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ABSTRACT

In this paper, the governing equation of a piezoelectric semiconductor (PSC) is derived after a consideration of flexoelectricity and the strain
gradient effect. A one-dimensional first-order beam model is obtained through integration across its section. Based on this model, theoretical
analysis is carried out for a cantilever PSC nanowire subjected to a time-harmonic transverse shear force. The effects of flexoelectricity and the
strain gradient on bending vibration characteristics are investigated, including the natural frequencies and distributions of physical quantities.
The results show that the strain gradient effect on the natural frequency and stiffness of a PSC nanowire is greater than that of flexoelectricity,
while with regard to the influence on electric potential and carrier concentration, the reverse is true. Our findings shed light on the design and
optimization of PSC devices such as energy harvesters at the nanoscale.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0038782

I. INTRODUCTION

The discovery of the piezoelectric effect in ZnO, CdS, and other
semiconductor materials1–3 has attracted research interest in piezo-
electric semiconductors (PSCs). Generally, PSCs4 refer to a class of
materials with both piezoelectricity and semiconductor properties.
Therefore, when a load-induced deformation is applied on a PSC
structure, the electric field caused by piezoelectricity drives charge
carriers into motion or redistribution,5 which control the gate in
electronic devices such as transistors6 or logical circuits.7 Thus, PSCs
can be used to develop smart microelectronic devices with modern
functions,8 for example, piezoelectric field-effect transistors,9,10 nano-
generators,11 photodetectors,12 and light-emitting diodes.13

When PSCs are reduced to the nanoscale, it is necessary to take
the size effect into account.14 Several models such as the stress gradi-
ent,15,16 strain gradient,17–19 couple stress,20–22 and integral-type the-
ories23,24 have been developed to describe the size effect. Among
these, the strain gradient model, in which stresses depend on both
strains and their gradients, proposed by Aifantis,17 is the most con-
venient and widely used one for predicting the mechanical behavior
of microbeams25 and microplates.26 Recently, the discovery of the

flexoelectric effect in dielectric materials,27 especially in ferroelectric
thin films28,29 and graphene nitride nanosheets,30 has triggered more
interest in studying the relationship between electric polarization and
strain gradients. Generally speaking, the flexoelectric effect means
strain gradients will induce electric polarization in media. Based on
the continuum theory, polarization gradient-strain coupling in the
free energy of elastic dielectrics was first introduced by Mindlin.31

Then, Shen and Hu32 established the variational principle for piezo-
electric materials after considering strain gradients and flexoelectric-
ity. Following this, mixed finite element methods,33 mesh-free
methods,34 and B-spline methods35 were developed to investigate the
flexoelectricity in piezoelectric materials. However, there are relatively
few studies on the strain gradient and flexoelectricity of PSCs. For
instance, Liu et al.36 analyzed the potential distribution of ZnO
nanowires and found that, if semi-conductive properties are not con-
sidered, the flexoelectric effect has a large influence on potential. The
potential distribution of PSC structures was investigated under the
flexoelectric effect of low order stresses but without strain gradi-
ents.37 The theoretical solution of a PSC nanowire under tension
was derived,38,39 in which both the strain gradient and flexoelectric
effect are considered.40
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In practical engineering, most devices function under dynamic
environments. Therefore, it is pivotal to understand their dynamic
characteristics such as the free frequency and vibration modes.41

Yang et al.42 analyzed Lamb waves by considering bending electri-
cal properties and strain gradient elasticity in piezoelectric materi-
als. Dynamic analyses of PSC beams and plates were carried
out.43–45 Here, it is worth noting that, in these studies, the strain
gradient and the flexoelectric effect were ignored. As mentioned
above, however, both the strain gradient and flexoelectric effect in
micro- or nanoscales are significant and they significantly affect the
dynamic characteristics of PSCs.

In this paper, a one-dimensional PSC model after taking both
strain gradient and the flexoelectric effect into account is estab-
lished by using the first-order beam theory. The paper is organized
as follows. The basic equations and boundary conditions of a solid
PSC are first described in Sec. II, with its degeneration to a one-
dimensional beam model given in Sec. III. Then, theoretical solu-
tions of a cantilever PSC nanowire are obtained under a time-
harmonic transverse shear force in Sec. IV. Next, the influence of
the strain gradient and flexoelectric effects on the dynamic charac-
teristics of PSC nanowires is discussed in Sec. V. Finally, main con-
clusions are drawn in Sec. VI.

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Based on the linear piezoelectric theory, the internal energy
density with flexoelectricity and strain gradient33 is expressed as

h ¼ 1
2
σ ijεij þ 1

2
τ ijkηijk �

1
2
DiEi � 1

2
GjiEi,j, (1)

where εij, ηijk, and Ei are the strain, strain gradient, and electric
fields, respectively. σij is the classical stress tensor and Di is the elec-
tric displacement vector. Gij is the higher-order displacement vector,
and τijm is the higher-order stress tensor. Here, the strain tensor, the
strain gradient tensor, and the electric field vector are defined as

εij ¼ 1
2
(ui,j þ u j,i), (2a)

ηijk ¼ εij,k, (2b)

Ei ¼ �f,i, (2c)

where u and f are the mechanical displacement and electric poten-
tial, respectively. The total enthalpy33 is

R ¼
ð
Ω
hdv � C, (3)

where C ¼ Ð
Ω bkukdv þ

Ð
@Ωt

�tkukdsþ
Ð
@Ωr �rkγkds�

Ð
@Ωq �qwds�Ð

@Ωw �ωθds is work done by external forces. bk, γk, and θ are the body
force, normal derivatives of displacement, and electric potential,
respectively. �tk , �rk, �q, and �ω are the prescribed traction force, higher-
order traction force, electric displacement, and higher-order electric
displacement on the corresponding boundaries, respectively.

Given that the frequency of an external load is much lower
than the characteristic frequency of an electromagnetic field, the
quasi-static approximation of the first Maxwell equation can be
introduced. Therefore, the kinetic energy is

K ¼ 1
2

ð
Ω
ρ _ui _uidv, (4)

where ρ is the density. According to the Hamilton principle,Ð t
0 (δRþ δK)dτ ¼ 0, governing equations can be represented by

(σ ij � τ ijm,m),j ¼ ρ€ui, (5a)

Di,i � Gji,ij ¼ 0, (5b)

with the following boundary conditions33:

(1) The traction and higher-order traction boundary conditions
can be given as

�tk ¼ (σ ij � τ ijm,m)�nj þ (Δlnl)τ ijm�nm�nj � Δj(τijm�nm),

�rk ¼ τ ijm�nm�nj:

(2) The displacement and displacement normal derivatives boun-
dary conditions can be given as

�uk ¼ uk,

�γk ¼ uk,i�ni:

(3) The electric displacement and higher-order electric displace-
ment boundary conditions can be given as

�q ¼ Di�ni � Gij,j�ni � ∇t
j (Gij�ni)þ (∇t

l�nl)Gij�ni�nj,

�ω ¼ �Gij�ni�nj:

(4) The electric potential and electric potential normal derivatives
boundary conditions can be given as

�f ¼ f,

�θ ¼ �f,k�nk:

Here, �ni is the outward unit normal vector of boundary surfaces.
For a general linear piezoelectric material, the enthalpy density33 is
expressed as

h ¼ 1
2
cijklεijεkl þ 1

2
lijklmnηijkηlmn � eijkEiε jk � fijklEiη jkl

þ dijklE j,iεkl � κij
1
2
EiEj , (6)

in which these terms, respectively, refer to the energy densities of
strain, strain gradient, piezoelectricity, direct flexoelectricity,
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converse flexoelectricity, and the Maxwell self-field. cijkl and lijkmnl

are the material parameter tensors. eijk is the piezoelectric coeffi-
cient tensor. fijkl and dijkl are direct and converse flexoelectric coef-
ficients. κij is the dielectric constant.

In terms of the variation of internal energy density, we have
the constitutive equations

σ ij ¼ cijksεks � eijkEk, (7a)

τ ijm ¼ �fkijmEk þ lijmknsηkns, (7b)

Di ¼ κijEj þ e jkiε jk þ fijksη jks, (7c)

Gij ¼ dijklεkl: (7d)

Here, based on Mindlin’s strain gradient elasticity theory, the sim-
plest variant of the higher-order elastic tensor is

lijmkns ¼ g2cijknδsm, (8)

where g is an internal scale parameter.
For PSCs, the semiconductor property should be considered

besides piezoelectricity. Therefore, the charge conservation equa-
tion46 is represented as

Jni,i ¼ q _n, (9)

where Jni is the hole current densities, n is the concentration of elec-
trons, and q = 1.6 × 10−19 C is the electronic charge. The corre-
sponding natural boundary condition is

Jni �ni ¼ �J , (10)

where �J is the given electric current.
In the case of a small change of electrons, the linear constitu-

tive equation44 for current densities is

Jni ¼ qn0μ
n
ijEj þ qdnijn,j, (11)

where n0, μnij, and dnij are the initial electron concentration, carrier
mobility, and carrier diffusion constants of the n-type semiconduc-
tor, respectively. In addition, Eq. (5b) should be modified without
the high-order electric displacement, as

Di,i ¼ �qΔn, (12)

where Δn = n− n0 is the perturbation of electron concentration.

III. ONE-DIMENSIONAL EQUATIONS

Let us consider a PSC nanowire. As illustrated in Fig. 1, the
left end of the PSC nanowire is fixed, and a time-harmonic trans-
verse shear force is applied at its right end. Since the slenderness
ratio L/a � 1, a one-dimensional beam model can be assumed.
According to the first-order beam theory, the relevant mechanical
displacements, electric potential, and carrier concentrations are

approximated as

u2(x, t) ffi w(x3, t), (13a)

u3(x, t) ffi x2ψ(x3, t), (13b)

f(x, t) ffi x2f
(1)(x3, t), (13c)

Δn(x, t) ffi x2n
(1)(x3, t), (13d)

where w(x3,t) and ψ(x3,t) stand for the lateral deflection and rota-
tion angle of the nanowire, and f(1)(x3,t) and n(1)(x3,t) are the
lateral electric potential and electron concentration, respectively.
For a cubic crystal, there are three independent flexoelectric coeffi-
cients,47 i.e.,

f3333 ¼ f11, f2323 ¼ f3232 ¼ f2332 ¼ f44, f2233 ¼ f3322 ¼ f12: (14)

Then, from Eqs. (7) and (11), we can obtain

σ33 ¼ c33ε33 � e33E3, (15a)

σ23 ¼ c44ε23 � e15E2, (15b)

D2 ¼ e15ε23 þ k11E2 þ f44ε33,2 þ f12ε23,3, (15c)

D3 ¼ e33ε33 þ k33E3 þ f11ε33,3, (15d)

Jn2 ¼ qn0μ
n
11E2 þ qdn11n,2, (15e)

Jn3 ¼ qn0μ
n
33E3 þ qdn33x2n,3, (15f )

and the higher-order stresses are expressed as

τ232 ¼ �f44E3 þ g2c44ε23,2, (16a)

τ233 ¼ �f12E2 þ g2c44ε23,3, (16b)

τ332 ¼ �f44E2 þ g2c33ε33,2, (16c)

FIG. 1. Schematic illustration of a PSC nanowire, where a is the radius, L is the
length, and c axis is along the x3 direction.
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τ333 ¼ �f11E3 þ g2c33ε33,3: (16d)

Then, by integrating Eq. (5), Eq. (9), and their moment forms
along the cross section, we have the equilibrium equation,

Q,3 ¼ ρA€w, (17a)

M,3 � Q ¼ ρI €ψ , (17b)

D(1)
3,3 � D(0)

2 ¼ �qIn(1), (17c)

Jn(1)3,3 � Jn(0)2 ¼ qI _n(1), (17d)

where I and A are the moment of inertia and area of the cross
section that can be calculated by

I ¼
ð
A
x22dA ¼ πa4

4
, (18a)

A ¼ πa2: (18b)

From Eqs. (14) and (15), the one-dimensional constitutive
equation is

Q ¼
ð
(σ23 � τ232,2 � τ233,3)dA

¼ c44A(w,3 � g2w,333)þ c44A(ψ � g2ψ ,33)

þ e15Af
(1) � ( f12 þ f44)Af

(1)
,3 , (19a)

M ¼
ð
x2(σ33 � τ332,2 � τ333,3)dA

¼ c33I(ψ ,3 � g2ψ ,333)þ e33If
(1)
,3 � f11If

(1)
,33, (19b)

Qh ¼
ð
A
τ233dA ¼ f12Af

(1) þ c44Ag
2(w,33 þ ψ ,3), (19c)

Mh ¼
ð
A
x2τ333dA ¼ f11If

(1)
,3 þ g2c33Iψ ,33, (19d)

D(0)
2 ¼

ð
D2dA

¼ (e15Aw,3 þ f12Aw,33)þ [e15Aψ þ ( f12 þ f44)Aψ ,3]� κ11Af
(1),

(19e)

D(1)
3 ¼

ð
x2D3dA ¼ e33Iψ ,3 þ f11Iψ ,33 � κ33If

(1)
,3 , (19f)

Jn(0)2 ¼
ð
Jn2 dA ¼ �qn0μ

n
11Af

(1) þ qdn11An
(1), (19g)

Jn(1)3 ¼
ð
x2J

n
3 dA ¼ �qn0μ

n
33If

(1)
,3 þ qdn33In

(1)
,3 , (19h)

where Q, M, Qh, Mh, D(0)
2 , D(1)

3 , Jn(0)2 , and Jn(1)3 are the shear force,
bending moment, high-order shear force, high-order bending
moment, and zero- and first-order electric displacement and
carrier concentration, respectively. The corresponding boundary
conditions for one-dimensional PSC beams can be determined by
integrating the boundary conditions in a three-dimensional case
along the cross section.

IV. TIME-HARMONIC BENDING FORCED VIBRATION

In terms of generalized displacement, substituting Eq. (19)
into Eq. (17) leads to the governing equation,

c44A(w,33 � g2w,3333)þ c44A(ψ ,3 � g2ψ ,333)þ e15Af
(1)
,3

� ( f12 þ f44)Af
(1)
,33 ¼ ρA€w, (20a)

c33I(ψ ,33 � g2ψ ,3333)þ e33If
(1)
,33 � f11If

(1)
,333 � c44A(w,3 � g2w,333)

� c44A(ψ � g2ψ ,33)� e15Af
(1) þ ( f12 þ f44)Af

(1)
,3 ¼ ρI €ψ ,

(20b)

e33Iψ ,33 þ f11Iψ ,333 � κ33If
(1)
,33 � e15Aw,3 þ f12Aw,33 � e15Aψ

� ( f12 þ f44)Aψ ,3 þ κ11Af
(1) ¼ �qIn(1), (20c)

(�qn0μ
n
33If

(1)
,33 þ qdn33In

(1)
,33)� (�qn0μ

n
11Af

(1) þ qdn11An
(1)) ¼ qI _n(1):

(20d)

Therefore, as illustrated in Fig. 1, the boundary conditions are

w(0) ¼ 0, Q(L) ¼ fy , (21a)

ψ(0) ¼ 0, M(L) ¼ 0, (21b)

w,3(0) ¼ 0, Qh(L) ¼ 0, (21c)

ψ ,3(0) ¼ 0, Mh(L) ¼ 0, (21d)

D(1)
3 (0) ¼ 0, D(1)

3 (L) ¼ 0, (21e)

J (1)3 (0) ¼ 0, J (1)3 (L) ¼ 0: (21f )

For a time-harmonic bending vibration, a force is given by

fy ¼ Fexp(iωt), (22)

where F and ω are the magnitude and frequency of the force,
respectively, and i is the imaginary unit. Then, the harmonic
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solution can be written as

{w, ψ , f(1), n(1)} ¼ {W, Ψ, Φ, N}exp(iωt): (23)

Substituting Eq. (23) into Eq. (20) leads to

c44A(W,33 � g2W,3333)þ c44A(Ψ,3 � g2Ψ,333)þ e15AΦ,3

� ( f12 þ f44)AΦ,33 þ ρAω2W ¼ 0,
(24a)

c33I(Ψ,33 � g2Ψ,3333)þ e33IΦ,33 � f11IΦ,333 � c44A(W,3 � g2W,333)

� c44A(Ψ� g2Ψ,33)� e15AΦþ ( f12 þ f44)AΦ,3 þ ρω2IΨ ¼ 0,

(24b)

e33IΨ,33 þ f11IΨ,333 � κ33IΦ,33 � (e15AW,3 þ f12AW,33)� e15AΨ

� ( f12 þ f44)AΨ,3 þ κ11AΦþ qIN ¼ 0, (24c)

(�qn0μ
n
33IΦ,33þqdn33IN,33)� (�qn0μ

n
11AΦþqdn11AN)� iωqIN ¼ 0:

(24d)

The solution of Eq. (24) is

{W, Ψ, Φ, N} ¼ {C1, C2, C3, C4}exp(λx3): (25)

FIG. 2. The relationship between the drive frequency and the nanowire
end displacement with two resonances ω1 = 6.1764 × 10

8 rad/s and
ω2 = 3.7776 × 10

9 rad/s.

FIG. 3. Fundamental and second-order natural frequencies vs flexoelectric
coefficient f in the case of g = 10−9 m and n0 = 10

23m−3.

FIG. 4. Fundamental and second-order natural frequencies vs internal scale
parameter g in the case of f = 10−9 C/m and n0 = 10

23m−3.

FIG. 5. Contours of the imaginary parts of (a) deflection W (x3); (b) shear
deformation Ψ (x3); (c) electric potential Φ (x3); and (d) carrier concentration
N (x3) along the longitudinal section in the case of ω = ω1, g = 10

−9m and
f = 10−7 C/m.
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Substituting Eq. (25) into Eq. (24) leads to the following equa-
tion group:

c44A(λ
2C1 � g2λ4C1)þ c44A(λC2 � g2λ3C2)þ e15AλC3

� ( f12 þ f44)Aλ
2C3 þ ρAω2C1 ¼ 0, (26a)

c33I(λ
2C2 � g2λ4C2)þ e33Iλ

2C3 � f11Iλ
3C3 � c44A(λC1 � g2λ3C1)

� c44A(C2 � g2λ2C2)� e15AC3 þ ( f12 þ f44)AλC3 þ ρω2IC2 ¼ 0,

(26b)

(e33Iλ
2C2 þ f11Iλ

3C2 � κ33Iλ
2C3)� (e15AλC1 þ f12Aλ

2C1)

� e15AC2 � ( f12 þ f44)AλC2 þ κ11AC3 þ qIC4 ¼ 0, (26c)

�qn0μ
n
33Iλ

2C3 þ qdn33Iλ
2C4 þ qn0μ

n
11AC3 � qdn11AC4 � iωqIC4 ¼ 0:

(26d)

Obviously, there are four linear homogeneous algebraic equa-
tions about C1−C4. In order to have nontrivial solutions, the deter-
minant of the coefficient matrix of Eq. (26) must be zero. Since the

FIG. 6. Distribution of the imaginary parts of (a) deflection W (x3); (b) shear deformation Ψ (x3); (c) electric potential Φ (x3); and (d) carrier concentration N (x3) with differ-
ent internal scale parameters in the case of ω = ω1 and f = 10

−9 C/m.
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determinant is a polynomial of 12 order, 12 roots, noted by λm,
can be determined. Then, substituting λm into Eq. (26) separately,
we can obtain the ratios among Cm

1 � Cm
4 . Finally, the general solu-

tion can be written as

W
Ψ
Φ
N

8>><
>>:

9>>=
>>;

¼
X12
m¼1

H(m)

C(m)
1

C(m)
2

C(m)
3

C(m)
4

8>>><
>>>:

9>>>=
>>>;
exp(λ(m)x3), (27)

where Η m are the 12 constants that can be determined by 12 boun-
dary conditions [Eq. (21)].

V. RESULTS AND DISCUSSION

As an example, let us consider a ZnO nanowire with the
length L = 600 nm and the radius a = 25 nm. The effective material
constants are from Ref. 44. The initial electron concentration was
chosen as n0 ¼ Nþ

D¼1023 m�3, and the applied force is F = 0.002
nN. To investigate the flexoelectricity and strain gradient effect,
flexoelectric coefficients were tested in the range of 0.1 × 10−9 to

FIG. 7. Distribution of the imaginary parts of (a) deflection W (x3); (b) shear deformation Ψ (x3); (c) electric potential Φ (x3); and (d) carrier concentration N(x3) with differ-
ent internal scale parameters in the case of ω = ω2 and f = 10

−9 C/m.
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2 × 10−9 C/m and internal scale parameters were chosen from 10−9

to 10−6 m. The flexoelectric coefficients in the semiconductor ZnO
are still unknown, so we refer to the flexoelectric coefficients in the
value range of other materials48,49 to test the flexoelectric effect.
The values of three flexoelectricity coefficients were taken to be
f = f11 = f12 = f44 for simplicity.50

As shown in Fig. 2, by the resonance method, fundamental
and second frequencies in the case of f = 10−9 C/m and g = 10−9 m
can be obtained, i.e., ω1 = 6.1764 × 108 rad/s and ω2 = 3.7776 × 109

rad/s. These are almost consistent with the classical results44 of
ω1c= 6.1570 × 108 rad/s and ω2c= 3.7651 × 109 rad/s.

It is observed in Fig. 3 that in the case of g = 10−9 m, as f
increases, both fundamental and second frequencies increase. In addi-
tion, when the flexoelectric coefficient is in the range of 0.1 × 10−9 to
2 × 10−9 C/m, the maximum difference j(ω1 � ω1c)/ω1cj is 0.38%,
and j(ω2 � ω2c)/ω2cj is 0.41%. From Fig. 4, it is seen that when the
flexoelectric coefficient f is fixed as 10−9 C/m, both fundamental and
second frequencies increase with the internal scale parameter g,

FIG. 8. Distribution of the imaginary parts of (a) deflection W (x3); (b) shear deformation Ψ (x3); (c) electric potential Φ (x3); and (d) carrier concentration N (x3) with differ-
ent flexoelectric coefficients in the case of ω = ω1 and g = 10

−9m.
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implying that the strain gradient effect can improve the stiffness of a
PSC nanowire. Here, the maximum differences of j(ω1 � ω1c)/ω1cj
and j(ω2 � ω2c)/ω2cj can reach 446% and 729% in the range of 10−9

to 10−6 m. We have separately checked the growth rate of the vibra-
tion frequency as the flexoelectric coefficient and the internal scale
parameter become larger, and the results show that the strain gradient
effect on natural frequencies is higher than that of flexoelectricity.
This shows that the strain gradient effect on the stiffness of a PSC
nanowire is larger than that of flexoelectricity.

The imaginary parts of deflection are much larger than the real
parts; therefore, only the imaginary parts are focused. In the case of
ω = ω1, g = 10−9 m, and f = 10−9 C/m, the contours of deflection,
rotation, electric potential, and carrier concentration along the longi-
tudinal section are shown in Fig. 5, which also agree with the classi-
cal results.44 In the case of ω = ω1, it is observed from Fig. 6 that, for
a small value of the internal scale parameter g = 10−9 m, the distribu-
tions of deflection, rotation, electric potential, and carrier concentra-
tion coincide with those without considering the strain gradient

FIG. 9. Distribution of the imaginary parts of (a) deflection W (x3); (b) shear deformation Ψ (x3); (c) electric potential Φ (x3); and (d) carrier concentration N (x3) with differ-
ent flexoelectric coefficients in the case of ω = ω2 and g = 10

−9m.
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effect. As the value of g increases, the deflection and rotation
decrease, while the electric potential and carrier concentration
decrease at the fixed end and increase at the other end. A similar
phenomenon was observed in the case of ω = ω2, as shown in Fig. 7.

Furthermore, the influence of flexoelectric coefficients on the
distributions of physical quantities was investigated. As seen in
Fig. 8, in the case of g = 10−9 m, the distribution trends of deflec-
tion, rotation, electric potential, and carrier concentration coincide
with those without considering flexoelectricity. It is observed that
the deflection and rotation decrease as the value of f increases,
implying that flexoelectricity can improve the stiffness of a PSC
nanowire. The distributions of electric potential and carrier con-
centration move down as f increases. Taking the influence of a
large carrier concentration at the fixed end on the linear constitu-
tive equation44 into account, only solutions far away from the fixed
end are considered. Obviously, the electric potential and carrier
concentration increase with f. A similar phenomenon is observed
in the case of ω = ω2 (see Fig. 9).

Finally, by comparing Figs. 8(a) and 8(b) with Figs. 8(c)
and 8(d), it is seen that the effect of flexoelectricity on the electric
potential and carrier concentration is more obvious. This is
because flexoelectricity is caused by the coupling effect of force and
electricity, which reflects more on electrical properties.

VI. CONCLUSIONS

In this paper, the governing equation of a PSC nanowire has
been derived after considering both flexoelectricity and the strain
gradient effect. Theoretical solutions of deflection, rotation, electric
potential, and carrier concentration have been given for a cantilever
PSC nanowire subjected to a time-harmonic shear force. The main
conclusions can be summarized as follows:

(1) As the flexoelectric coefficient and the internal scale parameter
increase, natural frequencies also increase.

(2) The stiffness of a PSC nanowire increases with the flexoelectric
coefficient and internal scale parameter, and the influence of the
strain gradient effect on the stiffness and fundamental and second-
order natural frequencies is larger than that of flexoelectricity.

(3) The electric potential and carrier concentration at the part far
away from the fixed end of a PSC nanowire increase with the
flexoelectric coefficient and internal scale parameter.

(4) The influence of flexoelectricity on the electric potential and
carrier concentration is greater than that of deflection and
rotation.
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