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1. Introduction 

An infrastructure asset requires large capital investment and ongoing operation and maintenance 

costs. Roads represent one of the most expensive and comprehensive infrastructure assets in the 

architecture, engineering, and construction sectors. In 2017, the American Society of Civil 

Engineers (ASCE) published a report related to the infrastructure status of the U.S. and found that 

U.S. roads are chronically underfunded, with a $90 billion rehabilitation need, and one of every 

five miles of highway is poorly maintained (ASCE, 2017). In addition, the Australian Government 

spends more than AUD$7 billion annually on maintaining and renewing roads (Department of 

Infrastructure and Transport, 2014). Road maintenance consists of routine maintenance, 

preservation, and pavement rehabilitation (Torres-Machi et al., 2018). Routine maintenance 

usually consists of reactive and corrective actions that fix specific problems concerning safety 

hazards (e.g., potholes); preservation is usually proactive and scheduled in advance with periodic 

activities to slow down the deterioration of road pavements; pavement rehabilitation requires 

structural enhancements and is often triggered when it is necessary to extend the service life or 

upgrade the load carrying capacity of roads (Torres-Machi et al., 2018). Generally, these activities 

require materials, equipment use, and temporary road closure, thus having a crucial influence on 

the economic, social, and environmental aspects of the community. However, road agencies (e.g., 

Main Roads Western Australia) tend to make strategic maintenance plans for a road network based 

solely on pavement conditions and maintenance budget (Li, 2018). Because environmental effects 

are usually not considered as direct costs to road agencies and they do not have to pay for road 

user costs as they do for agency costs, most road agencies are reluctant to change their decision-

making processes on road maintenance plans (Giustozzi et al., 2012). 

The road design and maintenance plan can be assessed based on certain considerations. These 

may include direct costs, such as design fees, construction and future maintenance, road user costs, 

and other externalities, such as emissions and noise (Toole et al., 2007). The most commonly 

included assessment criterion is agency cost, including the direct cost of materials, equipment, 
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and labor that will be included in the maintenance activities. Because agency cost has a direct 

impact on road agencies’ financial performance, it is commonly adopted, along with pavement 

performance improvement to evaluate maintenance activities. Over the past few years, as an 

indicator to demonstrate the social impact of road maintenance, road user cost has been included 

in a few studies (France-Mensah and O’Brien, 2019; Gao and Zhang, 2013). However, the 

inclusion of road user cost remains challenging because of uncertainties (Beatty, 2002; Giustozzi 

et al., 2012). The reasons for this are that road user cost does not have a traded market value, and 

although a methodology to calculate road user cost has been developed, it is mainly used in the 

construction stage (Giustozzi et al., 2012). Given the increasing recognition of sustainability, 

environmental issues have now become a consideration as well, in both construction and 

infrastructure sectors (Wang et al., 2018). One of the most commonly adopted indicators in 

environmental assessment is greenhouse gas (GHG) emissions, which are considered significant 

contributors to global climate change (Wu et al., 2019). Based on these recent developments, it is 

imperative that the practices of evaluating maintenance decisions be improved from a cost-based 

approach to a sustainable one. 

In recent years, researchers in the field of pavement management have begun taking these 

factors into consideration. For example, a sustainability evaluation framework that includes 

pavement performance, maintenance cost, and environmental consideration has been developed 

to evaluate the effectiveness of maintenance activities (Giustozzi et al., 2012). Similar indicators 

have also been considered by Ruiz and Guevara (2020) and Torres-Machi et al. (2017) to make 

decisions in formulating road preservation policies and selecting optimal road maintenance 

programs, respectively. However, it should be noted that these studies do not include road user 

cost, which represents the social impact of maintenance on a wider community. To integrate 

environmental and social sustainability indicators into the development of road maintenance 

treatments, Paik (2018) considered carbon emissions and road user cost in the decision making 

framework. Road conditions and agency cost, the most important indicators perceived by road 
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agencies for making long-term maintenance decision making are not included, though. Recently, 

a sustainable pavement management plan that includes a tradeoff analysis of road conditions, road 

user costs, and greenhouse gas emissions has also been developed (France-Mensah and O’Brien, 

2019). It should be noted that this framework was developed and tested for maintenance activities 

of road segments in a single year when maintenance activities are conducted. However, as road 

conditions continuously deteriorate and require constant maintenance over its period of use, life 

cycle costing analysis (LCCA), a method to evaluate an asset over its useful life cycle, should be 

used (Beatty, 2002). Salman et al. (2020) considered life cycle cost in their pavement maintenance 

selection framework, together with technical, environmental, and social considerations. However, 

the framework was developed for a single road segment. Compared with local governments and 

contractors who may focus on the performance of a single road segment, road agencies typically 

make maintenance plans to maximize the network performance. As such, for road agencies, 

pavement maintenance plans at a network level are expected to be more valuable. Existing studies 

are believed to have one or more of the following limitations: 1) few indicators beyond agency 

cost and road conditions are considered, meaning that environmental and social sustainability are 

often overlooked; 2) single road segment, instead of road network, is often investigated, which 

limits network-level decision making for road agencies; and 3) previous multi-attribute methods 

often rely on pre-determined importance levels for each indicator. However, road agencies may 

not always have an exact weight of each attribute, limiting the usability of the developed methods. 

As the selection of pavement maintenance plan can have long-time influence on the performance 

of road network, it is imperative that the decision making of road agencies is improved from cost-

oriented to sustainability-oriented to achieve sustainable development. 

This study therefore aims to: 1) develop a conceptual framework that is able to help select 

the optimal network-level pavement maintenance plan based on pavement conditions, 

maintenance costs, road user costs, and environmental considerations; and 2) demonstrate the use 

of a conceptual framework with network-level pavement maintenance plans. The expectation is 
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that the proposed framework can be easily adapted and flexibly used by road agencies who would 

like to include sustainability into the decision making process. In addition, it is also expected to 

help road agencies select the network-level pavement maintenance plan that can achieve 

maximum sustainable benefits rather than mere economic benefits. The remainder of this paper is 

structured as follows. Section 2 presents a literature review related to the factors that can affect 

road maintenance decision-making. Section 3 discusses the method and framework. The results 

of the study and discussions thereof are presented in Section 4 and Section 5, respectively. Section 

6 concludes this paper. 

2. Literature review  

The primary aim of road maintenance is to provide safe driving conditions and a uniform road 

surface, and to minimize the rate of deterioration of the pavement. To ensure the preservation of 

the asset and the convenience of road users, road maintenance focuses on activities related to the 

repair of defects in road structures and associated facilities (Veith and Bennett, 2006). The 

evaluation of road maintenance involves the consideration of many factors. The most common 

considerations are economic cost and pavement conditions (Torres-Machi et al., 2018). The 

economic cost of road maintenance is commonly recognized as agency cost in many studies 

(Pittenger et al., 2012). This can include materials, equipment, and labor usage in activities such 

as preventative maintenance, routine maintenance, and other rehabilitation or restoration activities 

(France-Mensah and O’Brien, 2019). The cost indicators, following the process of road pavement 

maintenance, include raw materials, mainly asphalt (which may include hot mix asphalt and warm 

mix asphalt), aggregate, sand, crushed brick/glass/concrete, and reclaimed asphalt pavement 

(RAP), if any, followed by the cost of mixing plant operations. When the mixed asphalt is 

produced, transportation and onsite placement are needed (Santos et al., 2017). Transportation 

equipment and onsite placement equipment, such as a bulldozer, compactor, dumper, and 

excavator, may be needed. Following the LCCA approach, which is commonly adopted in road 

design and construction evaluation, data on the agency cost can be obtained from historical 
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records and current bids. If these data sources are not available, expert experience can be used to 

identify the agency cost. 

Pavement conditions are among the most commonly adopted criteria for evaluating 

maintenance strategies. Pavement condition improvement after maintenance has been a dominant 

factor that influences road maintenance plans (Arif et al., 2016). Road agencies usually collect 

several road condition indexes (e.g., roughness, friction, rutting, cracking, and faulting) and then 

combine them to compute a single score to assess the quality of road pavements (Bektas et al., 2015). 

However, it is time-consuming and costly to monitor all these indexes constantly. Among these 

indicators, road roughness is a key factor related to the serviceability of a road (Al-Omari and Darter, 

1994). In addition, road roughness usually decreases immediately after maintenance and increases 

as the road deteriorates. Therefore, road roughness is the most commonly used indicator to assess 

pavement performance when developing road pavement maintenance plans (France-Mensah and 

O’Brien, 2019). The international roughness index (IRI) is a standard index used to represent road 

roughness. The smaller the value of IRI, the smoother the pavement. Data on the IRI of roads before 

and after maintenance are often documented and updated by road agencies. There are also empirical 

formulas to estimate IRI values over time (Gao and Zhang, 2013). 

Environmental aspects are attracting increasing consideration for the planning of pavement 

maintenance strategies for road networks, as many countries are evaluating the environmental 

sustainability of major projects (Giustozzi et al., 2012). GHG emissions are among the most 

important indicators. In road maintenance, the life-cycle emissions mainly come from the 

production and transportation of materials, onsite maintenance work, traffic delay, and fuel 

combustion due to rolling resistance. Traffic delay is usually caused by reduced speed along the 

work zone and/or road closure, which can lower road capacity (Huang et al., 2009). Reduced speed 

leads to decreases in fuel efficiency; thus, extra fuel is consumed, generating more emissions than 

normal use. When the road capacity of the work zone is lower than the traffic demand, vehicles will 

need to stop and queue or even detour over longer distances, generating more emissions. Rolling 
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resistance is the result of the interaction between tires and the pavement when the engine keeps tires 

rolling on a pavement (Santos et al., 2015). Additional fuel will be combusted to overcome the 

rolling resistance of rough pavements (Trupia et al., 2017). To evaluate the life-cycle GHG 

emissions, process-based life cycle assessment (LCA) and environmental input output (EIO) LCA 

methods are usually adopted. As both methods have advantages and disadvantages, hybrid LCA 

methods have received increasing research interest recently (Crawford et al., 2018). As such, both 

EIO data and process data are needed to enable the evaluation. EIO data can often be obtained from 

government reports and relevant statistics. Process data such as the amount of materials and 

equipment use can be collected from material manufacturers and contractors. However, collecting 

first-hand data can be costly and time-intensive. In such cases, secondary data can be retrieved from 

the literature and authorized reports. 

Social cost, or road user cost, is less frequently considered because of its complexity in 

calculation and the limited impacts on road agencies compared to agency costs (Giustozzi et al., 

2012). Road user costs often include travel delay cost, vehicle operating cost (VOC), and crash cost 

(Batouli et al., 2017). Similar to traffic delay emissions, travel delay costs are generated because of 

traffic delays in the work zone. Owing to reduced speed, queueing, and/or detours, road users have 

to spend more time traveling through the work zone than usual. Their value of time is wasted. VOC 

often consists of fuel consumption, vehicle repair and maintenance, and tire wear. It can be affected 

by many factors such as traveling distance of vehicles, type of vehicles, traffic volume, traffic 

composition, pavement surface type, and pavement condition (Batouli et al., 2017; Chatti and 

Zaabar, 2012; Gao and Zhang, 2013). Generally, the rougher the pavement, the higher the VOC 

(Zaabar and Chatti, 2014). Moreover, crash cost can be impacted by many factors, such as crash 

rates and crash severity (Transport and Infrastructure Council, 2016). While there are several models 

and rich data available for the modeling of travel delay cost and VOC, data and existing models for 

crash cost are still scarce (Gao and Zhang, 2013). In addition, the relationships between 
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maintenance treatment and accident rates are unclear (Giustozzi et al., 2012; Santos et al., 2017). 

Therefore, crash cost is often not considered in developing road pavement maintenance plans. 

To combine multiple indicators in road maintenance planning, several methods have been 

adopted to achieve an optimal performance. One option is to consider Pareto optimization when 

there are no alternatives that can improve the results of one objective without compromising the 

performance of any other objectives (Wu et al., 2012). For example, Wei and Tighe (2004) 

developed a decision tree to integrate various technical and economic indicators to determine the 

most cost-effective preventive maintenance treatment. However, this study is cost-oriented and does 

not fully consider sustainability. To integrate road performance, cost, and environmental indicators 

for selecting optimal pavement maintenance plans, Yu et al. (2015) used genetic algorithms to 

generate a Pareto set and select the optimal solution from it. Salman et al. (2020) also adopted an 

analytic network process method to develop a road treatment selection framework. Technical 

performance and economic, environmental, and social sustainability were considered. However, it 

should be noted that these studies were all conducted at the project level, whereas road agencies 

often focus on the maintenance performance of the entire network. As such, Giustozzi et al. (2012) 

proposed a multi-attribute approach that can be implemented at the network level to combine 

environmental aspects with costs and road performance. A similar method was also used by Patidar 

(2007) to facilitate multi-objective optimization of investment at a network level based on technical 

performance, agency cost, and user cost considerations. As Wu et al. (2012) concluded, no single 

multi-objective decision making method is perfect for all factors such as user-friendliness, 

information or data availability, and cost for implementing the method. The multi-attribute decision-

making approach is considered to be the best fit for this study, because it is suitable for use at the 

network level and road agencies’ preferences can be quantified in the decision-making process (Wu 

et al., 2012). 

3. Method 
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The framework proposed for evaluating a network-level pavement maintenance plan consists of 

four attributes, namely, road condition, economic, environmental, and social performance, as 

shown in Figure 1. The selection of criteria is based on France-Mensah and O’Brien (2019), which 

is one of the few studies that included environmental impacts and road user cost in developing a 

road management plan. Modifications have been made to ensure completeness and accuracy. 

 

Figure 1. Framework for evaluating network-level pavement maintenance plan 

France-Mensah and O’Brien (2019) included distress and roughness to assess road conditions. 

However, the distress score was developed for the Texas Department of Transportation and is 

difficult to apply in other countries or jurisdictions (France-Mensah and O’Brien, 2019). 

Investigating various factors requires numerous data and intensive time. In addition, combining 

different pavement performance factors into a single road condition indicator to enable multi-

attribute decision making can be complex, and is beyond the scope of this study. According to Al-

Omari (1994) and Gulen et al. (1994), road roughness (represented by IRI) is closely related to the 

serviceability of a road (represented by present serviceability index). Considering its international 

acceptance and wide use, road condition in this study is considered based on IRI as a measure of 

road roughness. This practice has also been supported by Yu et al. (2013) who used IRI to evaluate 

the serviceability of pavement when developing a methodology to select optimal maintenance 

strategies. Environmental performance is evaluated through a LCA of GHG emissions from 
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materials, equipment use, traffic delay, and rolling resistance (France-Mensah and O’Brien, 2019). 

GHG emissions are targeted for two reasons. First, many countries (e.g., Australia, America, China) 

have committed to reducing GHG emissions (Jiang et al., 2020; The White House, 2015). 

Considering the large contribution of road transportation to GHG emissions, it is imperative to 

incorporate GHG emissions in the assessment of road maintenance plans (Climate Council, 2017). 

In addition, GHG emissions inventories are provided by many countries, making such data more 

accessible than those of other environmental impacts. Similar to France-Mensah and O’Brien (2019), 

road user costs, including travel delay cost and VOC, are calculated to evaluate social performance. 

Owing to the scarcity of models and data for crash cost and uncertain relationships between 

maintenance treatment and accident rates, crash cost is not included (Gao and Zhang, 2013; 

Giustozzi et al., 2012; Santos et al., 2017). It should be noted that the economic aspect is not included 

as one of the objectives of France-Mensah and O’Brien (2019). As the maintenance of pavement 

networks is long-term work, economic performance in this study is evaluated by life cycle agency 

cost, including materials, equipment, and labor use (Beatty, 2002). In addition, a multi-attribute 

decision-making approach adopted by Giustozzi et al. (2012) is used to combine the four attributes 

for an evaluation. The proposed framework is then validated using a case study.  

3.1. Road condition 

Road conditions were measured with IRI. A smaller value of IRI indicates lower roughness and 

better condition of the pavement. The road condition of the network was calculated using Eq. (1). 

𝑅𝑅𝑅𝑅𝑡𝑡 =
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝×𝑙𝑙𝑝𝑝𝑝𝑝𝑃𝑃
𝑝𝑝=1

∑ 𝑙𝑙𝑝𝑝𝑝𝑝𝑃𝑃
𝑝𝑝=1

                                                         (1) 

where 𝑝𝑝 is a single pavement segment of the road network under study and 𝑃𝑃 indicates the number 

of pavement segments that form the network. Similarly, 𝑡𝑡 is a single year of a studied time period 

(analysis period) and 𝑡𝑡 = 1 is the first year in the analysis period. 𝐼𝐼𝑅𝑅𝐼𝐼𝑝𝑝𝑡𝑡 and 𝑙𝑙𝑝𝑝𝑡𝑡 represent the IRI 

and length of the pavement segment 𝑝𝑝 in the 𝑡𝑡th year, respectively. 𝑅𝑅𝑅𝑅𝑡𝑡 is the pavement condition 

of the network in the 𝑡𝑡th year represented by the weighted average IRI of the entire network. 

3.2. Agency cost 
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Agency costs usually include the direct cost of materials, equipment use, and labor. The agency 

cost (C𝑒𝑒) for the network-level pavement maintenance is calculated using Eq. (2). 

C𝑒𝑒 =  ∑ ∑ (𝑐𝑐𝑚𝑚𝑝𝑝𝑡𝑡 + 𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡 + 𝑐𝑐𝑙𝑙𝑝𝑝𝑡𝑡)𝑥𝑥𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1                                        (2) 

where 𝑇𝑇  refers to the analysis period. 𝑐𝑐𝑚𝑚𝑝𝑝𝑡𝑡 , 𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡 , and 𝑐𝑐𝑙𝑙𝑝𝑝𝑡𝑡  represent the maintenance cost of 

materials, equipment use, and labor for pavement segment 𝑝𝑝 in the 𝑡𝑡th year, respectively. 𝑐𝑐𝑚𝑚𝑝𝑝𝑡𝑡, 

𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡 , and 𝑐𝑐𝑙𝑙𝑝𝑝𝑡𝑡  are calculated by multiplying the unit cost of the corresponding maintenance 

strategy by the treated area of the pavement being maintained. 𝑥𝑥𝑝𝑝𝑡𝑡 is a binary value of 1 or 0; 1 

indicates that a maintenance strategy is allocated for pavement segment p in the 𝑡𝑡th year and 0 

indicates that no maintenance is allocated. The network-level pavement maintenance plan for a 

period of 10 years (2017–2026) is obtained; thus, in this study, 𝑇𝑇 = 10. 

The plan indicates whether the pavement segment 𝑝𝑝 receives a maintenance treatment in the 

𝑡𝑡th year. For example, if the first pavement segment receives rehabilitation in 2018 during the 

analysis period, then 𝑥𝑥1,2 = 1  and 𝑥𝑥1,𝑡𝑡 (𝑡𝑡 = 1,3,4,5,6,7,8,9,10) = 0 . 𝑐𝑐𝑚𝑚1,2 , 𝑐𝑐𝑒𝑒1,2 , and 𝑐𝑐𝑙𝑙1,2 

represent the rehabilitation cost of materials, equipment use, and labor for this segment, 

respectively. As a result, the agency cost for the first pavement segment in this plan is 𝑐𝑐𝑚𝑚1,2 +

 𝑐𝑐𝑒𝑒1,2 + 𝑐𝑐𝑙𝑙1,2. The details of the data sources and structure of the data are presented in Section 3.6.  

The present cost method is adopted in this study, which discounts the yearly cost to an 

equivalent cost that occurs at the beginning of the analysis period. The results are presented in the 

form of net present value (NPV). In addition, an equivalent uniform annual cost method is also 

adopted to obtain an equivalent annual cost for a network-level pavement maintenance plan. For 

this purpose, the net annual value (NAV) is calculated. A discount rate of 4% was adopted in 

accordance with previous studies (Giustozzi et al., 2012) and a discussion with a local road 

agency. 

3.3. Greenhouse gas emissions 

LCA was used to evaluate the GHG emissions of the road network. The functional unit is the 

entire road network, and the maintenance and use phases are considered as the system boundary. 
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Specifically, embedded emissions from materials extraction and production, onsite equipment 

operation and traffic delay due to maintenance work are included in the maintenance phase. The 

use phase considers rolling resistance effect because of its relatively high impact and well-

established evaluation methods (Santero and Horvath, 2009). The analysis period is 10 years, 

which is the same as that of the agency cost analysis. GHG emissions of the road network (𝐸𝐸𝑐𝑐) 

are calculated by summing the network emissions from materials and equipment use (𝐸𝐸𝑚𝑚𝑒𝑒), traffic 

delay during maintenance (𝐸𝐸𝑡𝑡𝑡𝑡), and rolling resistance (𝐸𝐸𝑟𝑟𝑟𝑟), as shown in Eq.(3a) (France-Mensah 

and O’Brien, 2019).  

𝐸𝐸𝑐𝑐 =  𝐸𝐸𝑚𝑚𝑒𝑒 + 𝐸𝐸𝑡𝑡𝑡𝑡 + 𝐸𝐸𝑟𝑟𝑟𝑟                                                       (3a) 

The network GHG emissions from materials and equipment are calculated by summing the 

emissions from each road segment, as demonstrated by Eq. (3b). 

𝐸𝐸𝑚𝑚𝑒𝑒 =  ∑ ∑ (𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝𝑡𝑡)𝑥𝑥𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1                                                  (3b) 

where 𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝𝑡𝑡 represents GHG emissions from materials and equipment use of a pavement segment 

𝑝𝑝 in the 𝑡𝑡th year. Specifically, 𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝𝑡𝑡 was calculated through a path exchange (PXC) hybrid LCA 

method (Jiang et al., 2020). This method follows four steps, including building an EIO LCA model 

first, extracting the most carbon intensive nodes, deriving case-specific data and using case-

specific data to substitute the identified nodes that have the highest emissions in the EIO LCA 

model (Treloar et al., 2004). This method is adopted because it avoids the cut-off errors of the 

traditional process-based LCA method while still having an adequate level of accuracy without 

double counting (Crawford et al., 2018). Detailed information for this calculation can be found in 

Jiang et al. (2020). 

For emissions from traffic delay and rolling resistance, it is difficult to fit the fuel use into an 

economic sector. Therefore, the PXC method is not applicable, and a tiered hybrid LCA method 

is used (Jiang et al., 2020). The first step is to obtain process-based data (i.e., direct fuel 

combustion) and EIO data are then derived for all other upstream processes such as raw material 
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extraction and fuel production (Wang et al., 2012). The network GHG emissions from the traffic 

delay and rolling resistance are calculated using Eq. (3c) and Eq. (3d), respectively. 

𝐸𝐸𝑡𝑡𝑡𝑡 =  ∑ ∑ (𝑒𝑒𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡)𝑥𝑥𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1                                                       (3c) 

𝐸𝐸𝑟𝑟𝑟𝑟 =  ∑ ∑ 𝑒𝑒𝑟𝑟𝑟𝑟𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1                                                            (3d) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡  and 𝑒𝑒𝑟𝑟𝑟𝑟𝑝𝑝𝑡𝑡  represent the GHG emissions from the traffic delay and rolling 

resistance of a pavement segment 𝑝𝑝 in the 𝑡𝑡 th year, respectively. During traffic delay, GHG 

emissions are generated from three main sources, including vehicles queueing in line, getting 

through the work zone at a lower speed, and taking a detour (Jiang et al., 2020; Yu and Lu, 2012). 

These emissions in total are higher than vehicle emissions from normal road use and such increase 

is attributed to road maintenance. Therefore, 𝑒𝑒𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 can be calculated through Eq. (3e) (Yu and Lu 

2012). 

𝑒𝑒𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 =  (𝑒𝑒𝑞𝑞𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒 + 𝑒𝑒𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒 + 𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑞𝑞𝑟𝑟 − 𝑒𝑒𝑤𝑤𝑤𝑤𝑟𝑟𝑚𝑚𝑛𝑛𝑙𝑙)𝑝𝑝𝑡𝑡                          (3e) 

where 𝑒𝑒𝑞𝑞𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒, 𝑒𝑒𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒, 𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑞𝑞𝑟𝑟 and 𝑒𝑒𝑤𝑤𝑤𝑤𝑟𝑟𝑚𝑚𝑛𝑛𝑙𝑙 stand for GHG emissions generated from vehicles 

queueing in line, traveling through the maintenance work zone at a lower speed, taking a detour, 

and getting through the work zone at a normal speed respectively. 

Rolling resistance effect, on the other hand, measures GHG emissions generated from fuel 

combustion due to interaction of vehicle tires and uneven road pavement. Such interaction can be 

affected by vehicle speed and pavement features such as roughness (represented by IRI) and 

macrotexture (represented by mean profile depth, MPD). As cars and trucks have different 

interaction mode, the fuel use is calculated separately. Therefore, 𝑒𝑒𝑟𝑟𝑟𝑟𝑝𝑝𝑡𝑡 is calculated through Eq. 

(3f) - (3h) (Hammarström et al. 2012). 

𝑒𝑒𝑟𝑟𝑟𝑟𝑝𝑝𝑡𝑡 = (𝑓𝑓𝑐𝑐𝑝𝑝𝑝𝑝×𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑝𝑝𝑝𝑝×𝑃𝑃𝑒𝑒𝑟𝑟𝑐𝑐𝑐𝑐𝑝𝑝×𝑒𝑒𝑓𝑓𝑐𝑐
𝑣𝑣𝑐𝑐𝑝𝑝

+ 𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝×𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑝𝑝𝑝𝑝×𝑃𝑃𝑒𝑒𝑟𝑟𝑐𝑐𝑝𝑝𝑡𝑡𝑝𝑝×𝑒𝑒𝑓𝑓𝑝𝑝𝑡𝑡
𝑣𝑣𝑝𝑝𝑡𝑡𝑝𝑝

) × 𝑙𝑙𝑝𝑝 × 365                  (3f) 

𝑓𝑓𝑐𝑐𝑝𝑝𝑡𝑡 = 0.103(1.208 + 0.000479 × 𝐼𝐼𝑅𝑅𝐼𝐼𝑝𝑝𝑡𝑡 × 𝑣𝑣𝑐𝑐𝑝𝑝 + 0.0393 × 𝑀𝑀𝑃𝑃𝑀𝑀𝑝𝑝𝑡𝑡)1.163 × 𝑣𝑣𝑐𝑐𝑝𝑝1.056  (3g) 

𝑓𝑓𝑡𝑡𝑟𝑟𝑝𝑝𝑡𝑡 = 0.246(1.451 + 0.00172 × 𝐼𝐼𝑅𝑅𝐼𝐼𝑝𝑝𝑡𝑡 × 𝑣𝑣𝑡𝑡𝑟𝑟𝑝𝑝 + 0.111 × 𝑀𝑀𝑃𝑃𝑀𝑀𝑝𝑝𝑡𝑡)1.027 × 𝑣𝑣𝑡𝑡𝑟𝑟𝑝𝑝0.960    (3h) 
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where 𝑓𝑓𝑐𝑐𝑝𝑝𝑡𝑡 (𝑓𝑓𝑡𝑡𝑟𝑟𝑝𝑝𝑡𝑡) represents the fuel use of a single car (truck) per hour due to its rolling resistance 

on pavement 𝑝𝑝  in the 𝑡𝑡 th year. 𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇𝑝𝑝𝑡𝑡 , 𝐼𝐼𝑅𝑅𝐼𝐼𝑝𝑝𝑡𝑡 , and 𝑀𝑀𝑃𝑃𝑀𝑀𝑝𝑝𝑡𝑡  are annual average daily traffic 

(AADT), IRI, and MPD of pavement segment 𝑝𝑝 in the 𝑡𝑡th year. 𝑃𝑃𝑒𝑒𝑃𝑃𝑐𝑐𝑐𝑐𝑝𝑝 (𝑃𝑃𝑒𝑒𝑃𝑃𝑐𝑐𝑡𝑡𝑟𝑟𝑝𝑝), 𝑙𝑙𝑝𝑝, and 𝑣𝑣𝑐𝑐𝑝𝑝 

(𝑣𝑣𝑡𝑡𝑟𝑟𝑝𝑝) refer to percentage of cars (trucks), road length, and the traveling speed of cars (trucks) on 

pavement 𝑝𝑝. 𝑒𝑒𝑓𝑓𝑐𝑐 (𝑒𝑒𝑓𝑓𝑡𝑡𝑟𝑟) means emission factors for car (truck) fuel. Gasoline and diesel fuel are 

considered as typical fuel for cars and trucks, respectively (Oak Ridge National Laboratory, 2020). 

Finally, to assess the environmental impact of the emissions, the global warming potential 

(GWP) was selected as the characterization factor. All GHG emissions, including carbon dioxide, 

methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, are 

converted to carbon dioxide equivalents (CO2-e). 

3.4. Road user cost 

The travel delay cost (𝑅𝑅𝑡𝑡𝑡𝑡) and VOC (𝑅𝑅𝑣𝑣𝑤𝑤𝑐𝑐) are considered in this study to calculate the road user 

cost (𝑅𝑅𝑠𝑠), as indicated by Eq. (4a). 

𝑅𝑅𝑠𝑠 =  𝑅𝑅𝑡𝑡𝑡𝑡 + 𝑅𝑅𝑣𝑣𝑤𝑤𝑐𝑐                                                        (4a) 

As shown in Eq. (4b), the calculation of travel delay cost is similar to that of traffic delay 

emissions.  

𝑅𝑅𝑡𝑡𝑡𝑡 =  ∑ ∑ (𝑐𝑐𝑞𝑞𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒 + 𝑐𝑐𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑞𝑞𝑟𝑟 − 𝑐𝑐𝑤𝑤𝑤𝑤𝑟𝑟𝑚𝑚𝑛𝑛𝑙𝑙)𝑝𝑝𝑡𝑡𝑥𝑥𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1                    (4b) 

where 𝑐𝑐𝑞𝑞𝑞𝑞𝑒𝑒𝑞𝑞𝑒𝑒 , 𝑐𝑐𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒 , 𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑞𝑞𝑟𝑟 , and 𝑐𝑐𝑤𝑤𝑤𝑤𝑟𝑟𝑚𝑚𝑛𝑛𝑙𝑙  represent the fuel cost generated from vehicles 

queueing in line, traveling through the maintenance work zone at a lower speed, taking a detour, 

and getting through the work zone at a normal speed, respectively.  

VOC consists of fuel cost (𝑅𝑅𝑓𝑓), repair and maintenance cost (𝑅𝑅𝑟𝑟𝑚𝑚), and tire wear cost (𝑅𝑅𝑡𝑡𝑤𝑤) 

(Zaabar and Chatti, 2014). As roads deteriorate and IRI increases, vehicle fuel use and its cost, 

repair and maintenance cost, and tire wear cost all rise as a result (Liu et al., 2020). Therefore, the 

VOC must be adjusted according to the change in IRI during the analysis period. Eq. (4c)–(4e) 

were used for the calculation. 

𝑅𝑅𝑓𝑓 =  ∑ ∑ (𝑐𝑐𝑤𝑤𝑤𝑤𝑟𝑟𝑚𝑚𝑛𝑛𝑙𝑙)𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1 × 𝑅𝑅1𝑝𝑝𝑡𝑡 × (𝐼𝐼𝑅𝑅𝑅𝑅𝑝𝑝𝑡𝑡 − 𝐼𝐼𝑅𝑅𝑅𝑅0)                               (4c) 
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𝑅𝑅𝑟𝑟𝑚𝑚 =  ∑ ∑ (𝑐𝑐𝑟𝑟𝑚𝑚)𝑝𝑝𝑡𝑡 × 𝑅𝑅2𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1 × (𝐼𝐼𝑅𝑅𝑅𝑅𝑝𝑝𝑡𝑡 − 𝐼𝐼𝑅𝑅𝑅𝑅0)                                 (4d) 

𝑅𝑅𝑡𝑡𝑤𝑤 =  ∑ ∑ (𝑐𝑐𝑡𝑡𝑤𝑤)𝑝𝑝𝑡𝑡 × 𝑅𝑅3𝑝𝑝𝑡𝑡𝑃𝑃
𝑝𝑝=1

𝑇𝑇
𝑡𝑡=1 × (𝐼𝐼𝑅𝑅𝑅𝑅𝑝𝑝𝑡𝑡 − 𝐼𝐼𝑅𝑅𝑅𝑅0)                                  (4e) 

where 𝑅𝑅𝑤𝑤𝑝𝑝𝑡𝑡 (𝑛𝑛 = 1, 2, 3) is a coefficient that represents the change in fuel cost (𝑛𝑛 = 1), repair and 

maintenance cost (𝑛𝑛 = 2), and tire wear cost (𝑛𝑛 = 3) per m/km change in IRR. The coefficients 

were adapted from Zaabar and Chatti (2014). 𝐼𝐼𝑅𝑅𝑅𝑅0 represents the baseline value of IRI, which 

equals 1 (Zaabar and Chatti, 2014). (𝑐𝑐𝑟𝑟𝑚𝑚)𝑝𝑝𝑡𝑡 and (𝑐𝑐𝑡𝑡𝑤𝑤)𝑝𝑝𝑡𝑡 are the repair and maintenance cost and 

tire wear cost for the pavement segment 𝑝𝑝 in the 𝑡𝑡th year, respectively. The details of the data and 

data sources are presented in Section 3.6. Similar to the agency cost, the social cost is also 

discounted to NPV and NAV at a discount rate of 4%. 

3.5. Multi-attribute decision making approach 

Multi-attribute decision-making concerns making decisions among a set of finite alternatives that 

typically conflict with each other (Triantaphyllou and Baig, 2005). Three steps are needed in a 

multi-attribute decision-making approach. The first is assigning weights to each attribute to 

determine the importance of the attributes, where a higher weight indicates a higher importance. 

The weights can vary according to the preference of the decision makers. The second step is the 

normalization or rescaling of the attribute values of the alternatives to enable a comparison. The 

values of an attribute should be normalized to the range of 0 to 1, with 1 representing the highest 

value. The last step is to combine all the attributes into a single index to inform decision making. 

Various methods such as the weighted sum model (WSM) and analytic hierarchy process method 

are available. It is difficult, if at all possible, to know which method provides the “correct” answer, 

but the WSM method is the most widely adopted, possibly because of its ease of use 

(Triantaphyllou and Baig, 2005; Yang, 2020). Therefore, this study adopts the following three 

steps: 

1) Assigning initial weights for road condition, agency cost, GHG emissions, and road user cost.  
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2) Normalizing the attribute values of alternative maintenance plans to fit in the range of 0 to 1. 

The highest value of each attribute is rescaled to 1, and the values of other alternatives are 

rescaled proportionally according to Eq. (5a) (Giustozzi et al., 2012). 

3) Combining the normalized values of the four attributes into a single value for every 

maintenance plan using the WSM method. Eq. (5b) and (5c) were used for the calculation 

(Triantaphyllou and Baig, 2005). 

𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

 × 1                                                       (5a) 

𝑃𝑃𝑖𝑖 =  ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 × 𝑤𝑤𝑖𝑖𝑤𝑤
𝑖𝑖=1                                                      (5b) 

with                                                 ∑ 𝑤𝑤𝑖𝑖 = 1,  𝑤𝑤𝑖𝑖 > 0𝑤𝑤
𝑖𝑖=1                                                   (5c) 

where 𝑖𝑖  indicates an alternative maintenance plan for the pavement network.  𝑗𝑗  denotes an 

attribute, and n is the total number of attributes, namely 4 in this study.  𝑎𝑎𝑖𝑖𝑖𝑖  represents the 

performance of the alternative plan 𝑖𝑖 in terms of attribute 𝑗𝑗 and 𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚,𝑖𝑖 is the highest value among 

all the alternatives for attribute 𝑗𝑗. 𝑃𝑃𝑖𝑖 is the WSM value for the maintenance plan 𝑖𝑖. In addition, 𝑤𝑤𝑖𝑖 

refers to the nonnegative weight of attribute 𝑗𝑗 . Equal weights are adopted as an example to 

illustrate the application of the proposed framework. As such, 𝑤𝑤𝑖𝑖  equals 0.25 for all four 

attributes. As different road agencies have their own preferred importance ranking of the four 

attributes, 1000 sets of weights are then randomly generated for the four attributes to cover wider 

preferences, according to Yang (2020). First, four numbers 𝑢𝑢𝑖𝑖  that follow a normal distribution N 

(0,1) are generated, assuming that most decision-makers do not have extreme preferences. Then, 

the four numbers are normalized according to Eq. (5d), such that Eq. (5c) is satisfied. Finally, the 

first two steps are repeated 1000 times. The WSM method with random weights has been proven 

to work well (Yang, 2020). 

𝑤𝑤𝑖𝑖 =  𝑞𝑞𝑖𝑖
∑ 𝑞𝑞𝑖𝑖4
𝑖𝑖=1

                                                                (5d) 

As a result, the generated weights for road conditions, economic, environmental, and social 

aspects have ranges of 0.0008–0.7790, 0.0002–0.8040, 0.0002–0.8605, and 0.0005–0.8898, 
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respectively. This should cover most of the preferences of decision-makers, including certain 

extreme situations, such as when the environmental aspect receives higher significance due to 

aggressive emissions reduction targets.  

3.6 Case study 

The proposed framework is demonstrated with eight network-level pavement maintenance plans. 

The road network consists of 16,539 road segments in Western Australia, which extend 

17,299.28 km. Most of the road segments (71.9%) are granular, and 28.1% have asphalt 

pavements. Medium standard single carriageway is the most common road classification, 

accounting for 39.1%, followed by heavy traffic roads (generally in metropolitan area) which 

make up 18.9%. High standard and basic standard single carriageways account for 16.5% and 

14.0% respectively and the others are freeways (11.5%). Among these road segments, 88.8% have 

two lanes. The lane width of the entire network ranges from 3.4m to 42.5m, with an average of 

9.2m and a standard deviation of 2.6m. The average initial IRI of the network is 2.6104, ranging 

from 0.3333 to 8.2200 with a standard deviation of 0.7460. The AADT of the network in the first 

year of the analysis period (2017–2026) ranges from 43 to 101,259 with an average of 6,534 

vehicles per day. The annual traffic growth rate was assumed to be 2%. In addition, over half of 

the road segments have limited the vehicle speed within 110km/h and the average percentage of 

heavy trucks was 25.7%. 

There are eight maintenance and rehabilitation (M&R) strategies to be considered for each 

road segment, as shown in Table 1. The definitions of these strategies were obtained from Main 

Roads Western Australia (Main Roads), a road agency in Western Australia. Among these 

strategies, structural rehabilitation strategy for asphalt pavements (ASRS) and granular overlay 

(GrOL) are rehabilitation strategies that cost more but perform better in improving the IRI of 

pavements. Others require only regular maintenance, and the improvement in road conditions is 

relatively limited. One or zero of these M&R strategies is triggered for each road segment of the 

studied road network every year, depending on its condition and the maintenance budget of the 
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entire network. Eight network-level maintenance plans with different budgets (budget scenarios) 

are considered by Main Roads, namely AUD$50 million (50M), AUD$60 million (60M), 

AUD$70 million (70M), AUD$85 million (85M), AUD$95 million (95M), AUD$105 million 

(105M), AUD$115 million (115M), and AUD$125 million (125M). The value corresponds to an 

approximate value related to the yearly routine maintenance budget. The 50M and 125M budget 

scenarios are demonstrated as examples in Tables S1 and S2, specifying when, where, and what 

M&R strategy to apply in a road network under a certain budget scenario. The algorithm behind 

the allocation is explained in Li (2018). Generally, rehabilitation strategies are more frequently 

triggered under a scenario with a higher budget. When the maintenance budget is insufficient, 

nonrehabilitation strategies are triggered until road conditions deteriorate to a certain standard. 

Table 1 Eight maintenance and rehabilitation (M&R) strategies considered in the case 

study demonstration 

M&R 

programs 
Descriptions 

ASDG Dense graded asphalt replacement (Asphalt mixing plant, paver and compactor) 

(30 mm) 

ASIM Intersection mix asphalt replacement (Asphalt mixing plant, paver and 

compactor) (40 mm) 

ASOG Open graded asphalt replacement (Asphalt mixing plant, paver and compactor) 

(30 mm) 

ASRS Full depth asphalt (Major rehabilitation - replacing the top 150 mm and 5% of 

road to full depth. The rehabilitation takes place every 50 years) 

CS  Surface dressing: spraying a layer of bitumen on the road surface and laying one 

or more layers of aggregates 

Slurry  Cold mixed surface treatments, including application of 3–20 mm in‐situ mixture 

of aggregate, cement/lime, polymer modified bitumen emulsion, adhesive, and 

water  

RipSeal 50 mm gravel replacement with cement stabilization and seal 

GrOL Major rehabilitation. Replacing 150 mm of aggregates with cement stabilization 

and seal 

(Reference: Wu et al., 2017). 
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Network-level pavement maintenance plans under the eight budget scenarios were provided 

by Main Roads. All other data sources are summarized in Table 2. 
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Table 2 Data demands and data sources for the four attributes  

Attributes Data demands Data sources 
Road condition IRI of each road segment, pavement length Main roads, predicted by dTIMS V9 of Deighton (Li, 2018) 
Economic performance 
(Agency cost) Unit rate of each M&R strategy, treated area Main roads 

Environmental 
performance 
(Greenhouse 
gas emissions) 

PXC 
model 

Direct requirement coefficients matrix Australian National Accounts (ABS, 2018) 
Australian greenhouse gas inventory Australian Government (2019) 
Output of each economic sector IBISWorld (2019) 
Material and equipment use for each maintenance 
strategy Main roads 

Tiered 
hybrid 
model 

Queue speed Assume to be 8 km/h 
Queue length Calculated through obtained data 
Work zone Department of Infrastructure (2015) 
Detour speed, detour distance 60km/h (Santos et al., 2015), 10km (Chen et al., 2016) 
Fuel efficiency at a specific speed Oak Ridge National Laboratory (2019) 
Road and traffic information (e.g., IRI, pavement 
length, MPD, AADT, traffic composition, speed 
limit) 

Main roads 

Emission factors TAGG (2013) 

Social 
performance 
(Road user 
costs) 

Travel 
delay 
cost 

Travel delay time Calculated through obtained data 

Value of time (Value per occupant×occupancy rate) 
Cars ($/veh-hour): (37.46×5/7+14.99×2/7)×1.245; trucks ($/veh-
hour): 16.81×1.0 (Transport and Infrastructure Council, 2016) 

VOC 

Fuel price Car fuel: 1.470$/L; truck fuel: 1.596$/L (Transport and 
Infrastructure Council, 2016) 

Parameters for vehicle repair and maintenance Cars: 6.3 cents/km; trucks: 14.0 cents/km (Transport and 
Infrastructure Council, 2016) 

Tire wear parameters Cars: 492$/set of tires; trucks: 6618$/set of tires. Assuming per set 
of tire can last 40000km (Transport and Infrastructure Council, 2016) 
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4. Results 

4.1. Road condition 

Figure 2 presents the yearly average IRI of the network. It can be observed that all maintenance 

budget scenarios have the same initial IRI. As time passes, pavements deteriorate and IRI 

increases instantly. In addition, the rate of increase varies for different scenarios. It is obvious that 

the increase in the IRI is much slower when the maintenance budget increases. This indicates that 

a higher budget can lead to better improvement in road conditions. The reason for this is that more 

road segments will receive M&R treatment when more maintenance funds are available. For 

example, an average of 6.76% of road segments is maintained under the 50M scenario, and this 

value gradually increases to 7.13% under the 125M scenario. 

 

Figure 2. Average IRI of the road network 

4.2. Agency cost 

The yearly agency costs for each maintenance budget scenario are presented in Table 3. The total 

cost for the network-level M&R during 2017–2026 is equivalent to AUD$946.417–

AUD$1,036.660 million, depending on the budget. In addition, it is interesting to find that the 

equivalent annual costs of all options are above AUD$115 million. Specifically, in 2026, the 



 

 22 

agency cost increases sharply, especially under scenarios 50M, 60M, and 70M. The lower the 

budget, the sharper the increase. Owing to the relatively lower annual routine maintenance budget 

in earlier years, more rehabilitation work is needed in 2026.  

To this end, a further analysis on the percentage of road segments that receive M&R each 

year is conducted. Under the 50M, 60M, and 70M scenarios, road segments receiving M&R 

account for an average of 5.2%, 5.8%, and 6.4%, respectively, from 2017 to 2025 and 21%, 15.5%, 

and 11.3%, respectively, in 2026. Specifically, under these three scenarios, an average of 2.0%, 

1.9%, and 2.2% receive rehabilitation in 2017–2025, and 8.5%, 8.6%, and 9.6% receive 

rehabilitation in 2026. Under the 85M, 95M, and 105M scenarios, it should be noted that the 

percentage of road segments receiving M&R in 2017–2026 does not change much, but the 

percentage of segments receiving rehabilitation in 2026 is significantly higher than that in 

previous years, increasing from 2.3% to 9.3%, 2.6% to 7.7%, and 2.8% to 5.3%, respectively. For 

the 115M and 125M scenarios, a large number of maintenance activities happen every year across 

the 10-year period, and there is no observed sharp increase in 2026. 

The NAV per kilometer is also calculated, and Figure 3 visualizes the difference between the 

eight maintenance budget scenarios. It can be seen from the figure that scenario 85M has the 

lowest agency cost. The NAV is AUD$6,745.06/km. Interestingly, the 50M scenario turns out to 

be the most expensive in the long term, costing an equivalent of AUD$7,388.22/km per year. 
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Table 3 Agency cost for the eight maintenance budget scenarios (unit: AUD$M) 

Scenario 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 NPV NAV 

50M 53.228 52.261 50.929 50.465 48.596 50.750 46.218 45.921 46.537 928.784 1036.660 127.811 

60M 63.777 61.593 59.861 60.291 58.310 60.028 56.144 57.044 54.152 793.472 1015.898 125.251 

70M 73.701 71.596 68.836 71.191 67.383 69.079 67.350 64.551 61.567 651.974 989.188 121.958 

85M 89.984 84.499 85.614 81.994 84.830 82.700 81.702 80.108 77.120 428.208 946.417 116.685 

95M 100.058 94.065 94.577 93.474 91.296 98.122 93.867 87.886 84.574 324.184 950.270 117.160 

105M 109.475 105.712 103.415 101.388 105.275 106.966 100.422 92.855 93.479 244.045 964.470 118.910 

115M 119.631 116.607 108.992 113.313 115.090 115.025 106.497 100.317 100.825 190.541 994.121 122.566 

125M 129.218 126.042 119.883 123.185 123.338 121.320 105.541 108.146 109.776 134.751 1016.387 125.311 
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Figure 3. Unit agency cost of the eight maintenance budget scenarios 

4.3. Greenhouse gas emissions 

The results of the network emissions under the eight maintenance budget scenarios are presented 

in Table 4. It was found that an average of at least 8.9900 million tCO2-e emissions are generated 

per year. The use phase has a dominant role and contributes an average of 99.2% to the total 

emissions, regardless of the budget. The emissions from the use phase could be impacted by 

AADT, IRI, MPD, and the speed limit. A sensitivity analysis was conducted to evaluate the impact 

of these factors on emissions. The results show that the variation in the emissions due to the 

change in AADT may be up to 99.9%, which is much higher than that of other factors. In addition, 

the average GHG emissions of the road network increase slightly every year for all maintenance 

budget scenarios. This could have resulted from the annual growth of AADT. 

 Compared with the use phase, the contribution of the maintenance phase is negligible, 

especially in the first nine years. In 2017–2025, the average contribution of the maintenance phase 

under scenario 50M is 0.30%. With the increase in maintenance budget, this value gradually 

increases to 0.78% under scenario 125M. On the contrary, in 2026, the maintenance phase 

accounts for 5.07% of total GHG emissions under scenario 50M, and this percentage decreases to 

0.76% under scenario 125M. This finding is similar to the previous finding on the distribution of 
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agency costs. In 2026, network-level maintenance plans with lower budgets generate higher 

emissions owing to the large number of maintenance activities and a high percentage of 

rehabilitation programs.  

Table 4 GHG emissions of the network under the eight maintenance budget scenarios (unit: 

million tCO2-e) 

Scenario 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 Average 

50M 8.165 8.331 8.500 8.671 8.847 9.030 9.211 9.396 9.588 10.274 9.0013 

60M 8.170 8.336 8.505 8.679 8.854 9.037 9.218 9.404 9.590 10.196 8.9989 

70M 8.174 8.342 8.512 8.686 8.861 9.043 9.227 9.410 9.594 10.110 8.9960 

85M 8.182 8.350 8.524 8.696 8.872 9.053 9.235 9.419 9.603 9.980 8.9914 

95M 8.187 8.357 8.530 8.703 8.877 9.062 9.245 9.421 9.604 9.918 8.9904 

105M 8.192 8.365 8.538 8.708 8.885 9.068 9.246 9.419 9.606 9.874 8.9900 

115M 8.197 8.372 8.543 8.714 8.891 9.069 9.245 9.420 9.609 9.846 8.9906 

125M 8.202 8.380 8.549 8.720 8.894 9.071 9.240 9.423 9.612 9.818 8.9909 

Figure 4 presents the distribution of unit GHG emissions under the eight maintenance budget 

scenarios. It shows that the unit GHG emissions of scenarios 85M-125M are very close, varying 

from 519.68 t CO2-e/km (105M) to 519.76 t CO2-e/km (85M). Scenarios 50M, 60M, and 70M 

have much higher unit GHG emissions. The 50M scenario has the highest emissions of 520.33 t 

CO2-e/km. The main reason for the close results could be that IRIs with different maintenance 

budget do not vary much from each other under network-level consideration. The percentage of 

road segments that receives maintenance treatments is low regardless of the budget, at an average 

of approximately 7% each year. 
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Figure 4. Unit GHG emissions of the eight maintenance budget scenarios 

4.4. Road user cost 

Table 5 shows the road user costs for the eight maintenance budget scenarios. It can be seen from 

the table that an equivalent of AUD$28.205–28.257 billion is spent by road users across the entire 

network during 2017–2026. That is, an equivalent of AUD$3,477.369–3,483.875 million of road 

user cost is spent annually owing to travel delay and vehicle operation (i.e., fuel use, repair and 

maintenance of vehicles, and tire wear). This is more than 27 times the agency cost. Fuel cost is 

the most significant contributor to the total social cost, accounting for approximately 43.1%. 

Repair and maintenance costs and tire wear costs also contribute approximately 38.7% and 18.2%, 

respectively. On the contrary, travel delay cost only contributes less than 0.1% to the total social 

cost due to the limited duration of maintenance work compared to the continuous vehicle 

operation in a certain year.  

A constant increase in road user cost from 2017 to 2026 is observed for all maintenance 

budget scenarios. The annual increase rate for each scenario ranges from 2.00% to 2.06%, with 

an average of 2.03%. As the contribution of travel delay cost is negligible, this could possibly be 

impacted by AADT and IRI, which generally tend to increase over time. In order to identify which 

factor is most important, the user cost per vehicle per kilometer traveled is calculated, such that 
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only IRI has an impact. As shown in Table 6, each vehicle traveling 1 km costs approximately 

AUD$89 per year and the highest average annual increase rate among all the maintenance budget 

scenarios is 0.13%, which is significantly lower than 2.03%. This indicates that AADT has a more 

significant impact on the road user cost of the entire network. Moreover, it is also observed that 

the road user cost (both network NAV and NAV per vehicle per kilometer) slowly decreases as 

the maintenance budget increases from 50M to 125M. This is possibly because the IRI of 

pavements is improved with a higher budget. 

4.5 Multi-attribute decision making 

Because the 50M scenario has the highest value for all four attributes, it is rescaled to have a 

maximum value of 1. The other scenarios are rescaled using Eq. (5a), and the weighted sum values 

are obtained through Eq. (5b). The rescaled and WSM results with equal weights for the eight 

maintenance budget scenarios are shown in Table 7. The lower values indicate better performance. 

It can be seen that the rescaled values for road condition, economic, environmental, and social 

considerations range from 0.9837 to 1, 0.9129 to 1, 0.9987 to 1, and 0.9970 to 1, respectively. 

This is because the variation in economic performance among the eight scenarios is much higher 

than that in other attributes. In addition, it can be inferred that scenarios with high economic 

performance (low economic values) are more likely to generate low WSM values.  
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Table 5 Road user cost of the network under the eight maintenance budget scenarios (unit: AUD$M) 

Scenario 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 NPV NAV 

50M 3072.678 3135.301 3199.277 3264.165 3331.227 3399.022 3469.368 3541.569 3615.174 3692.288 28257.347 3483.875 

60M 3072.895 3135.282 3199.014 3263.534 3330.349 3398.121 3468.556 3540.672 3614.359 3690.323 28251.951 3483.210 

70M 3073.061 3135.278 3198.606 3263.124 3329.589 3397.624 3467.485 3539.373 3613.061 3688.121 28245.984 3482.474 

85M 3073.334 3135.192 3197.937 3262.465 3328.707 3396.125 3465.567 3537.281 3610.778 3684.697 28235.804 3481.219 

95M 3073.546 3135.061 3197.714 3261.946 3328.046 3395.120 3464.660 3536.010 3609.119 3682.019 28229.055 3480.387 

105M 3073.678 3135.020 3197.342 3261.714 3327.299 3394.158 3463.279 3534.083 3606.698 3679.068 28220.768 3479.365 

115M 3073.827 3134.898 3197.150 3261.064 3326.507 3393.260 3461.752 3532.141 3604.082 3676.329 28212.111 3478.298 

125M 3073.949 3134.693 3196.967 3260.695 3325.641 3391.984 3460.204 3530.579 3602.253 3674.299 28204.577 3477.369 

Table 6 Annual road user cost per vehicle per km of the eight maintenance budget scenarios (unit: AUD$/km·vehicle) 

Scenario 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 NAV 

50M 85.498 85.581 85.670 85.757 85.853 85.947 86.068 86.189 86.329 86.541 89.344 

60M 85.498 85.582 85.670 85.755 85.847 85.935 86.042 86.158 86.288 86.478 89.328 

70M 85.499 85.582 85.670 85.752 85.838 85.922 86.020 86.120 86.238 86.398 89.308 

85M 85.500 85.583 85.669 85.745 85.819 85.887 85.965 86.047 86.137 86.239 89.267 

95M 85.500 85.584 85.667 85.738 85.807 85.858 85.923 85.985 86.044 86.108 89.232 

105M 85.500 85.585 85.665 85.730 85.784 85.815 85.850 85.886 85.900 85.922 89.179 

115M 85.501 85.586 85.663 85.714 85.757 85.771 85.786 85.775 85.766 85.787 89.129 

125M 85.502 85.586 85.661 85.705 85.711 85.713 85.691 85.651 85.639 85.645 89.073 
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Table 7 Rescaled and WSM results for the eight maintenance budget scenarios 

Scenario 
Road 

roughness 

Economic 

cost 

Environmental 

impact 

Social 

cost 
Weighted sum 

50M 1.0000 1.0000 1.0000 1.0000 1.0000 

60M 0.9989 0.9800 0.9997 0.9998 0.9946 

70M 0.9975 0.9542 0.9994 0.9996 0.9877 

85M 0.9947 0.9129 0.9989 0.9991 0.9764 

95M 0.9924 0.9167 0.9988 0.9987 0.9766 

105M 0.9896 0.9304 0.9987 0.9981 0.9792 

115M 0.9867 0.9590 0.9988 0.9976 0.9855 

125M 0.9837 0.9804 0.9988 0.9970 0.9900 

To provide an intuitive comparison of the various maintenance budget scenarios, Figure 5 

presents the WSM results. It is evident that the 85M scenario has the lowest WSM value, 

indicating that it is the optimal alternative. 

 

Figure 5. WSM results for the eight maintenance budget scenarios 

The results for the 1000 random runs are presented in Figure 6. It is obvious that scenarios 

85M, 95M, 125M, and 105M generally have relatively low WSM results. Among the 1000 

random draws, the 85M scenario is selected as the optimal option 596 times, accounting for 59.6%. 

The 95M, 125M, and 105M scenarios account for 26.6%, 7.7%, and 6.1%, respectively. Although 

the 125M scenario has relatively high WSM values in the 1000 runs, it can be an optimal option 
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under several conditions, for example, when the maintenance budget is sufficient and the 

economic aspect is given very low weight (e.g., < 6%).  

 

Figure 6. WSM results for the 1000 random runs 

Furthermore, Figure 7 shows the relationships between the four potential optimal scenarios 

and the allocated weights of the four attributes. The darker circles indicate that the respective 

scenarios are selected more frequently. It can be observed that the optimal results are sensitive to 

the weight of economic considerations. When the weight is extremely low (e.g., < 2%), only 

scenario 125M will be selected and scenario 85M will not be selected until the weight is higher 

than 8%. In addition, when economic considerations account for 27% of the overall weight, the 

possibility that scenario 85M is selected is higher than 99%. It is also found that when the weight 

of the road condition is higher than 50%, scenario 85M is unlikely to be selected.  
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Figure 7. Relationships between optimal scenarios and the weights of the four attributes 

5. Discussion 

Selecting an optimal network-level pavement maintenance plan is critical for road agencies 

because of limited maintenance funds. Road condition and direct cost are the most frequently 

considered factors when evaluating a pavement maintenance plan. However, social sustainability 

factors such as road user costs, which are impacted by maintenance activities and improved road 

conditions, are rarely considered. In addition, as GHG emissions reduction has become a target 

worldwide under the Paris Agreement, environmental sustainability also needs to be considered 

in such an evaluation. Arif et al. (2016) developed a decision-making framework to support 

infrastructure maintenance investment decision-making that considers physical condition and 

socioeconomic performance. However, environmental contributions are not included, and the 

required data are difficult for road agencies to obtain. Batouli et al. (2017) considered road user 

cost, but a general unit value was adopted from the literature to calculate VOC, which limits its 

implications for road agencies of various countries. A practical framework is therefore proposed 

in this work for road agencies to accurately evaluate network-level pavement maintenance plans 

based on road conditions, economic, environmental, and social performance.  
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Under this framework, road conditions and economic performance of the network-level 

pavement maintenance plans are evaluated by road roughness, represented by the IRI and agency 

cost, respectively. Compared to the road condition assessment method adopted by Arif et al. 

(2016), IRI is more universally accepted and can be adapted to various countries (Du et al., 2014). 

To assess the environmental impact, the GWP of GHG emissions was evaluated for the network-

level maintenance plans. In addition, road user cost is considered to assess social sustainability, 

including travel delay cost, VOC generated through fuel use, vehicle repair and maintenance, and 

tire wear. By integrating environmental and social considerations, this framework provides a more 

realistic representation of sustainability when meeting the budget and road use requirements. This 

provides optimal results for road agencies as they are taking increasing responsibility toward 

sustainability (PIARC, 2019). 

It is worth mentioning that the selection of the aforementioned criteria are based on a previous 

study by France-Mensah and O’Brien (2019). Modifications have been made to improve the 

completeness and accuracy. France-Mensah and O’Brien (2019) aimed to maximize road 

conditions and minimize GHG emissions and road user cost. However, economic aspect was not 

included. As the maintenance of pavement networks is long-term work, life cycle agency cost has 

been and will be one of the important considerations for road agencies. In addition, in their model, 

average emissions and road user cost data are used, which can cause accuracy issues for network-

level calculations. For example, traffic delay (such as queueing), as one indicator in road user cost 

calculation, is affected by road capacity and on-road traffic volume. Therefore, queueing does not 

occur on every road segment and usually only occurs during peak hours. Using average data for 

all road segments can lead to much higher emissions and traffic delay costs when compared to 

real-life cases. In addition, the rolling resistance effect can be affected by both the road condition 

and speed limit, which vary significantly among different road segments. The average data cannot 

be used to accurately calculate emissions from rolling resistance. To address these limitations, a 

hybrid LCA model that is specifically developed for estimating GHG emissions of the 
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maintenance and use phases of roads is adopted. This model was proven to have higher accuracy 

than individual process-based or Tiered hybrid LCA methods in a prior study by Jiang et al. (2020).  

As multiple attributes have different unit measures, it is not easy to combine them into a 

single score. As such, a multi-attribute method is used to compute a combined index that reflects 

all four attributes simultaneously. The following three steps are followed. First, weights are 

allocated to attributes according to their importance. Equal weights are the easiest to implement 

while still generating sufficiently good results (Zhang, 2014). Road agencies can reassess the 

weights based on their own organizational requirements. Second, the quantified performance of 

the network-level pavement maintenance plans is rescaled to fit in a range from 0 to 1 to enable 

comparability. Finally, a combined index is computed for each plan using a WSM. This approach 

provides an easy way for road agencies to select an optimal network-level pavement maintenance 

plan. 

The effectiveness of the proposed framework is demonstrated in a case study of eight budget 

scenarios ranging from 50M to 125M. The results show that when equal weights are allocated to 

the four attributes, the 85M maintenance budget scenario has the lowest agency cost, with an 

equivalent value of AUD$6,745.06/km per year within 10 years. The most costly is the 50M 

scenario with, an NAV of AUD$7,388.22/km. The 50M scenario also generates the highest GWP, 

which is 520.33 tCO2-e/km. On the contrary, the lowest GWP of 519.68 tCO2-e/km is generated 

by the 105M scenario. In addition, 1000 random sets of weights are generated for the four 

attributes to determine whether there are other potentially optimal scenarios under the proposed 

evaluation framework when different weights are used. Scenarios 85M, 95M, 125M, and 105M 

are identified as potentially optimal options with probabilities of 59.6%, 26.6%, 7.7%, and 6.1%, 

respectively. Such a method can be used to predict the best maintenance budget scenario when 

road agencies are unable to give an exact weight of each attribute, but would like to evaluate 

maintenance options to obtain preliminary insights. Detailed results are also provided in Table S3 
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with an instruction in which road agencies could select a set of weights to approximate their 

preference and obtain the corresponding optimal scenario. 

Due to the different characteristics of the selected cases (e.g., the maintenance strategies, 

maintenance budgets, the length of the network, road width, etc.), it is very difficult to compare 

the network-level results to existing studies/projects even with a similar approach. To ensure the 

accuracy of results, data and the calculated results of separate road segments were carefully 

checked and/or compared with existing literature/projects wherever possible before they were 

aggregated. First, for road conditions, the IRI of each road segment was provided by Main Roads, 

which is accurate. The calculation of the average IRI of the network is relatively direct and is 

unlikely to introduce uncertainty to the results. Similarly, the results for the calculated network-

level agency cost should be reliable. Second, for the calculation of GHG emissions, both the 

method and results have been validated in a previous study by Jiang et al. (2020). The method has 

been proven to provide more accurate results for road agencies than process-based or individual 

tiered hybrid method. Detailed results for each emission source were also presented and validated 

in this paper. In addition, for road user cost, research is limited. Salmon et al. (2020) did not report 

their results for separate attributes. France-Mensah and O’Brien (2019) only reported travel delay 

cost per AADT per lane mile. Vehicle operating cost was not reported and the lane width was not 

mentioned. Paik (2018) reported the road user cost for each of the maintenance strategy applied 

on 1 m2 of road pavement. However, this study calculated the annual road user costs for road 

segments and aggregated them. Therefore, it is difficult to conduct the comparison. To lower the 

uncertainty to the maximum extent, the magnitude of the results for road user cost has been 

checked by comparing to the parameters given in Transport and Infrastructure Council (2016). 

The uncertainty of the results exists but should not affect the implementation of the proposed 

framework. 

Uncertainty also exists in the prediction of IRI and the assumptions on discount rate and 

traffic growth rate. A sensitivity analysis is conducted to test the sensitivity of results to the 
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prediction and assumptions. IRI, discount rate and traffic growth rate are varied by ±10% and ±20% 

to investigate the impact. Generally, decreased discount rate increases the frequency that scenario 

95M is selected and decreases the selection of scenario 85M; increased IRI leads to increased 

selection of scenario 95M and decreased IRI tend to increase the frequency that scenarios 105M 

and 125M are selected. Figure 8 also shows that the selection of optimal budget scenario is most 

sensitive to the variation of discount rate. When the discount rate decreases by 20%, the frequency 

that scenario 95M is selected out of 1000 random runs increases by 192%. Due to the high 

sensitivity to the assumptions, the results of this case study are recommended to be cautiously 

used. Results for traffic growth rate are not shown in the figure because of its negligible impact. 

The effect of traffic growth is minimized because road user cost per km per vehicle is used to 

represent social performance in the proposed framework. 

 

Figure 8. Sensitivity analysis for discount rate and IRI 

To investigate the impact of integrating environmental and social sustainability in the 

framework, a similar random weighting process is implemented for a second time to exclude 

environmental and social sustainability. The chance that the 85M scenario is selected increases to 

68.6%, a 9% increase from the case in which environmental and social factors are included. The 

chances that the other three scenarios are selected decrease to 20.8%, 5.0%, and 5.7%, respectively. 

In addition, Figure 9 presents the relationships between the selection of optimal scenarios and 

attribute weights when environmental and social factors are not considered. The results are highly 

sensitive to the weights of economic considerations and road conditions. An obvious trade-off 
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was observed. As the weight of economic consideration increases (or the weight of road condition 

decreases), the optimal scenario shifts from 125M to 105M and then to 95M and 85M. On the 

contrary, when road conditions receive higher weight, the optimal scenario shifts from 85M to 

125M. 

 

Figure 9. Relationships between optimal scenarios and the weights of the attributes (traditional 

method) 

Although the framework is demonstrated with a road network in Australia, this framework 

can also be adopted by road agencies from other countries. First, making decisions for the optimal 

network-level pavement maintenance plan is a global concern for road agencies, as maintenance 

funds are limited and sustainability goals are becoming increasingly important worldwide. In 

addition, the data required in the proposed framework are generally easy to obtain. For example, 

the index for road conditions (i.e., IRI) is a universally adopted index. Agency cost and data for 

calculating road user costs are commonly recorded by road agencies. Data required for 

environmental assessments, such as the direct requirement coefficients matrix, are regularly 

published by national governments. To obtain GHG emission factors, many countries have 

developed their own emission databases. 
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6. Conclusions 

As the number of newly constructed roads in developed countries has been limited in recent years, 

it is imperative that pavement maintenance plans are established to ensure that maximum 

sustainable benefits, including economic, environmental, and social benefits, can be achieved. 

Therefore, this study investigates how sustainability indicators can be integrated into the 

traditional assessment of a network-level pavement maintenance plan for informed decision-

making. A framework is developed to help select the optimal network-level pavement 

maintenance plan based on pavement conditions and economic, environmental, and social 

sustainability. IRI, agency cost, GHG emissions, and road user cost were evaluated. The specific 

conditions and characteristics of each road segment are considered in the modeling of the four 

attributes to enable accurate calculation. To combine the four attributes and enable comparability 

among different network-level pavement maintenance plans, a multi-attribute decision-making 

method is adopted to convert the results to a single index. This framework provides a 

straightforward method for evaluating and selecting the optimal network-level pavement 

maintenance plan. 

The proposed framework is demonstrated with eight network-level pavement maintenance 

scenarios under various annual budgets of AUD$50M, 60M, 70M, 85M, 95M, 105M, 115M, and 

125M. The results show that road conditions and social performance improve as the maintenance 

budget increases. When equal weight is given to the four attributes, the 85M scenario is selected 

as the optimal maintenance scenario for the studied network. By assigning different weights to 

the four attributes, the 85M, 95M, 125M, and 105M scenarios are identified as potentially optimal 

solutions. The results also show that integrating environmental and social sustainability in the 

framework is necessary, as they can affect the optimal scenario significantly when they have 

higher weights. 

It should be noted that this study has certain limitations. For example, considering the 

applicability and data accessibility, only roughness and GHG emissions are considered for road 
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conditions and environmental sustainability, respectively. For future studies, it is recommended 

to include more indicators (e.g., cracking, rutting, and deflection for road conditions and other 

impact categories for environmental sustainability). Due to the unique characteristics of the 

selected cases (e.g., the maintenance strategies, maintenance budgets, the selected functional unit, 

road width, etc.), it is very difficult to compare the results of the case study to existing studies 

even with a similar approach. Therefore, the uncertainty in the results of the case study, although 

does not affect the implementation of the proposed framework, needs to be considered if they are 

to be used. In addition, the weights of the attributes were generated through random runs in this 

study. Future research may consider obtaining accurate weights using other methods such as a 

tradeoff or an analytic hierarchy process method to provide agency-specific recommendations. 
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