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I Abstract 

 

Abstract 

 

New Internet collaborative media introduce new ways of communicating that are not immune 

to abuse.  A fake eye-catching profile in social networking websites, a promotional review, a 

response to a thread in online forums with unsolicited content or a manipulated Wiki page, 

are examples of new the generation of spam on the web, referred to as Web 2.0 Spam or 

Spam 2.0. Spam 2.0 is defined as the propagation of unsolicited, anonymous, mass content to 

infiltrate legitimate Web 2.0 applications.  

The current literature does not address Spam 2.0 in depth and the outcome of efforts to date 

are inadequate. The aim of this research is to formalise a definition for Spam 2.0 and provide 

Spam 2.0 filtering solutions.  Early-detection, extendibility, robustness and adaptability are 

key factors in the design of the proposed method. 

This dissertation provides a comprehensive survey of the state-of-the-art web spam and Spam 

2.0 filtering methods to highlight the unresolved issues and open problems, while at the same 

time effectively capturing the knowledge in the domain of spam filtering. 

This dissertation proposes three solutions in the area of Spam 2.0 filtering including: (1) 

characterising and profiling Spam 2.0, (2) Early-Detection based Spam 2.0 Filtering (EDSF) 

approach, and (3) On-the-Fly Spam 2.0 Filtering (OFSF) approach. All the proposed 

solutions are tested against real-world datasets and their performance is compared with that 

of existing Spam 2.0 filtering methods. 

This work has coined the term ‘Spam 2.0’, provided insight into the nature of Spam 2.0, and 

proposed filtering mechanisms to address this new and rapidly evolving problem.
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Chapter 1    

Introduction 
This chapter  

► Provides an introduction to different types of spam. 

► Gives an overview of current anti-spam technologies. 

► Presents the focus of this research which is the new generation of spam called Spam 2.0. 

► Explains the significance and importance of Spam 2.0 management. 

► Explains the motivation and objective of this research. 

► Presents the structure of this dissertation. 

1.1  Introduction 
The rapid adoption of the Internet in the day-to-day lives of people has provided a platform for 

information generation and consumption. The Internet is used on a daily basis to search for 

information and acquire knowledge. For instance, blogs are well-known online diary applications, 

wikis are known as huge knowledge bases, online discussion boards (forums) are places for 

knowledge sharing, brain storming and discussions, and online communities make it possible for 

people to create a virtual identity for themselves on the Internet. As newer platforms are created for 

the Internet, content generation and consumption become faster and easier than ever before. However, 

the ease with which content can be generated and published has also made it easier to create 

inappropriate, unsolicited, and irrelevant content. Spam, as this content is known, does not add value 

to the web user. 
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1.2  What is spam? 
There is no exact definition of spam. Generally speaking, spam can be termed as an “unwanted email 

message”. However, not all the unwanted emails are spam (e.g. emails that come through mailing 

lists). Another term could be “promotional commercial emails”, but again not all the promotional 

commercial emails are spam (e.g. newsletters for software updates that the user has requested to 

receive in his/her inbox). Spam can also be referred to as “junk email” but this begs the question, 

“what is junk email?” 

One general and acceptable definition of spam is: mass, unsolicited and unwanted messages (Junod 

1997).  

1.3  Origin of the term ‘spam’ 
The origin of the term ‘spam’ comes from a 1970’s popular TV show called “Monty Python's Flying 

Circus”. During one of the sketches, a customer orders a meal from a restaurant. In the restaurant’s 

food menu all meals contained a canned, pre-processed meat called Spam®. The restaurant’s waitress 

insists on serving unwanted Spam® to customers (Pfleeger & Bloom 2005). Therefore, ‘spam’ is 

related to something unwanted which causes annoyance. 

1.4  Different forms of spam 
The most widely recognised form of spam is the spam in email communications. However, spam 

exists in other media such as instant messagers (Spam in Instant Messenger or SPIM), Internet 

Telephony (Spam in Internet Telephony or SPIT), mobile phone (M-spam), Websites (Web spam), 

and finally Web 2.0 (Spam 2.0). Figure  1.1 presents adaptability of different spam types to different 

platforms.  The figure illustrates different types of spam (Spam, SPIM, M-Spam, Web Spam, SPIT 

and Spam 2.0) for different media (Email, Instant Messenger, Mobile, Search Engines, Internet 

Telephony and Web 2.0). A detailed description of each type of spam is given in the remainder of this 

section. 
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Figure  1.1: Evolution and adaptability of spam once new media emerge 

Although spam has evolved over time, most research efforts have focused on earlier types of spam 

such as email spam. Figure  1.2 illustrates the number of hits for different spam types on the Internet. 

This figure has been derived from the number of results for each spam type, from major search 

engines on the Internet1. 

 

Figure  1.2: Number of hits for different types of spam. 

                                                      
1 There is a possibility of repeated results in the figure; however, it would affect all types of spam and they would nullify 

each other. 
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1.4.1 Email Spam  
Email spam is the most common type of spam that targets the email system. Email spam is referred to 

simply as ‘spam’. 

1.4.2 Instant Messenger Spam (SPIM) 
Spam in instant messaging programs such as Windows Live Messenger, AIM, Skype, Yahoo! 

Messenger, XMPP etc is referred to as SPIM (Zhijun Liu et al. 2005) (Jun Bi et al. 2008). Users of 

such systems are often solicited by unwanted messages and links. 

1.4.3 Mobile Phone Spam (M-spam) 
The abuse of the text messaging service of mobile phones for the purpose of spam is referred to as M-

spam or SMS spam (Cormack et al. 2007). As the cost of text services is going to be relatively 

cheaper, the impact of m-spam will increase rapidly in the future. 

1.4.4 Webpage/Website Spam (Web spam or Spamdexing) 
Web spam is defined as web pages that are deliberately created to trick search engines into offering 

unsolicited, redundant and misleading search results as well as mislead users to unwanted and 

unsolicited web pages (Gyongi & Garcia-Molina 2005).  This form of spam is also known as 

Spamdexing or Black Hat SEO since it targets Search Engines Optimisation (SEO) algorithms. SEO 

are techniques that are designed to improve the ranking of a particular website or a web page in a 

search engine indexing result in an ethical way (e.g. more links to a website can improve its 

importance and ranking).  

Web spam is quite widespread and there have been many efforts (ref. Chapter 2) in the literature to 

prevent propagation of web spam as well as removing spam websites from search engines indexes. 

1.4.5 Spam over Internet Telephony (SPIT) 
Voice over Internet Protocol (VoIP) is a communication protocol for the transmission of voice and 

multimedia through Internet Protocol (IP)-based networks.  Since, VoIP communications can reduce 

both infrastructure and communication costs, they are rapidly becoming popular. Unsolicited phone 

calls received via the VoIP system are known as SPIT (Quittek et al. 2008). This form of spam is 
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more annoying than other forms since it directly targets VoIP users’ phone devices, causing 

distraction and discomfort.  

 So far, the most common spam types, i.e. SPIM, SPIT, M-spam, and Web spam, have been 

explained. In the next section, a detailed description of the next generation of spam i.e. Spam 2.0 is 

given. This is the main focus of this research study. 

1.5  Spam in Web 2.0 Applications (Spam 2.0) 
Web 2.0 is commonly associated with web applications that facilitate interactive information sharing, 

interoperability, user-centred design and collaboration on the World Wide Web (Oreilly 2007). The 

read/write Web 2.0 concepts are the backbone of the vast majority of web services. In contrast to non-

interactive websites, Web 2.0 places greater emphasis on human collaboration through a participation 

architecture that encourages users to add value to web applications as they use them (Oreilly 2007). 

Today, Web 2.0 functions are commonly found in web-based communities, applications, social-

networking sites, media-sharing sites, wikis, blogs, mashups, and folksonomies. They are widely 

provided by government, public, private and individual entities.  

New media brings in a new means of communication that is not immune to unsolicited concerns.  A 

fake eye-catching profile in social networking websites, a promotional review, a response to thread in 

online forums with unsolicited content and a manipulated wiki page etc, are examples of a new form 

of spam on the web that is referred to as Web 2.0 Spam or Spam 2.0 (Hayati, Potdar, Sarenche, et al. 

2010). Spam 2.0 (or Web 2.0 Spam) is defined as below. 

1.5.1 Definition of Spam 2.0  
“Spam 2.0 is defined as the propagation of unsolicited, anonymous, mass content to infiltrate 

legitimate Web 2.0 applications” (Hayati, Potdar, Sarenche et al. 2010). The key term in this 

definition of Spam 2.0 is the word “legitimate” because this type of spam is distributed through 

legitimate websites. This differentiates Spam 2.0 from other types of spam (Hayati, Potdar, Sarenche, 

et al. 2010).  

Previously, spammers used media such as email, instant messengers, internet telephony etc to spread 

spam; hence, such media serves as a communication medium between spammer and genuine users. 

However, Spam 2.0 acts differently as it uses legitimate Web 2.0 applications to host spam. In Spam 
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2.0, spammers no longer host their own email/web servers. Instead, they post spam on legitimate 

websites like a genuine users blog. Legitimate websites here refer to those genuine website used by 

users including government departments, universities, companies, homepages websites etc. Spam 2.0 

infiltrates legitimate websites by posting/hosting spam content on them. Figure  1.3 illustrates an 

example of Spam 2.0 in legitimate website:  blog comments, forum posts and online communities.  

     

(a)                                                          (b)  

 

(c) 

Figure  1.3: Examples of Spam 2.0. (a) A comment spam, (b) an online community spam, and (c) a forum spam 

Spam 2.0 has the following characteristics:  

Spam 2.0 targets Web 2.0 platforms. Spam 2.0 spreads through any web applications that allow 

users the privilege of contributing to content generation including forums, comment systems, wikis, 

online communities etc. 
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Spam 2.0 post is parasitic in nature. Spam 2.0 is hosted on legitimate and often official websites. If 

such information persists, the credibility of such websites is diminished, and many users can be 

misdirected to scams and computer malware; websites may be blacklisted, thereby depriving all other 

users from accessing legitimate content.  

Spam 2.0 aims to deceive web users. Spam 2.0 posts can be attractive enough to deceive and 

misdirect users to scam or malware (e.g. a comment in user’s profile page). This affects the user’s 

experience of surfing the web, causes frustration, and diminishes the quality and credibility of the web 

content.  

Spam 2.0 can propagate web spam. Spam 2.0 can be generated using web spam tactics in order to 

manipulate the result of search engine ranking. URLs for spam websites can be distributed via 

numerous public Web 2.0 platforms. Hence, it would tamper with targeted-website ranking in search 

engine results (ref. Section 2.2.3, Web spam tactics). 

Spam 2.0 distribution is automated. Typically, Spam 2.0 is distributed through automated tools. 

This allows Spam 2.0 to increase more rapidly and infiltrate a significant number of targets. 

Additionally, there is evidence of real human spamming activities through the hiring of low-income 

employees (Workathome 2009). 

Spam 2.0 wastes network and web resources. Network bandwidth and web storage is misused for 

the distribution and hosting of Spam 2.0. Additionally, this may have ramifications for computational 

and power resources used by network facilities to handle Spam 2.0 content. 

 

To date, as a result of the success and impact rates of Spam 2.0, it is far 

more popular and has a far greater negative socio-economic impact. The 

next section discusses the significance and nature of Spam 2.0 compared 

with previous types of spam. 

1.5.2 Spam 2.0 vs. Email Spam 
Spam 2.0 offers a far more attractive proposition compared with traditional spam, specifically email 

spam (Hayati & Potdar 2009). Web 2.0 applications can be discovered through a simple search engine 

query that contains “domain keywords” and a “web application name”. Email addresses are procured 
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in a similar fashion except that email address details are commonly tightly controlled online and are 

far more difficult to source. In contrast, Web 2.0-based websites try to promote themselves so that 

web users are able to easily find them and contribute. Such applications rely upon relatively 

anonymous social network users to freely interact online.  

 A single Spam 2.0 attack may reach many targeted and domain-specific users, whereas a single email 

message would potentially reach only one random individual if the email address is real and not 

stopped by today's effective email spam filters (Hayati, Potdar, Sarenche et al. 2010).  

Furthermore, when individuals discover an email message that has bypassed their filters, they are able 

to remove it. However, online messages typically cannot be deleted by regular users and persist online 

until a website operator deals with them, often impacting on many users in the meantime.  

1.5.3 Spam 2.0 vs. Web spam 
In contrast to web spam, in Spam 2.0, spam posts are spread in legitimate websites. Spam 2.0 posts 

are posted to publicly accessible blogs, discussion boards, wiki etc. 

Furthermore, Spam 2.0 not only targets search engines, but can also be formulated to mislead human 

users. For example, a comment as illustrated in Figure  1.4 in a blog post might mislead human users 

to visit the associated link. 

Thanks, I am interested in your post. Could you please let me know what you think about this article? 

WWW.SPAMWEBSITE.COM 

Figure  1.4: Example of misleading comment spam 

 

To date, spam has seriously compromised the quality of the web. This 

problem has been exacerbated by the emergence of Spam 2.0 that 

infiltrates the content of legitimate websites. Hence, research in Spam 2.0 

management is of prime importance if web content is to maintain its 

quality and credibility.  

 

http://www.spamwebsite.com/�
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1.6  Anti-Spam Solutions (Spam Filtering) 

1.6.1 Importance of spam filtering 
The significant increase in the amount of spam on the web and web applications has made it 

imperative to find reliable anti-spam solutions. A report carried out by Sophos in 2008 revealed that 

every 3 seconds a new spam-related web page is created (net-security.org 2008). In another words, 

every day 23,300 spam-related web pages are hosted on the web. Live Spam Zeitgeist has shown an 

increase of over 50% in the number of spam messages (e.g. spam comments in blogs) since 2008 

(Live-Spam-Zeitgeist 2009). This report showed a dramatic increase in the amount of Spam 2.0. 

Additionally (Kolari et al. 2006), pointed out that over 75% of blogs are splogs and this figure may 

have increased even more by now. 

1.6.2 Anti-Spam concepts 
To provide a better understating of the concepts involved in the area of anti-spam, an analogy between 

spam filtering approaches and the clinical service chain in a health care system is discussed here. 

Figure  1.5 illustrates 4 main groups of activities in the clinical service chain – prevention, diagnosis 

(or detection), treatment, and recovery. An explanation of these concepts in terms of anti-spam is as 

follows. 
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Figure  1.5: Anti-spam solutions main activities 

1.6.2.1 Prevention 
In the health care system, ‘prevention’ refers to those measures taken to prevent infection or disease 

(Horstkotte et al. 2004).  Similarly, in the domain of spam management, prevention constitutes the 

measures taken to prevent spam rather than detecting and removing spam from the system (ref. 

Section  1.6.4.3 ). Prevention activities restrict spam content by increasing distribution costs through 

time, computation, and economic challenges. 

1.6.2.2 Diagnosis (detection) 
Regarding health care, ‘diagnosis’ is the process of identifying diseases (Horstkotte et al. 2004). 

Similarly, in terms of spam management, diagnosis or detection includes any measures taken to 

identify spam patterns. This task can be done through an analysis of spam content or behaviour 

patterns (ref. Section  1.6.4.1 ). The spam patterns within content can be identified by extracting spam 

keywords from email messages, analysing request header information etc.  

1.6.2.3 Treatment 
In the health care system, ‘treatment’ consists of those measures taken to cure a disease or health 

problem (Horstkotte et al. 2004). Similarly, with spam, treatment focuses on removing spam from the 
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system and enables system operators or system users to effectively remove the infiltrating spam. For 

example, a feature in email systems that facilitates the removal of spam in bulk can be considered as a 

treatment activity. This area of research is quite young and not many studies have been undertaken so 

far.  

1.6.2.4 Recovery 
The restoration of health to a normal condition after a health problem has been treated, is the recovery 

process in the health care system (Horstkotte et al. 2004). Similarly, in the spam management domain, 

recovery is any kind of method that returns the system to its former status and retains the details of 

recent spam distribution for future spam filtering. For example, a system can blacklist the IP address 

of origin of recent spam. Similar to treatment, this area of research has not received much attention to 

date. 

Based on the concepts explained above, the next section discusses the existing approaches to spam 

filtering. 

There is a broad spectrum of potential solutions for spam filtering, ranging from legal to technical 

filters. The aim of each and every solution is to make spam unprofitable.  The following sections 

discuss each solution. 

1.6.3 Legal Approach 
Legal solutions strive to regulate spam through appropriate legislation and enforcements. For 

example, according to the Australian Spam Act 2003 it is illegal to “send or cause to be sent” spam 

through email, instant messengers, and mobile phones. Although legislation makes it easier for spam 

to be filtered out, there are no word-wide legal agreements regarding spam filtering. Therefore, anti-

spam regulations might not be not effective enough (e.g. spam that originated from a location that is 

not part of spam-relaying countries might not be easily prosecuted) (B. Whitworth & E. Whitworth 

2004). 

1.6.4 Technical Approach 
Technical solutions are practical real-world solutions that can be used in softwares.  Technical 

solutions can be categorised according to four approaches – detection-based, link-based, early-

detection based, and prevention approaches.   
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With regard to clinical service chain, detection-based, link-based, and earl-detection based 

approaches are similar to diagnosis step while prevention approaches are similar to prevention step. 

The details of each approach are discussed in the following sections.  

1.6.4.1 Detection-based approach 
Methods in this category deal with the content of spam in order to discover spam patterns (Paul et al. 

2007). These detection methods search for spam words, templates, attachments etc inside the content. 

For example, an email with a subject “$$$$ BIG MONEY $$$$” would be marked as spam by a 

keyword-based spam filter (Ion et al. 2000). As shown in Figure  1.6, detection methods follow 3 

steps. The first step is the input content from different systems (e.g. email, sms). The second step is to 

mine features such as keywords from content and meta-content. Finally, the last step is to perform 

classification which results in spam or non-spam content. 

Classification criteria can be rule-based or statistics-based. The former employ heuristic rules such as 

whether or not there is organisation of the content, existence of specific keywords etc. Rules lists need 

to be updated regularly with new rule sets, otherwise the detection system cannot perform effectively.  

 

Figure  1.6: The procedure for the detection-based spam filtering approach 
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Detection-based spam filtering methods can investigate different parts of the content in order to find 

spam patterns. These parts are platform-dependent. Table  1.1 lists examples of such parts in the email, 

web page and blog comment. 

Table  1.1: Examples of spam features in different platforms. 

Platform Where to look (part of content) 

Email Message content 
Headers (origin and destination address) 

Message path route 

Web page Title of page 

Structure of the page 

Content of the page 

Amount of content vs. hyperlinks 

Blog Comment No. of links per comment content. 
Similarity of comment content and blog post. 

Forum Post Content of post 
No. of images per post 

No. of links per content 

 

1.6.4.2 Link-based approach 
In the link-based approach, spam filtering methods investigate various link-analysis, graph-analysis or 

network analysis techniques to separate spam nodes from genuine ones (Caverlee et al. 2009). By 

constructing a graph-view of the web/email communication and looking for differentiate parameters 

(e.g. number of link between two web page), such methods are capable of discovering spam websites 

(Gyongyi et al. 2004). Figure  1.7 illustrates a sample procedure in link-based approaches. The vertices 

of the graph can be web pages, websites, hostnames, email contacts etc and edges can be defined 

accordingly. 
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Figure  1.7: The procedure of the link-based spam filtering approach 

Link-based approaches have been widely studied in web spam filtering (ref. Section 2.2.5) while there 

are some efforts in email spam filtering as well. Table  1.2 presents several sample parameters used in 

the link-based approaches. 

Table  1.2: Sample parameters in link-based spam filtering approaches 

Platform Where to look (parameter) 

Email No. of sent emails vs. the number of received emails 
No. of emails a user has sent within a specific period of time 

No. of emails a user has sent at a particular time of day 

Web No. of links that a web page is linked to vs. # of links a web page is linked from 

No. of suspicious links that a web page is linked from 

No. of links that a web page is linked from a specific host 
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1.6.4.3 Prevention-based approach 
Prevention methods strive to limit automated access to the system (Paul et al. 2007) (Hayati & Potdar 

2008).  By utilising computational, time, and economical challenges, prevention methods make spam 

distribution difficult (Paul et al. 2007).  As illustrated in Figure  1.8, prevention methods allow the 

genuine user to enter the system while keeping the spammer out of the system. 

 

Figure  1.8: The procedure for the prevention-based spam filtering approach. 

Examples of widely used prevention-based spam filtering approaches are as follows.  

Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA): a 

challenge and response test designed to distinguish human users and automate generated requests 

(Luis von et al. 2004).  CAPTCHA tests needs to be automatically generated that are easy for human 

users to solve but hard for machine to bypass. Figure  1.9 illustrates example of recent CAPTCHA 

known as reCAPTCHA (von Ahn et al. 2008). Such tests have been widely used in email and web. 

Most of the current web applications include CAPTCHA as part of their content submission and 

registration process. 
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Figure  1.9: A recent CAPTCHA challenge known as reCAPTCHA. 

Proof-of-Works (POW): The idea of this test is based on dissymmetry i.e. on the client side, the task is 

feasibly hard to perform but can be easily verified on the server side (Paul et al. 2007). HashCash is 

an example of a POW test that has been designed to limit email spam. For example, the sender of the 

email is required to calculate a stamp prior to sending the email (Back 2002). Stamp generation 

requires CPU time calculation, which possibly increases the cost per email message (more details in 

Section 2.3.4.2). 

Challenge-response (CR):  A CR test requires the sender to successfully overcome a challenge before 

allowing the message to pass through to the destination (Paul et al. 2007). CR is normally used in 

email systems. For example, the sender of unknown incoming email needs to click on a specific URL 

in the auto-generated reply email from the spam filter. 

Gray listing: This test requires the sender to re-submit the message by assigning delay or rejecting a 

message for the first time (Levine 2005).  Typically, gray listing is used in email systems to verify the 

sender. 

Time challenges limit the amount of access for the actions in the system based on time constraints. 

For instance Flood control is a type of time challenge that limits the number of requests a client can 

send to a forum within a specified time interval. Another example is when a user creates a new thread 

in a forum, s/he may have to wait for some time before creating another thread. 

Economic challenges are designed to make spam distribution non-economical, thereby making the 

sending of spam unaffordable as the cost per spam message is more than the potential revenue to be 

generated. Techniques such as E-stamp require the sender of the email message to pay a specific 

amount of money to the receiver (Fahlman 2002). Once the receiver accepts the sender’s email 

message, this payment would be refunded. 
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1.6.4.4 Early-detection based approach 
Early-detection methods prevent the distribution of spam throughout the system. Early-detection 

methods typically examine the nature and behaviour of spam generation (Hayati, Potdar, Chai et al. 

2010). By studying the behaviour of content distribution and investigating behavioural features, early-

detection methods are able to distinguish spam from legitimate content. Such methods are not 

detection-based since they do not investigate content to find spam patterns; nor do they impose costs 

on user actions to limit the access to the system. Figure  1.10 shows the process of the early-detection 

based approach that investigates users’ behaviour and interaction inside the system for the detection 

of spam users. 

 

Figure  1.10: The procedure of early-detection based spam filtering approach. 

Behavioural features vary depending on the different platforms. Table  1.3 lists some of the 

behavioural features for blog comment and general Web 2.0 application platforms. 
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Table  1.3: Examples of behavioural features in early-detection approach. 

Platform Behavioural Feature 

Blog Comment Existence of keyboard interaction while filling up comment form. 

Existence of mouse interaction while moving across comment 
form’s fields.  

Amount of time user spends on submitting comment form. 

General Web 2.0 Application Navigation pattern. 
Amount of time user spends on each page. 

Amount of time user spends on filling up each file in the form. 

 

The existing approaches to combat spam have been discussed. The next section explains the main 

research motivations for this dissertation. 

1.7  Research Motivations 
The main purpose of this research is to address the issue of Spam 2.0 filtering and develop a 

framework for early-detection and prevention of spam on Web 2.0 platforms.  However, it should be 

duly noted that Spam 2.0 filtering has many applications including, but not limited to, preventing 

scam and online fraud, and improving content quality. Current literature highlights some key 

problems associated with Spam 2.0 filtering; these problems serve as the motivation for this study. 

These key problems include: 

1. Spam 2.0 is not addressed as a new type of spam. 

2. Spam 2.0 is parasitic by nature. 

3. Spam 2.0 causes user inconvenience. 

4. Existing detection approaches are not effective in filtering Spam 2.0. 

5. The increasing rate of Spam 2.0 distribution is out of control. 

6. Online fraud and scam are facilitated by Spam 2.0. 

7. Trust, credibility and quality of information on Web 2.0 platforms are compromised because 

of Spam 2.0. 
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1.7.1 Spam 2.0 is not addressed as a new type of spam 
The existing literature focuses mainly on spam filtering in different web applications but does not 

address Spam 2.0 as a new generation of spam. For example, some works have addressed platform-

dependent spam filtering in social bookmaking, video sharing, and comment systems; however, there 

has been no effort to address Spam 2.0 as a whole big picture (Hayati & Potdar 2009).  

In order to effectively combat Spam 2.0, it is necessary to approach it as a new type of spam which 

has its own characteristics. Therefore, a specific solution is needed to address such characteristics. 

Otherwise, an anti-Spam 2.0 solution would be limited to specific platforms only (i.e. platform 

dependent) and could not be extended to other web applications. Therefore, solutions might not be 

effective enough for combating spam. 

1.7.2 Spam 2.0 is parasitic by nature 
Spam 2.0 is different in nature from previous types of spam. For instance, Spam 2.0 has parasitic 

nature that infiltrates legitimate applications. Hence, traditional spam filters might not be adequate for 

combating this new type of spam. To date, most of the efforts on Spam 2.0 filtering have been 

concerned with adapting old methods applied to email spam filtering to detect Spam 2.0. Therefore, 

the outcome of such efforts is inadequate for Spam 2.0 filtering (Zinman & Donath 2007) (Jindal & 

Bing 2007) (Benevenuto et al. 2008). 

1.7.3 Spam 2.0 causes user inconvenience 
Some anti-spam approaches, mainly prevention-based, decrease the number of users. For instance, 

typical CAPTCHA requires users to read and write phrases shown inside images. Often this image is 

deformed and it is not easy to read. This is inconvenient for humans (Figure  1.11). However, as 

computers become more powerful, they might decipher such prevention techniques better than 

humans can. Additionally, prevention-based solutions are extremely challenging for people with a 

disability (May 2005).  

       

Figure  1.11: Two sample CAPTCHAs that are difficult even for humans to decipher 
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1.7.4 Existing detection approaches are not effective in filtering 
Spam 2.0 
Since most of the current efforts adapt old techniques for Spam 2.0 filtering, the outcome has not been 

effective enough and most current techniques have low accuracy in detecting Spam 2.0 (Nitin & Bing 

2008) (Zinman & Donath 2007) (Jindal & Bing 2007) (Benevenuto et al. 2008).  

1.7.5 The increasing rate of Spam 2.0 distribution is out of control 
As Web 2.0 increases, there are more opportunities for Spam 2.0 to flourish. The distribution of Spam 

2.0 can become faster by using automated tools such as Auto submitters and Web Spambots. 

 An auto submitter is an automated technique used to perform automated tasks on the web (Hayati, 

Potdar, Sarenche et al. 2010). Such tools are used to distribute spam on many websites quickly and 

within a short period. They target online input forms such as contact forms or comment forms for 

multiple consecutive submissions. 

Web spambots (or simply spambots) as a type of web robots are another automated but more 

sophisticated technique in Spam 2.0 (Hayati et al. 2009). Web robots, also called Internet robots, are 

automated agents or scripts that perform specific tasks over the web in an automatic fashion (Koster 

1993). They execute structured repetitive tasks faster than humans can do. Since the web is increasing 

enormously in size and value, web robots play an essential role in the Internet community (Tan & 

Kumar 2002).  

Web robot is a double-edged sword: human assistance or a threat to web applications (Koster 1995). 

The early version of spambots were email spambots that harvested email addresses from web pages, 

mailing lists, directory databases, and chat rooms in order to send numerous unwanted emails (Tan & 

Kumar 2002). Email spambot can send many emails efficiently and reliably. However, as Web 2.0 

opens new avenues for interacting with people, new versions of spambot known as Web spambots has 

been developed to infiltrate Web 2.0 applications. Web spambots are intended to submit spam content 

to Web 2.0 applications. Web spambots surf the web to find Web 2.0 applications and spread Spam 

2.0. They can target one specific Web 2.0 application, such as wikis, as well as focus on one particular 

website such as MySpace (Hayati et al. 2009). 
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Automated techniques have increased the stream of Spam 2.0 but have not been thoroughly 

investigated. Therefore, an efficient Spam 2.0 solution requires countermeasures to hinder such 

automated techniques. 

1.7.6 Online fraud and scam are facilitated by Spam 2.0 
Some might think that spam itself is not a significant enough problem to merit real attention. 

However, the rapid increase in the amount of online fraud and scam highlights the need for effective 

spam filtering. To date, the key factor that facilitates online fraud is its fast distribution over a small 

timeframe. This can be achieved by utilising spam techniques to target as many people as possible. 

Hence, Spam 2.0 filtering can significantly and indirectly reduce the amount of scam and online 

fraud. 

1.7.7 Trust, credibility and quality of information on Web 2.0 
platforms are compromised because of Spam 2.0 
Spam 2.0 causes frustration for users who are searching for good quality information, for website 

operators who have to filter spam content and let the genuine content to come through, for network 

administrators having to block unwanted spam traffic in order to use valuable network resources, and 

for hosting providers who need to save their storages from spam content. As more spam content 

infiltrates Web 2.0, the quality and credibility of the content decrease; moreover, the users’ search 

experience is degraded.  

Based on the foregoing issues, it is clear that this area of research is quite young but needs immediate 

attention. There is an urgent need for an efficient and practical filtering mechanism for Spam 2.0. 

Policies for current filters need to be updated. Web application developers need to be aware of current 

Spam 2.0 techniques and a way to secure their applications etc. 

 

This research tackles a unique spam filtering approach: it examines 

spam-content generation behaviour on the Web 2.0 platform in order to 

distinguish spam from legitimate content. The research also provides a 

definition for this new type of spam.  
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1.8  Significance of Research 
The significance of the problems addressed in this thesis is threefold and the benefits resulting from 

this research include social, economic and technical (scientific) advantages. 

1.8.1 Social 

1.8.1.1 Improve quality of the content on the web  
Spam 2.0 leads users to draw a misinformed conclusion or make an unwise decision, spend more time 

to find their desired content, visit an unsolicited website, and become angry or frustrated. The 

elimination of false information on the web is important to protect organizations from the adverse 

impacts of poor information quality. For instance, in a recent case, incorrect news about United 

Airlines filing for a second bankruptcy led to its shares tumbling (Berti-Equille et al. 2009) (Xiaoxin 

et al. 2007).  

This research will help to improve the quality of information on the web by identifying and 

eliminating information which is not truthful or which can be categorised as spam.  

1.8.1.2 Immune Web 2.0 platforms against Spam 2.0 
Spam 2.0 filtering can be a key factor in keeping the Web 2.0 platform clean from junk, non-related 

and unwanted content, saving resources (e.g. network bandwidth, storage, computation etc), and 

protecting genuine websites from being infiltrated by spam. 

By providing an early-detection method, this research can stop the propagation of Spam 2.0 inside the 

web, thereby conserving many valuable resources. 

1.8.1.3 Provide inputs for Australian Spam Act 2003 
Currently, the Australian Spam Act 2003 does not fully cover the vast majority of today’s spam 

concerns. This research will provide inputs for Australian Spam Act 2003 by: firstly providing a 

comprehensive study on the new generation of spam that can be an input for the Australian Spam Act; 

secondly proposing a methodology to be integrated with web application development for spam 

filtering.  
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1.8.1.4 Contribution to Australian National Broadband Network (NBN) 
initiative 
The main outcome of this research is intended to combati spam, online fraud and scam. This result is 

also in line with a National Research Priority, namely “Safeguarding Australia” through securing 

Critical Infrastructure like the NBN Initiative. 

1.8.2 Economic 

1.8.2.1 Reducing individual, organisations and government monetary costs  
In terms of monetary costs, Spam 2.0 constrains web operators to spend time in content moderation 

and ignoring spam content, network administrators to block spam content by implementing 

monitoring facilities to track network traffic, web hosting providers to filter out creation of spam 

pages on their hosting, users to spend more time finding out quality content, governments to 

investigate the source of spam generation, and search engines to improve their algorithm to avoid 

spam content. 

Briefly, such costs include storage, network bandwidth, computation, and time usage as well as 

purchasing the latest filtering products and hiring people to manage spam. Some studies (Takemura & 

Ebara 2008) also show that email spam decreases GDP and productivity. Although other research has 

not confirmed the cost of Spam 2.0, we believe it far exceeds email spam. 

1.8.2.2 Reducing online fraud and scam 
As mentioned earlier, spam is a key factor in the propagation of online fraud and scam on the internet. 

Spam 2.0 facilitates online fraud and scam toward Web 2.0 platforms through fast and anonymous 

propagation of scam links and web pages. Therefore, it can target more people more quickly. Online 

fraud and scams highlight the importance of an efficient spam management, specifically Spam 2.0 

filtering. 
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Australians lost over $70 million to online fraud and scams in 2009 

(AdelaideNow 2011). However, such figures represent only a part of the 

reported proportion of total scam that occur on today’s web.  

Economically, this research can assist individuals, organisations, 

government to save Spam 2.0 monetary costs as well as reduce the 

amount of online fraud and scam. 

 

1.8.3 Technical 

1.8.3.1 Coining a new concept of Spam 2.0 
There is no comprehensive study in the current literature on the new generation of spam in Web 2.0 

applications. The major works on Spam 2.0 focus on one particular type of spam in web applications 

(e.g. spam in social network website, spam in comments, and spam in video sharing website etc.). 

Hence, there is the need to define Spam 2.0 and explicitly describe its particular characteristics. The 

main technical significance of this research is to introduce and define the concept of Spam 2.0. 

1.8.3.2 Proposing an early-detection Spam 2.0 filtering approach 
Many existing studies on Spam 2.0 filtering are based mainly on detection methods and do not 

provide satisfactory results. Other prevention methods such as CAPTCHA decrease user convenience 

and are about to expire (ref. Chapter 2). Additionally, there is no work on early-detection-based Spam 

2.0 filters.  

This research provides an early-detection-based Spam 2.0 filter to combat Spam 2.0. 

1.8.3.3 Web spambot characterising and behaviour analysis 
As mentioned earlier, spambots are automated agents used for Spam 2.0 propagations. Spambots 

make spam distribution much faster and easier. This research provides a first step in characterising 

spambot and utilising this knowledge for further spambot detection. 

1.8.3.4 Proposing automated early-detection Spam 2.0 filtering approach 
This research proposes an early-detection-based Spam 2.0 filtering approach. The proposed approach 

utilises both rule-based and statistical techniques to exclude automated requests and spambots from 

Web 2.0 platforms. 
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1.9  Research Objectives 
The main research objective of this study is to develop a framework to study Spam 2.0 and propose a 

Spam 2.0 filtering solution. This will require an evaluation of the related literature, the development 

of solutions to specific research issues, the construction of models for these solutions, and the 

validation of the model using real-world data. Seven research objectives have been derived from the 

main goal of this dissertation as follows. 

Objective 1: Provide an introduction to Spam 2.0 and its unique features 

The existing literature focuses mainly on spam filtering in different web applications and does not 

address Spam 2.0 as a new generation of spam. The first objective focuses on providing an 

introduction to Spam 2.0 and showing how it is different from other types of spam. 

Objective 2: Capture Spam 2.0 generation behaviour by creating a dataset  

The current literature lacks any systematic method for tracking, investigating and studying Spam 2.0 

generation behaviour. For the second objective of this research, a monitoring framework is proposed 

to investigate a Spam 2.0 generation model. 

Objective 3: Profile spam behaviour (i.e. Spam 2.0) 

In this objective, this research aims to characterise Spam 2.0 behaviour and its model. The outcome of 

this would be used for further Spam 2.0 filtering solutions. 

Objective 4: Develop Spam 2.0 filtering mechanism that is extendible to any Web 2.0 platform 

In this objective, an early-detection-based Spam 2.0 filtering method is proposed to address current 

gaps in the Spam 2.0 filtering methods and associated Spam 2.0 filtering issues. 

Objective 5: Develop on-the-fly spambot filtering method for early Spam 2.0 detection 

In this objective, a practical and spontaneous Spam 2.0 filtering method is proposed to identify spam 

users on-the-fly and while they are interacting with any Web 2.0 platforms. 

Objective 6: Provide a publicly available dataset to serve as a standard benchmark for research on 

Spam 2.0 filtering 
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In this objective, two data sets containing Spam 2.0 content and Spam 2.0 behavioural data are 

proposed. These datasets are publicly accessible online though Anti-Spam Research Lab website 

(http://asrl.debii.curtin.edu.au). 

Objective 7: Validate the proposed methods using a number of operational Web 2.0 platforms and 

evaluate their performance against existing models of Spam 2.0 filtering techniques. 

In this objective, proposed Spam 2.0 filtering solutions are compared against existing common Spam 

2.0 filtering method. The performance of each method is then compared. 

1.10  Structure of Dissertation 
The remainder of this dissertation is organized as follows.  

Chapter 2 presents a comprehensive survey of recent related research on spam filtering approaches 

for web spam and Spam 2.0, and provides an empirical comparison of such approaches. 

Chapter 3 defines 3 research problems – problems of detection-based, prevention-based, and early-

detection based Spam 2.0 filtering methods – based on insights gained from the literature review in 

Chapter 2. It defines several preliminary concepts that are used in defining solution requirements. 

Given the clearly-defined problems, issues, and requirements, it then discusses the science and 

engineering approach that will be used to solve these two problems and address these research issues. 

Chapter 4 proposes the Spam 2.0 filtering conceptual framework that addresses the selected research 

issues. The platform infrastructure is defined based on requirements stated in Chapter 3. Conceptual 

models are constructed and 7 different steps are provided in order to illustrate the conceptual 

framework. 

Chapter 5 presents a mechanism named HoneySpam 2.0 to monitor, track and store Spam 2.0. This 

information is later on analysed and investigated to discover the characteristics of Spam 2.0 and its 

distribution model. HoneySpam 2.0 is tested against real-world Spam 2.0 data, and its performance is 

compared with those of existing solutions.   

Chapter 6 presents a framework to investigate, formulate, and cluster Spam 2.0 behaviours. Based on 

initial results of HoneySpam 2.0 (Section 5.8), three feature sets – Action Set, Action Time, and Action 

http://asrl.debii.curtin.edu.au/�
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Frequency are presented here to formulate spammers’ behaviour on Web 2.0 platforms. Also, a neural 

network clustering mechanism is used to cluster spammers’ behaviour based on the three feature sets. 

Chapter 7 proposes the first solution for Spam 2.0 filtering called early-detection based Spam 2.0 

filtering method (EDSF). EDSF automatically identifies Spam 2.0 submissions from genuine human 

content contribution inside Web 2.0 platforms. The proposed method studies, investigates and 

identifies Spam 2.0 in Web 2.0 platforms. EDSF makes use of web usage navigation behaviour to 

build up a discriminative feature set. This feature set is used later in a machine learning classifier 

known as a Support Vector Machine (SVM) for classification. EDSF is tested against real-world 

datasets and its performance is compared against existing Spam 2.0 filtering methods. 

Chapter 8 proposes One-the-Fly early-detection based Spam 2.0 filtering called (OFSF). OFSF 

automatically separates Spam 2.0 submissions from genuine human content contribution inside Web 

2.0 platforms. The proposed method studies, investigates and identifies Spam 2.0 in the Web 2.0 

platform. Similar to the EDSF that is discussed in Chapter 7, OFSF makes use of web usage 

navigation behaviour to create a discriminative feature set. However, OFSF considers the sequence 

and order of user web navigation in order to build up the feature set for classification. Unlike EDSF, 

OFSF uses a novel rule-based classifier to store, retrieve, and separate spam users from genuine 

human ones. OFSF makes it possible to spot spam users on-the-fly. In other words, while users are 

interacting with the Web 2.0 platform, OFSF is able to track and identify possible spam navigation 

patterns. OFSF is tested against real-world dataset and its performance is compared against existing 

Spam 2.0 filtering method. 

Chapter 9 concludes the whole thesis work by summarising what has been achieved and its major 

benefits, identifying the remaining work that needs to be done, and envisioning future work under this 

research direction. 

1.11  Conclusion 
Spam is a major problem for today’s web. Spam 2.0 - a new generation of spam that targets Web 2.0 

platforms - has spread widely into legitimate websites using automated tools. Current literature has 

not covered this type of spam in depth and the outcome of efforts to date are inadequate. The aim of 

this research is to formalise a definition for Spam 2.0 and provide Spam 2.0 filtering solutions.  Early-
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detection, extendibility, robustness and adaptability are key factors in the design of the proposed 

method. 
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Chapter 2    

Literature Review 
This chapter covers 

► Survey and evaluation of current web spam filtering methods. 

► Survey and evaluation of current Spam 2.0 filtering methods. 

► Discussion of current research gaps in spam filtering domain. 

2.1  Introduction 
This chapter provides a detailed overview of the literature pertaining to spam filtering as well as 

giving an evaluation of recent anti-spam methods designed for web and Web 2.0 platforms. As 

discussed in Section 1.6.4, these methods can be broadly categorised as: 

• detection-based (i.e. content-based, statistics-based, and rule-based),  

• linked-based (i.e. mainly web spam filtering methods) 

• prevention-based, and  

• early-detection based   

This chapter serves as a review of related works and current literature in the area of web spam and 

Spam 2.0. This dissertation covers the following studies in the literature: 

Web spam – Web spam is referred to as those tactics employed by spammers to increase the visibility 

of unsolicited websites in search engine results. It involves deception and degrades users’ search 

experiences (Z. Gyongyi & H. Garcia-Molina 2005). Current tactics that are used in web spam along 

with web spam filtering solutions are covered in detail in this chapter. This chapter also outlines 

existing open issues. 
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Spam 2.0 – Spam 2.0 is an infiltration of spam content inside legitimate Web 2.0 platforms. This is a 

new generation of spam and is the focus of this dissertation (Hayati et al. 2010).  A total of 22 Spam 

2.0 filtering studies are evaluated and open issues are then outlined. 

For each type of spam, we present a preliminary list of terms relevant to the literature survey, an 

explanation of spam filtering approaches, and a critical evaluation of proposed methods are presented. 

2.2  Web Spam 
This section provides:  

• a definition of web spam,  

• an overview of web spam preliminary knowledge,  

• tactics that are being used in web spam,  

• a survey of current web spam filtering methods, and 

• an evaluation of existing web spam filtering methods. 

2.2.1 Definition 

Search engines are widely used to extract information from the World Wide Web. By querying 

various keywords, search engines are able to rank web pages containing the keywords. Search engines 

employ indexing algorithms to provide web page rankings. As the use of search engines increases in 

popularity and more traffic is derived from search engines to websites, website operators strive for 

higher ranking in search engine results, creating an opportunity for both legal and illicit efforts 

(known as web spam) to increase website popularity.  

Web spam refers to those features that website operators or developers would not add to their website 

if search engines did not exist (Perkins 2001). However, this definition might involve some other 

legitimate features e.g. Search Engines Optimisation (SEO) (ref. Section 2.1.2) used by website 

developers. In another definition, web spam is defined as the techniques used to improve unsolicited 

website visibility in search engine results which involve deception as well as degrading user-

experience of search results (Z. Gyongyi & H. Garcia-Molina 2005). This form of spam is also known 

as Spamdexing or Black hat SEO since they are not appropriate SEO algorithms.  



 

 

31 Literature Review 

As a rough estimation of the total amount of spam web pages, Alexandros et al. ( 2006) conducted a 

research on the amount of web spam. The result of their study of 105, 484, 446 downloaded web 

pages shows that 95% top-eight-level domains are spam. .Biz and .us domains contain almost 70% 

and 35% of spam web pages respectively.  

 

There have been studies to investigate the motivation behind web spam 

(Chellapilla & Chickering 2006a)(Yi-Min et al. 2007). The outcome of 

such studies shows that monetary gain is the main motivation for web 

spam. Malicious users can earn money by subscribing to pay-per-click 

affiliate programs, selling search ranking for specific keywords etc 

(Gyöngyi et al. 2004).  

 

Web spam formal definition 

Suppose G=(W,E) is a model for web where W (nodes) is a set of web pages and E (edges) a set of 

direct links among web pages (Gyöngyi et al. 2004). If a web page p has more than one link to web 

page q, it would be considered as a single link. ι(p) is the number of web pages that have links to p. 

ω(p) is the number of web pages that link from p. The former is also referred to as indegree or inlink, 

while the latter is referred to as outdegree or outlink. A web page without inlinks is called an 

unreferenced page. Similarly, a web page without outlinks is called a non-referencing page. A web 

page without either inlink or outlink is an isolated page. 

  2.1 

where wi is the ith web page in graph G. 

  2.2 

where C is a set of overall web page class, cl refers to legitimate web page and cs refers to spam web 

page. The decision function φ can be defined as Eq.  2.1. 

  2.3 

φ is a binary classification function where, 
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 2.4 

2.2.2 Preliminary Concepts 

This section outlines several preliminary concepts pertaining to web spam and web spam filtering that 

assist in the understanding of the literature review.  

Hypertext Transfer Protocol (HTTP) header 

HTTP is a foundation protocol for data transmission in the Internet (R. Fielding et al. 1996). The 

HTTP header contains information about HTTP request, response, sender IP address, time of request, 

sender browser identity (user-agent), referrer URL (URL of web page that links to current requested 

web page) etc. 

Search Engine Optimising (SEO) 

SEO are techniques that are designed to improve the ranking of a particular website or a web page in 

search engine indexing results (Perkins 2001). SEO techniques are considered to be legitimate while 

conforming to search engines guidelines (i.e. creating the content for users and considering their 

accessibility rather than creating content for search engines). Other attempts to increase visibility of 

web pages are considered illegal. Such attempts are known as Spamdexing or web spam tactics and 

are penalised by search engines. 

Search Engine Crawlers 

Search engine crawlers, search-bots, and spiders are automated agents that can traverse web pages to 

collect information (Koster 1993). They are used mainly to create a copy of web pages for search 

engines for future indexing as well as extracting up-to-date versions of the contents in the websites.  

Search Engine Indexing Algorithms or Search Engine Ranking 

Search engine indexing algorithms or web indexing refer to scoring techniques utilised by search 

engines to rank web pages (Perkins 2001). The intention of an indexing algorithm is to create a ranked 

list of relevant documents for various queries (e.g. keywords). Hyperlink Induced Topic Search 

(HITS) and PageRank are examples of the most common search engine indexing algorithms that have 

been used in practice. 
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Hyperlink Induced Topic Search (HITS)  

HITS is a web indexing algorithm that assigns two scores – Authority and Hub – to each web page 

(Kleinberg 1999). A web page that is linked to many other web pages is known as a hub and 

comparatively a web page that obtains many links from other web pages is known as an authority. 

The original HITS algorithm has been changed due to its limitation and increase in web spam. The 

HITS algorithm can operate only on a small subset of data and produces two scores instead of one for 

ranking web pages.  

PageRank  

PageRank is a well-known indexing algorithm used by the Google search engine. PageRank is based 

on the notion that a web page with a high rank obtains many incoming links from other high ranking 

web pages (Page et al. 1998). This is a recursive idea which substantiates the PageRank of a particular 

web page, by first considering the PageRank of the other referring web pages. 

 

HITS and PageRank are the most common indexing algorithms. So far, 

the majority of search engines have not published a specification of many 

other features that they consider when ranking a web page. Search 

engines conceal the specifications about their actual indexing algorithm to 

prevent tampering, specifically through web spam tactics.  

 

True positive, true negative, false positive, and false negative 

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) are four measures 

used to calculate the output performance of any classification method (Alpaydin 2004). 

In the spam filtering domain, true positive is the number of correctly classified items that belong to 

the positive class (e.g. genuine email in user’s inbox folder), true negative is the number of correctly 

classified items that belong to the negative class (e.g. spam email in user’s junk folder), false positive 

is the number of items incorrectly classified as belonging to the positive class (e.g. genuine email in 

user’s junk folder), and false negative is the number of items incorrectly classified as belonging to the 

negative class (e.g. spam email in user’s inbox folder). 
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C4.5 Decision tree 

C4.5 is a decision tree commonly used for classification. Input to the C4.5 is in the form of vector Si = 

(f1,f2, …, fn) where fi s are features or attributes that describe the sample (Quinlan 1992). The already 

classified sample is known as training data. At each tree node, C4.5 starts by choosing an attribute 

that is the most effective in splitting the sample into different classes. This process is followed 

recursively in order to classify each sample. 

In web spam filtering, C4.5 is trained with both spam and genuine data to distinguish spam from real 

genuine content. 

Naïve Bayes classifier 

Naïve Bayes is a simple and common machine learning classifier which is used for spam 

classification (Alpaydin 2004). In spam filtering, the training of naïve bayes with fairly small amounts 

of sample data results in the probability that a message belongs to a class C (i.e. spam or non-spam) 

knowing that it includes F1,…Fn features (Eq.   2.5). 

 
 2.5 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning algorithm designed to be robust for 

classification, especially binary classification (Chang & Lin 2001). SVM trains by n  data points or 

features {(x1,y1),(x2,y2),…,(xn,yn)} and each feature comes with a class label ( iy ). SVM then tries to 

find an optimum hyperplane to separate two classes (e.g. spam and genuine) and maximise the margin 

between each class. A decision function on new data point x is defined as ),sgn()( bxwx +=φ where 

w is the weight vector and b is the bias term. 

In the spam filtering domain, SVM can be trained with spam and genuine data to distinguish spam 

content from genuine one. 
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Language Model and N-gram(s) 

A language model is a statistical estimate that models the distribution of natural language (Rijsbergen 

1979). The most common model in a language model is N-gram. N-gram extracts subsequence length 

n from a given sequence; for sentence S, the  n-gram model is defined as:  

  2.6 

In the spam filtering domain, language models can be used to model content of spam web 

pages/articles. Later on, this model is used in input vectors to train classifiers. 

Zipf’s law 

Zipf’s law is a mathematical discrete distribution equation that can model the occurrence of some data 

types (Rijsbergen 1979). Zipf’s law is formally defined as follows: 

 
 2.7 

where k is the rank, N is number of elements and s is used to define the characteristics of distribution. 

Zipf’s law can predict the frequency of k. 

In the spam filtering domain, Zipf’s law is used to model some particular behaviour or is employed to 

measure a threshold for discriminative features. 

Precision, Recall and F1-measure 

Precision and Recall are two measurement techniques to evaluate the accuracy or correctness of the 

classification algorithm (Alpaydin 2004). Precision presents the exactness, while recall shows 

completeness of the result. Precision and recall are defined as follows: 

    
 2.8 

It is common to combine precision and recall in order to generate one value (known as F-Measure) to 

compare or evaluate different classification results (Alpaydin 2004). F-measure or F1-measure is 

defined below where P and R are precision and recall values accordingly: 
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  2.9 

The higher the F1-value, the better is the performance. If the F1-value is close to 0, the result 

is similar to that of a random prediction. A result value closer to -1 shows the strong inverse 

ability of the classifier. 

 

Receiver Operating Characteristic (ROC) curve and Area Under the ROC Curve (AUC) 

The ROC curve is commonly a plot of true positive against false positive to present the trade-off 

between these two values for various rates (Alpaydin 2004). If the curve skews to the top left, the 

result accuracy is better (Figure  2.1). However, if the curve is closer to the diagonal, the accuracy of 

the classification is closer to random. 

 

Figure  2.1: Sample ROC curve. The closer the curve is to the left top boundaries, the more accurate is the result. 

It is common to measure the Area Under the ROC Curve (AUC) to compare different ROCs for 

different classification tests (Alpaydin 2004). AUC can be measured by simply computing the area 

under the ROC curve. ROC and AUC are used in the spam filtering domain to measure the 

performance of classifiers. 

2.2.3 Web Spam Tactics 

Web spam tactics can be grouped into two classes – content-based tactics (CB) and link-based tactics 

(LB). The former alter the content or the view of web pages, while the latter takes advantage of link-
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based algorithms to give websites higher rankings in search engine results. These tactics are listed 

below. 

2.2.3.1 Content Based 

Content-based web spam tactics alter the look and feel of web pages in order to obtain higher rankings 

in search engines results.  Content-based tactics can be grouped into 4 different categories: Keyword 

stuffing, Scraper website, Hidden content, and Cloaking. 

Keyword Stuffing 

Keyword stuffing refers to the placement of irrelevant keywords on the web page, in order to increase 

keyword counts of a particular web page (Alexandros et al. 2006).  A search engine indexing 

algorithm counts the number of keywords in a web page to find the level of relevance. Keywords can 

be placed in the web page body, header, images description attribute etc. 

Scraper Websites 

The content of scraper websites is stolen from other sources such as search engine results and other 

legitimate web pages (J. Caverlee et al. 2009). The purpose is to make a quality website gain 

popularity and later on pass such authority to spam web pages. Occasionally, recently expired domain 

names that have an already-established search engine ranking are being used for this purpose.  

Another common technique in scraper websites is article spinning. The content that is scraped from 

other sources is being rewritten manually or automatically in order to avoid content duplication 

penalties imposed by search engines. 

Hidden Content 

Hidden content refers to the placement of unrelated text or keywords on a web page with the same 

colour as the web page background; hence, it can be read by search engine crawlers but is not visible 

to human users (Alexandros et al. 2006). Similarly, a website can be populated with invisible 

hyperlinks to other websites. This technique increases the links’ reputation. 

Cloaking 

Cloaking which is the most common web spam tactic, delivers content to search engine crawlers 

different from human users (Z. Gyongyi & H. Garcia-Molina 2005). The decision to cloak can be 
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based on visitors’ IP addresses, type of Internet browser, users’ navigation behaviour etc. With the 

cloaking technique, a server-side script shows search engine friendly content to a search engine 

crawler that is different from content visible to the human user. Mosaic cloaking and page hijacking 

are the most recent types of cloaking technique (J. Caverlee et al. 2009). The former replaces selected 

parts of a web page – not the whole web page, with regard to search engine crawler or human users 

and keeps rest of the web page unmodified.  The latter copies popular websites’ content. This copy is 

shown to the search engine crawler while the human is redirected to a different web location or 

content. 

2.2.3.2 Link-based 

Link-based web spam tactics involve strategically modifying the way web pages or websites are 

linked together in order to gain higher rankings in search engine results. Link-based tactics can be 

grouped into five categories: Redirection, Scraper websites, Linkfarms, and Hijacking. 

Redirection 

Redirection refers to entrance web pages to other spam web page (Baoning Wu & Brian D. Davison 

2005). Redirection web pages are stuffed with relevant keywords and phrases to obtain a higher rank 

in search engines. Search engines typically do not follow the redirection chain and rank the web page 

based on keywords in the redirected web page, as opposed to the actual destination web page. This 

technique is also known as Doorway web page which typically has a mechanism which sends visitors 

to different web pages (Wu & Davison 2005).  

Linkfarms 

Linkfarm is a group of websites that are highly hyperlinked to each other (J. Caverlee et al. 2009). 

The more inbound links a website obtains, the higher is the rank that it gains. Although new search 

engine indexing algorithms employ other ranking features, linkfarm still influences search engine 

results (J. Caverlee et al. 2009). 

Splog 

Splog refers to the creation of multiple blogs usually on legitimate blog hosting (e.g. blogger.com) to 

generate hyperlink to spam web pages (P. Kolari et al. 2006). Occasionally, the content of splog is 

stolen from other sources. The more inlinks a website obtains, the higher will be its rank. 
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Hijacking 

Hijacking refers to linking from legitimate website to spam web pages by distributing links inside 

public and editable Web 2.0 platforms such as forums, wiki, comment etc (J. Caverlee et al. 2009). 

Hijacking can also be regarded as a Spam 2.0 tactic where links to spammers’ campaigns are 

propagated in Web 2.0 platforms. 

In this chapter, web spam tactics are the criteria against which each web spam filtering method is 

evaluated. After discussing the preliminary concepts and providing background information, a 

comprehensive study of the existing web spam filtering methods in the literature is presented in the 

following sections. A summary of each method along with a comparative analysis of the methods is 

then discussed. 

2.2.4 Web Spam Filtering Methods 

This section provides a comprehensive study of state of the art web spam filtering methods based on 

four different categories: link-based, detection-based, and early-detection based. 

2.2.4.1 Link-based Web Spam Filtering Methods 

As mentioned in Section  2.2.3.2 , in the link-based approach, web spam filters investigate various 

link-analysis, graph-analysis or network analysis techniques to separate spam web pages from genuine 

ones (J. Caverlee et al. 2009). By constructing a graph and looking for different parameters, such 

methods are capable of detecting spam websites. There has been a significant amount of attention on 

the link-based approach in web spam filtering (ref. Section  2.2.5 ). This section covers recent works 

on link-based web spam filters. 

TrustRank is one of the earliest and most cited works for filtering spam web pages in search ranking 

results (Z Gyongyi et al. 2004). TrustRank assists search engine indexing algorithms to separate 

reputable and good websites from spam infested ones. It is based on the notion of semi-automatism 

since an expert initially needs to rank a small subset of websites

This set is considered as an initial reliable seed to rank other good pages. Here, the TrustRank of 

spam websites that are not hyperlinked from good websites is diminished. The result of authors’ 

works shows that by using small seed (200 websites) their method can effectively filter out spam web 

pages. Eq.  2.10 defines TrustRank score (TR).  
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  2.10 

where α is a decay factor (e.g. the score equal for all web pages in the set) , d is a static score 

distribution vector (i.e. this score manually assigned by expert as initial good seed.), Г is a matrix as 

defined in Eq.  2.11 and p and q are web pages and E is set of edges. TrustRank suffers from 

drawbacks as follow: 

 
 2.11 

• Similar to PageRank, TrustRank is not effective on the small scale datasets. 

• TrustRank is unable to assign adequate scores to web pages without in-links. 

• TrustRank fails to detect spam web pages if there is a link from a legitimate web page to the 

spam one (Gyöngyi et al. 2004) (Asano et al. 2007).  

• TrustRank requires manual effort in order to construct the initial trusted-seed set. 

 

Web spam filtering methods in the literature strive to either enhance web 

pages rankings or discover spam web pages in the search results (or 

both). Some such methods are inspired by the idea of the PageRank (e.g. 

TrustRank), some try to improve the HITS algorithm and the rest are 

more general approaches toward identification of spam web pages.  

 

Given the above drawbacks, (A. Benczúr et al. 2005) proposed a web spam filtering method that tries 

to resolve some of the problems in the original PageRank and TrustRank approaches by investigating 

the link exchanges among web pages. One of the main drawbacks of PageRank is that if a website A 

is linked from many low-ranked web pages, PageRank would increase ranking for A by aggregating 

proportion of rankings from low-ranked web pages. To identify such link exchanges and provide a 

more automated way to identify spam web pages (i.e. without the need for human experts), authors in 

(A. Benczúr et al. 2005) proposed a technique called SpamRank. The main assumption in their 

proposed method is that PageRank for a spam web page is mainly from many low-ranked web pages 

(referred to as supporters) that point to it. Overall, the SpamRank has three phases as follows.  
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Phase 1: Selecting the supporters of a given page i by using personalised PageRank (PPR). PPR (Eq. 

 2.12) is a simulation algorithm described in (Fogaras & B. Rácz 2004) that can be interpreted as the 

probability of a random walk terminating at i in the web graph (G=(W,E)). 

 
 2.12 

where r is the teleportation vector and is not uniform, ε is the probability of teleportation and A is a 

random walk matrix over a given web graph. 

Phase 2: Penalising web pages that originate a suspicious PageRank by measuring the similarity of the 

PageRank histogram and their power law distribution. As stated in (Adamic et al. 2000) web graph is 

believed to follow power law distribution. 

Phase 3: Applying the penalties on PageRank of the suspicious web pages and their supporters 

iteratively. 

In order to evaluate the proposed method, the authors used a web-graph dataset consisting of .de 

domains which contains 31.2 M web pages. They manually classified 910 sample web pages and 

divided them equally and randomly to 20 buckets. Each bucket contained 5% of the total PageRank, 

but the first bucket contained the highest PageRank. 

The authors kept the performance measurement of their method as an open question; however, they 

found that the proportion of spam web pages is higher in the bucket with the highest PageRank value. 

Therefore, it is observable how much spam impacts on PageRank and the average number of 

reputable pages. 

 

The main drawbacks of PageRank is that if a website A is linked from 

many low-ranked web pages, PageRank would increase ranking for A by 

aggregating a proportion of rankings from low-ranked web pages.  

 

The other drawback of PageRank-based methods is their reliance on a significant amount of data in 

order to initiate the ranking process. Authors in (Asano et al. 2007) addressed this problem by 

proposing methods for improving the HITS algorithm that can be run on proportionally smaller scale 
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datasets. The aim of their proposed methods was to remove linkfarms and spam web pages from 

search engine results. The authors proposed three new factors – Nameserver, Domain name, and IP 

address to be used with a modified version of the HITS algorithm known as BHITS.  

BHITS (Zhou & Dang 2007) is an enhanced version of the HITS algorithm designed to handle 

mutually reinforcing problems. Mutually reinforcing problems can be simply stated as supportive link 

exchange behaviour between two websites or web pages designed to influence the web pages’ 

rankings. For example, if a web page is linked from a number of other web pages on the same host, 

the authority score of the web page unfairly increases. In BHITS, authors incorporated hostname 

when calculating the authority and the hub score for each incoming and outgoing link to overcome the 

mutual reinforcing problem. 

 

‘Mutual reinforcing problem’ is a term used to describe supportive link 

exchanges behaviour among the susceptible web pages. Linkfarms, 

splogs, and occasionally hijacking tactics are real-world examples of 

mutually reinforcing problems that occur in today’s web. 

 

Authors in (Asano et al. 2007) proposed to use the Nameserver, Domain name, or IP address instead 

of the hostname in the BHITS algorithm and they named their method N+BHITS, D+BHITS, and 

I+BIHTS. For example, web pages that are linked from the same Nameserver, Domain name, or IP 

address are counted only once when measuring the web page score. The authors also proposed the 

trust-score algorithm based on the HITS algorithm to score the reliability of web pages. Their method 

is similar to TrustRank (Gyöngyi et al. 2004) but with the application for the HITS algorithm. A 

reliable hub web page is defined as a web page that has outgoing links to a reliable seed (web page) 

while a reliable authority web page is a web page that is linked from a number of reliable hubs. The 

authors combined the true-score algorithm with N+BHITS, D+BHITS, and I+BIHTS and proposed 

two weighted measures to rank a web page. In their experiment, the authors extracted the top 200 web 

pages from Google by querying 14 keywords. Their algorithm showed good result for linkfarms 

detection and web pages ranking without the need for a significant amount of resources (TrustRank 

comparatively requires a significant amount of data for processing.). 
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However, the proposed method can be executed only at the system run time; hence, it cannot be 

utilised to pre-process web pages rankings when the system is not online. This is the major drawback 

of most HITS-based algorithms. 

Wu & Davison (2005) conducted another study to provide more relevant search results and enhance 

the HITS algorithm. The authors proposed a method to remove linkfarms from search engine results. 

Overall, the idea behind this method was that if a web page is a part of the linkfarm, its popularity 

would be damaged after using this algorithm; otherwise, it would retain a reasonable ranking. 

The method consists of three steps as follows: 

• Generate a seed set based on the number of common inlinks and outlinks for each web page. 

If this number exceeds the given threshold (here 3), it would be inserted in the seed set and 

considered as a spam or bad web page. 

• Badness value of web pages outside the seed set is evaluated based on the number of outgoing 

links they linked to the web pages inside the seed set. For a specific web page, if the number 

of links exceeds the given threshold (here 3) it would be included in the seed set. 

• In order to incorporate above value in the web page ranking, the values of the bad web pages 

in the adjacency matrix are deleted or down-weighted. A final matrix is used for ranking web 

pages. 

In order to examine the effectiveness of the method, the authors used two data sets. The first dataset 

was gathered by means of the HITS algorithm, while the second dataset was obtained from search.ch 

search engine. Manual evaluation was used to measure the accuracy of the algorithm. The result of the 

algorithm has been compared with both the HITS and the BHITS methods. The relevance of the 

search results to the queries were 23.6% and 42.8% for the HITS and the BHITS methods. However, 

this value was 72.6% for the proposed algorithm based on the same datasets. 

Although the proposed algorithm performed well in diminishing the effect of linkfarms inside search 

results, it still suffers from the mutual enforcement problem that comes with the original HITS 

algorithm. 

Another approach to web spam filtering that attempts to overcome the mutual reinforcement problem 

has been studied by (Carvalho et al. 2006). The authors proposed a site-level method for detecting 
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noisy links (e.g. spam and nepotistic links).  The proposed method has been employed to detect 

various linkfarm tactics as follows. 

1. Mutual reinforcement: Two algorithms have been proposed here to discover this link 

exchange behaviour. (1) Bi-Directional Mutual Site Reinforcement (BMSR): this algorithm is 

based on the number of link exchanges between the web pages of two target websites. If the 

number of link exchanges exceeds a given threshold (here 2), all links between these two 

websites would be considered as noisy and would be removed. (2) Uni-Directional Mutual 

Site Reinforcement (UMSR): this algorithm is based on link density which includes all uni-

directional links between web pages of two websites. If the UMSR value exceeds a given 

threshold (here 250), all links between web pages of two websites would be removed. 

2. Abnormal support in which majority of the links from one website point to another website by 

building a chain of websites in between. For detection, the number of links from website A to 

website B is divided by the total number of links which point to B. If the ratio is above a given 

threshold (here 2%), all links between A and B (which point to either A or B) would be 

considered as noisy links and would be removed. 

3. Link alliances in which by hosting wide range of websites and linking them together, website 

rankings would be influenced. To discover this type of tactic, all web pages that have 

originated from a specific web page are investigated. If these web pages are highly connected 

together, this is an indication that the link structure aims to manipulate the overall ranking. 

Here, instead of removing links, a susceptivity value is calculated. 

The authors studied the impact of their method on the link database of TodoBR search engine which 

includes 12,020,513 pages extracted from Brazilian websites and connected by 139,402,245 links. 

They also extracted 11,246,351 queries as the test queries. The authors investigated the performance 

of each single algorithm or combination of them which resulted in 16.7% noisy links. 

 

 



 

 

45 Literature Review 

 

Until 2008, the web spam filtering methods have strived to detect spam 

web pages by analysing the hyperlink structure of the web-graph (ref. 

Section  2.2.1 ). However, other logical relationships amongst web pages 

that can be exploited to construct the web-graph have not been 

investigated (e.g. User Browsing Graph). The methods discussed next 

utilise such relationships for spam web pages identification. 

 

(Yuting Liu et al. 2008) proposed a web spam filtering method by studying the User Browsing Graph 

instead of hyperlink graph to rank the web pages. The proposed method (known as BrowseRank) 

utilises a User Browsing Graph as a means of measuring web page rank. A user browsing graph is a 

graph that is extracted from the users’ click-through navigations on the web; the vertices are the 

visited web pages and the edges are constructed based on the user navigations among web pages. The 

authors believe that a User Browsing Graph is more reliable than a hyperlink graph since a User 

Browsing Graph: 

• is not as dynamic as a hyperlink graph,  

• contains additional factors that can be used for better web page scoring (e.g. the length of 

time users spend on the web pages.).  

The authors accumulate user browsing data through toolbars that are installed on the users’ Internet 

browsers. This data consists of user visited web page, time of visit and type of visit. Type of visit can 

be a click through or direct input of the web page URL in the Internet browser’s address bar. A 

similar approach to PageRank is applied to the User Browsing Graph to discover the importance of 

each web page. 

As a result, BrowseRank demonstrated better results than the PageRank and TrustRank algorithms. 

Additionally, BrowseRank outperformed each of the others in regards to web spam since BrowseRank 

is based on a user navigational behaviour graph rather than a hyperlink graph. 
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Although authors in (Yuting Liu et al. 2008) mentioned that BrowseRank 

outperforms PageRank and TrustRank, (Yu et al. 2009) conducted a 

comprehensive study comparing TrustRank, PageRank and BrowseRank 

on different user browsing graphs, hyperlink graphs and a combination 

of two datasets. Their findings proved that TrustRank outperforms the 

others. 

 

(Yu et al. 2009) exploited User Browsing Graph, Hyperlink Graph and a combination of the two in 

PageRank, BrowseRank and TrustRank. This is a novel approach because it uses a combination of 

user browsing and hyperlink graphs in order to rank web pages.  

TrustRank algorithm has been applied to the improved hyperlink graph with user access information. 

The result shows that a combination of user browsing and hyperlink graph gives better accuracy on 

spam web page detection rather than using each graph individually. 

(Yuting Liu et al. 2008) and (Yu et al. 2009) have proposed a method to provide more accurate and 

relevant ranking for the web pages rather than the elimination of spam web pages from the search 

results. To cover this issue, (Yiqun et al. 2008) conducted research on the effectiveness of a User 

Browsing Graph on the spam web pages identification. The authors proposed a statistical 

classification method based on three features as follows. 

• Search Engine Oriented Visit Rate: the number of visits originated from search engines 

divided by the total number of visits for a given web page. Spam web pages are more 

common in search engine results rather than in the users’ bookmarks. 

• Source Page Rate: the number of times a given web page has appeared as the source web 

pages divided by the number of times the web page was actually visited by users. Spam web 

pages are more likely to be destination web pages rather that source web pages. 

• Short-time Navigation Rate: the number of web pages that users visit in a given website 

divided by the number of times users visit the website. The frequency of the visits for spam 

web pages are proportionally less than the legitimate ones since the spam web pages do not 

provide any useful information for the users. 
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The authors ran their Bayesian method over 800 million Chinese web pages to evaluate the 

effectiveness of their proposed method. Results showed 79.26% accuracy in classifying spam web 

pages. 

 

The proposed methods discussed so far, consider only the link structure 

of the web-graph in order to rank the web pages or eliminate the spam 

web pages. However, recent methods have incorporated both the link 

structure and the content features of the web pages for spam web page 

identification.  

 

(Abernethy et al. 2010) proposed the first learning algorithm called WITCH (Webspam Identification 

through Content and Hyperlinks) which uses both the link structure and the content features for 

classifying spam hosts (i.e. the set of web pages that share the same domain name). The authors 

employ a graph regularisation linear classifier on the hyperlink graph and SVM-based classifier on 

content features. There are two graph regularisation functions which indicate how locality of host’s 

spaminess is applied in this method. The first one penalises the square of deviation between predicted 

values for two specific nodes. In the second one, predicted spam scores are penalised if a node related 

to the source of a link has lower spam value than the destination node. Although the second method is 

better, the best choice is a combination of these two approaches, since focusing only on the second 

one will fail nodes which have spam incoming links and non-spam outgoing links.  

To examine the performance of WITCH, the authors utilised Webspam-UK 2006 spam collection and 

their graph included 11,402 hosts, 7,473 of which were labelled. The hyperlink graph also included 

730,774 triples which showed the number of links between two hosts. In addition, 236 features were 

extracted and normalized. The proposed method used transductive setting whereby the test set is 

known in the process of training. For all results, the test set was stable with 1,851 hosts.  

As a result, the authors showed that a combination of web page content and hyperlink graph gave the 

best results. The authors also compared their results with Webspam Challenge, Stacked Graphical 

Learning and Transductive Link Spam Detection (which is a link-based method) results. Results 

showed that WITCH had the highest AUC in comparison. WITCH increased the AUC from 0.95 to 

0.96 which means 20% reduction in ranking error. 
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The main assumption in the proposed method is that there is no link from the genuine host to the spam 

host. This assumption can be false in most hijacking and splog tactics where spam hosts are linked 

from the genuine ones. The method proposed by (Araujo & Martinez-Romo 2010) can overcome this 

problem by analysing the Qualified Link (QL) and Language Model (LM) of the web pages. 

The main idea of their method is that two linked web pages or websites should be semantically 

related. The authors used LM analysis methods for feature selection based on the content of web 

pages and used them as the classifier criteria. 

In the LM approach, a certain triple set of features is extracted from each two linked web pages - 

source page and target page. The first set drawn from the source page includes anchor text, URL 

terms, and surrounding anchor text. The second one drawn from the target page includes title, content 

of the page, and meta-tags. Moreover, two combined features are added:  (1) anchor text and URL 

terms (AU), and (2) surrounding anchor text and URL terms (SU). Finally, there are 14 cross-referred 

features extracted from each web page including anchor text and web page content, surrounding 

anchor text and title, or anchor text and meta-tags.  

In the QL approach, indicators of the spam web pages include an excessive number of recovered links 

rather than the non-recovered links (the recover link refers to the links that can be retrieved in the top 

ten search engine results), high amount of empty anchor text, high number of incoming links with 

respect to the number of outgoing links, negative difference between the internal and the external 

links, and finally, the approximate number of broken links. 

In order to evaluate the method, authors used two sets of data WEBSPAM-UK2006 and WEBSPAM-

UK2007 which contain 77.9 million and 105.9 million web pages respectively. The result of their 

work based on the SVM classifier achieved an F1-measure of 0.86 in WEBSPAM- UK2006 dataset 

and 0.40 in WEBSPAM-UK2007 dataset. 

 

The users’ judgment must be taken into consideration when classifying 

spam web pages since it is a subjective issue. A website might be spam for 

one user but not for other users. This issue has not been considered in the 

majority of automated (link or content based) web spam filtering 

methods. The following methods strive to rectify this oversight. 
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(Metaxas & Destefano 2005) proposed a method for finding untrustworthy websites in the search 

engine results by utilising social networks. The authors highlight the similarity of the web spam 

tactics and propagandistic techniques in society. They proposed to use anti-propagandistic techniques 

to detect spam web pages. The proposed anti-propagandistic method is user-initiated. Users 

themselves should determine whether or not a web page is trustworthy. By finding other mutually 

connected websites in the web graph of the particular untrustworthy website, other non-trustworthy 

websites or spam web pages can be discovered.  

The proposed method starts from a specific website which is manually marked as an untrustworthy 

website. By conducting a breadth first search (BFS) for a defined depth s, the websites which point to 

s are extracted and a directed graph known as trust neighbourhood of s is created. After ignoring 

websites such as the educational institutions, the popular directories and blog sites, bi-connected 

components (BCCs) which point to s can be found. The BCC component contains websites that 

strongly support s; hence, they can be considered to be untrustworthy as well. 

For experimental purposes, the authors used 8 websites including 6 untrustworthy and 2 trustworthy. 

The authors investigated BCC’s trustworthiness for each site by considering 20% of BCC websites as 

the sample. The results showed that trustworthiness or untrustworthiness of a BCC highly depends on 

the starting website. If the starting website is untrustworthy, the majority of the BCC websites are also 

untrustworthy and vice versa. The proposed method is limited to user-level and authors limit their 

work to the users’ decision for trustworthy and untrustworthy of a particular website. However, the 

authors did not consider the existence of malicious users within the system who might misleadingly 

mark an initial spam website as non-spam or vice versa.  

Table  2.1 presents a comparative summary of link-based web spam filtering methods that have been 

discussed in this section. 
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Table  2.1: A comparative summary of link-based web spam filtering methods. 

Method Vertex type Edge type Graph HITS / 
PageRank 
(PR) 
based 

Dataset Use 
content 
features? 

Perfor-
mance 

(Z Gyongyi 
et al. 2004) 

Website Link Hyperlink PR 1000  

samples 

31M 
websites 

No Avg. 0.85 
Precision / 
Recall 

(Benczúr 
et al. 2005) 

Website Link Hyperlink PR 910 
samples 

32M 
websites 

No Future Work 

(Wu et al. 
2005) 

Web page Link Hyperlink HITS 200 
samples 

20M+2.1M 
web pages 

No Avg. 0.72 
Accuracy 

(Metaxas 
et al. 2005) 

Website Link Social - 8 websites No - 

(Carvalho 
et al. 2006) 

Website Link Hyperlink - 200 

samples 

12M 

web pages 

 Imp. 0.59+ 
Mean 
Average 
Precision.  

(Zhou et 
al. 2007) 

Hostname Link Hyperlink HITS - No - 

(Asano et 
al. 2007) 

Nameserver, 
Domain, IP 

Link 
between 
Nameserver, 
Domain, IP 

Hyperlink HITS 200 

web pages 

No Avg. 0.87 
Accuracy 

(Yuting 
Liu et al. 
2008) 

Website Users’ 
navigation 

User 
Browsing 

PR 5.6M 
websites 

No Best. 0.87 
Normalised 
Discount 
Cumulative 
Gain 

(Yiqun et 
al. 2008) 

Web page Users’ 
navigation 

User 
Browsing 

- 800M 
websites 

No Avg. 0.79 
Accuracy 

(Yu et al. 
2009) 

Web page Link & User 
navigation 

 

Hyper- 

link & 
User 
Browsing 

PR 2646  

samples 

3B 

web pages 

No Avg. 0.77 
AUC 

(Abernethy 
et al. 2010) 

Domain Link Hyperlink - Webspam-
UK 2006 

Yes Avg. 0.96 
AUC 
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Method Vertex type Edge type Graph HITS / 
PageRank 
(PR) 
based 

Dataset Use 
content 
features? 

Perfor-
mance 

(Araujo et 
al. 2010) 

Web pages Link Hyperlink - Webspam-
UK 2006 
& 2007 

Yes Avg. 0.63 

F1-measure  

 

Technically, link-based approaches have the following drawbacks: 

Methods that strive to enhance the PageRank algorithm need significant amounts of resources. This 

makes them usable only for large scale implementations (e.g. major search engines); they are not 

efficient on a smaller scale. 

Methods that strive to enhance the HITS algorithm cannot be used in offline mode. This might cause 

system performance issues during the system run time. 

In the next section, detection-based (content) web spam filtering methods are discussed. 

2.2.4.2 Detection-based Web Spam Filtering Methods 

In the detection-based web spam filtering method, the focus is more on the content of the web pages 

rather than their position in the web graph. By extracting discriminative features from content/header 

of web pages or HTTP request, filtering methods are capable of detecting web spam tactics (ref. 

Section 1.6.4.1). 

(Fetterly et al. 2004) proposed a method using a statistical approach to identify machine-generated 

spam web pages. They utilised some heuristics to differentiate spam web pages from genuine ones, 

which include:  

• various features of the website host,  

• IP addresses referred to by an excessive number of symbolic host names,  

• outliers in the distribution of in-degrees and out-degrees of web pages,  

• the rate of structural change of web pages, and  

• excessive replication of content. 
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Both manually and statistically (using Zipf’ law distribution) they measured the threshold for the 

extracted features. 

In this study, two datasets were used. The first data set consists of 150 million URLs, and the second 

covered about 429 million HTML pages and 38 million HTTP redirects. The result indicated that web 

pages which are generated by machines differ from those created by humans with regards to the 

abovementioned heuristics. 

A similar study was conducted by (Urvoy et al. 2008) who examined the non-textual content (HTML) 

in the web pages rather than content features to identify auto-generated spam web pages. The authors 

argue that several spam web pages share a similar look-and-feel since they have been built using the 

same generation process. Six different parsers have been used to extract textual content from web 

pages and eliminate structural and styling information of each web page. These parsers parse the 

HTML page into five different versions: (1) filters the alphanumeric characters, (2) same as previous 

but also replaces multiple spaces with a single one, (3) extracts only the HTML styling tags, (4) same 

as previous one but also retains non-alphanumeric characters, (5) retains only the alphanumeric 

characters, and (6) retains full web page content.  

Since the amount of data is large, the authors utilised hashing algorithms (i.e. locality sensitive hash: 

Broder MinHashing and Chikar Fingerprints) to make fingerprints of each web page and later used 

them for similarity comparison. By clustering similar web pages, authors also extracted features such 

as the number of URLs, hosts and domains in each cluster to detect new spam web pages. A 130 GB 

dataset was used for the clustering. The authors used Webspam-UK2006 dataset to evaluate their 

proposed method. The best F1-measure value (0.57) was achieved when both the HTML tags and 

alphanumeric data were incorporated for the clustering. 

The identification of cloaked web pages is one of the major challenges in the web spam filtering area, 

which has not been addressed in the previous two studies. In (Wu & Davison 2005), authors 

investigated cloaking and redirection web pages. 

Their content-based detection method is based on the comparison of three copies of the same web 

page. In their proposed method, terms and links are extracted from the copies of the web pages and 

the repeated content is added to the separated lists. If the difference among lists is higher than a given 

threshold, the web page is considered as a cloaking web page. 
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The proposed method has been evaluated based on two datasets containing a total of 297,170 URLs 

along with their copies. The authors identified that about 3% of the first dataset and 9% of the second 

data set contain cloaking web pages that have already manipulated search engine ranking result. 

A similar study has been undertaken in (Chellapilla & Chickering 2006a) by mimicking user-agent 

field in the HTTP header to obtain different copies of the websites. Their method downloads multiple 

copies (two) of the websites and then compares the content and structure of each copy. If the 

difference among copies is bigger than a given threshold, website would be marked as a cloaked 

website. They used a dataset consisting 3 million URLs out of 10,000 search queries for the 

experiment. The result of their work shows that the ratio of cloaking depends on the popularity and 

monetisability of search queries - i.e. as the query gains popularity, the number of cloaked attempts 

increases accordingly. 

 

Various techniques have been utilised to fool search crawlers into 

generating cloaked web pages. For example, the early search crawlers 

could not execute embedded JavaScript inside HTML web pages. Hence, 

JavaScript cloaking techniques could be utilised to show two different 

versions of a web page to users and search crawlers. The methods 

described next all try to investigate even newer sophisticated cloaking 

techniques.  

 

The Strider Search Ranger System described in (Yi-Min Wang & Ming Ma 2007) is a system to 

discover cloaking (e.g. redirection and door way) web pages in the search results. The detection 

mechanism is based on similarity-based grouping. The process in the system starts by selecting a list 

of keywords and querying them against the popular search engines to extract top-N URLs. Keywords 

have been extracted from spam forums, spam URLs, popular keywords etc. A fully-fledged crawler 

(referred to as SearchMonkeys) has been used to visit each URL and bypass possible complex 

cloaking efforts (e.g. Javascript cloaking) that may be embedded in the spam web pages. Initial URLs 

along with other URLs in the redirection chain have been stored for similarity analysis. Five types of 

similarity-based grouping are undertaken for each URL: 

• Redirection domains: grouping based on the source URLs. 
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• Final user-seen web page content: grouping based on the content of destination web page. 

• Domain whois and IP Address: grouping based on the same IP address. 

• Link-query results: grouping based on the overlaps among inlinks similarity. 

• Click-through analysis: grouping based on the similar redirection chain. 

The proposed system was tested on the initial list of 4803 URLs that was extracted from search 

engines. This list was later expanded to about 6 million web pages. 

The main aim of the system is to detect cloaked web pages by following their redirection chain.  Some 

of the heuristics such as “grouping based on similar host IP address” might wrongly classify good 

websites as spam or vice versa since spam websites can be hosted on multiple web servers with 

different IP addresses. The authors made use of the proposed system in another work to investigate 

the nature of redirection chains in more detail (Yi-Min et al. 2007). 

A novel study has been done in (Wu & Davison 2006) to identify semantically cloaked web pages. 

The authors utilised a machine learning approach to propose the first automatic method to detect the 

semantically cloaked web pages. Semantic cloaking is a cloaking attempt in which the difference 

between each cloaked version is in the meaning of the content rather than the syntax of the content.  

The proposed method consists of two steps:  

1. A copy of the web page from crawler and a copy of the web page from Internet browser are 

given to the filtering algorithm. After applying term (the number of differences between 

dictionary terms) and link rules (the number of unique links for two copies), if the value is 

above a given threshold (here 3), the web page would be passed to step 2.  

2. One more copy of the web page is downloaded and used in the SVM classifier. These copies 

(4 copies) are classified by SVM as either cloaking or non-cloaking web pages. 

For the evaluation, authors accumulated 257 unique queries from, Google Zeitgeist, Lycos and Ask 

Jeeves. For each query, 200 top web pages were obtained from Google search results. For training, a 

labelled list of 1,285 URLs along with 539 and 746 positive and negative examples of semantic 

cloaking were used in the classifier. The result shows 93% and 85% for precision and recall metrics 

respectively.  
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To examine the performance of the proposed method, the authors used 4,378,870 URLs of 2004 Open 

Directory Project (ODP) RDF file. It was concluded that over 1% of ODP web pages contain semantic 

cloaking (91.5% precision and 82.7% recall). 

Apart from the above methods which focus only on cloaking detection, (Alexandros et al. 2006) 

addressed the problem of classifying spam web pages based on the content of the web pages. The 

authors investigated 10 content-based features such as the number of words, the words’ average 

length, the portion of anchor text, the amount of visible content, the compression ratio, the percentage 

of popular texts in the web page, the amount of widespread words, and the probability of independent 

and conditional n-grams. 

The authors constructed a C4.5 Decision tree for the classification. The decision-tree classifier 

detected 82.1% and 97.5% of all spam and all non-spam web pages respectively. They also utilised 

bagging and boosting techniques, to improve their classifier which result in 86.2% accuracy of spam 

web pages detection. Their evaluation dataset contained 17,168 web pages with the proportion of 

2,364 spam web pages. 

A similar study has been undertaken in (Pranam Kolari et al. 2006) to identify splogs (P. Kolari et al. 

2006). The authors trained SVM classifier with 3 features – bag-of-anchors, bach-of-urls, bag-of-n-

gram. Bag-of-anchors are extracted from the anchors text inside blog pages. Bag-of-urls are split 

(tokenized) based on the special characters inside URLs such as “/”, “?”. Bag-of-n-gram is a 

subsequence of n character from the given words (here 4-grams).  

The authors made use of SVM. The dataset contained 5 million blog homepages with 2,600 blogs as 

samples. The result of their work showed 88% accuracy (F1-measure) in detecting splogs. However, 

the result has a considerable number of false-positives. 

Another content-based approach has been studied in (A. A. Benczúr et al. 2008) to classify spam 

websites inside web archivist. This work adopted a novel approach in that it applied a content-based 

detection method to the web archivists. Web archivists create and store snapshots of web pages. The 

ensemble classifier in the proposed method was trained through content (e.g. terms inside web page) 

and link (e.g. web page outlinks) features.  

Two datasets were used – Webspam-UK 2006 and 2007. The authors achieved the AUC value of 0.84 

for the result of their classification. 
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Table  2.2 presents a comparative summary of detection-based web spam filtering methods that have 

been discussed in this section.  

Table  2.2: A comparative summary of link-based web spam filtering methods. 

Method Content 
features 

Non-
content 
features 

Usage of 
Link 
features? 

Dataset Classifier Performance 

(Fetterly et 
al. 2004) 

Web page Host 
features 

Yes 150 + 
429M  

web pages 

- 

 

Avg. 0.14  

False-
Positive 

(Baoning et 
al. 2005) 

Terms and 
links inside 
the web 
page 

- No 297K web 
pages 

- Avg. 0.74  

F1-measure 

(Wu et al. 
2006) 

Terms and 
links inside 
the web 
page 

- No 47K web 
pages 

- 0.93 & 0.85  
Precision & 
recall 

(Chellapilla 
et al. 2006) 

Web page - No 3M web 
pages 

- - 

(Alexandros 
et al. 2006) 

Web page 
content 

- No 17K web 
pages 

C4.5 Avg. 0.82  
Accuracy 

(Pranam et 
al. 2006) 

Blog page - No 2K 
samples 

5M blogs 

 

SVM Avg. 0.88  
F1-measure 

(Yi-Min et 
al. 2007) 

Web page IP and host Yes 6M web 
pages 

- - 

(Urvoy et 
al. 2008) 

Web page  HTML 
structure 

No 150GB 
URLs + 

Webspam-
UK 2006 

- Avg. 0.57 

F1-measure 

(Benczúr et 
al. 2008) 

Content and 
links inside 
the web 
page 

Link graph, 
Robot meta 
data, etc. 

Yes Webspam-
UK 2007  

SVM Avg. 0.84 
F1-measure 

 

Overall, detection-based approaches are afterthoughts. The methods deal with the web spam problem 

after spam web pages have already infiltrated the web. Hence, these methods cannot prevent the 

distribution of web spam from wasting resources on the web. 



 

 

57 Literature Review 

The next section offers an evaluation of early detection-based web spam filtering methods. 

2.2.4.3 Early Detection-based Web Spam Filtering Methods 

Early detection-based web spam filtering methods investigate specific features such as meta-data, and 

HTTP header information in websites to detect spam web pages. This section discusses early 

detection-based web spam filtering methods. 

A real-time spam web page detection technique was proposed in (Steve Webb et al. 2008). The 

authors proposed a classification method based on HTTP session (header) information which can be 

implemented inside client application (e.g. web browsers) to detect spam web pages before the actual 

content is transferred.  

HTTP sessions contain information such as the request and the response messages from and to the 

web server. After the client (web browser) sends a HTTP request message to the web server, the web 

server responds to that request with a HTTP response message (i.e. status, timestamp, content length, 

web server IP address etc) along with the web page content. The authors proposed a method to 

investigate the HTTP response message to identify spam web page. Features such as timestamp, 

content-length, status etc. in HTTP response are used for classification. 

The authors utilised 40 different machine learning algorithms and select the best result for 

classification purposes. Their data set consisted of over 750,000 web page samples. The result showed 

F1-measure value of 93.5% with accuracy value of 93.9%. The authors also investigated the resource 

usage and computational costs of their proposed method and claim that their method can save an 

average of 15.4 KB of bandwidth and storage resources for each spam web page. It adds an average of 

101μs for each web page retrieval. 

Research in the area of early detection-based web spam filtering methods has not received much 

attention from the community. The method discussed above is the most recent work in this field. The 

next section provides detailed evaluation of all the methods for web spam filtering. 

2.2.5 Evaluation  

In the previous section, a comprehensive survey of web spam filtering methods was presented. In this 

section a critical evaluation of those methods is discussed in detail.  
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The majority of the proposed web spam filtering methods attempt to counteract specific web spam 

tactics. Therefore, it is interesting to see the success of state of the art methods in combating current 

web spam tactics. This provides a good benchmark to evaluate current literature and discover the 

research gaps. Table  2.3 presents an evaluation of web spam filtering methods based on various web 

spam tactics that were discussed in Section  2.2.3 . The hijacking method has been removed from the 

evaluation list since none of the current web spam filtering methods is specifically designed to address 

this tactic. Mainly, hijacking is the focus of Spam 2.0 filtering methods (Section  2.3.4 ). The general 

column is reserved for the methods that aim to detect spam web pages in general. 

Link-based web spam filtering methods have mainly addressed linkfarm tactics. However, splogs can 

also be employed to generate linkfarms; hence such methods might be applicable for identification of 

splogs. The link-based method presented by (Yiqun et al. 2008) might be capable of detecting 

redirection attacks as well as linkfarms and splogs. The other method presented by (Metaxas et al. 

2005) utilises users’ knowledge into classification of spam web pages. This method can be employed 

to detect any type of spam web page regardless of tactic. 

In the detection-based web spam filtering methods, the majority of the techniques focus on 

identification of cloaking and redirection tactics. Some of the methods such as (Fetterly et al. 2004) or 

(Alexandros et al. 2006) are not focused on specific web spam tactics and hence they can be used to 

detect spam web pages in general. 

The state of the art prevention-based and early detection-based methods have not focused on specific 

type of web spam tactic, but propose to detect spam web pages in general. 
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Table  2.3: Evaluation of state of the art web spam filtering methods *. 

Method Cloaking Linkfarms Splog Keyword 
Stuffing 

Hidden 
Content 

Redirection Scraper 
Websites 

General 

(Fetterly et 
al. 2004) - - ? ? ? - ? × 

(Gyongyi et 
al. 2004) - × ? - - - - - 

(Benczúr et 
al. 2005) - × ? - - - - - 

(Metaxas et 
al. 2005) - - - - - - - × 

(Wu et al. 
2005) - × ? - - - - - 

(B. Wu et 
al. 2005) × - - - - × - - 

(Carvalho 
et al. 2006) - × ? - - - - - 

(Chellapilla 
& 
Chickering 
2006b) 

× - - - - - - - 

(Alexandros 
et al. 2006) - - - - - - - × 

(Wu et al. 
2006) × - - - - - - - 

(Pranam et 
al. 2006) - - × - - - - - 

(Zhou et al. 
2007) - × ? - - - - - 

(Asano et 
al. 2007) - × ? - - - - - 

(Yi-Min 
Wang & 
Ming Ma 
2007) 

× - - - - × - - 

(Goodstein 
et al. 2007) - - - - - - - × 
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Method Cloaking Linkfarms Splog Keyword 
Stuffing 

Hidden 
Content 

Redirection Scraper 
Websites 

General 

(Yuting et 
al. 2008) - × ? - - - - - 

(Webb et al. 
2008) - - - - - - - × 

(Benczúr et 
al. 2008) - - - - - - - × 

(Urvoy et 
al. 2008) - - ? ? ? - ? × 

(Yiqun et 
al. 2008) - × ? - - - - - 

(Yu et al. 
2009) - × ? - - - - - 

(Abernethy 
et al. 2010) - × ? - - - - - 

(Araujo et 
al. 2010) - × ? - - - - - 

* Cross sign: the method can counteract the web spam tactic (the authors have specifically mentioned this in their study). 

Question mark: the method might counteract the web spam tactic (the authors have not mentioned this in their study). 

Figure  2.2 illustrates the coverage of web spam filtering methods in terms of web spam tactics. It is 

clear from the figure that research attention in this survey has been directed towards splog, linkfarm, 

general websites and cloaking tactics. 
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Figure  2.2: Coverage of state of the art web spam filtering methods on web spam tactics. 

Figure  2.3 presents the number of web spam filtering methods under each technical category in this 

survey. It is clear that most of the efforts in the web spam filtering domain have focused on link-based 

web spam filtering. There is scant literature on the prevention and early detection-based methods.  

 

Figure  2.3: The number of web spam filtering methods per technical approach. 

Technically, the methods focus mainly on link- and detection-based approaches, and they raise the 

following concerns: 

1. Methods that strive to enhance the PageRank algorithm need significant amounts of 

resources. This makes them usable only for large scale implementations (e.g. major search 

engines); are not efficient on a smaller scale. 

2. Methods that strive to enhance the HITS algorithm cannot be used in offline mode. This 

might cause system performance issues during the system run time. 
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3. Both link- and detection-based approaches are afterthoughts. The methods deal with the web 

spam problem after spam web pages have already infiltrated the web. Hence, it cannot 

prevent the distribution of web spam and the wasting of web resources. 

4. Early detection-based methods are not effectively designed to prevent web spam distribution. 

Moreover, there is no study on prevention-based web spam filtering methods.  

5. Hijacking is one of the major tactics that has recently been used by spammers. This tactic has 

not specifically been covered by state of the art web spam filtering methods. 

6. The majority of web spam filtering methods have addressed link-based tactics; however, 

content-based tactics have not received much attention.  

 

It should be noted that the focus of this dissertation is on Spam 2.0 

filtering rather than web spam filtering.  The issues that have been 

discussed so far are mainly associated with web spam filtering methods. 

Spam 2.0 produces some of the abovementioned issues as well as a set of 

new problems. The following sections provide an in-depth evaluation of 

Spam 2.0 filtering methods. 

 

2.3  Spam 2.0 
This section provides:  

• a definition of Spam 2.0,  

• an overview of Spam 2.0 preliminary knowledge,  

• tactics that are being used in Spam 2.0,  

• survey of current Spam 2.0 filtering methods,  

• and finally, an evaluation of existing Spam 2.0 filtering methods. 
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2.3.1 Definition 

Web 2.0 is a term associated with read and write web where users can contribute to content 

generation. Facilities created with Web 2.0 give users a place to collaborate, share information and 

generate content. Some examples of Web 2.0 include blogs, wikis, forums, online communities 

(Figure  2.4). Any type of web application which supports user-content generation can be included in 

the Web 2.0 platform. 

 

Figure  2.4: Examples of Web 2.0 platforms. 

However, Web 2.0 platforms have not been immune from malicious usage i.e. spam. A malicious user 

can sign in to such platforms in order to distribute spam content. Later, the spam content is seen by 

both genuine users and search crawlers. The spam content on a legitimate website is more trusted than 

an isolated spam web page on a different website. Examples of Spam 2.0 include: a fake eye-catching 

profile in the social networking websites, a promotional review, an unsolicited response to a thread in 

an online forum and a manipulated wiki page etc. 

 

Spam 2.0 is different from previous types of spam such as web spam. 

Spam 2.0 infiltrates legitimate web pages. Spam 2.0 is more trustworthy 

and highly influential for users. It is also more challenging for search 

crawlers to prune spam from genuine content in legitimate websites 

(Hayati et al. 2010).  
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As mentioned in Section 1.5.1, Spam 2.0 is defined as the “propagation of unsolicited, anonymous, 

mass content to infiltrate legitimate Web 2.0 applications” (Hayati, Potdar, Sarenche, et al. 2010). 

Similar to other spam filtering methods, Spam 2.0 filtering methods search for spam patterns inside 

the spam content or the spam distribution behaviour. However, some efforts have been made to 

prevent Spam 2.0 distribution as well.  

2.3.2 Preliminary Concepts 

In this section, some preliminary knowledge and concepts are discussed that would be useful in 

understanding the relevant literature in the area of Spam 2.0. 

Web usage data 

Web users navigate through web objects such as web pages, image, files, and documents in the 

websites. Such navigation can be recorded and later mined to extract valuable information (Cooley et 

al. 1999). This tracking data is referred to as ‘web usage data’. Web usage data has been widely 

employed in many studies to understand visitor browsing patterns, make personalised websites, 

improve web performance, and to implement decision support and recommendation system. 

In Spam 2.0 filtering, web usage data has been used to identify web crawlers and automated bots. 

Social networking websites  

Literature on Spam 2.0 filtering methods has paid a lot of attention to spam filtering in social 

networking websites. Social networking websites provide a platform for people to share their 

thoughts, exchange messages, photos etc. An example of a social networking website is Twitter 

(www.twitter.com). Twitter is a popular micro-blogging service that allows users to share a short 

message (called a tweet). Tweets must contain no more than 140 characters. Twitter allows users to 

create their own public profile where their tweets appear. Users can subscribe (called followers) to 

other users’ profiles to receive updated tweets.  

Social networking websites such as Twitter have received much attention from the Spam 2.0 filtering 

community and many filtering methods have been proposed for this service. 
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Blog 

Blog or web-log is a type of Web 2.0 platform that individuals maintain for various purposes. For 

example, blogs can be an online diary, photo gallery, and music sharing platform.  As most blogs 

provide a read/write platform where blog operators can publish their desired content and blog visitors 

can submit their comments, blogs receive attention from both genuine and malicious users. For 

example, spam users comment spam content on individuals’ blogs. 

 

Public wikis (e.g. Wikipedia), public forums, social networks (e.g. 

Facebook, delicious etc), organisations’ websites etc. are some examples 

of legitimate hosts that can be infiltrated by Spam 2.0. Almost any 

website that provides a Web 2.0 platform can be infiltrated by Spam 2.0. 

 

Honeypot 

Honeypot is a technique in computer security to trap the adversary by appearing to be a real computer, 

file, record, and entity in a computer network (Spitzner 2002). In the spam filtering domain, 

honeypots are used to appear as an email server or mimic a real user in online communities to track 

spammers’ behaviour. 

Information gain and Chi-Squared (X 2) 

Information gain is frequently used in machine learning for term selection (Michalski et al. 1985). 

Information gain considers both the existence and non-existence of a term in the content. In the spam 

filtering domain specifically, detection-based methods information gain is used to reduce the 

dimension of terms used in an input vector. 

Similar to information gain, in the spam filtering domain, X 2 is used in statistical language modelling 

of word associations and term selection. However, X 2 measures the lack of independence between a 

term and its class (i.e. term belong to spam or genuine class). 
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Cosine similarity 

Cosine similarity is used to calculate the similarity between two vectors by measuring the cosine 

angle between them. Cosine similarity can show whether or not two angles are pointing in the same 

direction (Steinbach et al. 2000). 

In spam filtering, cosine similarity can be used to measure the similarity between two content vectors. 

Linear regression  

Linear regression is a method used to model the relationship between two scalar values. It is used to 

estimate the linear function to generate data based on the scalar values (Yan & Su 2009). 

In spam filtering, linear regression is used as a machine learning tool to predict the linear function 

based on the training set of scalar values. This linear function later is used to separate spam values 

from legitimate ones. 

K-nearest neighbours 

K-nearest neighbour (k-NN) is a machine learning algorithm to discover the K closest object to 

training samples. Training samples are vectors that are labelled. Using k-NN, unlabelled vectors are 

classified based on the training samples classes (Alpaydin 2004). 

k-NN in spam filtering is used to distinguish spam objects (e.g. content, behaviour) from genuine 

ones. 

Back propagation neural networks 

A back propagation neural network is a multi-layered feed forward neural net that adapts the network 

based on a known set of inputs and output. This algorithm is trained based on known input and 

desired output. Once the algorithm learns the problem, it then estimates outputs for the unpredicted 

inputs (Michalski et al. 1985). 

In spam filtering, the back propagation neural network is used as a machine learning tool for the 

classification. 
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Similar concepts that have been discussed in Section  2.2.2  include Precision, Recall, F1-measure, 

SVM, Naïve Bayes classifier, True positive, true negative, false positive, and false negatives – all of 

which have been utilised in the Spam 2.0 domain. 

2.3.3 Spam 2.0 Tactics 

Spam 2.0 is employed by a spam user to distribute content via Web 2.0 platforms.  Depending on the 

structure of the Web 2.0 platform, spam users can propagate spam content in different sections of the 

website. The following are examples of common strategies that spam users employ to infiltrate web 

applications with spam content.  

Spam online profile (spam profile) 

Profiles are a type of About me web page that summarise information about particular users. A typical 

profile contains information about the user’s contact details, photo, and latest activities in a Web 2.0 

platform.  

With this tactic, spam users register/sign up in the Web 2.0 platform (e.g. forums, wikis, social 

networking website etc.) and fill the profile fields with irrelevant/spam content. For example, in most 

of the profiles, there is a field for the user’s homepage link. A spammer uses that field to direct a 

genuine user to his/her spam campaign. 

Occasionally, spam profiles are filled with appealing content (e.g. celebrities’ photos) to attract or 

mislead genuine users. 

Spam comment (comment spam) 

With this tactic, comment systems (e.g. blog comments) are targeted by spam content. Spam users fill 

up comment forms with their spam content. Spam content typically contains URLs to spam 

campaigns. Spam comments might be easy to discover or quite misleading where normal human users 

cannot identify them. Figure  2.5 illustrates a misleading comment spam on the author’s homepage. 

This comment has a link to a spam website in the comment’s starter name i.e. maladireta. 
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Figure  2.5: Example of misleading comment spam on author’s homepage.  

Spam wiki (wiki spam) 

Wikis provide a platform where users can create a number of web pages and provide links among 

them. In this tactic, wiki pages are manipulated by spam users to present spam content or a link to 

spam campaigns. Figure  2.6 presents an example of spam in wiki. A link to the “Arena51” website is 

modified to a spam website. 

 

Figure  2.6: Example of spam in wiki platform. 

Spam personal message 

Web 2.0 platforms such as forums, online communities etc. provide a messaging system whose users 

can exchange personal messages amongst themselves. This tactic allows a personal messaging system 

to be infiltrated by spam users to send spam content to other genuine users. 
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Spam online community (social spam) 

With this tactic, online communities or social networks are infiltrated by spam users to create spam 

profiles, sending spam messages to real human users, spam comments etc. Depending on the facilities 

provided by an online community, they can be misused by a spam user to propagate spam content. 

Spam specific website/web application (targeted spam) 

With this tactic, spam users target a Web 2.0 platform on a particular website. For example, Twitter is 

targeted by many spam users. Spam users distribute spam tweets or create spam profiles on Twitter. 

Additionally, some popular web applications specifically, open-source or free web applications, are 

also targeted by spam. Web operators use these web applications packages to rapidly set up online 

collaborating platforms, thereby receiving much attention. Once common features and facilities have 

been targeted by spam in these web applications, spam users can distribute spam content across all 

websites that use the same web application. Simple Machine Forum (SMF) (http:// 

www.simplemachines.org), phpBB (http://www.phpbb.com), and Wordpress 

(http://www.wordpress.org) are examples of common open source web applications.  

Spam 2.0 tactics would be used as the criteria to evaluate each Spam 2.0 filtering method. After 

discussing the preliminary concepts and background information, a comprehensive study of the 

existing Spam 2.0 filtering methods in the literature is presented in the following sections. A summary 

of each method, along with a comparative analysis of the methods, is then discussed. 

2.3.4 Spam 2.0 Filtering Methods 

This section provides a comprehensive study on state of the art Spam 2.0 filtering method based on 

three different categories detection-based, prevention-based, and early-detection based. 

2.3.4.1 Detection-based Spam 2.0 Filtering Methods 

In detection-based Spam 2.0 filtering methods, the focus is on identifying spam patterns inside the 

content of Spam 2.0. The techniques employed here are similar to those described for web spam. 

A content-based method is proposed by (Narisawa et al. 2007) to detect spam messages in forums. 

The authors believed that spam messages are designed to distribute advertisement messages in 

forums. 
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The authors started by creating equivalence classes for the content of the message. An equivalence 

class consists of the same occurrences of substrings within a message. By employing three features – 

length (length of representative of spam equivalence class is higher), size (size of representative of 

spam equivalence class is higher) and Maximin (length of the representative and the length of the 

longest minimal element of the equivalence class), authors could distinguish spam messages from the 

legitimate ones. 

They evaluated their proposed method based on four Japanese forums (24,591 messages) and used the 

F1-measure to evaluate the performance of their proposed method. The result of their work varied 

from 68% to 80% in all four datasets.  

Similar to the work mentioned above, authors in (Uemura et al. 2008) proposed a content-based 

method to detect spam in forums and blogs. They claim that the document complexity of normal 

messages is much higher than that of spam since spam messages are auto-generated and their 

generation costs are lower. The authors focused on detecting Mutation (swapping random letter in the 

document), Crossover (exchanging a random part of a pair of documents) and Word Salads (replacing 

a random word in the document). 

The authors used the same four datasets that had been used in (Narisawa et al. 2007). The result 

showed that the proposed method works well on word salad detection.  

 

Each and every Web 2.0 platform provides different facilities for users. 

For example, in forums, users can reply to other users’ topics while in 

wikis, users can edit others’ contributions. The variety of such facilities 

has made Spam 2.0 filtering more challenging since it requires adaptable 

solutions. 

 

Apart from the abovementioned studies that target Spam 2.0 in specific web applications (e.g. blog 

and forum), The majority of recent work on Spam 2.0 filtering focuses on Spam 2.0 filtering in 

particular websites (e.g. Twitter, Facebook, MySpace etc). Among such websites, Twitter has 

received considerable attention from the research community. The methods which will be discussed 
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next have focused on various features of the Twitter platform in an attempt to identify spam messages 

or spam profiles.  

(Benevenuto et al. 2010) focus on detecting malicious users who post spam tweets inside Twitter. 

Their content-based method is based on extracting discrimination features from the content of tweets 

and spam profiles. After analysing the content of tweets, 39 features are extracted as describers of the 

tweets. Usage of more URLs in each tweet, bigger proportion of spam words, and hash tags 

(keywords that refer to other topics in Twitter) were the three best features for identifying spam 

profiles. For example, if spam profiles intend to have more followees, they need to become followers 

of an excessive number of members. As they cannot create a balance between number of followees 

and followers, they end up having a greater number of followers than followees compared to those of 

genuine users. 

For the dataset, the authors crawled 54 million Twitter profiles. They manually labelled the dataset 

that resulted in 8,207 profiles of which 355 were spam profiles and 7,852 were genuine profiles.  

SVM is applied for classification tasks. Chi-Squared (X 2) and Information Gain methods are used for 

feature selection. Apart from the above features, some attributes that are related to the tweet content 

are also extracted. For instance, the number of hash tags, number of URLs, number of characters, etc 

are considered. In total, the classifier managed to identify 70% spam users and 96% genuine ones.  

The above study was extended by (Irani et al. 2010) who proposed a method for detecting unrelated 

tweets in trending topics whereby they considered both content of tweets and their associated website. 

Twitter lists popular topics named trending topics in its homepage. Since trending lists are growing in 

popularity, they have attracted malicious users and spam content. The proposed method has the 

following three steps. 

• Tweets classification based on content of each tweet to find out whether or not it is related to 

their trends topics. 

• Tweet classification based on the content of the web page to which they are referring.  

• The results of both the abovementioned steps are combined using ‘AND’ and ‘OR’ operators. 

This step is incorporated in order to detect spam tweets which look legitimate in content or 

have a few characters for classification. 
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For simplicity, tweets created by suspended accounts are assumed to be spam. The authors examined 

the performance of three classifiers: Naïve Bayes, C4.5 decision trees and Decision Stumps. For the 

dataset, they collected 1.3 million tweets from 2,067 trends along with 1.3 million web pages related 

to tweets. For tweet text, Naïve Bayes and C4.5 decision trees performed well. Overall, the OR 

operator had better performance for the combined classifiers.  

Instead of finding spam tweets in Twitter, work has been done to identify spam profiles which are 

used to distribute spam tweets. By eliminating spam profiles, spam tweets can be ignored as well. 

Similar work has been done in (A. H. Wang 2010) (A. Wang 2010) to detect spam profiles. However, 

the authors created a social graph to model users and spam users in Twitter. A directed social graph is 

constructed to model four relationships: follower, friend, mutual friend, and stranger in users’ profiles. 

Spam detection is done based on (1) graph-based and (2) content-based features. Former features are 

derived from a social graph that has been constructed for each user account e.g. frequency of friends 

(indegree), followers (out degree) and reputation (ratio between indegree and outdegree). Later, 

features are focused on the content of tweets e.g. black-listed URLs, duplicate tweets, number of reply 

tweets, and unrelated posts having same trending topic. Results showed that the reputation of spam 

profiles is low since they have excessive numbers of followers compared with the number of friends, 

and a high number of duplicate tweets is an important factor in detecting spam profiles. 

The author first created a collection containing 25,847 users, 500,000 tweets, and almost 49M 

relationships by Twitter's API methods in three weeks. Evaluation was carried out on 500 manually 

labelled dataset. The author chose to use the Naive Bayesian technique as a classifier. The classifier 

was able to correctly identify 89% spam profiles in the test collection. 

The abovementioned studies focus only on the Twitter platform. However, in the study of (K. Lee et 

al. 2010), the authors proposed an automatic honeypot-based method for detecting spam profiles in 

the online social communities. The goal of this method is to use honeypots in order to decrease the 

human participation in spam profile classification, create a statistical user model to distinguish spam 

profiles from legitimate ones and finally detect spammers in a large number of unknown profiles. This 

method proposes the following solution.  

If a honeypot receives a friend request from a user (in the online communities users can add others as 

their friend), it would consider the sender of the request as a potentially suspicious user and starts to 
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extract information from the user’s profile. Next, these features are coupled with some legitimate 

profiles and considered as the training set of a classifier. By using a human inspector who verifies the 

predicted spam profiles, new instances are added to the training set in order to have a more powerful 

classifier and subsequently better predictions. 

The effectiveness of this method was studied over two social communities, Twitter and MySpace 

(http://www.myspace.com). The authors randomly selected 388 legitimate profiles from MySpace and 

627 spam profiles from the set of profiles detected by honeypot as being spam. After extracting 

features such as the number of friends, marital status, etc., it was shown that all top ten classifiers for 

MySpace had good performance with accuracy over 98.4%, F1-measure over 0.98 and false positive 

rate less than 1.6%, which was robust against different training sets. They also investigated the 

discrimination power of extracted features using an ROC curve. It was shown that marital status and 

gender are the least discriminative features, while bag-of-words and features related to the “about me” 

section are the most discriminative ones. 

To evaluate spam classification in Twitter, authors randomly selected 104 legitimate users. They also 

considered two classes for this step: spammers and promoters which had 61 and 17 users respectively. 

Information about user profile, tweets, following and followers were gathered for all these users. 

Features such as longevity of account in Twitter, average number of tweets per day etc. were also 

extracted. Content similarity between pairs of tweets was also calculated using standard cosine 

similarity. When investigating discrimination power, average posted tweets per day, percentage of 

bidirectional friends, ratio of the number of following and followers were found to have the least 

discrimination power, whereas account age, text-based features extracted from tweets, and number of 

URLs were found to be the most powerful discriminating features. Furthermore, in the case of content 

similarity, spam tweets were more similar than others while promoters’ tweets had the most number 

of URLs. Using these features, the top ten classifiers again had good performance for Twitter with 

accuracy over 82.7%, F1-measure over 0.82 and a false positive rate less than 10.3%.  

(Zinman & Donath 2007) is another work that has been done on MySpace to detect spam profiles. 

However, the result of this work was not satisfactory due to the nature of the features authors utilised. 

The authors proposed an approach to detect spam users in Social Networking Services (SNS). They 

utilised features of senders’ profiles as well as network features. In SNS, not all the unsolicited 

messages are spam, so the authors tried to identify the sender instead of the sent messages. In 
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addition, making a decision about requests is extremely subjective. In other words, the desirability or 

undesirability of a sender depends on receivers’ opinions. 

MySpace profiles were examined in this work based on two dimensions: sociability and promotion. 

Sociability refers to the number of social activities in MySpace, while promotion is related to amount 

of information that has effect on users. Based on these two dimensions, four prototypes have been 

created as follows. 

• Prototype 1 (low sociability and low promotion): includes new members of the site as well as 

approximately inactive spam profiles. 

• Prototype 2 (low sociability and high promotion): here profiles are promotional and use SNS 

as a marketing means. 

• Prototype 3 (high sociability and low promotion): this prototype is related to an ordinary user 

and most of the SNS users belong to this group. 

• Prototype 4 (high sociability and high promotion): unlike prototype 2, here entities have 

individual relationships with their friends. 

The authors randomly selected several profiles and assigned values from one to five, to profiles’ 

sociability (s) and promotion (p). They considered only those profiles with s or p values higher than 

one.  

They examined four machine learning algorithms - linear regression, K-nearest neighbours, back 

propagation neural networks, and naïve Bayesian networks - with different sets of features: profile-

based, network-based, and mixed. They had 40 feature dimensions as well as 600 training data points 

and 200 test data. The best performance was obtained using a mixed set of features in neural networks 

with a single layer. On the other hand, network-based tests had poor performance in comparison with 

profile-based ones which was 78%-83%. 

Apart from MySpace and Twitter which were the focus of the previous studies, (H. Gao et al. 2010) 

proposed a method to detect spam campaigns in online social networks specifically on Facebook 

(http://www.facebook.com). The authors proposed to use text-based similarity and URL correlation 

between different wall posts (wall posts in Facebook are spaces on each user’s profile, where known 

users can post information for the other users). Similar posts have been clustered based on the post 
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template as well as posts with the same destination URLs. Two threshold values are applied to the 

groups for the minimum number of users in each cluster and a maximum time interval between two 

consecutive wall posts. 

They examined their method using the Facebook community with a dataset of 3.5 million users and 

187 million wall posts. The method detected 297 clusters which contain 212,863 wall posts as 

malicious clusters. The authors did not mention the outcome of their study in terms of performance. 

Youtube (http://www.youtube.com) is another popular social video sharing website that is infiltrated 

by spam users to promote spam video, post spam comment on the other users’ videos, etc. 

(Benevenuto et al. 2009) proposed a content-based method for classification of spam, promoters, and 

genuine profiles in the social video sharing systems i.e. YouTube. A collection of YouTube users are 

built and are then manually labelled according to the three mentioned classes. Authors pre-classified 

31 users as promoter, 157 as spam and 641 as legitimate profiles. Three sets of attributes were 

extracted from video, user, and social networks. Features such as view numbers, video’s duration, and 

favourite value of video were considered in the video attributes set. The second set which describes 

behaviour of users includes number of uploaded and watched videos, number of favourite videos, 

frequency of uploading, etc. Finally, in the social network set, four attributes (e.g. clustering 

coefficient, reciprocity) were used. Then, X2 and information gaining techniques were used to assign 

priority to the 60 extracted features. SVM was used for classification based on two approaches - flat 

and hierarchical. In the flat approach, 56.69% spam, 96.13% promoter, and 94.66% genuine profiles 

were correctly categorised. In the hierarchical approach, first the classifier separated 92.26% 

promoters and 99.45% non-promoters. For non-promoter, the classifier was used again to separate 

spam profiles from genuine ones. The best F1-measure value achieved was 0.8.  

 

Opinion gathering websites such as Amazon, CNET, and Epinions are 

places where users can share reviews of products, services and events. 

They are useful resources enabling product consumers to discover quality 

products and manufacturers to receiver users’ feedback. However, such 

open platforms are not immune from malicious use, i.e spam reviews.  
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(Nitin & Bing 2008) proposed the first content-based spam detection system inside opinion gathering 

websites. Opinions are given as reviews or comments from customers on services, events, products 

etc. Currently, customers can post their opinions on merchant websites. Some websites such as 

Amazon provide an interface to accumulate users’ reviews. Since there is no quality control over the 

context of the reviews, this results in the generation of unsolicited or spam reviews. The authors 

classify spam reviews into three types: untruthful reviews, brand-only reviews and non-reviews, and 

employ a machine learning algorithm to distinguish spam reviews from legitimate ones. 

The authors started by finding duplicate and near-duplicate reviews and used them as a training set to 

detect the brand-only and untruthful reviews. Logistic regression (Alpaydin 2004) has been used for 

classification. The authors extracted 36 features that were review, reviewer and product specific (e.g. 

number of feedbacks, ratio of number of reviews written as first reviews, price of product etc.).  

Their investigation is based on 5.8 million reviews crawled from the Amazon website 

(http://www.amazon.com), 470 of which they manually labelled for classification purposes. For the 

classification of brand-only and non-reviews, the average performance using AUC was 98.7%. 

However, the results for classification of untruthful reviews were not promising. The authors argue 

that detection of untruthful reviews is more difficult even for a human inspector. Hence, automatic 

classification of those reviews might not produce effective results. 

The authors also found that:  

• biased reviewers who give a negative ranking to a product are very likely to be spam,  

• the products with just one review are very likely to be spam,  

• top-ranked reviews are more likely to write spam reviews,  

• feedback on reviews is not a good indicator of spam vs. non-spam reviews, and  

• spam reviews are more likely to be given for low selling products. 

The other way to detect opinion spam is to detect spam users who spread opinion spam. Lim et al. 

(2010) proposed a method for detecting spam profiles inside opinion gathering websites based on 

behavioural features (mainly content-based). The authors extracted behavioural features from the 

content of reviews and used them inside machine learning classifiers. The intention is to detect spam 
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profiles or users who distribute spam reviews in order to eliminate spam reviews inside opinion 

gathering websites. 

The authors used Amazon API to extract 48,894 reviews and 11,038 user profiles from Amazon 

websites. The following features have been measured for classification purposes: (1) multiple ratings 

of the same product (spam users tend to post multiple high rates for the same product), (2) multiple 

reviews for the same product (similar to the previous feature but considers review content), high/low 

rating of similar products that share the same attribute within a short time span  (spam users assign 

high/low rating for similar products – products with the same brand – within a few hours), (3) 

deviation from ratings by other reviewers for the same product (spam users try to demote or promote a 

product; hence, their ratings are different from those of others), and (4) similar to the previous feature 

but considers early deviation (spam users attempt to post early reviews as soon as a product is made 

available for review; this prejudices others’ opinions and attracts more attention). 

For evaluation, they randomly selected 62 user profiles and recruited three human evaluators to 

validate the result. The authors discovered that first and second features have better accuracy for the 

detection of spam profiles. By applying a regression model to the remaining 11,038 reviews, they 

found that over 4.65% of reviewers are spam. 

 

The social bookmarking or social tagging websites have recently have 

gained attention in the Spam 2.0 filtering domain. In the social 

bookmarking website, users can share links to other web pages, make 

comments on other users’ links and tag (a short descriptive annotation 

for the resources) the links. However, on the dark side, they can be a 

potential campaign for distribution of spam links. 

 

The following studies focused on the detection of spam content inside social bookmarking websites. 

(Paul et al. 2007) and (Koutrika et al. 2008) provided a comprehensive study of tag spam in social 

tagging systems, i.e. del.icio.us (Delicious). The authors studied the effect of different spam attacks 

on tagging systems and tagging search results. They investigated the effects on tagging systems of the 

following criteria: number of spam users, number of good users, limited number of tag per users, 
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usage of trusted moderators to manually block spam tags. The authors also proposed a coincide-search 

algorithm that considers users’ reliability when generating search results. The result of the coincide-

search algorithm was better than those of the state of the art search mechanisms in the tagging system. 

The authors developed a simulator of a social tagging system and used a base set containing over 

380,923 documents from Delicious. Their result showed that social countermeasures have a 

significant effect on the relevance of search results. That is, if the number of good users in the system 

is lower than the number of spam users, the system substantially suffers from tag spam. The 

moderators help to reduce the tag spam although this requires considerable amount of effort and time, 

and the coincide-based search showed better results compared with those of other search algorithms. 

Another work on Delicious has been done in K. Liu et al. (K. Liu et al. 2009). However, the authors 

evaluated their method based on real data rather than simulated data. The authors made use of social 

countermeasures and collaborative knowledge to identify spam tags in the social bookmarking 

systems (K. Liu et al. 2009). The collaborative knowledge was implicitly gathered from the way users 

utilise the system and annotate the content. The authors measured two features: post- and user-

oriented. The former is used to calculate the value of each tag compared with other tags for a specific 

resource. The latter is the inverse value of a user’s tag on the system. 

Their dataset contained 82,541 users and about 1 million tags. The authors manually classified 2,000 

posts and 500 users to evaluate their proposed method. They achieved an accuracy of 93.75% for 

spam posts detection and 96.20% for spam user detection.  

The content of the tags reveals some characteristics about the tags’ nature. Therefore, it can be 

exploited to distinguish spam tags from the genuine ones in the social bookmarking systems. (Bogers 

& Bosch 2008) proposed an approach for detecting spam in the social bookmarking system (i.e. 

BibSonomy). Their approach is based on the assumption that the spam language model is different 

from the genuine ones. In the proposed method, a similarity comparison among genuine language 

models and spam are done at two levels: post-level and user-level. In the post-level, language models 

are built for each post in the system. Later, language models are matched against the language model 

of the new posts in order to find the similarity. Using the spam status of the best-matching posts in the 

training set, it is possible to predict the spam status of new posts. In the user-level, the same procedure 

is applied to the users’ profile.  
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For experiment and evaluation, the authors gathered resources posted to BibSonomy in two types –

bookmarks and BibTeX records. They manually labelled users as spam or non-spam (2,400 genuine 

users and more than 29,000 spam profiles).  

The results showed that better performance is achieved by using the user-level data for building 

language models rather than using the post-level. In the user-level, the AUC score and F-measure of 

0.9784 and 0.9767 was achieved.  

Another work on BibSonomy was conducted by (Krause et al. 2008). However in this study, the 

authors employed a machine learning approach instead of a language model to identify spam tags. 

Twenty-five features were extracted to describe the systems according to four categories: (1) user’s 

profile (e.g. the amount of digits in email or name, and length of real name, (2) user’s location e.g. the 

amount of users from different domains, (3) user’s integration e.g. number of tags in each post, (4) 

semantic features e.g. the number of “group=public”, ratio of the spam tag to all the tags in the 

system.  

In this paper, BibSonomy is used as the social bookmarking web site to build the data set. The data set 

consists of 18,681 spam users, and 1,411 non-spammers which were labelled manually. 

Four machine learning mechanisms were applied including Naïve Bayes, SVM, Logistic Regression, 

and C4.5. The best performance achieved was for the SVM classifier and logistic regression.  Since 

the misclassification for the false-positive rate was considerable, a cost-sensitive learning approach 

was used for training purposes. Similarly, the four machine learning algorithms were applied on all 

the features, and the highest F1-measure 0.927 was achieved for logistic regression classifier.  

Apart from utilising social knowledge, a language model and statistical approach (Dellschaft & Staab 

2010) investigated tagging behaviour in both Delicious and BibSonomy. The authors studied tagging 

behaviour in two models as well as two properties. They used the notion of co-occurrence streams in 

tagging systems to describe all tags that have occurred simultaneously. Fifteen different co-occurrence 

streams were extracted from two specific datasets – Delicious and BibSonomy (10 streams from the 

first one and 5 streams from the second one) - and they removed spam profiles from their dataset in 

order to minimize their impact on the results. Two properties of co-occurrence streams used in 

tagging models were sub-linear vocabulary growth and tag frequency distributions. The former 
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presents the tag’s vocabulary drift, while the latter presents the distribution of the tags and the users in 

the system. 

The authors investigated two models - Epistemic model and Yule-Simon model with Memory model. 

These models aim to simulate how micro-level behaviours of users lead to the two properties of the 

co-occurrence streams. In the Epistemic model, two factors impact on users’ tagging behaviours: (1) 

the content of resources which is related to background knowledge of users about a specific resource, 

(2) other users’ tag assignments which persuade assigners to assign specific tags.  The Yule-Simon 

model simulates only the imitation process and ignores the background knowledge of users. Unlike 

the Epistemic model, the Yule-Simon model cannot explain sub-linear vocabulary growth and is also 

unable to consider the background knowledge of users although it can faithfully reproduce tag 

frequency distributions.  

The results showed that in order to simulate spam tag assignments, a completely different model 

should be used from the ones used for regular users. It is also possible to use the same model but with 

a different set of parameters. In addition, the results of comparing these two models showed that for 

both tag frequency and vocabulary growth properties, the Epistemic model performs better than the 

Yule-Simon model which can be attributed to its consideration of both the imitation process and the 

background knowledge of users.  

Apart from the above studies that have focused on specific websites, the following work targets Spam 

2.0 filtering in blog comments. A content-based method to detect spam comments in blogs has been 

proposed in (Huang et al. 2010). Based on four features, the authors made use of a machine learning 

algorithm to distinguish spam comments from legitimate ones. The features are: (1) the length of 

comment, (2) the similarity between the comment and the blog post, (3) the divergence between the 

comment and the blog post, and (4) the ratio of propaganda and popular words in the comments. The 

authors argue that none of these individual features is a good discriminator for classification purposes 

and hence a combination of them needs to be considered. 

SVM, Naïve Bayes and C4.5 on 2,646 manually labelled data were used for the classification task. 

The best result achieved was through last classifier with 84% accuracy. The authors continued their 

work by building a rule-based classifier based on statistical measurement of each feature. They 

discovered that the ratio of propaganda, the similarity and the divergence of the comments, and the 

length of comments were the best features. By manually obtaining 500 samples from data, the authors 
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evaluated their rule-based method. The results obtained were 90.4% and 84.5% average precision and 

recall. 

Table  2.4 presents an overall overview and comparison summary of detection-based Spam 2.0 

filtering methods. 

Table  2.4: Comparative summary of detection-based Spam 2.0 filtering methods. 

Method Classifier Dataset Result Method Classifier Dataset Result 

(Zinman et 
al. 2007) on 
MySpace 

Linear 
regression, 
K-NN, 
back 
propagation 
NN, Naïve 
baye 

800 
profiles 

Best 0.83 

Accuracy 
(Dellschaft 
et al.  2010) 
on Delicious 
& 
BibSonomy 

- 15 co-
occurrence 
streams 

- 

(Narisawa 
et al. 2007) 
on forum 

- 24591 
forum 
messages 

Avg. 0.80  
F1-
measure 

(Lim et al. 
2010) on 
Amazon 

- 11K 
profiles 

- 

(Nitin et al. 
2008) on 
Amazon 

Logistic 
regression 

5.8M 
reviews 

470 
samples 

Avg. 0.98 
AUC 

(Irani et al. 
2010) on 
Trending 
topics in 
Twitter 

Naïve 
bayes, 
C4.5 
decision 
trees & 
Decision 
Stumps 

1.3M 
tweets + 
web pages 

Best 0.8+  

F1-
measure 

(Uemura et 
al. 2008) On 
forums and 
blogs 

- 24591 
forum 
messages 

Best 0.73  
F1-
measure 

(Benevenuto 
et al. 2010) 
on Twitter 
profiles 

SVM 54M 
twitter 
profiles 

8207 
samples 

Best 0.94 
Accuracy 

(Bogers et 
al. 2008) on 
BibSonomy 

- 31K user 
profiles 
with posts 

Best 0.97 

F1-
measure 
& AUC 

(Wang 
2010) on 
Twitter 
profiles 

Decision 
Tree, 
Neural 
Networks, 
SVM, 
Native 
Bayes 

25K users  

500 
samples 

Best 0.91  

F1-
measure 

(Krause et 
al. 2008) on 
BibSonomy 

Naïve 
Bayes, 
SVM, 
Logistic 
Regressuib, 
C4.5 

20K user 
profiles 

Best 0.93 
& 0.91 

(Lee et al. 
2010) on 
Twitter & 
MySpace 

10 
classifiers 

1015 
MySpace  

104 
Twitter 
profiles 

Avg. 0.98 
& 0.82 

F1-
measure 

(Koutrika et 
al. 2008) on 
Delicious 

- 38K 
documents 

- (Gao et al. 
2010) On 
Facebook 

- 187M 
posts 

- 
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Method Classifier Dataset Result Method Classifier Dataset Result 

(Benevenuto 
et al. 2009) 
on Youtube 

SVM 829 
profiles 

Best 0.8+  

F1-
measure 

(Huang et 
al. 2010) on 
blog 
comments 

SVM, 
Naïve 
Bayes, 
C4.5 

500 
comments 

Avg. 0.84 

Accuracy 

(Liu et al. 
2009) on 
Delicious 

- 1M tags 
2000 
samples 

Best 0.93 
and 0.92  

Accuracy 

    

 

Overall, the detection-based Spam 2.0 filtering methods can be summarised as follows: 

• Methods are platform-dependent. They cannot be extended to other platforms. 

• They are mainly content-based and can be bypassed by spammers. 

• Content-based methods are language-dependent. Hence, a solution might not be applicable to 

different languages. 

The next section provides a discussion of state of the art prevention-based Spam 2.0 filtering methods. 

2.3.4.2 Prevention-based Spam 2.0 Filtering Methods 

This section discusses the current prevention-based Spam 2.0 filtering methods. In the prevention-

based Spam 2.0 filtering approach, methods strive for blocking or slowing down spam distribution 

inside the system. By posing economical or computational challenges, Spam 2.0 filtering methods can 

prevent spam distribution. 

 

One of the widely-used methods to block spam in different systems is 

blacklisting or whitelisting.  Blacklists typically contain information 

about forbidden entities/sender (e.g. email address, IP address, hostname 

etc) that are denied to transmit information. On the other hand, whitelists 

contain information about trusted entities/sender (e.g. friends, known 

email addresses, etc). 

 

Using blacklist to detect tweets inside is a method that has been proposed in (Grier et al. 2010). The 

authors analysed more than 2 million tweet URLs which can fall into three categories of spam - 
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scams, phishing sites and malwares. This work also includes the study of the success of spam at 

enticing users to click on spam URLs (click-through analysis) as well as an investigation of different 

spam campaigns which deceive users by taking advantage of Twitter’s features.  

Three blacklists were studied in this work: Google Safebrowsing which includes phishing and 

malware data, and URIBL and Joewein which include both spam and non-spam domains for email 

spam. By using twitter streaming API, the authors gathered 200 million tweets. The use of a custom 

web crawler to follow URLs in each tweet resulted in 25 million URLs. The web crawler was 

designed to find URLs’ final landing web pages. As a result, 2 million URLs (8% unique URLs, 5% 

malware and phishing while the remaining 95%, 3% were related to scams websites) were recognised 

as spam.  

With regard to click-through analysis, authors used bit.ly API (a shortening URL service) to find out 

how frequently URLs in tweet are clicked. Out of 245,000 spam links that belong to bit.ly , 97% did 

not obtain any hits, while the amount of hits for the other 3% were 1.6 million clicks. The authors 

claim that features such as the number of spam profiles that spread spam tweets, the number of 

followers who receive spam links, hashtags, and retweet with hashtags have increased the ratio of 

click-through. They found out that the click-through rate is 0.13% (number of tweets sent vs. number 

of clicks) which is two orders of magnitude higher than for that of spam emails. This increase is due 

to the existence of little information for users to decide (only 140 characters), lack of spam filter in 

twitter and low time complexity for broadcasting tweets in twitter. 

The authors also conducted a study of the blacklists’ performance based on three features - blacklist 

delay, evasion and domain blacklist limitation. They found that most of the spam messages are 

blacklisted 2-40 days after their appearance on twitter. Since 90% of clicks occur in the first two days 

of tweeting, it can be concluded that blacklists are too slow to be a powerful protection mechanism. 

39% of malware and phishing URLs evade detection using shorteners, once they have been detected.  
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The use of automated tools such as spambots is quite effective for fast 

distribution of spam messages to many platforms. By providing a 

mechanism to prevent automated distribution of spam messages, Spam 

2.0 filtering method can reduce this problem significantly. The majority 

of prevention-based methods try to identify automated attempts in order 

to counteract Spam 2.0. 

 

One of the most popular prevention-based methods to stop automated requests and distribution of 

automate spam content is CAPTCHA (von Ahn et al. 2003). As discussed previously, CAPTCHA is a 

challenge and response test to make human users request and automate generated requests separately.  

CAPTCHA tests need to be automatically generated so that it is easy for human users to solve but 

hard for machines to bypass. Such tests have been widely used in email and web. Most of the current 

web applications include CAPTCHA as a part of their content submission and registration process. 

CAPTCHA currently is the most common solution for slowing and preventing Spam 2.0 distribution. 

Apart from CAPTCHA which is designed mainly to prevent automated requests, there have been 

some Proof-of-Works (POW) based methods (ref. Section 1.6.4.3) focused on slowing down or 

stopping automated requests.  

Hashcash is an example of the POW-based method used for slowing down automated form 

submissions (Mertz 2004). The idea behind hashcash is to increase the cost of web form submission 

thereby increasing computational, time and economical costs of the spam distribution. With this 

method, the sender needs to calculate a stamp for submitted content. The calculation of the stamp is 

difficult and time-consuming but comparatively cheap and fast for the receiver to verify.  

However, by employing a pool of computational resources, an adversary can bypass the time and cost 

of computation to calculate the stamp. This makes Hashcash an impractical solution for the current 

trend of spam distribution.  

There are some technical solutions aimed at detection of spambots prior to visiting a website. 

However, most of these approaches are not effective enough to prevent spammers, mainly because 
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they are out-dated or spammers can easily bypass them. The following is a discussion of these 

technical solutions along with spammers’ tactics to bypass the methods.  

Robots.txt: Known as Robot Exclusion Protocol is a text file normally inside a root directory of 

websites. It contains a list of access restriction places (e.g. web pages, directories, etc) for the website 

that forbid web robots from accessing them (Koster 1994). According to this protocol, web robots 

should examine robots.txt file whenever they visit a website. However, pursuing Robot Exclusion 

Protocol is voluntary and many web robots do not follow this protocol (Koster 1995). As spambots 

are tasked to distribute promotional and junk content, it is doubtful that they would observe the robot 

rules stated in the robots.txt file. Therefore, this solution is ineffective in dealing with spambots. 

User-agent: User-agent is a field inside a HTTP Request Header to the web server that identifies the 

client application. A web robot should declare its identity to the web server by specifying this field 

(Koster 1993). For instance, the user-agent for a Yahoo! web crawler is Slurp (Yahoo! 2009). By 

simply examining the user-agent field, web administrators are able to restrict access for some specific 

web robots. However, spambots often hide their identity or rename their user-agent to a name that is 

not restricted (Hayati et al. 2009). Therefore, this technique is ineffective in restricting spambots. 

Head Request: The response of web server on the HTTP Head request is header information without 

a message body. Web robots use head request to check the validity of hyperlinks, accessibility and 

recent modifications on the requested web page (Fielding et al. 1999). Therefore, large numbers of 

head requests in the incoming traffic can indicate web robot activity. However, this heuristic is not 

effective at detecting spambots as they normally request the message body rather than the header. 

Referrer: Referrer is a field inside the HTTP request that contains a link to the web page a client has 

followed to reach the current requested web page. For instance, if a user reaches 

www.example/page2.html from www.example.com page, the referrer field is www.example.com. 

Ethical web robots normally do not assign any value to the referrer field so they can be differentiated 

from human users. However, spambots often assign a value to the referrer field to mimic a human 

user and can also provide fake links to conceal their navigation (Park et al. 2006). 

Flood Control: Flood control is a technique to limit the number of requests a client can send within a 

specified time interval. The idea is to restrict the number of automated submission requests to the 

server (Ogbuji 2008). For example, once a user creates a new thread in a forum, s/he may have to wait 
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ten minutes before creating another thread. This technique may slow down automatic submissions by 

spambots but it also causes inconvenience for genuine users. Additionally, such a technique cannot 

stop spambots but only delay the submission process. Spambots often create multiple user accounts 

and can therefore easily bypass this technique (Hayati et al. 2009). 

Nonce: Nonce is a technique to stop the submission of automated forms. Nonce is a random generated 

set of characters that are placed on a web page with a form (Ogbuji 2008). When the user submits the 

form, the nonce is sent to the server. If the nonce does not exist in the form submission, it reveals that 

the form was not loaded by the client and indicates the possibility of an automated attack by a 

spambot. This technique only ensures that submitted content originates from a web form loaded by 

the client, but cannot stop spambots that submit content through the website forms. 

Form variation: This technique involves varying objects inside a form upon web page request 

(Ogbuji 2008). For example, the name of input fields within a form changes for each user web page 

request. The idea of this technique is similar to nonce, in that it wants to ensure that a server form 

generated is used during submission. However, like nonce, it cannot block spambots that use the 

website forms. 

Overall, prevention-based methods are about to expire as computers become more powerful. The 

studies show that state of the art prevention methods such as CAPTCHA are weak against current 

spam tactics. 

Apart from detection and prevention based Spam 2.0 filtering methods, there are some studies in the 

literature which aim to identify spam behaviour inside the system. The next section presents a survey 

of these methods known as early-detection based Spam 2.0 filtering methods. 

2.3.4.3 Early-Detection based Spam 2.0 Filtering Methods 

The early-detection based Spam 2.0 filtering methods try to discover spam behaviour inside the 

system prior to or just after spam content distribution. These methods investigate the behaviour of 

spam origin, such as spambots. 

(Tan & Vipin Kumar 2002) proposed a rule-based framework to discover search engine crawlers and 

camouflaged web robots. They utilised navigation patterns such as session length, set of visited web 

pages, and requested method type (e.g. GET, POST, etc) for classification.  Their main assumption 
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was that navigational patterns of web robots are different from those of human users. For instance, a 

web crawler intends to maximise coverage of a website; hence, it typically crawls in a breadth-first 

manner. A link checker robot (to validate whether a link in a web page is still valid or not) normally 

sends HEAD requests to obtain header information of a web page. This characteristic is quite different 

from that of human users who typically request the entire web page.  

The authors utilised the following properties to distinguish web robots from human users: 

• The total number of requested web pages,  

• the number of image requests,  

• the total time of each session, and  

• the number of different file format requests. 

Their proposed method initially started by labelling each session in web server log files based on 

some already known heuristics such as user-agent field, IP address, etc. The task resulted in 4 types of 

sessions: known web robots, known human users, unknown robots, and unknown human users. The 

tendency to assign each type is towards a non-robot. The authors utilised a C4.5 decision tree 

classifier and common precision, recall and F1-measure to evaluate their method. 

Their dataset for this study contained 180,602 sessions with 1,639,119 web log entries. For training 

purposes, the authors chose web robot and non-robot sessions equally. The result of their work 

showed that after 4 requests, their method was capable of differentiating human users from web 

robots with 90% accuracy. 

The adoption of non-robot type classification to simplify the model can result in misclassification. 

The authors did not investigate the existence of web spambots that mimic human users’ behaviour. 

Another early-detection based method that focuses on spambot navigational patterns was 

implemented by (Park et al. 2006). The authors of this work proposed a malicious robot detection 

method by employing both rule-based and machine learning algorithms. In the former case, the main 

assumption is that typically robots do not show any mouse-movement activity while interacting with 

the websites and they do not request any specific web objects (e.g. style sheet, Flash files etc). With 

the latter method, authors used machine algorithms with specific training based on 12 features (e.g. 
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the number of HEAD requests in HTTP, the number of HTML requests, the number of CGI requests 

etc.). 

The authors experimented on 929,922 sessions. They discovered that 24.2% of the total sessions 

belonged to humans which either have mouse movement activity or requested the style sheet file. 

However, the percentage of sessions with mouse movement activity was 22.3% which exhibits 1.9% 

false positives in the result. The authors explained that this might be related to some Internet 

configuration settings inside users’ computers that disallow the execution of specific scripts. The 

authors labelled 167,246 sessions consisting of 42,975 human and 124,271 robot sessions to use with 

a machine learning algorithm. The result showed 95% accuracy in classifications after 160 requests. 

The proposed method needs a significant number of requests in order to generate reasonable 

classification accuracy. Hence, it might not be applicable for real-world practices. 

Table  2.5 presents a comparative summary early-detection based Spam 2.0 filtering methods. 

Table  2.5: Comparative summary of early-detection based Spam 2.0 filtering methods. 

Method Platform Classifier Dataset Accuracy Extendable 
to other 
platforms? 

(Tan et al. 
2002) 

Websites C4.5 1M web 
server logs 

Best 0.9 

Accuracy 

Yes 

(Park et al. 
2006) 

Websites 8 classifiers 16K session 
in the web 
server logs 

Avg. 0.95  
Accuracy 

Yes 

 

Overall, early detection-based methods did not fully consider spam user (e.g. spambot) identifications 

and they have been designed to identify web crawlers in general. Additionally, they are platform-

dependent and cannot be extended to different platforms. 

Given the Spam 2.0 filtering methods discussed in previous sections, the next section provides a 

comprehensive evaluation of the current state of the art Spam 2.0 filtering methods. 
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2.3.5 Evaluation 

It was clear from the literature on spam filtering that, once a web platform increases in popularity, it 

attracts malicious users and spam content. The area of Spam 2.0 filtering is very young but recently it 

has received much attention from the research community. The comprehensive survey of the state of 

the art Spam 2.0 filtering methods has been discussed in the previous sections. This section gives a 

critical evaluation of such methods to point out the gaps and problems in the Spam 2.0 literature. 

Table  2.6 presents an evaluation of current Spam 2.0 filtering methods. 

The main drawback of the majority of Spam 2.0 filtering methods is that they depend on one specific 

platform. For example, many Spam 2.0 filtering methods have been proposed for Twitter. However, 

they are not extendable to the other platforms such as online discussion boards, blogs, wikis etc.  This 

is due to the nature of the features which are heavily platform-dependent (e.g. the ratio of hashtags 

and tweet content, the amount of tweets per users etc.). 

The other problem associated with the majority of Spam 2.0 filtering methods is that they are mainly 

content-based. Previously, it has been shown that content-based methods can be easily overcome by 

spammers. Additionally, the content-based methods are language-dependent and might not be 

extendable to other languages. 

The majority of detection-based methods are all afterthoughts. Once spam content has already 

infiltrated the platform, such methods are applicable to discover spam patterns. The detection-based 

methods require more resources with regards to CPU and time. 

Prevention-based Spam 2.0 filtering methods, such as CAPTCHA, inconvenience end users and waste 

their time, cause distraction, are unpleasant and at times intimidating. A number of recent works have 

reported approaches to defeat CAPTCHAs automatically by using computer programs (Abram et al. 

2008). CAPTCHA’s drawbacks include the following: 

• Decreases user convenience and increases complexity of human computer interaction. 

• As programs become better at deciphering CAPTCHA, the image may become increasingly 

difficult for humans to decipher. 

• As computers become more powerful, they will be able to decipher CAPTCHA better than 

humans can. 
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Therefore, CAPTCHA is a short-term solution that may not prove effective in the future. Spambots 

armed with anti-CAPTCHA tools are able to bypass this restriction and spread spam content easily 

while the futile user inconvenience remains. 

Finally, early-detection based Spam 2.0 filtering methods have not comprehensively considered 

current trends in Spam 2.0 and spambots. To date, spambots can mimic human user behaviour; 

however, the main intention of the early-detection based methods was to identify web robots in 

general, not spambots specifically. 

Table  2.6: Evaluation of state of the art Spam 2.0 filtering methods*. 

Method Comment Forum 
(personal 
message) 

Wiki Social 
Net 
(profile, 
targeted) 

Content-
based 

Extendable On-he-
fly 
detection 

(Tan et al. 
2002) ? ? ? ? - × × 

(von Ahn et 
al. 2003) ? ? ? ? - × × 

(Mertz 
2004) ? ? ? ? × × - 

(Park et al. 
2006) ? ? ? ? - × × 

(Zinman et 
al. 2007) - - - × × - - 

(Narisawa 
et al. 2007) - × - - × ? - 

(Nitin et al. 
2008) - - - × × - - 

(Uemura et 
al. 2008) × × - - × ? - 

(Bogers et 
al. 2008) - - - × × - - 

(Krause et 
al. 2008) - - - × × - - 

(Koutrika et 
al. 2008) - - - × × - - 
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Method Comment Forum 
(personal 
message) 

Wiki Social 
Net 
(profile, 
targeted) 

Content-
based 

Extendable On-he-
fly 
detection 

(Benevenuto 
et al. 2009) - - - × × - - 

(Liu et al. 
2009) - - - × × - - 

(Dellschaft 
et al.  2010) - - - × × - - 

(Lim et al. 
2010) × - - - × - - 

(Irani et al. 
2010) - - - × × - - 

(Benevenuto 
et al. 2010) - - - × × - - 

(Wang 2010) - - - × × - - 

(Lee et al. 
2010) - - - × × - - 

(Gao et al. 
2010) - - - × × - - 

(Huang et al. 
2010) × - - - × - - 

(Grier et al. 
2010) ? ? ? × - ? ? 

* Cross sign: the method can countermeasure the web spam tactics (the authors have specifically mentioned this in their 

study). Question mark: the method might counteract the web spam tactics (The authors have not mentioned this in their 

study.) 

Figure  2.7 presents the coverage of Spam 2.0 filtering methods based on different evaluation criteria 

in this survey. It is clear from the figure that most of the efforts are on Spam 2.0 detection in social 

networking systems and the majority of the methods are content-based. 
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Figure  2.7: The coverage of the Spam 2.0 filtering method based on different evaluation criteria 

Figure  2.8 illustrates the number of Spam 2.0 filtering methods based on each technical approach in 

this survey. It is clear from the figure that the majority of the studies use detection-based approaches. 

 

Figure  2.8: The number of Spam 2.0 filtering methods based on different technical approaches. 

The overall issues that exist in the current Spam 2.0 filtering methods are as follows: 

1. Methods are platform-dependent. They cannot be extended to other platforms. 

2. Detection-based methods are mainly content-based and can be bypassed by spammers. 

3. Content-based methods are language-dependent. Hence, a solution might not be applicable to 

different languages. 

4. Prevention-based methods are about to expire as computers become more powerful. The 

studies show that state of the art prevention methods such as CAPTCHA are weak against 

current spam tactics. 
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5. Early detection-based methods did not fully consider spambot identifications; rather, they 

have been designed to identify web crawlers in general. 

Spam 2.0 filtering is the main focus of this research which proposes a new approach for the 

elimination of Spam 2.0 which is discussed in the following chapters. The next section concludes this 

chapter. 

2.4  Conclusion 
In this chapter an overview of the relevant literature and the current efforts in the spam filtering field 

has been presented, together with an investigation and evaluation of the most successful anti-spam 

methods. A survey was conducted of spam filtering efforts on the web and Web 2.0 platforms 

including detection-based (i.e. content-based, linked based and rule-based), prevention-based and 

early-detection based approaches. Although this research presents a novel Spam 2.0 concept that has 

not been investigated previously, attempts that have been utilised in other related types of spam (i.e. 

web spam) are also investigated for the purposes of contrast and to promote this approach.  

Through study and evaluation of existing spam filtering approaches in the web spam area, it has 

become clear that state of the art methods focus on providing a more robust web page ranking 

algorithm or identification of web spam tactics in the search results. Technically, the methods are 

mainly based on link- and detection-based approaches.  

This dissertation focuses on the comprehensive study of Spam 2.0 in terms of several web spam 

concerns as well as new problems. A comprehensive survey of the state of the art web spam and Spam 

2.0 filtering methods that have been examined in this chapter is one of the main contributions of this 

study to highlight the unresolved issues and at the same time effectively capture the knowledge in the 

domain of spam filtering. 
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Chapter 3    

Problem Definition 
This chapter covers 

► A formal definition for spam filtering categories. 

► Problems associated with Spam 2.0 filtering approaches. 

► The research issues that need to be addressed. 

► The research methodology that will be adopted in this research to systematically address the 

identified research issues. 

3.1  Introduction 
Spam filtering has been a challenging problem on the web. Search indexing algorithms need to prune 

spam web pages from their indexes, website operators needs to eliminate spam content (e.g. comment 

spam) from their websites, and web developers need to be aware of the latest spamming tactics in 

order to ensure their software is robust against spam attacks.  

A comprehensive survey and detailed evaluation of the state-of-the-art spam filtering methods in web 

spam and Spam 2.0 were discussed in Chapter 2. Although there has been considerable research in the 

spam filtering area, no single approach has addressed the problems produced by Spam 2.0.  

This chapter outlines the main problems and challenges in Spam 2.0 detection, prevention and early 

detection approaches. It provides the problem definition for Spam 2.0 filtering categories. It then 

follows with a formal description of the research issues that will be addressed in this dissertation. The 

chapter concludes with a brief discussion of research methodologies and a summary of the problem 

definition. 
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3.2  Problem Definition 
The problems and challenges that are associated with Spam 2.0 filtering can be categorised according 

to three categories as follows: 

• Problems with detection-based Spam 2.0 filtering methods. 

• Problems with prevention-based Spam 2.0 filtering methods. 

• Problems with early-detection based Spam 2.0 filtering methods 

For each category, a formal definition is given and the technical concerns are discussed. The formal 

definition is used to define the technical problem. The problems associated with the technical 

concerns will form the research issues for the development of the new solution. 

3.2.1 Problems with detection-based Spam 2.0 filtering methods 

3.2.1.1 Formal definition 
The detection-based approach strives to discover spam patterns inside the content of user-submitted 

data. In Spam 2.0, the content can be in the form of a comment, a forum post, a wiki page, a social 

profile etc. A content is represented as a set of characteristic values or features (F) E.q.  3.1.  

  3.1 

where fi is a value of the features associated with content. For example, in online discussion boards,  fi 

can represent the existence of the given terms inside the forum post. fi is 1 if the ith term exists in the 

forum post, otherwise fi
 = 0 . Therefore, F is a Boolean content vector. The process of representing 

content in the form of F is also known as feature extraction. 

A binary decision function φ is defined over F for classification as follows.  

  3.2 

C is a set of content class where 

  3.3 

cl refers to legitimate content and cs refers to spam. 
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The overall process in the detection-based Spam 2.0 filtering methods is illustrated in Figure  3.1. 

 

Figure  3.1: Overall process in the detection-based Spam 2.0 filtering methods. 

3.2.1.2 Technical concerns 
The detection-based Spam 2.0 filtering methods seek spam patterns with used-submitted content in 

Web 2.0 platforms. The main technical drawbacks with these approaches are:  

1. Passive solutions. Detection-based Spam 2.0 filtering methods are afterthought approaches. 

That is, once the spam content has already infiltrated Web 2.0 platforms, a detection-based 

method can be implemented to distinguish spam from genuine content i.e. cl from cs. 

2. Consume network and storage resources. As spam uses the network bandwidth to 

distribute content on Web 2.0 platforms, this may waste the limited bandwidth available for 

websites. Additionally, storage of spam content can waste the storage space and incurs 

monetary costs. 

3. Inability to automatically adapt to new spam patterns. The majority of detection-based 

approaches are supervised (ref. Section 2.3.5). There is a need to constantly update spam 

pattern datasets to address new spam patterns. Maintenance and storage of such datasets is 

expensive in terms of time and money. 

4. Inability to adapt with different platforms and languages. Most of the methods are 

designed to identify spam inside specific Web 2.0 platforms (ref. Section 2.3.5). Hence, the 

features (F) are platform-dependent and currently there is no single solution that can be 

applied to multiple Web 2.0 platforms. Moreover, the majority of detection-based methods 

are content-dependent. Hence, they might be useful for a particular language (e.g. English) 

but cannot be extended to identify spam in other languages. 

The detection-based Spam 2.0 filtering methods are still burdened by the above issues and the weak 

classification results of such methods shows that no method to date has addressed all of the problems.  
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3.2.2 Problem of prevention-based Spam 2.0 filtering methods 

3.2.2.1 Formal Definition 
The prevention-based Spam 2.0 filtering methods impede various functionalities of the system in 

order to keep malicious users out. The majority of the-state-of-art prevention-based methods produce 

time and computational challenges. Some may also produce economic challenges through online 

payments for accomplishing various tasks in the system. 

A user (client) who wants to perform an action in the system (e.g. register an account) needs to 

overcome a challenge that is issued by the server. The server can quickly and easily verify the client’s 

solution to the challenge and may grant permission to the client to perform the action. 

The server uses function CHAL() to issue the challenge (C). The client solution for C is S using a 

function SOL(). The server validates S through function VER() and if the output has required value 

(V), the server allows the client to complete the action. E.q.  3.4 illustrates the formal procedure of the 

prevention-based methods. 

 
 3.4 

 

In the prevention-based Spam 2.0 filtering methods, C is either a human 

solvable challenge that can be met only by humans (e.g. CAPTCHA), or a 

computational challenge which requires computational resources in order 

to meet the challenge (e.g. POW).  

 

The process followed by the prevention-based Spam 2.0 filtering methods is presented in Figure  3.2. 
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Figure  3.2: The process followed by prevention-based Spam 2.0 filtering methods. 

3.2.2.2 Technical concerns 
The main technical problems associated with prevention-based Spam 2.0 filtering method are:  

1. Weak/complex challenges result in ineffective Spam 2.0 filtering. The goal of CAPTCHA 

is to allow humans to pass while preventing automated systems from gaining access. It is 

important to consider the types of challenges posed by CAPTCHA. Complex challenges 

inconvenience the users as they waste their time, cause distraction, are unpleasant and, at 

times, intimidating. Visual and textual CAPTCHA challenges pose major problems for human 

users with specific disabilities such as vision impairment (May 2005). Some challenges might 

also restrict them from accessing the system. 

2. Computer programs are becoming better at processing CAPTCHA. As computers 

become more powerful, they will be able to decipher CAPTCHA better than humans can. A 

number of recent works have reported approaches to defeat CAPTCHAs automatically by 

using computer programs (Hindle et al 2008)(Chellapilla and Simard 2004). The latest 

version of CAPTCHA known as reCAPTCHA (von Ahn et al. 2008) has also been by-passed 

by computer programs (Houck 2010). 

3. Computer programs are becoming more proficient at overcoming POW challenges. By 

accessing a network of compromised computers (i.e. BotNet), an adversary can have access to 
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a significant pool of computational resources to compute various POW challenges. Hence, the 

current computationally expensive challenges might not be effective for spam filtering in the 

near future (ref. Section 2.3.4.2). 

4. Current prevention-based methods are vulnerable to relay attacks. In a relay attack, 

adversaries use humans to overcome a challenge. For example, a spammer can hire someone 

to defeat CAPTCHA and bypass the restrictions (Workathome 2009). 

5. Blacklists are too slow to protect Web 2.0 platforms. Studies (Grier et al. 2010) show that 

most of the spam hosts are blacklisted 2-40 days after their appearance. Since 90% of clicks 

occur in the first two days of spam distribution, it can be concluded that blacklists are too 

slow to offer effective protection against spam. 

6. Blacklists are not effective at Spam 2.0 filtering. Spam URLs evade detection by using 

URL shorteners. Additionally, the maintenance of blacklists is time-consuming and labour 

intensive. Hence, blacklists are not effective enough to protect Web 2.0 platforms against 

Spam 2.0. 

The state of the art prevention-based Spam 2.0 filtering methods are still subject to the 

abovementioned technical concerns and to date no study has been able to resolve all of these issues.  

3.2.3 Problem of early-detection based Spam 2.0 filtering 
methods. 

3.2.3.1 Formal Definition 
Similar to the detection-based Spam 2.0 filtering methods, early-detection based Spam 2.0 filtering 

identifies spam generation behaviour. Methods in this category are not detection-based, i.e. searching 

for spam patterns inside the content; nor are they prevention-based that generate a challenge for 

clients.  

Typically, by investigating the behavioural aspects of spam content generation,  such early-detection 

based spam filtering methods are capable of detecting spam. This behaviour is represented as a set of 

features (F) E.q.  3.5.  

  3.5 
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where fi is a value of the features associated with behaviour. For example, in an online discussion 

board, each fi can represent the total amount of time a user has spent to generate a reply to a thread or 

the existence of mouse activity while the user was navigating through the web platform. 

Similar to the detection-based methods, a binary decision function φ is defined over F.  

  3.6 

C is a set of the behaviour class where 

  3.7 

cl refers to legitimate behaviour and cs refers to spam behaviour. 

The process used by early-detection-based Spam 2.0 filtering methods is illustrated in Figure  3.3. 

 

Figure  3.3: The process used by early-detection-based Spam 2.0 filtering methods.  

3.2.3.2 Technical concerns 
Technical concerns associated with early-detection based Spam 2.0 filtering methods are as follow. 

1. Inability to identify Web 2.0 spam users. Existing early-detection methods are not capable 

of identifying web spam users (e.g. spambots) and there is no study in the literature that 

addresses the detection and prevention of web spambots. 

2. Machine learning based methods are not effective for real-time detection. Machine 

learning based solutions require a considerable amount of time and computational resources 

(Sculley and Gabriel 2007). Therefore, they might not be suitable for spontaneous spam user 

identification on the web.   
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3. The nature of Spam 2.0 is not well understood. As discussed in Chapter 1 and 2, no study 

as yet has focused on characterising the new generation of spam in Web 2.0 platforms. 

Hence, Spam 2.0 characteristics are not well defined for effective filtering approaches. 

The above list presents issues and weaknesses of the current early-detection based Spam 2.0 filtering 

methods. To date, no study has been conducted to resolve all of these issues.   

3.3  Research Issues 
Given the problem definition presented in above sections and the evaluation of the-state-of-art Spam 

2.0 filtering methods discussed in Chapter 2, this section discusses the research issues that are 

addressed in this study. From Chapter 4 onwards, the solutions that attempt to address these research 

issues and research objectives (Chapter 1) will be pursued. 

3.3.1 Research Issue 1: The nature of Spam 2.0 is not well 
understood 
Based on the survey of current Spam 2.0 filtering methods that have been discussed in Chapter 2 and 

problem definitions for Spam 2.0 filtering methods, it is clear that Spam 2.0 is not well understood. 

The literature contains no general definitions of such spam. The majority of the methods are directed 

at applications of existing techniques as used in other spam filtering domains (e.g. email/webspam). 

They are not effective enough to identify and combat Spam 2.0.  

In order to address this problem, a number of research questions need to be investigated:  

1. What are the differences between Spam 2.0 and other types of spam? What are the aims of 

Spam 2.0 distribution? How is Spam 2.0 created? 

2. What is the nature of Spam 2.0 generation? What tools do spammers use to generate and 

distribute Spam 2.0 content? Is Spam 2.0 distributed automatically or manually?  

3. What tactics do spammers employ to find and choose their targets (Web 2.0 platform)? 

4. How effective are current Spam 2.0 filtering methods in identifying and blocking spammers? 

How do spammers bypass current detection, prevention and early-detection based Spam 2.0 

filtering methods?  
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5. What are the main topics of Spam 2.0-related content used by spam users?  

6. What are the main characteristics of Spam 2.0 distribution? How are these different from real 

human user behaviour?  

7. What possible strategies or approaches can be used to block Spam 2.0? 

By creating a platform to monitor Spam 2.0 generation and archive Spam 2.0 content, this research 

addresses all the above questions. This platform is discussed in Chapters 5 and 6. 

3.3.2 Research Issue 2: Existing Spam 2.0 filtering solutions are 
afterthoughts 
As discussed in Chapter 2, current Spam 2.0 filtering methods are mainly detection-based. The 

majority of detection-based approaches are not capable of eliminating spam content before its 

submission. Therefore, the main technical problem associated with current methods is that they are 

passive and afterthought solutions. 

In order to address this issue, the following questions need to be addressed. 

1. How can a spam propagator be identified before content submission? 

2. How can an appropriate approach be selected to detect Spam 2.0 in a more proactive way? 

In this research, all the above questions have been addressed in the design of the proposed Spam 2.0 

filtering method. The conceptual framework for this design is presented in Chapter 7. 

3.3.3 Research Issue 3: Platform and language-dependent 
approaches 
Existing Spam 2.0 filtering approaches are either platform-dependent or language-dependent. They 

might be effective only in particular platforms or languages. Therefore, the main technical problem 

here is that current methods are platform and language dependent. 

In order to address this issue following questions need to be addressed. 

1. What approaches are required to make spam filters language-independent?  

2. Which features are language-dependent?  
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3. How can a spam filter be extended to multiple platforms?  

4. What discriminative features need to be investigated that are common among the majority of 

Web 2.0 platforms for Spam 2.0 filtering? 

In this research, all the above questions have been addressed in the design of the proposed Spam 2.0 

filtering method. The conceptual framework for this design is presented in Chapter 7. 

3.3.4 Research Issue 4: Current methods waste network and 
storage resources 
As mentioned in Research Issue 2, existing methods are not capable of eliminating spam content 

before its submission. Therefore, spam content is transmitted and hosted on a web platform. This 

results in network and storage wastage. To address this wastage issue, the following questions need to 

be considered. 

1. How can spam content be identified before its submission on a web platform? 

2. What other features can assist the minimisation of resource wastage? 

In this research, all the above questions have been addressed in design of the proposed Spam 2.0 

filtering method. The conceptual framework for this design is presented in Chapter 7. 

3.3.5 Research Issue 5: Prevention-based methods pose 
inconvenience to human users 
A survey of prevention-based Spam 2.0 filtering methods has been presented in Chapter 2. Based on 

the problems definition associated with such methods, the following main technical problems have 

been addressed in this research. 

• Weak/complex challenges result in ineffective Spam 2.0 filtering. 

• Computer programs are becoming better at processing CAPTCHA. 

• Computer programs are becoming proficient at overcoming POW challenges.  

• Current prevention-based methods are susceptible to relay attacks. 
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The above technical problems are resulted in a number of research questions. In order to overcome the 

problems, the following research questions need to be considered. 

1. What factors are important in slowing/blocking spam distribution? Do these factors limit real 

user experience as well? How can spam be kept out of the system without limiting the 

genuine user experience?  

2. How can spammers be explicitly blocked out of the system while letting genuine users enter 

to the system?  

3. In order to avoid the limitations of prevention-based methods (e.g. CAPTCHA) for disabled 

people, what approach needs to be investigated? 

Above research questions need to be addressed in order to make an effective Spam 2.0 filter. The 

conceptual framework for this design is presented in Chapters 7 and 8. 

3.3.6 Research Issue 6: Inability to identify Web 2.0 spam users 
Existing early-detection based methods that have been discussed in Chapter 2 aim to identify 

automated requests. For example, such methods have been designed to detect web robots (e.g. link 

checkers) activities on the web platform. Although malicious web robots are employed by spammers 

to distribute Spam 2.0 content, existing early-detection based methods are not specific and effective 

enough to identify web spam users.  

In order to address this issue, the following research questions need to be considered. 

1. What are spam users? What do spammers use as tools (e.g. spambots)? How do spam users 

navigate the Web 2.0 platforms? 

2. What do spam users aim to achieve? 

3. What are the key features of spam users' behaviour? What are the differences between spam 

and genuine users’ behaviour? 

In this research, all the above questions have been addressed in the design of the proposed Spam 2.0 

filtering method. The conceptual framework for this design is presented in Chapters 7 and 8. 



 

 

105 Problem Definition 

3.3.7 Research Issue 7: Machine learning based methods are not 
effective for real time detection 
Machine learning algorithms need a considerable amount of time and computational resources 

(Sculley and Gabriel 2007). Therefore, they are not effective for spontaneous classification tasks in 

the spam filtering process due to the rapid rate of data generation on Web 2.0 platforms and the need 

to identify spam content quickly. In order to address this issue, the following research questions need 

to be considered. 

1. How can the generated data be modelled so that it is suitable for online scenarios where the 

incidence of data generation is high? 

2. What classifier can perform well in on-the-fly situations? 

 To address the problem of existing early-detection methods for the identification of spambots, the 

above research questions need to be addressed. The conceptual framework for this design is presented 

in Chapters 7 and 8.  

The next section provides the research methodology that would be adopted for this research. 

3.4  Research Methodology 
A science and engineering-based research approach will be adopted for this research. Science and 

engineering research leads to the development of new techniques, architecture, methodologies, 

devices or a set of concepts, which can be combined to form a new theoretical framework. This 

research approach commonly identifies problems and proposes solutions to these problems.  

The science and engineering approach that has been utilised in this research consists of: problem 

definition, conceptual solution, implementation, experimentation, testing and validation of prototypes 

against existing solutions. It consists of three main stages: 

• Problem definition 

• Conceptual solution 

• Implementation, testing and evaluation 
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3.4.1 Problem definition 
In the problem definition stage, the aim is to highlight the significance of the research questions. This 

problem definition stage has been covered in this chapter. Problems for spam filtering method have 

been grouped into three different Spam 2.0 filtering categories: detection-based, prevention-based, 

and early-detection based. For each category, the discussion is carried out from three perspectives: a 

formal definition of the category, the socio-economic, and the technical concerns. The problems 

associated with the technical concerns led to the research issues for the new solution development.  

3.4.2 Conceptual solution 
The conceptual solution focuses on formulating a new method and approach through the design and 

building of tools, an environment or system through implementation. In this stage, a conceptual 

framework is designed for the proposed solution. A conceptual framework is an abstract model of the 

practical solution. It provides a road map for building the actual solution for the system and can be 

regarded as a blueprint for the whole system. 

3.4.3 Implementation, test and evaluation 
In this stage, testing and validation are carried out through experimentation with real-world examples 

and field testing. The process of testing and validating a working system provides unique insights into 

the benefits of the proposed concepts, frameworks and alternatives. 

By building a prototype system, implementing, testing and evaluating, a better insight into the 

feasibility and functionality of the conceptual framework as well as the whole solution, is provided.  

In this dissertation, Chapter 4 provides a conceptual framework for the proposed solution, and 

Chapter 5 to Chapter 8 carry out implementation and experimentation of the conceptual framework 

along with testing of the proposed solutions against real-world practices and comparisons of the 

proposed methods against existing practical solutions 

3.5  Conclusion 
This chapter provides a problem definition for existing Spam 2.0 filtering methods and approaches. 

Based on the socio-economic and technical problems of existing solutions, four research issues have 

been defined. For each research issue, a number of research questions have been proposed. These 
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research questions need to be addressed in the development of any new Spam 2.0 filtering method. To 

address each research issue, three research aims have been proposed. Furthermore, the research 

methodology for this research has been discussed. 

In the next chapter, an overview of the proposed solution along with its conceptual framework will be 

provided. The conceptual framework is designed to address all the issues that have been discussed in 

this chapter. 



 

 

108  Chapter 4  

 

Chapter 4    

Overview of Solution and Conceptual 

Process 
This chapter presents 

► an overview of the proposed solutions 

► a conceptual framework of the proposed solutions 

► a conceptual process adopted in the development of the proposed solutions  

4.1  Introduction 
As outlined in Chapter 2, a number of works have addressed the issue of Spam 2.0 filtering. Existing 

Spam 2.0 filtering methods strive to identify spam content inside Web 2.0 platforms. However, this 

area of research is quite young and it is evident that to date no research has resolved the Spam 2.0 

problem entirely. Chapter 3 presented seven major research issues pertaining to the existing solutions 

that are addressed in this research.  

This chapter provides an overview of the solutions to each of the research issues discussed in Section 

3.3. 

4.2  Overview of the Solution 
In this section, three solutions are briefly introduced to address the research issues discussed in 

Section 3.3. These three solutions are:  

1. HoneySpam 2.0. 

2. Early detection-based Spam 2.0 filtering method (EDSF) 

3. On-the-Fly Spam 2.0 filtering method (OFSF) 
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Each of these proposed methods is discussed below. 

A framework named HoneySpam 2.0 is proposed in Chapter 5 to monitor and store spam users’ 

activity on Web 2.0 platforms. This solution is proposed to address the following:  

• Research Issue 1: The nature of Spam 2.0 is not well understood 

HoneySpam 2.0 is capable of tracking and archiving current Spam 2.0 web navigational behaviour 

and its associated submitted content on active Web 2.0 platforms. The outcome of this investigation 

provides a better insight into the nature of Spam 2.0 for future Spam 2.0 filtering approaches. 

Based on initial tracking results from HoneySpam 2.0, Chapter 6 provides a framework to investigate, 

formulate and cluster a spam user behaviour model. This is achieved by discovering uncovered 

spammers’ behaviour on Web 2.0 platforms, understanding spammers’ targets, formulating 

spammers’ behaviour in order to develop discriminative feature sets, and cluster spam users’ activities 

based on similarities. 

The Spam 2.0 filtering scheme named Early-Detection based Spam 2.0 Filtering (EDSF) is proposed 

in Chapter 7 to identify and eliminate spam users from Web 2.0 platforms. This solution is proposed 

to address the following issues: 

• Research Issue 2: Existing Spam 2.0 filtering solutions are afterthoughts 

• Research Issue 3: Platform and language-dependent approaches 

• Research Issue 4: Current methods waste network and storage resources 

• Research Issue 5: Prevention-based methods pose inconvenience for human users 

• Research Issue 6: Inability to identify Web 2.0 spam users 

EDSF implicitly investigates Spam 2.0 content generation and spam users on any Web 2.0 platform; 

hence, it does not pose inconvenience for human users. The proposed solution minimises resource 

wastage by preventing submission of spam content and it is language and platform independent. 

The EDSF scheme is then extended in Chapter 8 where an On-the-Fly Spam 2.0 Filtering (OFSF) 

scheme is presented. OFSF improves the practicality, effectiveness and robustness of the EDSF. This 

solution is proposed to address the following issue: 
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• Research Issue 7: Machine learning-based methods are not effective for real-time detection 

The idea is to propose a Spam 2.0 filtering method that can spontaneously detect spam users. ESDF 

uses a machine learning classifier which is not effective for spontaneous detection of spam behaviour. 

The OFSF is capable of on-the-fly detection of spam behaviours. The idea here is to monitor users’ 

behaviour as they use the system by using a novel rule-based classifier to store, retrieve, and classify 

spam users from genuine human ones. 

 

Figure  4.1: Overview of the conceptual solution. 

Figure  4.1 shows how the dissertation is organised from this chapter onwards. The conceptual 

solution is proposed to address the four main problems concerning Spam 2.0 filtering, which were 

outlined in Section 3.2. The figure also shows how each of these problems is addressed in the 

respective chapters. In the next section, the details of each proposed solution are discussed. 

4.3  Solution Description 
This section provides an overview of the solutions which are developed to address the issues 

highlighted earlier in this chapter. The three solutions presented in this dissertation are: 

1. Characterising Spam 2.0 and Spam 2.0 distribution model. 

2. Early-Detection based Spam 2.0 Filtering (EDSF) method to implicitly detect spam users, be 

language and platform independent and minimise user inconvenience. 

3. One-the-Fly Spam 2.0 Filtering (OFSF) method to spontaneously identify and prevent spam 

users. 
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Each of the above solutions is explained in the following sections. 

4.3.1 Characterising Spam 2.0 and Spam 2.0 distribution model 
HoneySpam 2.0 is a monitoring tool to track, log and archive spam user activities on Web 2.0 

platforms. It can be embedded inside any web application to monitor Spam 2.0 activities.  

HoneySpam 2.0 is capable of storing and logging all information related to spam and non-spam users 

on Web 2.0 platforms such as web usage data, user-profile related data, submitted content, etc. Each 

part of this information provides a better insight into the way Spam 2.0 works. Web usage data can be 

employed to find out the origin of Spam 2.0, demographic information, timestamp of different web 

requests, etc. Web usage data can also be used to analyse the behaviour of Spam 2.0 distribution. 

Additionally, it provides a model for human content contribution as well. 

Submitted content contains information related to the contributed content on the Web 2.0 platform. 

Examples of such submitted content include: a comment, a reply to a discussion or a wiki page. This 

information can be used to analyse the nature of submitted content for Spam 2.0. Chapter 5 is focused 

on HoneySpam 2.0 and its conceptual model. 

 

Figure  4.2: HoneySpam 2.0 simple deployment network diagram. 

Figure  4.2 illustrates a simple deployment network diagram of HoneySpam 2.0.  

Based on the initial result of HoneySpam 2.0, a more in-depth analysis of Spam 2.0 is presented in 

Chapter 6 including: 

• Discovering uncovered spammers’ behaviour on Web 2.0 platforms 
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• Understanding spammers’ intentions on Web 2.0 platforms 

• Formulating spammers’ behaviour in order to develop discriminative feature sets 

• Clustering spammers’ activities into groups based on features sets 

• Characterising spammers’ behaviour in each cluster 

• Developing a strategy to utilise feature sets for Spam 2.0 filtering 

Chapter 6 presents a framework to investigate, formulate, and cluster Spam 2.0 behaviours. Three 

feature sets – Action Set, Action Time, and Action Frequency are presented accordingly to formulate 

spammers’ behaviour on Web 2.0 platforms. A neural network clustering mechanism is used to 

cluster spammers’ behaviour based on these three feature sets. 

HoneySpam 2.0 along with more in-depth analysis of Spam 2.0 in Chapter 6 would address the 

following research issue: 

• Research Issue 1: The nature of Spam 2.0 is not well understood 

 

Action is a user set of requested web objects used to perform a certain 

task or purpose. For instance, a user can navigate to the registration page 

in an online discussion board, fill in the required fields and press on the 

‘submit’ button in order to register a new user account. This procedure 

can be modelled as “Registering a user account” Action. Action is 

explained in Section 6.2.2.   

 

4.3.2 Early-Detection based Spam 2.0 Filtering (EDSF)  
A novel Early-Detection based Spam 2.0 Filtering (EDSF) method is proposed to filter out Spam 2.0 

from Web 2.0 platforms. The EDSF is language-independent since it does not use any language-

dependent features (e.g. content features) and can be extended to multiple platforms. The EDSF can 

be used inside multiple platforms since it exploits behavioural features that are common in Web 2.0 

platforms. Additionally, it minimise network and storage resource by preventing submission of Spam 

2.0 and blocking spammers activity inside the system. 
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The proposed method addresses the following issues. 

• Research Issue 2: Existing Spam 2.0 filtering solutions are afterthoughts 

• Research Issue 3: Platform and language-dependent approaches 

• Research Issue 4: Current methods waste network and storage resources 

• Research Issue 5: Prevention-based methods pose inconvenience for human users 

• Research Issue 6: Inability to identify Web 2.0 spam users 

The fundamental assumption in the EDSF is that spammers behave differently compared to genuine 

users within Web 2.0 platforms. Spam users’ web usage behaviours are different from that of genuine 

users. Spammers develop or make use of technologies such as auto-submitters, spambots etc. (Hayati 

et al. 2010) to assist them in fast distribution of spam content. Therefore, spam users’ web usage data 

can be different from that of genuine users.  

EDSF makes use of web usage navigation behaviour to build up a discriminative set of features 

including Action Set, Action Time, and Action Frequency. Such a feature set is used later in a 

machine learning classifier known as Support Vector Machine (SVM) for classification. 

Given that there is no work in the literature on Spam 2.0 behaviour classification, the development of 

EDSF are the initial steps toward identification of Spam 2.0 by utilising web usage behaviour. 

Figure  4.3 presents the overview process of the EDSF: 

• Step 1: Web usage data for the incoming traffic (e.g. user navigation through website) is 

implicitly gathered. 

• Step 2: Based on gathered web usage data, Actions are formulated i.e. Action Set, Action 

Time and Action Frequency.  

• Step 3: Actions are grouped into two sets: Spam Actions and Genuine Actions. The former is 

a representation of spam behaviour while the later is a representation of genuine human user 

behaviour. 
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• Step 4: A machine learning classifier (SVM) is trained based on set of known Spam and 

Genuine Actions. The classifier will be used to identify spam Actions in new incoming 

traffic. Users who perform spam Actions are marked as spammers and blocked from the 

system. 

 

Figure  4.3: The overview process of the EDSF. 

The detail of the EDSF is discussed in Chapter 7. 

4.3.3 On-the-Fly Spam 2.0 Filtering (OFSF) 
The EDSF can detect Spam 2.0 in Web 2.0 platforms. However, due to its design constraints and use 

of a machine learning classifier, it ca not be used for fast and on-the-fly identification of spam 

behaviour. Compared to ESDF, the OFSF method is capable of on-the-fly detection of spam 

behaviour in Web 2.0 platforms. Hence, OFSF can satisfy the following research issue that could not 

be address in the design of EDSF 

• Research Issue 7: Machine learning based methods are not effective for real-time detection 

 A novel data structure and decision tree known as Trie has been utilised to provide on-the-fly 

functionality.  

The OFSF tracks and records users’ activities inside the system. After a certain threshold, the method 

can provide a decision as to whether or not a particular user is considered to be spamming. Based on 

previously observed behaviour of spam and genuine users, OFSF can provide a degree of certainty for 

the decision at each stage of execution. For example, while the user is filling out web forms and 
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navigating through web pages, the OFSF measures and investigates specific behavioural features (e.g. 

the amount of time taken to navigate between web pages) to determine the probability of spam 

behaviour. 

The OFSF uses an extended version of Action to formulate web usage data. Here, each user Action is 

assigned an Action Index Key. An Action Index Key for each user is placed together to create an 

Action String. Action Strings are representations of user behaviour for a given period. Action Strings 

contain the sequence order of user Actions inside the system. The order of performed Actions 

provides a better insight into users’ behaviour and intentions.  

 

Figure  4.4: The overview process of the OFSF. 

Figure  4.4 illustrates the overview process of the OFDF. 

• Step1: Web usage data for the incoming traffic (e.g. user navigation through website) is 

implicitly gathered. 

• Step 2: Based on gathered web usage data, Actions are formulated. 

• Step 3: Each Action is assigned an Action Index Key. The Action Index Key is placed in 

order to generate Action Strings. 

• Step 4: Action Strings are used to construct the classifier based on Trie. Spam and non-spam 

probability value is associated with each length of Action String and added to the Trie. 
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• Step 5: Each new Action String is fed into the classifier and is assigned a spam behaviour 

probability value. If this value is greater than a given threshold, the activity is marked as 

spam. 

The detail description of the OFSF is discussed in Chapter 8.  

This concludes the overview of the proposed solutions presented in this dissertation. A comparison of 

the proposed solutions is discussed in the next section highlighting the main differences. 

4.4  Comparative view of the proposed solutions 
As mentioned earlier in this chapter, EDSF and OFSF are two Spam 2.0 filtering methods which are 

proposed in this dissertation to combat Spam 2.0. The similarities between these two methods are as 

follows. 

• Early-detection based: both methods are early-detection based and they investigate 

behavioural data. 

• Usage of Web usage data: both methods gather web usage data to formulate Actions. 

• Supervised: both methods require a pre-set of spam and non-spam behaviour for 

classification. 

• Behavioural based: both methods investigate web usage behavioural data and Spam 2.0 

generation models to identify spam behaviour. 

The following is a list of differences between the EDSF and OFDF methods. 

• Machine learning classifier vs. a novel classifier based on Trie: EDSF uses a machine 

learning classifier to identify spam behaviour while the OFDF uses a novel classifier based on 

Trie to represent Action Strings and compare new Action Strings based on constructed Trie. 

Each Trie node contains the probability of a specific Action String being either genuine or 

spam. 

• Offline vs. Spontaneous detection: EDSF requires complete feature vectors to use inside the 

machine learning classifier and it might not be applicable in online scenarios. OFSF can 
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classify an incoming Action String while a user is using the system (i.e. with incomplete 

feature vector). 

• Set vs. Sequence: An EDSF feature vector is an Action set while OFSF is an ordered 

sequence of Action Strings. The order of Action can provide better insight into user’s 

behaviour on the Web 2.0 platform. 

This concludes the comparison of the proposed solutions. The following section describes the 

research approach that is adapted in this research. A science and engineering-based research approach 

is followed in this research and is discussed in the next section. 

4.5  Conceptual Process 
The overview of the proposed solution has been discussed in Section  4.2  . In order to develop these 

solutions, a conceptual process needs to be followed. The conceptual process has the following 7 

steps. 

1. Requirement Elicitation 

2. Design Rationale 

3. Theoretical Foundation 

4. Prototype Implementation 

5. Experimental Setting 

6. Results and Observation 

7. Validation and Comparative Analysis 

The above steps are consistent with a science and engineering approach which is adopted here. This 

section discusses the conceptual process which is applied throughout all the three research projects 

covered in this dissertation. 

4.5.1 Requirements Elicitation and Prioritisation 
This stage starts with a survey of existing solutions and identification of main issues relevant to these 

solutions. The issues are then prioritised according to their importance. The prioritised issues act as a 

framework for the proposed solution. 
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4.5.2 Design Rationale 
The second stage in the conceptual process is design rational. This stage describes the basic design 

decisions to meet the requirement elicited in Stage 1. All the requirements need to be considered and 

contribute to the design. 

4.5.3 Theoretical Foundation 
The third stage in the conceptual process is theoretical foundation. This stage is based on the design 

rationale which comes from Stage 2. This stage provides a solution to address all the requirements 

elicited in Stage 1 by analysing the design rational in Stage 2. A detailed algorithm is proposed in this 

stage to cover all the needs. 

The feasibility, computational complexity, scalability, real time deployment and reliability of each 

design decision are investigated. The final algorithm is the accumulation of all the design decisions 

that meet these criteria.  

The final algorithm needs to be tested for the functionality purposes. Later on, the results of the tests 

can be used as insights to optimise the initial algorithm. To test the algorithm, it needs to be 

implemented which is described in the next stage. 

4.5.4 Prototype Implementation 
The fourth stage in the conceptual process is prototype implementation. This stage provides an 

implementation of the theoretical foundation and prototype algorithm. The prototype is used to test 

and experiment and validate the theoretical foundation. 

4.5.5 Experimental Setting 
The fifth stage in the conceptual process is experimental setting. This stage provides some test cases 

to examine the prototype before conducting further experiments. The test cases analyse performance 

of the prototype in different conditions and real world scenarios. Once a reliable result is obtained 

from the prototype, the experiment can be conducted to investigate the prototype. 

4.5.6 Results and Observation 
The sixth stage in the conceptual process is concerned with results and observation. This stage 

discusses the experiments of running the prototype. It also analyses the experiments and describes the 

observations. For example, a spam filter examines real-world spam data contents to identify the 
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performance of spam filter classification. The observations are then cross-related with the theoretical 

foundations to validate the results. 

4.5.7 Validation and Comparative Analysis 
The final stage in the conceptual process is validation and comparative analysis. This stage compares 

the result from the experiments (actual results) with the theoretical model (expected results). The 

expected results might be similar to or quite different from actual results. In the case of difference, the 

theoretical model needs to be adjusted and all the steps from stages1to 6 might need to be amended. 

After validation of the expected results, the proposed solution is compared against existing solutions 

to discover its strong and weak points. Comparative analysis provides new avenues for future 

research. 

4.6  Conclusion 
This chapter provides an overview to the solutions that are proposed in this dissertation. These 

solutions are proposed to address research issues that have been discussed in Chapter 3. 

Three solutions that have been discussed in this chapter are as follows. 

• Characterising Spam 2.0 and Spam 2.0 distribution model: Current literature lacks a 
comprehensive understanding of Spam 2.0 and the way it is propagated on Web 2.0 
platforms. In this dissertation, these problems are addressed by providing a mechanism named 
HoneySpam 2.0 to monitor, track and store Spam 2.0. This information is later analysed and 
investigated to discover the characteristics of Spam 2.0 and its distribution model. 

• Early-Detection based Spam 2.0 Filtering (EDSF) method to implicitly detect spam users, be 
language and platform independent and minimise user inconvenience: The early-detection 
based Spam 2.0 filtering methods attempt to identify spam behaviour prior to or just after 
spam content submission. Such methods investigate the behaviour of a spam submitter, e.g. 
automated tools, spambots etc. 

• One-the-Fly Spam 2.0 Filtering (OFSF) method to spontaneously identify and prevent spam 
users: OFSF makes use of web usage navigation behaviour to establish discriminative feature 
sets for spam users detection. OFSF considers the sequence and order of user web navigation 
in order to build up the feature sets for classification. Unlike EDSF, OFSF uses a novel rule-
based classifier to store, retrieve, and classify spam users separately from genuine human. 
OFSF makes it possible to spot spam users on-the-fly. While users are interacting with the 
Web 2.0 platform, OFSF is able to track and identify possible spam navigation patterns. 

The conceptual process used to develop these solutions has also been discussed in this chapter. 

A detailed discussion of these solutions is the focus of Chapter 5 to Chapter 8. 
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Chapter 5    

Tracking Spam 2.0 
This chapter covers 

► Introduction to HoneySpam 2.0 as a mechanism to understand Spam 2.0. 

► Characterising of Spam 2.0. 

► Experimentation and testing of HoneySpam 2.0 on real data. 

► Validation and comparative study of HoneySpam 2.0 against state-of-the-art solutions. 

5.1  Introduction 
As mentioned earlier in this dissertation, current literature lacks a comprehensive understanding of 

Spam 2.0 and the way it is propagated on the Web 2.0 platforms. This chapter addresses these 

problems by providing a mechanism named HoneySpam 2.0 to monitor, track and store Spam 2.0. 

This information is later analysed and investigated to discover the characteristics of Spam 2.0. 

HoneySpam 2.0 is tested against real-world Spam 2.0 data and its performance is compared against 

existing solutions.   

The theoretical foundation for HoneySpam 2.0, along with its algorithm design to address all the 

requirements laid out in Chapter 4, is also discussed here. Finally, the details of tests, experiments and 

observations of the results along with their validation are presented out in this chapter. 

In this chapter, Unified Modelling Language (UML) is used to visualise and present the artefacts of 

HoneySpam 2.0. UML is a de-facto modelling language used in software engineering to visualise, 

document and model object-oriented software (Pilone & Pitman 2005). UML has been used widely to 

model software. 

This chapter is organised as follows. A general overview of the HoneySpam 2.0 framework is 

presented in Section 5.2. The requirements and design rationale of the HoneySpam 2.0 framework 
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development is presented in Sections 5.3 and 5.4 respectively. The theoretical foundation of the 

proposed framework along with its algorithms is covered in Section 5.5. Section 5.6 presents the 

prototype of the HoneySpam 2.0. Experimental settings are discussed in Section 5.7 Finally, results of 

experiments along with validation and a comparative analysis are presented in Section 5.8 and 5.9 

respectively. Chapter 5 is concluded in Section 5.10. 

The following section describes the main requirements and design rationale for the HoneySpam 2.0 

that represents stage 1 and 2 of the conceptual process. 

5.2  General Overview of HoneySpam 2.0 
Spam content is prolific on the web as spammers no longer need to purchase, host and promote their 

own domains. This is due to the development and widespread adoption of Web 2.0 platforms. 

Spammers are now able to use legitimate websites to host spam content. Examples include fake eye-

catching profiles in social networking websites, fake promotional reviews, responses to threads in 

online forums with unsolicited content and manipulated wiki pages. This new generation of spam is 

referred to as Spam 2.0 as defined in Section 1.5.1. 

Little is known about the nature of Spam 2.0 and its distribution model. As discussed in Chapter 2, 

existing Spam 2.0 filtering solutions are not effective in detecting and preventing Spam 2.0 and there 

is no clear understanding of Spam 2.0 characteristics. Therefore, this research initially proposes a 

solution to investigate and study Spam 2.0. The proposed solution includes two parts – tracking and 

analysing. The former is done through a framework named HoneySpam 2.0, the latter through 

statistical analysis. 

HoneySpam 2.0 draws on the idea of honeypots – a technique used to attract and track cyber attackers 

(Spitzner 2002). It implicitly tracks web usage data which includes detailed monitoring of click 

streams, page navigation, forms, mouse movements, keyboard actions and page scrolling. 

HoneySpam 2.0 is a tracking framework that can be integrated in any web application ranging from 

blogging tools to social networking applications. The tracking data is later analysed to generate initial 

reports on Spam 2.0 characteristics. Extensive profiling and characterising of Spam 2.0 is the focus of 

Chapter 6. 

The main objective of this chapter is to: 
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• Present a novel framework to monitor, track and store Spam 2.0. 

• Demonstrate the potential of HoneySpam 2.0 to monitor and track Spam 2.0. 

• Statistically analyse Spam 2.0 and its generation model. 

• Provide a study of the strengths and limitations of the proposed solution. 

Given the brief insight into the research conducted in this chapter, the following section discusses the 

requirements for this research. 

5.3  Requirements 
This section represents the first stage of the conceptual process where requirements are elicited and 

prioritised. The following requirements are laid down for the proposed solution.  

1. Openness: The solution should gather real-world examples of Spam 2.0 and be further 

extended to include different types of Spam 2.0 activities. 

2. Implicitly: The solution should implicitly accumulate data from spam users and their 

interactions. 

3. Analysability: The captured data needs to be complete and analysable for future 

investigation. The captured data needs to be traceable, and it should be easy to weed out 

useless data. 

4. Security: The solution should be deployed in a secure environment. It should capture and 

store spammers’ data in a safe place and deny any unauthorised access to the other parts of 

the system. Otherwise, the system could be used for malicious purposes such as hosting 

malicious executable programs, illegal content, etc.  

5. Integrity: The captured data should be safe from malicious and genuine human tampering. 

6. Accessibility: The solution should be accessible and discoverable for capture spam tactics. 

This concludes stage 1 of the conceptual process. The design rationale which is discussed in the 

following section is based on the abovementioned requirements.  A design decision for each 
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requirement is made in the design rationale accompanied by a discussion of how the requirement is 

fulfilled. 

5.4  Design Rationale 
This section provides a design rationale to fulfil the requirements that is outlined in Section 5.3. This 

is the second stage of the conceptual process. The following design decisions are proposed in order to 

address each requirement. 

1. Develop a plug-in based solution using real-world best practices that can be integrated to 

multiple (live and operating) Web 2.0 platforms. This would satisfy the requirement for 

gathering real-world examples of Spam 2.0 and different types of Spam 2.0 activities (Req. 

1). 

2. Capture server-side data (e.g. web/form usage data) rather than executing scripts on the client-

side to capture data. This would satisfy the requirement for implicit tracking for of data (Req. 

2).  

3. Assign identifiers to incoming traffic in order to trace users operating on the Web 2.0 

platform (Req. 3). 

4. Host the framework in a secure environment with an isolated network connection in order to 

decrease the risk of security attacks on the local network (Req. 4). 

5. Manually monitor the execution of the framework in order to eliminate malicious or genuine 

human data from spam users’ data (Req. 5) 

6. Develop marketing/promotional strategies to advertise the URL of the hosted framework, i.e. 

HoneySpam 2.0 through different channels in order to attract spam users (Req. 6). A detailed 

discussion of this design decision is provided in Section  5.7.3 . 

In the development of any solution, the above design decisions should be considered. All these design 

decisions are included in the proposed solution to track and characterise Spam 2.0. This concludes 

stage two of the conceptual process. The following stage is the theoretical foundation for the proposed 

solution. 
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5.5  Theoretical Foundation 
The theoretical foundation for HoneySpam 2.0 discussed in this section represents the third stage of 

the conceptual process. The theoretical foundation of HoneySpam 2.0 has three main parts (Figure 

 5.1): (1) tracking, (2) pre-processing and (3) knowledge discovery.  

 

Figure  5.1: Theoretical foundation of HoneySpam 2.0  

The first part of the framework is designed for the tracking mechanism. The tracking part provides 

input data for other parts of the system. The input data consists of navigation usage data (i.e. IP 

address, referrer URL, browser identity etc) and form usage data (i.e. mouse movement, keyboard 

actions, form load/unload, form’s field focus/un-focus etc.). 

The second part is pre-processing which includes tasks such as data cleansing, user identification, and 

session identification. In the data cleansing task, irrelevant records would be removed. User 

identification is the task of associating each usage data with a specific user. Finally, session 

identification refers to splitting usage data into different sessions. Each session contains information 

about usage data for each user’s visit. 

Knowledge discovery is the last part of the proposed solution. The output of the previous part of the 

system would be used here for mining and characterising Spam 2.0. General data mining techniques 

including statistical and demographic analysis are used here.  

The proposed solution explained above addresses all of the requirements described in Section  5.3  . 

The next sections provide a detailed description of each part of HoneySpam 2.0. 

5.5.1 Tracking 

The tracking part of HoneySpam 2.0 is capable of tracking spam users on the Web 2.0 platforms, and 

monitoring Spam 2.0 distribution behaviour. The tracking part consists of two main components: 
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Navigation Tracking Component (NTC) and Form Tracking Component (FTC). Figure  5.2 illustrates 

the architecture of the tracking part.  

 

Figure  5.2: HoneySpam 2.0 tracking part architecture. 

5.5.1.1 Navigation Tracking Component 

This component is designed to track web page navigation patterns and header information of 

incoming traffic. The following information is captured by this component:  

• Requested URL: The requested URL is the web page address that is requested by the client. 

This contains the domain name address and the path and filename of the requested web page. 

Occasionally, the requested URL contains information about the parameters that are passed 

via the web page (e.g. http://www.example.com/dir/file.php?parameter=value).  

• Type of request method: NTC captures two most common types of methods for every HTTP 

request (i.e. GET and POST method). A GET method is used to retrieve or send data to the 

web server. To retrieve data, the URL of the web object is sent to the web server and in return 

the content of the web object or the data-producing process would be passed to the client. To 

send the data, the form data is encoded and attached to the URL. This URL is sent to the web 

server. A POST method is used for submitting data to the web server. The data is included in 

the body of the request. The requested URL here is not used for retrieving; it is a program that 

can handle the submitted data. The POST method is usually used for submitting form data. 

• Time of request (timestamp): The time of the request is stored as a UNIX timestamp. UNIX 

time is a well-known time format to record time. It is in the format of seconds elapsed since 

midnight Coordinated Universal Time of January 1, 1970. 
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• IP address: Internet Protocol (IP) address is a unique numerical label assigned to each device 

connected to the Internet. NTC records the IP addresses to identify each user. 

• User Agent: The User Agent contains information about the software program used by the 

client. It contains the software name, its version and some other optional information such as 

operating system name, operating system version etc. 

• Referrer URL: Suppose a web page A has a link to a web page B. If a user navigates from A 

to B, web page A is the referrer URL of B. NTC stores this information to find the origin of 

each request, determining whether it comes through internal web pages or other websites. For 

example, the referrer URL is very useful in discovering whether a user was directed to the 

website through the search engines. The search query can be extracted from the referrer URL. 

Figure  5.3 explains sample data that has been captured by NTC. 

 

 

Figure  5.3: Sample data captured by NTC. 

5.5.1.2 Form Tracking Component 

Other than the NTC, HoneySpam 2.0 has additional functionality that can provide insights into how 

spam users use online forms. It is a common belief that spambots do not interact with forms (Hayati et 

al. 2009); however, this research aims to examine this aspect here. The form tracking component is 

designed to investigate form input behaviour. The form Tracking Component (FTC) captures and 

stores the following form related data: 

• Mouse clicks and movements: The mouse clicks and movements capture whether the client 

is using a mouse when using forms. The timestamp for mouse movements on forms filed is 

transmitted to the server. 
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• Keyboard action: The keyboard action checks whether the client is using a keyboard when 

filling up fields in a form. The timestamp when the user presses any key along with key code 

is captured by the FTC and is then transmitted to the server. 

• Form field focus and un-focus: An online form consists of various fields. Once the user 

clicks or selects a field in the form, the Field Focus action would be triggered. When the user 

un-selects or moves to other fields, the Un-focus action would be triggered. The Form Field 

Focus and Un-focus can show users’ form field interaction as well as the amount of time 

taken to fill each field. 

• Form load and submission: Similar to the Form field focus and un-focus, the Form load and 

submission can show users form interaction as well as the amount of time that is taken to fill 

the whole form. 

FTC uses Asynchronous JavaScript and XML (AJAX) technology to capture the above information 

and transmit it to the web server (Zakas et al. 2006). AJAX provides data exchange with a server 

without reloading the whole web page. For reasons of practicality and implicit data collection, AJAX 

has been implemented to capture user-form interaction and transmit such data to the server behind the 

scenes. Other technologies (e.g. traditional HTML-based loading) interfere with user and system 

interactions; hence, they do not meet the framework’s requirements (Holdener III 2008).  

 

There are many other form events that can be captured, such as selection 

of elements, release of a key, occurrence of error etc. However, the above 

form usage data satisfies the requirements. Moreover, for simplicity and 

extendibility of the proposed solution, only the abovementioned form 

actions are captured. 

 

Figure  5.4 presents the sequence diagram for the tracking part, the process of which is as follows: 

Step1: User requests a web page that contains a form.  

Step2: NTC first captures the web usage data associated with initial request. 

Step3: NTC forwards the request to the web application to be processed. 
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Step4: Web application returns the produced web page. 

Step5: HoneySpam 2.0 attaches its FTC client code (AJAX) and sends it back to the user.  

Step6: Once the form has been loaded in the users’ browser and the user starts to interact with the 

form, the FTC client code starts to aggregate form usage data and implicitly transmits it to 

HoneySpam 2.0.  

Step7: Once the user submits the form, NTC captures the web usage data of the incoming requests.  

Step8: HoneySpam 2.0 passes the form submitted data to the web application for future processing. 

 

Figure  5.4: Sequence diagram for HoneySpam 2.0 tracking process. 

5.5.2 Pre-processing 

Pre-processing the captured data is the second part of HoneySpam 2.0.  
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Input: Raw form and navigation usage data 

Output: Session and user identified usage data 

There are three main tasks: data cleansing, session and user identification. 

5.5.2.1 Data cleansing 

Data cleansing is the process of removing any irrelevant records from the data. The data stored by 

HoneySpam 2.0 needs to be accurate, precise, and clean from noise. 

As stated before, NTC captures only the web page requests. However, in real practice, each HTTP 

request contains separate requests for other entities inside the web page such as graphics, style and 

script files. This is done automatically by the user’s browser and not explicitly by the user. NTC 

ignores other requests since the main purpose is to study users’ navigation. Other automatic requests 

do not provide valuable information for this study since the user does not explicitly request them. 

Therefore, all the requests that contain URL suffixes as shown in Table  5.1 are removed. 

Table  5.1: URL suffixes that need to be removed from the capture data. 

Graphic files Script files Animation files Style files 

.jpg, .jpeg, .gif, .png, 
.tiff, .bmp, .ico .js .flv, .swf .css 

 

Additionally, the data related to researchers monitoring the forum and the data related to known web 

crawlers and robots is also removed from the results. 

5.5.2.2 User Identification 

User identification is the task of identifying users from the web usage data (Robert Cooley et al. 

1999). HoneySpam 2.0 is designed to study spammers’ behaviour on a Web 2.0 platform. Hence, it is 

important to identify unique spam users on web applications in order to discover different spam 

behaviours. Previous studies show that user identification is a complicated task (Robert Cooley et al. 

1999), since web usage data does not provide enough information to differentiate requests between 

different users. User identification becomes even more complicated with the existence of:  
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• Proxy and cache servers: These servers are designed to speed up access to a specific web 

resource. A proxy server caches previous requests and returns subsequent requests without 

connecting to the remote server. Therefore, it makes user identification very challenging. 

• Local Internet browser cache: Similar to the caching in the proxy server, here the local 

user’s Internet browser caches requests so future requests for that data can be served faster. 

To deal with these problems, some heuristics are used in an attempt to identify unique users: 

• IP address: A change in IP address can represent different users. However, multiple users 

might share the same IP address. This might be confused as a single user. 

• User Agent: A change in the User Agent field in the same IP address can represent a different 

user. However, one user using two different Internet browsers in the same machine can be 

mistaken as multiple users. 

Therefore, the above heuristics are not capable enough of effectively discovering unique users (R. 

Cooley et al. 1997).  

In order to overcome the above problems, the proposed method uses a different approach to identify 

unique users. The majority of web applications require registration of a valid username before further 

interaction with the system. Moreover, users need to login to the system in order to use it. Each 

request to the web server needs to be authenticated before any processing occurs. It is not convenient 

for users to be asked for their user account credentials each time they send a request to the web server. 

A user’s credentials can be stored in the user’s machine and can be automatically sent to the web 

server with each request. This piece of information that is stored in the user’s computer is known as 

HTTP cookie (or cookie). Cookies can be used for a variety of purposes such as authentication and 

sessionisation. It is sent through the HTTP header to the web server. 

In the proposed method, the user credentials are extracted from each user’s request to the web server 

and are stored along with other navigational usage data. Therefore, each web request is associated 

with a username. This information can be used to discover unique users from the web usage data. 
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To characterise Spam 2.0 behaviour, it is necessary to investigate spam 

users’ behaviour on Web 2.0 platforms. After the user identification step, 

the usage data for website visitors (i.e. users who do not have user 

account) is removed. Website visitors cannot contribute to content 

generation unless they sign up to the web application. 

 

5.5.2.3 Session identification 

Session identification or sessionisation is the task of identifying a user’s web usage behaviour during 

each visit (R. Cooley et al. 1997). Each session contains specific information about the usage data for 

each website visit.  

Previous studies use simple heuristics to divide usage data into different sessions. For example, if the 

time between different requests exceeds a given time-limit, it is considered as a new user session (R. 

Cooley et al. 1997). Many studies use 30 minutes as a time-out for each session (Robert Cooley et al. 

1999). However, such a simple heuristic cannot be strong enough to discover all the user’s sessions. 

For example, it might take more than 30 minutes for a user to reply to a post in the forum; therefore, 

this might be mistaken for two sessions. 

In order to overcome this problem, the proposed method produces a session cookie for usage data to 

differentiate new sessions. A session cookie is a type of cookie that is valid only while users use a 

website. Once users close their Internet browsers, or if they do not visit the website for a certain 

amount of time (30 minutes), and logout/login to the website, the session cookie would expire. For 

each session cookie, the proposed method assigns a unique session number (session ID) to 

differentiate user sessions. 

Figure  5.5 presents a flowchart for the pre-processing part of the proposed method. The process is as 

follows.  

Step1: The pre-processing tasks start by obtaining HTTP requests.  

Step2: Unneeded data is eliminated by the data cleansing task.  
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Step3: The next two steps – user and session identification - are done in parallel. For user 

identification, the HTTP cookie header is investigated. The username is extracted from the cookie and 

associated with the HTTP request. Session identification is done through session cookies. A session 

ID is assigned to each session cookie to track the user during each session. 

Step4: All HTTP requests that do not contain any usernames are removed. 

 

Figure  5.5: Flowchart for pre-processing step. 

The above process makes the data ready for the next step – knowledge discovery. 

5.5.3 Knowledge discovery 

Knowledge discovery is the third and the last part of HoneySpam 2.0. 

Input: Session and user identified usage data 
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Output: Statistical report of spam users’ activity (e.g. usage and demographic analysis) 

The pre-processed data from the previous part needs to be analysed to reveal characteristic of Spam 

2.0.  

In this part of the proposed method, general data mining techniques are used to generate usage 

statistics as follows:  

• Web page visit dwell time  

• Form usage dwell time 

• Field focus dwell time 

• Amount of content-submission per hour/day 

• Frequency of Internet browsers 

• Referrer URLs  

• Return rate 

• Submitted content topics 

• Demographic analysis (e.g. country name) 

Web page visit dwell time 

The web page visit dwell time is the amount of time a user spends on each web page. It can be 

calculated by looking at each web page timestamp. Dwell time is defined as:  

  5.1 

d is dwell time for ith requested web page in the session S at time t. 

It is clear from the dwell definition that it is not possible to calculate dwell time for the last visited 

page in a session. For example, a user navigates to the last page on the website then closes his/her web 

browser. To overcome this problem, the average dwell time spent on other web pages in the same 

session is considered as the dwell time for the last page.  
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The rationale for investigating this measurement is to study how long spam users spend on a website. 

It is generally understood that spam users do not spend as much time as genuine users. This claim can 

be investigated through this measurement. 

Form usage dwell time 

The form usage dwell time is the amount of time a user spends to fill in all the fields in the form and 

then submit that form. The form usage dwell time can be calculated through E.q.  5.2. 

  5.2 

α is a web page which contains the form and β is a web script that process the submitted form data. 

The rationale for investigating this measurement is to study the spam users’ form usage. 

Field focus dwell time 

The field dwell time can be calculated through each field-focus and un-focus timestamp. The field 

dwell time definition is as follows. 

  5.3 

tu is field-unfocus event’s time while tf is the field-focus event’s time. The rationale for investigating 

this measurement is to study whether or not spam users are using a mouse or keyboard to interact with 

the website. It can also show the speed of spam users’ form completion. 

Amount of content-submission per hour/day 

The amount of content submission per hour/day represents how frequent spam users distribute spam 

content on Web 2.0 applications. It can also provide insight into the speed of Spam 2.0 distribution in 

a sample web application. This amount would be measured in terms of number of posts, replies etc. 

Frequency of Internet browsers 

The frequency of Internet browsing can provide a figure on the data mimicked by spam users in the 

User Agent field of HTTP header. Spam users use their own tools and not necessarily common 

Internet browsers. This can be investigated through this measurement. 

Referrer URLs 
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Referrer URLs can indicate the origin of user navigation - whether it was through search engines, 

other website, or direct visits. Hence, this measurement can provide insights into how spam users find 

their targets. 

Return rate 

The return rate can show whether or not spam users are willing to distribute Spam 2.0 to targets that 

have already received their spam. It can also show whether or not they use the same user account to 

distribute spam content. 

Submitted content topic 

The submitted content topic provides insight into the nature of the Spam 2.0 content. It shows the 

frequency of top content categories and Spam 2.0 topics. 

Demographic analysis 

The demographic analysis provides insight into the origin of each spam user. By examining the IP 

address and hostname, it is possible to discover the request’s country of origin. 

Figure  5.6 illustrates the flowchart for the knowledge discovery part of HoneySpam 2.0. The process 

consists of the following steps. 

Step1: Content, web and form usage data is gathered from the previous part of HoneySpam 2.0. 

Step2:  Form usage data including form and field dwell time are measured based on form usage data 

General usage reports including content submission rate, frequency of internet browsers, 

frequency of referrer URLs, return rate and demographic are generated based on web usage 

data 

 The content theme is generated based on the submitted content. 

Step3: The above reports are used to generate statistical reports. 
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Figure  5.6: Flowchart showing knowledge discovery process of HoneySpam 2.0. 

5.6  Prototype Implementation 
The latest, commonly-used technologies are used to implement each part of HoneySpam 2.0.  

Tracking part: To implicitly capture real examples of Spam 2.0, web development techniques best-

practices are used to implement the proposed method (Cosentino 2002). This allows HoneySpam 2.0 

to be operational in real-world scenarios. Additionally, it is necessary for the test environment to 

provide real-world inputs for HoneySpam 2.0. 

To implement and test the proposed method, server-side programming and scripting languages are 

used. HoneySpam 2.0 server side code is implemented by using PHP. The database for collecting the 
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captured data is implemented using MySQL engine. MySQL is a type of relational database 

management system (RDBMS) and the data is stored in the form of tables (e.g. columns and rows) 

(DuBois 2006). Structured Query Language (SQL) is used to access and manage the MySQL database 

including insert, update, delete, and query the data and the schema (Molinaro 2005). The HoneySpam 

2.0 client side code (FTC) is implemented using AJAX.   

PHP is selected due to its popularity as a web programming/scripting language. Additionally, the 

majority of the popular Web 2.0 platforms are programmed in PHP, JavaScript and the AJAX 

technique is selected because it is well accepted for programming live and interactive web 

applications (Holdener III 2008). Additionally, most of the Internet browsers currently support 

JavaScript hence HoneySpam 2.0 client side code can be executed in the majority of the Internet 

browsers. 

This makes HoneySpam 2.0 adaptable with current web applications and therefore, HoneySpam 2.0 

can easily integrated in live web applications to capture and characterise real-world examples of Spam 

2.0. 

Pre-Processing part: The pre-processing part is implemented using PHP language. The PHP codes 

fetch the data from MySQL database tables and perform the pre-processing tasks. The output is saved 

in a special file format or directly in the database for further processing. 

Knowledge Discovery part: The last part of HoneySpam 2.0 is implemented using PHP and 

MATLAB. MATLAB is a well-known tool for data processing. By having a significant amount of 

features, MATLAB can facilitate data analysis. In the proposed method, MATLAB is used for 

generating general statistical reports. The PHP codes are used to prepare the input data for MATLAB. 

Two common test environments – online discussion board and social bookmarking system – are 

selected to test HoneySpam 2.0. An online discussion board is implemented using the common Open 

Source forum, Simple Machine Forum (SMF) (SMF Team 2011). Social bookmarking system is 

implemented using Pligg, a common social bookmarking Web 2.0 platform (Heikkinen 2011).  

5.6.1 Tracking part 

The tracking part of HoneySpam 2.0 is composed of FTC and NTS. It is modelled using 3 PHP and 2 

JavaScript files as follows: 
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• sb_unb.php 

• sb_mysql.php 

• sb_ft.php 

• sb_ft.js 

• sb_form_assign_[FORM NAME].js 

The PHP files are executed on the virtual web server operating with Linux (Suse Server Enterprise 

11), Apache server and PHP compiler version 5. 

As mentioned earlier, adaptability is one of the main design factors in HoneySpam 2.0 since it is 

required to be integrated with multiple Web 2.0 platforms and capture the data. HoneySpam 2.0 hooks 

its custom commands and specialised features to the web application in order to process and capture 

the usage data. The following sections provide a detailed description of the tracking part of 

HoneySpam 2.0. Figure  5.7 presents the class diagram for the NTC. 

 

Figure  5.7: Class diagram for the NTC. 
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A class diagram in UML is a static diagram to model objects, attributes, 

operations, and interactions among object in the software (Miles & 

Hamilton 2006). The upper part of the class diagram shows class name, 

the middle part holds class attributes, and the lower part contains the 

methods (operations) of the class. 

 

5.6.1.1 Navigation Tracking Component (NTC) 

Navigation Usage Tracking (NTC) is coded in the sb_unb.php and sb_mysql.php files. sb_unb.php 

contains an algorithm to capture HTTP header data, extract user account information from HTTP 

cookies, and handle session ID in a session cookie. sb_mysql.php contains the DB class to interact 

with the MySQL database, by inserting, fetching, updating, and removing the captured data. 

sb_mysql.php 

sb_mysql.php defines the DB class to handle the connection to MySQL database. Figure  5.8 illustrates 

the class diagram for sb_mysql.php file. This class is used for all MySQL connections.  

As shown in Figure  5.8, three variables contain MySQL database credential information and four 

methods are used to handle MySQL interactions.  

 

Figure  5.8: Class diagram of DB class 

sb_unb.php 

sb_unb.php files contain the main logic for capturing users navigational behaviour (UNB) data. It 

extracts following fields from the HTTP header: 



 

 

140  Chapter 5  

• requested URL, 

• type of request method (i.e. GET and POST method), 

• IP address,  

• User Agent,  

• and referrer URL 

sb_unb.php assigns a session ID and a timestamp for each HTTP request and stores them along with 

the above extracted field into the database. The session ID is handled through PHP’s session_start() 

local function. This function creates or resumes a session based on an identifier in the cookie 

(Cosentino 2002). 

Two parameters – web page title and username are passed to this class and are stored in the database. 

The former is the title of the web page and the latter is the username of the user visiting the website. 

Different web applications store usernames in different ways (e.g. HTTP cookie); hence, this 

information needs to be previously extracted and then passed to sb_unb.php. Figure  5.9 shows the 

class diagram for sb_unb.php.  

 

Figure  5.9: Class diagram for the NTC 

As shown in the figure, the unb function obtains the web page title (pageTitle) and username as 

parameters which are then passed to unb each time a new request is sent to it. unb obtains HTTP 

header information from PHP’s Server and execution environment array ($_SERVER). This array is 

created by the web server once a new connection is made (Cosentino 2002).  
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Depending on the web server configuration, the client IP address is stored in different fields in the 

HTTP header. The getRealIpAddr() verifies each HTTP field to extract a client’s valid IP address. The 

IP address is later passed to the unb for storage. 

The algorithm for the NTC is provided in Code  5.1. 

Code  5.1: Pseudo-code for NTC 

Algorithm navigation_usage_tracking 
    input: webpage title 
         user account name 
         HTTP header array $_SERVER 
    output: web navigation usage along with username, session ID 
and webpage title 
1.  get client IP address by examine HTTP_CLIENT_IP, 
HTTP_X_FORWARDED_FOR, REMOTE_ADDR field in HTTP header. 
2.  construct request URL from SERVER_NAME, SERVER_PORT, 
REQUEST_URI 
3.  call session_start(); 
4.  make new instance of DB class. 
5.  insert session ID, timestamp, HTTP_REFERER, HTTP_USER_AGENT, 
webpage title, request URL, client IP address, username into the 
database. 

 

5.6.1.2 Form Tracking Component (FTC) 

FTC is implemented in sb_ft.php, sb_ft.js, and sb_form_assign_[FORM NAME].js. Figure  5.10 shows 

the class diagram for the FTC. 

 

Figure  5.10: Class diagram for the FTC. 
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sb_ft.php 

sb_ft.php is the server-side code for the form tracking component. It captures form event actions that 

are sent through the client-side code and stores them in the database using sb_mysql.php. The 

following form events’ timestamps are captured by sb_ft.php: 

• Field focus, when a field receives user focus. It can be caused by a user clicking on the field 

in the form. 

• Field blur, when a user leaves field. It can be caused by a user selecting other fields in the 

form. 

• Field key up, when a user releases a key on the keyboard. The key up time stamp along with 

key code is captured. 

• Field mouse movement, when the mouse passes over a field. 

• Form load, when a form is fully loaded on the user’s Internet browser. 

• Form unload, when a form is unloaded on the user’s Internet browser.  

Additionally, sb_ft.php stores the HTTP header data for each form event action including IP address, 

the User Agent, session ID, and username. 

Figure  5.11 illustrates the class diagram for the FTC server-side code. 

 

Figure  5.11: Class diagram for the FTC server-side code. 

For simplicity, functions for storage of HTTP header data, extracting IP address, session ID and 

username are not included in the figure. The algorithm for the FTC server-side code is presented in 

Code  5.2. 
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Code  5.2: Pseudo-code for the FTC server-side 

Algorithm form_tracking_server_side 
    input: field name 
           event name 
           key code 
           user account name 
           HTTP header array $_SERVER 
    output: form usage data along with HTTP header information. 
1.  get field name, event name 
2.  get HTTP header information from $_SERVER 
3.  if (event  = keyup) { get key code name } 
4.  switch (event) 

        a.  case focus call focus() 
        b.  case blur call blur() 
        c.  case keyup call keyup() 
        d.  case mouseover call mouseover() 
        e.  case load call load() 
        f.  case unload call unload() 
5.  insert session ID, field timestamp, event name,HTTP_REFERER, 
HTTP_USER_AGENT, webpage title, request URL, client IP address, 
username into the database. 
6.  if (event  = keyup) { insert key code into the database }  

 

sb_ft.js 

sb_ft.js is the client-side code for the FTC. This Javascript code handles the connection to the FTC 

server-side code i.e. sb_ft.php by using AJAX web development technique. In traditional web 

development, web pages need to be reloaded to process each HTTP request/response to/from the 

server. However, with the emergence of the AJAX web development technique, web pages can be 

updated in the background (Holdener III 2008). 

sb_ft.js uses XMLHttpRequest (XHR) object to transmit data between the client and the server 

(Flanagan 2006). XHR is used to transmit form event actions to the FTC server-side code without 

reloading the web page. XHR is an API that is available in Javascript language. 

Figure  5.12 shows the class diagram for the sb_ft.js. Two functions – open() and send() are required 

for AJAX connections. 
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Figure  5.12: Class diagram for the FTC client-code. 

sb_form_assign_[FORM NAME].js 

sb_form_assign_[FORM NAME].js is FTC client-code designed to assign an event handler to each 

form field and capture form events. Depending upon the number of forms and forms’ fields, this file is 

created and customised. As shown in Table  5.2, different event handlers are assigned to different form 

fields. 

Table  5.2: Event handlers for different form fields. 

Form field Event handler 

Text field  Focus, blur, key up, mouse over 

Checkbox Focus, blur, mouse over 

Button Focus, blur, mouse over 

Select list Focus, blur, mouse over 

 

sb_form_assign_[FORM NAME].js operates as follows. 

1. Searches for given field ID or name 

2. Assigns event handler to the form field  

3. Captures events 

4. Calls AJAX function declared in sb_ft.js to transmit the data to the FTC server-side code. 

The class diagram for the FTC client-code event handler is shown in Figure  5.13. 
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Figure  5.13: Class diagram for the FTC client-code event handler. 

5.6.2 Pre-processing part 

Since the data is captured in the web server, it is easier to utilise server-side codes to process the data. 

Hence, the pre-processing part is implemented using PHP. However, the computation is more 

complex and time consuming. PHP scripts can be executed and run on the server for a limited period 

of time. Scripts which exceed this limit are terminated by the web server. To overcome this problem, 

PHP command line scripts are used to process the data (Gutmans et al. 2004). PHP command line 

script does not have any execution time limit and it can be used to accomplish any time consuming 

tasks. 

The pre-processing part of HoneySpam 2.0 is modelled to  

• Cleanse the data 

• Identify users and sessions 

 

Pre-processing is performed when data is retrieved from the database or 

during data capture (i.e. tracking part). Hence, the pre-processing tasks 

are not coded in separate files. Data cleansing is performed when data is 

being fetched from the database. User and session identification are done 

while HoneySpam 2.0 is capturing the data. 

 

5.6.2.1 Data cleansing 

Data cleansing tasks is done through the construction of specific SQL database queries. Table  5.3 lists 

the conditions that need to be considered when data is fetched from the database. 
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Table  5.3: Data cleansing tasks in the pre-processing part of HoneySpam 2.0. 

Condition Description 

Username NOT IN (‘’, ‘administrator’) Not to include data from visitors and researchers who 
monitor the system. 

UserAgent NOT IN (‘Googlebot’, ‘Slurp’, …) Not to include data from known web robots (Google, 
Yahoo! etc.) 

URL NOT LIKE (‘%.jpg’, ‘%.js’, ‘%.css’, …) Not to include data from image, javascript, stylesheet 
etc. files requests. 

 

5.6.2.2 User Identification 

Regardless of the majority of web usage mining algorithms that use specific heuristics to identify 

users in the logs (R. Cooley et al. 1997), the proposed method uses a cookie to identify users. 

The majority of Web 2.0 platforms require users to sign-up or register as a member in order to 

contribute to the website content. After user registration, users are required to login to the website for 

authentication. Once users are logged in to the website, their user credential information including 

username is stored as a cookie. 

The cookie information is sent through HTTP headers to the web server. Usernames for each HTTP 

request to the web server can be extracted from the cookie data. 

In the proposed method, cookie information is extracted and stored when the NTC stores usage 

information to the database. In the PHP language, cookie information can be retrieved from  

$_COOKIE array (Cosentino 2002). The proposed method uses $_COOKIE array to extract the 

username and use it as a parameter in other functions such as unb, focus, key up etc. 

5.6.2.3 Session Identification 

Unlike traditional web usage mining algorithms (R. Cooley et al. 1997), the proposed method uses 

session cookies to handle session identification tasks. 

As mentioned earlier, for each HTTP request, the proposed method calls session_start() to create or 

update the current session. The session identifier is passed through the cookie along with the HTTP 

request. 



 

 

147 Tracking Spam 2.0 

One of the main challenges in session identification is session expiry time which is the number of 

seconds for which a session is valid for the client, after which time a new session ID would be 

assigned to the client. The session ID needs to be updated once it has expired. A common heuristic 

used in web usage mining is to set this time to 30 minutes (Spiliopoulou et al. 2003). In the proposed 

method, the session expiry time is set to 30 minutes. The following algorithm presents pseudo-code 

for the session identification task. 

Code  5.3: Pseudo-code for session identification. 

Algorithm session_timeout 
    input: session creation timestamp, c 
         session expiration time, T 
    output: session identification 
1.  if (session.c = null) 
2.    session = session_start() 
3.    session.c = current.time() 
4.  if (current.time() - session.c > T) 
5.    session = regenerate session id 
6.    session.c = current.time() 

 

In Code  5.3 function current.time() returns the current time stamp. For regeneration of the session id, 

PHP’s session_regenerate_id() local function is used. 

5.6.3 Knowledge discovery part 

The knowledge discovery part is the last part of HoneySpam 2.0. It generates a general usage analysis 

reports and consists of PHP files for extracting data related to general usage analysis (GUA). 

The data for usage analysis is extracted using sb_gua.php and sb_mysql.php. sb_gus.php is used to 

query database and fetch the data to measure the following:  

• Total and average tracking records 

• Content categories 

• Origin countries 

• Internet Browsers 
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Additionally, sb_gua.php extracts and stores data into CSV files format. The CSV files are used in 

MATLAB in order to draw figures as discussed in the next section. sb_mysql.php is used to handle the 

database connections. 

sb_gua.php 

This PHP script is used to query MySQL database, fetch the appropriate data to measure features. It is 

also used to store the data in CSV file format. 

Total and average tracking reports 

 Table  5.4 lists SQL syntax statements to query and fetch that data from the MySQL database to 

measure the total and average tracking reports. 

Table  5.4: SQL syntax statements to query database for general usage analysis. 

SQL Syntax Description 

COUNT(expression) To calculate total number and sum of whole records or specific columns 
in the tables. 

SELECT DISTINCT expression To return distinct (not duplicated) values in a table 

GROUP BY expression To group and return the data in one or more columns. 

AVG(expression) To return the average value of a column in a numeric format. 

 

Content Categories 

To extract content categories or themes for the submitted content, word frequency for the submitted 

contents is calculated. Next, by manual investigation of the top 100 most frequent words, the category 

for the submitted content is measured. The following assumptions are made when measuring the word 

frequency: 

• Words are separated using one space. 

• Words are made up of alphanumeric characters. 

• Words might contain a hyphen or apostrophe. 
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• HTML tags, words starting with apostrophe or hyphen, and words made solely from numbers 

(e.g. 123ab) are not counted. 

• ‘the’, ‘a’, ‘of’, ‘is’, ‘to’, ‘for’, ‘by’, ‘be’, ‘and’, ‘are’ etc. are not counted. 

 The algorithm to measure word frequencies is presented in Code  5.4. 

Code  5.4: Pseudo-code for the word frequency algorithm. 

Algorithm word_frequency 
    input: set of submitted contents by users, C 
             set of excluded words, C ’ 
    output: a sorted list of word frequencies, L 
1.  for each ci in C 
2.    if ci in C ’ 
3.      go to the next ci 
4.    end if 
5.    if ci in L 
6.      ci.count = ci.count + 1 
7.      update ci.count in L 
8.    else 
9.      ci.count = 1 
10.     add ci & ci.count to L 
11.   end if 
12.   sort L descending ci.count 
13.  repeat 
14. return L   

 

Origin Countries 

A well-known protocol, WhoIS, is used to find out the country of origin of the incoming request. 

WhoIS is a standard protocol to query information about domains, hosts, networks and IP addresses 

from a remote WhoIS database known as Regional Internet Registries (RIR) (Daigle 2004).  RIR can 

be queried using domain/host name or an IP address to obtain information about network, 

nameservers, registration date, demographic and contact information of the internet resources 

(Harrenstien 1982).  

American Registry for Internet Numbers (ARIN) and Asia-Pacific Network Information Centre 

(APNIC) are used as RIR to lookup the network information (Hunt 2002). IP addresses for each 

incoming request are queried using ARIN’s Whois RESTful Web Service (Whois-RWS) to discover the 

country of origin. Figure  5.14 presents WhoIS information for the Curtin University network using 

APNIC. It is clear from the figure that the network belongs to Australia. 
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% [whois.apnic.net node-3] 
% Whois data copyright terms    
http://www.apnic.net/db/dbcopyright.html 
inetnum:        134.7.0.0 - 134.7.255.255 
netname:        CUT-NET 
descr:          Curtin University of Technology 
country:        AU 
... 
person:         Ian Hill 
nic-hdl:        IH156-AP 
e-mail:         CITS-Contract-renewals@curtin.edu.au 
address:        Curtin University of Technology 
address:        Curtin IT Services 
address:        Building 309 Kent Street 
address:        Bentley 6102 
address:        Western Australia 

 
Figure  5.14: WhoIS information for the Curtin University network extracted from APNIC. 

Internet Browsers 

The User Agent header in the HTTP request contains information about the client’s Internet browser, 

its version, and details about the clients system (Berners-Lee 1945). This information is used to 

identify the client’s software while navigating through the website. Figure  5.15 illustrates a sample 

User Agent header. From the figure it can be inferred that: 

• The Internet browser’s name is Internet Explorer (Microsoft Internet Explorer identify itself 

as Mozila/4.0). 

• Compatibility flag indicates that this browser is compatible with a common set of features. 

• The Version token defines the browser and its version (Internet Explorer 7). 

• Platform token identifies the operating system and its version (Windows Vista). 

 

Figure  5.15: A sample User Agent header. 

Web crawlers also identify themselves using the User agent field.  
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Figure  5.16: Google web crawler User Agent header. 

Figure  5.16 shows the user agent header for a Google robot. It claims to be a Mozilla based user agent 

version 5. It has a compatible flag. The name is Googlebot and its version is 2.1. Its URL address for 

more information is www.google.com/bot.html.  

The User Agent header discovers how frequently spam users mimic genuine user identities through 

this header. 

CSV file 

sb_gua.php also extracts the required data from the MySQL database and stores it in CSV file format. 

The CSV files are used in MATLAB to generate the following figures and graphs. 

• Frequency of posts per day 

• Frequency of user registrations per day 

• Frequency of online users per day 

• Frequency of visits on each web page 

• Frequency of users spending time on each session 

• Frequency of revisits 

MATLAB is used to produce each figure. Additionally, some enhancement is done using Microsoft 

Excel 2007 on figures (Jacobs et al. 2008). 

This concludes stage four of the conceptual process. The next section focuses on experimental settings 

where the proposed prototype is tested.  

5.7  Experimental Setting 
The experimental settings are the fifth stage of the conceptual process where the proposed prototype is 

tested and examined. Deploying HoneySpam 2.0 involves 3 steps including Deployment, 

Customisation and Promotion. 
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The deployment step presents a detailed description of the software and hardware infrastructure of the 

HoneySpam 2.0 server. The customisation step explains different configuration settings for each copy 

of HoneySpam 2.0. The last step, Promotion, presents the strategy for attracting real-world samples of 

Spam 2.0. 

 

Figure  5.17: Entire implementation of HoneySpam 2.0 for 6 commercial and 5 free hostings. 

Figure  5.17 illustrates the entire implementation of HoneySpam 2.0. HoneySpam 2.0 is embedded 

inside the web application and stores tracking data in its own database. The web application runs 

inside a web server and has its own database. The web server is accessible publicly through the 

Internet. Finally, HoneySpam 2.0 client-side code is executed on the user’s machine. 

5.7.1 Deployment 

The HoneySpam 2.0 was deployed in 6 commercial servers named HSCOM1 – HSCOM6 and 5 free 

web hosting servers named HSFREE1 – HSFREE5. The software and hardware specifications of each 

web server are presented in Table  5.5. 
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Table  5.5: Deployment specification of each host. 

Name OS Location CPU Software Database Uptime 

HSCOM1 Linux (SUSE)  
64bit 

Australia Intel® 
Xeon® 2.66 
GHz 

Apache 
2.2.10 

PHP 5.2.6 

MySQL 
5.0.67 

25/5/09 – 
9/8/09 * 

27/7/10 – 
16/11/10 

HSCOM2 – 
HSCOM5 

Linux (SUSE)  
64bit 

Australia Intel® 
Xeon® 2.27 
GHz 

Apache 
2.2.10 

PHP 5.2.6 

MySQL 
5.0.67 

5/1/10 – 
16/2/11 

HSCOM6 Linux (SUSE)  
64bit 

Australia Intel® 
Xeon® 2.27 
GHz 

Apache 
2.2.10 

PHP 5.2.6 

MySQL 
5.0.67 

21/5/10 – 
17/2/11 

HSFREE1 – 
HSFREE5 

Linux USA AMD 
Opteron 1.9 
GHz  

Apache 2.2 
PHP 5 

MySQL 5 25/5/09 – 
9/8/09 * 

* Only 60 days of data was collected due to server downtime periods caused by maintenance issues. 

All the commercial hosts run under a Virtual host environment to meet the security requirements of 

HoneySpam 2.0 (ref. Section  5.3). The detailed deployment description of each host is as follows. 

5.7.1.1 HSCOM1 

HoneySpam 2.0 is integrated with two web applications – an online discussion board and social 

networking platform. The online discussion board is implemented using common Open Source forum, 

Simple Machine Forum (SMF) (SMF Team 2011). The social bookmarking system is implemented 

using Pligg, a common social bookmarking Web 2.0 platform (Heikkinen 2011).  

A copy of HoneySpam 2.0 for each web application, two separate directories and MySQL databases, 

have been created. Additionally, HSCOM1 has an Internet connection provider that is different from 

those of other commercial hosts. 

HSCOM1 operated for two periods (HSCOM period 1 and period 2). The dates for each period are 

shown in Table  5.6. 

5.7.1.2 HSCOM2-HSCOM5 

HoneySpam 2.0 is integrated with 5 common web applications including – wiki, blog, social 

networking, online discussion board, commenting platforms as well as a simple contact form. A 

popular MediaWiki web application is used as wiki (Mediawiki 2011). MediaWiki is a free wiki web 
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application used in Wikipedia. Wordpress Multi-User (Wordpress Mu) a blog and publishing platform 

to create multiple blogs is used as a blog and commenting platforms (Wordpress 2011). SMF and 

phpBB is used for an online discussion board (phpBB 2011). Finally, Pligg is used for social 

bookmarking web application. 

5.7.1.3 HSCOM6 

HoneySpam 2.0 is integrated with phpBB, a popular open source online discussion platform. 

HSCOM6 is run and configured separately from other commercial hosts (ref. Section  5.7.2.3 ). 

5.7.1.4 HSFREE1-HSFREE5 

Pligg and SMF are used as a social bookmarking and online discussion board platform on all free web  

hostings.  

It is worth mentioning that the client-side code is executed on the user’s Internet browser to 

accumulate real-world data for FTC. 

The following section discusses each host configuration. 

5.7.2 Customisation 

The customising step explains different configuration settings for each copy of HoneySpam 2.0. The 

aim of the different customisation settings is to address the following: 

1. Dedicated vs. Shared IP address: Dedicated IP address assigns one IP address to one 

particular website, while shared IP address is used to share one IP address for multiple 

websites. This choice is made in order to investigate whether or not spammers try to discover 

their targets by examining IP addresses in the same range. For example, by examining all IP 

addresses that belong to the same sub network, other active hosts are identifiable. 

2.  Empty vs. Not-empty website: Web applications can be launched either empty (with default 

content in standard installation) or it can be pre-populated with some content. A non-empty 

website is filled up with relevant content that is accumulated from other similar websites. This 

choice is to investigate whether or not spammers target websites with the content or empty 

websites. Empty websites do not have good rankings in the search engines; hence, they might 
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not be accessible in top search engine results. This choice can also investigate whether or not 

spammers find targets through search engine results. 

3. Live vs. Not-active website:  Live websites actively become populated by active users. 

However, non-active websites are not actively being used. This choice can investigate 

whether or not spammers try to target active or not active websites. 

A detailed configuration description of each host setting is presented next. 

5.7.2.1 HSCOM1 

HSCOM1 is hosted on a shared IP address. This IP address is used by other websites that have hosted 

on HSCOM1’s web server. A well ranked domain name that has been previously used for other 

purposes is mapped to this web server. 

No content has been added to Pligg, and SMF running on this host and web applications default 

configuration settings are used. The registration spam filtering methods (e.g. CAPTCHA) have been 

disabled on both web applications. 

5.7.2.2 HSCOM2 – HSCOM5 

HSCOM2 – HSCOM5 are hosted on dedicated IP addresses but in the same sub-network. IP 

addresses have not been used previously and are newly registered. Four new domain names are 

registered and assigned to each IP address.  

The choice of domain names is based on popular searched keywords. A list of popular keywords was 

extracted from common search engines, and then by using of online domain-suggestion tools such as 

www.domaintools.com, domain names are generated. The choice of domain names can make websites 

more visible in the search engine results (Perkins 2001). 

No content has been added to any web applications running on the hosts. The registration spam 

filtering methods (e.g. CAPTCHA) were disabled on all the web applications. 

5.7.2.3 HSCOM6 

HSCOM6 uses an IP address shared with HSCOM5.The hosted website was regularly filled with 

relevant content. Ten users were actively contributing to the content generation of this live website. 

The registration spam filters were enabled on this host. 
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5.7.2.4 HSFREE1 – HSFREE5 

All the free hostings share their IP addresses. Five sub domain names were assigned to each host. 

Sub-domains consist of the domain name of the host provider, such as http://name.FREE-

HOSTPROVIDENAME.com. Five free redirection domains are assigned to each free host. The choice 

of the redirection domains was based on popular searched keywords. 

The following section explains the different strategies that are used to advertise each host. 

5.7.3 Promotion 

Four different strategies have been used to attract spam users as follows. 

5.7.3.1 Online Advertisement 

Google AdWords service was used to advertise HSCOM2-HSCOM5. Google AdWords provides 

keyword-based advertisement services (Geddes 2010). For example, when people search for 

keywords in the Google search engine, if the keyword is relevant to the chosen keyword for a 

particular website, the advertisement appears next to the search result. 

5.7.3.2 Linking from other websites 

Hyperlinks were created from other websites to all hosts. This strategy was used to promote all the 

hosts including both commercial and free. 

5.7.3.3 Listing in the public directory service 

The addresses for free hosts were added to the public directory services such as dmoz.org (dmoz 

2011). The public directory service provides a list of website links based on their categories. This 

strategy is used to promote HSFREE1-HSFREE5. Their link was removed after the experiment to 

ensure the quality of the directory. 

5.7.3.4 Traffic redirection 

By employing the server-side redirection technique (Smith 2002), the traffic to HSCOM1 was 

redirected to HSCOM2 for a period of 7 months. 
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During implementation of the above strategies, one of the important challenges was to ensure that 

genuine human users did not interact with any of the hosts. To achieve this, the following approaches 

were adopted. 

• Websites were kept empty or were filled up with non-useful content. This was done to ensure 

that genuine human users did not contribute to the website content. HSCOM1-HSCOM5 as 

well as HSFREE1-HSFREE5 were purposely kept empty. 

• All the hosts were also manually moderated to ensure that no human users participated in 

content or web usage generation. 

HSCOM6 is the only host that contains both human and spam users data. Initially, it was launched 

only as a forum for human content contribution; however, later spam users also contributed to the 

website. Human and spam users were manually identified. 

This concludes stage five of the conceptual process. The next section focuses on the results and 

observations based on the proposed prototype experiments.  

5.8  Results and Observations 
This is the sixth stage of the conceptual process. This section discusses the results that were observed 

after running the proposed prototype i.e. HoneySpam 2.0. 

All the hosts were running for specific periods as shown in Table  5.5. The results and observations are 

for general statistical analysis purposes. 

The summary of the data that was tracked by HoneySpam 2.0 on each host is provided in Table  5.6. 

Table  5.6: Summary of tracking data for HSCOM1 for two periods. 

Summary of data for HSCOM1 HSCOM1 (1) HSCOM1 (2) HSCOM6 

No. of all records 11,481 2,756,825 322,207 

No. of records after data cleansing 6,794 1,867,767 423,36 

Total No. of spam users 643 16,930 171 

Total No. of unique used IP addresses 314 4,234 191 



 

 

158  Chapter 5  

 

 

HoneySpam 2.0 running on HSCOM2-HSCOM5 and HSFREE1-

HSFREE6 did not attracted any spam which shows that there were no 

Spam 2.0 activities on these hosts. The reason behind this is discussed in 

the next Section 5.9. All the results and observations are based on 

HSCOM1 period1, HSCOM1 period2, and HSCOM6 that are discussed 

in this section.  

 

5.8.1 General statistical results 

Figure  5.18a shows the frequency of spam users’ visits to each web page on HSCOM1. It is clear 

from the figure that spammers mainly visited one web page and there are no more than 300 visits. 

      
(a)                                                                            (b) 

 
(c) 

Figure  5.18: (a) Frequency of spammers visit on each web page in HSCOM1. (b) Frequency of spammers’ 

return visits on HSCOM1. (c) Frequency of spammers visits time (sec) per session on HSCOM1. 

The frequency of spammers’ return visits is presented in Figure  5.18b. The majority of spammers 

visited HSCOM1 only once; however, there are spam users that have more than 5 return visits. 
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The amounts of time spammers spent on the HSCOM1 each time they visited the website is illustrated 

in Figure  5.18c. It is clear from the figure that the majority of the spammers spent between 1 to 5 

seconds in each session. However, some did not spend time on the website which means that they sent 

just one request to the web server (ref. Section 5.9).  

Figure  5.19a shows the frequency of spammer visits to each HSCOM1 web page. It is clear from the 

figure that the majority of spammers visit between 5 and 20 web pages. Some spammers visit only 

one web page. However, some have more than 1000 web page visits. 

      
(a)                                                                            (b) 

 
(c) 

Figure  5.19: (a) Frequency of spammers’ visit to each web page during HSCOM1 second period. (b) Frequency 

of return visits by spammers during HSCOM1 second period. (c) Frequency of spammers’ visits time per 

session during HSCOM1 second period. 

Figure  5.19b illustrates the number of spammers’ return visits to HSCOM1. It is clear from the figure 

that most of the spammers re-visited only once followed by fewer than 5 re-visits to the host (1 means 

only one visit). The frequency of the spammers visit times per session for the HSCOM1 second period 

is presented in Figure  5.19c. Spammers mainly spend 10 to 50 seconds with the host. The rest spend 

100 to 200 seconds and 1 to 5 seconds with the host. Some spammers send only one request to the 

host; hence, their visit time is zero. 

Figure  5.20a presents the frequency of spammers’ visits to each web page in HSCOM6. It is clear 

from the figure that the majority of spammers’ visits range from 5 to 50. 
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(a)                                                                            (b) 

 
(c) 

Figure  5.20: (a) Frequency of spammers’ visits to each web page for HSCOM6. (b) Frequency of return visits 

by spammers for HSCOM6. (c) Frequency of spammers’ visits time per session for HSCOM6. 

Figure  5.20b shows the frequency of spammers’ return visits to HSCOM6. As the figure shows, the 

majority of spammers visit the host only once. Figure  5.20c presents the frequency of spammers’ visit 

times per session in HSCOM6. As is clear from the figure, spammers spend mainly between 20 to 50 

seconds with the host. There are very few spammers that spend less than 1 second with the host. 

5.8.2 Content categories results 

Figure  5.21 illustrates the percentage of the top content categories for the HSCOM1 host. Adult-

related keywords are the most dominant content. The drug category promotes regular and adult-

related medicine. The movie category includes topics about watching latest movies, YouTube, adult-

related cartoons and animations. In the banking category, the main content theme is low service fee 

credit cards, making money online etc. The mobile phone category is about ringtones and the latest 

mobile devices (e.g. iPhone). Other categories contain various keywords such as driving test, gym, 

hair loss etc. 
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Figure  5.21: Top content categories on HSCOM1 

Figure  5.22 presents the percentages of the top content categories for the HSCOM1 host. Adult-

related keywords are the most dominant content captured by HSCOM1. The movie category also 

contains adult-related keywords; therefore, it can be considered as adult content. Free categories 

include topics about downloading free software, free gifts, free postcards etc. The dating category 

mainly promotes  online dating websites. The ringtone category includes topics about the latest 

ringtones for mobile phones, latest songs as ringtone. The games and music categories are about 

computer games and the latest top hit songs respectively. 

 

Figure  5.22: Top content categories for HSCOM1 in the second period of running 

As illustrated in Figure  5.23, the top content category on HSCOM6 includes only spammers’ content 

contribution. Rather than the adult category, shopping-related topics are common among spam topics. 

This category contains topics on buying bags, shoes, boots etc. The swear category includes topics 
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around an offensive word in the sentence. The free category is on downloading free stuff online. 

Finally, the movie category is on online watching movies and online flash movies. 

 
Figure  5.23: Top content categories on HSCOM6 (only spam topics) 

 

5.8.3 Origin countries results 

Figure  5.24 presents the top demographic location of spammers’ origins on HSCOM1. 

Demographically, 51% of observed spammers originated from the United Kingdom followed by the 

United States of America at 22%. 

 

Figure  5.24: Top demographic location of spammers on HSCOM1 

Figure  5.25 presents the top demographic location of spammers on HSCOM1 in the second period of 

running. Spammers originated mainly from Germany with 67.92%. The remaining 32.08% is divided 

amongst 8 countries including: Luxembourg 8.54%, Netherlands 7.79%, Russia 6.79%, Ukraine 
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3.23%, USA 3.22%, Latvia 1.85%, UK 0.42% and France 0.22% which is significantly lower than 

Germany. 

 

Figure  5.25: Top demographic locations of spammers on HSCOM1, period 2. 

Figure  5.26 shows the top demographic location of spammers on HSCOM6. UK has the highest 

percentage with 56.17% followed by Ukraine 20.50% and Germany 16.27%.  The remaining 

countries are as follows: Netherlands 3.77%, Russia 3.02%, USA 0.15%, Latvia 0.04%, China 0.03%, 

Poland 0.03%, and Sweden 0.01%. 

 
Figure  5.26: Top demographic location of spammers on HSCOM6 
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5.8.4 Internet browsers results 

Figure  5.27 illustrates the top user agent values on HSCOM1. Internet browsers commonly used by 

spammers are Internet Explorer 71% (including all versions) and Opera 24%. Surprisingly, one 

relatively unknown browser OffByOne is also used. Additionally, Firefox was used by only 2 web 

spambots and Safari was not used at all. 

 
Figure  5.27: Top user agent fields for HSCOM1 

Figure  5.28 presents top Internet browsers that were used to send requests on HSCOM1, period 2. 

Internet Explorer dominates with over 75.56%, Opera at 19.03%, AOL 2.69% and an unknown 

browser OffByOne 2.72%. 

 
Figure  5.28: Top user agent fields for HSCOM1 second period 
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Figure  5.29 shows the usage percentage of Internet browsers on HSCOM6. Internet Explorer 6.0 is 

used in over 70% of requests followed by Internet Explorer 5.5 8%, Internet Explorer 5.0 3%, Opera 

14% and AOL 5%. 

 

Figure  5.29: Top user agents fields for HSCOM6 

This section examined the results of experimentation using the proposed prototype. This concludes 

stage six of the conceptual process and paves the way for the next stage. A key discussion and 

observations are presented in the following section. 

5.9  Validation and Comparative Analysis 
The following observations have been made during general statistical analyses. 

Using search engines to find target websites 

HSCOM1 (for two periods) and HSCOM6 received the most attention from the spammers. This 

highlights the possibility that spammers are using search engine intelligence (e.g. Google PageRank 

scores) to identify and focus on higher ranked websites that potentially yield more visitor traffic. The 

second period of HSCOM1 proportionally attracted more spammers than did the first period. The 

reason behind this could be related to search engine indexing, which also suggests that some 

spammers find their targets through search engine results. 

Creating numerous user accounts  
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It was identified from the experiment that spammers would create a number of new accounts to post 

their content rather than using their existing accounts. This is shown in Table  5.6, where the total 

number of user accounts is much higher than the number of unique IP addresses used between these 

accounts. 

It is possible that spammers adopt this behaviour for additional robustness in delaying account 

banning (e.g. one user account that is associated with numerous spam content items is easier to detect 

and manage) and/or to handle the event from which their previous accounts have been banned. 

Low hits and revisit rates 

The observed spammers adopt surfing patterns similar to one another and commonly visit a number of 

specific web pages. As illustrated in Figure  5.18a-20a, most spammers perform less than 20 page hits 

in total during their account lifetime.   

Figure  5.18b-20b supports the claim that spammers do not revisit web pages many times. It is likely 

that these spammers revert to creating new user accounts to continue their spamming activities.  

Distributing spam content in a short period of time 

The amount of time most spammers spend on each visit (session) is less than 5 seconds (Figure  5.18c-

20c). This indicates that spammers are distributing spam content within a short period of time, 

possibly to move on to other websites to distribute more spam content.  

However, this behaviour changed during the second operational period HSCOM1 and HSCOM6 

where the spammers stayed longer (10 to 50 seconds) on the website. The reason for this is the Flood 

Control protection mechanism in the forum which forced spammers to wait at least 30 seconds before 

posting new content with the same username. 

No web form interaction 

While not shown in the figures, the form-tracking component of HoneySpam 2.0 was unable to track 

form usage behaviour of spammers’ tools. These tools adopt a conventional method of directly 

posting through their own forms / interface to submit content. They have not been designed to be 

intelligent enough to mimic human behaviour when submitting a web form.  
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Only two hosts i.e. HSCOM1 and HSCOM6 received Spam 2.0 traffic. The rest of the hosts did not 

receive any spam traffic. The reasons for this are as follows. 

• HSCOM2 – HSCOM5 and HSFREE1 – HSFREE5 did not contain any content. Hence, they 

were not effectively indexed by the search engine. As the results of other hosts show, 

spammers use search engines to find and target websites. Since these hosts were not indexed 

highly by search engines, they did not receive Spam 2.0 traffic. 

• HSFREE1 – HSFREE5 were hosted on free hosting providers. Usually, free hosts have lower 

ranks than commercial hosts in search engine results. Hence, they might not be listed highly 

in the search engine results. 

• HSCOM1 domain name was already used for other purposes. Hence, it has already been 

indexed by search engines when the domain name was used to track spammers. 

• HSCOM6 was an operational and live online discussion forum. Once it was indexed by 

search engines, HoneySpam 2.0 started receiving Spam 2.0 traffic. 

However, more in-depth analysis needs to be undertaken to extract other characteristics of spam users 

from accumulated data. This is the focus of the next chapter on Profiling Spam 2.0 behaviour using 

clustering tools. The next section provides a comparative analysis of HoneySpam 2.0 with existing 

solutions. 

5.9.1 Comparative analysis 

In this section, the proposed method is compared with the existing solutions from the literature. As 

mentioned previously, no studies have been conducted on Spam 2.0 and its characteristic. 

HoneySpam 2.0 is intended to track and characterise Spam 2.0. However, there are several similar 

works in the literature which study spam in other domains including email and social networks. These 

methods will now be compared with the proposed method. 

There are three approaches for monitoring spam which include mining web server logs, HoneySpam, 

and Social Honeypots. A comparison study is depicted in Table  5.7 which shows the proposed 

HoneySpam 2.0 method compared with existing approaches. 
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Table  5.7: Comparative study of tracking approaches 

 Mining web 
server logs 
(Cooley et al. 
1999)  

HoneySpam 
(Andreolini et 
al. 2005) 

Social 
Honeypots 
(Webb et al. 
2008) 

Social 
Honeypots (Lee 
et al. 2010) 

HoneySpam 
2.0 

Spam 2.0 user 
identification 

No No No No Yes 

Spam 2.0 session 
identification 

No No No No Yes 

Strategy Mining HTTP 
access log files 

Deployment of 
fake web server, 
open relay, open 
proxy and SMTP 
server 

Creation of 
profile in social 
network website 
by using the 
automated bots 

Creation of 
profile in social 
network website 
by suing the 
automated bots 

tracking 
navigational 
and form 
usage 
behaviour 
on web apps  

Form usage 
tracking 

No No No No Yes 

Domain General Email Social 
networking 
websites 

Social 
networking 
website 

Web 2.0 
platforms 

 

5.9.1.1 Mining web server logs 

Web server logs are created and updated by the web server whenever a client requests information 

from a web server by using Hypertext Transfer Protocol (HTTP) (Robert Cooley et al. 1999). These 

access log files contain information about the client IP address, date and time of request, request web 

page, HTTP code, referrer web page, and the user agent. Figure  5.30 presents an example of 4 HTTP 

access log entries. 
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Entire No. Detail 

1 111.111.111.111 - - [15/Aug/2009:07:05:10 +0800] "GET /forum/index.php HTTP/1.0" 200 60 
"http://example.com/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) 
Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)" 

2 111.111.111.111 - - [15/Aug/2009:07:06:12 +0800] "GET /forum/index.php?board=1 
HTTP/1.0" 200 6248 "http://example.com/forum/index.php" "Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET CLR 
3.5.30729)" 

3 111.111.111.111 - - [15/Aug/2009:07:08:32 +0800] "GET 
/forum/index.php?action=post;board=1 HTTP/1.0" 200 7852 
"http://example.com/forum/index.php?board=1" "Mozilla/5.0 (Windows; U; Windows NT 5.1; 
en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)" 

4 111.111.111.111 - - [15/Aug/2009:07:10:27 +0800] "GET /forum/index.php?topic=1397 
HTTP/1.0" 200 524 "http://example.com/forum/index.php? action=post;board=1" "Mozilla/5.0 
(Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 
CLR 3.5.30729)" 

 
 

Figure  5.30: An example of 4 HTTP access log entries 

Such web server logs can be analysed through the Web Usage Mining technique to produce inputs for 

restructuring website designs (Robert Cooley et al. 1999). Web usage mining can be used to aid 

website navigation, provide similar web page recommendation, and place web pages for easier access. 

For example, web usage mining can be utilised to extract the following associate rules from a sample 

pharmaceutical website as presented in Table  5.8. 

Table  5.8: An example of usage of web usage mining technique 

Rule No. Detail 

1 47% of the visitors who access a web page about Hair Loss also accessed a web page on Acne. 

2 52.1% of the visitors who accessed web pages about Chest Pain and Blood Pressure also accessed 
a web page on Breast Cancer. 

 

However, web usage mining techniques cannot provide effective insights into Spam 2.0 content for 

the reasons given below. 

1. Identifying spam usernames and tracking their navigation usage is critical in characterising 

Spam 2.0 behaviour. As is clear from Figure  5.30, usernames are not identifiable from raw 

web server logs. Additionally, user identification heuristics in web usage mining that are 
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mentioned in Section  5.5.2.2 are not effective enough to differentiate users’ exact behaviour 

on the Web 2.0 applications. 

2. Session identification heuristics (e.g. 30-minute timeout) in web usage mining as mentioned 

in Section  5.5.2.3  cannot effectively identify spam users’ sessions.  Figure  5.18a-20a shows 

that the majority of spam user sessions last for less than 50 seconds. Additionally, the spam 

users User Agent and IP address did not change over one session. 

3. Web server logs do not provide information about form usage data. This usage data currently 

can be tracked through other techniques such as client-side scripting languages. 

The above problems have been addressed by HoneySpam 2.0 which can effectively identify spam 

usernames and session. AJAX technology used inside HoneySpam 2.0 can track form usage data. 

5.9.1.2 Social honeypots 

Regarding Spam 2.0 detection, (Webb et al. 2008) proposed a social honeypot for detection of 

spammers in social networking websites. They hosted 51 social honeypots in a social networking 

website. The result of their work shows that temporal and geographic patterns of social spam have 

unique characteristics. The extension of this work has been proposed in (Lee et al. 2010) . 

Social honeypots are capable of monitoring spammers’ behaviour and log their data such as 

• Profile information such as about me, age, relationship status, no. of friends etc, 

• Background image which links to another website, 

• Unsolicited friend requests in the social networks, 

• Personal messages and comments in the social networks, 

• Other textual information inside profile. 

The overall framework for a social honeypot-based approach is depicted in Figure  5.31. Each social 

honeypot is associated with a legitimate profile inside a social network website to collect social spam 

behaviour. 
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Figure  5.31: Framework for social honeypot-based approach (Lee et al. 2010). 

However, the application of a social honeypot is not feasible for monitoring Spam 2.0 behaviour in 

general due to a number of practical considerations:  

• Social honeypots collect mainly contextual information from spam profiles. Hence, they 

cannot be applied to collect spam users’ navigational data. 

• Social honeypots cannot track and monitor form usage data. 

• Social honeypots are limited to only one spam domain i.e. social networking website. They 

cannot be extended to other platforms due to the nature of the tracking strategy.  

HoneySpam 2.0 has a broader scope than social honeypots which is limited only to the social spam 

domain and social networking websites. The information collected by HoneySpam 2.0 is not traceable 

by social honeypots due to the latter’s design constraints.  

5.9.1.3 HoneySpam 

(Andreolini et al. 2005) proposed a framework to address email spamming actions in one 

organisation. The authors proposed a method called HoneySpam to combat email spam activities such 

as email harvesting and anonymous operations.  Email harvesting is an operation performed by 

spammers to collect and extract email addresses from web pages by browsing websites. Anonymous 

operations are activities that are performed by spammers to hide their traces. This can be done through 

use of the open relay (SMTP server that does not need authentication to forward emails) and open 

proxies (a network node to forward traffic between client and the servers without authentication). The 

use of multiple open relays and open proxy chains can hide a spammer’s origin IP address. 
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HoneySpam includes four components: fake web server, fake open relay, fake open proxy, and fake 

destination SMTP server (Figure  5.32). Fake web server is for dynamic generation of web pages that 

are linked together and contain a significant special email address. Fake web servers can not only 

slow down email harvesting tasks, but also can pollute spammers’ email database. Special email 

addresses, if used by a spammer, help to track the spammer’s activity. Fake relay and open proxy if 

used by a spammer, reveal their origin information such as the IP address. All the communication to 

and from open relay and open proxy is logged. A fake destination SMTP server is used to redirect all 

the traffic to a special email address that is generated by a fake web server to a single mailbox for 

later analysis. 

 

Figure  5.32: Architecture of HoneySpam to fight email spam (Andreolini et al. 2005) 

However, it is clear that HoneySpam is unable to address Spam 2.0 problems since it is a framework 

to counteract email spam and not Spam 2.0. HoneySpam can track and compromise only email 

spammers, and therefore, it cannot be applied to Spam 2.0.  

In this section, the validation and comparative study of the proposed method, HoneySpam 2.0, is 

discussed. It shows that HoneySpam 2.0 is superior to other existing solutions in addressing Spam 2.0 

problems.  

5.10  Conclusion 
In this chapter, HoneySpam 2.0 was proposed to track, monitor and analyse Spam 2.0 behaviour. 

HoneySpam 2.0 is used to monitor Spam 2.0 distribution, track spammer interaction with web 

applications and store Spam 2.0 content. This information is later analysed and investigated to 

discover the characteristics of Spam 2.0. 
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HoneySpam 2.0 can be integrated with any web applications. It contains three parts: Tracking, Pre-

Processing, and Knowledge discovery. The tracking part captures incoming traffic to the web 

application including web navigational and form usage data. The pre-processing part is for data 

cleansing, user and session identification of incoming requests. Finally, the knowledge discovery part 

identifies and characterises Spam 2.0 behaviour. 

HoneySpam 2.0 has been executed on multiple web hosts including 6 commercial hosts and 5 free 

web hosts. 

The following chapter provides an in-depth analysis of Spam 2.0 behaviour by using clustering tools. 
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Chapter 6    

Profiling Spam 2.0 
This chapter covers: 

► Definition of Actions as a feature set to characterise Spam 2.0 

► Profiling spam behaviour using Self-Organising Map (SOM) 

► Evaluation and validation of SOM study on real-world data. 

6.1  Introduction 
Several characteristics of Spam 2.0 were discussed in Chapter 5 when introducing HoneySpam 2.0. 

HoneySpam 2.0 is used to monitor, track and store spam user activity on Web 2.0 platforms. General 

Spam 2.0 analysis such as web and form usage activities, demographic analysis, frequency of contents 

submission for Spam 2.0 were discussed in Chapter 5, which provided an initial understanding of the 

current trend of Spam 2.0. 

However, more in-depth analysis of Spam 2.0 is required in order to: 

• Investigate hidden spam user behaviour  

• Understand the intentions of spam users 

• Formulate spam users’ behaviour in order to develop discriminative feature sets 

• Cluster spam users’ activities into groups based on feature sets 

• Characterise spam users’ behaviour in each cluster 

• Develop a strategy to utilise feature sets for Spam 2.0 filtering 
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To achieve the abovementioned goals, this chapter presents a framework to model, formulate, and 

cluster spam users’ behaviour. Based on the initial results of HoneySpam 2.0 (Section 5.8), three 

feature sets – Action Set, Action Time, and Action Frequency - are presented here to formulate spam 

users’ behaviour on Web 2.0 platforms as well as a neural network clustering mechanism is used to 

cluster spam users’ behaviour based on the three feature sets. The results of this chapter pave the way 

for the development of a Spam 2.0 filtering solution. 

This chapter is organised as follows: Section  6.2 provides an introduction to feature sets to model 

spam users’ behaviour. Section  6.3 introduces the Kohonen’s Self-Organising Map (SOM), a neural 

network clustering mechanism for clustering spam users’ behaviour. Section  6.4 provides the 

framework and algorithm for profiling Spam 2.0. Section  6.5 presents the implementation of the 

algorithm. The experimental settings for the experiment are presented in Section 6.6. Finally, the 

results and observations from the experiment are discussed in Section  6.7  . 

6.2  Model Spam User Behaviour 
Chapter 5 presented HoneySpam 2.0 as a framework to track spammers on Web 2.0 platforms. The 

tracked data contain information about spam users’ web/form usage and submission. However, such 

raw data cannot reveal many covert spam user behaviours. The data need to be formulated and 

formatted in order to provide more insight into spam users’ activities and model their behaviour. 

As mentioned in Section 5.9, there were no interactions with forms. Hence, form usage data is 

excluded throughout this study.  

The focus of this research is on behavioural analysis of Spam 2.0 and researchers have already 

presented detailed studies in the literature on spam in general (Hayati and Potdar 2008)(Hayati and 

Potdar 2009a) (Le, Jingbo, and Tianshun 2004). This section presents a framework for modelling and 

formulating usage behaviour of spam users on Web 2.0 platforms. 

In the literature, there is no mechanism provided which models spam users’ usage behaviour, 

especially on Web 2.0 platforms (Hayati, Potdar et al. 2010) (Hayati, Chai et al. 2010). Moreover, raw 

web usage data by itself is not descriptive and discriminative enough to allow a study of the 

behavioural aspects of spam users’ activities on Web 2.0 platforms. Therefore, in order to formulate 

web usage data as a more descriptive model, the proposed framework introduces three key concepts: 
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Transaction identification, Action identification, and Behaviour vector construction which will be 

discussed in the following section. 

6.2.1 Transaction 
Transaction refers to the meaningful clustering of usage data (Robert Cooley, Bamshad Mobasher, 

and Jaideep Srivastava 1999). Transactions are defined so that they are appropriate and meaningful 

for the given analysis. Transaction identification involves activities that are needed to construct 

meaningful clusters of usage data. In the proposed framework, three transaction identification 

approaches – Session level, User level and IP level - are used to make meaningful transactions.  

6.2.1.1 Session level transactions 
The session level transaction identification approach studies usage behaviour in each website visit. 

This approach reveals whether or not user behaviour changes for different website visits. For 

example, in an online discussion board, during one session the user might just read the other users’ 

comments. While in another session, the user might reply to other users’ posts. The usage behaviour 

for these two sample transactions is different. The session level transaction identification approach 

groups the set of user web page requests based on the same session ID. 

The session level transactions can provide detailed information about spam user behaviour each time 

they visit the website. It investigates whether users change their behaviour when they have different 

intentions, or whether they follow similar behaviour most of the time. 

6.2.1.2 User level transactions 

The User level transaction identification approach investigates users’ behaviour for the total time a 

user is active on a particular website. User level transaction contains entire sessions that belong to a 

user. It groups users’ behaviour for all of their website visits. The User level transaction identification 

approach groups the set of user web page requests based on the same username. 

The User level transaction studies behaviour of spam users for their whole life-time in the website. It 

investigates the cluster of different spam for the whole time they have been active in the website. 

6.2.1.3 IP level transactions 

The IP level transaction identification approach studies the behaviour of a specific host during the 

total amount of time that a host is connected to the website. The IP level might have more than one 
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user. The IP level transaction identification approach groups the set of user web page requests based 

on the same IP address. 

The IP level transaction studies behaviour of spam hosts by investigating the behaviour of all the 

spam users that have the same IP address and clusters different behaviours within that host set. 

 

Figure  6.1: Relationship of the three proposed approaches to transaction identification  

Figure  6.1 illustrates the relationship among three the transactions identification approaches. It is clear 

from the figure that IP level transactions have many-to-many relationships with the User level, while 

Users level transactions contain multiple sessions (one-to-many relationship).  

The above three transaction identification approaches are used to define transactions in the proposed 

framework. In the next step, web usage data is organised into meaningful groups based on each 

transaction. 

6.2.2 Action 

‘Action’ refers to a user set of requested web objects that are required to perform a certain task or 

achieve a particular purpose.  

For instance, (1) a user can navigate to the registration page in an online discussion board, (2) fill in 

the required fields and (3) press the submit button in order to register a new user account. This three-

step procedure can be modelled as a “Registering a user account” Action. 

An Action integrates users’ activity on web platforms into meaningful groups. Each group contains 

meaningful information about users’ tasks. The importance of Action is as follows. 

• It acts as a suitable discriminative criterion to model user behaviour on Web 2.0 platforms. 

Actions highlight the intentions of users who perform tasks on Web 2.0 platforms.  

• It is extendable to many other Web 2.0 platforms. For instance, the “Registering a user 

account” Action is performed on numerous Web 2.0 platforms (forums, social networks etc.), 

as users often need to create an account in order to contribute content. 
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• It is language-independent. Actions are content-independent and model web usage behaviour, 

which is then language-independent. 

• It can be implicitly formulated. Actions can be implicitly gathered and formulated while users 

navigate though websites. The collection and monitoring of Actions happen in the 

background and do not interrupt users while they are using the system. 

Actions can be generated manually. They can be specific for one Web 2.0 platform or general across 

multiple platforms. Table  6.1 presents examples of Actions. 

Table  6.1: Examples of general (G) and specific (S) Actions 

Action Web 2.0 platform Type 

Registration of user account Forums, Wikis, Social networks, Comment systems etc. G 

Login & Logout Forums, Wikis, Social networks, Comment systems etc. G 

Search Forums, Wikis, Social networks, etc. G 

Read content Forums, Wikis, Social networks, Comment systems etc. G 

Edit / Update content Forums, Wikis, Social networks, Comment systems etc. G 

Add content Forums, Wikis, Social networks, Comment systems etc. G 

Update user’s profile Forums, Wikis, Social networks, Comment systems etc. G 

Compose private message Forums, Social networks S 

Send friendship request Social networks S 

Create new page Wikis S 

Send event invitation Social networks S 

 

The main reason for studying Actions is that spam users’ intentions on Web 2.0 platforms are 

different from those of genuine humans. Spam users comparatively are active in content distribution, 

whereas genuine humans spend more time on content consumption than distribution (Steven J. J. 

Tedjamulia 2005). Therefore, factors such as frequency of different Actions, the amount of time a 

user spends on performing each Action etc. can be intelligently interpreted to differentiate between 

spam users and genuine ones.  
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In this research, three models or feature sets – Action Set, Action Time, and Action Frequency  - are 

proposed to formulate web usage data. These feature sets are used to differentiate between spam and 

genuine behaviour. 

6.2.2.1 Action Set 

An Action Set is a binary model. It shows whether or not an Action is undertaken by a user. This 

feature set shows whether or not spam users perform different Actions in different transactions.  For 

example, a spam user might concentrate only on those Actions that relate to submitting spam content. 

6.2.2.2 Action Time 

Action Time is a feature vector which represents the time taken to perform each Action. This feature 

set shows how much time spam users would spend on performing each Action in different 

transactions. For example, the amount of time to write a reply for a spam user might be a lot shorter 

than for a human user since spam content distribution is typically done automatically. 

6.2.2.3 Action Frequency 

Action Frequency is a feature vector to represent the frequency of each Action. This feature set shows 

how frequently spammers perform each Action in a different transaction and which Actions are quite 

common and which are not. For example, Action Frequency for content submission is more common 

with spam users than are other Actions. 

Actions are formulated in a vector format known as a Behaviour vector to model a user’s web usage 

behaviour. Behaviour vector construction is discussed in the next section. 

6.2.3 Behaviour vector 

The behaviour vector is a representation or model of a user’s web usage behaviour in the form of a 

multi-dimensional vector. It is propagated with a user’s Actions at different transaction levels. Three 

Behaviour vectors are presented for Action Set, Action Time and Action Frequency. 

6.2.3.1 Action Set vector 

Given a set of web pages W  = {w1,w2, … ,w|W|}, A is defined as a set of Actions, such that 

   6.1 
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Respectively si is defined as  

   6.2 

 si refers to a set of actions performed in transaction i  and T is total number of transactions.  

In order to build the input vector, each action (ai) is assigned as a feature item. Hence, an Action Set is 

represented as a bit vector  

  
 6.3 

where 

   

 6.4 

6.2.3.2 Action Time vector 

The amount of time a user spends on a specific web page in his/her navigation sequence is considered 

as ‘dwell time’. As defined in E.q.  6.6, Dwell time is used to construct an Action Time vector. 

  
 6.5 

d is a dwell time for ith requested web page in transaction S at time t; 

In E.q.  6.6, it is not possible to calculate dwell time for the last visited web page in a session. For 

example, a user navigates to the last web page on the website then closes his/her web browser. In the 

proposed method, the average dwell time spent on other web pages in the same session is considered 

as the dwell time for the last web page. 

Action Time is defined as a vector where 

   

 6.6 
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di
j  is a dwell time for Action ai  in si which is equal to total amount of time spent on each web page in 

ai . In cases where ai occurs more that once, the average dwell time would be calculated. Action Time 

vector is:  

   
 6.7 

6.2.3.3 Action Frequency vector 

Action frequency is a vector where hi
j is the frequency of  jth  Action in si , otherwise it is zero. The 

Action Frequency vector is:  

   
 6.8 

 

Each of above Behaviour vectors is multi-dimensional. In order to 

understand the behaviour vector as well as profile characteristics of each 

behavioural vector, a tool called a self-organising map (SOM) is used. 

SOM is utilised to visualise as well as cluster data. The next section 

provides a discussion on clustering spam user behaviour using a SOM. 

 

6.3  Cluster Spam User Behaviour 
Behavioural vectors are multi-dimensional and are therefore easy to visualise. In order to understand 

this data, a Self-Organising Map (SOM) is used to reduce the dimension of data as well as cluster data 

into similar groups. Each cluster provides an insight into the nature of Spam 2.0 behaviours and their 

characteristics. 

6.3.1 Self-Organising Map (SOM) 

SOM – a neural network clustering algorithm – can be employed for clustering and visualisation of 

high dimensional data (Kohonen 1990). The output of the SOM is a map which is a visual 

representation of an input vector. Maps can be generated in two or three dimensions but two-

dimensional maps are more common (Kohonen 1990). 
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SOM has two phases: training and mapping. In the training phase, an input vector in the form of a 

one-dimensional array is presented to the map. Next, the weights of the components on the map 

(called nodes) which neighbour the input vector gain more strength. The node which is closest to the 

input vector is called Best Matching Unit (BMU). Therefore, in the mapping phase, similar input 

vectors are in the same region and can be grouped together as a cluster. 

6.3.1.1 SOM definition 

SOM starts by initialising each node’s weight, wi , vector treated as a random variable that is to be 

assigned a small value (wi presented here is representation of SOM weight vector not set of webpages 

as discussed in Section 2.2.1). Next, an input vector x is presented to the map and the distance 

between all nodes on the map and x is calculated as E.q.  6.9. 

 
 6.9 

The minimum dj  is selected as BMU. After finding BMU, SOM updates wi  for BMU and its 

neighbours nodes according to E.q.  6.10 so they get closer to the input vector. 

  6.10 

where t is the time-step,  hci(t) is a Gaussian neighbourhood kernel and decreases with time   

 
 6.11 

α(t) is linear learning rate, T is the training length (neighbourhood size less than number of nodes in 

one dimension of map). 

6.3.1.2 Unified distance matrix 

Unified distance matrix (U-Matrix) visualises the distance between adjacent nodes in SOM. It can be 

employed to determine the number of clusters in SOM as well as their closeness. In this study, SOM 

and the U-matrix are used as visualisation tools to cluster different Spam 2.0 behaviours. 
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Figure  6.2: U-Matrix for mapping of 8 RGB colour vector on two dimensions 

For example, colours in Red Green Blue (RGB) model the three primary colours that generate other 

colours (Desai 2008). The RGB colour model is presented as a triple (red, green, blue) that contains 

three components corresponding to red, green and blue. The value of each component varies between 

zero to a defined maximum value. Figure  6.2 illustrates the U-Matrix for 8 RGB triple vectors on two 

dimensions.  

SOM and U-Matrix are used to cluster and project spam users’ data. The following section provides 

discussion on input vectors that are used with SOM. 

6.4  Algorithm 
Three Behavioural vectors – Action Set, Action Time and Action Frequency are used as inputs to 

SOM. The output of this process is a 2D U-Matrix map for each Behavioural vector. The projection of 

input data from a high dimension to a 2D map allows understanding of each feature set, grouping 

similar input vectors, and studying each cluster of Spam 2.0 behaviour.  

The three transaction levels and Behavioural vectors that were discussed earlier in this chapter are 

combined to construct 9 input vectors. Table  6.2 presents 9 feature vectors that are used in SOM. 
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Table  6.2: Nine feature vectors used in SOM. 

 Action Set (aS) Action Time (aT) Action Frequency (aF) 

Session (S)* (S, aS) (S, aT) (S, aF) 

User (U) (U, aS) (U, aT) (U, aF) 

IP (I) (I, aS) (I, aT) (I, aF) 

* Where S, U and I are set of session, users and IP addresses. 

Each input vector is used as input for SOM and is projected using U-Matrix. To study the cluster, the 

centre node of each cluster is chosen to describe the characteristic of that particular cluster. 

6.4.1 Flowchart 

Figure  6.3 illustrates the flowchart diagram for the clustering algorithm. This process consists of the 

following steps: 

Step 1: Get Behavioural vectors for each feature set – Action Set, Action Time and Action Frequency. 

Step 2: Generate 9 input vectors based on each feature set and three transaction levels. 

Step 3: Use input vectors to train SOM. 

Step 4: Generate U-Matrix corresponding to each input vector. 

Step 5: Investigate the centre node of each cluster in U-Matrix to profile Spam 2.0 behaviour.  
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Figure  6.3: Flowchart for the proposed algorithm 

6.5  Implementation 
PHP and MATLAB are used to implement the proposed framework. MATLAB is well-known tool for 

data processing and data analysis. In the proposed method, MATLAB is used to generate general 

statistical reports. Additionally, the MATLAB Neural Network Tool Box (SOM Tool Box) is utilised 

for SOM and U-Martix generation. The PHP codes are used to perform transaction identification, 

generating Actions and Behavioural input vectors. 

6.5.1 Transaction identification 

As mentioned earlier, the transaction identification task considers three levels: session, user and IP. In 

order to group transactions at each level, the following SQL statement is employed.  
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GROUP BY (session, user, IP column name) 

For example, in order to group data in session, user, and IP transaction levels, the following SQL 

statements are created. 

• GROUP BY (session_id)  

• GROUP BY (username)  

• GROUP BY (clientIP)  

These SQL statements are queried in conjunction with the other SQL queries to retrieve data for each 

transaction level. 

6.5.2 Action Set vector 

Action Set is constructed by following algorithm Code  6.1.  

Code  6.1: Pseudo-code for the Action Set  

Algorithm action_set(T,A) 
    input: set of transaction by the given user, T 
             set of Actions, A 
    output: set of Action Set for the given user, s 
1.   s = null 
2.   for each ti in T 
3.     create new action a 
4.     for each wj in ti 
5.       add wj to a 
6.       if a in A 
7.         if a in s 
8.           discard a 
9.           else 
10.            s = s + a 
11.          end if 
12.        ti = ti - a 
13.        if length(ti) > 0 then 
14.          create new action a 
15.        end if 
16.      else  
17.        if j = length(ti) then 
18.          discard a 
19.        end if 
20.      end if 
21.    repeat 
22.  repeat 
23. return s 

 

For example, suppose  
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W = {w1, w2, w3, w4, w5} 

T = {t1, t2}  (set of transactions for the given user) 

where  

t1 = {w1, w2, w1, w5} (in this transaction the user navigates from w1 to w2 and then again to w1 and w5) 

t2 = {w1, w3} (the user navigates to w1 and then to w3) 

Set of defined Actions is defined as A = {a, b, c}  

where  

a = {w1, w2}  (register to the website) 

b = {w3, w4}  (post new topic) 

c = {w1, w5}  (login to the website) 

the set of performed Actions by the given user is 

s = {a, c} (user register and then login to the website) 

On line 7, the algorithm checks whether the Action has already been added to the set, s; if so, a would 

not be discarded. Otherwise, a would be added to the output set. 

6.5.3 Action Time vector 

Action Time algorithm – the amount time spent on performing each action – is presented in Code  6.2. 
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Code  6.2: Pseudo-code for Action Time algorithm. 

Algorithm action_time(T,A) 
    input: set of transaction by the given user, T 
             set of Actions, A 
    output: set of Action Time for the given user, s 
1.  s = null 
2.  for each ti in T 
3.    create new action a 
4.    for each wj in ti 
5.      add wj to a 
6.      if a in A 
7.        if a in s 
8.          sa.time = (sa.time + a.time) / 2 
9.        else 
10.         add a, a.time to s 
11.       end if 
12.       ti = ti - a 
13.       if length(ti) > 0 then 
14.         create new action a 
15.       end if 
16.     else  
17.       if j = length(ti) then 
18.         discard a 
19.       end if 
20.     end if 
21.   repeat 
22.  repeat 
23. return s 

 

The main difference between Action Set and Action Time algorithms is on line 8 and 10. On line 8, 

the average Action time is added to the set and on line 10, Action name and Action time are added to 

the set. 

6.5.4 Action Frequency vector 

Similarly to the Action Set algorithm, the Action Frequency algorithm is defined in Code  6.3. 
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Code  6.3: Pseudo-code for Action Frequency algorithm. 

Algorithm action_frequency(T,A) 
    input: set of transaction by the given user, T 
             set of Actions, A 
    output: set of Action Time for the given user, s 
1.  s = null 
2.  for each ti in T 
3.    create new action a 
4.    for each wj in ti 
5.      add wj to a 
6.      if a in A 
7.        s = s + a 
8.        ti = ti - a 
9.        if length(ti) > 0 then 
10.         create new action a 
11.       end if 
12.     else  
13.       if j = length(ti) then 
14.         discard a 
15.       end if 
16.     end if 
17.   repeat 
18.  repeat 
19. return s 

 

In the Action Frequency algorithm, the count for each Action a is added to the output set. 

6.5.5 Input vector 

The combination of three feature vectors – Action Set, Action Time, and Action Frequency and three 

transaction levels – Session, User, and IP - results in 9 input vectors that can be used by the SOM and 

U-Matrix generation. The following three algorithms are used to construct – Action Set, Action Time, 

and Action Frequency input vectors for each transaction level Code  6.4. 
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Code  6.4: Pseudo-codes for the construction of feature input vectors. 

Algorithm action_set_input_vector(k,sk,A) 
    input: given user, k 
             set of user Action Set, sk 
             set of Actions, A 
    output: Action Set input vector, aS 
1.  for each ai in A 
2.    if ai in sk 
3.      aSi = 1 
4.    else 
5.      aSi = 0 
6.  return aS  
 
Algorithm action_time_input_vector(k,sk,A) 
    input: given user, k 
             set of user Action Time, sk 
             set of Actions, A 
    output: Action Time input vector for the given user, aT 
1.  for each ai in A 
2.    if ai in sk 
3.      aTi = ai.time 
4.    else 
5.      aTi = 0 
6.  return aT  
 
Algorithm action_frequency_input_vector(k,sk,A) 
    input: given user, k 
             set of user Action Frequency, sk 
             set of Actions, A 
    output: Action Frequency input vector for the given user, aF 
1.  for each ai in A 
2.    if ai in sk 
3.      aFi = ai 
4.    else 
5.      aFi = 0 
6.  return aF  

 

Algorithm action_set_input_vector(k,sk,A)obtains Action Sets for a user. It iterates through 

A, and if Action ai is performed by the user, the value for the aSi would be 1 otherwise 0. The 

algorithm returns Action Set input vector, aSi, on line 6. 

The algorithm action_time_input_vector(k,sk,A) iterates through Actions, if the Action 

exists in s, on line 4, algorithm assigns dwell time value for aTi otherwise the algorithm assigns a zero 

value. On Line 6, the algorithm returns Action Time input vector, aT. 

Similarly to the Action Set and Action Time input vector algorithm, Action Frequency input vector 

algorithm action_frequency_input_vector(k,sk,A)iterates through Actions, if Action exists 
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in user session, s, line 3, the frequency of the action is added to input vector aFi otherwise the zero 

value would be assigned. The algorithm returns the Action Frequency input vector, aF, on line 6. 

6.6  Experimental Setting 
This section discusses SOM and U-Matrix experiments settings. The dataset is collected through 

HSCOM1 forum data (Section 5.7.1.1) over a period of one month. Table  6.3 presents the parameter 

specifications of the experiment. 

Table  6.3: Parameter specifications for the experiment 

Parameter Value Description 

No. of session transactions 3726 Total number of transactions as session level 

No. of user transactions 1067 Total number of transactions as user level 

No.  of IP transaction 871 Total number of transactions as IP level 

No.  of Actions , |A| 11 Manually defined Action list. 

 

For transaction identification, HSCOM1 forum data is grouped into three transaction levels: session, 

user and IP. 11 Actions are manually extracted from the dataset (A). The details of each action are 

presented in Table  6.4. Feature sets – Action Set, Action time, and Action frequency - are measures 

based on this pre-defined Action list. 

Table  6.4: Summary of Actions performed by spammers on HSCOM1 forum data 

Action Key Action Index Description 

1 A View root page 

2 B View topics 

3 C Start new topic 

4 D View topic (view their own created topic) 

5 E View user profile information 

6 F Edit user information 

7 G Start new poll 

8 H User authentication (Login) 

9 I Reply to topic 
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Action Key Action Index Description 

10 J Recently submitted topics 

11 K View overall forum statistic 

 

In order to provide a clear insight into each Action, Figure  6.4 represents the frequency of each Action 

at the three transaction levels in the dataset. 

 

Figure  6.4: Frequency of Actions on HSCOM1 forum data  

As is clear from the figure, “Starting new topic” is the most common Action among spam users in all 

the transactions levels. The Action “View root page” and “View user profile information” are 

common in session level transactions. The Action “View topic” is also common in the IP level 

transaction. 

Nine input vectors are constructed. Table  6.5 presents a sample input vector for Action Time that is 

used in SOM.  
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Table  6.5: Sample Action Time input vector used in SOM experiment 

 a1 a2 … a|A| 

t1 5 4 … 0 

t2 0 4 … 0 

… … … … … 

t|T| 0 2 … 1 

6.7  Results 
In the following section, the results from each experiment and the characteristics of the centre node 

inside each cluster are discussed. 

6.7.1 Experiment 1: Session level result 
Based on three experiments at session level, Figure  6.5 illustrates the U-Matrix for (S, aF). The dark 

line represents large distances between nodes. The light node areas represent nodes that are close to 

each other. The dark lines separate the map into the major clusters. The details of each cluster are 

shown in Table  6.6.  
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Figure  6.5: Result of U-matrix for session and frequency of actions. 

Table  6.6: Major characteristics of spam users at the session level 

 Cluster 1 Cluster 2 Cluster 3 

Dwell time N/A 2,3 4,6,7 

Frequency 1 2,3 4,9 

Actions C, A AE, BB, BCB AEFF, AEFFABCBD 

 

Three major clusters are extracted from the above experiment and are labelled: Content Submitters, 

Profile Editors and Mixture. 

Cluster 1 (Content Submitter): Spam users in this cluster perform the Starting New Topic action. 

They did not perform any other action at this level. Hence, the dwell time for their Action cannot be 

calculated.  This behaviour reveals that spammers do not navigate through websites. They directly 

submit the content on the forum. Additionally, in their Action Set there is no request for Action C 

(start new topic), thereby indicating that they do not interact with the server form in order to submit 

their content. 

Cluster 2 (Profile Editor): The goal of spam users in this cluster is to edit their own profile page. A 

profile page consists of various types of information such as name, email address, homepage URL, 
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signature, etc. Spam users navigate from Action A (view root page) to Action F (edit user 

information) with a frequency of one for each Action. The dwell time for their action is between 2-3 

seconds. This strengthens the claim that they do not use forms to submit their profile details, since 

their dwell time is very low (2-3 seconds).  

Spam users, by modifying the profile information, are able to promote either their spam URLs or 

content.  

Cluster 3 (Mixture): Spammers in this cluster performed both of the abovementioned sets of Actions. 

They navigate through the following action sequence (A,E,F,F,A,B,C,B,D). The average frequency 

for each Action is 2, which means they perform the above sequence twice in each session. This 

behaviour again shows that spammers did not use forms to submit content or modify their profile, 

since this sequence cannot feasibly be performed in 4 – 7 seconds.  Additionally, they navigate to 

view their submitted content in order to increase the view count of their topic, as well as to possibly 

ensure that their submitted content is published. 

6.7.2 Experiment 2: User level results 

User level tracking provides information about the characteristics of each spammer for their total 

active time in the forum. It can show whether their behaviour has changed over time. The results of 

three different experiments at the user level are: 

Cluster 1 (Content Submitter): Spam users use their user account only to submit spam content 

directly to the website. However, they use their username once since only one session belongs to each 

user in this cluster. The dwell time is zero (or unknown as only 1 web page request), the frequency of 

the Action is either one or two and they perform only Action C (start new topic). 

Cluster 2 (Content Submitter and Profile Editor): Spam users start their Action navigation by 

visiting the root page, modifying their profile page and then submitting spam content. Their average 

dwell time is 2.5 seconds for each Action with a total frequency of 8 actions per user level. Their 

navigation sequence is (A,E,F,F,A,B,C,B). Once the Actions were performed, the spammers did not 

use the user account again. 

Cluster 3 (Mixture): In this cluster,  the average dwell time of spam users is 7 seconds for navigating 

navigation through (A,A,E,F,F,A,B,C,B,B,D) with a frequency of 11. They combine both profile 
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editing and content submission behaviours. They view their own created topic at the end of their 

navigation set. Similar to the previous clusters, spam users have just one session for each user account 

in this cluster. 

An investigation of spam users at the user level reveals that once they have created a user name, they 

used it once only and they do not change their behaviour during their lifetime. Table  6.7 presents 

details of each cluster. Figure  6.6 illustrates U-Matrix map for (U, aF ). It shows that the majority of 

spam users at the user level have similar characteristics as the map dominated by light areas. 

 

Figure  6.6: U-Matrix representation of user level and action frequency. 

Table  6.7: Major characteristics of spam users in the user level 

 Cluster 1 Cluster 2 Cluster 3 

Dwell time N/A 2.3 2.5 

Frequency 1 8 11 

Actions C, CC AEFFABCB AAEFABCBBD 
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6.7.3 Experiment 3: IP level results 

The IP level presents a high level view of spam users’ behaviour. The experiment resulted in the 

discovery of three major clusters which include: 

Cluster 1 (Mix): This cluster consists of 4 – 5 frequencies for each Action Set. Spam users in this 

cluster navigate through the root web page, modify their profile and submit spam content. Finally, 

they end their navigation by viewing their own created content. The frequency shows that they created 

multiple accounts under one IP address name to perform their actions. 

Cluster 2 (Content Viewer): Spam users in this cluster only navigate to Section D (viewing their own 

topic). This behaviour was not seen in the previous levels. Further investigation revealed that spam 

users change their IP address once they submit the spam content. Therefore, some use multiple IP 

addresses for one user (many-to-many relationship between IP and user transaction level). 

Cluster 3 (Big Hit Mix): Action Frequency in this cluster is more than 100 for submitting spam 

content or to modify profiles. This cluster has similar characteristics to those of cluster 1. However, 

the higher Action Frequencies show that spammers use multiple usernames to perform the same 

Actions. 

The experiment involving an IP address dwell time map does not result in clear clusters. This may be 

due to a change of IP address by spammers at the end of navigation which results in unknown dwell 

time as well as multiple usernames per IP address that produce various dwell times. Table  6.8 presents 

details of each experiment at IP level. Figure  6.7 represents the U-Matrix map of IP level and Action 

Frequency. 
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Figure  6.7: U-Matrix for IP level and Action Frequency 

Table  6.8: Major characteristics of spam users in the IP level 

 Cluster 1 Cluster 2 Cluster 3 

Frequency 8 11 100+ 

Actions AEFFABCB D… AEFABC… 

 

6.7.4 Discussion 

The U-matrix visualisation in some of the experiments produced a number of minor clusters. While 

the investigation was carried out on these minor clusters, they did not result in useful distinctive 

behaviour for Spam 2.0 characterisation. For example, a cluster was identified for spam users who 

perform Action A (visiting the root page) multiple times. This Action does not reveal any interesting 

characteristics since it can be seen among genuine users as well. Hence, such reports for minor 

clusters were not included in the results. 

A self-organising map and neural networks in general do not allow much user interpretability in 

understanding why nodes belong to each cluster. It can be viewed as a black box algorithm which is 

fed some inputs and generates the output.  
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6.8  Conclusion 
This chapter presents a framework to investigate, formulate, and cluster Spam 2.0 behaviour. Based 

on initial results of HoneySpam 2.0 (Section 5.8), three feature sets – Action Set, Action Time, and 

Action Frequency - are presented here to formulate Spam users’ behaviour on Web 2.0 platforms. A 

neural network clustering mechanism is used to cluster spammer behaviour based on the three feature 

sets. The following observations have been made during the unsupervised classification experiment. 

• Spam users focus on specific and limited Actions in the web applications. 

• Spam users use multiple user accounts to spread spam content, hide their identity and bypass 

restrictions. 

• Spam users do not fill in submission forms and directly submit the content to the Web server 

in order to efficiently spread spam. 

• Spam users can be grouped into four different categories based on their Actions: content 

submitters, profile editors, content viewers and mixed behaviour. 

• Spam users change their IP address based on different Actions to hide their tracks 

The following chapter provides the first early-detection based Spam 2.0 filtering method based on 

behaviour analysis. 
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Chapter 7    

Early-Detection based Spam 2.0 

Filtering 
This chapter covers: 

► Introduction to Early-detection-based Spam 2.0 filtering solution. 

► Presentation of a framework to detect Spam 2.0 by analysing web usage data and evaluate its 

feasibility in combating the distribution of Spam 2.0. 

► Utilising Action Set, Action Time and Action Frequency for Spam 2.0 identification. 

► Evaluation, validation and a comparative study of the performance of the proposed solution 

with real-world data and state of the art approaches. 

7.1  Introduction 
This chapter presents a method for Early-Detection based Spam 2.0 Filtering called EDSF. This 

Spam 2.0 filtering method is used to identify spam behaviour prior to or after spam content 

submission. EDSF investigates the behaviour of the spam users e.g. automated tools, spambots etc. 

The EDSF, the proposed method presented in this dissertation, automatically distinguishes Spam 2.0 

submission from genuine human content contribution on Web 2.0 platforms. EDSF makes use of web 

usage navigation behaviour to build up a discriminative feature set. Such a feature set is later on 

passed to a machine learning classifier known as a Support Vector Machine (SVM) for classification. 

The theoretical foundation for EDSF, along with its algorithm design to address all the requirements 

laid out in Chapter 4, is discussed here. Testing, experimentation and observation of the results along 

with their validation are carried out at the end of this chapter. 
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7.2  General Overview of EDSF 
The main assumption of EDSF is that human web usage behaviour is intrinsically different from 

Spam 2.0 behaviour. The reason for this, as outlined in Section 6.7, is due to spam users having 

different intentions. Spam users visit the websites mainly to spread spam content rather than 

contribute to the content. Hence, by investigating and mining web usage data, it is possible to 

distinguish them from genuine human users.  

Web usage data can be implicitly gathered while users surf though websites. This raw data needs to be 

converted into a different format to highlight behavioural differences between spam and genuine 

users. Therefore, three new feature sets namely, Action Set, Action Time, and Action Frequency, are 

used in EDSF to study spammers’ behaviour.  

As mentioned earlier, an Action can be defined as a user set of requested web objects in order to 

perform a certain task or purpose (ref. Section 6.2.2). Actions can be a suitable discriminative feature 

to model user behaviour within forums but can also be extendable to many other Web 2.0 platforms.  

EDSF utilises Action Set, Action Time, and Action Frequency to formulate web usage behaviour. As 

discussed in Section 6.2.2, Action Set is a set of Actions performed by a user. Action time is the 

amount of time spent on doing a particular Action. Action Frequency¸ is the frequency with which 

one certain Action is performed.  

EDSF use these three features in a machine learning classifier (SVM) to differentiate spam from 

genuine users. 

This chapter presents: 

1. An introduction to Early-Detection based Spam 2.0 Filtering (EDSF) approach. 

2. A framework to detect Spam 2.0 by analysing web usage data and evaluate its feasibility in 

combating the distribution of Spam 2.0. 

3. The implementation of Action Set, Action Time and Action Frequency for Spam 2.0 

identification. 

4. An evaluation and validation EDSF with real world data. 
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5. A comparative study of EDSF with state-of-the-art Spam 2.0 filtering approaches. 

7.3  Requirements 
The following requirements are laid down for the proposed solution. This represents the first stage of 

the conceptual process where requirements are elicited and prioritised. The requirements of the 

solution are:  

1. Extendibility: the method should be extendable to all Web 2.0 platforms. 

2. Adaptability:  the method should be adaptable to new Spam 2.0 behaviours. 

3. Automaticity: the method should automatically distinguish Spam 2.0 from genuine human 

behaviour. 

4. Independency: the method should be independent from its platform. For example, it should 

be language- and content-independent. 

5. Implicitness: the method should implicitly accumulate behavioural data. 

6. Discriminative features: the features should be discriminative enough to differentiate 

genuine human user behaviour from spammers’ behaviour. 

The design rationale is based on the abovementioned requirements. A design decision for each 

requirement is made in the design rationale along with a discussion of how the requirement is met. 

7.4  Design Rationale 
This section provides a design rationale to meet all the requirements listed above. This is the second 

stage of the conceptual process. The following design decisions are proposed in order to address each 

requirement. 

1. Develop an early-detection based Spam 2.0 filtering method that is language- and platform-

independent (Req. 1, 4). 

2. Capture server side web usage data while the user interacts with the website (Req. 1, 5). 
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3. Develop an automated supervised machine learning classifier than can be trained with new 

instances of Spam 2.0 (Req. 2, 3). 

4. Formulate web usage data into the Action format i.e. Action Set, Action Time, and Action 

Frequency (Req. 6). 

In the development of any solution, the above design decisions should be considered. All these design 

decisions are included in the proposed method to detect Spam 2.0 behaviour on web applications. This 

concludes stage two of the conceptual process. The next stage is the theoretical foundation for the 

proposed solution. 

7.5  Theoretical Foundation 
The theoretical foundation for the EDSF is discussed in this section which represents the third stage 

of the conceptual process. Entire design decisions are analysed and an algorithm is proposed. The 

theoretical foundation as illustrated in Figure  7.1 has four main parts: tracking, pre-processing, feature 

measurement, and classification. 

 

Figure  7.1: EDSF framework consisting of four parts 
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Incoming Traffic 

Incoming traffic shows a user entering the website through a web interface such as the homepage of a 

forum. 

Tracking 

Tracking records web usage data including the user’s IP address, username, requested webpage URL, 

session identity, and timestamp.  

Pre-processing 

Pre-processing includes three components: data cleansing, transaction identification and dwell time 

completion. 

Feature Measurement 

Feature Measurement extracts and measures three feature sets: Action Set, Action Time, and Action 

Frequency from web usage data. 

Classification 

A machine learning classifier known as Support Vector Machine (SVM) is used to distinguish spam 

users from genuine human behaviour. 

The proposed solution explained above addresses all the requirements described in Section  7.3 . A 

detailed description of each part of EDSF is given below. 

7.5.1 Tracking 
Input: Incoming traffic to the Web 2.0 platform 

Output: Web usage data 

Tracking is the entry for all incoming traffic. It tracks the requested URL, type of request method (i.e. 

GET and POST method), the time of request, the IP address, the User Agent, and the referrer URL.  
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The tracking part of EDSF is similar to HoneySpam 2.0 tracking (Section 

5.5.1). However, since current trends of Spam 2.0 do not interact with the 

form (Section 5.9), no form usage data is collected during the tracking 

period. Therefore, the existence of any form usage data can be an 

indicator of genuine behaviour on a web application.  In order to 

disregard such simple features for classification and further investigate 

navigational behaviour, form usage was not included in the EDSF 

experiment. 

 

Similar to the Session identification task in HoneySpam 2.0 (Section 5.5.2.3), a unique session 

identifier is assigned for individual browsing sessions. This makes it possible to track navigations on 

each occasion that the user visits the website. The tracker stores the gathered data along with the 

corresponding username for each record. The users’ credentials information is extracted from each 

HTTP cookie and is stored along with other navigational usage data similar to the User identification 

task in HoneySpam 2.0 (Section 5.5.2.2).  

Figure  7.2 presents a sequence diagram of the tracking process.  

 

Figure  7.2: The sequence diagram of the EDSF tracking process  

Step 1: The user requests a web page.  

Step 2: The tracking component first captures the web usage data associated with the initial request 
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Step 3: The tracking component forwards the request to the web application to be processed.  

Step 4: The web application returns the produced web page.  

Step 5: The web application returns the web page to the client.  

It is clear from the above steps that there is no form tracking module involved in the tracking process 

of EDSF. The only data that is accumulated is the client’s navigational data. 

7.5.2 Pre-processing 
Input: Raw web navigation usage data 

Output: Clean and transaction-identified usage data 

Pre-processing includes three tasks: data cleansing, transaction identification and dwell time 

completion. 

7.5.2.1 Data cleaning 
Data cleansing removes irrelevant web usage data including that of: 

• researchers who monitor the forum, 

• visitors who did not create a user account, and 

• crawlers and other Web robots that are not spambots. 

7.5.2.2 Dwell time completion 
Dwell time is defined as the amount of time a user spends on a specific web page in his/her navigation 

sequence.  It can be calculated by looking at each record timestamp. Dwell time is defined as: 

  
 7.1 

d is a dwell time for ith requested web page in session S at time t; 

In E.q.  7.1, it is not possible to calculate the dwell time for the last visited web page in a session. For 

example, a user navigates to the last web page on the website then closes his/her web browser. In such 

cases, the average dwell time spent on other web pages during the same session is considered. 
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7.5.2.3 Transaction identification 
In transaction identification, a meaningful cluster of user navigation data in extracted. Web usage data 

is grouped into three levels of abstraction: IP, User and Session. The highest level of abstraction is IP 

and each IP address in web usage data may consist of multiple users. The middle level is the user 

level where each user can have multiple browsing sessions. Finally, the lowest level is the session 

level which contains detailed information of how the user behaved for each website visited. 

In the EDSF, transaction identification is done at the session level for the following reasons: 

• The session level can be built and analysed quickly while other levels need more tracking 

time to obtain a complete view of the user’s behaviour. 

• The session level provides more in-depth information about user behaviour when compared 

with the other levels of abstraction. 

A transaction is defined as a set of web pages that a user requests during each browsing session. 

Figure  7.3 presents a flowchart for the pre-processing of the EDSF. The procedure of the pre-

processing part is as follows. 

 

Figure  7.3: The flow chart diagram for the pre-processing part of EDSF 

Step 1: The pre-processing tasks begin with raw web navigational data.  

Step 2: Unwanted data is wiped out during data cleansing.  

Step 3: The dwell time for each web page is calculated. 

Step 4: The data is grouped based on session transaction levels and is passed to the next stage. 

7.5.3 Feature Measurement 
Feature measurement extracts and measures three feature sets: Action Set, Action Time, and Action 

Frequency from web usage data to build input vectors for classification. These features are measures 
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as described in Section 6.2.3. However, the features are used inside the classifier for detection of 

Spam 2.0 behaviour.  

Figure  7.4 presents the flowchart for the feature measurement of EDSF. The process consists of the 

following steps. 

 

Figure  7.4: Flowchart for feature measurement part of EDSF 

Step1: Obtain the transaction set from the previous part of the EDSF. 

Step2: Calculate Action Set, Action Time, and Action Frequency for each transaction. 

Step3: Construct input vectors based on the features. The input vectors are used in the next part of 

EDSF. 

7.5.4 Classification 
A Support Vector Machine (SVM) is used as the machine learning classifier in EDSF. SVM is a 

machine learning algorithm designed to be robust for classification, especially binary classification 

(C. Chang and C. Lin 2001).  

Given a set of input data, SVM predicts the class/category to which the input belongs. Similar to other 

supervised machine learning classifiers, SVM requires a set of training examples. SVM builds up a 

model based on the training example. The model is used to predict a new example category. The SVM 

model generates a hyperplane in finite/infinite dimensional space that is a margin between different 

categories. This hyperplane is used to separate classes. 



 

 

209 Early-Detection based Spam 2.0 Filtering 

 

Figure  7.5: SVM decision function 

SVM trains by n data points or features {(x1, y1), (x2, y2), … , (xn, yn)} and each feature comes with 

class label yi. In the spam filtering tasks there are two classes {human, spammer}, that can be assigned 

numerical values of -1 and +1 to each class accordingly. SVM then tries to find an optimum 

hyperplane to separate the two classes and maximise the margin between each class. A decision 

function on new data point x is defined in E.q.  7.2 where w is the weight vector and b is the bias term. 

    7.2 

As illustrated in Figure  7.5, there are two classes of data (black dots and white dots) that have been 

separated with a line (hyperplace in high dimensional spaces). For each new example ф(x) assign a 

class. 

Figure  7.6 presents the flowchart for the classification of EDSF. The process consists of the following 

steps. 
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Figure  7.6: Classification part of EDSF 

Step 1: Obtain the input vectors from the pre-processing part. 

Step 2: Select a set of input vectors as a training set for the classifier, and use the remainder as a 

validation set. 

Step 3: Train the classifier based on each training set.  

Step 3: Run the classifier based on each input vector – Action Set (aS), Action Time (aF), Action 

Frequency (aF). 

Step 4: Generate results based on the outcome of the classifier. 

This concludes the third stage of conceptual process where the algorithm for EDSF has been 

proposed. The following section describes the prototype implementation of EDSF. 

7.6  Prototype Implementation 
The fourth stage of the conceptual process is where the theoretical foundation is implemented as a 

prototype. In order to fulfil the requirements (Section  7.3 ) the following technologies are used to 

implement the prototype. 

Tracking  

Similar to the tracking part of HoneySpam 2.0 described in Section 5.6.1, PHP programming 

language and a MySQL database are used to implement the tracking part of EDSF. However, as 
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described previously (Section 6.5.1), form usage data is not monitored by EDSF; hence, there is no 

prototype implementation for the form tracking component. 

The tracking part of EDSF can implicitly gather web usage data and is extendable to all web 

applications. 

Pre-processing  

Pre-processing part is implemented using PHP language. The outcome of this is stored in the MySQL 

database which can be used later for feature measurement. 

Feature Measurement 

The feature measurement of the EDSF is implemented using PHP language. Once the input vectors 

are constructed, the outcome is stored in a specific file format to be used inside the classifier. 

Classification 

For the classification, Waikato Environment for Knowledge Analysis (WEKA) is used. Weka is a 

collection of machine learning algorithms including SVM (Hall et al. 2009). It is developed in Java 

programming language.  

7.6.1 Tracking part 
Similar to the tracking part of HoneySpam 2.0 (Section 5.6.1), the EDSF tracking part is modelled 

using 2 PHP file. The form tracking PHP files are not included here. 

• sb_unb.php 

• sb_mysql.php 

The PHP files are executed on the virtual web server operating with Linux (Suse Server Enterprise 

11), Apache server and PHP compiler version 5. 

The description of sb_unb.php and sb_mysql.php are same as described in Section 5.6.1.1 
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7.6.2 Pre-processing part 
Server-side programming is utilised to process the data. All the data is accumulated on the server 

(MySQL database). Due to these time-consuming tasks, PHP command line script language is used to 

pre-process the data. 

Pre-processing includes the following tasks: 

• Cleansing the data 

• Calculation of dwell time 

• Identification of transactions 

The sections below detail the above tasks. 

7.6.2.1 Data cleansing 
SQL queries similar to Section 5.6.2.1 have been constructed for this task. The SQL queries are used 

to:  

• remove redundant data,  

• remove visitors’ data, 

• remove the data of researchers who monitor the system, 

• remove standard and known robot data, 

• remove data for javascripts, image, stylesheet etc., file requests. 

7.6.2.2 Dwell time completion 
The following algorithm (Code  7.1) is used to calculate the dwell time for each user. The average 

dwell time is used for the last visited web page in a session. 
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Code  7.1: Dwell time algorithm  

Algorithm dwell_time_completion(S) 
    input: set of webpages in a session, S 
    output: set of dwell_time for a session, S 
1.   for each w in S 
2.    if i = |S| 
3.        dwell_time = (total session time) / |S| 
4.    else 
5.      dwell_time = wi+1.time - wi.time; 
6.    endif 
7.   repeat 
8.  return dwell_time 

 

The algorithm starts by iterating through all the web pages in the session S. The calculation of dwell 

time is on line 5, where the time visit (timestamp) for the web page is deducted from the time visit for 

the next visited web page in the session. 

Line 2 checks whether the web page is the last web page in the session. If so, on line 3 the dwell time 

for the last seen web page is calculated by measuring the average dwell time for other web pages in 

the session. 

The algorithm returns the set dwell_time on line 8. 

7.6.2.3 Transaction identification 
For the transaction identification task, an SQL statement similar to that in Section 6.5.1 is constructed 

to identify session level transactions. The following SQL where clause statement is used to group 

transactions at the session level. 

GROUP BY (session) 

Since all records have session ids, the above SQL statement can identify all the records that belong to 

a specific session. Transaction identification in EDSF generates a list of available session ids which 

can be used later to extract information from each session. 

7.6.3 Feature measurement 
Three feature sets – Action Set, Action Time and Action Frequency – are measured in this part. These 

features are used later to construct input vectors to be used inside the classifier. PHP command line 

scripts are utilised to measure each feature set. 
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The description of each input vector is discussed in Section 6.5.5. 

7.6.4 Classification 
To distinguish Spam 2.0 behaviour from genuine human behaviour, a machine learning classifier 

known as SVM is employed. A well-known classifier machine learning classifier WEKA (Hall et al. 

2009) is used for classification. WEKA is implemented in the Java programming language. WEKA 

can be used either through its Graphical User Interface (GUI) or through API from other Java codes. 

The LibSVM classifier function in WEKA is used to implement SVM. The LibSVM function is 

implementation of Chih-Chung Chang and Chih-Jen Lin class library for SVM (Chih-Chung Chang 

and Chih-Jen Lin 2001). LibSVM includes the following features: 

• Multi-classifier 

• Different version of SVM formulation 

• Cross validation 

• Probability estimation 

• Implemented in various programming languages, etc. 

The input vector is formatted into ARFF format, which is a standard format for WEKA. The ARFF 

file contains two parts: header and data. The header begins with @RELATION keyword and contains 

information including: 

• name of the relation, 

• a list of the attributes (columns), and 

• each attribute type. 

The data part starts with @DATA. Each record is on one line and each attribute inside each 

record is separated by a comma. Figure  7.7 presents an example of ARFF file. 
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@RELATION EDSF 
   @ATTRIBUTE ActionA  NUMERIC 
   @ATTRIBUTE ActionB  NUMERIC 
   @ATTRIBUTE ActionC  NUMERIC 
@DATA 
   1,0,1 
   0,0,1 
   0,1,0 

Figure  7.7: Sample ARFF file 

The algorithm for the classifier is presented in Code  7.2. If the result of the classification for a given user i  is 1, 

the user would be marked as spam and all the user’s content contribution would be classified as spam content. 

Otherwise, the user is a genuine human user. 

Code  7.2: Algorithm for the classifier 

Algorithm classification(Vi) 
    input: input vector for a the given user, Vi 
    output: the boolean classification result (1 = spam user), Ri  
1.  Ri = ф(Vi) 
2.  if Ri = 1 
3.    Mark i as spam user 
4.    Mark all i's posts as spam 
5.  else 
6.    Mark i as the genuine human user 
7.  return Ri 

 

This concludes stage four of the conceptual process. The next section focuses on experimental settings 

where the proposed prototype is tested. 

7.7  Experimental Settings 
The experimental settings comprise the fifth stage of the conceptual process where the proposed 

prototype is tested and examined. The EDSF experiment involves three processes: Data Collection, 

Parameter Specification, and Performance Measurement. 

Data collection explains the dataset that is used to conduct the experiment. It includes both Spam 2.0 

and genuine human data. 

Parameter Specification is a discussion about all the parameters and their associated values used for 

gathering the results. The parameters that are used in the machine learning classifier are also 

discussed here. 
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Performance Measurement discusses the method which is used for measuring the performance of 

EDSF under different parameter settings and datasets. 

7.7.1 Data collection 
As mentioned previously, there are no publicly available Spam 2.0 data collections which contain 

both human and spam web usage data for Web 2.0 platforms. Hence, the dataset for this experiment is 

collected using the proposed HoneySpam 2.0 tool. The dataset contains both Spam 2.0 and genuine 

human behaviour. The Spam 2.0 dataset is collected through HSCOM1 (Section 5.7.1.1) over a period 

of one month. This data is collected from the online discussion board (i.e. SMF) running on 

HSCOM1. The genuine users’ data is collected from a live forum with the same configuration as 

HSCOM1. However, the following concerns are taken into the account when using the genuine users’ 

and Spam 2.0 data for the EDSF experiment. 

• Same web application: The same version of SMF web application is run on the genuine users’ 

forum. 

• Same site structure: Both genuine users’ and spam forums have the same site structure (e.g. 

sitemap). 

• Same tracking tool: The same version of HoneySpam 2.0 is run on the genuine users’ forum. 

• Same type of data: The web usage navigational data is collected over a period of one month 

for the genuine users’ forum which is the same as Spam 2.0 data. 

• Neutralised data: Both genuine users’ and spam data are eliminated from any possible biased 

information. For example, domain specific information such as the URL name is removed 

from the genuine users’ data. 

The genuine users’ data is frequently moderated by manual investigators; hence, there is no tracking 

of spam activity in this data. 
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In order to further validate the performance of the EDSF, another 

experiment is conducted on a different dataset. The dataset is 

accumulated through a live forum that is used by both genuine and spam 

users. The result of this experiment is discussed in Section 7.9.1. 

 

Table  7.1 presents a summary of the collected data. The dataset contains 16,594 entries consisting of 

11,039 spam records and 5,555 genuine users’ records.  

Table  7.1: Summary of the dataset for the EDSF experiment 

Type of data Frequency 

No. of genuine users’ records 5,555 

No. of spam records 11,039 

 

7.7.2 Parameter Specification 
All the parameters and their associated values used are listed in Table  7.2. It also includes the 

parameter settings for the SVM classifier. 
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Table  7.2: Parameters and their associated values used in the EDSF 

Parameter Value Description 

No. of transaction , |T| 4,227 

  

Result of transaction identification at session level 
during pre-processing part. 

No. of spam transactions 3,726 Manually classified spam transactions 

No. of non-spam transactions 501 Manually classified non-spam transactions 

No. of Actions , |A| 34 Result of feature measurement part for different type 
of Actions. 

SVM type C-SVC C-SVC is a standard SVM algorithm. 

Kernel type Radial basis 
function  

Degree 3 Degree of the closeness in the kernel function 

Gamma 0.029 1 / number of features 

Cost 1 To create soft margin between classes and allow 
training error. It might result in misclassification. 

Epsilon 0.001 Tolerance of termination factor. 

Cross-validation 10 To observe the efficiency of the classifier on different 
training – test (unseen) data.  

 

Table  7.3 lists 34 Actions that are extracted and selected from the dataset. The details of each Action 

are explained in the table. These Actions can be extendable to other web applications, specifically 

online discussion boards. 
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Table  7.3: The list of all the extracted Actions 

Action Key Description 

1 View homepage 
2 View all the discussion boards 
3 View topics in one discussion board 
4 View topic (view user own created topic) 
5 View overall forum statistic 
6 View recently submitted topics 
7 View search result 
8 View user profile information 
9 View other users profile 

10 View personal message (Inbox) 
11 View members lists 
12 View latest reply to a specific topic 
13 View help 
14 View all the posts by specific user 
15 Modify user own profile (user account details) 
16 Modify user own profile (personal information) 
17 Modify user own profile (change website look-and-feel) 
18 Modify user own profile (change notification settings) 
19 Modify user own profile (change personal messaging system settings) 
20 Use search facility 
21 Preview the topic before posting 
22 Start new poll 
23 Start new topic 
24 Reply to topic 
25 User authentication (Login) 
26 Send personal message to other users 
27 Modify personal message 
28 Quote other users posts 
29 Spell check 
30 Find other users in system 
31 Use password forgot facility to remember the password 
32 Edit user own topic/reply 
33 Mark all the topics in the system as read 
34 Update user own topic/reply 

 

The dataset is split into two sections: training and test. Two-thirds of the data (2,818 records) is used 

for the training set and the remaining 1,409 records are used as a test set. Each input vector has 34 

features and input vectors separately are experimented with using the SVM classifier. Based on the 

above parameter specifications, three experiments are conducted.  
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7.7.3 Performance Measurement 

7.7.3.1 F1-measure 
A common performance measurement technique known as Precision, Recall and F1-measure is used 

to calculate the performance of the EDSF through each of the three experiments. 

As mentioned in Section 2.2.2, precision (E.q.  7.3) refers to the exactness, while recall (E.q.  7.4) 

shows completeness of the result. 

 
 7.3 

 
 7.4 

It is common to combine precision and recall in order to generate one value (known as F-Measure) to 

compare or evaluate different classification results. F-measure or F1-measure is defined as below. 

  7.5 

Where P and R are precision and recall values respectively. 

If the outcome of these three measures is close to 1, this indicates better system performance. If the 

resulting value is closer to 0.5, then the output of the system is similar to random prediction. Finally, 

if the resulting value is closer to 0, this shows the strong inverse ability of the classifier. 

7.7.3.2 Confusion Matrix 
Confusion matrix is a method used to visually represent actual and predicted classification results 

(Kohavi and Provost 1998). By evaluating this matrix, the performance of the classifier is 

investigated. Figure  7.8 presents a sample confusion matrix. 

 
Predicted 

Negative Positive 

Actual 
Negative a b 

Positive c d 

Figure  7.8: Sample confusion matrix 
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In the figure, a is the number of correctly classified negative instances, b is the number of incorrectly 

classified negative instances, c is the number of incorrectly classified positive instances and finally, d 

is the number of correctly classified positive instances. 

This concludes stage four of the conceptual process. The following section focuses on the results and 

observations of the experiments for the proposed prototype.  

7.8  Results and Observations 
This section discusses the results that were observed after running the proposed prototype i.e. EDSF. 

This is the sixth stage of the conceptual process. 

7.8.1 Experiment 1 (Action Set) 
The summary of the experiment on Action Set input vector is presented in Table  7.4. This experiment 

achieved the true-positive rate (99%).  The false-positive rate for genuine users is less than 0.002%. 

However, the average F1 value for the whole experiment is 95%. 

Table  7.4: Summary of experimental results for Action Time, aS, feature set 

 TP FP P R F 

Spam 0.999 0.323 0.958 0.999 0.979 

Non-Spam 0.677 0.00002 0.997 0.677 0.806 

Average 0. 961 0.285 0.963 0.961 0.958 

 

The confusion matrix corresponding to the first experiment is presented in Table  7.5.  

Table  7.5: Confusion matrix for the experiment on Action Set 

 Spam Non-Spam 

Spam 3,725 1 

Non-Spam 162 339 

 

It is clear from the table that only one spam user is classified as a non-spam user. However, 162 non-

spam users are classified as spam users. 
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7.8.2 Experiment 2 (Action Time) 
The result of the second experiment is presented in Table  7.6. The false-positive value for the wrongly 

classified genuine users is about 2%. The average F1 value for the whole experiment is 92%. 

Table  7.6: Summary of experimental results for Action Time, aT, feature set 

 TP FP P R F 

Spam 0.976 0.399 0.948 0.976 0.962 

Non-Spam 0.601 0.024 0.774 0.601 0.676 

Average 0.932 0.355 0.927 0.932 0.928 

 

The confusion matrix corresponding to the experiment on Action Time is presented in Table  7.7.  

Table  7.7: Confusion matrix for experiment on Action Time 

 Spam Non-Spam 

Spam 3,638 88 

Non-Spam 200 301 

 

The number of wrongly classified spam users is 88 and the number of genuine users wrongly 

classified as spam is 200. 

7.8.3 Experiment 3 (Action Frequency) 
Table  7.8 shows the results of the experiment on Action Frequency. The best average F1, 0.96 for the 

whole experiment is achieved in this experiment. However, the percentage of wrongly classified 

genuine users is 0.2%. 
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Table  7.8: Summary of experimental results for Action Frequency, aF, feature set 

 TP FP P R F 

Spam 0.998 0.299 0.961 0.998 0.979 

Non-Spam 0.701 0.002 0.975 0.701 0.815 

Average 0.962 0.264 0.963 0.962 0.960 

 

The confusion matrix for the third experiment is presented in Table  7.9. 

Table  7.9: Confusion matrix for the experiment on Action Frequency 

 Spam Non-Spam 

Spam 3,717 9 

Non-Spam 150 351 

 

The number of wrongly classified spam users is 9. The number of wrongly classified genuine human 

users is 150. 

This section examines the results after experimentation with the proposed prototype. This concludes 

stage six of the conceptual process and paves the way for the next stage. 

7.9  Validation and Comparative Analysis 
EDSF achieved an average accuracy of 94.70%, which ranges from 93.18% for Action Time to 

96.23% for Action Frequency. For the first experiment on Action Set, the number of correctly 

classified instances is 4,064 and the number of incorrectly classified instances is 163. The number of 

correctly classified instances for the second and third experiments is 3,939 and 4,068 respectively.  

The number of incorrectly classified instance for the last two experiments is 288 and 159 respectively. 

Although the first and third experiments have the same number of correctly classified instances, the 

number of incorrectly classified instances for the third experiment is lower than for the first 

experiment. Hence, it results in better performance of the classifier. The better performance seen in 

the Action Frequency experiment proves that spammers tend to repeat certain tasks more often when 
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compared with the genuine humans who perform a larger variety of tasks. Given this result, it is not 

surprising that spammers utilise automated tools to distribute spam content. These tools are machine 

coded and designed to perform similar Actions over a period of time. 

 

EDSF performance draws heavily on Spam 2.0 distribution behaviour. 

Although spam users’ routines that are coded inside their automated 

tools can be changed over time, it occurs at the cost of slower spam 

distribution. 

 

One of the drawbacks of the EDSF is the significant number of false-positives (the number of 

incorrect classified genuine users). Wrongly classified spam users are less annoying than incorrectly 

classified genuine human users. The reasons for these false-positives are as follows. 

• The nature of EDSF does not make a distinction between fair spam Actions; hence, EDSF 

marks genuine users with quite an amount of fair spam Actions as the spam user. 

• EDSF investigates only the behaviour of the users at the session level. Although session level 

transactions give a detailed profile of the users’ visits, they do not provide an overall view of 

the users’ behaviour. 

• Although Actions are good discriminative features for classification, some Actions might be 

similar for both genuine and spam users. This increases misclassifications in the results. For 

example, a genuine user which directly inputs the “creating new thread” URL could be 

wrongly classified as a spam user since spam users mainly aim for content contribution web 

pages rather than navigating through other web pages. 

• The feature sets – Action Set, Action Time, and Action Frequency – that are used inside 

EDSF are not capable of modelling the sequence and order of the user navigation through the 

web platform. This order can provide more information about the characteristics and nature of 

web usage within Web 2.0 platforms which may result in better classification results. The 

focus of the next chapter is on incorporating the sequence of requested webpages into Spam 

2.0 filtering. 
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Given that there is no work in the literature on the classification of Spam 2.0 behaviour, the results of 

EDSF are the initial steps toward identifying Spam 2.0 by utilising web usage behaviour. 

7.9.1 Comparative Analysis 
In this section, the proposed method is compared with existing solutions from the literature. As 

mentioned earlier, there are no studies on Spam 2.0 identification using web usage. However, there 

are some similar works in the literature to detect Spam 2.0 using mainly content-based features. The 

comparison of these methods with the proposed method is discussed here. 

There are three well-known approaches for detecting Spam 2.0 including Akismet, Defensio, and 

TypePad. Additionally, CAPTCHA as a prevention-based Spam 2.0 filtering method is investigated.  

 

All approaches have been implemented and examined against HSCOM6 

(Sections 5.7.1.3). An online discussion board is run on HSCOM6.  The 

data accumulated from HSCOM6 includes both spam and genuine users’ 

forum posts and web usage data. Therefore, HSCOM6 data is quite 

suitable for comparative analysis of different spam filtering methods.  

 

The summary of HSCOM6 data is depicted in Table  7.10.  

Table  7.10: Summary of the collected data on HSCOM6 

Item Value 

Running time 21/5/10 – 17/2/11 

No. of spam posts 3,698 

No. of non-spam posts 274 

No. of spam users’ navigation 42,336 

No. of non-spam users’ navigation 138,394 

 

The following is a detailed description of each Spam 2.0 filtering approach. 
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7.9.1.1 Akismet 
Akismet is a detection/prevention-based Spam 2.0 filtering service that was originally built for blog 

comment spam filtering (Akismet 2011). Akismet provides a public API Spam 2.0 filtering service. 

Developers can integrate the Akismet spam filtering service in their application by using this API. To 

date, Akismet has been implemented for most of the Web 2.0 platforms including blog, comment 

systems, forums, wikis, content management systems (CMS). 

Akismet mainly identifies a spam post as distinct from a genuine one by examining the content 

features of the post. The following information must be sent to the Akismet spam filtering service for 

classification: 

• Author: the author of the submitted content such as the username of a user who posts a reply 

in a forum. 

• Author’s email: the email address of the author of the content. 

• User Agent: the user agent field of the Internet browser submitting the content. 

• IP address: the IP address of the author of the content. 

• Body: the content of the post whether it be a comment, forum reply, wiki page etc. 

Other information such as Referrer URL, type of content, name of author are optional. Akismet also 

blacklists known spam traffic including spam users’ IP addresses for further usage. 

For comparative analysis, Akismet API is implemented in PHP language. The entire API’s required 

information such as author, author email address, User Agent, IP address, and body of content are 

provided to Akismet.  

The initial test on Akismet shows comparatively good classification results. However, the main reason 

for this result was due to the time difference between the data accumulation and the experiment and 

the fact that Akismet had already blacklisted the spammers IP addresses. Therefore, another 

experiment is conducted with modified IP addresses. The IP addresses of all the requests to the 

Akismet service have been set to a single IP address which has not been blacklisted. In this 

experiment setting, it is possible to evaluate the performance of the Akismet service by simulating 

real-world scenarios where spammers’ IP addresses are not blacklisted.  
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The confusion matrix for the experiment on Akismet Spam 2.0 filtering service is presented in Table 

 7.11. 

Table  7.11: Confusion matrix correspond to Akismet experiment 

 Spam Non-Spam 

Spam 3,526 172 

Non-Spam 4 270 

 

The overall accuracy that is achieved is 0.95 with 0.98 precision, 0.61 recall values. The F1-measure 

value corresponding to the Akismet experiment is 0.75. 

7.9.1.2 Typepad AntiSpam 
Typepad AntiSpam is another detection/prevention-based Spam 2.0 filtering method (TypePad 

AntiSpam 2011). It was originally designed to block spam comments on blogs. Typepad AntiSpam 

provides publicly available API for Spam 2.0 filtering. Its API is fully compatible with Akismet API 

and it can also be expanded to different Web 2.0 platforms. 

The experiment setting for Typepad AntiSpam was kept the same as the Akismet experiment because 

of their compatibility. Table  7.12 presents a confusion matrix for the result of the experiment with an 

Typepad AntiSpam service. 

Table  7.12: Confusion matrix for Typepad AntiSpam experiment 

 Spam Non-Spam 

Spam 3651 47 

Non-Spam 14 260 

 

The following results were achieved during the Typepad AntiSpam experiment: accuracy 0.98, 

precision 0.94, recall 0.84 and F1-measure 0.89. 

7.9.1.3 Defensio 
Defensio is another detection/prevention based Spam 2.0 filtering service (Defensio 2011). It provides 

a public API Spam 2.0 filtering service to be integrated on Web 2.0 platforms. 
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To conduct the experiment, the following information is required to be passed to the Defensio Spam 

2.0 filtering servers: 

• Platform: Type of Web 2.0 platform that is analysed such as phpbb, wordpress (blog system), 

drupal (CMS) etc. 

• Type of content: Type of content that is sent to be analysed which may be comment, wiki, 

forum etc. 

• Content: the main body of the content that needs to be analysed. 

• Client: the name, version and author name and author email address of the program that is 

used for querying Defensio API. 

A program is coded in PHP language to implement Defensio API and conduct the experiment. All the 

above-mentioned information is mandatory and is passed to Defensio API. The confusion matrix 

corresponding to the Defensio experiment is presented in Table  7.13. 

Table  7.13: Confusion matrix for Defensio experiment 

 Spam Non-Spam 

Spam 3,454 244 

Non-Spam 15 259 

 

The overall accuracy for the Defensio experiment is 0.93, precision 0.94, recall 0.51 and F1-measure 

0.66. 

7.9.1.4 CAPTCHA 
As mentioned in Chapter 2, CAPTCHA is the most well-known prevention-based spam filtering 

method preventing automated-generated requests on web platforms (von Ahn et al. 2003). It has been 

widely used for Web 2.0 platforms such as forums, social networks, comment systems etc. Once a 

user intends to perform specific actions on web platforms (e.g. register a user account, post a 

comment), CAPTHA can be utilised to ensure that the request has not originated from an automated 

code. CAPTCHA has three main steps to ascertain the identity of users (i.e. whether it is a real human 

user or machine code) as following: 
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• Step 1: A challenge is generated in the server and sent to the user to solve.  

• Step 2: User tries to solve the challenge and returns the response. 

• Step 3: The server checks and grades the user’s response and provides privileges to perform 

the user requested action. 

The main part of CAPTCHA is the design of the challenge. CAPTCHA challenges which are not well 

designed might allow a machine code to bypass the restriction, while complex CAPTCHA challenges 

might keep human users out of the system.  

In the CAPTCHA experiment, the default CAPTCHA that comes with the latest version of  the phpBB 

forum platform is used. In this experiment setting, all requests for creating a new user account are 

protected with CAPTCHA. Figure  7.9 illustrates an example of CAPTCHA used in the experiment. 

 

Figure  7.9: Sample CAPTCHA used for the experiment 

CAPTCHA was used for the entire running duration of HSCOM6. All the attempts to create new user 

accounts (i.e. visiting the user registration page of the forum) and overcome CAPTCHA were 

recorded. Hence,  a figure can be provided that measures the performance of CAPTCHA. All the 

requests from genuine users to solve CAPTCHA on HSCOM6 are removed from the data. 

Additionally, all the requests coming through known web crawlers are also removed from the data.  

For the period of the HSCOM6 experiment, of the 4,159 visits to the user registration page, 171 spam 

user accounts could successfully bypass CAPTCHA and register a user account in the forum. Hence, 

about 95.88% of requests are blocked by CAPTCHA.  However, this figure might not represent the 

real performance of CAPTCHA since: 

• There may be some attempts to visit the registration page of the forum, but not necessarily to 

create a user account. Such attempts are included in the above performance measurements. 

Therefore, the real performance of CAPTCHA might be lower than the abovementioned 

figure. 
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• The inconvenience of the CAPTCHA challenges could not be measured. Although complex 

CAPTCHA challenges might block out most of the spammers, it would also keep real users 

out of the system, resulting in a higher number of false-positives. 

However, the above figure can give an estimated number of the performance value of CAPTCHA 

compared to other Spam 2.0 filtering methods.  

7.9.1.5 EDSF 
In order to equally compare the results of the proposed method, with other Spam 2.0 filtering 

methods, an experiment is conducted on HSCOM6 data to measure the performance of EDSF. Table 

 7.14 provides the summary of the parameters and their associated value in the EDSF. 

Table  7.14: Parameters and their associated values for the EDSF experiment  

Parameter Value Description 

No. of transaction , |T| 6,285 

  

Result of transaction identification at session level 
during pre-processing part. 

No. of spam transactions 6,230 Manually classified spam transactions 

No. of non-spam transactions 55 Manually classified non-spam transactions 

No. of Actions , |A| 29 Result of feature measurement part for different type 
of Actions. 

SVM type C-SVC C-SVC is a standard SVM algorithm. 

Kernel type Linear 
 

Degree 3 Degree of the closeness in the kernel function 

Gamma 0.029 1 / number of features 

Cost 1 To create soft margin between classes and allows 
training error. It might result in misclassification. 

Epsilon 0.001 Tolerance of termination factor. 

Cross-validation 10 To observer the efficiency of the classifier on different 
training – test (unseen) data.  
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Table  7.15 presents 29 Actions that are used in the experiment. Each Action is a feature inside the 

input vector. 

Table  7.15: Name and description of each Action. 

Action Key Description 

1 Visit homepage 
2 Visit user control panel 
3 Login 
4 Edit profile 
5 Edit avatar 
6 Manage draft 
7 Logout 
8 Edit signature 
9 Manage subscriptions 

10 Manage bookmarks 
11 Compose message 
12 Edit account settings 
13 Edit global settings 
14 Manage friends 
15 Solve CAPTCHA 
16 Delete cookies 
17 Register 
18 View members 
19 View profile 
20 Find member 
21 Post topic 
22 Post reply 
23 Quote post 
24 Edit post 
25 View forum 
26 View topic 
27 View FAQ 
28 Search 
29 View feed 

 

Considering that the best performance results were achieved in the Action Set and Action Frequency 

experiments in Section 7.8, two experiments – Action Set and Action Frequency - are conducted. 

Action Set and Action Frequency are used as feature sets to build the input vectors for the SVM 
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classifier. Table  7.16 and Table  7.17 provide the confusion matrices for Action Set and Action 

Frequency on HSCOM6 data. 

Table  7.16: Confusion matrix for Action Set experiment 

 Spam Non-Spam 

Spam 6,226 4 

Non-Spam 13 42 

 

Table  7.17: Confusion matrix for Action Frequency experiment 

 Spam Non-Spam 

Spam 6,228 2 

Non-Spam 18 37 

 

The average precision, recall, and F1-measure of both experiments using Action Set are respectively 

0.95, 0.88 and 0.91 while for the Action Frequency experiment these values are 0.97, 0.83 and 0.89. A 

summary of the comparative analysis of the abovementioned methods is presented and discussed in 

the next section. 

7.9.1.6 Summary 
The five experiments conducted with Akismet, Typepad AntiSpam, Defensio, Captcha and the 

proposed EDSF, yielded the following results, as presented in Table  7.18. 
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Table  7.18: Summary of the EDSF comparison analysis 

 Akismet Typepad 
AntiSpam 

Defensio CAPTCHA EDSF (aS, aF) 

F1-Measure 0.75 0.89 0.66 - 0.91, 0.89 

Accuracy 0.95 0.98 0.93 0.95 0.99, 0.99 

False-positive rate 0.04 0.01 0.06 - 0.23, 0.32 

False-negative rate 0.01 0.05 0.06 - 0.001, 0.0003 

Strategy Detection/ 
Prevention- 
based 

Detection/ 
Prevention- 
based 

Detection/ 
Prevention- 
based 

Prevention- 
based 

Early-detection 
based 

Language 
Dependency 

Yes Yes Yes No No 

 

The overall F1-measure value of the EDSF is higher than the state-of-the-art Spam 2.0 filtering 

methods. It shows that the proposed method performs better in regards to Spam 2.0 filtering. The 

other advantage of the EDSF is its detection strategy. EDSF is an early-detection based method; 

hence, it can detect spammers before content distribution. Akismet, Typepad AntiSpam and Defensio 

are mainly content-based, so such methods are not able to prevent spam content from being submitted. 

7.10  Conclusion 
The early-detection based Spam 2.0 filtering methods attempt to identify spam behaviour prior to or 

just after spam content submission. Such methods investigate the behaviour of spam users, e.g. 

automated tools, spambots etc. 

The proposed EDSF method in this dissertation automatically distinguishes Spam 2.0 submission 

from genuine human content contribution on Web 2.0 platforms. The proposed method studies, 

investigates and identifies Spam 2.0 on a Web 2.0 platform. EDSF makes use of web usage navigation 

behaviour to build up a discriminative feature set including Action Set, Action Time, and Action 

Frequency. Such a feature set is later used in a machine learning classifier known as a Support Vector 

Machine (SVM) for classification. 

The experiments illustrated in this dissertation collected data from the HoneySpam 2.0 framework as 

well as a live moderated forum. The F1-measure is used to determine the performance of the EDSF. 
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The EDSF achieved an average accuracy of 94.70%, which ranges from 93.18% for Action Time to 

96.23% for Action Frequency. For the first experiment on the Action Set, the number of correct 

classified instances is 4,064 and the number of incorrect classified instances is 163. The number of 

correct classified instances for the second and third experiments is 3,939 and 4,068 respectively.  The 

number of incorrect classified instances for the last two experiments is 288 and 159 respectively. 

The overall performance of EDSF was compared against four other state-of-the-art Spam 2.0 filtering 

methods. The overall F1-measure value of EDSF is higher than those of existing Spam 2.0 filtering 

methods. It shows that the proposed method has better performance in regard to Spam 2.0 filtering. 

The other advantage of EDSF is its detection strategy. EDSF is an early-detection based method and 

therefore can detect spam users before content distribution. 

Given that there is no work in the literature on Spam 2.0 behaviour classification, the results of EDSF 

are the initial steps toward identification of Spam 2.0 by utilising web usage behaviour. EDSF 

outperforms current state-of-the-art Spam 2.0 filtering methods for the detection and prevention of 

spam users on Web 2.0 platforms. 

The following chapter describes a novel method for on-the-fly Spam 2.0 filtering. 
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Chapter 8    

On-the-Fly Spam 2.0 Filtering 
This chapter presents: 

► An introduction to On-the-Fly Spam 2.0 Filtering. 

► A framework for detecting Spam 2.0 by analysing web navigation sequence data 

► A proposed Action String, a novel feature set for Spam 2.0 detection. 

► The evaluation, validation and comparative study of the proposed framework performance 

with real-world data. 

8.1  Introduction 
This chapter presents a method for On-the-Fly early-detection based Spam 2.0 filtering called 

(OFSF). Early-detection based Spam 2.0 filtering methods strive to identify spam behaviour prior to 

or after spam content submission.  

OFSF automatically distinguishes Spam 2.0 submissions from genuine human content contributions 

inside Web 2.0 platforms. Similar to the EDSF that is discussed in Chapter 7, OFSF makes use of web 

usage navigation behaviour to create discriminative feature sets. However, OFSF considers the 

sequence and order of user web navigation in order to build up a feature vector for classification. 

Unlike EDSF, OFSF uses a novel rule-based classifier to store, retrieve, and separate spam users from 

genuine human ones. OFSF makes it possible to spot spam users on-the-fly. While users are 

interacting with the Web 2.0 platform, OFSF is able to track and identify possible spam navigation 

patterns.  

To handle, i.e. store, retrieve, update, and look up navigation data, OFSF uses a Trie data structure. 

Trie is in the form of tree structured data where each node stores an identifier of the user’s web 

navigation Action while the tree edges contain the order and sequence of Actions. 
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The theoretical foundation for OFSF, along with its algorithm design which addresses all the 

requirements specified in Chapter 4, is discussed here. Finally, testing, experimentation and validation 

are discussed at the end of this chapter. 

8.2  General Overview of OFSF 
This research continues from the previous work, i.e. EDSF for combating Spam 2.0. The main idea is 

to actively investigate spam users’ behaviour – as an origin of Spam 2.0 instead of seeking 

discriminate attributes inside spam content. 

 

The viewpoint of OFSF is identical to EDSF. However, OFSF orders the 

users’ Actions in order to distinguish spam users from genuine human 

ones. Due to the design constraints, the sequence of users’ Actions is not 

included in EDSF. 

 

Figure  8.1 illustrates a sample series of HTTP requests sent from both genuine human users and spam 

users to submit new content to an online forum (“Post new topic” Action).  

1 

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET 

/forum/index.php?action=post;board=1 HTTP/1.0" 200 7852 

"http://example.com/forum/index.php?action=post;board=1" "Opera/9.0 (Windows NT 5.1; U; 

en)" 

2 

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET 

/forum/index.php?action=post;board=1 HTTP/1.0" 200 7852 

"http://example.com/forum/index.php?action=post;board=1" "Opera/9.0 (Windows NT 5.1; U; 

en)" 

3 

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET 

/forum/index.php?action=post;board=1 HTTP/1.0" 200 7852 

"http://example.com/forum/index.php?action=post;board=1" "Opera/9.0 (Windows NT 5.1; U; 

en)" 

4 
123.123.123.123 - - [10/Jul/2009:00:19:30 +0800] "GET /forum/index.php?board=1 HTTP/1.0" 

200 6248 "http://example.com/forum/index.php?board=1" "Opera/9.0 (Windows NT 5.1; U; 

en)" 

 (a) Sequence of spammer HTTP header requests 
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1 
111.111.111.111 - - [15/Aug/2009:07:05:10 +0800] "GET /forum/index.php HTTP/1.0" 200 60 

"http://example.com/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) 

Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)" 

2 
111.111.111.111 - - [15/Aug/2009:07:06:12 +0800] "GET /forum/index.php?board=1 HTTP/1.0" 

200 6248 "http://example.com/forum/index.php" "Mozilla/5.0 (Windows; U; Windows NT 5.1; 

en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)" 

3 

111.111.111.111 - - [15/Aug/2009:07:08:32 +0800] "GET 

/forum/index.php?action=post;board=1 HTTP/1.0" 200 7852 

"http://example.com/forum/index.php?board=1" "Mozilla/5.0 (Windows; U; Windows NT 5.1; 

en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)" 

4 

111.111.111.111 - - [15/Aug/2009:07:10:27 +0800] "GET /forum/index.php?topic=1397 

HTTP/1.0" 200 524 "http://example.com/forum/index.php? action=post;board=1" "Mozilla/5.0 

(Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 

CLR 3.5.30729)" 

  (b) Sequence of genuine human HTTP header requests 

Figure  8.1: Series of spam users’ HTTP requests (a) vs. genuine human HTTP requests (b) in an online forum to 

create a new topic 

Each HTTP entry consists of an IP address, timestamp, request method, the requested URL, the 

response status code, the referrer URL and the User Agent. There are some obvious differences 

between spam users’ and genuine humans’ requests including:  

• The genuine human’s sequence of HTTP header requests is more expected or on average. For 

example, Figure  8.1a shows the normal way that a website is navigated. It starts with users 

browsing the main page of the forum (line 1), visiting one of the boards (line 2), clicking on 

the “Post new topic” button to visit create new topic webpage (line 3) and finally visiting 

their own created topic (line 4). 

• The spam user order of the HTTP header request does not show an expected sequence. For 

example, in Figure  8.1b, spam users’ navigation starts by directly requesting to create new 

topic (line 1) and repeating the same request two more times (lines 2 and 3). Finally, it 

finishes by viewing one of the forum boards (line 4). 

This factor shows that spam users follow pre-programmed and optimised procedures. Therefore, such 

key differences in web usage behaviour can be utilised for identification of spam users. 
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In order to formulate the sequence of Actions and use it for identification of spam users, one possible 

solution is to assign an identifier (e.g. a unique character) to each Action and build an input vector by 

putting together these identifiers in the same sequence as they occur. However, in order to use such 

input vectors in a machine learning classifier, the following problems would arise. 

• The number of features is not limited: For example, user A performs 3 Actions in a given 

transaction, the input vector length for A is 3; user B performs 5 Actions in the same 

transaction, the input vector length for B is 5. If the feature set is limited to 3, the last two 

Actions of B would be omitted; while if the feature set is set to 5, A’s input vector would 

contain missing values (Figure  8.2). This problem becomes more significant when the length 

of the users’ input vector substantially varies. 

• The number of input vectors is high: Since the sequence of users’ Actions is an important 

criterion for classification, a slight change in the order of Actions would result in a new input 

vector.  

 

 

Figure  8.2: The problem of input vector length for machine learning classifiers 

To address the problems above, OFSF introduces a new feature set called Action String and a novel 

rule-based classifier to formulate and distinguish spam users from genuine human users.  

 

The abovementioned problems also highlight a drawback of the EDSF 

design - its inability to include sequence of Action.  
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8.2.1 Action String 
Action String is a sequence of users’ Actions in a given transaction where each Action is identified by 

an identifier, i.e. alphabet. By placing each Action identifier together in the same order that the user 

performs the Action, an Action String is generated. 

The main advantage of Action String compared to other feature sets – Action Set, Action Time, and 

Action Frequency – is that it maintains the order of users’ Actions. This information can reveal more 

accurate characteristics of spam or genuine human users’ behaviour on the Web 2.0 platform. The 

following scenario illustrates an advantage of Action Strings. 

Suppose user A navigates through “View main page”, “View board”, “Post new topic”, and “View 

main page” Actions and spends 5, 5, 10, and 5 seconds on each Action respectively. Spam user S 

navigates through “Post new topic”, “View board”, “View main page”, and “View main page” 

Actions in the same span of time. Assume the total number of Actions is 7. To formulate A and S 

navigational behaviour using Action Set, Action Time, and Action Frequency, the following input 

vectors can be built up. 

• Action Set input vector. A: (1,1,1,0,0,0,0), S: (1,1,1,0,0,0,0), 

• Action Time input vector. A:(5,5,10,0,0,0,0), S:(5,5,10,0,0,0,0), 

• Action Frequency input vector. A: (2,1,1,0,0,0), S: (2,1,1,0,0,0). 

Clearly, there is no difference between the A and S input vectors although the order of performed 

Actions is different.  

Having the same assumption, Action Strings for the A and S are created as follows. Each Action is 

identified by a unique letter. 

• Action String: A: “abca” S: “cbaa” 

This example shows that Action String can clearly differentiate between A and S web navigational 

behaviour. 

OFSF makes use of Action String in order to formulate users’ web navigational behaviour. Next, 

OFSF employs a rule-based classifier to differentiate spam users from genuine human users. 
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8.3  Requirements 
The following requirements are specified for the proposed solution. This represents the first stage of 

the conceptual process where requirements are elicited and prioritised. The requirements are as 

follows. 

7. Extendibility: the method should be extendable to all Web 2.0 platforms. 

8. Adaptability:  the method should be adaptable to new Spam 2.0 behaviours. 

9. Automaticity: the method should automatically differentiate Spam 2.0 from genuine human 

behaviour. 

10. Independency: the method should be independent of its platform. For example, it should be 

language- and content-independent. 

11. Implicitness: the method should implicitly accumulate behavioural. 

12. Discriminative features: the features should be discriminative enough to differentiate 

genuine human user behaviour from spam users’ behaviour. 

13. Chronological Order: the order and sequence of users’ web navigational behaviour should 

be clear. 

14. Spontaneity: the method should differentiate spam users from genuine human users on-the-

fly. 

The following section defines the design rationale based on the abovementioned requirements.  A 

design decision for each requirement is made in the design rationale along with a discussion of how 

the requirement is met. 

8.4  Design Rational 
This section provides a design rationale to meet all the requirements that were listed in the previous 

section. This is the second stage of the conceptual process. The following design decisions are 

proposed to address each requirement. 
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5. Develop an early-detection based Spam 2.0 filtering method that is language- and platform-

independent (Req. 4). 

6. Capture server side web usage data while the user interacts with the website for implicit data 

accumulation (Req. 5) and extendibility to all Web 2.0 platforms (Req. 1). 

7. Develop an automated rule-based classifier that can be trained with new instances of Spam 

2.0 (Req. 2) and automatically identify spam users (Req. 3). 

8. Formulate web usage data into the Action String to build a feature set that both identifies 

spam users (Req. 6) and maintains the sequence of performed Actions (Req. 7). 

9. Use a tree-based data structure (i.e. Trie) to spontaneously store, retrieve, update, and identify 

spam navigational patterns (Req. 8). 

In the development of any solution, the above design decisions should be considered. All these design 

decisions are included in the proposed method to detect Spam 2.0 behaviour on web applications. This 

concludes stage two of the conceptual process. The next stage is the establishment of the theoretical 

foundation for the proposed solution. 

8.5  Theoretical Foundation 
In this section, the theoretical foundation for the OFSF is discussed, the design decisions are analysed, 

and an algorithm is proposed. The theoretical foundation as depicted in Figure  8.3 consists of five 

main parts: tracking, pre-processing, feature measurement, classifier construction, and classification. 

Tracking 

Records web usage data including the user’s IP address, username, requested webpage URL, session 

identity, and timestamp. 

Pre-processing 

Data cleansing, transaction identification and Action identification. 

Feature Measurement 
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Extracts and measures the Action String feature set from the web usage data based on each Action 

identifier. 

Classifier Construction 

Populates the rule-based classifier based on Action Strings and prepares the classifier for 

classification.  

Classification 

A rule-based classifier based on Trie data structure is used here to distinguish Spam 2.0 from genuine 

human behaviour. 

 

Figure  8.3: The overall framework for OFSF 

The proposed solution explained above addresses the requirements described in Section  8.3. Below is 

a detailed description of each part of OFSF. 

8.5.1 Tracking 
Input: Incoming traffic 

Output: User and session identified web usage data 
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Tracking monitors web usage data and the navigation stream. For each incoming HTTP request, IP 

address, visited URL, referrer URL, browser identity, timestamp, session ID and user account name 

are tracked. 

8.5.2 Pre-processing 
Input: User and session identified web usage data 

Output: cleanse and transaction identified usage data 

This part includes three tasks, which are data cleansing, transaction identification and Action 

identification. 

8.5.2.1 Data cleaning 
Once data is aggregated through Tracking, it needs to be cleansed from irrelevant information such as 

visitors who did not create a user account in the system, researchers who monitor the forum, and 

genuine and known web robots.  

8.5.2.2 Transaction identification 
Next, data needs to be grouped into meaningful user navigation clusters. This task is known as 

Transaction Identification. Each tracking record is accompanied by a unique session ID. In OFSF data 

is grouped based on session IDs. Therefore, requests made by a user during a single visit are clearly 

identifiable. Session level transactions make it possible to track user requests at each visit. Moreover, 

defining transactions at the session level can be utilised for fast and on-the-fly classification as well as 

provide in-depth insights into the users behaviour. Comparatively, in other transaction levels (e.g. IP 

and User) a longer time span is required to group user behavioural data. 

8.5.2.3 Action identification 
Based on a predefined set of Action, Action identification tasks extract Actions from users’ 

transaction. The predefined Action set needs to be created for different types of tasks that the user can 

accomplish on a given Web 2.0 platform. The majority of Actions are general among many Web 2.0 

platforms. A summary of such Actions are presented in Table  8.1.  
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Table  8.1: Summary of common Actions on Web 2.0 platforms 

Action Name Description 

Registration Create a user account 

Login/Logout Login and logout using pre-registered user account 

Submitting content Adding new content as a topic/comment/reply/etc. 

Searching Search the Web 2.0 platform for specific information 

Viewing content Reading articles/posts/comments/etc 

 

For each Action, a unique identifier such as a character is assigned. This identifier is later used to 

construct the feature set, i.e. Action String. 

Figure  8.4 presents a flowchart for the pre-processing part of the OFSF. The process of the pre-

processing part is as follows. 

 

Figure  8.4: Flowchart for Pre-processing part of OFSF 

Step 1: The pre-processing tasks start by getting user- and session-identified web usage data.  

Step 2: Unneeded data is wiped out during data cleaning task.  

Step 3: The data is grouped based on the session transaction level. 

Step 4: Actions are extracted from user transactions based on a predefined Action set. Additionally, 

each Action would be assigned with a unique character. 

8.5.3 Feature Measurement 
Input: Cleansed and transaction-identified usage data 

Output: Action Strings 

This part extracts and measures the feature set Action String from users’ transactions to build input 

vectors for classification. Action String is a sequence of users Actions in a given transaction where 
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each Action is identified by a character, i.e. alphabet. By placing each Action identifier together in the 

same order that the user performs the Actions, an Action String is generated. 

Given a set of web pages W  = {w1,w2, … ,w|W|}, A is defined as a set of Actions, such that 

  8.1 

Respectively, aSti is defined as  

    8.2 

 aSti refers to a sequence of Actions (called Action Strings) performed in a given transaction i  and T 

is total number of transactions.  

 

Figure  8.5: The flowchart for feature measurement part of OFSF 

Figure  8.5 illustrates the flowchart diagram for feature measurement part of OFSF. The process of this 

part is consists of the following steps. 

Step 1: Get the users’ transactions from the pre-processing part. 
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Step 2: Construct Action Strings (aSt) based on user set of Actions (A), user transactions (T) to be 

used in the next part of OFSF framework. Here, each action is represented by ai identifier. aSt is 

constructed by placing ai together in a sequence. 

8.5.4 Construct Classifier 
Input: Action Strings 

Output: Trie data structure associated with probability of being spam and non-spam for each Action 

String 

Once Action Strings have been created, OFSF constructs a rule-based classifier. The classifier needs 

to spontaneously identify spam users from non-spam ones. The OFSF classifier is based on Trie 

structure.  

A Trie is a tree-based data structure to store and retrieve information (Edward 1960). Its main 

advantages are ease of updating, handling, and short access time. A Trie is in the form of a tree 

structure where each node contains the value of the key with which it is associated. The Trie does not 

store duplicates, so it is suitable for situations where there is redundancy in data, e.g. web navigational 

patterns. 

OFSF stores the Action Strings in Trie data structure format. Each Trie edge contains an Action 

identifier (i.e. a character) and each node holds two probabilities – the probability of a specific Action 

String belonging to spam users and the probability of the Action String belonging to a non-spam 

users. These probabilities are measured through E.q.  8.3and E.q.  8.4. 

   
 8.3 

   
 8.4 

where si is an Action String, fH(si) is the frequency of non-spam Action Strings that have prefix si. 

fS(si)  is the frequency of spam with prefix si , PH(si) is the probability of si being non-spam and PS(si) 

of its being spam, respectively. 
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Zero probability means that a particular Action String has never occurred before. For example, Figure 

 8.6 illustrates a sample Trie data structure for a set of {ABC, ABCD, ABDE, ABC} Action Strings for a 

genuine human user and {ABD, ABD, ABDE} Action Strings for a spam user. 

root

H:0
S:0

H:0
S:0

H:0
S:1

H:1
S:0

H:1
S:0

A

B

C D

D

H:0.5
S:0.5

E

 

Figure  8.6: Sample Trie data structure for sets of genuine humans and for a spam users. S and H represent the 

probability of Action String belonging to spam and genuine human users respectively. 

 

The main advantage of OFSF over EDSF is that EDSF requires users to 

complete their web navigation at a given transaction in order to classify 

users. However, OFSF can spontaneously classify users as they navigate 

through a Web 2.0 platform.  

 

The Trie that is used as a data structure in OFSF classifier makes it possible to spontaneously look up 

for a specific pattern. Therefore, as a user navigates through the Web 2.0 platform, OFSF is capable of 

classifying the user based on the user’s navigational behaviour. 

 

Figure  8.7: The flowchart of OFSF rule-based classifier 
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Figure  8.7 presents the flowchart of a OFSF rule-based classifier. The process consists of the 

following steps. 

Step 1: Get Action Strings from previous part of OFSF. 

Step 2: Build a Trie data structure based on each Action String. 

Step 3: Measure PH(si) and PS(si) for each Action String. 

Step 4: Assign above-measured probabilities to corresponding node in the Trie. 

8.5.5 Classification 
Input: Trie data structure associated with probability of being spam and non-spam for each Action 

String 

Output: the classification result whether or not an Action String belongs to a spam user 

New incoming Action String si is validated through Trie data structure that has been built in during 

previous part of OFSF (i.e. Construct classifier). Validation si can fall into two categories – Matched 

and Not-Matched. In the former case, our framework looks at PH(si) and if 1- PH(si)>Threshold , si , 

this sequence would be classified as a spam Action String. In the latter situation, no decision is made 

(refer to Section  8.9 for validation and discussion). 

 

Figure  8.8: The flowchart for OFSF classification part 

Figure  8.8 presents a flowchart for OFSF classification. This process consists of the following steps. 

Step 1: Get Trie from previous part of OFSF. 



 

 

249 On-the-Fly Spam 2.0 Filtering 

Step 2: Get new incoming Action String. 

Step 3: Get the Threshold. 

Step 4: Measure PH(si) for new incoming Action String. 

Step 5: If the probability is above that of the given threshold, Action String indicates a spam user.  

8.6  Prototype Implementation 
The fourth stage of the conceptual process is where the theoretical foundation is implemented as a 

prototype. In order to fulfil the requirements, the following technologies are used to implement the 

prototype. 

Tracking part 

Similarly to the tracking part of HoneySpam 2.0 described in Section 5.6.1, the PHP programming 

language, MySQL database is used to implement the tracking part of OFSF. However, form usage 

data is not monitored by OFSF. Hence, there is no prototype implementation for the form tracking 

component. 

Pre-processing part 

The pre-processing part is implemented using the PHP language. The outcome of this part is stored in 

a MySQL database which can be used later for feature measurement. 

This part also assigns a unique identifier to each Action. These identifiers are used to build Action 

Strings. 

Feature Measurement 

The feature measurement part of the OFSF is implemented using PHP language. Once the input 

vectors are constructed, the outcome is stored in a MySQL table and used inside the classifier. 

Construct Classifier 

The rule-based classifier is implemented using Java language. This Java code retrieves Action Strings, 

and calculated the probabilities of spam activity and constructs the Trie data structure. 
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Classification 

This classifier is used to generate the classification results. Additionally, output of the classification is 

stored in a specific file format to be used within a Microsoft Excel Spreadsheet to generate reports and 

figures. 

8.6.1 Tracking part 
Similar to the tracking part of HoneySpam 2.0 (Section 5.6.1), the OFSF tracking part is modelled 

using 2 PHP file. The form tracking PHP files are not included here. 

The PHP files are executed on the virtual web server operating with Linux (Suse Server Enterprise 

11), Apache server and PHP compiler version 5. 

8.6.2 Pre-processing part 
The pre-processing part includes the following tasks: 

• Cleansing the data 

• Identification of transactions 

• Identification of Actions 

The sections below provide detailed descriptions of the above tasks. 

8.6.2.1 Data cleansing 
SQL queries similar to those in Section 5.6.2.1 are constructed for this task. The SQL queries are used 

to:  

• remove redundant data,  

• remove visitors data, 

• remove researchers data who monitor the system, 

• remove standard and known robot data, and 

• remove data for javascripts, image, stylesheet etc., file requests. 
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8.6.2.2 Transaction identification 
For the transaction identification task, a similar SQL statement to that in Section 6.5.1 is constructed 

to identify session level transactions. Transactions identification in OFSF generates a list of available 

session ids which can later be used to extract information from each session. 

8.6.2.3 Action identification 
Based on a defined set of Actions, this task extracts relevant Actions from users’ transactions and 

assigns a unique identifier (i.e. a character) to each Action. The following algorithm is used for Action 

identification task. 

Code  8.1: Action identification algorithm 

Algorithm action_identification(T) 
    input: set of users’ transactions, T 
           a set of Actions, A’ 
    output: set of Actions performed by the user, A 
1.  for each t in T and a in A’ 
2.    if t = a #if t subset of a 
3.      assign an identifier to a   
4.      add a to A 
5.    end if 
6.  repeat 
7.  return A 

 

Code  8.1 begins with obtaining a list of a user’s transactions and defined set of Actions. On line 1, it 

iterates through each user’s transaction and a defined set of Actions. Line 2, if a transaction is subset 

or equal to a defined Action, the Action is assigned an identifier (i.e. a character) and on line 4, a 

corresponding Action is added to user lists of Actions (A).  

8.6.3 Feature measurement 
The feature measurement part constructs an Action String feature set as a sequence of Actions that are 

performed by a user in a given transaction. Therefore, Action Strings not only contain the Actions 

performed by users, but also maintain the order or sequence of these Actions.  

The following algorithm is used to construct Action Strings. 
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Code  8.2: Action String algorithm 

Algorithm action_string(T,A) 
    input: set of transaction by a given user, T 
             set of Actions with their identifiers, A 
    output: user set of Action Strings, aSt  
1.  for each t in T and a in A 
2.    if t = a 
3.      add a to aSt 
4.  return aSt 

 

Code  8.2 starts by getting a list of user’s transactions and performed Actions. On line 1, it iterates 

through each transaction and performed Action in their sets to define the order of the performed 

Action in the user’s transaction. Once this match is found (Line 2), the algorithm adds an Action 

identifier to the sequence of user Action Strings (aSt). The algorithm returns the set of user’s Action 

Strings on Line 4. 

8.6.4 Construct classifier 
A rule-based classifier based on the Trie data structure is constructed in this part of OFSF. This 

classifier is used in the classification part to identify spam users. 

Code  8.3 illustrates the pseudo-code of this part. 

Code  8.3: OFSF rule-based classifier construction 

Algorithm classifier_construction(aSti) 
    input: set of users Action Strings, aSti 
    output: a rule-based classifier, ф 
1.  ф = create an empty Trie 
2.  string = null 
3.  for each aSt in aSti 
4.    for each a in aSt 
5.      ф = Trie.add(a,0) #Trie_add(key, values) 
6.      string = string + a 
7.      if string.length() = aSt.length() 
8.        ф = Trie_add(a, PH(string), PS(string)) 
9.      end if 
10.   repeat 
11. repeat 
12. return ф 

 

The algorithm starts by creating an empty Trie with empty root. For each Action String in the set of 

all the user’s Action Strings, the algorithm iterates through its Actions and adds the Action identifier 
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(e.g. character) to the Trie data structure. The Trie.add() obtains two arguments – key and values 

–  for the key. If the key order (letter alphabetical order) is smaller than for the previous Trie key, the 

new node is added to the Trie left child; otherwise, the new node would be added to the Trie’s right 

child.  The value 0 is assigned for this node. Once the algorithm reaches the last Action in the Action 

String, it measures PH(string) and PS(string) for the Action String. These measures are added to the 

value of the last node. The algorithm returns the Trie structure with corresponding values on line 12.  

8.6.5 Classification 
Code  8.4 provides an overview of the OFSF classification part. Each user (u) has multiple Action 

Strings, and Action Strings contain a series of performed Actions (ai). For every new incoming u, the 

algorithm examines the user’s Action String against the rule-based classifier (ф). If the probability for 

that specific Action String, 1-PS(Action String) is higher than a given threshold, the classifier marks 

the incoming u as a spam user. 

Code  8.4: OFSF classification algorithm 

Algorithm classification(u) 
    input: incoming user transactions, u 
           given threshold value, threshold 
    output: whether user is spam or non-spam, result 
1.  for each u  
2.    aStu = action_string(u, action_identification(u)) 
3.    if 1 - Ps(aStu) > threshold 
4.     result = 1 
5.    else  
6.    result = 0 
7.  repeat 
8.  return result 

 

This concludes stage four of the conceptual process. The next section, experimental settings, is where 

the proposed prototype is tested. 

8.7  Experimental Settings 
The experimental settings constitute the fifth stage of the conceptual process where the proposed 

prototype is tested and examined. The OFSF experiment involves 3 parts as follows: 
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• Data Collection: explains the dataset that is used to conduct the experiment. It includes both 

Spam 2.0 and non-spam data. 

• Parameter Specification: is a discussion about all parameters and their associated values used 

for gathering the result. 

• Performance Measurement: discusses the method that is used for measuring the performance 

of OFSF. 

8.7.1 Data collection 
Since there is no publicly available dataset containing web usage data for spam and non-spam users, 

the dataset used in this experiment is the same as the dataset used for the EDSF experiment (Section 

7.7.1). The summary of the dataset is presented in Table  8.2. 

Table  8.2: Summary of the OFSF experiment dataset 

Type of data Frequency 

No. of genuine users’ records 5,555 

No.  of spam records 11,039 

 

Additionally, another experiment is conducted for OFSF and is discussed in Section 8.9.1. The dataset 

for this experiment was collected from a live forum that is used by both genuine human users and 

spam users. This experiment further validates the performance of OFSF. 

8.7.2 Parameter specification 

All the parameters used in the OFSF experiment, together with their associated values, are listed in 

Table  8.3. 
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Table  8.3: Parameters and their associated values used in OFSF experiment 

Parameter Value Description 

No. of transaction , |T| 4,227 Result of transaction identification at session level 
during pre-processing part. 

No. of spam transactions 3,726 Manually classified spam transactions 

No. of non-spam transactions 501 Manually classified non-spam transactions 

No. of Actions , |A| 34 Result of feature measurement part for different type 
of Actions. 

Window sizes 2 to 10 The window size over test set of Action Strings. The 
length of the longest Action String in the dataset is 10. 

Threshold -0.05 to 0.05 The threshold value for classification. 

 

Table 7.3 provides a description of 34 Actions that are extracted from the dataset.  

To evaluate the effects on OFSF of different training and test sets, the dataset is randomly divided into 

five datasets (DS1 to DS5). About 65% of the data is used to construct the classifier (training set) and 

the remaining 35% is used for evaluation purposes (test set). 

OFSF has real-time detection or on-the-fly detection capability. OFSF measures Action Strings as 

they occur. The aim is to identify the spam behaviour pattern in the least number of Actions. 

For each Action String in the test set, the following steps are taken: 

1. The window size is set to 2. 

2.  A window over test Action Strings is made. 

3. Action String’s length is limited to the size of the window. For example, if the length of an 

Action String is 5 and window size is 2, only the first 2 characters of the Action String are 

considered. 

4. The rule-based classifier is run against the window size of the Action String derived from the 

last step to generate the classification results. 

5. The window size is increased by one character. 

6. Repeat above steps until maximum window size is reached. 
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The previous steps can simulate real-world practices where user Action Strings increases over time. 

8.7.3 Performance measurement 
Common performance measurement techniques known as confusion matrix, Precision, Recall and F1-

measure are used to calculate the performance of the OFSF in the experiment. Moreover, a novel 

performance measurement method known as Matthews Correlation Coefficient (MCC) is used as well 

(Matthews 1975). MCC is one of the best performance measurement methods of binary 

classifications, especially when the data between two classes of data is not balanced (Baldi et al. 

2000). It considers true and false positives and returns a value between -1 and +1. If the return value is 

closer to +1, the classification result is better and the decision can be considered to have greater 

certainty. However, if the result value is close to 0, this indicates that the output of the framework is 

similar to random prediction. A result value closer to -1 shows a strong inverse ability of the 

classifier. MCC is defined as follows: 

   
 8.5 

In E.q.  8.5, TP is the number of true positives, TN is the number of true negatives, FP is the number 

of false positives and FN is the number of false negatives. These values can be extracted from a 

confusion matrix. 

This concludes stage five of the conceptual process. In the next section, the results and observations 

based on the proposed prototype experiments are presented.  

8.8  Results and Observations 
This section discusses the results that are observed after running OFSF. This is the sixth stage of the 

conceptual process. 

Figure  8.9 illustrates the accuracy of OFSF for different window sizes on the five random datasets 

(DS1 – DS5). 
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Figure  8.9: Average accuracy per dataset for different window sizes 

Table  8.4 presents the average accuracy per dataset and accuracy per datasets for different window 

sizes. 

Table  8.4: Overall average accuracy per dataset and for each different window size 

 DS1 DS2 DS3 DS4 DS5 

Accuracy 0.939 0.930 0.926 0.933 0.934 

Len2 0.727 0.734 0.719 0.732 0.721 

Len3 0.965 0.955 0.952 0.958 0.960 

Len4 0.965 0.955 0.952 0.958 0.960 

Len5+ 0.966 0.955 0.952 0.958 0.960 

 

The best accuracy of 96% was achieved on DS1 with window size equal to or larger than 5, while 

overall accuracy is 93% over all datasets. Figure  8.10 presents the MCC value for different window 

sizes. Overall, the average MCC on all datasets is 0.744. The best MCC value 0.808 was achieved on 

DS1 for a window size equal to or larger than 5. 
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Figure  8.10: MCC value per different datasets on each window sizes 

Table  8.5 presents the average MCC per dataset and MCC per dataset for different window sizes. 

Table  8.5: The overall average MCC value per dataset and for each window size 

 DS1 DS2 DS3 DS4 DS5 

MCC 0.762 0.754 0.725 0.729 0.749 

Len2 0.406 0.430 0.412 0.410 0.405 

Len3 0.802 0.795 0.764 0.769 0.792 

Len4 0.802 0.795 0.764 0.769 0.792 

Len5+ 0.808 0.795 0.764 0.769 0.792 

 

Table  8.6 presents the average F1-measure for each dataset. The best F1 value 0.82 is achieved on 

DS1 with windows size equal or bigger than 5. The overall average F1 value in all datasets is 0.75. 

Table  8.6: The average precision, recall and F1 measure value over all datasets 

 DS1 DS2 DS3 DS4 DS5 

Precision 0.91 0.96 0.92 0.89 0.92 

Recall 0.69 0.64 0.62 0.65 0.66 

F1 Measure 0.77 0.76 0.73 0.74 0.76 
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The threshold value for all the above experiments is set to zero. However, in order to investigate the 

effect of different thresholds on the OFSF performance, the threshold is changed from -0.05 to 0.05. 

Figure  8.11 illustrates the performance of OFSF on different thresholds for window sizes varying 

from 2 to 6 characters. 

 

Figure  8.11: Performance of OFSF based on different thresholds for different window sizes (Len2 to Len6) 

The best MCC value of 0.88 is achieved for thresholds between 0 and 0.03 for window size equal to 

or larger than 4 (Len4 to up). 

8.9  Validation and Comparative Analysis 
The overall average accuracy achieved in the OFSF experiment on 5 datasets is 93% where the best 

accuracy is 96% on window size equal to or greater than 5 characters. The best F1 value is 0.82 while 

the average F1 value is 0.75 on all the datasets. The average MCC value is 0.744 where the best MCC 

value is 0.808 for a window size equal to or greater than 5 characters.  

The performance of OFSF becomes better as the window size increases. This shows that OFSF can 

make better predictions over time as the user uses the system. However, the performance remains the 

same after certain window sizes. The reason is that the datasets are randomly selected and the training 

sets do not contain all the Action Strings. Hence, some of the Action Strings are not inside the data 

structure of the rule-based classifier and OFSF cannot find a match for the incoming Action String. 

The same trend can be seen in the accuracy of the results, where accuracy remains the same after a 



 

 

260  Chapter 8  

certain window size of 5. Regarding the threshold, it is obvious that moving the threshold toward 

negative values increases the number of false-negatives, while moving toward positive values 

increases the number of false positives. However, the best results can be achieved by maintaining the 

threshold between 0.0 – 0.03.  

OFSF can be manually updated by including new Action Strings during Classifier Construction. 

However, current implementation of OFSF does not automatically update with new Action Strings. 

For example, if there is no match for the incoming Action String, the classifier does not produce any 

decision for the Action String. Another drawback of OFSF is that some Action Strings are the same 

for both genuine human users and spam ones. This situation produces false-positives and false-

negatives because the current Action String considers only the web navigation behaviour of the users. 

As future work, OFSF can be improved by considering the following: 

• An adaptive mechanism to automatically update a classifier based on new unseen Action 

Strings. 

• Include other usage behaviours in Action Strings such as time of each Action, existence of 

mouse / keyboard activity, etc in order to differentiate genuine human and spam Action 

Strings apart. 

 

Overall, the average performance of OFSF compared to EDSF is lower. 

However, EDSF’s better performance is achieved at the cost of time and 

computational resources. Additionally, in terms of on-the-fly 

identification of spam users, OFSF surpasses EDSF since the EDSF 

classifier cannot be trained with a partially completed input vector. 

 

8.9.1 Comparative analysis 
As mentioned previously, there have been no studies on Spam 2.0 identification by using web usage 

data. Therefore, to compare the proposed solution with similar solutions and best practices, OFSF is 

compared with four well-known approaches for detecting Spam 2.0 including Akismet, Defensio, 

TypePad, and CAPTCHA as well as EDSF. 
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The same experimental setting that was described in Section 7.9.1 is used here to conduct the 

comparative analysis. Hence, the HSCOM6 dataset with the same parameters is used. 

The results of the experiment on Akismet, Defensio, TypePad, CAPTCHA and EDSF are presented in 

Section 7.9.1.  

In the OFSF experiment, all the parameter settings are the same as those described in Section  8.7.2. 

However, all non-match Action Strings are considered as false-negative. False-negative is better than 

false-positive since, for example, it is far more annoying for a user to be blocked from a website than 

it is for a spam user to be allowed to submit spam content.   

Table  8.7 presents the accuracy, F1 and MCC value of the OFSF experiment on HSCOM6 on window 

size 2 to 10. 

Table  8.7: The result of OFSF experiment on HSCOM6 

 Accuracy MCC F1 Measure 

Len2 0.36 0.04 0.01 

Len3 0.36 0.04 0.009 

Len4 0.98 0.34 0.25 

Len5 0.97 0.25 0.15 

Len6 0.56 0.05 0.009 

Len7 0.97 0.29 0.16 

Len8 0.96 0.27 0.14 

Len9 0.97 0.29 0.16 

Len10 0.98 0.38 0.26 

Average 0.79 0.22 0.12 

 

The best accuracy 0.98, MCC 0.38 and F1 0.26 is achieved on window size 10. The average accuracy 

0.79, MCC 0.22 and F1 0.12 is achieved for the whole experiment.  

The performance of the system increases from window size 2 to 4. However, it drops for window size 

5 to 6. The performance increases for window sizes 7 to 10. The behaviour is different from the 

previous experiment on OFSF, as the performance increases as the window size becomes longer. This 
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is because, unlike the previous experiment, in this experiment all the non-match Action Strings are 

considered as false-negatives. This assumption has a significant effect on the performance of the 

system. Table  8.8 shows the number of non-match Action Strings for each window size. 

Table  8.8: The number of Non-Match Action Strings in OFSF experiment 

 Len2 Len3 Len4 Len5 Len6 Len7 Len8 Len9 Len10 

No Match 2816 3,965 69 133 2,720 168 209 186 108 

 

It is clear from the table that on window size 6, the number of non-matched Actions is very high and 

this number is at its lowest value at window size 4. However, by deducting the number of non-

matches from false-negative rate, the best accuracy 0.99, MCC 0.89 and F1 0.88 can be achieved on 

windows size equal to or greater than 5. This shows the same behaviour as the previous OFSF 

experiment described in Section  8.8. 

 

In order to equally compare the result of OFSF with other existing 

solutions, the OFSF classifier is forced to produce a result even in the case 

of non-match Action Strings. All non-match Action Strings are 

considered as false-negatives. 

8.9.1.1 Summary 
Table  8.9 presents the summary of OFSF comparison analysis against four existing solutions as well 

as EDSF. 
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Table  8.9: The summary of OFSF comparison analysis 

 Akismet Typepad 
AntiSpam 

Defensio CAPTCHA EDSF (aS, 
aF) 

OFSF 

F1-Measure 0.75 0.89 0.66 - 0.91, 0.89 0.12 

Accuracy 0.95 0.98 0.93 0.95 0.99, 0.99 0.79 

False-positive 
rate 

0.01 0.05 0.05 - 0.23, 0.32 0.04 

False-negative 
rate 

0.04 0.01 0.06 - 0.001, 0.0003 0.20 

Strategy Detection/ 
Prevention- 
based 

Detection/ 
Prevention- 
based 

Detection/ 
Prevention- 
based 

Prevention- 
based 

Early- 
detection 
based 

On-the-
fly 
detection 
based 

Language 
Dependency 

Yes Yes Yes No No No 

 

Although the performance of OFSF is lower than that of other methods, the false-positive rate for 

OFSF is the second lowest among other methods. This gives OFSF an advantage where the cost of 

false-positives is high. 

8.10  Conclusion 
This chapter presents an On-the-Fly early-detection based Spam 2.0 filter called (OFSF). OFSF is 

capable of identifying spam users spontaneously as they use a Web 2.0 platform. OFSF uses a novel 

rule-based classifier based on the Trie data structure. This allows the OFSF feature to detect spam 

users on-the-fly and fast. OFSF exploits a new feature set known as Action String which is the 

sequence of a user’s Actions in a given transaction where each Action is identified by a character, i.e. 

alphabet. 
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Figure  8.12: The performance of OFSF on HSCOM6 

Figure  8.12 illustrates the performance of OFSF on HSCOM6 dataset. The overall performance of 

OFSF without considering non-match Action Strings is promising. By considering non-match Action 

Strings as false-negatives and forcing the OFSF rule-based classifier to produce results, the OFSF 

performance decreases. However, the comparative false-positive ratio is fairly low. 

The following chapter concludes this dissertation. 
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Chapter 9    

Conclusion and Future Work 
This chapter covers: 

► The current issues and problems with spam filtering. 

► Solutions proposed by this dissertation to address spam filtering problems. 

► Conclusion and future works. 

9.1  Introduction 
Web 2.0 is commonly associated with web applications that facilitate interactive information sharing, 

interoperability, user-centred design and collaboration on the World Wide Web. The read/write web 

2.0 concepts are the backbone of the vast majority of web services that we use today. In contrast to 

non-interactive websites, Web 2.0 increasingly emphasises human collaboration through a 

participation architecture that encourages users to add value to web applications as they use them. 

Today, Web 2.0 functions are commonly found in web-based communities, applications, social-

networking sites, media-sharing sites, wikis, blogs, mashups, and folksonomies. They are widely 

provided by government, public, private and personal entities.  

New media introduce new ways of communicating that are not immune to abuse.  A fake eye-catching 

profile in social networking websites, a promotional review, a response to thread in online forums 

with unsolicited content and a manipulated wiki page, are examples of new forms of spam in the web 

referred to as Web 2.0 Spam or Spam 2.0. Spam 2.0 is simply unsolicited content that is hosted on 

legitimate Web 2.0 platforms. As mentioned in Chapters 1 and 2, this new form of spam has produced 

new challenges for the spam filtering community.  

Current literature highlights several key problems associated with Spam 2.0 filtering including the 

parasitic nature of Spam 2.0, user inconvenience associated with current anti-spam methods etc.  
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The main motivation of this research is to address the Spam 2.0 problem and to develop a framework 

for early-detection and prevention of Spam 2.0.   

This chapter provides a summary of the issues and problems addressed by this study along its main 

contributions. The next section explains the main problems with which this dissertation was 

concerned. 

9.2  Problems and Issues 
In this dissertation, three main problems and challenges associated with Spam 2.0 filtering have been 

addressed. As mentioned in Chapter 3, these issues are: 

• Problems with detection-based Spam 2.0 filtering methods. 

• Problems with prevention-based Spam 2.0 filtering methods. 

• Problems with early-detection based Spam 2.0 filtering methods. 

9.2.1 Problems with detection-based Spam 2.0 filtering methods 
As mentioned in Chapter 1, detection-based spam filters deal with the content of spam in order to 

identify spam patterns. Detection methods look for spam words, templates, attachments etc. inside the 

content. 

However, the state-of-the-art, detection-based spam filtering approaches are very fragile. The main 

socio-economic and technical problems with existing solutions that were outlined in Chapter 3 

include: 

1. Solutions are passive 

2. Consumption of network and storage resources 

3. Inability to automatically adapt to new spam patterns 

4. Inability to adapt to different platforms and languages 

It is clear that current detection-based Spam 2.0 filtering methods are still susceptible to the 

aforementioned issues which need to be tackled in order to eliminate Spam 2.0. Therefore, these 
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issues are the drivers of this research and the subsequent development of a new Spam 2.0 filtering 

method that can be extended across multiple platforms and languages as well as offer robust 

resistance against new Spam 2.0 tactics. 

9.2.2 Problems with prevention-based spam 2.0 filtering methods 
As mentioned in Chapter 1, prevention methods strive to limit automated access to the system.  By 

utilising computational, time, and economical challenges, prevention methods make spam distribution 

difficult. 

However, as mentioned in Chapter 2, the current state-of-the-art, prevention-based spam filtering 

approaches are very fragile. The main socio-economic and technical problems associated with the 

existing solutions that were outlined in Chapter 3 are as follows: 

1. Weak/complex challenges result in ineffective Spam 2.0 filtering 

2. Computer programs are becoming better at bypassing CAPTCHA 

3. Computer programs are becoming faster at meeting POW challenges 

4. Current prevention-based methods are vulnerable to relay attacks 

5. Blacklists are too slow to protect Web 2.0 platforms 

6. Blacklists are not effective for Spam 2.0 filtering 

The current prevention-based Spam 2.0 filtering methods are still susceptible to the abovementioned 

issues which need to be tackled effectively in order to eliminate Spam 2.0.  

9.2.3 Problems with early-detection based spam 2.0 filtering 
methods 
As mentioned in Chapter 1, early-detection methods prevent the distribution of spam. However, such 

methods are not detection-based since they do not investigate content to find spam patterns, nor do 

they apply costs on user actions to limit the access to the system. Early-detection methods typically 

look into the nature and behaviour of spam generation. By studying the behaviour of content 

distribution and examining behavioural features, early-detection methods are able to differentiate 

spam from legitimate content.   
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However, as mentioned in Chapter 2, the state-of-the-art, early-detection based spam filtering 

approaches are very fragile. As outlined in Chapter 3, the main socio-economic and technical 

problems with existing solutions are as follows: 

1. Inability to identify Web 2.0 spam users 

2. Machine learning-based methods are not effective for real-time detection 

3. The nature of Spam 2.0 is not well understood 

These three issues and weaknesses of the current early-detection based Spam 2.0 filtering methods 

have not been adequately addressed by current studies. 

9.3  Dissertation Contributions 
To address and analyse problems outlined in Chapter 3, this dissertation proposes the following 

solutions in the area of Spam 2.0 filtering. To evaluate the proposed solutions, three prototype 

systems have been developed. 

• Characterising Spam 2.0, Spam 2.0 distribution model and generation approaches. 

• Early-Detection based Spam 2.0 Filtering (EDSF) approach. 

• One-the-Fly Spam 2.0 Filtering (OFSF) approach. 

9.3.1 Study and evaluation of existing spam filtering research 
This dissertation has provided an overview of the literature and has investigated the current efforts in 

the spam filtering field as well as evaluating the most successful anti-spam methods. A survey of 

spam filtering efforts on the web and Web 2.0 platforms including detection-based (i.e. content-based, 

linked based and rule-based), prevention-based and early-detection based approaches have been 

conducted. Although this research brings in a new concept of Spam 2.0 that has not been covered 

before, attempts that have been utilised in relation to the other types of spam (i.e. web spam) are also 

investigated to gain additional understanding.  

Through study and evaluation of existing spam filtering approaches in the web spam area, it has 

became clear that the state-of-art methods whether they have focus on providing a more robust 
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webpage ranking algorithm or identification of web spam tactics in the search results. Technically, the 

methods are mainly toward link and detection-based approaches, which raises the following concerns: 

1. Methods that strive to enhance the PageRank algorithm need significant amounts of 

resources. This makes them usable only for the large scale implementations (e.g. major search 

engines) and they are not efficient on a smaller scale. 

2. Methods that strive to enhance the HITS algorithm cannot be used in offline mode. This 

might cause system performance issues during the system run time. 

3. Both link and detection-based approaches are afterthoughts. The methods deal with the web 

spam problem after spam web pages have already infiltrated the web. Hence, they cannot 

prevent the web spam distribution from wasting resources on the web. 

4. Early detection-based methods are not effectively designed to prevent web spam distribution. 

However, there is no study on prevention-based web spam filtering methods.  

5. Hijacking is one of the major tactics that has recently been used by spammers. This tactic has 

not specifically been covered by state-of-the-art web spam filtering methods. 

6. The majority of web spam filtering methods have addressed link-based tactics; however, 

content-based tactics have not received much attention.  

Since the focus of this dissertation is on Spam 2.0, a comprehensive study has been conducted on 

existing Spam 2.0 filtering methods. Spam 2.0 is associated with existing web spam concerns as well 

as producing new problems. The overall problems with the current Spam 2.0 filtering methods are as 

follows: 

1. Methods are platform-dependent. They cannot be extended to other platforms. 

2. Detection-based methods are mainly content-based and can be bypassed by spammers. 

3. Content-based methods are language-dependent. Hence, a solution might not be applicable to 

different languages. 
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4. Prevention-based methods are about to become outdated as computers become more 

powerful. The studies show that state-of-the-art prevention method such as CAPTCHA are 

weak against current spam tactics. 

5. Early detection-based methods did not fully consider spambot identifications because they 

have been designed to identify only web crawlers in general. 

Hence, one of the main contributions of this study was a survey of web spam and Spam 2.0 filtering 

approaches to highlight the unresolved issues and at the same time properly structure the knowledge 

in the domain of spam filtering. 

9.3.2 Characterising spam 2.0, spam 2.0 distribution model and 
generation approaches 
Current literature lacks a comprehensive understanding of Spam 2.0 and the way it is propagated on 

Web 2.0 platforms. Chapter 5 addresses these problems by providing a mechanism named 

HoneySpam 2.0 to monitor, track and store Spam 2.0. This information is later analysed and 

investigated to discover the characteristics of Spam 2.0 and its distribution model. HoneySpam 2.0 is 

tested against real-world Spam 2.0 data and its performance is compared with that of existing 

solutions. 

HoneySpam 2.0 has three main parts as illustrated in Figure  9.1. 

 

Figure  9.1: Three main parts of the HoneySpam 2.0 framework 

Tracking presents a framework for monitoring web and form usage data. It provides input data for 

other parts of the system. The input data consists of navigation usage data (i.e. IP address, referrer 

URL, browser identity etc) and form usage data (i.e. mouse movement, keyboard actions, form 

load/unload, form’s field focus/un-focus etc.). 
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Pre-processing includes tasks such as data cleansing, user identification, and session identification. In 

the data cleansing task, unnecessary data is removed. User identification is the task of associating 

usage data with a specific user. Finally, session identification refers to the splitting of usage data into 

different sessions. Each session contains information about usage data for website visits. 

Knowledge discovery is the last part of the proposed solution. The output of the previous part of the 

system is used here to mine and characterise Spam 2.0. General data mining techniques are used to 

generate usage statistics, average amount of time spent on each page, return visit rate etc. 

HoneySpam 2.0 has been executed on multiple web hosts including six commercial hosts and five 

free web hosts. The following observations have been made from spam user activities during general 

statistical analysis. 

• Usage of search engines to find target websites 

• Create numerous user accounts 

• Low website webpage hits and revisit rates 

• Distribute spam content in a short period of time 

• No web form interaction 

The in-depth analysis presented in Chapter 6 is based on the following factors in order to extract 

valuable information from accumulated data. 

• Discovered spammer behaviour on Web 2.0 platforms 

• Understood spammer intentions on Web 2.0 platforms 

• Formulated spammer behaviour in order to develop discriminative feature sets 

• Clustered spammer activities into groups based on features sets 

• Characterised spammer behaviour in each cluster 

• Developed a strategy to utilise feature sets for Spam 2.0 filtering 



 

 

272  Chapter 9  

Three feature sets – Action Set, Action Time, and Action Frequency are presented to formulate spam 

users behaviour on web 2.0 platforms as well as a neural network clustering mechanism is used to 

cluster spammers’ behaviour based on the three feature sets. 

Three feature sets – Action Set, Action Time, and Action Frequency are presented to formulate 

spammer behaviour on web 2.0 platforms as well as a neural network clustering mechanisms are used 

to cluster spammer behaviour based on the three feature sets. 

An Action is a user set of requested web objects in order to perform a certain task or purpose. Actions 

integrate user activity on web platforms into meaningful groups. Each group contains meaningful 

information about user tasks. An Action Set is a binary model that shows whether an Action is 

undertaken by a user. This feature set shows whether or not spam users perform different Actions 

among different transactions.  Action Time is a feature vector to represent the time that is taken to 

perform each Action. This feature set shows how much time spam users would spend on performing 

each Action in different transactions. Action Frequency is a feature vector to represent the frequency 

of each Action. This feature set shows how frequent spammers perform each Action in different 

transactions. Actions are used to create Behavioural vectors to model users’ web usage behaviour. 

Behavioural vectors are high dimensional which makes them difficult to visualise. In order to 

understand this data, the Self-Organising Map (SOM) is used to reduce the dimension of data as well 

as clustering data into similar groups. SOM – a neural network clustering algorithm – is employed for 

clustering and visualisation of high dimensional data. The output of the SOM is a map which is a 

visual representation of input vector. Each SOM cluster provides insight into the nature of Spam 2.0 

behaviour and their characteristics. 

Nine experiments based on three transaction level and three feature sets have been done to profile 

Spam 2.0 behaviour. The overall results from each experiment and the characteristic of the centre 

node inside each cluster are as follows. 

• Spam users focus on specific and limited Actions compared to real human users.  

• Spam users use multiple user accounts to spread spam content, hide their identity and bypass 

restrictions. 
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• Spam users bypass filling in submission forms and directly submit the content to the Web 

server in order to efficiently spread spam.  

• Spam users can be grouped into four different categories based on their actions – content 

submitters, profile editors, content viewers and mixed behaviour.  

• Spam users change their IP address based on different Actions to hide their tracks. 

The results of this study paved the way for the development of a Spam 2.0 filtering solution. 

9.3.3 Early-Detection based Spam 2.0 Filtering (EDSF) approach 
The early-detection based Spam 2.0 filtering methods attempt to identify spam behaviour prior to or 

just after spam content submission. Such methods investigate the behaviour of a spam submitter, e.g. 

automated tools, spambots etc. 

The proposed EDSF method in this dissertation automatically distinguishes Spam 2.0 submission 

from genuine human content contribution inside Web 2.0 platforms. The proposed method studies, 

investigates and identifies Spam 2.0 in Web 2.0 platform. EDSF makes use of web usage navigation 

behaviour to build up a discriminative feature set including Action Set, Action Time, and Action 

Frequency. This feature set is later used in a machine learning classifier known as Support Vector 

Machine (SVM) for classification. 

For the experiments used for this research, data was collected from the HoneySpam 2.0 framework as 

well as a live moderated forum. The performance of the EDSF is measured based on the F1-measure. 

The EDSF achieved an average accuracy of 94.70%, which ranges from 93.18% for Action Time to 

96.23% for Action Frequency. For the first experiment on the Action Set, the number of correct 

classified instances is 4,064 and the number of incorrect classified instances is 163. The number of 

correct classified instances for the second and third experiment is 3,939 and 4,068 respectively.  The 

number of incorrect classified instances for the last two experiments is 288 and 159 respectively. 

The overall performance of EDSF has been compared against four other state-of-the-art Spam 2.0 

filtering methods. The overall F1-measure value of EDSF is higher than existing Spam 2.0 filtering 

method. It shows that the proposed method has better performance in regard to Spam 2.0 filtering. 
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The other advantage of EDSF is its detection strategy. EDSF is an early-detection based method, so it 

can detect spam users before content distribution 

Given that there is no work in the literature on the classification of Spam 2.0 behaviour, the results of 

EDSF are the initial steps toward identifying Spam 2.0 by examining web usage behaviour. 

9.3.4 On-the-Fly Spam 2.0 Filtering (OFSF) approach 
The OFSF method presented in this dissertation automatically differentiates Spam 2.0 submissions 

from genuine human content inside Web 2.0 platforms. The proposed method studies, investigates 

and identifies Spam 2.0 on a Web 2.0 platform. In a similar fashion to EDSF, OFSF makes use of web 

usage navigation behaviour to establish discriminative feature sets. However, OFSF considers the 

sequence and order of user web navigation in order to build up the feature sets for classification. 

Unlike EDSF, OFSF uses a novel rule-based classifier to store, retrieve, and classify spam users 

separately from genuine human. OFSF makes it possible to spot spam users on-the-fly. While users 

are interacting with the Web 2.0 platform, OFSF is able to track and identify possible spam navigation 

patterns. To handle i.e. store, retrieve, update, and lookup navigation data OFSF uses a Trie data 

structure. Trie is in the form of tree data structure where each node stores an identifier to a user’s web 

navigation Actions while the tree edges hold the order and sequence of Actions. 

OFSF uses Action Strings (sequence of users Actions in a given transaction where each Action is 

identified by a text character). By placing each Action identifier in the specific Action order, an 

Action String and Trie data structure is generated. The main advantages are ease of updating, 

handling, and short access time. To classify spam user from real human users, a Trie is in the form of 

a tree structure where each node contains the value of the key with which it is associated. 

For the experiments outlined in this dissertation, the same dataset that has been used in EDSF was 

also used for OFSF. F1-Measure, Matthews Correlation Coefficient (MCC) was used to measure the 

performance of OFSF. The overall average accuracy achieved with the OFSF experiments was 93% 

where the best accuracy is 96% on window size equal to or greater that 5 characters. The best F1 

value that was achieved was 0.82 while the average F1 value was 0.75 on all the datasets. The average 

MCC value was 0.744 where the best MCC value was 0.808 for window size equal to or greater than 

5 characters. 
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Overall, the average performance of OFSF compared with EDSF is lower. However, EDSF’s better 

performance is achieved at the cost of time and computational resources. Additionally, on-the-fly 

identification of spam users in OFSF surpasses EDSF since the EDSF classifier cannot be trained with 

a partially completed input vector. 

9.4  Future Works 
The work that has been undertaken in this dissertation has been published in peer reviewed 

international conferences, journals and book chapters. Over the course of this research, 15 papers have 

been published in international conferences, journals and book chapters. Selected publications are 

attached in the Appendix. Although a significant amount of effort has been invested in this research, 

there is still scope for future work. The following projects are aims for the future works: 

• Integrate HoneySpam 2.0 to collect data from various Web 2.0 platforms other than online 

forums. HoneySpam 2.0 can also be publicly available as a web service to accumulate more 

data from online web applications. 

• Improve the performance of EDSF by investigating the following issues: 

o The nature of EDSF does not allow a distinction to be made between fair or spam 

Actions; hence, the EDSF can mark as spam users those genuine users with few 

Actions.  

o EDSF investigates the behaviour of the users only at the session level. Although a 

session level transaction provides a detailed profile of a user’s visit, it does not 

provide an overall view of the user’s behaviour. 

o Although Actions are good discriminative features for classification, some Actions 

might be similar for both genuine and spam users. For example, a genuine user which 

directly inputs a “creating new thread” link address might be wrongly classified as a 

spam user since spam users mainly aim for content contribution web pages rather 

than surfing through other web pages. This increases the chance of misclassifications. 

Therefore, further classification of Actions may be required. 

• OFSF can be improved by considering the following: 
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o An adaptive mechanism to automatically update the classifier based on new unseen 

Action Strings. 

o Inclusion of other usage behaviours into Action Strings such as time of each Action, 

existence of mouse / keyboard activity, etc. in order to differentiate between genuine 

human and spam Action Strings. 

o A mechanism which will evolve as a site is updated and changed. 

This work has coined the term ‘Spam 2.0’, provided insight into the nature of Spam 2.0 and proposed 

filtering mechanisms to combat this new and rapidly evolving problem. 
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Appendix I 
Early-Detection based Spam 2.0 Filtering (EDSF) classification results: 

Action Set  

=== Run information === 
 
Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 
-M 40.0 -C 1.0 -E 0.0010 -P 0.1 
Relation:     Man 
Instances:    4227 
Attributes:   35 
              Index 
              View Board 
              View Topic 
              Start new topic 
              View the profile of  
              Set Search Parameter 
              Search Results 
              Preview 
              Profile - Notificati 
              Profile - Account Re 
              Modify message 
              Post reply 
              action=quotefast 
              Send message 
              action=spellcheck 
              action=findmember 
              Personal Messages In 
              Viewing Members 1 to 
              Recent Posts 
              View Lastest Post 
              View Help 
              Profile - Forum Prof 
              Profile - Look and L 
              Choose a theme... 
              Remnants Forum Passw 
              Recent Unread Topics 
              action=jsmodify 
              Personal Message Opt 
              Updated Topics 
              Remnants Forum - Sta 
              action=stats 
              All Unread Topics 
              Post new poll 
              Login 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 
 
Time taken to build model: 0.38 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances        4064               96.1438 % 
Incorrectly Classified Instances       163                3.8562 % 
Kappa statistic                          0.7856 
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Mean absolute error                      0.0386 
Root mean squared error                  0.1964 
Relative absolute error                 18.4413 % 
Root relative squared error             60.7532 % 
Total Number of Instances             4227      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.999         0.323      0.958     1         0.979      0.838    
Bot 
                 0.677     0          0.997     0.677     0.806      0.838    Man 
Weighted Avg.    0.961     0.285      0.963     0.961     0.958      0.838 
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 3725    1 |    a = Bot 
  162  339 |    b = Man 
 
Action Time 

=== Run information === 
 
Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 
-M 40.0 -C 1.0 -E 0.0010 -P 0.1 
Relation:     Man 
Instances:    4227 
Attributes:   35 
              Index 
              View Board 
              View Topic 
              Start new topic 
              View the profile of  
              Set Search Parameter 
              Search Results 
              Preview 
              Profile - Notificati 
              Profile - Account Re 
              Modify message 
              Post reply 
              action=quotefast 
              Send message 
              action=spellcheck 
              action=findmember 
              Personal Messages In 
              Viewing Members 1 to 
              Recent Posts 
              View Lastest Post 
              View Help 
              Profile - Forum Prof 
              Profile - Look and L 
              Choose a theme... 
              Remnants Forum Passw 
              Recent Unread Topics 
              action=jsmodify 
              Personal Message Opt 
              Updated Topics 
              Remnants Forum - Sta 
              action=stats 
              All Unread Topics 
              Post new poll 
              Login 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
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LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 
 
Time taken to build model: 1.67 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances        3939               93.1867 % 
Incorrectly Classified Instances       288                6.8133 % 
Kappa statistic                          0.639  
Mean absolute error                      0.0681 
Root mean squared error                  0.261  
Relative absolute error                 32.5834 % 
Root relative squared error             80.7554 % 
Total Number of Instances             4227      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.976     0.399      0.948     0.976     0.962      0.789    Bot 
                 0.601     0.024      0.774     0.601     0.676      0.789    Man 
Weighted Avg.    0.932     0.355      0.927     0.932     0.928      0.789 
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 3638   88 |    a = Bot 
  200  301 |    b = Man 
 
Action Frequency 

=== Run information === 
 
Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 
-M 40.0 -C 1.0 -E 0.0010 -P 0.1 
Relation:     Man 
Instances:    4227 
Attributes:   35 
              Index 
              View Board 
              View Topic 
              Start new topic 
              View the profile of  
              Set Search Parameter 
              Search Results 
              Preview 
              Profile - Notificati 
              Profile - Account Re 
              Modify message 
              Post reply 
              action=quotefast 
              Send message 
              action=spellcheck 
              action=findmember 
              Personal Messages In 
              Viewing Members 1 to 
              Recent Posts 
              View Lastest Post 
              View Help 
              Profile - Forum Prof 
              Profile - Look and L 
              Choose a theme... 
              Remnants Forum Passw 
              Recent Unread Topics 
              action=jsmodify 
              Personal Message Opt 
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              Updated Topics 
              Remnants Forum - Sta 
              action=stats 
              All Unread Topics 
              Post new poll 
              Login 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 
 
Time taken to build model: 0.38 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances        4068               96.2385 % 
Incorrectly Classified Instances       159                3.7615 % 
Kappa statistic                          0.795  
Mean absolute error                      0.0376 
Root mean squared error                  0.1939 
Relative absolute error                 17.9887 % 
Root relative squared error             60.0032 % 
Total Number of Instances             4227      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.998     0.299      0.961     0.998     0.979      0.849    Bot 
                 0.701     0.002      0.975     0.701     0.815      0.849    Man 
Weighted Avg.    0.962     0.264      0.963     0.962     0.96       0.849 
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 3717    9 |    a = Bot 
  150  351 |    b = Man 
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The growth of spam in Web 2.0 environments not only reduces the quality and trust of the content but it also degrades the quality of search engine results. By means
of web spambots, spammers are able to distribute spam content more efficiently to more targeted websites. Current anti-spam filtering solutions have not studied
web spambots thoroughly and the characterisation of spambots remains an open area of research. In order to fill this research gap, this paper utilises Kohonen’s
Self-Organising Map (SOM) to characterise web spambots. We analyse web usage data to profile web spambots based on three novel set of features i.e. action set,
action frequency and action time. Our experimental results uncovered important characteristics of web spambots that 1) they focus on specific and limited actions
compared with humans 2) they use multiple user accounts to spread spam content, hide their identity and bypass restrictions, 3) they bypass filling in submission forms
and directly submit the content to the Web server in order to efficiently spread spam, 4) they can be categorise into 4 different categories based on their actions –
content submitters, profile editors, content viewers and mixed behaviour, 5) they change their IP address based on different action to hide their tracks. Our results are
promising and they suggest that our technique is capable of identifying spam in Web 2.0 applications.

Keywords: web spambots, spam 2.0, spam detection, behaviour analysis, web usage mining

1. INTRODUCTION

Web 2.0 brings freedom to the web environment by allowing
users to participate in content creation & management. However,
this ability is also granted to users that distribute spam content
(spammers). Spammers have spread spam content on Web 2.0
applications including forums, blogs, wikis, social bookmarking
websites etc. [1]

We refer to this new spamming technique as Spam 2.0 which
is defined as the propagation of unsolicited, anonymous, mass
content to infiltrate legitimateWeb 2.0 applications. Examples of
Spam 2.0 would include posting promotional threads in online
discussion boards, manipulating wiki pages and creating fake
user profiles in social networking websites [1].

Recent studies report an alarming situation that over 75% of
blogs are spam blogs (splogs) [2] and the amount of comment
spam has doubled in the 2009 compare with last year [3].

State-of-art anti-spam filters either employ content-based ap-
proaches or out-link and in-link based approaches for spam de-

tection. Zinman et al.(2007) use variety of content-based fea-
tures in a machine learning classifier to classify social spam [4].
Nitin et al (2008) extract 34 content-based features from online
opinions to build the spam classifier [5].

An unsupervised content-based spam detection method pro-
posed by Uemura et al. [6], employs an entropy-like feature
called document complexity to detect spam content in blog and
forums. Webb et al. (2008) monitored the interaction of social
spammers in an online community to characterise spam pro-
files [7]. However, an in depth study at identifying the ori-
gin and source of spam content in Web 2.0 platforms i.e. a
study on characterising web spambots is missing in current lit-
erature.

Web spambot (i.e. spambot) is a type of web robot or Inter-
net robot that spreads spam content in Web 2.0 applications [8].
Spammers automate the process of spreading spam content in
Web 2.0 applications (spam 2.0) by means of spambots. Spam-
bots can be programmed to automatically crawl the web, find
Web 2.0 websites, register a user account and spread spam con-
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tent. They can be deployed in any system ranging from genuine
users computers (as a part of botnets) to servers.

Spambots make it easier to quickly distribute spam content
among a large number of websites without spammer interven-
tion. They can also be programmed to be application-specific
or website-specific. The former targets special web applications
such as forums, blogs, wikis, etc. The latter is designed to target
a specific Web 2.0 website such as Amazon, Youtube, MySpace,
etc.

It is worth mentioning that spambots are different from email
spambots. Email spambots are designed to harvest email ad-
dresses from webpages and distribute spam content through
emails. Web spambots however are active in Web 2.0 appli-
cations and can mimic human user behaviour [1].

Spambots waste network and server resources, pollute content
in Web 2.0 applications in addition to increasing the need to
filter and manage unnecessary content. Additionally spambots
can place a legitimate websites in a danger of being blacklisted
by search engines. Therefore, characterising spambots is the
important step toward controlling and eliminating Spam 2.0.

In this paper we investigate spambot behaviour by em-
ploying Self-Organizing Maps (SOM). SOM organises multi-
dimensional data into a two-dimensional map. We feed the SOM
with three feature sets and generate a map for each feature set.
Each map reveals different characteristics of spambot behaviour.
We run 9 experiments based on these three feature sets to charac-
terize spambot behaviour. The main contributions of this paper
are as follow.

• Utilising self-organising maps to profile spambot be-
haviour.

• Proposing three feature sets action set¸ action time, action
frequency to formulate spambot behaviour.

• Evaluating the performance of our proposed framework
with real world data.

The rest of paper is structured as follow. In section 2 we
present insights into the problems caused by spambots and im-
portance of eliminating them in addition to providing back-
ground knowledge. Section 3 illustrates our proposed frame-
work for characterising spambot behaviour. Section 4 presents
our experimental results based on 9 different experiments. We
formulate our conclusion in Section 5.

2. BACKGROUND

Spam is defined as mass, unsolicited and commercial content
[9]. From simple text-based email messages to spam in Internet
telephony systems, the purpose of spamming is the same i.e. to
attract users to view spam content that generates advertising and
revenue [10].

For achieving such purposes, spammers look at any type of
communication used by humans and employ various methods
to attract their attention. Spam is currently prolific because it is
comparatively cheaper and easier to spread spam content rather
than to detect spam [11]. As the Internet evolves spam techniques
will also evolve and branch into different types of media. Figure

Figure 1 Different types of domain that have been targeted by spammers.

1 illustrates the different domains that are currently targeted by
spammers.

The main disadvantages of spam are as follows:

• Wastes network bandwidth and storage / memory space:
Spam takes up valuable resources such as hard-disk space,
Internet quota for spreading junk content.

• Frustrates users: For instance, spam contains fake infor-
mation along with a link to spam-related websites. Spam
occasionally contains adult-related content, which can of-
fend users.

• Misleads search engine spiders: Spam content on the Web
abuses Search Engine Optimisation (SEO) techniques to get
improved and underserved search rankings. It manipulates
search engine results against a set of keywords and builds
up their page rank scores by creating many links to their
website. Hence, poor quality and junk content receive more
attention through higher rankings than genuine and high
quality content.

2.1 Spambot Countermeasures

To deal with spambots, some anti-robot techniques are being
used by a number of websites. In this section we recall some of
the common techniques and explain their limitations.

2.1.1 IP Address

A simple way to detect web robot is to examine IP address.
A list of known web robot IP addresses can be retrieved from
some sources1. However, it is hard to maintain an up-to-date
list of IP addresses since new web robots are being deployed as
well as some spambots can be deployed on legitimate hosts with
legitimate IP address. Hence, this technique is an inefficient way
of trying to stop spambots.

2.1.2 Robots.txt

Known as Robot Exclusion Protocol is a text file normally inside
root directory of websites. It contains list of access restriction
places (e.g. webpages, directories, etc) for the website that forbid
web robots from accessing them [12]. According to this protocol,
web robots should examine robots.txt file whenever they visit a

1IP Addresses of Search Engine Spiders: http:/www.iplists.com/
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website. Figure 2 is an example of in the robots.txt file. It forbids
all web robots from accessing whole website.

User-agent: *
Disallow: /

Figure 2 Sample entry in robots.txt file. It keeps out all web robots.

However, pursuing Robot Exclusion Protocol is voluntary and
many web robots do not follow this protocol [13]. As spambots
are tasked to distribute promotional and junk content to as many
websites as possible, it is doubtful that they would observe the
robot rules stated in the robots.txt file. Therefore, this technique
is ineffective at dealing with spambots.

2.1.3 User-agent

User-agent is a field inside a HTTP Request Header to the web
server that identifies the client application. A web robot should
declare its identity to the web server by specifying this field
[14]. For instance the user-agent for a Yahoo! web crawler
is Slurp [15]. By simply examining the user-agent field, web
administrators are able to restrict access for some specific web
robots. However, spambots often hide their identity or rename
their user-agent to a name that is not restricted [8]. Therefore
this technique is ineffective at restricting spambots.

2.1.4 Head Request

The response of web server on the HTTP Head request is header
information without a message body. Web robots use head re-
quest to check the validity of hyperlinks, accessibility and recent
modifications on the requested webpage [16]. Therefore, large
amount of head requests in the incoming traffic can show web
robots activity. However, this heuristic is not effective at detect-
ing spambots as they normally request the message body rather
than the header.

2.1.5 Referrer

Referrer is a field inside HTTP request that contains a
link to the webpage a client followed to reach to the cur-
rent requested webpage. For instance if a user reaches to
www.example/page2.html from www.example.com page,
the referrer filed is www.example.com. Ethical web robots
normally do not assign any value to referrer field so they can
be differentiated from human users. However, spambots often
assign a value to referrer field to mimic a human user and can
also provide fake links to conceal their navigation [17].

2.1.6 Flood Control

Flood control is a technique to limit the number of requests a
client can send within a specified time interval. The idea is
to restrict the number of submission requests to the server by
spambots [18]. For example, once user creates a new thread in a
forum they may have to wait 10 minutes before creating another
thread. This technique may slow down automatic submissions
by spambots but it also causes inconvenience for genuine human
users. Additionally, such a technique can not stop spambots but
only delay their submission process. We discovered from our

experiment that spambots often create multiple user accounts
and would therefore bypass this technique.

2.1.7 Nonce

Nonce is technique to stop automated form submission. Nonce
is a random generated set of characters that are placed on a
webpage with a form [18]. When the user submits the form, the
nonce is sent the server. If the nonce does not exist in the form
submission, it reveals that form was not loaded by the client and
indicates the possibility of an automated attack by a spambot.
This technique only ensures that submitted content originates
from a web form loaded by the client but can not stop spambots
that submit content through the website forms.

2.1.8 Form variation

This technique involves varying objects inside a form upon web-
page request [18]. For example, the name of input fields within
a form changes for each user webpage request. The idea of this
technique is similar to nonce, in that it wants to ensure a server
form generated is used during submission. However, like nonce,
it can not block spambots that use the website forms.

2.1.9 Hashcash

The idea behind hashcash is to put increased cost of submis-
sion in client side in order to make spreading spam more costly
[19]. This technique involves the sender calculating a stamp for
submitted content. The calculation of the stamp is difficult and
time-consuming but comparatively cheap and fast for receiver
to verify. Similar to flood control, hashcash can only slow down
but not stop spambot activity.

2.1.10 Completely Automated Public Turing test to tell
Computers and Human Apart (CAPTCHA)

CAPTCHA is the most popular anti-robot technique adopted by
many websites. It is a challenge response technique usually in
format of a distorted image of letters and numbers [20]. Users
are asked to infer a CAPTCHA image and type its letters in a
form. However, CAPTCHA places inconvenience on users as it
wastes their time, causes distraction, is unpleasant and at times
scary. A number of recent works have reported approaches to
defeat CAPTCHAs automatically by using computer programs
[21–23]. CAPTCHA’s drawbacks include the following:

1. Decrease user convenience and increase complexity of hu-
man computer interaction.

2. As programs become better at deciphering CAPTCHA, the
image may become increasingly difficult for humans to de-
cipher.

3. As computers get more powerful, they will be able to deci-
pher CAPTCHA better than humans.

Therefore, CAPTCHA is a short term solution that may not prove
effective in the future. Spambots armed with anti-CAPTCHA
tools are able to bypass this restriction and spread spam content
easily while the futile user inconvenience remains.
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2.2 Web Usage Data

User navigation through websites can be tracked and logged.
This knowledge can be stored and it is referred as web usage
data [24]. Such knowledge can be mined to extract valuable in-
formation such as user navigation and click-stream. Generally,
web usage data includes information about client IP Address,
requested object (e.g. webpage), method of request (e.g. POST,
GET), time of request and web browser type (e.g. Internet Ex-
plorer, Mozilla Firefox, etc). We evaluate web usage data to
study spambots behaviour in Web 2.0 platform.

3. FRAMEWORK – CHARACTERISATION
OF SPAMBOT BEHAVIOUR USING KO-
HONEN’S SELF ORGANIZING MAPS

3.1 Preliminary Concepts

In this paper we are going to employ SOM to characterise spam-
bot behaviour. So before we start describing the actual solution,
we would first cover the basics of SOM.

3.1.1 Self Organising Map (SOM)

The SOM is a type of neural network based on competitive learn-
ing. SOM can be employ for clustering and visualisation of high
dimensional data. The output of the SOM is a map which is vi-
sual representation of input vector. Maps can be generated in
two or three dimensions but two-dimensional maps are more in
common.

SOM has two phases, which are the training and mapping
phases. In the training phase, an input vector in form of a one-
dimensional array (sometimes 2 dimensional) is presented to the
map. Next, the weights of the components on the map (called
nodes) which are closer to the input vector gain more strength
for neighbouring nodes. The node which has closet distance to
the input vector is called Best Matching Unit (BMU). Therefore,
in the mapping phase, similar input vectors are in same region
and can be grouped together as a cluster.

3.1.2 SOM algorithm

SOM starts by initialising each node’s weight vector, wi , on the
map by assigning a small random variable. Next, an input vector
x is presented to the map and distance between all nodes on the
map and x is calculated as

dj = ∥∥xi − wj

∥∥ =
√√√√ |w|∑

k=0

(xik − wkj )2 (1)

The minimum dj is selected as BMU. After finding BMU,
SOM updates wi for BMU and its neighbours nodes according
to E.q 2 so they get closer to input vector.

wi(t + 1) = wi(t) + α(t)hci(t)[x − wi(t)] (2)

where t is the time-step, hci(t) is a Gaussian neighbourhood ker-
nel and decreases with time tα(t) = α(0)

(1−t)
T

is linear learning
rate, T is training length (neighbourhood size less than number
of nodes in one dimension of map).

Figure 3 Spambot Characterising Framework.

3.1.3 Unified distance matrix (U-Matrix)

U-matrix visualises the distance between adjacent nodes in
SOM. It can be employed to determine the number of clusters in
SOM as well as how close they are to each other. In this paper,
we utilise Kohonen’s SOM to characterise spambots by moni-
toring their web usage data. In other words, we use SOM and
the U-matrix as a visualisation tool to cluster different spambot
web usage behaviour.

3.2 Overview

Our proposed framework for profiling spambots has 4 major
modules as illustrated in Figure 3. In order to study spambot
behaviour, we use the data collected from our previous work,
HoneySpam 2.0 [8], which contains spambot web usage data.
However, this data requires preparation for it to be used for spam-
bot characterisation. Hence we propose three new feature sets –
action time, action set, and action frequency. Our main intention
to choose feature sets which are:

1. Generic: so they can be extend to other form of Web 2.0
platforms

2. Differentiable: so it can distinguish spambot behaviour
from humans.

We define action as a set of user activity in a system to achieve
a certain goal. For instance, in a forum, a user can navigate to
the registration page, complete the registration form and click
the submit button in order to create a new user account. This
procedure can be formulated as the register a new account action.

Action set refers to set of actions that have been performed.
Action time refers to the amount of time (dwell time) spent on
a particular action. Action frequency refers to the number of
times a user performs a particular action. We provide a formal
description of each feature set in Section 3.4.
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In order to characterise spambot behaviour, we employ SOM
to organise each feature set on a map and visualise them by using
the U-matrix. By studying the centre node inside each cluster
we attempt to understand spambot behaviour from our dataset.

3.3 Web usage tracker

This module tracks spambot interaction with system. It stores the
IP address, username, requested webpage URL, session identity,
and timestamp of each request a spambot has made to the website.
This information makes it possible to track spambot behaviour
for each browsing session.

Conventionally, web usage navigation tracking is done
through web server logs that described in Section 2. However,
these logs do not specify usernames and the session identifier
for each request. Therefore, we use our own web usage tracker
that we developed in our previous work, HoneySpam 2.0 [8].
Our tracker is designed to monitor spambots within an online
forum void of any human activity. Therefore, data collected in
this module consist of solely spambot web usage data.

3.4 Data preparation

This module comprises of three components which include data
cleaning, transaction identification and dwell time completion.

Data cleaning

This component removes irrelevant web usage data such as:

• Data related to researchers who monitor the forum.

• Data related to visitors who did not create a user account.

• Data related to crawlers and other Web robots that are not
spambots.

Transaction Identification

This component involves activities needed to construct meaning-
ful clusters of user navigation data [24]. We group web usage
data into three levels of abstraction – IP, User and Session. The
highest level of abstraction is IP and each IP address can be used
by multiple users. The middle level is the user level and each
user can perform multiple browsing sessions. Finally, the lowest
level is the session level, which contains detail information of
the user navigation data in each website visit.

In our proposed framework, we define a transaction for all
three level of abstraction to study the characteristic of spambot
from each level. Figure 4 illustrates the association relationship
between the IP, user and session levels.

Dwell time completion

Dwell time is an amount of time a user spends viewing a par-
ticular webpage in a session. As described in Section 3.1, web
usage tracking module records the timestamp for each request.
Hence, dwell time can be define as

d ′
i = ti+1 − ti where 1 � i � |S| (3)

Figure 4 Association relation among IP, User and Session transitions.

d ′
i is dwell time for ith requested webpage in session S at time t ;
However, according to E.q. 3. it is not possible to calculate

the last visited page in a session. For example, a user navigates
to the last page on the website then closes their web browser or
navigates to different website. Hence we calculate the average
dwell time spent on other webpages in the same session as the
dwell time for the last page.

3.5 Feature Measurement

The feature measurement module formulates web usage data
to be used in the SOM to reveal spambots characteristics. It
formats the data into three different feature sets which are action
set, action time and action frequency.

Definition 1: Action Set (
−→
aS)

Given a set of webpages W = {w1, w2, ..., w|W |}, A is defined
as a set of Actions, such that

A = {ai | ai ⊂ W } = {{wl, ..., wk}} 1 � l, k � |W | (4)

Respectively si is defined as

si = {aj } 1 � i � |T | ; 1 � j � |A| (5)

si refers to a set of actions performed in transaction i and T is
total number of transactions.

In order to build the input vector we assign each action, ai , as
a feature. Hence, we represent an action set as a bit vector

−→
aS =

〈
vi

1, ..., v
i|A|

〉
(6)

where

vi
j =

{
1 aj ∈ si
0 otherwise

(7)

Definition 2: Action Frequency (
−→
aF = 〈hi

1, ..., h
i|A|〉)

Action frequency is a vector where hi
j is the frequency of j th

action in si . otherwise it is zero.

Definition 3: Action Time (
−→
aT =

〈
di

1, ..., d
i|A|

〉
)

We define action time as a vector where

di
j =




∑
k∈aj

d ′
k

hi
j

aj ∈ si

0 otherwise

(8)

di
j is a dwell time for action aj in si which is equal to total

amount of time spend on each webpage inside aj . In cases that
aj occurs more once, we divide di

j by the action frequency,hi
j to

calculate the average dwell time. Table 1 shows a sample action
time input vector.
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Table 1 Sample Dwell Time Input Vector for Class1 Transactions.

a1 a2 … a|A|
d1 5 4 … 0
d2 0 3.5 … 0
… … … … …
d|T | 0 2 … 1

Table 2 All Possible Combinations of Features
−→
aT

−→
aF

−→
aS

Session (S) (S,
−→
aT ) (S,

−→
aF ) (S,

−→
aS)

User (U) (U,
−→
aT ) (U,

−→
aF ) (U,

−→
aS)

IP (I) (I,
−→
aT ) (I,

−→
aF ) (I,

−→
aS)

Where S, U and

I are set of all session, users and IP addresses.

3.6 Characterising

We present 9 combinations of the three feature sets and three level
of abstraction as present in Table 2 to be used in our experiments
with SOM.

We used u-matrix to project result of SOM and study the clus-
ter. We choose centre node of each cluster to describe the char-
acteristic of that particular cluster.

4. EXPERIMENTAL SETUP

4.1 Data Collection

For the purpose of this experiment we used the dataset that we
collected in [8]. Our data consist of 19,348 records from an
operational online forum.

4.2 Data Pre-processing

In our dataset, 11,039 records were generated from spambots
while the rest contained irrelevant information as mentioned in
Section 3.3 that we removed.

We group the data into three transaction levels which are ses-
sion, user and IP address levels. The result of this task produced
3,726 distinct sessions, 1,067 spambot users, and 871 unique
IP addresses. Figure 5 represents spambot action frequency for
each action for the three transaction levels. To construct our in-
put vectors, we extract 11 actions from our dataset. The details
of each action are presented in Table 3. Accordingly we make−→
aS,

−→
aF , and

−→
aT based on each action.

4.3 Experiments

We run our experiment based on the 9 feature sets discussed in
Section 3.5 and we summarise the result of each experiment in
their corresponding transaction level. We visualise SOM data in
the U-matrix. In the following section we explain results from
each experiment and the characteristic of the centre node inside
each cluster.

Figure 5 Spambots action frequency per each action for different transaction
level. X axis indicates action A to K.Y axis shows the frequency of each action.

Table 3 Summery of Actions by Spambots.

Action Index Description
A View root page
B View topics
C Start new topic
D View topic (view their own created topic)
E View user profile information
F Edit user information
G Start new poll
H User authentication (Login)
I Reply to topic
J Recently submitted topics
K View overall forum statistic

5. EXPERIMENTAL RESULTS

5.1 Experiment 1: Session level result

Based on three experiments on session level it reveals the detailed
behaviour of each spambot every time they visited our system.
Figure 6 illustrates u-matrix for (S,

−→
aF ). The dark line represents

large distances between nodes. The light node areas represent
nodes that are close to each other. The dark lines separate the
map into 3 major clusters. The details of each cluster are shown
in Table 4.

Three major clusters which we label as Content Submitters,
Profile Editors and Mixture.

• Cluster 1 (Content Submitter). Spambots in this cluster
perform the Starting New Topic action. These bots did not
perform any other action in this level hence the dwell time
for their action cannot be calculated. This behaviour reveals
that spambots do not navigate through website. They are
programmed to directly submit the content. Additionally,
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Figure 6 Result of U-matrix for session and frequency of actions. The dark
lines are where the distance between nodes is large. In the light area, nodes are
close to each other, which represent a cluster. The dark line separates the map
into 3 major clusters.

Table 4 Major Characteristic of Spambots in the Session Level.

Cluster 1 Cluster 2 Cluster 3
Dwell time N/A 2,3 4,6,7
Frequency 1 2,3 4,9
Actions C, A AE, BB, BCB AEFF,

AEFFABCBD

in their action set there is no request for action C, hence
it shows they do not interact with server form in order to
submit their content. We believe that simple rules such as
blocking direct content submission can prevent this abnor-
mal behaviour in the website and stop spambots.

• Cluster 2 (Profile Editor). The goal of spambots in this
cluster is to edit their own profile page. Profile page con-
sist of various information such as name, email address,
homepage URL, signature, etc. Spambots navigate from
action A (view root page) to action F (edit user informa-
tion) with a frequency of one for each action. The dwell
time for their action is between 2-3 seconds. It points to the
fact that spambots did not use the website forms to submit
their profile details, since their dwell time is quite low. By
modifying the profile information spambots are able to cre-
ate a link farm and spread spam content. For instance they
specify a link inside profile signature field to their other
campaigns / websites.

• Cluster 3 (Mixture). Spambots in this cluster performed
both above mentioned set of actions. They navigate through
following action sequence (A,E,F ,F ,A,B,C,B,D). The
average frequency for each action is 2, which means they
perform the above sequence two times in each session. The

Table 5 Major Characteristic of Spambots in the User Level.

Cluster 1 Cluster 2 Cluster 3
Dwell time N/A 2.3 2.5
Frequency 1 8 11
Actions C, CC AEFFABCB AAEFABCBBD

average dwell time is between 4 – 7 seconds. This be-
haviour again shows spambots did not use form to submit
content or modify their profile, since this sequence cannot
feasibly be performed in 4 – 7 seconds. Additionally they
navigate to view their submitted content in order to increase
the view count of their topic, as well as to possibly ensure
their submitted content is published.

5.2 Experiment 2: User level results

User level tracking gives knowledge about characteristics of each
spambot for their total active time in the forum. It can show
whether or not their behaviour has changed over time. The results
of three different experiments in the user level are:

• Cluster 1 (Content Submitter). Spambots use their user
account to only submit spam content directly to the website
similar to the discussion in Section 5.1. However spambots
use their username once since there is only one session
belongs to each user in this cluster. The dwell time is zero
(unknown as there is only 1 page request), the frequency of
the action is either one or two and they only perform action
C.

• Cluster 2 (Content Submitter and Profile Editor). Spambots
start their action navigation by visiting the root page, mod-
ifying profile page and then submit spam content. Their
average dwell time is 2.5 seconds for each action with a
total frequency of 8 actions per user level. Their naviga-
tion sequence is as follows (A,E,F ,F ,A,B,C,B). Once the
actions are performed, the spambots did not log in and use
the user account again.

• Cluster 3 (Mixture). In this cluster, the average dwell
time of spambots was 7 seconds for navigating through
(A,A,E,F ,F ,A,B,C,B,B,D) with a frequency of 11. They
mix both profile editing and content submission behaviour.
They viewed their own created topic at the end of their nav-
igation set. Same as previous clusters, spambots just have
one session for each user account in this cluster.

Investigation of spambot in user level reveals that once they
created a user name they just use it once and they do not change
their behaviour during their life time. Table 5 presents detail of
each cluster. Figure 7 illustrates U-matrix map for (U,

−→
aF ). It

shows majority of spambot at the user level have similar charac-
teristic as the map reveals dominated by light areas.

5.3 Experiment 3: IP level results

IP level presents a high level view of spambot behaviour. The ex-
periment resulted in the discovery of three major clusters which
include:
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Figure 7 U-matrix representation of user level and action frequency. White
squires on the map show the amount of nodes that are close together. Larger
squares represent more nodes.

Table 6 Major Characteristic of Spambots in the IP Level.

Cluster 1 Cluster 2 Cluster 3
Frequency 8 11 100+
Actions AEFFABCB D… AEFABC…

• Cluster 1 (Mix). This cluster consists of 4 – 5 frequency for
each action set. Spambots in this cluster navigate through
the root webpage, modify their profile and submit spam
content. Finally they end their navigation by viewing their
own created content. The amount of frequency shows that
they created multiple accounts under one IP address name
to perform their actions.

• Cluster 2 (Content Viewer). We discovered this strange
cluster of spambots. Spambots in this cluster only navi-
gate to action D (viewing their own topic). This behaviour
was not seen in the previous levels. Further investigation
revealed that spambots change their IP address once they
submit the spam content. Therefore some spambots use
multiple IP address for one user.

• Cluster 3 (Big Hit Mix). Action frequency in this cluster
is more than 100 for submitting spam content or to modify
profiles. This cluster has the similar characteristic to cluster
1. However the higher action frequencies show that spam-
bots use multiple username to perform the same actions.

The experiment of IP address dwell time map does not result in
clear clusters. The reason maybe due to change of IP address by
spambots at the end of navigation which result in unknown dwell
time as well as multiple username per IP address that result in
various dwell time. Table 6 presents details of each experiment
at IP level. Figure 8 represents u-matrix map of IP level and
action frequency.

Figure 8 U-Matrix for IP level and action frequency.

6. DISCUSSION & LIMITATION

The U-matrix visualisation in some of our experiments produced
a number of minor clusters. While we investigated these minor
clusters as well, they did not result into distinct behaviour in
useful for spambot characterisation. For example, a cluster was
identified for spambots who perform action A (visiting the root
page). This action is general and does not reveal any interesting
characteristic. Hence we did not report such minor clusters in
our experiments.

Self-organising map and neural networks in general do not
allow much user interpretability in understanding why nodes
belong to each cluster. It can be viewed as a black box algo-
rithm which is fed some inputs and generates the output. Hence
one challenge in future work can be investigation of differences
among clusters.

The data we collected for this work can be extended in future
to evaluate spambots in other platforms such as blogs, wikis and
other types of Web 2.0 applications.

7. RELATED WORKS

There has been enormous amount of work dedicated to spam
detection and filtering in recent years. This section will review
the important and related areas in the existing literature.

In the area of web usage mining and web robot detection, Tan
et al. [25] proposed a rule-based framework to discover search
engine crawlers and camouflaged web robots. They utilised nav-
igation patterns such as session length, set of visited webpages,
and requested method type (e.g. GET, POST, etc).

Park et al. [17] presented a malicious web robot detection
method based on type of HTTP request and existence of mouse
movement. However, the focus of both these research was on
general web robot detection rather than spambot detection.
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In Honeyspam 2.0 [8] we proposed our web tracking module
to track spambot data. The focus of this work was to develop a
framework to gather spambot data rather than characterising it.

Jan et al. [26]‘s work showed a proactive approach to track
current follow of spam messages inside botnets. They monitor
email spambot controllers to gather recent spam messages and
use them inside spam-filtering technique to block such messages.

Yiquen et al. [27] and Yu et al. [28] employ user web access
data to classify spam webpages from legitimate webpages. The
main assumption in their framework is to rely on user web access
data.

Based on all the existing work in the areas of spambot de-
tection, we are confident that no one has so far undertaken in
depth research in the area of characterising spambot behaviour.
In this paper, we have moved in this direction in order to provide
a stepping stone for the development of next generation spam
filtering technology.

8. CONCLUSION

In this paper, we presented a number of characteristics of spam-
bot behaviour within forums (a Web 2.0 platform) by utilising
Kohonen’s self-organising maps. This study forms the basis for
research into next generation spam filtering techniques. We pro-
pose a framework to profile spambot behaviour. We employed
web usage data and proposed three unique feature sets – action
set, action frequency and action time to study spambots. Our
main intention is to propose feature sets that are generic so it
is applicable to other Web 2.0 platforms and differentiable to
distinguish spambots and humans based on usage behaviour.

We grouped the data based on three level of abstraction –
session, user and IP address and we conducted 9 experiments.
The main observations are as follows:

• Spambots focus on particular actions such as submitting
content, updating profiles detail, etc.

• pambots do not reuse a single user account as they register
new user accounts frequently because they do not want their
user account to get blacklisted.

• Some spambots directly post spam content to the website
and they do not interact with input forms.

• Spambots are designed to repeat limited set of tasks and not
a large range of tasks.

• Spambots can be categorised into four different categories
based on four different goals i.e. content submitters, profile
editors, content viewers and mixed behaviour.

• Some spambots change their IP address once they complete
an action and are preparing on performing another action.

Our promising results suggest that our technique is capable for
application in identifying spambot for Web 2.0 applications. We
plan to extend this work in the future by proposing techniques
to distinguish spambot and human users by evaluating their web
usage data.
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ABSTRACT 
Web spambots are a new type of internet robot that spread spam 
content through Web 2.0 applications like online discussion 
boards, blogs, wikis, social networking platforms etc. These 
robots are intelligently designed to act like humans in order to 
fool safeguards and other users. Such spam content not only 
wastes valuable resources and time but also may mislead users 
with unsolicited content. Spam content typically intends to 
misinform users (scams), generate traffic, make sales 
(marketing/advertising), and occasionally compromise parties, 
people or systems by spreading spyware or malwares. 

Current countermeasures do not effectively identify and prevent 
web spambots. Proactive measures to deter spambots from 
entering a site are limited to question / response scenarios. The 
remaining efforts then focus on spam content identification as a 
passive activity. Spammers have evolved their techniques to 
bypass existing anti-spam filters.  

In this paper, we describe a rule-based web usage behaviour 
action string that can be analysed using Trie data structures to 
detect web spambots. Our experimental results show the proposed 
system is successful for on-the-fly classification of web spambots 
hence eliminating spam in web 2.0 applications. 

1. INTRODUCTION 
A fake profile in an online communities, an unsolicited comment 
in blog, a commercial unwelcome thread in an online discussion 
boards etc are example of new form of spamming techniques 
called spam 2.0 [1, 2]. Spam 2.0 offers a far more attractive 

proposition for spammers as compared to traditional spam 
specifically email spam.  

Spammers can discover web 2.0 applications and use automated 
tools to distribute spam information that is targeted at a 
demographic of their choice with very little resistance. A single 
spam 2.0 attack may reach many targeted and domain specific 
users and online messages typically cannot be deleted by regular 
users and persist until an administrator deals with them often 
impacting many users in the meantime.  

Spam 2.0 posts also have a parasitic nature. They may exist on 
legitimate and often official websites. If such information persists, 
the trust in such pages is diminished, spam is effectively 
promoted by trusted sources, many users can be mislead or lead to 
scams and computer malware and such legitimate sites may be 
blacklisted which then deprives all others of legitimate content. 
As a result of the success and impact rates of spam 2.0, it is far 
more popular amongst spammers and has far greater negative 
socio-economic impact. 

Such spamming techniques promote the use of Web Spambots (or 
simply spambots): a web crawler that navigates the World Wide 
Web with the sole purpose of planting unsolicited content on 
external websites. To date, as Web 2.0 platforms are getting more 
prevalent, spam 2.0 are becoming more and more widespread. In 
order to avoid being spuriously used in this way (and to eliminate 
the clutter and wasted time created by spambots), websites seek 
tools to recognize and deter spambots as they arrive. Usually the 
tools used for this purpose are based on challenge-response 
techniques, such as Completely Automated Public Turing test to 
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tell Computers and Human Apart (CAPTCHA), a well-known 
technique typically in the form of an image used to block web 
crawlers access to a website [3]. However such techniques are 
about to expire as it decreases human users’ convenience and 
computers are getting more and more powerful day by day [2, 4, 
5]. 

In this paper we propose a rule-based combinatorial approach that 
distinguishes automatically between spambots and regular human 
users based on their usage patterns: 

� Introduce the idea of using web usage behaviour to 
investigate spambots behaviour on the Web, 

� Propose a new concept – Action Strings, a feature set 
extracted from web usage behaviour to model spam users vs. 
human users behaviour, 

� Illustrate a novel rule-based classifier using Trie structure [6-
8]  for fast and on-the-fly spambot detection, 

Here we describe the experience with a prototype system 
developed by us. In the next section we discuss about two major 
concepts – web usage data and trie structure that we used in our 
proposed system 

2. BACKGROUND 
2.1 Web Usage Data 
Users browsing websites navigate through web objects such as 
web pages, image, files, documents etc. Such data can be 
recorded and later mined to extract valuable information [9]. This 
tracking data is referred to as web usage data. Web usage data has 
been widely employed in many studies to understand visitor 
browsing patterns, make personalised websites, improve web 
performance and to implement decision support and 
recommendation systems [10] [11]. Web usage data may contain 
the following fields: 
� The visited URL, 
� The referrer URL, 
� Timestamp, 
� IP address, 
� Browser/Operating System identity. 
In our work, we associate two additional attributes to each entry – 
a unique session identity (session ID) and a user account name of 
a user who makes a request. The former makes it possible to track 
a user while the user is visiting a website, while the latter includes 
their username in each record to make it possible to track user 
activities over a period of time. 

2.2 Trie 
A trie structure is a way to store and retrieve information. Its main 
advantages over other techniques are: ease of updating and 
handling, shorter access time, and removing redundancies in the 
data structure [6]. A trie is in the form of a tree structure where 
each node contains the value of the key it is associated with. 

In this paper we construct a trie structure which consists of human 
and spambot behaviour patterns. The trie gives fast on-the-fly 
pattern matching ability and we use that for spambot pattern 
detection. 

3. PROBLEM 
To set the scene for this paper, we begin with a brief overview of 
the problems in spam 2.0 and spambot detection. A number of 
solutions have been proposed to classify spam in web 2.0 
environments such as: opinion spam detection [12], spam in social 
networks [13-15], spam in video sharing websites [1, 16]. Most of 
these solutions have focussed on one particular form of spam. By 
extracting features from the content of spam 2.0, such techniques 
try to make spam content separate from legitimate content. 
However most of them did not come up with satisfactory 
classification results.  Hence, this leads us to investigate different 
approaches to identify spam 2.0.  
This research continues in line with our previous work on 
combating spam 2.0 [2]. Our main idea is to actively investigate 
spambot – as an origin of spam 2.0 instead of seeking to 
discriminate attributes inside spam content.  

The concept of spambot identification has not been investigated 
thoroughly. Hence, we first provide a formal definition for this 
problem. 

Similar to the spam classification problem [17] spambot detection 
can be formalised as a binary classification problem as follows 

},...,,{ ||21 UuuuU   (1) 

Where U is set of users visiting a website, iu  is the ith user in a 
set.  

},{ sh ccC   (2) 

Where C refers to the overall set of users, hc refers to human 

user class and sc refers to spambot user class. the binary 
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Since in spambot detection problem each iu belongs to one and 
only one class, the decision function can be simplified as 

}1,0{:)( Uu spami . 

4. HUMAN BEHAVIOUR VS. SPAMBOT 
BEHAVIOUR 
The main assumption of our proposed method is that human web 
usage behaviour is intrinsically different from spambot behaviour. 
The reason is that spambots have different intentions. Spambots 
visit the website mainly to spread spam content rather than to 
consume the content. Hence by investigating and mining web 
usage data it is possible to distinguish spambots from human 
users. This viewpoint is different from previous studies which 
have focused on content and meta-content based features [1]. 

 



 
(a) Spambot HTTP header requests 

 
(b) Human HTTP header requests 

Figure 1. Series of spambot http requests (a) vs. human http 
requests (b) in an online forum. 

Figure 1 illustrates a simple series of HTTP requests sent from 
both humans and spambots to submit new content to an online 
forum. Each entry consists of an IP address, timestamp, request 
method, the requested URL, the response status code, the referrer 
URL and browser identity. There are some obvious differences 
between spambot and human requests. For example, the human’s 
sequence of requests is more expected or on average, spambot 
sessions last for some seconds while human sessions last for 5 
minutes etc. This factor shows that spambots follow pre-
programmed and optimised procedures. Such key differences in 
web usage behaviour can be utilised to distinguish humans and 
spambots. 

5. ACTION STRINGS 
In order to model web usage data into a behavioural model, we 
propose an action as a set of user efforts to achieve certain 
purposes (E.q. 5). For example, in an online forum, in order to 
create a new user account, the user needs to navigate to the 
registration page, complete the registration form and submit this 
information. This procedure can be formulated as “Register a new 
user account” action. Actions abstract web usage data. Actions 
can be a suitable discriminative feature to model user behaviour 
and can also be extendible to many other Web 2.0 platforms. 

Given a set of webpages },...,,{ 21 WwwwW  , A is 

defined as a set of Actions, such that 

WklwwWaaA klii  ,1}},...,{{}{
 

(5) 

Respectively is  is defined as  

AjTias ji  1;1)(  (6) 

is
refers to a sequence of actions called Action Strings, performed 

in session i  and T is total number of sessions. 

6. RULE-BASED ON-THE-FLY SPAMBOT 
DETECTION METHOD  
Figure 2 provides an overview of the monitoring strategy in 
algorithmic form. Each user (u) has multiple sessions and each 

session contains a series of performed actions ( is
 ). For every 

new incoming u our algorithm goes down through the trie to find 
matching nodes. If the probability for that specific action string 
(1- )( iH sP  ) is higher than a given threshold, our algorithm 
classifies the incoming u as a spambot. 

 

 
 

 

 

Figure 2. Overview of user monitoring strategy 

6.1 Framework 
We propose a rule-based on-the-fly spambot detection framework 
by using the trie data structure. Our framework consists of five 
steps as follows: 

6.1.1. Step1: Monitoring web usage data. Track web 
usage data and the navigation stream. For each incoming HTTP 

for every new user u do 
location ← root of trie 
for every action i do 

location ←  (location, i) 

)( iH sP  ← eval(location) 

if 1− )( iH sP  > threshold then 

zap(u) 
until u exits 

111.111.111.111 - - [15/Aug/2009:07:05:10 +0800] "GET 
/forum/index.php HTTP/1.0" 200 60 "http://example.com/" 
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; 
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 
CLR 3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:06:12 +0800] "GET 
/forum/index.php?board=1 HTTP/1.0" 200 6248 
"http://example.com/forum/index.php" "Mozilla/5.0 
(Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) 
Gecko/2009073022 Firefox/3.0.13 (.NET CLR 
3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:08:32 +0800] "GET 
/forum/index.php?action=post;board=1 HTTP/1.0" 200 
7852 "http://example.com/forum/index.php?board=1" 
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; 
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 
CLR 3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:10:27 +0800] "GET 
/forum/index.php?topic=1397 HTTP/1.0" 200 524 
"http://example.com/forum/index.php? 
action=post;board=1" "Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022 
Firefox/3.0.13 (.NET CLR 3.5.30729)" 

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET 
/forum/index.php?action=post;board=1 HTTP/1.0" 200 
7852 
"http://example.com/forum/index.php?action=post;board=
1" "Opera/9.0 (Windows NT 5.1; U; en)" 

 

123.123.123.123 - - [10/Jul/2009:00:19:30 +0800] "GET 
/forum/index.php?board=1 HTTP/1.0" 200 6248 
"http://example.com/forum/index.php?board=1" 
"Opera/9.0 (Windows NT 5.1; U; en)" 

 



request, IP address, visited URL, referrer URL, browser identity, 
timestamp, session ID and user account name are tracked. 

6.1.2. Step2: Data cleaning and preparation. Once 
data is aggregated through Step 1, it needs to be cleansed of 
irrelevant information such as visitors who did not create a user 
account in the system. Next, data needs to be grouped into 
meaningful user navigation clusters. This task is known as 
Transaction Identification [9]. As discussed in Section 2.1, we 
accompany each tracking record with a unique session ID. Each 
session ID can assist us to track a user's navigation. In our 
proposed framework we group data based on session IDs. 
Therefore, requests made by a user in a single visit are clearly 
identifiable. For example, a user may visit a system three times in 
a day, each time our proposed framework assigns a unique session 
ID to the user. Hence, it is possible to track user requests in each 
visit. Moreover, defining transactions at the session level can be 
utilised for fast and on-the-fly classification as well as to provide 
in-depth insights into the user behaviour. 

6.1.3. Step3: Action extractions and formulation. 
Table 1 provides a summary of different actions that can be 
performed by users in our system. Each action – defined in 
Section 5 – comes along with an index key that is used to 
formulate a user’s interaction type. Such action lists can be 
extended to other web 2.0 applications and can be defined 
beforehand for a specific platform. Upon new incoming traffic, 
our framework assigns associated actions. Later, by putting each 
action index key together, action strings can be build up as 
defined in Section 5. Action strings grow over time as the user 
performs actions, as well as preserving the order of the action 
sequence. As mentioned in Section 4, such a sequence can be 
utilised as a discriminative feature to distinguish humans and 
spambots 

Table1. Action Index Key and Action Lists 

Action Key Description 
A View root page 
B View topics 
C Start new topic 
D View topic (view their own created topic) 
E View user profile information 
F Edit user information 
G Start new poll 
H User authentication (Login) 
I Reply to topic 
J View recently submitted topics 
K View statistic 
L Spell checking 
M Send private message 
N Search 
O Get new topics 
P Update topic 
Q Preview topic 

 
6.1.4. Step4: Building up a trie data structure. Once 
the action strings for both human and spambots have been 
created, our framework builds a trie data structure based on each 
action string. Each trie edge contains an action key index and 
each node contains the probability of a specific action string being 
either human or spambot. This probability is computed through 
E.q 7 and E.q. 8.  

)()(
)()(

iBiH

iH
iH sfsf

sf
sP


  (7) 

)()(
)()(

iBiH

iB
iB sfsf

sf
sP


  (8) 

 

where is is an action string, )( iH sf is the frequency of human 

action strings that have prefix is . )( iB sf is the frequency of 

spambots with prefix is , )( iH sP is the probability of is being 

human and )( iB sP of its being spambot, respectively. 

Zero probability means that that particular action string has never 
occurred before. For example Figure 3 illustrates a trie data 
structure for a set of {ABC, ABCD, ABDE, ABC} action strings 
for a human and {ABD, ABD, ABDE} action strings for a 
spambot. 

 
Figure 3. Simple trie data structure for set of {ABC, ABCD, 

ABDE, ABC} for a human and {ABD, ABD, ABDE} for a 
spambot. S and H represent probability of action string 

belonging to spambots and humans respectively. 
 

6.1.5. Step5: Classification. New incoming action string 

is  is validated through trie structure that has been built in Step4. 

After validation is can fall into two categories – Match and Not-

Matched. In the former case, our framework looks at )( iH sP  

and if ThresholdsP iH  )(1  , is would be classified as 
spambot. In the latter situation no decision is made; this is a focus 
of our future work. 

6.2 Performance Measurement 
We used Matthews Correlation Coefficient (MCC) method to 
measure the performance of our proposed framework [18]. MCC 
is one of the best performance measurement methods of binary 
classifications especially when the data among two classes of data 
is not balanced [19]. It considers true and false positives and 
returns a value between -1 and +1. If the return value is closer to 
+1 the classification result is better and the decision can be 



considered to have greater certainty. However, if the result value 
is close to 0 it shows the output of the framework is similar to 
random prediction. A result value closer to -1 shows a strong 
inverse ability of the classifier. MCC is defined as follows; 

))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




  (9) 

In Eq. 9, TP is the number of true positives, TN is the number of 
true negatives, FP is the number of false positives and FN is the 
number of false negatives. 

7. EXPERIMENTAL RESULTS & 
DISCUSSION 
7.1 Dataset 
According to our understanding, there is no publicly available 
collection, which contains both human and spambot web usage 
data for web 2.0 platform. Hence, we use the same dataset that we 
collected in our previous study [2]. We collected human user data 
from a human moderated online forum and our spambot data from 
our HoneySpam 2.0 project [2], which runs same online forum 
application with the same configurations as human forum. Each 
entry in our dataset contains visited URL link, referrer URL link, 
timestamp, browser identity, and IP address; and it is associated 
with session ID and forum username. Our dataset contains 16594 
entries consisting of 11039 spambots records and 5555 human 
records. In the action extraction and formulation step we come up 
with 34 individual actions. We used 2/3 of the data for feeding the 
trie in Building up a trie data structure step and use the remaining 
1/3 for evaluation purpose. 

7.2 On-The-Fly Detection 
Our proposed framework has a real-time detection or on the fly 
detection feature. The system creates action strings as they 
happen, i.e. based on the user webpage behaviour. The aim is to 
identify the spam behaviour pattern in the least amount of actions 
and then flag that transaction as spambot. We make a window 
over test action strings, run our classifier and increase the 
window’s size by one character for the next run. Such situations 
can simulate real world practices where user action strings grow 
over the time. 

7.3 Results 
We make five random datasets (DS1 to DS5) and run our 
framework based on each dataset. The window size ranges from 2 
to 10 characters (the length of the longest action string in our 
dataset is 10). Additionally we vary the threshold from -0.05 to 
0.05. We measure the performance of our framework by using 
MCC for each experiment.  
Figure 4 illustrates the accuracy of our proposed system for 
different window sizes on our five random datasets. The best 
accuracy of 96% was achieved on DS1 with window size equal to 
or larger than 4 (Table 3), while overall accuracy is 93% over all 
datasets. Table 2 summarises average accuracy for our 5 random 
datasets. 

 

 

Figure 4. Accuracy of our proposed system for different 
windows size on 5 random datasets. Threshold maintains at 

zero for all experiments. 

Table2. Average Accuracy of datasets 

 DS1 DS2 DS3 DS4 DS5 
Accuracy 0.939 0.930 0.926 0.933 0.934 
Table3. Accuracy of different windows sizes on our datasets 

 DS1 DS2 DS3 DS4 DS5 
Len 2 0.727 0.734 0.719 0.732 0.721 
Len 3 0.965 0.955 0.952 0.958 0.960 
Len 4 0.965 0.955 0.952 0.958 0.960 

Len 5+ 0.966 0.955 0.952 0.958 0.960 
 

Figure 5 presents MCC value for different windows sizes. Overall 
average MCC on all datasets is 0.744. Table 4 shows the value of 
MCC on different datasets. The best MCC value 0.802 was 
achieved on DS1 for window size equal to or larger than 5 (Table 
5). 
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Figure 5. MCC values of different window size on 5 random 

datasets. 
Table4. Average MCC of datasets 

 DS1 DS2 DS3 DS4 DS5 
MCC 0.762 0.754 0.725 0.729 0.749 

Table5. MCC value of different windows size on our datasets 

 DS1 DS2 DS3 DS4 DS5 
Len 2 0.406 0.430 0.412 0.410 0.405 
Len 3 0.802 0.795 0.764 0.769 0.792 
Len 4 0.802 0.795 0.764 0.769 0.792 

Len 5+ 0.808 0.795 0.764 0.769 0.792 
 

Figure 6 illustrates the performance of our proposed system based 
on different threshold at different window sizes (Len2 to Len6).  



  

 
Figure 6. Performance of system based on different thresholds 

for different window size (Len2 to Len6) 
 
The best MCC value of 0.88 is achieved for thresholds between 0 
and 0.01 for window size equal to or larger than 4 (Len4 to up). 
The performance of our proposed system becomes better as 
window size grows. This shows that our system can predict better 
as user uses the system over time. However, the performance 
remains the same after some windows size. The reason is that our 
datasets are randomly selected and not all the action string 
combinations are included during Step 4, Building up a trie data 
structure. Hence some of the action strings are not included in trie 
structure and our system may not be able to match incoming 
unseen action string. The same behaviour can be seen in the 
accuracy of our results (Fig. 4), where accuracy remains the same 
after a certain window size (window size 4).  
In Figure 6 it is obvious that moving the threshold toward 
negative values increases the number of false-negatives while 
moving toward positive values increases the number of false 
positives. Therefore, MCC on such values is low. 

8. RELATED WORKS 
Although the topic of spam has been investigated extensively, to 
the best of our knowledge research into spambot detection on 
Web 2.0 applications and spam 2.0 is quite young and has not 
received comprehensive attention. In this section we review some 
of the important literature in this area. 
Tan et al. [20] propose a web robot session identification method 
based on their navigational patterns. The main assumption in their 
proposed system is that web robot navigational patterns such as 
session length and set of visited webpages (width and depth of 
visited webpages) is different from those of humans. The aim of 
their study is on unknown and camouflaged web robots and web 
crawlers. Park et al. [21] provide a method for malicious web 
robot detection based on types of requests for web objects (e.g. 
Cascading Style Sheet files, image files) and existence of 
mouse/keyboard activity. However, both the above-mentioned 
studies did not focus on spambot detection in web 2.0 applications 
where a spambot can mimic human user behaviour. 
A proactive spam filtering approach has been proposed by Göbel 
et al. [22]. Their proposed framework includes interaction with 
spam botnet controllers which can provide the latest spam 
messages. Later, it can present a template for current spam runs to 
improve spam filtering techniques. 
Jindal and Liu [12] study opinion spam in review-gathering 
websites. They propose a machine learning approach based on 36 
content-based features to differentiate opinion spam from 

legitimate opinion. Zinman and Donath [13] attempted to create a 
model to distinguish spam profiles from legitimate ones in Social 
Networking Services. Their machine learning based method uses 
content-based features to do the classification. Benevenuto et al. 
[16] provide a mechanism to identify video spammers in online 
social network by means of a Support Vector Machine classifier 
against content-based features. Heymann et al. [15] survey spam 
filtering techniques on the social web and evaluate a spam 
filtering technique on a social tagging system. Most of the above 
studies focus on one particular type of spam and are limited to the 
content attributes of that particular domain. Moreover, they do not 
study the source of the spam problem, i. e. the spambot. 
Yu et al.[23] and Yiqun et al. [24] categorise spam webpages 
from legitimate webpages by employing user web access logs. 
Their framework relies on user web access logs as a trusted 
source for classifying webpages. 
Last but not least, in HoneySpam 2.0 [2] we proposed our web 
tracking framework to track spambot data. We develop a 
framework for accumulating spambot web usage data rather than 
for detecting spambots. 

9. CONCLUSION AND FUTURE WORKS 
Research in the area of web spambot detection in Web 2.0 
platform is quite young. Most of the current studies have focussed 
on one particular type of spam rather than a general solution to 
block spammers.  We aim to detect web spambots as a source of 
spam problems on the Web 2.0 platform. Hence our solution can 
be extended to other web applications. This paper provides a rule-
based on-the-fly web spambot detection method. Our method is 
based on web usage behaviour. We extract discriminative features 
called action strings from web usage data to classify spambot vs. 
human. We propose action as a set of user efforts to achieve 
certain purposes and action strings as a sequence of actions for a 
particular user in a transaction. In order to make a real-time and 
on-the-fly classification method we build a trie data structure 
based on action strings.  
We evaluate our method against an online forum and achieved 
average accuracy of 93% on spambot detection. We measure the 
performance of our system by using MCC. The average MCC 
value of 0.744 is achieved on our 5 randomly selected datasets. 
As future work, we intend to improve our detection method and 
develop an adaptive mechanism to make a real-time update to the 
system. Additionally, we will evaluate our proposed method 
against other Web 2.0 platforms such as social networking 
websites, wikis, and blogs. 

10. REFERENCES 
 
[1] P. Hayati and V. Potdar, "Toward Spam 2.0: An 
Evaluation of Web 2.0 Anti-Spam Methods " in 7th IEEE 
International Conference on Industrial Informatics Cardiff, 
Wales, 2009. 
[2] P. Hayati, K. Chai, V. Potdar, and A. Talevski, 
"HoneySpam 2.0: Profiling Web Spambot Behaviour," in 12th 
International Conference on Principles of Practise in Multi-Agent 
Systems, Nagoya, Japan, 2009, pp. 335-344. 



[3] A. Luis von, B. Manuel, and L. John, "Telling humans 
and computers apart automatically," Commun. ACM, vol. 47, pp. 
56-60, 2004. 
[4] K. Chellapilla and P. Simard, "Using Machine Learning 
to Break Visual Human Interaction Proofs (HIPs)," in NIPS, 2004. 
[5] Y. Jeff and A. Ahmad Salah El, "Usability of 
CAPTCHAs or usability issues in CAPTCHA design," in 
Proceedings of the 4th symposium on Usable privacy and security 
Pittsburgh, Pennsylvania: ACM, 2008. 
[6] F. Edward, "Trie memory," Commun. ACM, vol. 3, pp. 
490-499, 1960. 
[7] R. M. Donald, "PATRICIA\&mdash;Practical 
Algorithm To Retrieve Information Coded in Alphanumeric," J. 
ACM, vol. 15, pp. 514-534, 1968. 
[8] M. Kurt, "Compressed tries," Commun. ACM, vol. 19, 
pp. 409-415, 1976. 
[9] R. Cooley, B. Mobasher, and J. Srivastava, "Web 
mining: information and pattern discovery on the World Wide 
Web," in Tools with Artificial Intelligence, 1997. Proceedings., 
Ninth IEEE International Conference on, 1997, pp. 558-567. 
[10] C. Aggarwal, J. L. Wolf, and P. S. Yu, "Caching on the 
World Wide Web," Knowledge and Data Engineering, IEEE 
Transactions on, vol. 11, pp. 94-107, 1999. 
[11] J. Dean and M. R. Henzinger, "Finding related pages in 
the World Wide Web," Computer Networks, vol. 31, pp. 1467-
1479, 1999. 
[12] J. Nitin and L. Bing, "Opinion spam and analysis," in 
Proceedings of the international conference on Web search and 
web data mining Palo Alto, California, USA: ACM, 2008. 
[13] A. Zinman and J. Donath, "Is Britney Spears spam," in 
Fourth Conference on Email and Anti-Spam Mountain View, 
California, 2007. 
[14] S. Webb, J. Caverlee, and C. Pu, "Social Honeypots: 
Making Friends with a Spammer Near You," in Proceedings of 
the Fifth Conference on Email and Anti-Spam (CEAS 2008), 
Mountain View, CA, 2008. 

[15] H. Paul, K. Georgia, and G.-M. Hector, "Fighting Spam 
on Social Web Sites: A Survey of Approaches and Future 
Challenges," IEEE Internet Computing, vol. 11, pp. 36-45, 2007. 
[16] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, 
C. Zhang, and K. Ross, "Identifying Video Spammers in Online 
Social Networks," in AIRWeb ’08 Beijing, China, 2008. 
[17] Z. Le, Z. Jingbo, and Y. Tianshun, "An evaluation of 
statistical spam filtering techniques," ACM Transactions on Asian 
Language Information Processing (TALIP), vol. 3, pp. 243-269, 
2004. 
[18] B. W. Matthews, "Comparison of the predicted and 
observed secondary structure of T4 phage lysozyme," Biochim 
Biophys Acta, vol. 405, pp. 442-451, 1975. 
[19] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and 
H. Nielsen, "Assessing the accuracy of prediction algorithms for 
classification: an overview," Bioinformatics, vol. 16, pp. 412-424, 
May 1, 2000 2000. 
[20] P.-N. Tan and V. Kumar, "Discovery of Web Robot 
Sessions Based on their Navigational Patterns," Data Mining and 
Knowledge Discovery, vol. 6, pp. 9-35, 2002. 
[21] K. Park, V. S. Pai, K.-W. Lee, and S. Calo, "Securing 
Web Service by Automatic Robot Detection," USENIX 2006 
Annual Technical Conference Refereed Paper, 2006. 
[22] G. Jan, bel, H. Thorsten, and T. Philipp, "Towards 
Proactive Spam Filtering (Extended Abstract)," in Proceedings of 
the 6th International Conference on Detection of Intrusions and 
Malware, and Vulnerability Assessment Como, Italy: Springer-
Verlag, 2009. 
[23] H. Yu, Y. Liu, M. Zhang, L. Ru, and S. Ma, "Web 
Spam Identification with User Browsing Graph," in Information 
Retrieval Technology, 2009, pp. 38-49. 
[24] L. Yiqun, C. Rongwei, Z. Min, M. Shaoping, and R. 
Liyun, "Identifying web spam with user behavior analysis," in 
Proceedings of the 4th international workshop on Adversarial 
information retrieval on the web Beijing, China: ACM, 2008 
 
 

 



 

 

Web Spambot Detection Based on Web Navigation 
Behaviour 

Pedram Hayati, Vidyasagar Potdar, Kevin Chai, Alex Talevski 
Anti-Spam Research Lab (ASRL) 

Digital Ecosystem and Business Intelligence Institute 
Curtin University, Perth, Western Australia 

{pedram.hayati, kevin.chai}@postgrad.curtin.edu.au 
{v.potdar, a.talevski}@curtin.edu.au 

 
Abstract— Web robots have been widely used for various 
beneficial and malicious activities. Web spambots are a type of 
web robot that spreads spam content throughout the web by 
typically targeting Web 2.0 applications. They are intelligently 
designed to replicate human behaviour in order to bypass 
system checks. Spam content not only wastes valuable 
resources but can also mislead users to unsolicited websites and 
award undeserved search engine rankings to spammers’ 
campaign websites. While most of the research in anti-spam 
filtering focuses on the identification of spam content on the 
web, only a few have investigated the origin of spam content, 
hence identification and detection of web spambots still 
remains an open area of research. In this paper, we describe an 
automated supervised machine learning solution which utilises 
web navigation behaviour to detect web spambots. We propose 
a new feature set (referred to as an action set) as a 
representation of user behaviour to differentiate web spambots 
from human users. Our experimental results show that our 
solution achieves a 96.24% accuracy in classifying web 
spambots.  

Keywords— Web spambot detection, Web 2.0 spam, spam 2.0, 
user behaviour 

I.  INTRODUCTION 
Spammers do not only deploy their own spam webpages 

(known as Web spam) but they spread spam content over 
Web 2.0 applications such as online communities, wikis, 
social bookmarking, online discussion boards etc. [1]. Web 
2.0 collaboration platforms like online discussion forums, 
wikis, blogs, etc. are misused by spammers to distribute 
spam content. This new spamming technique is called Spam 
2.0 [1]. Examples of Spam 2.0 would include spammers 
posting promotional threads in online discussion boards, 
manipulating wiki pages, creating fake and attractive user 
profiles in online community websites etc [1].  

According to live reports by [2], the amount of comment 
spam on the Web has doubled within the past year. To date, 
spammers exploit new tools and techniques to achieve their 
purposes. An example of such a tool is a Web spambot 
(simply spambot), which is a type of web robot designed to 
spread spam content on behalf of spammers [3]. Spambots 
are able to crawl the web, create user accounts and contribute 
in collaboration platforms by spreading spam content [4]. 
Spambots do not only waste useful resources but also put the 
legitimate website in danger of being blacklisted, hence 
identifying and detecting spambots still remain to be an open 

area of research. It should be noted that Web spambots are 
different from spambots which are designed to harvest email 
address from webpages. For the sake of simplicity here we 
refer to web spambot as spambot. 

Current countermeasures which solely focus on detection 
and prevention of spam content are not suitable enough to be 
used in a Web 2.0 environment [1]. For example, most of the 
content-based methods in email spam [5] or web spam 
techniques such as link-based detection [6], Trustrank [7], 
etc are not applicable in Web 2.0 environments since unlike 
web spam, Spam 2.0 content involves spammers contributing 
into legitimate website [1].  

In this paper, we present a novel method to detect 
spambots inside Web 2.0 platforms (Spam 2.0) based on web 
usage navigation behaviour. The main contributions of this 
paper are to: 

• Present a framework to detect spambots by analysing 
web usage data and evaluate its feasibility in 
combating the distribution of Spam 2.0. 

• Propose an action set as a new feature set for 
spambot detection. 

• Evaluate the performance of our proposed 
framework with real world data. 

We make use of web usage navigation behaviour to build 
up our feature set and train our Support Vector Machine 
(SVM) classifier. Our preliminary results show that our 
framework is capable of detecting spambot with 96.24% 
accuracy. 

The rest of paper is structured as follow.  

• Section II gives an overview of the problems in 
spambot detection along with the problem definition.  

• Section III presents our proposed framework for 
spambot detection.  

• Data preparation and our experimental results are 
discussed in Section IV.  

• We conclude the paper in Section V along with our 
future works. 



 

 

II. PROBLEM 
Spambots mimic human behaviour in order to spread 

spam content. To hinder spambots activities, most websites 
adopt Completely Automated Public Turing test to tell 
Computers and Human Apart (CAPTCHA) which is a 
popular challenge-response technique to differentiate web 
robots from humans [8]. However, CAPTCHA is not a 
suitable solution for stopping spambots and it inconveniences 
human users. Existing research shows that by making use of 
machine learning algorithm even CAPTCHA based 
techniques can be deciphered by programming code [9-11]. 
Other filtering techniques are content based i.e. focusing on 
spam content classification rather than spambot detection [1, 
3]. The formal definition of the spambot detection problem is 
discussed in following section.  

A. Problem Definition 
The problem of spambot detection is a binary 

classification problem that is similar to the spam 
classification problem described in [12]. Suppose  

},...,,{ ||21 UuuuD =                               (1) 

where, 

D is a dataset of users visiting a website 

iu  is the i  th user  

                                  },{ sh ccC =                                    (2) 

where, 

C refers overall set of users 

hc  refers to human user class 

sc refers to spambot user class 

Then the decision function is 
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In spambot detection each iu belongs to one and only 
one class so, the classification function can be simplified as 

}1,0{:)( →Du spamiφ . 

III. PROPOSED SOLUTION 

A. Solution and Overview 
While most of the research in anti-spam filtering has a 

focused on identification of spam content on the web, only a 
few have investigated the source of the spam problem [1, 4, 
13-15]. One way of identifying the source of spam is to study 
spambot behaviour. In this paper our fundamental 
assumption is that spambot behaviour is intrinsically 
different from those of humans. In order to test this 
assumption, we make use of web usage data from both 
spambots and humans. Web usage data contains information 
regarding the way web users navigate websites and can be 
implicitly collected while a user browses the website. 
However, it is necessary to convert web usage data in a 
format that  

• is discriminative and reliable feature set that 
differentiates spambot behaviour from humans 

• can be extended to other platforms of Web 2.0 
applications such as wikis, blogs, online 
communities etc. 

Hence, we propose a new feature set called an action set 
to formulate web usage data. We define an Action as a set of 
user requested webpages to achieve a certain goal. For 
example, in an online forum, a user navigates to a specific 
board then goes to the New Thread page to start a new topic. 
This user navigation can be formulated as submit new 
content action. Table I presents some example of actions for 
different Web 2.0 platforms. We provide a formal 
description of action set in Section 3.2.  Our results show that 
the use of action sets is an effective representation of user 
behaviour and can be successfully used to classify spambot 
and human users. 

TABLE I.  EXAMPLES OF USER ACTIONS IN WEB 2.0 PLATFORMS 
INCLUDING ONLINE DISCUSSION BOARDS (I.E. FORUMS), BLOGS, WIKIS, 

ONLINE COMMUNITIES 

Platform  Action 

Online Discussion 
Boards 

Post a topic, Reply to a topic, Contact other 
users, etc. 

Blogs (comment) Read posts, Read others comment, Post a 
comment, etc. 

Wikis Start new topic, Edit topic, Search, etc. 

Online Communities  Adding new friend, Sending message, Writing 
comments, etc. 

B. Framework  
Our proposed framework consists of 3 main modules – 

Tracker, Extractor, and Classifier as shown in Fig. 1. Avoid 
combining SI and CGS units, such as current in amperes and 
magnetic field in oersteds. This often leads to confusion 
because equations do not balance dimensionally. If you must 
use mixed units, clearly state the units for each quantity that 
you use in an equation. 

 



 

 

 
Figure 1.  Architecture of Proposed Framework 

  

1) Incoming Traffic :Represents a new user who enters the 
system via a web interface like the index page of a discussion 
board.  

2) Tracker : This is the entry module for all incoming 
traffic and tracks IP addresses, Usernames, Session Details, 
and Requested Webpages. It starts by reading HTTP Request 
headers and extracts each of above attributes. A unique session 
is assigned for individual browsing session, so it is possible to 
track the navigation on each occasion when the user visits the 
website. The tracker module stores the gathered data along 
with corresponding username for each record. 

3) Extractor : This is the second module of the proposed 
framework and involves two main activities which are 
transaction identification and action extraction.  

a) Transaction Identification : Transaction identification 
involves creating a meaningful group of user requests [16]. In 
our framework, we group user requests based on three levels 
of abstraction. These levels range from the highest to the 
lowest level of abstraction (Fig. 2). At the highest level of 
abstraction, we have IP address, followed by user and at the 
lowest level of abstraction we have session.  
The IP address which is at the highest level can contain more 
than one user. Inherently, at the user level, each user group can 
contain more than one session. The session level is the lowest 
level of abstraction and it contains information about user 
navigation data for each website visit. The user level of 
abstraction defines the total active time in a website spent by a 
user. The IP level can illustrate the behaviour of a specific host 
during the total amount of time that a host is connected to the 
website. 

 
Figure 2.  Levels of Web Usage Data Abstraction 

In our proposed solution we chose the session abstraction 
level for the following reasons: 

• session level can be built and analysed quickly while other 
levels need more tracking time to get a complete view of 
user behaviour. 

• session level provides more in-depth information about user 
behaviour when compared with the other levels of 
abstraction. 

 
Hence we define a transaction as a set of webpages that a 

user requests in each browsing session. 

b) Action Extraction : Action extraction is the next 
activity in the Extractor module. Given a set of webpages 

is defined as a set of Actions, such 
that 

 (5) 

Respectively is defined as   

 (6) 

 refers to a set of actions performed by user . 



 

 

4) Classifier : Classifier module is the third module in the 
proposed framework and involves two main activities, which 
are feature measurement and spambot classification.  

 

a) Feature Measurement : Our framework extracts and 
measures features to build an input vector for spambot 
classification.  In order to build the input vector, we consider 

each action ( ia ) as a feature in our system. Suppose, there are 

n  different actions, we represent input vector, 

→
′is , as a bit 

vector (Eq. 7).   
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b) Spambot Classification : In order to perform spambot 
classification, we used SVM on our extracted and measured 
features. SVM is selected as it has solid theoretical foundation, 
can handle high dimensional data better than most classifiers, 
supports non-linearity and can perform classification more 
accurately than other classifiers in applications involving 
relatively high dimensional data as in our experiment [17]. We 
utilise popular SVM tool known as LibSVM [18] for our 
spambot classification experiment.  

 
5) Classifier Result : The result of the SVM classifier is 

the classification of user sessions into two classes i.e. 
spambots or humans. 

 

The following section provides a detailed view of our 
algorithm along with the pseudo code. 

C. Algorithm 
Table II provides steps of our proposed framework for 

spambot classification. Our algorithm starts with a loop for 
each session, it . For each requested webpage in it , if the 
webpage is associated to a particular action, our algorithm 
looks for the next requested webpage in the session. If a group 
of webpages forms an action, a′ , the system adds a′ to the set 
of action performed by user k . Next, for each set of actions ,

ks , the framework uses the classifier to mark the session as a 
spambot or human session and classifies the corresponding 
user k who made ks as a spambot or human user. 

TABLE II.  PROPOSED METHOD ALGORITHM 

1. Let T refer to the set of sessions. 
2. for each Tti ∈ do 

3. create new action a′ . 
4. for each ij tw ∈ do 

5. if awj ∈ then 

6. add jw to a′ . 

7. if Aa ∈′ then 

8. add a′  to ks . 

9. remove all jw in a′ from it . 

10. if 0. >lengthti then 

11. create new action a′ . 
12. else 
13. continue to new iw . 
14. end. 
15. end. 
16. for each is  do 

17. if 1)( =spamksφ then 

18. mark is as spambot session and i as spambot user. 
19. else 
20. mark is as human session and i as human user. 
21. end. 

IV. EXPERIMENTAL RESULT 

A. Data Preparation 
Two major tasks in web data mining are sessionsiation and 

user identification from web server logs [21]. However we do 
not need to conduct these tasks as we track human and spambot 
navigation directly through the forum for each user account and 
for each of their sessions.  

The spambot data used for our experiment is collected from 
our previous work [3] over a period of 60 days. Additionally, 
we host an online discussion forum for a human community 
that is under human moderation. We removed forum specific 
data such as the domain name, web server IP address, etc from 
both datasets. We grouped user navigation records based on 
sessions and extracted a set of actions from each dataset along 
with user accounts. We merge both datasets into a single 
dataset which contains the username and set of actions that 
belong to the particular user. We split the dataset into a training 
set (2/3) and a test set (1/3). Table III present a summery of our 
dataset (Table IV). 

TABLE III.  SUMMERY OF COLLECTED DATA 

Data Frequency 
# of human records 5555 
# of spambot records 11039 
# of total sessions 4227 (training: 2818, test: 1409) 
# of actions 34 

 



 

 

As shown Table 5, there are 34 action navigations (34 
columns) used as 34 feature and 2818 session (2818 rows) to 
train the SVM classifier. 

TABLE IV.  TRAINING DATA FORMAT USES IN THE SVM CLASSIFIER 

 1a  2a  … 34a  

1t  1 0 … 1 

2t  0 0 … 1 

… … … … … 

2818t  0 1 … 0 

 

B. Performance Measurement 
 

We used Matthew Correlation Coefficient (MCC) method 
to measure the performance of our proposed framework [19]. 
MCC is one of the best performance measurement methods of 
binary classifications especially when the data among two 
classes of data are not balanced [20]. It considers true and false 
positives and returns a value between -1 and +1. If the return 
value is closer to +1 the classification result is better and the 
decision can be considered to have greater certainty. However, 
if the result value is close to 0 it shows the output of the 
framework is similar to random prediction. A result value 
closer to -1 shows a strong inverse ability of the classifier. 
MCC is defined as follows;  

  
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTPMCC
++++

×−×
=        (9) 

In Eq. 9, TP is number of true positives, TN is number of 
true negatives, FP is number of false positives and FN in 
number of false negatives. 

C. Results 
We run our experiment on 5 randomly split training and test 

datasets. For each dataset we measure the accuracy and MCC 
value. The average accuracy 95.55% was achieved which is 
range from 95.03% on dataset 4 to 96.24% on dataset 2 as 
shown in Table V. 

 

 

 

 

TABLE V.  EXPERIMENT RESULT ON 5 RANDOM DATASETS 

 Accuracy MCC 

Dataset 1 95.67% 0.780 

Dataset 2 96.24% 0.801 

Dataset 3 95.24% 0.751 

Dataset 4 95.03% 0.757 

Dataset 5 95.60% 0.809 

 

Fig. 3 shows a comparison among the number of true 
negatives (correctly detected spambots), true positives 
(correctly detected humans), false negatives (spambots 
classified as humans) and false positives (humans classified as 
spambots) in each dataset. Although the highest accuracy was 
achieved by dataset 2, its MCC value is slightly lower than the 
MCC value corresponding to dataset 5. The reason is the 
number of false positives in dataset 5 is a quarter of those of 
dataset 2 as shown in Figure 2b. 
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Figure 3.  (a) Left x Axis, True Negatives (TN), Right x Axis, True Positives 
(TP). (b) Left x Axis, False Megatives (FN) and Right x Axis, False Positives 

(FP)  
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Figure 4.  Frequency of Humans and Spambots. Left x Axis, Humans, Right x Axis, Spambots. Y Axis Represents Actions. 

Figure 4 illustrates action frequencies of spambots and 
humans. A closer look at Figure 4 reveals that spambots are 
more active in action 5 and 6. These actions belong to posting 
new thread in online discussion forums. On the other hand 
humans are more active in actions 3 and 4 which belong to 
read forums topics. 

V. RELATED WORK 
 

The identification of web robots has been of interest to the 
research community as robot navigation on websites add noise 
and interferes with web usage mining of human navigation. 
Tan et al. [22] presented a framework to detect search engine 
crawlers that are camouflaged and previously unseen web 
robots. In their proposed framework, they use navigation 
patterns such as the session length, depth and width of webpage 
coverage and request methods. Park et al. [23] proposed a 
malicious web robot detection method based on the request 
type in HTTP headers along with mouse movement. However 
the focuses of these studies were not on spambot detection. 

In the area of email spambots, Göbel et al. [24] introduced a 
proactive approach to monitor current spam messages inside 
botnets. They interact with email spambot controllers to collect 
latest email spam messages and generate templates and employ 
them inside spam filtering techniques. 

In the web spam domain, Yu [25] and Liu [26]  proposed a 
framework based on user web access data to classify spam and 
legitimate webpages. Their framework is based on the 
assumption that user navigation behaviour on spam webpages 
is different from legitimate webpages. However, from our 
study we show that one cannot assume that navigation 
behaviour being evaluated is from a human user but could also 
be from a spambot. 

VI. CONCLUSION AND FUTURE WORK 
While most of the research in the anti-spam filtering 

concentrates on the identification of spam content, we 
understand that the work we have proposed in this research is 
innovative by focusing on spambot identification to manage 
spam rather than analysing spam content. The importance of 
this approach (i.e. detecting spambots rather than spam content) 

is that it is a completely new approach to identify spam content 
and can be extended to other Web 2.0 platforms rather than 
only forums.  

We proposed a novel framework to detect spambots inside 
Web 2.0 applications, which lead us to Spam 2.0 detection. We 
proposed a new feature set i.e. action navigations, to detect 
spambots. We validated our framework against an online forum 
and achieved 96.24% accuracy using the MCC method. In the 
future we will extend this work on a much larger dataset and 
improve our feature selection process.  
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Abstract. Web spam is an escalating problem that wastes valuable resources, 
misleads people and can manipulate search engines in achieving undeserved 
search rankings to promote spam content. Spammers have extensively used 
Web robots to distribute spam content within Web 2.0 platforms. We referred to 
these web robots as spambots that are capable of performing human tasks such 
as registering user accounts as well as browsing and posting content. 
Conventional content-based and link-based techniques are not effective in 
detecting and preventing web spambots as their focus is on spam content 
identification rather than spambot detection. We extend our previous research 
by proposing two action-based features sets known as action time and action 
frequency for spambot detection. We evaluate our new framework against a real 
dataset containing spambots and human users and achieve an average 
classification accuracy of 94.70%. 

Keywords: Web spambot detection, Web 2.0 spam, spam 2.0, user behaviour 

1 Introduction 

Web spam is a growing problem that wastes resources, misleads people and can trick 
search engines algorithms to gain unfair search result rankings [1]. As a result, spam 
can decrease the quality and reliability of the content in the World Wide Web 
(WWW). As new web technologies emerge, new spamming techniques have also 
emerged to misuse these technologies [2]. For instance, collaborative Web 2.0 
websites have been targeted by Spam 2.0 techniques. Examples of Spam 2.0 
techniques would include creating fake and attractive user profiles in social 
networking websites, posting promotional content in forums and uploading 
advertisement comments within blogs. 

While similar to traditional spam, Spam 2.0 poses some additional problems. Spam 
content can be added to legitimate websites and therefore influence the quality of 
content within the website. A website that contains spam content can lose its 
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popularity among visitors as well as being blacklisted for hosting unsolicited content 
if the website providers are unable to effectively manage spam. 

A Spam 2.0 technique that has been used extensively is Web Spambots or Spam 
Web Robots(which we refer to as spambots). Web robots are automated agents that 
can perform a variety of tasks such as link checking, page indexing and performing 
vulnerability assessment of targets [3]. However spambots are specifically designed 
and employed to perform malicious tasks i.e. to spread spam content in Web 2.0 
platforms [4]. They are able to perform human-users tasks on the web such as 
registering user accounts, searching/submitting content and to navigate through 
websites. In order to counter the Spam 2.0 problem from its source, we focus our 
research efforts on spambot detection. 

Many countermeasures have been used to prevent general web robots from the 
website [5-7]. However, such solutions are not sophisticated enough to deal with 
evolving spambots and existing literature lacks specific work dedicated to spambot 
detections within Web 2.0 platforms. 

The study performed in this paper continues from our previous work on spambot 
detection [4] and presents a new method to detect spambot based on web usage 
navigation behaviour. The main focuses and contributions of this paper are to: 

• Propose a behaviour based detection framework to detect spambots on the 
Web. 

• Present two new feature sets that formulate spambot web usage behaviour. 
• Evaluate the performance of our proposed framework with real data. 

We extract feature sets from web usage data to formulate web usage behaviour of 
spambots and use Support Vector Machine (SVM) as a classifier to distinguish 
between human users and spambots. Our result is promising and shows a 94.70% 
average accuracy in spambot classification. 

2 Spambot Detection 

As previously discussed, one area of research to counter the Spam 2.0 problem is 
spambot detection. The main advantage of such an approach is to stop spam at the 
source so spambots do not continue to waste resources and mislead users. 
Additionally, spammers have shown that they use variety of techniques to bypass 
content-based spam filters (e.g. word-salad [8], Naïve Bayas poisoning [9]) hence 
spambot detection can be effective solution for the current situation.  

The aim for spambot detection is to classify spambot user from human users while 
they are surfing a website. Some practical solutions such as Completely Automated 
Public Turing test to tell Computers and Human Apart(CAPTCHA)[5], 
HashCode[6]  ̧ Noune[10], Form Variation [10], Flood Control [10] have been 
proposed to either prevent or slow down spambots activity within a website. 
Additionally the increasing amounts of Spam 2.0 and recent works prove that such 
techniques are not effective enough for spambot detection [11].  
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Behaviour-based spam detection has more capabilities to detect new spamming 
patterns as well as early detection and adaptation to legitimate and spam behaviour 
[12]. In this work we propose behaviour-based spambot detection method based on 
web usage data. 

2.1 Problem Definition 

We can formulate spambot detection problem in to a binary classification problem 
similar to the spam classification problem describe in [13]: 

 

},...,,{ ||21 UuuuD =  (1) 

where, 
D is a dataset of users visiting a website 

iu is the i th user  

},{ sh ccC =  (2) 

where, 
C refers overall set of users 

hc refers to human user class 
sc refers to spambot user class 

 
Then the decision function is 

}1,0{:),( →×CDcu jiφ  (3) 

),( ji cuφ is a binary classification function, where 
 



 ∈

=
otherwise

cu
cu si

ji 0
1

),(φ
 

(4) 

 
In spambot detection each iu belongs to one and only one class so, the 

classification function can be simplified as }1,0{:)( →Du spamiφ . 

3 Behaviour-Based Spambot Detection 

3.1 Solution Overview 

Our fundamental assumption is that spambots behave differently to human users 
within Web 2.0 applications. Hence by evaluating web usage data of spambots and 
human users, we believe we can identify the spambots. Web usage data can be 
implicitly gathered while users and spambots surf though websites . However, web 
usage data by itself is not effective in distinguishing spambot and human users. 
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Additional features need to be evaluated with web usage data in Web 2.0 applications 
for effective spambot detection. Therefore, we investigate two new feature sets called 
Action Time and Action Frequency in study spambot behaviour. An Action can be 
defined as a user set of requested web objects in order to perform a certain task or 
purpose. For instance, a user can navigate to the registration page in an online forum, 
fill in the required fields and press on submit button in order to register a new user 
account. This procedure can be formulated as “Registering a user account” action. 

Actions can be a suitable discriminative feature to model user behaviour within 
forums but can also be extendible to many other Web 2.0 platforms. For instance, the  
“Registering a user account” action is performed in numerous Web 2.0 platforms, as 
users often need to create an account in order to read and write content.  

In this work we make a use of action time and action frequency to formulate web 
usage behaviour. Action time is amount of time spend on doing a particular action. 
For instance, in “Registering a new user account” action, action time is the amount of 
time user spends navigating to account registration page, completing the web form 
and submitting the inputted information. Similarly, action frequency¸ is the frequency 
of doing one certain action. Additionally, if a user registers two accounts, their 
“Registering a new user account” action frequency is two. Section 3.2 provides a 
formal explanation of action time and action frequency. 

It is possible to classify spambots from human user once action time and action 
frequency are extracted from web usage data and feed into the SVM classifier. 

3.2 Framework 

Our proposed framework consists of 4 main modules, which include web usage 
tracking, data preparation, feature measurement and classificationas shown in Figure 
1. 
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Fig. 1. Behaviour-Based Spambot detection framework 

Incoming Traffic 
Incoming traffic shows a user entering the website through a web interface such as 

the homepage of an online forum. 
 
Web Usage Tracking 

This module records web usage data including the user’s IP address, username, 
requested webpage URL, session identity, and timestamp. The username and session 
ID makes it possible to track each user when he/she visits the system. 

Conventionally, web usage navigation tracking is done through web server 
logs[14]. However, these logs can not specify usernames and sessions of each request. 
Hence we employ our own web usage tracking system developed in our previous 
work, HoneySpam 2.0[4] in order to collect web usage data. 
 
Data Preparation 

This module includes three components, which are data cleaning, transaction 
identification and dwell time completion. 

 
Data cleaning 
This component removes irrelevant web usage data from: 

• Researchers who monitor the forum 
• Visitors who did not create a user account 
• Crawlers and other Web robots that are not spambots 

 
 
Transaction Identification 

This component performs tasks needed to make meaningful clusters of user 
navigation data[15]. We group web usage data into three levels of abstraction, which 
include IP, User and Session. The highest level of abstraction is IP and each IP 
address in web usage data consist multiple users. The middle level is the user level 
and each user can have multiple browsing sessions. Finally, the lowest level is the 
session level which contains detailed information of how the user behaved for each 
website visit. 

In our proposed solution we performed spambot detection at the session level for 
the following reasons: 

• The session level can be built and analysed quickly while other levels need 
more tracking time to get a complete view of user behaviour. 

• The session level provides more in-depth information about user behaviour 
when compared with the other levels of abstraction. 

Hence we define a transaction as a set of webpages that a user requests in each 
browsing session and extract features accordingly. 
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Dwell time completion 
Dwell time is defined as an amount of time user spend on specific webpage in 

his/her navigation sequence.  It can be calculated by looking at each record 
timestamp. Dwell time is defined as: 

Siwherettd iii ≤≤−=′ + 11  (5) 

id ′ is dwell time for ith requested webpage in session S at time t ; 
In E.q.5. it is not possible to calculate dwell time for the last visited page in a 

session. For example, a user navigates to the last page on the website then closes 
his/her web browser. Hence we consider the average dwell time spent on other 
webpages in the same session as the dwell time for the last page. 

 
Feature Measurement 

This module extracts and measures our proposed feature sets of action time and 
action frequency from web usage data. 
 
Definition 1: Set of actions ( is ) 

Given a set of webpages },...,,{ 21 WwwwW = , A is defined as a set of Actions, 

such that 

WklwwWaaA klii ≤≤=⊂= ,1}},...,{{}{
 

(4) 

Respectively is is defined as   

AjTias ji ≤≤≤≤= 1;1}{  (5) 

is refers to a set of actions performed in transaction i  and T  is total number of 
transactions. 
 

Definition 2: Action Frequency ( i
A

i hhaF ,...,1= ) 

Action frequency ( aF ) is a vector where i
jh is the frequency of j th  action in is . 

otherwise it is zero. 
 

Definition 3: Action Time ( i
A

i ddaT ,...,1= ) 

We define action time as a vector where 
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i
jd is a dwell time for action ja in is which is equal to total amount of time spend 

on each webpage inside ja . In cases that ja occurs more than once, we divide i
jd by 

the action frequency, i
jh  to calculate the average dwell time. 

 
Classification 

We employ Support Vector Machine (SVM) as our machine learning classifier. 
Support Vector Machine (SVM) is a machine learning algorithm designed to be 
robust for classification especially binary classification [16]. SVM trains by n  data 
points or features )),),...(,(),,{( 2211 nn yxyxyx and each feature comes along with 
class label ( iy ). As mentioned in previous section there are two classes 
{human,spambot} in spambot detection, which we assign numerical value -1 and +1 
to each class accordingly. SVM then tries to find an optimum hyperplane to separate 
two classes and maximising the margin between each class. A decision function on 
new data point x is define as ),sgn()( bxwx +=φ where w is weight vector and b 
is bias term. 

3.3 Performance Measurement 

We utilised F-Score to measure the performance of our classification results [17]. F-
Score is defined E.q. 8.  

esisioncall
ecisioncallF

PrRe
PrRe2

+
×

=  (8) 

where 

HumansSpambots
SpambotsDetected

ecision

Spambots
SpambotsDetected

call

+
=

=

Pr

Re

 

 

 
In the next section we discuss about experimental result of our work 

4 Experimental Results 

4.1 Data Set 

We collected our spambot data from our previous work [4] over a period of a 
month. We combine this data with human data collected from an online forum with 
same configuration as spambot host. We removed domain specific information from 
both datasets. Next we combined these two dataset for experimentation. Table 1 
illustrates a summary of our collected data. 
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Table1. Summary of collected data 

Data Frequency 
# of human records 5555 
# of spambot records 11039 
# of total sessions 4227 
# of actions 34 

 
In feature measurement module we come up with 34 individual actions. We extract 

action time and action frequency from our dataset and use them separately in our 
classifier. 

4.2 Results 

We run 2 experiments on our dataset based on each feature set. We achieved an 
average accuracy of 94.70%, which ranges from 93.18% for action time to 96.23% for 
action frequency. Table 2 and Table 3 summarise the result from each experiment 
along with ratio of true-positives(TP) (the number of correctly classified spambots) 
and false-positives (FP) (number of incorrectly classified human users). 

 

Table2. Summary of experimental results on action time ( aT ) feature set 

C  TP FP Precision Recall F 

hc  0.976 0.399 0.948 0.976 0.962 

sc  0.601 0.024 0.774 0.601 0.676 
Average 0.932 0.355 0.927 0.932 0.928 

Table3. Summary of experimental results on action frequency ( aF ) feature set 

C  TP FP Precision Recall F 

hc  0.998 0.299 0.961 0.998 0.979 

sc  0.701 0.002 0.975 0.701 0.815 
Average 0.962 0.264 0.963 0.962 0.960 
 
It is clear that action frequency is a slightly better classification feature to classify 

spambot from human users. Spambots tend to repeat certain tasks more often when 
compared with humans that perform a larger variety of tasks rather than focusing on 
specific tasks. The result of our work shows that action time and action frequency are 
good feature for spambot detection and therefore Spam 2.0 prevention. 
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5 Related Works 

There has been extensive research focused on spam management and spam filtering. 
However, there has been little work dedicated to Spam 2.0 and spambot detection.  

In the web robot detection, Tan et al. [3] propose a framework to detect unseen and 
camouflaged web robots. They use navigation pattern, session length and width as 
well as the depth of webpage coverage to detect web robots. Park et al. [7] present a 
malicious web robot detection method based on HTTP headers and mouse movement. 
However none of these works have studied spambots in Web 2.0 applications. 

Yiquen et al.[18] and Yu et al. [19] utilise user web access logs to classify web 
spam from legitimate webpages. However the focus of their work is different from 
ours as they rely on user web access log as a trusted source for web spam 
classification. However, in this work we show that web usage logs can be obtained 
from both humans and spambots and such as distinction should be made.  

In our previous work on HoneySpam 2.0 [4], we propose a web tracking system to 
track spambot data. The dataset collected in HoneySpam 2.0 is used in this work. 

6 Conclusion 

To the best of our knowledge, our research from [4] and this paper is the first work 
focused on spambot detection while conventional research has been focused on spam 
content detection. In this paper, we extended our previous work in spambot detection 
in Web 2.0 platforms by evaluating two new feature sets known as action time and 
action frequency. These feature sets offer a new perspective in examining web usage 
data collected from both spambots and human users. Our proposed framework was 
validated against an online forum and achieved an average accuracy of 94.70% and 
evaluated the performance of our framework using F-score. Future work will be 
focused on evaluating more feature set or combination of feature set, decrease ratio of 
false-positives as well as extending our work on other web 2.0 platforms to classify 
spambots from human users. 
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Abstract. Internet bots have been widely used for various beneficial and 
malicious activities on the web. In this paper we provide new insights into a 
new kind of bot termed as web spambot which is primarily used for spreading 
spam content on the web. To gain insights into web spambots, we developed a 
tool (HoneySpam 2.0) to track their behaviour. This paper presents two main 
contributions, firstly it describes the design of HoneySpam 2.0 and secondly we 
outline the experimental results that characterise web spambot behaviour. By 
profiling web spambots, we provide the foundation for identifying such bots 
and preventing and filtering web spam content. 

Keywords: honeyspam, web spambot, web robot detection, spam detection, 
web usage mining. 

1   Introduction 

Web content which provides false or unsolicited web information is defined as Web 
Spam [1]. Spam content is prolific on the web due to the development and widespread 
adoption of Web 2.0 as spammers no longer need to purchase, host and promote their 
own domains. Spammers can now use legitimate websites to host spam content such 
as fake eye-catching profiles in social networking websites, fake promotional reviews, 
responses to threads in online forums with unsolicited content and manipulated wiki 
pages etc. This spamming technique which is different from previous Web spamming 
techniques is referred to as Web 2.0 Spam or Spam 2.0 [2]. Figure 1 illustrates Spam 
2.0 and its relation to other spamming campaigns. 

Little is known about the amount of Spam 2.0 on the Internet. At the time of 
writing this paper, Live Spam Zeitgeist has shown over a 50% increase in the amount 
of spam messages (e.g. spam comments in blogging tools) since 2008 [3]. This report 
showed a dramatic increase in the amount of successful Spam 2.0 attacks and the 
inadequacy of existing countermeasure tools [2]. 

In this paper, we conduct an effective study on Spam 2.0 and the behaviour of web 
spambots. Web spambots are a new kind of Internet robot which is primarily used for 
spreading spam content on the web. To gain insights into this kind of bot we have 
developed a tool (HoneySpam 2.0) to track their behaviour.  

                                                           
* Pedram Hayati is PhD student at Curtin University. 
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Fig. 1. Spam 2.0 among other spamming campaigns 

HoneySpam 2.0 draws on the idea of honeypots (a technique for tracking cyber 
attackers). It implicitly tracks web usage data which includes detailed monitoring of 
click streams, pages navigation, forms, mouse movements, keyboard actions and page 
scrolling. Our results illustrate that HoneySpam 2.0 is effective in profiling web 
spambots. HoneySpam 2.0 is a tracking solution that can be integrated in any web 
application ranging from blogging tools to social networking applications. To the best 
of our knowledge, there is no existing literature that studies web spambots from a web 
usage perspective. We believe that this work is the first step in finding the attributes 
of web spambots and is a roadmap for future research. 

This paper is organised as follows; in Section 2, we provide taxonomy on Spam 2.0 
and web spambots, Section 3 explains the HoneySpam 2.0 architecture. Next, Section 4 
discusses our experimental results. Section 5 explains previous work. This is followed 
by conclusions and future works in Section 6. 

2   Taxonomy of Spam 2.0 and Web Spambots 

Along with its web applications, Web 2.0 provides a collaboration platform for flexible 
web content management. Spam 2.0 has existed since web 2.0 concepts have appeared 
online. Spammers misuse/use this functionality to distribute spam content. The act of 
spamming can be done through two channels: manual and automated. The former refers 
to using human operations such as hiring cheap labour to manually distribute spam 
content [4] (e.g. A sample job advertisement for spam content publishing can be found in 
[5]). The latter is achieved by exploiting software or scripts which can be in the form of 
client-side software or web robots. Web or Internet robots are programming scripts or 
automated agents that are designed for specific tasks such as crawling  webpages and 
parsing URLs without human interaction [6].   

Unfortunately, web robots can be exploited for malicious activities such as 
checking web servers for vulnerabilities, harvesting email addresses from webpages 
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as well as performing Denial-of-Service attacks (DoS) [7]. Recently, some web robots 
have been used for distributing spam content on web applications through posting 
promotional comments, placing ads in online forums, submitting links through 
trackbacks etc. [2]. We call this type of web robots as web spambots. Web spambots 
can be designed to be application specific which target specific web applications like 
Wordpress blogging tools, phpBB, Mediawiki or website specific infecting websites 
like Amazon, MySpace, Facebook etc.  

It should be noted that web spambots are different from spambots. According to [7] 
spambots are Internet robots that crawl webpages to harvest email addresses in order 
to send spam emails. However web spambots act completely differently from 
spambots. Web spambots can crawl the web or discover new victims via search 
engines, register new user accounts and submit spam content in Web 2.0 applications. 
Their main task is to distribute spam content on to the web. They can reside on 
different machines (e.g. infected user computers, free or commercial web hosting 
sites). Web spambots can be programmed once and used many times. The motivations 
behind such spamming activities are [2]: 

 

• Deceiving search engines to rank spam and junk content higher. For instance, 
the more spam content added to different websites linking back to the 
spammer’s websites, will increase their website’s ranking. 

• Misleading users to view unsolicited contents such as webpages, link-farms, 
ad-hosted website, phishing websites, etc. 

 

By employing automated web spambots, spammers are able to get more traffic on 
their campaigns. This highlights the importance of web spambot detection as a 
possible way to eliminate spam 2.0. In the next section we discuss current techniques 
to discover web spambots along with our proposed solution.  

2.1   Web Spambot Countermeasure Techniques 

One of the most popular countermeasures to differentiate web robots (include web 
spambots) from humans is Completely Automated Public Turing test to tell 
Computers and Human Apart  (CAPTCHA) [8]. It is a type of challenge-response test 
usually in the form of a distorted image of numbers and letters, which humans have to 
infer and type in to a web form. However, CAPTCHA is inconvenient for users as it 
wastes their time, causes distraction, is unpleasant and at times scary. A number of 
recent works have reported approaches to defeat CAPTCHAs automatically by using 
computer programs [9-11]. CAPTCHA’s drawbacks includes the following: 
 

1. Decrease user convenience and increase complexity of human computer 
interaction. 

2. As programs become better at deciphering CAPTCHA, the image may 
become difficult for humans to decipher. 

3. As computers get more powerful, they will be able to decipher CAPTCHA 
better than humans. 

 

Therefore, CAPTCHA is only a short term solution that is about to expire. Web 
spambots armed with anti-CAPTCHA tools are able to bypass this restriction and 
spread spam content easily while the futile user inconvenience remains. 
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Other countermeasures for combating automated request are by using Hashcash, 
Nonce and Form variation [12, 13]. The idea behind Hashcash is that the sender has 
to calculate a stamp for the submitted content [13]. The calculation of the stamp is 
difficult and time-consuming for sender but comparatively cheap and fast for receiver 
to verify. Although Hashcash cannot stop automated spamming, it can slow down the 
spamming process. On the other hand, using nonce and Form variation techniques 
can only guarantee that users use their submission forms rather than posting directly.  

However, we believe that one effective way to detect web spambot is by looking at 
web spambot behaviour through its page navigations, click-streams, mouse 
interactions, keyboard actions and form filling. We put forward the notion that their 
web usage behaviour is intrinsically different from humans. The focus of this work is 
on profiling web spambot behaviour. We proposed HoneySpam 2.0 to detect, track 
and monitor web spambots. In following section we explain our proposed method. 

3   HoneySpam 2.0 Architecture 

HoneySpam 2.0 is a stand-alone tool that is designed to be integrated with any web 
application with the aim to track and analyse web spambot behaviour. HoneySpam 2.0 
is based upon the idea of a honeypot where a vulnerable server is deployed to attract 
cyber attackers in order to study their behaviour. HoneySpam 2.0 is designed to study 
the web spambots which are considered to be attackers in the spamming scenario.  

HoneySpam 2.0 consists of two main components: Navigation Tracking Component 
(NTC) & Form Tracking Component (FTC). Figure 2 illustrates the detailed Model-
View-Control (MVC) architecture of HoneySpam 2.0 inside a web application.  

3.1   Navigation Tracking Component 

This component is designed to track page navigation patterns and header information 
of incoming traffic. The following information is captured by this component: the 
time of request, the IP address, the browser identity and the referrer URL. 

 

Fig. 2. HoneySpam 2.0 Architecture 
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NTC is also designed to automatically differentiate individual visit sessions. 
Session information is captured to identify user’s web usage behaviour during each 
visit. NTC stores the captured data along with session identity (session id) into the 
tracking database, which is used during an  analysis and profiling stage.  

3.2   Form Tracking Component 

Other than the NTC, we felt the need to develop additional functionality that could 
provide us insights into how web spambots use web forms. It is a common belief that 
web spambots do not interact with web forms, however, our study aims to test this 
here. We developed a form tracking component to specifically study form input 
behaviour. This component captures and stores the following form related actions 
such as: 
 

⇒ Mouse clicks and movements  
⇒ Keyboard actions 
⇒ Form field focus and un-focus 
⇒ Form load and submission 
⇒ Page navigation 

 

For each of the above mentioned actions we also captured header information e.g. IP 
address, browser identity, referrer link session id etc. We decided to store header 
information since we wanted to ensure that form action events are originating from 
the same session with the same header information. 

Additionally, both components check whether requests are initiated from registered 
users or visitors. If it was initiated from a registered user then it stores the username 
along with other web usage information for that request. This was done to 
differentiate registered web users usage data and visitor usage data, which can be used 
for further analysis. Visitors are termed as guests in our database. Also, most web 
applications require the registration of a valid username before further interaction 
with the system.  

3.3   Deploying HoneySpam 2.0 

Deploying HoneySpam 2.0 involves implementing both client side and server side 
code. The client side code, assigns FTC actions to web forms so once a user triggers 
an action it would be captured, transmitted to FTC server side code and would be 
recorded in the database. On the server side, NTC tracks the users navigation 
behaviour based on incoming traffic requests. In the next section, we explain our 
experimental setting by outlining where we integrated HoneySpam 2.0 and discuss 
our results and key observations.  

4   Experimental Results 

The HoneySpam 2.0 tool was employed onto 1 commercial and 5 free web hosting 
servers. The web applications provided on these servers include online discussion 
forums and social bookmarking. We did not add any initial content to any of these 
applications and placed a message (in the form of an image) to notify human users not 
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to use these applications. Additionally, as described in Section 4.4 our FTC component 
did not capture any form activity records which ensures that there were no human 
activities inside our hosted campaigns.All of the content added to our web applications 
is added by web spambots. The data presented in this paper has been collected for a 
period of 60 days1 and is summarised in Table 1. 

Table 1. Summary of Data for Honeyspam 2.0 showing the total number of bots, total number 
of posts, average posts per day etc 

Summary of Data for Honey Spam  # 
No. of tracking records 11481 
No. of web spambots’ tracking records  6794 
Total No. of registered bots 643 
Total No. of unique used IP addresses 314 
Total No. of posts 617 
Average Posts per day 8.27 
Average Registered web spambots per day 7.91 
Average online web spambot per day 2.72 

 
In terms of content, 60% of spam content was adult-related, 13% consisted of an 

assorted category of content (e.g. free software, keyword spam) and 9% of content 
was related to drug (pharmaceutical) and movies (Fig 3a). Demographically, 51% of 
observed web spambots originated from the United Kingdom followed by the United 
States of America at 22% (Fig 3b). However, it is quite possible for web spambots to 
be used by spammers on hijacked machines so these figures do not reveal the true 
origin of the spammers.  

Web browsers commonly used by the web spambots were Internet Explorer and 
Opera (Fig 3c). Surprisingly, two relatively unknown browsers which were OffByOne 
and BrowseX were also used. Additionally, Firefox was only used by 2 web spambots 
and Safari was not used at all. It should be mentioned that this header information can 
be modified and is not a true indication of browser usage or the use of an actual 
browser at all. A number of specific observations were discovered from examining 
the behaviour of web spambots and are now discussed. 

   
    (a)             (b)       (c) 

Fig. 3. Percentage of top content categories, countries and internet browsers 
                                                           
1 The HoneySpam 2.0 tool has tracked spambot behaviour from the 25th of May 2009 to the 9th 

of August 2009. However, only 60 days of data is collected due to server downtime periods 
caused by maintenance and issues. 
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4.1   Use of Search Engines to Find Target Websites 

Of the 6 monitored web hosts, the commercial server received the most attention from 
web spambots. This highlights the possibility that web spambots are using search 
engine intelligence (e.g. Google PageRank scores) to identify and focus on higher 
ranked websites that potentially yield more visitor traffic. 

The initial 15 days of hosting and tracking did not yield much activity but a number 
of web spambots began registering and posting content after this period (Fig. 4a). The 
reason behind this could be related to search engine indexing, which also suggests that 
some web spambots find their targets through search engine results. 

4.2   Create Numerous User Accounts  

It was identified from our experiment that web spambots would create a number of 
new accounts to post their content rather than using their existing accounts. This is 
shown in Table 1, where the total number of web spambots accounts is 643 but only 
314 unique IP addresses are used between these accounts. On average 7.91 new 
accounts were created per day within our dataset. 

It is possible that web spambots adopt this behaviour for additional robustness in 
delaying account banning (e.g. one user account is associated with numerous spam 
content items is easier to detect and manage) and/or to handle the event in which their 
previous accounts are banned. 

4.3   Low Website Webpage Hits and Revisit Rates 

The observed web spambots adopt similar surfing patterns to one another and 
commonly visit a number of specific web pages. As illustrated in Fig. 4b most web 
spambots perform less than 20 page hits in total during their account lifetime.  

Fig. 5b supports the claim that web spambots do not revisit many times as 554 web 
spambots only revisit the websites once and 75 bots revisit less than 5 times. It is 
likely that these bots revert to creating new user accounts to continue their spamming 
activities as discussed in section 4.2.  
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Fig. 5. Frequency of Web Spambots’ spending time (sec) on each session, frequency of revisiting 
by Web Spambots (1 means they just visit once) 

4.4   Distribute Spam Content in a Short Period of Time 

The amount of time most web spambots spend on each visit (session) is less than 5 
seconds. This indicates that web spambots are distributing spam content in a short 
amount of time possibly to move on to other websites to distribute more spam content 
(Fig. 5a). Additionally their online activitiy time was an average of 2.71 second. 

4.5   No Web Form Interaction 

While not shown in the figures, the form-tracking component of the HoneySpam 2.0 
tool was unable to track form usage behaviour of web spambots. These bots adopt a 
conventional method of directly posting through their own forms / interface to submit 
content. We suspect they have not been designed to be intelligent enough to mimic 
the behaviour of a human in submitting a web form because of a lack of a requirement 
to do so. Therefore, we believe that simple form usage heuristics can lead to web 
spambot detection and filtering.  

4.6   Generated Usernames 

It is apparent that web spambots are generating usernames in order to create numerous 
accounts. Some examples of these usernames include Oxidylozaxygixoc, Ufigowigelyniwyl 
and Ynutaznazabalekil. Pattern analysis of these randomly generated usernames could 
serve as a means of identifying and blocking web spambots, which we will investigate in 
the future. 

5   Related Work 

The study of web robots has been thoroughly investigated by the research community 
since bots consume network bandwidth and make web usage mining difficult. 
Conventional methods to detect web robots are based on identifying IP addresses and 
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user agents [14]. However, unknown and camouflaged web robots can not be detected 
by these techniques. 

In the web usage mining, Tan and Kumar [6] proposed a model to discover web 
robots. They use navigational pattern on click-stream data approach to detect web 
robots. They show that the features such as the request method, the length of the 
session, the depth and width of webpage coverage of web robots are different from 
humans. They did not explicitly focus on web spambots as the aim of their work was to 
detect web robot such as search engine crawlers, offline browsers, link checkers and 
email collectors. In our proposed work, we concentrate on profiling web spambots 
which are different to other types of web robots not covered by Tan and Kumar. 

By looking at the existence of HTTP requests for CSS and JavaScript files along with 
mouse movement activities on the Web pages, Park et al. (2006) proposed a technique 
to detect malicious web robots [7]. The focus of their work was on camouflaged web 
robots that are normally used for security attacks, harvesting email addresses etc. 
Similar to previous work, their focus was not on identifying web spambots. 

In the area of spam detection, Webb et al. (2008) proposed a social honeypot for 
detection of spammers in social networking websites [15]. They hosted 51 social 
honeypots in one of the famous social networking websites. The result of their work 
shows that temporal and geographic patterns of social spam have unique characteristics. 

Andreolini et al. (2005) proposed a method to slow down email harvesting process 
and poison spamming email databases [16]. Additionally they proposed the creation 
of fake open proxies to increase the probability of email spam detection.  

6   Conclusion and Future Work 

In this paper we detailed the design and implementation of HoneySpam 2.0 for 
detecting, monitoring and analysing web spambots. HoneySpam 2.0 is based upon the 
idea of honeypots to monitor and characterize web spambots which are a type of web 
robot that are programmed to surf through the web and distribute the spam content. 
We integrated Honeyspam 2.0 in popular open source web applications for period of 
60 days to monitor web spambot behaviour.  

Through our experiments, we discovered that web spambots use search engines to find 
target websites, create numerous user accounts, distribute spam content in a short amount 
of time, do not revisit the website, do not interact with forms on the website, and register 
with randomly generated usernames. By profiling web spambots, we provide the 
foundation for identifying such bots and filter and removing their spam content. 

While this paper focussed on analysing web spambots as a way to combat spam in 
the future we will focus on adopting clustering algorithms to detect web spambots on 
the fly. Additionally, artificial neural networks and analytical techniques can be used 
to gain a better understanding of the data collected from web spambots.  
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