000; 

Leenheer et al., 2001a; Jarusutthirak, 2002; Croué et al., 2006). The Brittany 

reservoir experiences periodic algal blooms (Lee et al., 2006) and N-heterocycles 

such as pyrroles and indoles have been shown to be enriched in fossil algal 

sediments (Knicker et al., 1996). SMPs, which are enriched in N-organic precursors, 

are a more likely source of the high concentrations of N-heterocyclic pyrolysates of 

B-COL than the typically low quantities of organic N released from plant 

degradation.   

 



 

Chapter 5 - Nitrogen products 152

5.3.2.3 Waste water effluent OM 

Different concentrations of N-pyrolysates were detected from the HPO fractions of 

the Naintré and St. Julien waste water effluents. N-HPO yielded significantly higher 

concentrations of N-products (ca. 17.8 %) compared to S-HPO (ca. 3.7%), which 

showed a similar proportion of N-products to the surface water fractions. The colloid 

fractions yielded much higher overall abundances of N-products, but again these 

were higher from N-COL (47.5 %) than S-COL (33.4 %). The organic nitrogen 

content of the Naintré HPO (4.0 %) and COL (6.6 %) fractions was shown to be 

higher than the St. Julien HPO (2.8 %) and COL (5.9%) fractions (Jarusutthirak, 

2002). The extended biological treatment (i.e. anoxic/aerobic processes) employed at 

the St. Julien WWTP would be expected to result in increased microbial degradation 

of N-organic precursors.  

 

The major difference between the N-product distributions of the waste water (e.g. N-

COL shown in Fig 5.2d) and surface water colloids (i.e. B-COL) was the much 

higher proportion of higher MW N-products, including alkyl indoles, carbazoles and 

β-carbolines, from the waste waters. 

 

The MSSV pyrolysis distribution of several N-product classes of selected TPI and 

COL NOM fractions were investigated in more detail and were correlated with 

corresponding data from a variety of potential N-organic NOM precursors. The low 

MW N-heterocyclic products, prominent from all fractions, and higher MW N-

products, generally more abundant from the waste water effluents, will be separately 

discussed.  

 

5.3.3 Low MW N-heterocyclic products of NOM fractions 

Low MW heterocyclics were the most abundant N-pyrolysates of all the NOM 

fractions studied. The summed ion chromatograms of Figure 5.4 highlight the 

distribution of several of the major products detected by MSSV and flash pyrolysis 

of the G-TPI and B-COL surface water fractions, and the membrane biofoulant. 

Similar distributions of N-heterocyclic products were also detected in high 

abundance from the St. Julien (Fig. 5.1a; Berwick et al., 2007) and Naintré waste 

water colloids (Fig. 5.13b). The major MSSV products were alkyl (C1-C5) pyrroles, 

alkyl (≤ C4) pyridines, alkyl (≤ C3) pyrazines and alkyl pyridinamines (≤ C2).  
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The G-TPI (Fig. 5.4a) and U-TPI (Appendix 6) samples showed a slightly higher 

proportion of alkyl pyridines, whilst alkyl pyrroles and pyridinamines were 

proportionally more abundant from the Brittany colloids and the membrane 

biofoulant (Fig. 5.4b). Similar N-heterocyclic products were detected from the 

biofoulant (Fig. 5.4c) and B-COLs. Previous FTIR and 13C-NMR spectroscopy and 

pyrolysis GC-MS studies have shown that colloids are major contributors to the OM 

that irreversibly fouls ultra- and nano-filtration membranes (Speth et al., 1998; Howe 

and Clark, 2002; Croué et al., 2003b; Makdissy et al., 2004; Park et al., 2006). One 

significant distinction between these samples was the higher abundance of alkyl 

pyrazines from the biofoulant. This may reflect minor contribution of additional N-

precursors to the foulant material or the occurrence of secondary processes involving 

other structural components, such as the Maillard reaction which is discussed further 

in section 5.3.5. 

 

The summed ion data of Figure 5.4 clearly shows the much higher concentrations of 

N-heterocyclic products detected by MSSV pyrolysis compared with flash pyrolysis 

of NOM. Additional GC detectable N-containing fragments are accessed with the 

more moderate thermal conditions of the MSSV experiment. Flash pyrolysis 

generated only the ≤ C2 alkyl pyrroles and pyridines in relatively low concentrations. 

The higher concentrations of more highly substituted alkyl (C3-C5) pyrroles and 

alkyl (C2-C3) pyridines detected by MSSV Py may reflect the release of less altered 

alkyl heterocycles from the macromolecular matrix.  In contrast, many alkyl 

substituents may not survive the excessive thermal energy of flash pyrolysis, in 

which the parent and mono-methylated products were dominant. Higher MSSV Py 

concentrations of more highly substituted alkyl naphthalenes and alkyl phenols were 

similarly recognized in Chapter 3 and 4.  



 

Chapter 5 - Nitrogen products 154 

 
Figure 5.4 Summed m/z 79+80+93+94+106+107+108+109+120+121+122+123 chromatograms showing the distribution of low MW  
  N-heterocyclic products detected by 300˚C/72hr MSSV pyrolysis and 550˚C/20sec flash pyrolysis GC-MS analysis of a)  
  Gartempe TPI; b) Brittany colloids and c) membrane bio-foulant. P0-2 = alkyl (≤ C2) phenols. Other peak assignments correspond
  to N-products listed in Table 5.1. Relative abundances are indicated in italics.
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The flash pyrolysis data did include low concentrations of several oxygenated N-

heterocycles not detected by MSSV pyrolysis, including N-acetylpyrrole (AcP), 2-

acetylpyrrole, N-methyl-2-acetylpyrrole, pyrrole-2-carboxaldehyde (PC), methyl 

hydantoin (MH), 2,5-pyrrolidinedione (PD), and 2-acetamido pyridine (AP). Several 

of these were previously observed in flash pyrolysates of a range of amino acids, 

peptides, proteins (Chiavari and Galletti, 1992; Basiuk and Douda, 2000; 2001) and 

model melanoidins (Tehrani et al., 2002). The oxygen group of these products may 

be vulnerable to the closed MSSV pyrolysis conditions. 

 

5.3.4 Low MW N-heterocyclic products of representative standards 

MSSV pyrolysis was conducted on a variety of standards representative of potential 

N-organic precursors of NOM to improve the diagnostic value of low MW N-

heterocyclic products. The standards included a protein, a peptide, a porphyrin, 

chitin and several amino acids. Partial TICs showing the distribution of low MW N-

heterocyclic products from these standards are given in Figure 5.5. N-heterocycles 

were detected from all standards but subtle variations in the isomeric distribution and 

abundance of these products was evident. The relative abundances of the major N-

product classes detected from the peptide, protein and chitin standards are shown in 

Figure 5.6 and are discussed in further detail in the following sub sections dedicated 

to the different standard types.  

 

5.3.4.1 Amino acids 

Only a few of the amino acids analysed by MSSV pyrolysis produced appreciable 

concentrations of the low MW alkylated heterocyclic N-products common to the 

NOM fractions. L-glutamic acid (Fig. 5.5a) yielded high concentrations of pyrrole 

and alkyl (C1-C4) pyrroles, while the major N-products of L-cysteine and L-arginine 

were alkyl pyridines and pyridinamines, respectively. Many of the dominant MSSV 

products of the amino acids were not detected in the aquatic NOM fractions. For 

example, the amino acid proline, structurally related to pyrrole, generated a broad 

range of N-products (Appendix 7) but very low concentrations of the alkyl 

substituted pyrroles prominent from the NOM fractions.  
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Figure 5.5 Partial TICs obtained by 300˚C/72hr MSSV pyrolysis GC-MS  
  analysis of a) L-glutamic acid; b) porphyrin (2,3,7,812,13, 17,18- 
  octaethyl-21H,23H-porphine); c) pentaglycine); d) BSA protein; and 
  e) chitin. B1-B2 = alkyl benzenes P0-2 = alkyl (≤ C2) phenols. Other  
  peak assignments correspond to N-products listed in Table 5.1.  
  Relative abundances of a-e are indicated in italics. 
 

 

Retention time (min) 

6 8 10 12 14 16 18 20 22 24 

10 12 14 16 18 20 22 24 26 

8 10 12 14 16 18 20 22 24 26 28

10 12 14 16 18 20 22 24 26 

10 12 14 16 18 20 22 24 26 

R
el

at
iv

e 
ab

un
da

nc
e

 

a) Amino acid 
3.9e6 

d) Protein 
3.0e6 

c) Peptide 
1.8e6 

e) Chitin 
1.6e6 

R
el

at
iv

e 
ab

un
da

nc
e

 

R
el

at
iv

e 
ab

un
da

nc
e

 

R
el

at
iv

e 
ab

un
da

nc
e

 

Pl 

Pd 

* 

x 

x 

Dimethylaniline 

2-pyrrolidinone

Pl Pd 

x 

x 

* 

Trimethyl 
pyrazole MPA

DMPO 

Dimethyl  
imidazole PD

Pl+Pd 

B1

* 

x 

B2 P0

P1

Pz 

Pd 

Pl 
* 

x 

x 
* 

* 

MPA DMPO 
 

PA

P2

P2 

b) Porphyrin 
9.2e6 

R
el

at
iv

e 
ab

un
da

nc
e

 

DMAP 



 

Chapter 5 - Nitrogen products 157

 
 
Figure 5.6 Relative abundances of major nitrogen product classes detected by  
  300˚C/72hr MSSV pyrolysis GC-MS of pentaglycine, BSA protein 
  and chitin. 
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susceptible to rapid biodegradation (Westerhoff and Mash, 2002) they are typically 

present in very low concentrations in aquatic NOM (typically < 5% of DOC; 

Thurman, 1985; Westerhoff and Mash, 2002). 
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(C1-C3) pyrrole rich distributions were observed for both the peptide and protein 

samples. Proteinaceous material is therefore a likely source of the prominent alkyl 
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methylpyridinamines and dimethylpyridinol. The much higher concentrations of low 

MW N-heterocyclic products of pentaglycine, reflected in the semi-quantitative data 

of Figure 5.6, may be due to more efficient thermal breakdown and rearrangement 

of the amide bonds of the structurally simpler peptide than the protein. 
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The thermal conversion of proteinaceous amide functionalities to N-heterocyclic 

structures such as pyrroles and imidazoles has been demonstrated by 15N-NMR 

analysis of thermally treated biomass (Knicker et al., 1996; Knicker and Skjemstad, 

2000). Thermal oxidation studies of peat have also demonstrated the progressive 

formation of N-heterocyclics with increasing temperature. This was ascribed to the 

thermal degradation of other labile N-structures, as well as newly synthesized 

structures (Almendros et al., 2003). Furthermore, organic nitrogen in mature 

sediments and petroleum is predominantly present as heterocyclic aromatic 

structures derived via diagenetic and catagenetic alteration of proteinaceous 

biological source materials (Baxby et al., 1994).  

 

Besides the alkyl pyrroles, the only other low MW N-heterocyclic products of BSA 

were pyridine, methyl pyridine and ethyl pyridine (Fig 5.5d). These were very minor 

products compared to other aromatic products such as toluene, ethylbenzene, alkyl 

phenols and aromatic nitriles (e.g. benzonitrile, benzeneacetonitrile, 

benzenepropanenitrile), which likely derive from specific amino acid constituents of 

the protein. Alkyl (C1-C2) benzenes, aromatic nitriles and alkyl phenols were major 

MSSV products of the aromatic amino acids phenylalanine (Chapter 3.3.4) and 

tyrosine (see section 5.3.4 and Figure 5.7a), respectively.  

 

Low concentrations of alkyl pyrroles were also the only low MW N-heterocycles 

detected from the MSSV pyrolysis of the F. aurantia bacterial isolate (Berwick et al., 

2007). This protein rich biomass did produce other significant N-pyrolysates, 

including long-chain n-alkyl nitriles, aromatic nitriles and alkyl indoles. n-Alkyl 

nitriles may originate from the dehydration of amides formed either as primary 

pyrolysis products, or as secondary products by reaction of fatty acids with NH3 

(Simoneit et al., 2003). n-Alkyl nitriles have also previously been identified in 

pyrolysates of non-hydrolysable amide containing biomacromolecules from the outer 

cell walls of green algae (Derenne et al., 1993), but were not detected from the NOM 

fractions. The thermal resistance of these amides has been established using 15N-

NMR and pyrolysis techniques (Derenne et al., 1991; 1993). This may account for 

the relatively low concentrations of low MW N-products detected from F. aurantia. 

Extraction of the lipid component of the bacterial isolate may facilitate an improved 

characterisation of the proteinaceous component. 
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5.3.4.3 Amino sugars 

Chitin is a naturally occurring water soluble polymer of N-acetylglucosamine found 

in fungal cell walls and arthropod exoskeletons. It is studied here as a representative 

of polymeric N-acetyl amino sugars (e.g. peptidoglycan) present in microbial and 

algal cell walls. Chitin produced the highest proportion of low MW N-heterocyclic 

products of all the samples studied (Fig. 5.6). Alkyl pyridines were detected in much 

higher abundance from chitin than the peptide and protein samples (Fig. 5.6). Alkyl 

pyridines have also previously been detected by flash pyrolysis of chitin 

(Stankiewicz et al., 1996). Other major N-products of chitin included alkyl pyrroles, 

pyrazines, pyridinamines and dimethylpyridinol. All of these products were common 

to the colloid NOM fractions and biofoulant. Correlation of the N-heterocyclic 

profiles indicates that amino sugars are significant N-organic constituents of these 

NOM samples.  

 

Separate flash pyrolysis analyses of the colloid fractions and BF revealed high 

concentrations of acetamide products (Fig. 5.1b and d; see Chapter 5.3.1), which 

also derive from N-acetyl amino sugars (Stankiewicz et al., 1996). These precursors 

have been shown through 13C-NMR and FTIR spectral characterisation to dominate 

colloidal NOM fractions (Rostad et al., 1997; Leenheer et al., 2001a; Mao et al., 

2003) and membrane biofoulants (Croue et al., 2006). The BF also yielded several 

other microbially derived products including hopanes, n-alkanes and monomethyl 

alkanes and the significance of these products was discussed in Chapter 2. 

 

Several other prominent N-products of the colloid fractions and BF were also 

detected from the amino sugar, but not the other standards (data not shown). These 

products were difficult to unequivocally identify from their mass spectra alone, 

however several were tentatively identified as aminophenols, alkyl pyridinols and 

cyclopentenyl and cyclohexenyl substituted pyrrolidines and piperidines. Some of 

these products (e.g. DMAP, DMPO, cPi, cPl; Table 5.1) are evident in the NOM 

data of Figure 5.1-5.4. Further investigation of these MSSV products may provide 

additional diagnostic information regarding the occurrence of amino sugars in NOM 

samples. 
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The broad range and high concentrations of N-heterocyclic products identified by 

MSSV pyrolysis of the protein, peptide and amino sugar standards provides strong 

evidence that these natural precursors, or their diagenetic products, are major sources 

of the low MW N-pyrolysates detected from the NOM fractions. 

 

5.3.4.4 Porphyrins 

Several of the alkyl pyrrole products of NOM could also reflect intact structural units 

derived form porphyrins, which are tetrapyrrole ring structures present in higher 

plants, algae and bacteria. MSSV pyrolysis of a standard porphyrin, 

2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (Figure 5.5b), yielded a very 

different pyrrole distribution to the other standard materials, characterised by high 

concentrations of methyl ethyl substituted analogues (e.g. ethylmethyl, 

ethyldimethyl, diethylmethyl) over a narrower MW range (C3-C6). Significantly, the 

alkyl substitution patterns of the pyrrole products are consistent with those of the 

original precursor (i.e. ethyl substituted), indicating minimal degradation or 

rearrangement of the alkyl side chains to polymethylated isomers during MSSV 

pyrolysis. In contrast, the alkyl pyrrole distribution detected by flash pyrolysis 

(Appendix 8) of the porphyrin showed several polymethylated products as well as 

other secondary N-products such as alkyl anilines, bearing little obvious structural 

relationship to the parent compound. 

 

The MSSV pyrolysates of the TPI and COL NOM fractions and the BF also 

contained much higher concentrations of C4-C5 pyrroles than the protein and peptide 

standards. Highly substituted alkyl (C1-C6) pyrroles, previously identified from flash 

pyrolysis of kerogens, were attributed to tetrapyrrole pigments of chlorophyll 

(Sinninghe-Damsté et al., 1992a). The prominent higher MW pyrroles of the NOM 

fractions may have a similar tetrapyrrole origin. Unlike the N-heterocyclic products 

of the amino acid, amino sugar and protein standards, which are attributed to 

secondary alteration during MSSV thermal treatment, the alkyl pyrrole pyrolysates 

of porphyrins largely represent primary structural units directly released from the 

macromolecular network. 

 
Further research is required to unequivocally distinguish the primary or secondary 

nature of the N- products of NOM, many of which may not reflect indigenous N-
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structural moieties. Heterocyclic aromatics for example can form by auto-

condensation reactions between liberated NH3 and aromatic components (Knicker et 

al., 1996) or as by-products of Maillard reactions (Coleman and Chung, 2002; 

Tehrani et al., 2002). The N-organic standards studied here represent only basic 

structural units of potential NOM precursors, hence, interpretations based on the data 

from their isolated analyses should be considered with caution. The pyrolysates 

identified from individual standards and model systems may not be representative of 

bulk NOM samples, since synerginistic relationships from interacting chemical 

species are negligible.  

 

5.3.5 Maillard reaction 

The Maillard reaction occurs by random condensation of reducing sugars and 

compounds possessing a free amino group such as amino acids (Maillard, 1912), 

producing high MW, refractory macromolecules called melanoidins (Maillard, 1917). 

There has been considerable interest and debate about the occurrence of this process 

in natural environments and its potential role in the formation of humic substances 

(Maillard, 1917; Yamamoto and Ishiwatari, 1992; Ikan et al., 1992). Whilst amino 

acids and simple sugars are abundant microbial metabolites of polysaccharides and 

proteins, both of which were major precursors of the COL and BF samples (Croué et 

al., 2003b), Maillard reactions may not be favoured by the ambient and sub surface 

temperatures of recent environments. 

 
15N-NMR analysis of synthetically prepared melanoidins has revealed secondary 

amide, pyrrole and pyridine N signals (Benzing-Purdie et al., 1983). Furthermore, 

thermal degradation of such heteropolymers (Boon et al., 1984; Coleman and Chung, 

2002; Tehrani et al., 2002; Adams et al., 2003) has been shown to include several of 

the lower MW N-heterocyclic products (e.g. alkyl pyrroles, pyridines and pyrazines) 

common to the MSSV pyrolysates of the BF, NOM and waste water fractions. 

Therefore, these N-heterocyclic products may represent indigenous units of 

melanoidin type structures formed by Maillard reactions in aquatic environments, 

with the MSSV thermal conditions favouring their thermal release. The high 

proportions of highly alkyl substituted (e.g. ≥ C2) N-heterocyclic products of the 

NOM fractions may reflect cross-linking alkyl units of melanoidins.  
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Highly substituted N-heterocyclic products were previously identified in flash 

pyrolysates of model melanoidins formed by the reaction of several amino acids with 

glucose and rhamnose (Coleman and Chung, 2002). The presence of condensed and 

cross-linked melanoidin structures has also been previously postulated in refractory 

fractions of soil OM (Benzing-Purdie and Ripmeester, 1983; Poirier et al., 2000; 

2002), estuarine DOM (van Heemst et al., 2000) and recent sediments (Patience et 

al., 1992; Peulve et al., 1996). Similarly, Dignac et al. (2000) suggested that 

chemically and biologically refractory OM present in waste water effluents could be 

products of melanoidin like structures, their formation enhanced by the intense 

biological activity during treatment. However, further research is required to 

investigate this potentially rare evidence of the environmental occurrence of  

melanoidins, as low MW N-heterocycles were also common MSSV pyrolysates of 

several of the standard materials. 

 

In addition to high MW humic-like melanoidins, the Maillard reaction also produces 

volatile low MW N-organic compounds (Coleman and Chung, 2002; Tehrani et al., 

2002). The recent identification of alkyl pyrazines in buried plant remains helped 

confirm the occurrence of Maillard processes during sedimentary diagenesis 

(Evershed et al., 1997). The BF pyrolysate also showed high concentrations of alkyl 

pyrazines, possibly formed as secondary byproducts of Maillard reactions promoted 

by the thermal conditions of the MSSV experiment.  

 

To investigate the potential formation of low MW N-heterocycles by Maillard 

reactions during closed system MSSV pyrolysis, separate analyses were performed 

on the amino acid D-tyrosine, the carbohydrate D-glucose and a 1:1 mixture of both. 

D-tyrosine was selected because this amino acid did not yield any N-heterocyclic 

products from its individual analysis, compared with some of the other amino acids 

discussed in section 5.3.4.1 (e.g. L-glutamic acid). The major MSSV products of D-

tyrosine and glucose (Fig. 5.7a, c) were alkyl (≤ C2) phenols and alkyl furans, 

respectively. The MSSV pyrolysate from the tyrosine/glucose mixture (Fig. 5.7b) 

largely showed a combination of the products observed from the analysis of the 

individual samples. Similar molar quantities of each compound were analysed, 

however the phenolic products of tyrosine dominated the mixture data. Typical N-

heterocyclic Maillard reaction products such as pyrazines, pyridines and oxazoles 
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(Tehrani et al., 2002) were not detected, providing no evidence that Maillard 

processes are promoted by MSSV pyrolysis (300˚C/72hrs).   

 

 
 
Figure 5.7 Partial TICs obtained by 300˚C/72hr MSSV pyrolysis GC-MS  
  analysis of a) D-tyrosine; b) D-tyrosine + D- glucose (1:1) and c) D-
  glucose. F = furan, M = methyl-, DM = dimethyl-, ME = methylethyl-
  MP = methylpropyl-. Relative abundances of a-c are indicated in  
  italics. 
 

 

Several other glucose and amino acid (e.g. proline, phenylalanine, glycine) mixtures 

were also analysed over a range (260-340˚C/72hrs) of MSSV temperatures. None of 

these analyses showed evidence for the generation of heterocyclic N-products in 

addition to those from the individual precursors. These results suggest that the N-

pyrolysates detected from the NOM fractions are not formed by secondary reactions 

between carbohydrates and amino acids during thermal treatment. However, more 
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robust assessment of this issue will require investigation of other starting materials 

over a wide range of thermal conditions. 

 

5.3.6 Higher MW N-pyrolysates of NOM fractions 

In addition to the dominant low MW heterocyclic N-products several higher MW 

heterocyclic products, including alkyl indoles, carbazoles and β-carbolines, were 

also detected by MSSV pyrolysis of the NOM fractions. These were detected in 

highest abundance from the colloid fraction of the Naintré wastewater effluent, 

which had both the highest DOC (14.4 mg L-1) and organic nitrogen (6.6 %) 

concentration of all the samples analysed.  

 

Alkyl (C1-C4) indoles were prominent MSSV products of all the TPI and COL 

fractions, as well as the biofoulant. The summed ion chromatograms of Figure 5.8 

show the distribution of alkyl indoles in the colloid fractions of the Brittany river and 

the two waste waters. The alkyl indole profiles for all fractions were similar, with 

C1-C3 alkyl indoles and 3-acetylindole detected in highest abundance. Parent indole 

was also detected but in significantly lower concentration compared to the alkyl 

substituted products. Flash pyrolysis of the same NOM fractions yielded indole and 

methylindole in low abundance; but no higher alkylated indoles. Indole, 3-

methylindole and 3-ethylindole were previously detected by flash pyrolysis of the 

amino acid tryptophan (Chiavari and Galletti, 1992), which contains an indole 

nucleus with functionalised carboxylic acid and amine substituents (see Figure 

5.11a).  

 

MSSV pyrolysis of the waste water colloids and biofoulant also yielded the naturally 

occurring indole alkaloids 9H-pyrido[3,4-β]indole (β-carboline) and 1-methyl-9H-

pyrido[3,4-β]indole (harman), as shown in Figure 5.9. These compounds were not 

detected by flash pyrolysis of any of the NOM fractions. 

 

Alkyl (≤ C3) carbazoles and amino carbazole (Fig. 5.9), which also possess an indole 

nucleus, were similarly detected only from the wastewater colloids and biofoulant. 

The summed ion chromatograms of Figure 5.10 show the alkyl carbazole 

distribution detected from the N-COL fraction. Similar distributions were detected 

from the S-COL and BF data, but in lower concentrations due to the lower DOC and 
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nitrogen content of these samples. The major products for each sample were the 

parent carbazole and isomers of methyl-, dimethyl- and ethylcarbazole. 

 

 
Figure 5.8 Partial summed m/z 130+144+145+158+159 chromatograms  
  showing the alkyl indole distribution detected by 300˚C/72hr  
   MSSV pyrolysis GC-MS analysis of a) Brittany colloids, b) Naintré 
  colloids, and c) St. Julien colloids. Relative abundances of a-c are  
  indicated in italics. Peak assignments correspond to N-products listed 
  in Table 5.1. 
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Figure 5.9 Partial summed m/z 168+182 chromatograms showing indole  
  alkaloids detected by 300˚C/72hr MSSV pyrolysis GC-MS analysis 
  of a) Naintré colloids and b) Biofoulant. Peak assignments  
  correspond to N-products listed in Table 5.1. Relative abundances of 
  a-c are indicated in italics. 
 

 
Figure 5.10 Partial summed m/z 167+180+181+194+195+209 chromatograms  
  showing alkyl carbazoles detected by 300˚C/72hr MSSV pyrolysis  
  GC-MS analysis of Naintré colloids. Peak assignments correspond to 
  products listed in Table 5.1. Relative abundance is indicated in italics. 
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which suggests they are not amenable to detection prior to geological diagenesis or 

artificial thermal maturation by approaches such as MSSV pyrolysis.  

 

The alkyl indole and carbazole distributions detected by MSSV pyrolysis of the 

NOM fractions were similar to those reported recently by hydropyrolysis analyses of 

algal and bacterial biomass and immature sedimentary OM (Bennett et al., 2004). In 

addition to a tryptophan origin (see 5.3.7), Bennett et al. (2004) also attributed 

indoles and carbazoles to macromolecularly bound indole alkaloid constituents of 

plants, algae and bacteria (Zeng et al., 1999). These products were only released as 

solvent extractable products following hydropyrolysis treatment (Bennett et al., 

2004). The moderate thermal conditions of MSSV may release similar N-structural 

moieties from bound and functionalised alkaloid constituents of the waste water Ef-

OM, analogous to the release of hopane (Chapter 2) and aromatic (Chapter 3) 

biomarkers of bound bacterial and higher plant terpenoids. The distinctive β-

carboline and carbazole products of the waste water colloids may be potential 

molecular markers for waste water impact into natural waters. Alkaloids may be 

significant contributors to the formation of toxic N-containing disinfection by-

products during potable water treatment. Recent research has shown that indole 

moieties can form toxic aromatic nitrosamine DBPs on reaction with chloramines 

(Bull, R., 2007, personal communication). Hence an analytical capacity to detect the 

aquatic occurrence of alkaloids will be valuable for assessing DBP formation 

potential. 

 

The wastewater effluents also yielded other condensed aromatic N-products 

including naphthalenamine, methylnaphthalenamine (Appendix 9) and ethyl 

perimidine (see Fig. 5.10), the origins of which remain unclear. 

 

5.3.7 Higher MW N-products of standards 

MSSV pyrolysis was conducted on D-tryptophan, bovine serum albumin (BSA) 

protein and the cultured Frateuria aurantia bacterium, which represent potential 

precursors of the higher MW heterocyclic products of the NOM fractions. The major 

pyrolysates of tryptophan (Fig. 5.11a) were indole, methylindole and ethylindole, 

with lower quantities of dimethylindole and 3-acetylindole. The product distribution 

was very similar to that obtained by larger scale closed system anhydrous pyrolysis 
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of tryptophan (Bennett et al., 2004). MSSV pyrolysis of tryptophan also produced β-

carboline and harman (Fig. 5.12), which were prominent pyrolysates of the waste 

water NOM fractions.  

 

 
Figure 5.11 Partial TICs (a) and summed m/z 117+130+144+145+158+159  
  chromatograms (b-c) showing the distribution of alkyl indoles  
  obtained by 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) D- 
  tryptophan (amino acid); b) BSA (protein) and c) F. aurantia isolate
  bacteria. I3A = indole-3-acetaldehyde, 3IA = 3-indolylacetone; AT = 
  N-acetyl-D-tryptophan. Other peak assignments correspond to   
  N-products listed in Table 5.1. Relative abundances of a-c are  
  indicated in italics.  
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Figure 5.12 Summed m/z 168+182 chromatograms showing indole  
  derivatives detected by 300˚C/72hr MSSV pyrolysis GC-MS analysis 
  of D-tryptophan. Relative abundance is indicated in italics. 
 

 

The occurrence of these effluent OM products could therefore be attributed to 

cyclisation of tryptophan structural moieties, as well as naturally occurring indole 

alkaloids, as discussed previously. The high abundance of indole related products in 

the waste waters is consistent with previous studies (Dignac et al. 2000), which have 

shown that the dominant amino acids in waste water effluents usually differ from 

natural waters, and include higher concentrations of tryptophan. 

 

MSSV pyrolysis of BSA protein and F. aurantia (Fig. 5.11 b-c) also yielded high 

concentrations of indole, methylindole and ethylindole. Several oxygenated indole 

derivatives, including 3-acetylindole, indole-3-acetaldehyde (I3A), 3-indolylacetone 

(3IA) and (tentatively) N-acetyl-D-tryptophan (AT), were also identified in high 

abundance. Only 3-acetylindole was detected in the river and waste water fractions. 

The precursors of the other indole derivatives may be vulnerable to early diagenetic 

processes leading to loss of the oxygen functional groups. 

 

Interestingly, MSSV analysis of NOM showed a more significant contribution from 

the more highly substituted alkyl indoles, which were not detected from any of the 

standards analysed. This could be due to early diagenetic transformation of 

tryptophan moieties of proteinaceous materials, or may reflect different biological 

sources such as alkaloids. Alternatively the higher degree of alkyl substitution may 

reflect cross-linking units in NOM macromolecules, consistent with the co-

47 48 49 50 51 52 53 
Retention time (min) 

R
el

at
iv

e 
ab

un
da

nc
e

 

Ethyl perimidine 

Tryptophan 
1.3e7 

Harman 
β-carboline 

Carbazole 

NH2
N
H

O

OH



 

Chapter 5 - Nitrogen products 170

occurrence of highly alkylated low MW N-heterocycles such as pyrroles and 

pyridines. 

 

The prominent alkyl carbazoles detected from the waste water colloids and BF were 

not detected in significant abundance from any of the standards selected for this 

study. Tryptophan (Fig. 5.12) and BSA yielded only parent carbazole in low 

concentration and no substituted carbazoles. Therefore it is likely that the alkyl 

carbazole pyrolysates of the waste waters and BF derive from other source 

precursors such as alkaloids as suggested by Bennett et al. (2004).  

 

5.3.8 Effect of temperature on N-pyrolysate distributions  

The Naintré waste water colloid fraction was studied over a range of off-line MSSV 

temperatures to monitor the thermal behaviour of several major N-organic products, 

including alkyl pyrroles and alkyl indoles. The MSSV distribution of alkyl pyrroles, 

pyridines and pyrazines detected at 260, 300 and 340˚C (72h) are shown in Figure 

5.13. Similar product distributions were evident at all temperatures. Aniline, 

pyridinamine and methyl pyridinamine were consistently detected in high relative 

abundance. The alkyl (C2-C5) pyrroles and alkyl (C1-C3) pyridines increased 

moderately in relative abundance with higher pyrolysis temperatures. However, the 

general thermal stability of the heterocyclic N-product profile suggests that the 

MSSV thermal parameters do not greatly influence their generation.  

 

The porphyrin and peptide (pentaglycine) standards were also studied over the same 

MSSV temperature range. The distribution of alkyl pyrroles detected at 260, 300 and 

340˚C (72h) are shown in Figure 5.14. These were the only products from the 

porphyrin over the displayed retention time window and were clearly revealed by the 

TIC data. Selected ions were used to highlight the alkyl pyrrole profile of the peptide. 

The two standards show very different alkyl pyrrole distributions. 

 

The abundance of alkyl pyrroles detected from the porphyrin increased dramatically 

with pyrolysis temperature. Only a few of these products, comprising mainly 

ethyldimethylpyrroles (C4) and diethylmethylpyrroles (C5), were detected in low 

concentration at 260˚C, indicating that the thermal conditions were too mild to 

significantly release alkyl pyrroles from the porphyrin. At 300˚C there was a 
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significant increase in the overall abundance of these same C4 and C5 alkyl pyrroles. 

At 340˚C a much broader range of alkyl pyrroles were detected, probably due to 

secondary fragmentation and isomeric rearrangement. The C4 and C5 analogues were 

still most abundant, but increased concentrations of the C2 and C3 alkyl pyrroles 

were also evident. These lower MW products are likely formed by degradation of the 

alkyl side-chains of the higher MW pyrroles.  

 

 
Figure 5.13 Summed m/z 79+80+93+94+106+107+108+109+120+121+122+123 
  chromatograms showing the distribution of alkyl pyrroles, pyridines 
  and pyrazines detected by MSSV pyrolysis of Naintré colloids at a) 
  260˚C/72h; b) 300˚C/72h and c) 340˚C/72h. Peak assignments  
  correspond to N-products listed in Table 5.1. Relative abundances of 
  a-c are indicated in italics. 
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Figure 5.14 TICs (a-c) and summed m/z 80+94+108+109+122+123 chromatograms (d-f) showing the distribution of alkyl pyrroles detected 
  by MSSV pyrolysis of a standard porphyrin (2,3,7,812,13,17,18-octaethyl-21H,23H-porphine) and peptide at 260˚C/72h,  
  300˚C/72h and 340˚C/72h. Peak assignments correspond to N-products listed in Table 5.1. Relative abundances of a-f are  
  indicated in italics. 
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The isomeric distributions of the alkyl pyrrole products of pentaglycine were also 

relatively stable over the 260-340˚C temperature range (Fig. 5.14d-f), consistent 

with the N-COL data. There was an increase in concentration of all pyrrole products 

at higher temperatures, but their isomeric distribution remained largely unchanged. 

Trimethylpyrrole (retention time ca. 19 minutes) was consistently the most abundant 

product. From 260 to 300˚C there was a notable increase in the relative abundance of 

ethylmethylpyrrole and a slight increase in the higher MW pyrroles. However, little 

further change was evident at the highest temperature of 340˚C. Preservation of the 

isomeric integrity of the alkyl pyrrole distribution may reflect the high thermal 

stability of these products. In contrast, the thermal profiles of other pentaglycine 

products do change with temperature. For example, trimethyl pyrazole and several 

amide products including acetamide, methyl acetamide, propanamide and methyl 

propanamide were all detected at 260˚C and 300˚C but not 340˚C, indicating thermal 

degradation or structural alteration of these products at the higher temperature. 

 

Although the product distributions showed some dependence on thermal conditions, 

many constant features allowed consistent distinction of the two precursors 

irrespective of temperature. For example, under all MSSV conditions, 2,5-

dimethylpyrrole and ethylpyrrole were the dominant C2 pyrrole isomers from 

pentaglycine and the porphyrin, respectively. Pentaglycine also yielded major 

trimethyl- and tetramethylpyrrole products at all three temperatures, whilst 

polymethylated C3 and C4 pyrroles were not detected from the porphyrin over the 

temperature range studied. 

 

The thermal profile of the alkyl indole products of the N-COL fraction (Fig. 5.15) 

showed a similar trend to the lower MW heterocyclic products. The same products 

were consistently detected at all temperatures, however there were some notable 

quantitative differences. The major products at 260˚C were methylindole, 

ethylindole, dimethylindole and acetylindole, with lower abundances of oxygenated 

products such as indole-3-acetaldehyde, 3-indolylacetone and N-acetyltryptophan. 

At 300˚C the methyl, dimethyl and acetylindole products remain dominant, however 

there was a notable decrease in the abundance of ethylindole and the oxygenated 

derivatives. The 340˚C analysis showed a relative enrichment of the dimethylindole 

isomers, concomitant with a further reduction of the ethyl and acetyl substituted 
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products. This data reflects the relatively high thermal stability of dimethyl indoles, 

consistent with previously published hydropyrolysis results, which showed enhanced 

abundances of 2,3-dimethyl indole in sedimentary OM of higher thermal maturity 

(Bennett et al., 2004). The sedimentary occurrence of this compound was attributed 

to direct derivation from an alkaloid precursor or to secondary rearrangement of 

tryptophan-derived molecules during early diagenesis (Bennett et al., 2004). 

 

The summed ion chromatograms of Figure 5.16 display the thermal profile of the 

indole pyrolysates of the protein (BSA) standard. Again, the distribution of products 

exhibited relatively minor variation with increasing thermal severity. Indole, 

methylindole and ethylindole were the most abundant products across the entire 

temperature range. However, the oxygen-containing derivatives of indole (indole-3-

acetaldehyde, 3-indolylacetone and N-acetyl tryptophan) showed a decrease in 

abundance with increasing pyrolysis temperature but were still detectable from the 

340˚C analysis. These products were only detected in significant concentrations from 

the 260˚C pyrolysate of the N-COL fraction, possibly reflecting the lower 

concentrations of tryptophan moieties in the Ef-OM or microbial alteration into more 

thermally susceptible metabolites. In contrast to the thermal behaviour of the O-

indole products, the relative abundance of dimethylindole was shown to increase 

with temperature, providing further evidence for the high thermal stability of this 

product.  
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Figure 5.15 Summed m/z 130+144+145+158+159 chromatograms showing the 
  distribution of alkyl indoles detected by MSSV pyrolysis of Naintré 
  colloids at a) 260˚C/72h; b) 300˚C/72h and c) 340˚C/72h. I3A =  
  indole-3-acetaldehyde, 3IA = 3-indolylacetone, AT = N-acetyl-D- 
  tryptophan. Other peak assignments correspond to N-products listed 
  in Table 5.1. Relative abundances of a-c are indicated in italics. 
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Figure 5.16 Summed m/z 117+130+144+145+158+159 chromatograms  showing 
  the distribution of indoles detected by MSSV pyrolysis of BSA  
  protein at a) 260˚C/72h; b) 300˚C/72h and c) 340˚C/72h. I3A =  
  indole- 3-acetaldehyde, 3IA = 3-indolylacetone, AT = N-acetyl-D- 
  tryptophan. Other peak assignments correspond to N-products listed 
  in Table 5.1. Relative abundances of a-c are indicated in italics. 
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5.4 Conclusions 
MSSV pyrolysis has proved very effective at thermally releasing polar N 

functionalities of immature biochemicals present in aquatic NOM. The relatively 

moderate thermal conditions of MSSV pyrolysis yielded much higher concentrations 

of GC-MS detectable N-pyrolysates compared to flash pyrolysis, which may 

underestimate the N-organic contribution of NOM. A broad distribution of alkylated 

pyrroles, pyridines, pyrazines and indoles were detected from the transphilic and 

colloid fractions of the surface and waste waters, but few N-organic products were 

detected from the HPO fractions studied.  

 

Corresponding MSSV pyrolysis analyses of a suite of N-containing standards 

afforded many of the same products detected from the NOM samples. 

Characterisation of the distinctive N-product profiles of these standards showed 

potential for establishing their contributions in complex environmental 

macromolecules. For example, the amino sugar standard (chitin) revealed very 

similar product distributions, including high concentrations of alkyl pyrroles, 

pyridines and pyrazines, to those observed in the Gartempe TPI and Brittany COL 

fractions as well as the membrane filtration biofoulant, providing strong evidence 

that amino sugars are significant N-organic precursors of these samples. On the other 

hand, higher MW N-pyrolysates, including β-carbolines and alkyl carbazoles, were 

detected only from the waste water effluents. These products were correlated with 

specific amino acid (e.g. tryptophan) or alkaloid precursors and may be potential 

molecular markers for waste water impact into natural waters. 

 

It should be noted that the N-organic standards studied here represent only basic 

structural units of potential NOM precursors. Hence, there remains some ambiguity 

about the precise MSSV formation mechanisms of the N-pyrolysates of NOM. 

Mechanistic definition of complex pyrolytic pathways remains a significant 

analytical challenge. Notwithstanding this, some of the N-product relationships 

identified in this study allow greater inference of potential N-precursors than 

previously possible. 
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Further investigation is required to more accurately identify and distinguish the 

primary structural or thermally induced origins of many of the N-organic products 

reported here. Several low MW heterocyclic N-products detected from the colloid 

and transphilic NOM fractions may reflect melanoidin structures formed by Maillard 

reactions occurring naturally in freshwater aquatic environments or during biological 

waste water treatment. Analysis of representative mixtures of amino acids and 

carbohydrates did not suggest that these products were artefacts of the closed-system 

MSSV pyrolysis process. 

 

Preliminary studies here showed that the N-product distributions from the analysis of 

colloidal NOM were relatively stable at different MSSV temperatures (260 – 

340˚C/72hr). Additionally, the N-products of peptide, porphyrin and protein 

standards were consistently different over the MSSV temperature range investigated, 

allowing their clear distinction and demonstrating the utility of the MSSV approach 

for the characterisation of N-organic moieties of NOM over a broad range of thermal 

analytical conditions. The sensitive detection of N-pyrolysates by MSSV pyrolysis 

holds promise for the improved characterisation of the N-organic moiety of NOM, 

which should be useful for determining the structural precursors of N-containing 

disinfection by-products (N-DBPs) produced during potable water treatment. 
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Chapter 6 
            

 

Isolation and characterisation of NOM 

from a pristine source water (North Pine 

Dam, Brisbane, Queensland) 
 

6.1 Introduction 
Treated potable water from North Pine (NP) Dam, located on the North Pine River in 

Pine Rivers Shire (Queensland) is supplied to the northern areas of Brisbane and 

adjacent Shires. NP Dam, along with Wivenhoe and Somerset Dams, is responsible 

for the supply of potable water to more than 1.2 million people in south east 

Queensland and is also used for power generation, irrigation and recreation. NP Dam 

was one of several source waters selected as part of a wider CRC study (2.5.1.3) on 

advanced analytical characterisation of NOM in selected Australian source waters. 

NP is a high quality source water, characterised by low colour and low dissolved 

organic carbon concentration (< 5 mg L-1), compared with many organic rich surface 

and ground water sources of other Australian cities (e.g. Perth and Adelaide).  

 

In this study, XAD resin fractions of NOM from the NP Dam were isolated and 

holistically characterised using MSSV pyrolysis GC-MS and several other more 

established analytical techniques to provide insight into the structure and source of 

the NOM in this major potable resource. An integrated analytical approach is 

typically used for chemical structural elucidations of complex macromolecules like 

aquatic NOM. The quantitative distribution of molecular weights (MW) by size 

exclusion chromatography (SEC) and carbon structural environments and functional 

groups by 13C nuclear magnetic resonance (13C-NMR) and Fourier transform 

infrared (FTIR) spectroscopy can be integrated with the molecular speciation 

information identified by analytical pyrolysis and thermochemolysis GC-MS 

(González-Vila et al., 2001). A major objective of this case study was to evaluate the 
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practical capacity of MSSV pyrolysis to provide additional structural information to 

complement the more established characterisation tools. 

 

6.2 Experimental 
6.2.1 Description of site and sample collection  

The NP Dam impounds the NP River to form Lake Samsonvale in Pine Rivers Shire, 

approximately 30 km north of Brisbane, Queensland. Water is released from the 

Dam to the adjacent water treatment plant operated by Brisbane Water and provides 

potable water for Brisbane and the broader regions of Pine Rivers, Redcliffe and 

Caboolture. The drainage basin of the Lake Samsonvale catchment covers an area of 

348 km2 and comprises 70 km2 of mixed forest; 100 km2 of grassland and pasture; 

and 6 km2 of cropping land (SEQWater and Brisbane Water, 2006). Mean annual 

rainfall is 1175 mm however this is subject to extreme annual and seasonal variation. 

There are extensive grasslands within the Lake Samsonvale catchment, which are 

lightly grazed, with a small area used for cropping. The intensity of rural industry 

(e.g. cattle feedlots, dairying and an abattoir) is less than in the catchments of the 

other two major Brisbane reservoirs (SEQWater and Brisbane Water, 2006). Lake 

Samsonvale is also used for recreation including fishing, canoeing and sailing. 

 

NP Dam has a surface area of 21.6 km2, storage capacity of 215,000 ML and an 

average depth of 9.4 m (Littlejohn, 2004). The dam is a concrete gravity type, with a 

steel gated spillway, and earth and rock fill abutments. Water is drawn from the dam 

through an outlet tower on the face of the dam. Outlets, guarded by screens and 

valves, are provided at several depths so that the best quality source water can be 

taken from the reservoir and supplied to the treatment plant (SEQ water and 

Brisbane Water, 2006). An aeration system improves water quality through 

destratification, which means the temperature-based layers of water are mixed so 

that uniform temperatures are achieved over the depth of the lake (Littlejohn, 2004). 

This can help overcome some of the problems associated with eutrophication of still 

waters. For example, accumulation of dissolved nutrients can contribute to algal and 

cyanobacterial blooms and deterioration of water quality. 
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Approximately 93 L of water from the NP Dam was collected in five 20 L 

polyethylene containers in July 2005. The sample was vacuum-filtered using pre-

washed 0.5 μm glass fibre filters (43 mm, Whatman) to remove particulate material, 

and the filtrate (DOC 4.8 mg L-1) was transferred to a 100 L pre-cleaned stainless 

steel drum. The sample was refrigerated at 4˚C prior to concentration, fractionation 

and analysis. 

 

6.2.2 Isolation and fractionation procedure 

6.2.2.1 Pre-concentration by reverse osmosis and rotary evaporation  

The filtered sample was pre-concentrated approximately 5-fold prior to XAD 

fractionation using a combination of reverse osmosis (RO) and rotary evaporation 

(RE). Reduction of the raw water volume to suit the column capacity of the XAD 

system allowed the sample to be singularly processed, without the need for time-

consuming resin regeneration and cleaning procedures between sample aliquots. RO 

was performed at 414 kPa, with the retentate recycled through the system until the 

required volume was reached. Pre-concentration of the raw water (4.8 mg L-1 DOC) 

from 93 L to 17.3 L by RO and rotary evaporation resulted in a final DOC 

concentration of 25.1 mg L-1, corresponding to ca. 97 % recovery. This is consistent 

with previous reports stating that DOC recovery by RO is generally greater than 90 

percent (Croué, 2004).  

 

6.2.2.2 XAD resin fractionation 

A 300 mL superimposed XAD-8/XAD-4 (Amberlite) resin system was employed 

with a column capacity of 19.8 L. The XAD resins were thoroughly cleaned prior to 

NOM fractionation by consecutive rinses with 2 L Milli-Q water (MQ; Elga) and 2 L 

MQ/acetonitrile (25:75 % v/v). The XAD-4 resin required additional elution of 1.5 L 

sodium hydroxide (NaOH, 0.1 M), followed by a second wash with the 

MQ/acetonitrile mixture (1.5 L) to remove residual DOC. The resins were then 

finally eluted with MQ water until the DOC concentration was below 0.2 mg L-1 

(XAD-8 = 0.17 mg L-1; XAD-4 = 0.19 mg L-1). Dilute hydrochloric acid (0.1 M, 1 L) 

was eluted through each resin prior to introduction of the sample. 

 

Following pre-concentration of the raw water, the NP sample was acidified to pH 2 

with 1 M hydrochloric acid to condition for XAD separation. The sample was 
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peristaltically pumped through XAD-8 resin to isolate the adsorbed HPO fraction 

whilst the eluent containing the transphilic (TPI) and hydrophilic (HPI) fractions was 

collected in 5 L pre-annealed glass bottles. The eluent was then pumped through 

XAD-4 resin to isolate the adsorbed TPI fraction, whilst the HPI fraction passed 

through. DOC analyses were performed on aliquots of the XAD-8 and XAD-4 

eluents. The HPO, TPI and HPI fractions accounted for 64.5, 11.5 and 24 % of the 

DOC, respectively.  

 

Prior to elution of the adsorbed NOM fractions the resins were rinsed with MQ water 

(800 mL, adjusted to pH 2 with formic acid) and MQ/acetonitrile (200 mL, 25/75 % 

v/v). The fractions were then desorbed with MQ/acetonitrile (1.5 - 2 L, 25/75 % v/v) 

and collected in 2 L pre-annealed glass bottles. Acetonitrile was removed by rotary 

evaporation and the fractions were lyophilized (freeze-dried) to yield solid HPO (390 

mg) and TPI (101 mg) fractions. 

 

6.2.3 Bulk characterisation of raw and fractionated water 

6.2.3.1 Ultraviolet absorbance  

Ultraviolet/visible (UV/Vis) absorbance at 254 and 400 nm was measured on the raw 

water, pre-concentrated water, and XAD resin eluents using a Shimadzu Pharmaspec 

UV-1700 UV-Visible spectrophotometer. The absorbance at 400 nm was converted 

to total colour units (TCU) by calibration with colour standards. 

 

6.2.3.2 Dissolved organic carbon concentration 

Water samples (40 mL) were filtered in duplicate using separate pre-washed glass 

fibre filters and collected in annealed glass vials. Analysis was performed with a 

Shimadzu Total Organic Carbon Analyser (TOC-Vws) using a non-purgable organic 

carbon (NPOC) method. The NPOC parameters included 3 to 5 injections of 2.5 mL 

sample (with a maximum standard deviation of 0.05 mg L-1), with 2 washes. 

Phosphoric acid solution (75 μL, 17 % w/v) was added and the sample sparged with 

nitrogen gas for 3 minutes. Persulfate oxidiser solution (1.5 mL, 12 % w/v) was 

added and the sample irradiated with UV light to oxidise organic carbon. The 

resulting carbon dioxide was detected using an infrared detector and calibrated 

against potassium hydrogen phthalate standards.  
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6.2.3.3 High performance size exclusion chromatography 

High performance size exclusion chromatography (HP-SEC) with dual UV254 and 

organic carbon detection (OCD) of the filtered raw and pre-concentrated waters, and 

the XAD resin eluents was performed according to a previously described method 

(Allpike et al., 2005). Briefly, water samples (up to 1.8 mL) were injected into an 

Agilent 1100 LC system equipped with a Toyopearl HW-50S SEC column (25 cm × 

2 cm i.d., particle size 30 µm, pore size 12.5 nm), with on-line UV (254 nm) 

detection using a diode array detector. A phosphate buffer (10 mM of Na2HPO4 and 

KH2PO4; pH 6.85) was used as the mobile phase at a flow rate of 1 mL min-1. 

Polystyrene sulfonate (PSS) standards with molecular weights of 81800, 35300, 

15200, 6530, 4400, 2220, 1290, 840 and 208 Da were used for apparent molecular 

weight (AMW) calibration. 

 

After passing through the UV detector, the column effluent passed through a wet 

chemical treatment process to oxidise organic carbon to CO2. First, H3PO4 (20% w/v; 

10 µL min-1) was added to the effluent stream using a syringe pump (Harvard 

Apparatus Pump 22). It was then passed through a Sievers TOC degassing module 

with a vacuum pump connected in a counter-flow direction to remove CO2 produced 

by inorganic carbon compounds reacting with H3PO4. Subsequently, Na2S2O8 (20 g 

L-1; 10 µL min-1) was introduced to the flow stream using a syringe pump, which 

then passed through a clear silica capillary (120 cm) adjacent to a medium pressure 

mercury vapour UV lamp (170 W, < 190 to > 400 nm, length = 120 cm). The 

chemical oxidant and UV lamp combined to oxidise the organic carbon present in 

the flow stream to CO2. Helium (5 mL min-1) was added to the flow stream, which 

then passed through two membrane separators in series (Genie 170, A+ Corporation) 

fitted with hydrophobic membranes (polytetrafluoroethylene, 0.45 µm pore size; 

Alltech) through which the gaseous CO2/He mixture passed while the liquid was 

rejected.  

 

The gaseous CO2/He mixture was then introduced via a fused silica capillary (100 

µm I.D., 200 µm O.D. × 2.5 m) into a Balzers ThermoStar GSD300 mass 

spectrometer operating in single ion mode (m/z 44) at a sampling frequency of 0.8 

Hz, dwell time 1 s, and source voltage of 1500 V. The capillary was inserted into an 

open polyether ether ketone plastic tube (20 cm × ~1.4 mm i.d.) attached to the 
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outlet of the second membrane separator, so that a portion of the gaseous CO2/He 

mixture was drawn into the capillary by the action of the mass spectrometer vacuum. 

Excess gas was vented. Data collection and processing was performed using Balzers 

Quadstar 422 software (Version 5.02). 

 

6.2.4 Molecular characterisation of HPO and TPI fractions 

6.2.4.1 Elemental analysis  

Elemental analysis was conducted on the freeze-dried HPO and TPI fractions by 

Chemical and Micro Analytical Services (CMAS) Pty. Ltd (Victoria, Australia). 

Percentage concentrations of carbon, hydrogen, nitrogen, oxygen, sulphur and ash 

(representing the inorganic component) were determined. 

 

6.2.4.2 Fourier transform infrared spectroscopy  

Fourier transform infrared (FTIR) spectra of the NOM fractions were acquired in the 

transmission mode using a Bruker IFS-66 spectrometer. Approximately 1 mg of 

freeze-dried material was ground, mixed with 250 mg of potassium bromide (dried at 

100˚C) and pressed into a small disc. FTIR analysis was performed by collecting 4 

background scans followed by 4 scans of the sample. All FTIR spectra were scanned 

between 4000 and 700 cm-1 and data analysis performed with OPUS software. 

Detector resolution was maintained at 4 cm-1 for all analyses.   

 

6.2.4.3 Solid state 13C-nuclear magnetic resonance spectroscopy 

Solid-state 13C cross polarization (CP) magic angle spinning (MAS) NMR analyses 

were conducted by Dr. Ron Smernik at the University of Adelaide (South Australia). 

The spectra were obtained at a 13C frequency of 50.3 MHz on a Varian Unity 200 

spectrometer. The samples were packed in a 7 mm diameter cylindrical zirconia 

rotor with Kel-F end-caps and spun at 5000 ± 100 Hz in a Doty Scientific MAS 

probe. The spectra were acquired using a 1 ms contact time and a 1 s recycle delay. 

Between 24000 and 61000 scans were collected, representing a total run time of 7 to 

17 hours. The free induction decays were acquired with a sweep width of 40 kHz; 

1216 data points were collected over an acquisition time of 15 ms. The FID was 

zero-filled to 32768 data points and processed with a 50 Hz Lorentzian line 

broadening and a 0.01 s Gaussian broadening. The chemical shift was externally 

referenced to the methyl resonance of hexamethylbenzene at 17.36 ppm. Spectra 
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were corrected for background signal by subtracting the signal of an empty rotor 

under the same acquisition conditions. 

 

Several potential issues associated with the quantitative interpretation of solid-state 
13C CPMAS NMR spectra of complex organic materials such as NOM include long-

spin lattice relaxation times, strong C-H and N-H dipolar interactions, chemical shift 

anisotropy, spectral alterations by paramagnetic materials and poor quantitation at 

high fields (Hatcher et al., 2001). Most quantitation issues can be addressed using a 

technique known as spin counting (Smernik and Oades, 2000a; 2000b). This 

involves calibrating the strength of the NMR signal of the sample against that of a 

reference known to give a quantitative signal. Glycine was used for this purpose and 

the details of the technique are described in Smernik and Oades (2000a, 2000b). The 

output is the ‘NMR observability’ (Cobs), which is the proportion of potential NMR 

signal that is actually detected for the sample. If the NMR observability is close to 

100%, then it can safely be assumed that the NMR spectrum is quantitative, and that 

the distribution of NMR chemical shifts accurately reflects the distribution of carbon 

types. 

 

6.2.4.4 MSSV pyrolysis GC-MS 

MSSV pyrolysis of 0.5 - 1 mg of the two samples was separately performed 

according to the procedure described in Chapter 2.2.2.1. All data correspond to 

MSSV analysis I at an off-line pyrolysis temperature of 300˚C for 72 hr. GC-MS 

analysis of the volatile MSSV pyrolysates was performed using an HP 6890 GC 

coupled to an HP 5973 mass selective detector (MSD), with a 40 m x 0.32 mm i.d. x 

0.25 μm DB5-MS capillary column (J&W Scientific). Analyses were performed 

with a split of 30 mL min-1 using helium carrier gas at 42 kPa head pressure. The GC 

oven was held at -20˚C (using liquid CO2 cryogenic control) for 1 minute, then 

increased at 8˚C min-1 to 40˚C, then 4˚C min-1 to a final temperature of 310˚C, held 

isothermal for 20 minutes. Full scan acquisition was performed over the range m/z 

50 – 550 at ca. 4 scans s-1. An electron energy of 70 eV, source temperature of 250˚C 

and transfer line of 310˚C was used. Tentative peak identifications were based on 

correlation of GC elution position and mass spectral data with previously published 

data and the Wiley 275 and NIST 05 mass spectral libraries. 



 

Chapter 6 - North Pine NOM characterisation   186

6.2.4.5 Flash pyrolysis GC-MS 

NOM samples (0.5 – 1 mg) were loaded into pre-annealed quartz tubes and flash 

pyrolysis was conducted at 600˚C/20 seconds using a Chemical Data Systems 

analytical Pyroprobe 5250 fitted with a pyrolysis autosampler. The pyrolysis 

chamber was held at 300˚C. GC-MS analysis was performed using an HP 6890 GC 

coupled to an HP 5973 MSD, with a 60 m x 0.25 mm i.d. x 0.25 μm DB5-MS 

capillary column (J&W Scientific). Helium carrier gas was used at 131 kPa head 

pressure with a split of 30 mL min-1. The GC oven temperature programme and mass 

spectral parameters were the same as used for MSSV pyrolysis. 

 

6.2.4.6 Thermochemolysis GC-MS 

The NOM samples (ca. 1 mg) were loaded into pre-annealed quartz tubes sealed at 

one end. Tetramethylammonium hydroxide (Sigma-Aldrich) was added as a 

methanolic solution (5 μL, 25% w/w) and the open end plugged with pre-cleaned 

glass wool. Pyrolysis was performed at 650˚C for 20 seconds using a Chemical Data 

Systems 160 Pyroprobe, with the pyrolysis chamber held at 150˚C. The products 

were cryo-focused for 1.5 minutes at the start of the GC column using liquid 

nitrogen prior to analysis. A HP 5890 Series II gas chromatograph coupled to a 5971 

MSD was used for GC-MS analysis of the pyrolysis products. Analyses were 

performed with a split of 20 ml min-1 using helium carrier gas at 55 kPa and a 30 m x 

0.25 mm x 1 μm phase ZB5-MS (Phenomenex) capillary column. The GC oven was 

initially held at 40˚C for 2 minutes, then heated at a rate of 4˚C min-1 to a final 310˚C 

and held isothermal for 25 minutes. After a 3-minute solvent delay, full scan mass 

spectra (m/z 50 –550 at ca. 4 scans sec-1) were acquired with relatively standard mass 

spectral conditions (e.g. electron energy 70 eV; transfer line = 310˚C). 
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6.3 Results and Discussion 

6.3.1 DOC distribution  

The XAD resin distribution of NP source water DOC is shown in Table 6.1. The 

HPO, TPI and HPI (determined by difference) fractions accounted for approximately 

65 %, 12 % and 24 % of the DOC, respectively. These values are generally 

consistent with XAD compositions of previously studied surface water (e.g. 

Templier et al., 2005a). Table 6.1 shows the fraction recovery and total DOC 

recovery for the XAD isolation protocol. 75 % of the adsorbed HPO fraction was 

recovered from the XAD-8 resin by elution with MQ/acetonitrile, indicating that 

some strongly adsorbed material was retained. Combined with the ca. 97 % recovery 

of the TPI fraction the total DOC recovery was 60 % of the ca. 450 mg of original 

source water DOC. This provided sufficient quantities of organic material for a 

variety of chemical analyses. 

 

Table 6.1 DOC distribution and percentage recovery of NP HPO, TPI and HPI 
  fractions. 
 
Sample NP-HPO NP-TPI NP-HPI 

% of DOC 64.5 11.5 24 
Net weight of fraction, mg 390 101 - 
% organic carbon* 53.5 48.1 - 
Net mass organic C, mg 208.7 48.6 - 
Calculated wt. organic C, mg 278.4 49.9 - 
Percent recovery of fraction 75 97 0 
Total recovery of DOC, % 60     

* From elemental analysis (section 6.3.4.1) 
 

 

The dissolved organic carbon, UV254 absorbance, SUVA and colour measurements 

for the NP raw water, concentrated source water (CSW) and the XAD resin eluents 

are shown in Table 6.2. UV254 absorbance is often used as a surrogate measure for 

aromatic constituents of NOM such as lignin, tannin and humic substances (Clesceri 

et al., 1998). Specific UV absorbance (SUVA), the ratio of UV254 absorbance to 

DOC concentration, has been shown to strongly correlate with the aromatic carbon 

content of aquatic NOM (Croué et al., 1999; Weishaar et al., 2003).  
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Table 6.2  Basic water quality characteristics of raw water, concentrated water 
  and XAD resin eluents. 
 

  Raw CSW  XAD-8 eluent XAD-4 eluent 
DOC, mg L-1 4.8 25.1 8.9  6.0 

UV254, cm-1 0.086 0.458 0.094 0.058 
SUVA, m-1 L mg-1 1.8 1.8 1.0 0.96 

Colour, TCU 5.7 44.5 3.2 0.7 
 

 

The NP raw water showed a much lower SUVA value than several of the surface 

black waters previously characterized in this study (e.g. Gartempe River SUVA = 

4.4 m-1.L.mg C-1; Lavaud et al., 2008). In general, SUVA values show a direct 

correlation with the concentration of HPO material (Croué et al., 1999); however the 

low SUVA of NP conflicts with the high abundance of its HPO fraction. This 

suggests a significant difference in the aromatic character of the humic component of 

pristine and black water sources, with the former more aliphatic in nature. This trend 

was also noted for the terpenoid rich ground water analysed in Chapter 3, which 

showed relatively low SUVA (1.2 m-1.L.mg C-1) but high HPO content (Lavaud et 

al., 2008). The low colour of the NP source water is also consistent with a relatively 

minor contribution of aromatic carbon. 

 

6.3.2 High performance size-exclusion chromatography  

HP-SEC with UV254 absorbance and OCD was used to gain insight into the MW 

distribution of NP NOM. Figure 6.1 shows the HP-SEC-UV254 and OCD 

chromatograms of the apparent MW distribution of the CSW and the XAD resin 

eluents. The MW distribution of the concentrate was consistent with the raw water, 

indicating no significant MW fractionation on pre-concentration. The majority of the 

DOC had intermediate MWs between 800 – 10000 Da. Organic constituents of this 

size are generally attributed to humic and fulvic acid-type structures (Abbt-Braun 

and Frimmel, 1999). The XAD-8 eluent showed a large reduction in both DOC and 

UV254 absorbance in the high MW region of this intermediate band, indicating a 

significant proportion of 3000 – 10000 Da organic constituents in the HPO fraction. 

This is consistent with the adsorption of high MW aromatic structures onto XAD-8 
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resin. The XAD-4 eluent also showed a further small reduction in DOC and UV 

signal of the 3000 – 10000 Da region. 

 
 
Figure 6.1 HPSEC-UV254 and HPSEC-OCD chromatograms of concentrated  
  NP source water (CSW) and XAD resin eluents.   
 

 

In comparison, the abundance and aromatic content of the low MW (< 3000 Da) 

SEC fractions were only slightly reduced, attributed to inefficient XAD resin 

adsorption of low MW (< 3000 Da) hydrophilic organic acids (Croue et al., 2000). 

Interestingly, the lowest MW fraction of the XAD eluants appeared at a higher MW 

(1000 – 1500 Da) than the concentrate (< 1000 Da). This may be due to interactions 

between the higher MW material of the concentrate and the stationary phase of the 

SEC column, which upon removal during the isolation procedure causes an apparent 

shift to higher MW.   
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6.3.3 Characterisation of XAD resin fractions   

6.3.3.1 Elemental composition 

The elemental composition of the NP HPO and TPI fractions, presented in Table 6.3, 

were generally similar to those of other aquatic NOM fractions and humic 

substances (e.g. Croue et al., 2000; McIntyre et al., 2005; Templier et al., 2005a). 

Both organic-rich fractions contained very low low ash contents (< 2 %). Ash 

contains heteroatom (e.g. P, S, N), halogen (e.g. Cl, Br) and metal species and 

provides a general indication of total inorganic content.   

 
Table 6.3 Elemental composition and atomic ratios of NP HPO and TPI  
  fractions. 
 

Mass % NP-HPO NP-TPI 
Carbon 53.5 48.1 

Hydrogen 5.9 5.6 
Oxygen 36.8 38.7 
Nitrogen 2.3 4.3 

Sulfur 0.8 0.7 
Ash 1.2 2 
H/C 1.3 1.4 
O/C 0.5 0.6 
C/N 27.1 13.1 

 

 

The atomic ratios of O/C, H/C and C/N are often used for basic characterisation of 

the chemical character and terrestrial versus microbial source of humic substances 

(Steelink, 1985). The H/C ratio provides an indication of the aromatic/aliphatic 

character of the sample (Abbt-Braun and Frimmel, 1999). H/C values greater than 

one were measured for both fractions, reflecting high aliphatic content, possibly 

indicative of substantial algal or bacterial input. Belzile et al. (1997) reported that 

humic substances originating primarily from aquatic organisms in lake sediments 

have H/C values greater than one. NP Dam is subject to periodic cyanobacterial 

blooms (Littlejohn, 2004, Burford et al., 2007) which are a ready source of aliphatic 

biomolecules. Humic substances derived from vascular plant material generally have 

H/C ratios less than one (Bourbonniere and Meyers, 1978), refecting the lower 

contribution from terrigenous sources to NP NOM.  
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The XAD resin fractions of NP showed only minor variation in H/C composition, 

with slightly higher aromatic character measured for the HPO fraction. The UV254 

data from Table 6.2 supports this observation, with the HPO fraction accounting for 

approximately 80 % of the UV254 absorbance of the raw source water. Similarly, 

only slight variation was observed in the O/C ratios. The lower O/C ratio of the HPO 

fraction is consistent with a higher proportion of aromatic and alicyclic hydrocarbon 

constituents of humic material (Lu et al., 2000), whilst the slightly higher value of 

the TPI fraction indicates a higher abundance of O-containing functional groups 

including O-alkyl, carboxylic acid and carbonyl carbon (Belzile et al., 1997; Lu et 

al., 2000).  

 

A major distinction between the two fractions was the higher organic nitrogen 

concentration of the TPI fraction, reflected by the much lower C/N value. The ability 

of amino acid and peptide groups, major N-organic precursors of NOM, to form 

hydrogen bonds with surrounding water molecules contributes to the hydrophilic 

character of NOM (Westerhoff and Mash, 2002). Hence, organic nitrogen is 

generally concentrated in the more polar (i.e. hydrophilic or transphilic) fractions of 

NOM (Croué et al., 2003a). A C/N ratio > 20, as observed for the HPO fraction, is 

more typical of vascular land plants (Lu et al., 2000). The lower C/N ratio of the TPI 

fraction may reflect more significant contribution from nonvascular aquatic plant 

material (C/N in the range 2-10; Lu et al., 2000) or microbial biomass. 

 

6.3.3.2 Fourier transform infrared spectroscopy 

The FT-IR spectra of the NP HPO and TPI fractions (Figure 6.2) were very similar. 

Specific infra-red absorbance bands can be assigned to various functional groups 

(Silverstein and Webster, 1997). The intense, broad absorption at 3600 – 3250 cm-1 

is due to hydrogen bonded hydroxyl groups of carbohydrates, carboxylic acids, 

phenols or alcohols (Silverstein and Webster, 1997). The partially resolved band at 

3000 – 2800 cm-1 and the bands at 1460 cm-1 and 1380 cm -1 are characteristic of C-

H stretching and symmetric and asymmetric bending of methyl and methylene 

groups, respectively. 

 

Carboxylic acid functional groups of fulvic acids exhibit a broad band at 2750 – 

2500 cm-1 (Leenheer and Rostad, 2004). The very prominent band centred at ca. 
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1720 cm-1 is indicative of C=O stretching due to the presence of carboxylic, ketonic, 

aldehydic or ester carbonyl groups. The bands at 1650 and 1560 cm-1 probably 

represent the combined contribution of the amide I (N-C=O; 1660 cm -1) and amide 

II bands (N=C-O; 1540 - 1550 cm-1) and N-H bending vibrations of amines (1650 – 

1580 cm-1). These signals are more pronounced for the TPI isolate indicating a 

higher contribution of proteinaceous or amino sugar structures (Leenheer and Rostad, 

2004). Aromatic carbons (1600 and 1580 cm-1) and aromatic carbonyl groups (1660 

– 1630 cm-1) can also give moderate bands in this region. The small absorbance at 

900 – 700 cm-1 is also indicative of aromatic carbon (Leenheer and Rostad, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  FTIR spectra of North Pine HPO and TPI fractions. 

 

 

The HPO and TPI spectra also show several strong absorbance bands centered at 

1000 – 1200 cm–1 assigned to O-H of alcohols (1000 – 1200 cm–1), C-O stretching 

and O-H deformations of carboxylic acids (~1200 cm–1), C-O stretching of esters 

(~1100 cm–1), or C-O-C stretching of ethers (~1100 cm–1; Silverstein and Webster, 

1997). Overall, FTIR spectroscopy provided limited distinction between the HPO 

and TPI samples, with the major difference being a higher proportion of N and O 
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functional group signals from the TPI fraction, reflecting the higher concentration of 

more polar structural moieties in this fraction. 

 

6.3.3.3 Cross polarization magic angle spinning 13C-NMR spectroscopy 

The solid state 13C CPMAS NMR spectra of the NP HPO and TPI fractions (Figure 

6.3) showed similar qualitative features, but noteworthy distinctions were evident on 

closer scrutiny. The NMR spectra were integrated over four spectral regions 

attributed to the following functionalities: 0 – 45 ppm assigned to alkyl carbon 

bonded to hydrogen; 45 – 110 ppm to O-alkyl carbons or N-alkyl carbons (e.g. 

carbohydrates, amines, alcohols); 110 - 165 ppm to aromatic and unsaturated C 

(Malcolm, 1990); and 165 – 185 ppm to carbonyl C in carboxylic acids, amides and 

esters (Croué et al., 2000; Hatcher et al., 2001; Keeler et al., 2006). The proportions 

of these carbon types in the two fractions are shown in Table 6.4. The results of spin 

counting showed that the observable carbon was 72 and 79 % for the HPO and TPI 

fractions respectively, indicating quantitative reliability. 

 

Aliphatic carbon was the most abundant integral region of the HPO fraction, but can 

be overestimated using CPMAS due to a higher efficiency of magnetisation transfer 

from hydrogen to carbon in CH2 groups compared with other carbon types (Wilson, 

1987; Poirier et al., 2000; Quénéa et al., 2005a). The aliphatic region of both spectra 

can be separated into methyl carbons at 20 ppm, branched alkyl and quaternary 

aliphatic carbons at 42 ppm (McIntyre et al., 2005; Leenheer et al., 2003a; 2004), 

possibly indicative of highly branched and ring structures of terpenoids (Leenheer et 

al., 2003a), and methylene carbons at 30 ppm (González-Vila et al., 2001).  

 

The major peak in the O-alkyl region of the HPO spectrum occurred at 76 ppm. The 

O-alkyl signal was more abundant for the TPI fraction (Table 6.4) and was centred at 

72 ppm. This is indicative of oxygen linked aliphatic carbons of alcohols (van 

Heemst et al., 2000), ethers and esters (Leenheer and Rostad, 2004) or 

polysaccharides (Lu et al., 2000; Templier et al., 2005a, Quénéa et al., 2005a). The 

small shoulder at 106 ppm of the broad O-alkyl region is more prominent for the TPI 

fraction and is attributed to anomeric carbon of carbohydrates (Pastorova et al., 1994, 

McIntyre et al., 2005).  
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Figure 6.3  Solid state 13C CPMAS NMR spectra of North Pine HPO and TPI  
  NOM fractions (ppm is chemical shift in parts per million). 
 

 

Table 6.4 Proportion of carbon types in the solid state 13C CPMAS NMR  
  spectra of the NP HPO and TPI fractions. % = percentage of total  
  signal. 
 

Sample Carbonyl Aromatic O-alkyl Alkyl 

  185 - 165 ppm 165 - 110 ppm 110 - 45 ppm 45 - 0 ppm 

      NP-HPO 11.4% 12.8% 33.4% 42.3% 
NP-TPI 15.0% 10.4% 40.6% 34.1% 

 

 

Aromatic C and unsaturated C contribute to the aryl signal intensities at 130 ppm. 

This spectral region was more abundant for the HPO fraction. A small shoulder at 

156 ppm of the TPI spectrum corresponds to carbons bonded to phenolic OH groups 

found in lignin (McIntyre et al., 2005). The small shoulder at 58 ppm in the O-alkyl 

region corresponding to methoxy groups of lignin (Hatcher et al., 1980) is also 
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slightly more prominent for the TPI spectrum. However, the low abundance of this 

signal indicates only minor contribution from lignin-derived methoxy aromatics. 

 

Carbonyl C of carboxylic acid, amide and esters at 172 ppm are significant 

components of both fractions but higher abundances were observed for the TPI 

fraction. Carboxylic acid groups may be formed by microbial oxidation of lignin 

side-chains (Saiz-Jimenez and de Leeuw, 1984b; Kirk and Farrell, 1987; Huang et 

al., 1998; Filley et al., 2000). The small spectral region from 190 – 220 ppm 

observed in similar abundance for both fractions corresponds to aldehydic and 

ketonic carbon. 13C-NMR signals corresponding to amide and amine groups of 

proteins (C-N, 40-55 ppm and 160-190 ppm; Leenheer and Rostad, 2004) overlap 

those produced by alkyl, methoxyl and carbonyl structures (Gonzalez et al., 2003), 

so are not easily determined. However, a small shoulder peak at 52 ppm, more 

prominent for the TPI fraction, is likely caused by C-N linkages of amines and 

amides (Leenheer et al., 2004). 

 

The high aliphatic, moderate carboxylic, and relatively low aromatic content 

identified by 13C-NMR spectroscopy of both NP fractions may reflect a major 

contribution from terpenoid hydrocarbons. The HPO and TPI NMR spectra were 

very similar to those previously reported in the corresponding fractions of the Great 

Salt Lake (Leenheer et al., 2004), which were attributed to terpenoid precursors 

derived from primary production of algae and secondary production of bacteria. 13C-

NMR studies have characterised terpenoid-derived NOM fractions of landfill 

leachates, groundwaters and surface waters by high alicyclic ring structures and low 

numbers of carbon per rings, indicative of fused structures, with extensive methyl, 

branched alkyl, hydroxyl and carboxyl substitution (Leenheer, 2004, Leenheer and 

Rostad, 2004; Leenheer et al., 2004). Low methoxy and aromatic content, both 

features of the NP NOM, distinguishes terpenoid derived NOM from tannin and 

lignin derived NOM (Leenheer et al., 2004; McIntyre et al., 2005). 

 
13C-NMR analysis revealed that the NP TPI fraction is richer in the more polar 

carbonyl and O-alkyl carbon, indicating a greater contribution from carbohydrate, 

alcohol, carboxylic acid, ester or amide functional groups. Methoxy phenolic 

structures of lignin were present in low quantities for both fractions, but were also 
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slightly enriched for the TPI fraction. Conversely, the HPO fraction was richer in the 

less polar aromatic and alkyl carbon. Lower quantities of oxygenated aliphatic 

carbon and enrichment of aromatic carbon has been associated with an increasing 

degree of humification involved in microbial and chemical degradation during 

diagenesis (Lu et al., 2000). However, the overall abundance of aromatic carbon is 

much lower than typically found in highly humic surface waters such as Suwannee 

River (Leenheer et al., 2003a) and Gartempe River (Templier et al., 2005a). This 

suggests that the HPO/humic materials of pristine water sources derive from 

alternative sources (i.e. terpenoids) or diagenetic processes to black waters, 

consistent with the differences in SUVA and elemental composition discussed 

previously.  

 

6.3.4 MSSV pyrolysis GC-MS  

The total ion chromatograms obtained by MSSV pyrolysis GC-MS of the NP HPO 

and TPI fractions are shown in Figure 6.4. Table 6.5 comprises a list of the 100 

most abundant MSSV products of each fraction and an indication of their relative 

abundance. The identified products were grouped into 10 major compound classes, 

which accounted for ca. 80-90% of the total MSSV product yield. These are semi-

quantitatively compared in Figure 6.5. The values express the summed percentage 

of the total integrated pyrolysate area of each product group and were calculated as 

described in Chapter 3.3.2 (pg 71). The same semi-quantitative data of the flash 

pyrolysis analysis of each fraction is also shown in Figure 6.5 for comparison. 

MSSV pyrolysis yielded much higher product concentrations than flash pyrolysis, 

although several qualitative aspects of the product distributions of each method were 

similar. 

 

Many qualitative similarities were evident in the MSSV pyrolysate distributions of 

the HPO and TPI fractions. The main distinction was the significantly higher 

abundance of aromatic hydrocarbons from the HPO fraction, and an enrichment of 

nitrogen-containing pyrolysates from the TPI fraction. The isomeric distribution, 

structural significance and possible sources of several prominent product classes 

were evaluated in further detail. 
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Figure 6.4 TICs obtained by 300°C/72hr MSSV pyrolysis GC-MS analysis of a) NP HPO; and b) NP TPI fractions. Peak   
  assignments correspond to products listed in Table 6.5. Relative abundances of a-b are indicated in italics. 
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Table 6.5 Products detected by MSSV pyrolysis GC-MS of NP HPO and TPI fractions. The 100 most abundant products   
  of each fraction are listed. A semi-quantitative indication of the relative abundance of each product is given as a  
  percentage of the total peak area: * = < 0.5 %, ** = 0.5 – 1.5 %, *** = > 1.5 %, nd = not detected. A = low MW aliphatics, 
  CA = cycloaliphatics, F = furans, B = benzenes, K = ketones, P = phenols, N = nitrogen-products, I = indenes, Na =  
  naphthalenes, O = other. 
 

Peak  Identification Compound HPO TPI Peak Identification Compound HPO TPI 
    Class         Class     
1 1-butene A ** * 25 dimethylpyridine + dimethylheptadiene N + A nd * 
2 acetone O ** * 26 1,2 dimethylbenzene B ** * 
3 2-methylbutene A * * 27 ethylpyridine N nd * 
4 methylfuran F * ** 28 methylpropylfuran F * * 
5 methylcyclopentene CA * * 29 dimethylpyrrole  N * ** 
6 dimethylcyclopentene CA ** ** 30 ethylpyrrole + dimethylpyridine N nd ** 
7 dimethylcyclopentene CA ** ** 31 dimethylpyrrole + dimethylpyridine N nd * 
8 pyrrole N nd * 32 dimethylpyridine N nd * 
9 toluene B ** ** 33 1-methyl-3-ethylbenzene B * ** 
10 methylheptane A * * 34 1-methyl-4-ethylbenzene B * ** 
11 methylheptene + methyleneheptane A * ** 35 1,3,5-trimethylbenzene B * * 
12 dimethylcyclohexene CA * * 36 aniline N * * 
13 methylheptane A * * 37 1-methyl-2-ethylbenzene B * nd 
14 acetylfuran F nd * 38 trimethylpyrrole N * * 
15 trimethylcyclopentene CA ** ** 39 phenol P ** * 
16 ethylpyrrole N nd * 40 1,2,4-trimethylbenzene B *** ** 
17 trimethylfuran  F * ** 41 trimethylpyridine N * ** 
18 methylethylcyclopentene + trimethylfuran CA + F ** ** 42 ethylmethylpyrrole  N * ** 
19 methylpyrrole N nd * 43 trimethyl pyrrole N * *** 
20 tetramethylcyclopentene CA * ** 44 1,2,3-trimethyl benzene B *** ** 
21 ethylbenzene  B ** ** 45 1-methyl-4-isopropylbenzene (p-cymene) B ** ** 
22 dimethylpyrrole N nd * 46 2-ethyl hexanol O * *** 
23 1,3 dimethylbenzene B ** ** 47 2,3-dimethyl-2-cyclopenten-1-one +  K ** nd 
24 1,4 dimethylbenzene B * *   trimethylcyclohexanone       
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Peak  Identification Compound HPO TPI Peak Identification Compound HPO TPI 
    Class         Class     

48 1,3-diethyl benzene B * ** 78 dimethylindane I * nd 
49 ethyldimethylpyrrole N nd ** 79 dimethylindane + C5 benzene + 3,4-dimethyl phenol I + B + P *** ** 
50 1,4-diethylbenzene B nd ** 80 trimethylindane I * nd 
51 2-methylphenol P ** ** 81 2,4,6-trimethylphenol  P ** ** 
52 trimethyl-2-cyclopenten-1-one K ** * 82 ethyldimethylpyrrolidinedione N nd ** 
53 3- and 4-methylphenol + dimethylethylbenzene P + B *** *** 83 2-propylphenol + trimethylindane I + P ** nd 
54 ethyldimethylpyrrole + trimethylpyridine N nd ** 84 C3 phenol P * nd 
55 ethyldimethylbenzene + methylphenylcyclopropane B ** ** 85 C5 benzene + C3  phenol B + P ** *** 
56 trimethyl-2-cyclopenten-1-one K ** nd 86 C3  phenol + trimethylindane I ** nd 
57 ethyldimethylpyrrole  N * *** 87 2-methyl-4-isopropyl-2-cyclohexenone K * nd 
58 ethyldimethylpyrrole  N * ** 88 trimethylphenol P ** ** 
59 2,4-dimethylacetophenone B * nd 89 C3 phenol + diethylpyrrolidinedione P + N * * 
60 2,6-dimethylphenol P ** ** 90 trimethylphenol P ** ** 
61 ethylpyrrolidinedione N nd * 91 dimethylindane + C5 benzene + C4 phenol I + B + P ** * 
62 1,2,4,5-tetramethylbenzene B ** * 92 hexamethylbenzene B ** nd 
63 1,2,3,5-tetramethylbenzene B * * 93 trimethylindane I * nd 
64 ethyltrimethylpyrrole N nd * 94 trimethylphenol + diethylphenol P ** ** 
65 tetramethylpyrrole N * ** 95 trimethylindane + C3 phenol I + P ** nd 
66 isopropyldimethylbenzene B * nd 96 dihydro trimethyl indene I ** ** 
67 methylindane + 2-ethylphenol I + P ** ** 97 C4 phenol  P * ** 
68 isopropyldimethylbenzene B ** nd 98 C4 phenol  P ** ** 
69 methyl indane I ** ** 99 C4 phenol  P ** ** 
70 1,2,3,4-tetramethylbenzene + 2,4-dimethylphenol B *** *** 100 trimethylindene +  trimethyltetralin I + Na ** * 
71 ethyl trimethyl pyrrole N nd ** 101 trimethylindene I * nd 
72 4-ethylphenol P * nd 102 trimethyltetralin Na * * 
73 3,5-dimethyl phenol P ** * 103  2,3-dihydro-trimethyl-1H-inden-1-one I ** nd 
74 2,3-dimethyl phenol P * ** 104 methylindole  I nd ** 
75 ethyltrimethylpyrrole  N nd ** 105 trimethyltetralin Na * nd 
76 ethyltrimethylpyrrole N nd ** 106  2,3-dihydro-trimethyl-1H-inden-1-one I * * 
77 dimethylindane + ethyltrimethylpyrrole  I + N *** *** 107 2,7-dimethylnaphthalene Na ** * 
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Peak  Identification Compound HPO TPI 
    Class     

108 1,3- + 1,7-dimethylnaphthalene Na ** ** 
109 1,6-dimethylnaphthalene Na ** ** 
110 tetramethylphenol P * nd 
111 diphenylmethane B ** nd 
112 trimethyltetralin  Na ** nd 
113 diphenylethane + tetramethyltetralin B + Na ** nd 
114 dimethylindole N nd ** 
115 di-tert-butylphenol P ** nd 
116 1,3,6-trimethylnaphthalene Na ** * 
117 1,4,6- + 1,3,5-trimethylnaphthalene Na ** * 
118 trimethylnaphthalene Na * nd 
119 dimethyl diisopropyl benzene B ** nd 
120 1,2,7-trimethylnaphthalene Na *** * 
121 1,6,7- + 1,2,6-trimethylnaphthalene Na ** nd 
122 trimethylindole N nd * 
123 1,2,5-trimethylnaphthalene Na ** nd 
124 trimethylindole N nd ** 
125 trimethylindole N nd * 
126 C4 naphthalene Na ** nd 
127 C4 indole N nd ** 
128 C4 naphthalene Na * nd 
129 C4 naphthalene Na ** nd 
130 C4 naphthalene Na * nd 
131 C4 naphthalene Na * nd 
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Figure 6.5 Relative proportions of major product classes detected by MSSV  
  pyrolysis and flash pyrolysis of NP HPO and TPI NOM fractions.  
  Other* = identified peaks not classified into one of the 10 product  
  groups, or peaks that could not be identified due to low abundance  
  and/or poor mass spectra. 
 
 

 
Figure 6.6 Summed m/z 94+107+108+121+122+135+136+150 chromatograms 
  showing the distribution of alkyl (≤ C4) phenols from the MSSV  
  pyrolysis GC-MS analysis of NP HPO. Peak assignments correspond 
  to products listed in Table 6.5. Relative abundance is indicated in 
  italics. 
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6.3.4.1 Hydrophobic fraction 

Alkyl substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) were the 

most abundant MSSV pyrolysates of the HPO fraction, accounting for ca. 68 % of 

the total integrated pyrolysate area. The major products were alkyl (≤ C6) benzenes, 

alkyl (≤ C4) phenols, alkyl (C1-C4) naphthalenes and partially hydrogenated PAHs, 

including alkyl (C1-C3) indanes and alkyl (C1-C3) tetrahydronaphthalenes (tetralins). 

This product distribution was very different to the HPO fractions of the surface black 

waters studied in previous chapters (e.g. Uruguay, Gartempe Rivers), showing 

higher concentrations of aromatic hydrocarbons (e.g. alkyl naphthalenes) and lower 

relative abundances of phenols. These same pyrolysate features were also noted from 

the MSSV analysis of terpenoid derived ground water NOM (see Chapter 3.3.2.2, 

Lavaud et al., 2008).  

 

6.3.4.1.1 Alkyl phenols 

Alkyl (≤ C4) phenols (APs) were prominent products of the NP HPO fraction. The 

AP distribution is shown in the summed ion chromatograms of Figure 6.6 and the 

product list of Table 6.5. Parent and monomethyl phenols were also prominent flash 

pyrolysates; however the higher MW alkyl (≥ C2) phenols were detected in much 

lower concentration. APs are very common pyrolysates of aquatic and terrestrial 

humic substances and are often attributed to intact or partially degraded lignin 

structures, as discussed in Chapter 4 (e.g. Saiz-Jimenez and de Leeuw, 1986b; 

Bruchet et al., 1990; Templier et al., 2005a). Several of the prominent AP isomers, 

including 2-methylphenol (51), 2,6-, 2,4- and 2,5-dimethylphenol (60, 70), 2,4,6-

trimethylphenol (81), ethylmethylphenol (84) and unspecified trimethylphenol 

isomers (89-90), were also detected in high abundance from the corresponding 

MSSV pyrolysis (300˚C/72hr) of a lignin standard (Chapter 4). Lignin is therefore a 

likely precursor of some of the AP pyrolysates of the HPO fraction.  

 

However, methoxyphenol pyrolysates, which are unequivocal indicators of lignin 

(Hedges and Mann, 1979; Ertel et al., 1984; Saiz-Jimenez and de Leeuw, 1986a; 

Opsahl and Benner, 1997), were not detected by either flash or MSSV pyrolysis, 

consistent with the low methoxy content detected by 13C-NMR. This contrasts with 

the riverine black waters studied in Chapter 4 (e.g. Gartempe, Uruguay), which 

yielded several prominent methoxyphenol products. This may indicate more 
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substantial contribution from p-coumaryl (i.e. non-methoxylated) lignin units, which 

are characteristic of non-woody (i.e. grass) tissues (Ertel et al., 1984; Challinor, 1995; 

Pancost and Boot, 2004; Quénéa et al., 2006). This would be consistent with the 

surrounding vegetation of the NP catchment, which has been largely cleared or 

modified for grazing, agriculture and rural residential subdivisions (SEQWater and 

Brisbane Water, 2006).  

 

The broad MSSV distribution of APs from the HPO fraction likely reflects 

contribution from other sources. The low colour of the NP source water and the 

relatively low aromatic C content detected by NMR suggests only minor input from 

plant tannins. Lehtonen et al. (2000b) attributed AP pyrolysates of lake humic 

substances to carbon-carbon bound alkyl aromatic networks, as opposed to phenolic-

carboxylic acid structures characteristic of degraded lignin. The origins of these APs 

were attributed to algal derived compounds, including tyrosine moieties of proteins 

and selectively preserved phenolic biomolecules (phlorotannins). van Heemst et al. 

(1996) demonstrated that APs were major flash pyrolysis products of algal 

phlorotannins. Sediment accumulation in NP Dam can lead to increased nutrient 

inputs resulting in algal blooms. This is a significant problem for this source water 

(Burford et al., 2007). De-stratification of NP Dam has not been successful at 

controlling the levels of toxic cyanobacteria (Littlejohn, 2004), and it was closed in 

August 1995 due to excessive cyanobacterial levels. Therefore, phenolic 

biomolecules of aquatic algae may contribute to the AP distribution of the NP 

fractions (van Heemst et al., 2000). APs have been postulated to be more strictly 

bound macromolecular components than esterified or acidic lignin phenols not 

containing alkyl groups (Lehtonen et al. 2000a). The softer thermal release of 

covalently bound APs by MSSV pyrolysis may partially preserve their alkyl 

substitution patterns and contribute to the higher concentrations of more highly 

substituted alkyl (C2-C4) phenols than were evident by flash pyrolysis. The high 

alkyl substitution is consistent with the high content of methyl and branched alkyl 

groups detected by 13C-NMR spectroscopy. 

 

In addition to grass lignin and phenolic compounds derived from algae, 

diagenetically modified terpenoids also likely contribute to the AP distribution. As 

discussed previously (section 6.3.3.3), the NMR spectral characteristics of NP HPO 
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resembled HPO fractions of the Great Salt Lake, which were found to be derived 

from algal and bacterial terpenoids (Leenheer et al., 2004). Model structures of this 

fraction proposed by Leenheer et al. (2004) were based on alicyclic ring structures 

extensively substituted with alkyl, carboxyl and hydroxyl groups. Thermal release 

and aromatisation of alkyl and hydroxyl substituted aliphatic ring structures to form 

APs may occur during MSSV pyrolysis. This origin would be consistent with the 

relatively low aromatic content and high aliphatic hydroxyl group (O-alkyl) content 

detected by 13C-NMR spectroscopy. The occurrence of the (tentatively identified) 

monoterpene C4 APs thymol and carvacrol may also indicate the presence of 

phenolic higher plant terpenoids. 

 

6.3.4.1.2 Alkyl naphthalenes and other polycyclic aromatic hydrocarbons 

High concentrations of PAHs, including alkyl (C1-C5) naphthalenes (ANs), alkyl 

(C1-C3) indanes (dihydroindenes) and alkyl (C1-C4) tetrahydronaphthalenes 

(tetralins), were detected from the MSSV pyrolysis of North Pine HPO. Flash 

pyrolysis yielded very low concentrations of these products. The AN and 

hydroaromatic distributions are shown in Figure 6.7. The high concentration of 

these products contrasts with their much lower abundance in the HPO fraction of the 

black water Gartempe River, reflecting an important difference in the structural 

characteristics of humic substances from pristine and black water sources.  

 

Chapter 3 provided a comprehensive investigation of the distribution of ANs from 

several likely NOM precursors, including lignin, terpenoids, aromatic amino acids 

and proteins. ANs were strongly correlated with higher plant terpenoids due to their 

high concentrations in the HPO fraction of terpenoid rich ground water, and in the 

MSSV pyrolysates of extant bark samples of Pinus radiata and Wandoo eucalyptus. 

Several of the major AN products of these samples, including 1,6-

dimethylnapthalene (109), 1,2,5-, 1,2,7-, 1,6,7- and 1,2,6-trimethylnapthalene (120, 

121, 123), methylisopropylnaphthalene (126), tetramethylnaphthalene (131) and 

cadalene (C) were also detected in high abundance from the NP HPO fraction. ANs, 

as well as alkyl benzenes and alkyl phenanthrenes, were recently reported as major 

flash pyrolysis products of the HPO fraction of a municipal landfill leachate 

(Leenheer et al., 2003a) and were also attributed to highly branched terpenoids from 

plant resin acids (Leenheer et al., 2003a).  
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Figure 6.7 Summed (a) m/z 142+156+170+184+198+133+134+148 and (b) m/z 
  117+131+132+145+146+159+160+174 chromatograms showing the 
  distribution of alkyl naphthalenes (CxN, x =  number of alkyl carbons) 
  and alkyl indanes (I) and tetralins (T) from the MSSV pyrolysis GC-
  MS analysis of NP HPO. Relative abundances of a-b are indicated in 
  italics. Peak assignments correspond to products listed in Table 6.5. 
  Additional hydroaromatics (non-integrated peaks):     = C2I + C1T,    
      = C3I/C2T, * = C3T. 
 

 

Many cyclic aliphatic higher plant terpenoids undergo aromatisation during natural 

or artificial maturation (Hayatsu et al., 1990; van Aarssen et al., 2000). A high 

aliphatic 13C-NMR signal was measured for NP HPO and aromatisation of alicyclic 

terpenoids during MSSV thermal treatment may contribute to the high 

b) Alkyl Hydroaromatics
4.1e6 

32 36 40 44 48 

a) Alkyl Naphthalenes 
6.2e6 

C1N 

C2N 

C4N

C3N 

C5N 

123 

121 

120 

116 
117 

126 

131 129 130 

128 
Ca 

109 

108 

107 

24 28 32 36 

C2 I/C1T 
C3 I/C2T 

C3-C4T 

 
C1 I 

67 

69 

79 77 

86 

83 

91 
95 

96 

93 

100 
113 112 

105 
102 

* 
* *

*
* 

R
el

at
iv

e 
ab

un
da

nc
e

 

R
el

at
iv

e 
ab

un
da

nc
e

 

Retention time (min) 



 

Chapter 6 - North Pine NOM characterisation   206

concentrations of aromatic hydrocarbon products. Straight chain aliphatics such as 

fatty acids are readily mineralised by microbial activity; however branched and 

cyclic aliphatic terpenoid molecules are refractory to aerobic degradation processes 

(McDonald et al., 2004). The lack of significant amounts of long chain aliphatic 

pyrolysates by MSSV pyrolysis, flash pyrolysis and thermochemolysis (Chapter 

6.3.5) suggests the high alkyl carbon content detected by NMR probably reflects 

highly branched and cyclic aliphatic structures of terpenoids (Lu et al., 2003).  

 

Naturally occurring terpenoids occur in an extremely wide variety of structural 

configurations and may be subject to alteration during diagenesis or MSSV thermal 

treatment. As such, it is difficult to unequivocally correlate individual AN 

pyrolysates to specific terpenoid precursors. Nevertheless, possible terpenoid sources 

may be inferred for several abundant AN products. Trimethylnaphthalenes (TMNs) 

dominated the AN distribution of the NP HPO fraction. High concentrations of 

TMNs have previously been reported in immature sediments rich in higher plant 

terpenoids (Püttman and Villar, 1987; Strachan et al., 1988; Almendros et al., 1998). 

1,2,5-TMN and 1,2,7-TMN, the most abundant isomers of NP HPO, are diagenetic 

products of oleanane type pentacyclic triterpenoids such as β-amyrin, which are 

specific to flowering plants (Strachan et al., 1988, Watson et al., 2005). 1,2,5-TMN 

may also form from bicyclic diterpenoids and resins common in conifers, or the 

compound onocerane, which has been found in a variety of vascular plants (Pearson 

and Obaje, 1999; Watson et al., 2005).  

 

1,6-dimethylnaphthalene, the most abundant C2 isomer of NP HPO, can derive from 

sesquiterpenoids of essential oils and plant resins (Simoneit, 1985; van Aarssen et al., 

1991). The sesquiterpenoids cadalene (Ca) and methylisopropylnaphthalene (126) 

were also detected in low concentration. Tetramethylnaphthalenes (TeMNs) may 

derive from oxygenated triterpenoids (e.g. arborene and fernene) or from bicyclanes 

(Bastow, 1998). Alternatively, co-occurrence of 1,2,5-TMN and 1,2,5,6-TeMN 

(tentatively peak 131) in extracts and flash pyrolysates of immature brown coal have 

been attributed to C-ring cleavage of bacterial hopanoids (Püttman and Villar, 1987; 

Sinninghe Damste et al., 1992b).  
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Although their specific isomeric identities were not determined, the general detection 

of high concentrations of hydroaromatics including C1-C4 tetrahydronaphthalenes 

(tetralins) and C1-C3 dihydroindenes (indanes) in the HPO fraction provides further 

evidence of a significant contribution of plant terpenoids. Except for the methyl 

indanes, hydroaromatics were not detected by flash pyrolysis. Confined gold tube 

pyrolysis has shown that plant resins yield a range of hydronaphthalenics (Michels et 

al., 2000), which are very efficient hydrogen donors and contribute significantly to 

the generation of petroleum hydrocarbons from humic substances in coal (Hayatsu et 

al., 1990; Michels et al., 2000). Hydroaromatics probably represent intermediates in 

the aromatisation of alicyclic terpenoid structural moieties (Wakeham, 1980; 

Simoneit et al., 1986; Hayatsu et al., 1987). However, alkyl indanes may also be 

produced by the MSSV thermal alteration of polysaccharides such as cellulose, as 

discussed in Chapter 4.3.3.  

 

6.3.4.1.3 Alkyl benzenes 

Alkyl (≤ C5) benzenes (ABs) were major products of the NP HPO fraction. Their 

isomeric distribution is shown in Figure 6.8. Flash pyrolysis similarly yielded high 

concentrations of ABs but mostly with alkyl substituents ≤ C3. No C5-C6 ABs were 

detected and the C4 products were present in very low abundance. Low MW ABs (≤ 

C3) offer limited source diagnostic value as they are ubiquitous pyrolysates of 

aquatic NOM and can derive from a variety of biomolecular sources. 

 

The ABs of the NP HPO fraction likely include both primary alkyl-linked aromatic 

structures (e.g. Schulten et al., 1987; Schulten, 1996 a,b), as well as secondary 

products from the thermal alteration of other NOM moieties. MSSV reduction of 

aromatic carboxylic acid groups may be one possible route to ABs. 13C-NMR 

analysis showed that NP HPO contained moderate carboxyl content. 

Thermochemolysis of this fraction also detected several aromatic carboxylic acids 

(as methyl esters; Chapter 6.3.5). Chemical reduction using n-butylsilane has proven 

effective for converting polycarboxylic acid constituents of aquatic fulvic acids to 

their corresponding ABs (Nimmagadda et al., 2006; 2007a). The thermal conditions 

of MSSV pyrolysis may favour a similar conversion. 
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Figure 6.8 Summed m/z 91+105+106+119+120+133+134+148 chromatograms 
  showing the distribution of C1-C5 alkyl benzenes from the MSSV  
  pyrolysis GC-MS analysis of North Pine HPO. Peak assignments 
  correspond to products listed in Table 6.5. Relative abundance is  
  indicated in italics. 
 

 

However, the very high concentration of ABs is inconsistent with the relatively low 

aromatic C content detected by 13C-NMR spectroscopy. This suggests that secondary 

cyclisation and/or aromatisation of aliphatic and alicyclic terpenoids may be a 

significant source of ABs, analogous to the thermal formation pathway proposed for 

the dominant AN pyrolysates. Higher plant terpenoids, carotenoids and alkaloids are 

potentially significant precursors of sedimentary ABs (Hartgers et al., 1994 a,b; 

Hoefs, 1995; Clegg et al., 1997). Furthermore, Schulten and Gleixner (1999) 

isotopically correlated alkyl benzene pyrolysates of some aquatic humic acids with 

natural terpenes (Schmidt et al., 1995). Several of the prominent ABs detected from 

NP HPO, including isopropylbenzene (iP), p-cymene (peak 45) and 

isopropyldimethylbenzenes (peaks 66 and 68), were previously observed in the other 

NOM fractions studied and were correlated with terpenoid constituents of higher 

plants (Chapter 3.3.3.2 b). The high abundance of 1,2,3,4- and 1,2,3,5-

tetramethylbenzene (peaks 63 and 70) may also indicate contribution from bacterial 

or algal carotenoids (Hartgers et al., 1994 b,c; Brown et al., 2000; Pedentchouk et al., 

2004). 
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6.3.4.1.4 Furans and cyclic ketones 

MSSV pyrolysis of NP HPO (Fig 6.4) also yielded several cyclic oxygen-containing 

products including alkyl furans, benzofurans, and cyclic ketones. These products 

were detected in lower relative abundance than the alkyl phenolic and aromatic 

hydrocarbon products. The prominent furans were methylfuran (4), dimethylfuran, 

acetylfuran (14), trimethylfurans (17, 18) methylpropylfuran (28) and dimethyl 

benzofurans. The major ketone products were polymethyl (C1-C4) substituted 

cyclopentanones and cyclopenten-1-ones (47, 52, 56), trimethylcyclohexanones and 

methylisopropylcyclohexenone (87). Major sources of furans and cyclic ketones 

include carbohydrates such as simple sugars (e.g. glucose, fructose), polysaccharides 

(e.g. cellulose, hemicellulose and pectin), and their microbial metabolites (e.g. 

Pouwels et al., 1987; Pastorova et al., 1994, Almendros et al., 1997, Reeves and 

Francis, 1997, Paine et al., 2008). The furan and cyclic ketone products detected 

from NP HPO were also detected by MSSV pyrolysis of the cellulose standard 

(Chapter 4.3.3). Flash pyrolysis yielded slightly higher proportions of furans, 

however this may be due to the much lower concentrations of other pyrolysates such 

as APs and ANs. Cyclic ketones were detected in similar relative abundance by both 

pyrolysis methods.  

 

Pyrolysates indicative of unaltered polysaccharides, such as levoglucosan, 

levoglucosenone or 1,4:3,6-dianhydro-α-D-glucopyranose (Pouwels et al., 1987, 

Pastorova et al., 1994), were not detected by either MSSV or flash pyrolysis. 13C-

NMR similarly showed little evidence of intact polysaccharide input, with very low 

signal intensity in the O-alkyl region (106 ppm) for anomeric carbon of 

carbohydrates. Carbohydrates are a major energy source for micro-organisms, and 

are rapidly and preferentially mineralised (cf lignins and terpenoids) during early 

diagenesis (Hedges et al., 1985; Almendros et al., 1997; Huang et al., 1998; Lu et al., 

2001). Whilst the contribution to the NP HPO fraction may be minimal, 

carbohydrate occurrence in complex environmental samples may be underestimated 

using pyrolytic techniques due to excessive thermal degradation and formation of 

non-diagnostic pyrolysates (Gauthier et al., 2003). Furthermore, diagenetically 

altered carbohydrates may be incorporated into resistant heterocyclic and aromatic 

structures within the humic fraction of NOM (Abbt-Braun et al., 1989; Almendros et 

al., 1997; Lu et al., 2000; 2001).  
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6.3.4.1.5 Low MW aliphatic products 

Low MW aliphatics were also prominent MSSV products from the NP HPO fraction. 

These included C4-C8 branched alkanes and alkenes, and alkyl (C1-C4) cyclopentenes 

and cyclohexenes.  Flash pyrolysis also generated high concentrations of low MW 

aliphatics displaying a range of unsaturation and alkyl substitution. The high 

concentration of these pyrolysates is consistent with the high aliphatic carbon signal 

measured by 13C-NMR analysis. Monoterpenes from algal, bacterial and higher plant 

sources, or their microbial metabolites, are likely to contribute to the high yields of 

low MW aliphatic products. Several monoterpenes including camphene and 

methylisopropylcyclohexenes (menthenes) were also tentatively identified. Recent 

chemical reduction studies of terpenoid derived fulvic acids from Antarctic locations 

(Nimmagadda and McRae, 2007b) also identified several terpene hydrocarbons (e.g. 

camphene, myrcene, limonene and pinene). 

 

Alkyl cyclopentenes (peaks 5-7, 15, 18, 20; Fig. 6.4) were detected in particularly 

high concentration. These products were also detected in high abundance by MSSV 

pyrolysis of the cellulose standard (Chapter 4.3.3), suggesting their occurrence in the 

NP NOM may be due to carbohydrate structural precursors. Almendros et al. (1997) 

also identified unsaturated aliphatic products in the pyrolysates of thermally treated 

carbohydrates. However, the low concentration of carbohydrate-derived furan 

products suggests an alternative origin. Alkyl substituted alicyclic products have  

been attributed to small cyclic polycarboxylic acids on the basis of chemical 

reduction analyses of  aquatic, soil and peat fulvic acids (Nimmagadda et al., 2007a).  

 

6.3.4.2 Transphilic fraction 

MSSV pyrolysis of the NP TPI fraction showed similar concentrations of alkyl 

phenols and low MW aliphatic and cycloaliphatic products to the HPO fraction, 

whilst aromatic hydrocarbons (e.g. benzenes, naphthalenes, indanes) were detected 

in much lower abundance. Conversely, alkyl furans and nitrogen-containing products 

(N-products) were more abundant from the TPI fraction, consistent with the higher 

O-alkyl, amide and amine signals of the 13C-NMR and FTIR data. The same trends 

were generally evident from the corresponding flash pyrolysis data, except that 

higher proportions of low MW aliphatic products were detected from the HPO 

fraction by flash pyrolysis. 
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6.3.4.2.1 Nitrogen-containing products 

N-products accounted for more than 30 % of the total pyrolysate area of the NP TPI 

data, indicating a significant contribution from N-organic precursors such as amino 

acids, proteins and amino sugars. This is consistent with the higher organic nitrogen 

content and lower C/N ratio of the TPI fraction (Table 6.3), and the higher 

proportions of amide and amine functional groups measured by both FTIR and 13C-

NMR. Flash pyrolysis also detected higher concentrations of N-products in the TPI 

fraction, although their total abundance was much lower than the MSSV data, and 

typically showed less alkyl substitution.  

 
The major N-products detected by MSSV pyrolysis of NP TPI were alkyl substituted 

heterocyclic aromatics including alkyl (≤ C3) pyridines, alkyl (≤ C5) pyrroles, alkyl 

(C2-C4) pyrrolidinediones and alkyl (C1-C4) indoles. The summed ion 

chromatograms of Figure 6.9 selectively reveal the distributions of alkyl pyrroles 

and pyridines. The high concentrations of heterocyclic N-products probably 

represent primary or secondary pyrolysates of degraded peptides and proteins 

autochthonously derived from aquatic algae or bacteria. The prominent amide and 

amine FTIR signals of NP TPI indicate proteinaceous input. Low MW alkyl (≤ C3) 

pyrroles (peaks 8, 16, 19, 22, 29, 30, 31, 38, 42, 43, 49), were also detected in high 

concentrations by MSSV pyrolysis of the pentaglycine (peptide) and albumin protein 

standards investigated in Chapter 5.3.4.2. Alkyl indoles (104, 114, 122, 124, 125, 

127), which likely derive from tryptophan-containing peptides and proteins 

(Chiavari and Galletti, 1992), were also prominent in the TPI fraction. Alkylated 

pyrrolidinediones (61, 82, 89) have also been previously detected in protein 

pyrolysates (Boon and de Leeuw, 1987).  

 

The flash pyrolysis data also included low concentrations of several protein-derived 

N-products not detected by MSSV. These included benzonitrile (Tsuge and 

Matsubara, 1985), methylbenzonitrile, 2-methyl-1H-isoindole-1,3(2H)-dione, 

hexahydropyrrolo[1,2-α]pyrazine-1,4-dione and 2,5-diketopiperazine. The latter two 

compounds have been attributed to intact proteins (Bruchet et al., 1990; Chiavari and 

Galletti, 1992; Voorhees et al., 1994; Basiuk and Douda, 2000; Douda and Basiuk, 

2000; Sharma et al., 2005), possibly indicating the presence of low amounts of intact 
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proteinaceous material sequestered within the macromolecular structure (Knicker 

and Hatcher, 1997; Zang et al., 2000).  

 

 
Figure 6.9 Summed m/z 79+80+93+94+106+107+108+109+120+121+122+123 
  chromatograms showing the distribution of alkyl pyrroles and  
  pyridines from the MSSV pyrolysis GC-MS analysis of the NP TPI 
  fraction. Peak assignments correspond to products listed in Table 6.5. 
  Relative abundance is indicated in italics. 
 

 

However, most of the major N-heterocyclic products probably represent pyrolysis 

fragments of diagenetically degraded proteinaceous material, rather than intact 

proteins. 13C-NMR spectroscopy, chemical degradation and pyrolysis-mass 

spectrometric data have indicated that N-heterocycles are significant components of 

humic substances from soil, aquatic and recent sedimentary environments (Ikan et al., 

1992; Patience et al., 1992; Schulten and Schnitzer, 1998; Schulten and Gleixner, 

1999; Westerhoff and Mash, 2002; Mao et al., 2007). Melanoidin type structures 

formed by the cross-linking of heavily degraded proteins and polysaccharides, 

derived from both terrestrial and aquatic algal and bacterial sources, may also be 

significant structural precursors of N-heterocyclic pyrolysates of the TPI fraction 

(Patience et al., 1992; Peulve et al., 1996; van Heemst et al., 1999; 2000; Garcette-

Lepecq et al., 2000; Poirier et al., 2000), as discussed in Chapter 5.3.5. 
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Thermal degradation of refractory N-acetylaminosugar polymers (e.g. peptidoglycan) 

derived from the decomposition of bacterial and algal cell walls may also contribute 

to the abundant N-pyrolysate distributions. Like the protein standards, MSSV 

pyrolysis of the amino sugar standard chitin yielded high concentrations of low MW 

N-heterocyclic products (Chapter 5.3.4.3). Alkyl pyridines were particularly 

prominent and several of these were detected from the NP TPI fraction (peaks 25, 27, 

30, 31, 32, 41, 54). Structural models proposed by Leenheer (2004) and Leenheer et 

al. (2004) of TPI NOM fractions isolated from various surface waters included 

significant contributions from amino sugars. However, characteristic acetamide 

products of aminosugars (Stankiewicz et al., 1996; Steinbrecht and Stankiewicz, 

1999) were not identified by either flash or MSSV pyrolysis, suggesting that peptidic 

N is a more significant precursor of the N-pyrolysates of the TPI fraction. 

 

The MSSV pyrolysis detection of higher MW alkyl (C4-C5) pyrroles (54, 57, 58, 64, 

65, 71, 75-77) in the NP TPI fraction may also reflect the presence of tetrapyrrole 

porphyrin pigments (e.g. chlorophyll) derived from land plants or photosynthetic 

aquatic organisms. MSSV pyrolysis of a porphyrin standard (Chapter 5.3.4.4) 

yielded a very distinctive distribution of pyrrole products, dominated by C4-C6 alkyl 

substituents. Degradation products of porphyrins have previously been identified as 

aquatic NOM constituents, although they are typically concentrated in hydrophilic 

base fractions (Leenheer, 2004).  

 

6.3.5 Thermochemolysis GC-MS 

The TICs obtained by tetramethylammonium hydroxide (TMAH) thermochemolysis 

GC-MS analysis of the NP HPO and TPI fractions are presented in Figure 6.10. 

Thermochemolysis with TMAH promotes the methylation of carboxylic acid and 

hydroxy functional groups (Challinor, 1989). A list of the unique TMAH products is 

shown in Table 6.6. Both fractions showed similar methyl esters of aliphatic and 

aromatic carboxylic acids that were not detected by either flash or MSSV pyrolysis. 

The detection of carboxylic acid TMAH products is consistent with the moderate 

carboxyl group content of both fractions measured by 13C-NMR analysis.  
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Figure 6.10        TICs obtained by TMAH thermochemolysis GC-MS analysis of NP HPO and TPI fractions. Peak assignments  
                    correspond to products listed in Table 6.6. Relative abundances of a-b are indicated in italics.               
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Table 6.6 Products detected by TMAH thermochemolysis of NP HPO and TPI fractions. A semi-quantitative indication of the  
  relative abundance of each product is given as a percentage of the total peak area: * = < 0.5 %, ** = 0.5 – 1.5 %,  
  *** = > 1.5 %, nd = not detected. 
 

Peak   Identification HPO TPI Peak  Identification HPO TPI 
a 2-propenoic acid, methyl ester *** ** B 1-(4-hydroxy-3-methoxyphenyl)ethanone (acetovanillone) * nd 
b propanoic acid, methyl ester *** ** C 3-methoxybenzoic acid, methyl ester nd * 
c 2-methyl-propanoic acid, methyl ester ** * D 3,4-dimethylbenzoic acid, methyl ester  * * 
d 2-methyl-2-propenoic acid, methyl ester ** * E 1,2,4-trimethoxybenzene * * 
e butanoic acid, methyl ester ** * F 3-methoxy-4-methylbenzoic acid, methyl ester * * 
f 2-butenoic acid, methyl ester  ** ** G 4-t-butyl-1,2-dimethoxybenzene nd ** 
g 2-methoxy-propanoic acid, methyl ester ** *** H 2-methyl-1H-isoindole-1,3(2H)-dione nd ** 
h 3-methyl-2-butenoic acid, methyl ester ** ** I biphenyl ** * 
i methoxybenzene ** ** J 1,2-benzenedicarboxylic acid, dimethyl ester * *** 
j 2-methoxy toluene ** nd K biphenylene *** ** 
k 3- and 4-methoxytoluene ** * L 1,4-benzenedicarboxylic acid, dimethyl ester ** *** 
l butanedioic acid, dimethyl ester  ** *** M dodecanoic acid, methyl ester * * 

m methylbutanedioic acid, dimethyl ester ** ** N 3,5-dimethoxybenzoic acid, methyl ester  ** * 
n 3-ethyl-2-hydroxy-2-cyclopenten-1-one * ** O 3,4-dimethoxybenzoic acid, methyl ester  ** ** 
o benzoic acid, methyl ester ** *** P decanedioic acid, dimethyl ester nd * 
p dimethylmethoxybenzene ** * Q benzophenone ** nd 
q 1,2-dimethoxybenzene * ** R tetradecanoic acid, methyl ester * * 
r 2-methylpentanedioic acid, dimethyl ester  * * S phenanthrene *** ** 
s 2-methylbenzoic acid, methyl ester * * T anthracene ** nd 
t dimethoxy benzenamine nd ** U hexadecenoic acid, methyl ester ** * 
u 3-ethyl-1,3-dimethyl-2,5-pyrrolidinedione * * V hexadecanoic acid, methyl ester ** ** 
v 4-methylbenzoic acid, methyl ester * ** W octadecenoic acid, methyl ester nd * 
w 2,3-dimethoxytoluene * ** X octadecanoic acid, methyl ester * ** 
x 3,4-dimethoxytoluene + quinoline ** ** Y pyrene ** * 
y 2,4-dimethylbenzoic acid, methyl ester  * nd Z fluoranthene ** nd 
z 3,5-dimethylbenzoic acid, methyl ester  * ** AA 1,2-benzenedicarboxylic acid, diisooctyl ester * ** 
A 4-ethylbenzoic acid, methyl ester * *         
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The methyl esters of low MW saturated and unsaturated aliphatic acids (e.g. 2-

propenoic acid, propionic acid, methyl propanoic/propenoic acid, butanoic acid, 

butenoic acid) and diacids (e.g. butanedioic acid, methyl butanedioic acid and 

methyl pentanedioc acid) were detected in relatively high abundance. These are 

common thermochemolysis products of NOM (del Rio et al., 1998; Templier et al., 

2005a) and are usually attributed to cross linking units between phenolic structures 

of humic macromolecules (Martin et al., 1995b). These products may be related to 

some of the abundant low MW aliphatic products detected by MSSV pyrolysis. 

Diacids such as succinic (butanedioic acid) and maleic acid are natural metabolic 

products of animal, vegetable and microbial cells (Templier et al., 2005a). The alkyl 

cyclopenten1-ones detected in low abundance by MSSV pyrolysis may derive from 

these aliphatic dicarboxylic acids by pyrolytic cyclisation reactions (Bracewell et al., 

1980). Fatty acid methyl esters (FAMEs) were present in moderate proportions, with 

the most prominent being saturated and unsaturated C16 and C18 products (U, V, W, 

X; Table 6.6), which are generally attributed to microbial sources (Dignac et al., 

2006).  

 

Several aromatics containing methoxy and carboxylic acid (methyl esters) 

substituents were detected in slightly higher relative abundance from the HPO 

fraction. A few of these products, including acetovanillone (B), 3-

methoxymethylbenzoate (C), and 3,5- and 3,4-dimethoxymethylbenzoate (N, O), are 

biomarkers of microbially degraded lignin. Several other methoxy aromatic products, 

including methoxybenzene (i), methoxytoluenes (j, k), dimethoxytoluenes (w, x), 

1,2-dimethoxybenzene, 1,2,4 trimethoxybenzene (E) and 3-methoxy-4-

methylbenzoic acid (F), may also derive from diagenetically or thermally altered 

lignin. However, this cannot be confirmed due to the inability of the TMAH 

approach to distinguish between pre-existing methoxy functionalities and those 

produced by methylation of hydroxy groups during the derivatisation procedure 

(Filley et al., 1999). As such, several different precursory structures may give 

identical thermochemolysis products. 1,2-dimethoxy benzene, for example, may be 

produced by methylation of the guaiacyl (2-methoxyphenol) moiety of lignin, but 

can also result from methylation of 1,2-dihydroxybenzene (catechol) derived from 

plant tannins or algal polyphenols such as phlorotannins (van Heemst et al., 1996; 

1999). Nevertheless, the low overall abundance of methoxy aromatic TMAH 
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products is consistent with the low contribution of lignin to the NP NOM observed 

by 13C-NMR spectroscopy, MSSV and flash pyrolysis. In contrast, the corresponding 

thermochemolysis data of the black water HPO fractions of Arroyo Sanchez River 

(Chapter 4) and Gartempe River (Templier et al., 2005a) showed high concentrations 

of methoxyphenol lignin markers. 

 

An interesting feature of the thermochemolysis data of both fractions was the 

detection of several alkyl substituted benzoic acids (methyl esters), including 2- and 

4-methylbenzoic acid (s, v), 2,4-, 3,4- and 3,5-dimethylbenzoic acid (y, z) and 4-

ethylbenzoicacid (A). The origin of alkyl benzenecarboxylic acids is unclear, but 

given the lack of phenolic or methoxy group substitution it is unlikely that they are 

related to lignin. Lehtonen et al. (2000a; 2000b) suggested that alkyl substituted 

benzoic acids and methoxy aromatics derive from resistant alkyl aromatic networks, 

as opposed to ester or ether bound aromatic constituents. This source is consistent 

with the alkyl aromatic network proposed for some of the alkyl phenolic MSSV 

products. 

 

The TPI fraction additionally yielded dimethyl esters of 1,2- and 1,4-

benzenedicarboxylicacid (J, L) and the diisooctyl ester of 1,2-benzenedicarboxylic 

acid (AA). These are ubiquitous plasticiser compounds and may reflect 

contamination from the plastic containers used for sampling and storage (Leenheer 

and Rostad, 2004; Lehtonen et al., 2000a; Kaiser et al., 2003). Flash pyrolysis 

detected very high concentrations of the same diisooctyl phthalic acid ester. 

 

Several of the major aromatic hydrocarbon pyrolysates detected by MSSV and flash 

pyrolysis, including parent and alkylated benzenes (≤ C3) and naphthalenes (≤ C1), 

were also detected in high abundance by TMAH thermochemolysis. Other parent 

PAHs, including biphenyl (I), biphenylene (K), phenanthrene (S), anthracene (T), 

pyrene (Y) and fluoranthene (Z), were detected only by thermochemolysis and were 

particularly prominent from the HPO fraction. These may be combustion products of 

natural fires or fossil fuels. The low phenanthrene/anthracene ratio (<15; Wise et al., 

1988) and high fluoranthene/pyrene ratio (>1; Sicre et al., 1987) is consistent with 

their production during the combustion of fossil fuels from recreational boating 

activities (Deshmukh et al., 2001), and subsequent incorporation into the HPO 
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fraction. However, the reason that these products were not detected by MSSV and 

flash pyrolysis is presently unclear, but may relate to a structural recalcitrance which 

the TMAH reagent is able to uniquely access. 

 

6.4 Conclusions 

Comprehensive characterisation of the North Pine HPO and TPI fractions, isolated 

by XAD resin fractionation, was performed by MSSV pyrolysis and a variety of 

other established analytical techniques. The hydrophobic fraction accounted for ca. 

65 % of the source water DOC. This fraction appears highly refractory due to the 

very low abundance of pyrolysates characteristic of unaltered polysaccharides, 

proteins, lignin and lipids by MSSV pyrolysis, flash pyrolysis and thermochemolysis. 

The 13C NMR spectra of this fraction indicated the presence of aliphatic and alicyclic 

structures substituted with methyl, branched alkyl, hydroxyl and carboxyl groups. 

These features are characteristic of diagenetically modified terpenoid precursors of 

higher plants, algae and bacteria.  

 

MSSV pyrolysis of the hydrophobic fraction yielded high concentrations of alkyl 

aromatic hydrocarbon pyrolysates (e.g. benzenes, naphthalenes, hydroaromatics), 

likely derived from the aromatisation of alicylic terpenoid precursors. The high 

degree of alkyl substitution of the MSSV pyrolysates correlates well with the NMR 

spectra. Alkyl phenols were prominent MSSV products and may also reflect 

hydroxyl substituted alicyclic ring structures, as well as covalently bound phenolic 

metabolites of aquatic algae. The low aromatic and methoxy content detected by 

NMR, and the limited detection of diagnostic methoxyphenol pyrolysates by 

thermochemolysis was not consistent with the high lignin input characteristic of the 

black water humic substances studied in previous chapters. However, non-

methoxylated phenols of grass lignins may contribute to the NP NOM, given that the 

catchment has been largely cleared for agriculture and grazing. The holistic 

characterisation data thus reflect important differences in the structural 

characteristics of humic substances from pristine and black water sources.  
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The NP TPI fraction accounted for only 11.5 % of the source water DOC.  

The MSSV data of this fraction showed many similar features to the HPO fraction 

but also included high concentrations of alkyl substituted N-pyrolysates. Degraded 

proteinaceous precursors and cross-linked melanoidin type macromolecules were 

postulated as the major source of these products. Both the FTIR and NMR data also 

confirmed the presence of amide and amine functional groups characteristic of 

proteinaceous materials. 

 

MSSV pyrolysis provided more comprehensive molecular-level characterisation of 

the isolated fractions than flash pyrolysis and complemented well the 13C-NMR and 

FTIR spectral data. In particular, high concentrations of pyrolysates characteristic of 

aliphatic terpenoid and organic nitrogen structures were obtained by MSSV analysis, 

where previously such constituents of NOM and other immature organic materials 

have proved elusive to analysis. Flash pyrolysis and thermochemolysis provided 

limited information regarding these quantitatively significant precursor classes. The 

capacity of MSSV pyrolysis to assist and extend the compositional characterisation 

of NOM with important additional structural information was clearly demonstrated 

by the present NP case study, despite the significant differences in the structure and 

source of this material compared to the NOM fractions studied in detail in the 

preceding chapters. 
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Chapter 7 
              

 

 Conclusions  
 

This PhD project reports the first detailed application and evaluation of micro-scale 

sealed vessel (MSSV) pyrolysis (Py) GC-MS for the molecular characterisation of 

aquatic natural organic matter (NOM). MSSV pyrolysis contributed significantly to 

the structural and source characterisation of a suite of NOM fractions from several 

diverse aquatic environments, providing additional and complementary molecular 

information to contemporary NOM characterisation methods such as flash pyrolysis, 

thermochemolysis, and FT-IR and 13C-NMR spectroscopy. The high abundances and 

rich product distributions of MSSV Py included many products not detected by flash 

pyrolysis, highlighting the effectiveness of this approach in the release of additional 

structural fragments amenable to detection by GC-MS. The milder thermal regime 

and closed system conditions of MSSV pyrolysis can facilitate the partial reduction 

of a variety of polar structural constituents of aquatic NOM that are not amenable to 

chromatographic analysis using conventional flash pyrolysis.  

 

A significant outcome of this work was the demonstration of the importance of 

terpenoid OM in several different aquatic environments. A variety of source-specific 

terpenoid biomarkers were detected by MSSV pyrolysis of several NOM fractions 

isolated from surface, ground and waste waters. These included hopane biomarkers 

of bacterial terpenoids, aromatic hydrocarbon biomarkers (e.g. p-cymene, cadalene, 

retene) of higher plant terpenoids, sterane biomarkers of eukaryote steroids and high 

MW nitrogen-containing products (e.g. carbazoles and β-carbolines), tentatively 

attributed to alkaloid constituents of plants, algae and bacteria. Corresponding flash 

pyrolysis and thermochemolysis analyses of the same samples failed to detect these 

important products. Terpenoids derived from both allochthonous and autochthonous 

sources have been proposed as significant precursors of aquatic NOM, however 

diagnostic information about these types of contributors has until now been very 

limited.  
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Many of the product classes detected in high abundance by MSSV Py lacked the 

well defined precursory origins of the aforementioned terpenoid biomarkers. These 

included a broad range of alkyl aromatic hydrocarbons (e.g. benzenes, naphthalenes, 

tetralins), and oxygen-, sulfur- and nitrogen-containing heteroatomic compounds (e.g. 

alkylated furans, phenols, cyclic ketones, thiophenes, pyrroles, pyridines, indoles). 

The distributions of these specific product classes were comprehensively 

investigated in Chapters 3-5. Their detection now contributes to a more holistic 

interpretation of NOM structural character. Separate MSSV Py analyses of a suite of 

standards, representing potential biochemical precursors of NOM, facilitated source 

assignment of many pyrolysates, including several previously unexplained thermal 

degradation products of NOM. This information will be valuable for future 

analytical pyrolysis studies of NOM. In addition to the aforementioned terpenoid 

biomarkers, some of the NOM products providing evidence of a particular precursor 

included: 

 

• alkyl aromatic hydrocarbon products of plant and algal terpenoids  

• long-chain alkyl benzene products of industrial surfactants 

• alkyl phenol products of lignin, tyrosine-containing proteins and alkyl phenol 

ethoxylate surfactants  

• alkyl furan products of polysaccharides and simple sugars  

• alkyl thiophene products of S-containing amino acids (e.g. cysteine) 

• alkyl dioxane products of dioxane and dioxolane pollutants from polyester 

resin manufacture 

• alkyl pyridine and pyrrole products of peptides, proteins and amino sugars 

• alkyl indole products of tryptophan-containing proteins and N-alkaloids 

• alkyl ethyl pyrrole products of porphyrin pigments 

 

Several of the major MSSV products were also detected by flash pyrolysis, however 

the higher abundance and broader isomeric distributions evident in the MSSV data 

allowed for a more comprehensive structural characterisation than previously 

possible. The sensitive molecular speciation of MSSV Py afforded compositional 

and source distinction of NOM from different aquatic environments. In particular, 

the more highly alkyl substituted pyrolysates, which are of potentially greater source 
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diagnostic value, were better preserved by MSSV Py. Large substituents may not 

survive the excessive thermal energy of flash pyrolysis.  

 

This PhD study has clearly demonstrated that MSSV Py can be a valuable 

component of the analytical protocol for aquatic NOM characterisation. MSSV 

analysis I provided significant molecular detail suitable for standard characterisation 

purposes. MSSV analysis II facilitated fast pyrolysis of the residue from analysis I 

and could be used as an alternative to flash pyrolysis. MSSV pyrolysis (I or II) also 

offers the advantages of low cost, low sample requirements and operational 

simplicity. Its practical application to the water industry should have wide utility, 

extending from determination of structural features and biochemical origins - 

including the identification of anthropogenic and microbial inputs, to assessing the 

effectiveness of drinking water treatment processes and the fate of organic 

constituents through the entire potable water system, including treatment plants and 

distribution networks.  

 

Despite the still immature development status of this technique, the present research 

has identified several specific applications to which it can presently make a 

significant contribution. These include:  

 

• Terpenoid constituents of NOM were particularly well defined by MSSV 

pyrolysis and this finding has significant implications for the potable water 

industry. Terpenoids are resistant to aerobic degradation processes, can readily 

infiltrate groundwater aquifers, with little removal by soil/aquifer treatment, and 

are difficult to remove by coagulation/flocculation. An analytical method 

sensitive to these compounds will be useful for establishing the extent of their 

removal by treatment processes. 

 

• The high sensitivity of MSSV pyrolysis to the detection of N-pyrolysates, which 

are historically under-represented by flash pyrolysis, holds promise for the 

improved characterisation of the N-organic moiety of NOM. This should be 

useful for determining the structural precursors of toxic N-containing 

disinfection by-products (N-DBPs) formed during potable water treatment.  
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• MSSV pyrolysis can significantly aid the organic characterisation of waste water 

effluent OM (Ef-OM). A variety of unique molecular features indicative of 

anthropogenic sources (e.g. dioxins and large alkyl substituted phenols of 

industrial by-products, steranes of human faecal pollution, S-products of sewage 

organics or pharmaceuticals) and recalcitrant biochemicals of source water NOM 

(e.g. alkyl aromatics of terpenoids and aliphatic biopolymers of algae, alkyl 

phenols of lignin-derived humic substances) and microbial communities (e.g. N-

heterocyclic products of proteins and amino sugars, carbazoles and B-carbolines 

of algal or microbial alkaloids) were detected from separate fractions of two Ef-

OM samples by MSSV pyrolysis. The same level of compositional information 

was not evident by flash pyrolysis. MSSV Py can thus be a useful tool in 

assessing the effectiveness of waste water treatment, and monitoring the 

persistence of recalcitrant chemicals in secondary effluents and the reservoirs to 

which they are discharged. 

 

• The analytical capability of MSSV Py for the compositional characterisation of 

membrane biofoulants was obvious, with the detection of many additional 

pyrolysates compared to flash pyrolysis. The identification of hopane biomarkers, 

monomethyl- and n-alkanes, and high concentrations of N-containing products 

unequivocally established the microbial origin of the foulant. In addition, high 

abundances of long chain alkyl benzenes revealed the incorporation of surfactant 

compounds used in membrane cleaning processes. The detailed structural 

appraisal of bio-foulant samples afforded by MSSV Py has interesting industrial 

applications, but would have gone undetected by flash pyrolysis. 

 

Ongoing research is required to fully establish the MSSV Py technique alongside 

other contemporary thermal degradation approaches like flash pyrolysis and 

thermochemolysis. In particular, the largely undefined MSSV pyrolysis behavior of 

functionalised NOM moieties and their biochemical precursors remains on ongoing 

challenge. A better understanding of the mechanistic processes associated with 

MSSV Py is required for realisation of the full characterisation potential of this 

approach. The utility of MSSV pyrolysis would be extended by the following 

targeted research and development: 
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• Analysis of a much larger range of NOM samples and potential biochemical 

precursors to continue investigating the mechanistic formation of pyrolysates 

during off-line thermal treatment.  

• Analysis of mixtures of different standards to investigate important synergistic 

effects between environmentally occurring organic compounds. 

• The use of internal and/or external standards to assist quantitative measurement 

of pyrolysate yields and a robust assessment of precursory contributions. 

Potential quantitative endeavours include installation of a gas-sampling loop, 

mass balance calculations of pyrolysate residues, or calibration of GC-MS 

response factors using model compounds as external standards to establish orders 

of magnitude in the concentrations of GC amenable products. 

• Continued investigation of optimal thermal conditions for targeting the different 

biomolecular constituents of NOM. 

• Preparative scale MSSV Py, in combination with offline extraction and 

separation procedures (e.g. column chromatography), permitting improved GC 

resolution of products and application of additional molecular characterisation 

approaches such as chemical derivatisation and compound specific isotope 

analysis. 
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Appendix 1  
TICs from three separate 300˚C/72hr MSSV pyrolysis GC-MS analyses (I) of 
Suwannee River fulvic acid. Relative abundances of a-c are indicated in italics.    
The relative proportions of the major product groups, averaged from the three 
analyses, are shown together with standard deviations. Peak areas were calculated by 
integrating up to 200 of the most abundant peaks ≥ 0.5% of the base peak. Individual 
peak areas and product groups were expressed as percentages of the total integrated 
pyrolysate area. A = aliphatics, CA = cylco-aliphatics, AK = aliphatic ketones, CK = 
cyclic ketones, B = alkyl benzenes, F = alkyl furans and benzofurans, P = alkyl 
phenols, MA = methoxy aromatics, NA = naphthalenes and other PAH products, HA 
= Hydroaromatics, S = sulfur products, N = nitrogen products, O = other unspecified 
products. 
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Appendix 2  
TICs from 300˚C/72hr MSSV pyrolysis GC-MS analysis of a) Suwannee River 
Fulvic acid, b) St. Julien colloids and c) Naintré colloids. Relative abundances of a-c 
are indicated in italics.    = alkyl benzenes,    = alkyl phenols,    = alkyl naphthalenes, 
* = n-alkanes. 
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Appendix 3  
Summed m/z 91+105+106+119+120+133+ 134+148 chromatograms showing the 
alkyl (C1-C5) benzene distributions from the 300˚C/72hr MSSV pyrolysis GC-MS 
analysis of a) Pinus radiata wood, b) Wandoo eucalyptus wood, c) syringic acid d) 
phenylalanine and e) chitin. Peak assignments correspond to the products listed in 
Table 3.1. Relative abundances of a-e are indicated in italics. 
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Appendix 4 
Summed m/z 91+105+106+119+120+133+134+148 (a) and m/z 
142+156+170+184+198 (b) chromatograms showing the alkyl (C1-C5) benzene and 
naphthalene distributions from the (i) 300˚C/72hr and (ii) 340˚C/72hr  MSSV 
pyrolysis GC-MS analysis of lignin. Peak assignments correspond to the products 
listed in Table 3.1. Relative abundances are indicated in italics. 
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Appendix 5  
Partial TICs of the major O-products detected by 300˚C/72hr MSSV pyrolysis GC-
MS of a) D-glucose and b) N-acetyl-D-glucosamine. Peak assignments correspond 
to products listed in Table 4.1.  
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Appendix 6  
Summed m/z 79+80+93+94+106+107+108+109+120+121+122+123 chromatograms 
showing the distribution of low MW N-heterocyclic products detected by 
300˚C/72hr MSSV pyrolysis GC-MS analysis of Uruguay TPI. Peak assignments 
correspond to products listed in Table 5.1. Relative abundance is indicated in italics. 
 
 

 
 
 
Appendix 7  
TIC from the 300˚C/72 hr MSSV pyrolysis GC-MS analysis of L-proline. Peak 
assignments correspond to products listed in Table 5.1. Relative abundance is 
indicated in italics. 
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Appendix 8 
Total ion chromatogram from the 550˚C/20s flash pyrolysis analysis of 2,3,7,8, 
12,13, 17,18-octaethyl-21H,23H-porphine. Peak assignments correspond to products 
listed in Table 5.1. A = alkyl anilines. Relative abundance is indicated in italics. 
 
 

 
 
Appendix 9  

Summed m/z 143+157 chromatograms showing the detection of naphthalenamine 
(NA) and methyl naphthalenamine (MNA) from the 300˚C/72hr MSSV pyrolysis 
GC-MS analysis of a) Naintré colloids and b) St. Julien colloids. Relative abundance 
is indicated in italics. 
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