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ABSTRACT 

Pepper (Piper nigrum), is a popular spice and mainly grown in Sarawak, Malaysia. It has 

contributed to the agricultural sector in Malaysia for being 6th largest pepper producer in the 

world. As Sarawak pepper quality is highly valued around the world, black pepper, in 

particular, is subjected to adulteration by various additives such as papaya seeds, chilli powder 

and black pepper plant parts so that greater economic profit can be taken advantage of. Among 

these adulterants, papaya seeds are the most commonly identified adulterant due to their 

resemblance in appearance. There were several methods to detect these adulterants including 

microscopic, chromatographic, molecular and spectroscopic methods. However, these 

techniques have been acknowledged to be expensive and require tedious sample preparation. 

Additionally, proper specialist training is required to gain the expertise in operating these 

techniques effectively. In this regard, hyperspectral imaging appeals as a viable, rapid and 

non-destructive alternative for adulterant detection as the captured hyperspectral images 

contain rich spatial and spectral information, hence allowing interpretation of most hidden 

spectral information outside the visible light spectrum.  

However, hyperspectral images are associated with large volume and high 

dimensionality of data. Consequently, they require proper data pre-processing and feature 

extraction. Chemometrics or multivariate data analysis is then used to extract representative 

features from these data to develop an interpretable model to determine the authenticity of 

Sarawak black pepper powder samples. It is also of interest to investigate the applicability of 

hyperspectral imaging and chemometrics to classify the geographical origin of Sarawak black 

pepper powder samples. Chemometrical methods such as principal component analysis (PCA), 

partial least square (PLS) and support vector machine (SVM) or support vector regression 

(SVR) were assessed on the determination of authenticity and geographical origin of Sarawak 

black pepper powder samples. At the same time, deep learning (DL) neural network models, 

such as, convolutional neural network (CNN) and stacked autoencoders (SAE) were explored 

and compared with current chemometrical methods. All these models were assessed on the 

full spectra range of mean spectra data from Visible-NIR hyperspectral images (400 – 1000 

nm) with various pre-processing methods (SG, SG-SNV, SG-1st and SG-2nd). Results indicated 

that deep learning SAE model on SG-SNV pre-processed data had the best predictive 

performance on the determination of authenticity of black pepper powder samples, with R2, 

root mean square error (RMSE) and mean absolute percentage error (MAPE) of 0.9010, 

0.0143 and 1.17% respectively. While for the classification of geographical origin, all models 

except PLS with discriminant analysis had the best predictive performance with accuracy of 

100%.  
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Next, Visible-NIR hyperspectral imaging was used to predict the chemical and 

biological analytical properties of Sarawak black pepper powder samples from the lab analyses. 

Predictive models were developed and assessed with various data pre-processing methods. 

The final results demonstrated that all the models had decent predictive performance, with 

SVR model being the best model on the prediction of chemical analytical properties. While 

for the prediction of biological analytical properties, DL CNN had the best predictive 

performance. Despite that, overall predictive performance was at most satisfactory. 

Overall, HSI was demonstrated to be sufficient as rapid, non-destructive and 

affordable detector and estimator of authenticity and geographical origin of Sarawak black 

pepper powder samples. Further wavelength range of HSI and better quality of lab data is 

highly desirable to fully assess the capability of HSI in not just the quality assurance of black 

pepper powder samples, but also other food and agricultural products. 
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CHAPTER 1 

INTRODUCTION 

Pepper (Piper nigrum) is one of the most consumed spices in the world. It is mainly 

used as a savoury seasoning, preservative and even medicine (Ravindran and Kallupurackal, 

2001). The main constituent of pepper is piperine which is one main part of alkaloids and 

responsible for its pungency. It is shown to exhibit various physiological and pharmacological 

properties including antioxidant, anti-inflammatory, antimutagenic, antitumor, antiapoptotic, 

antigenotoxic, antiarthritic, antifungal, antidepressant, anti-hepatitis B and gastro-protective 

activities (Embuscado, 2019; Orrillo et al., 2019; Shityakov et al., 2019). Due to these benefits, 

pepper is highly demanded by consumers and widely grown in tropical countries, for example, 

the Asia Pacific countries such as India, Malaysia, Indonesia, Thailand, Vietnam, China, Sri 

Lanka, Cambodia, and some regions in Southern America such as Brazil, Mexico, Guatemala 

and so on (Ravindran and Kallupurackal, 2001). 

Pepper is harvested, threshed, blanched and dried before being further processed 

depending on the maturity of the harvested pepper fruits (Ravindran and Kallupurackal, 2001). 

Black and white pepper are the common end products found in the market. They are either 

made into berry or powder form for sale and export both locally and globally. Malaysia, being 

a member country of International Pepper Community (IPC), is 5th largest pepper producer in 

the world, with the production of 32.3 thousand tonnes and 33.9 thousand tonnes in 2018 and 

2019 respectively (FAO, 2019; IPC, 2018; Mohd Uzir Mahidin, 2020a). IPC is an organisation 

comprising of mainly pepper producing countries which include India, Malaysia, Indonesia, 

Vietnam, Sri Lanka, Philippines and Papua New Guinea (IPC, 2021). It was established in 

1972 to promote, co-ordinate and streamline the activities to bolster the pepper economy, such 

as to encourage research on diseases of pepper plant and development of varieties that exhibit 

high yield and resistance to common diseases, streamline the exchange of information and 

provision of statistics on pepper production, consumption, trading and pricing (IPC, 2021). In 

Malaysia, pepper is one of the important crops owning to its contribution to the agricultural 

sector. The agricultural sector has helped to contribute 7.3% of the Gross Domestic Product 

which amounts RM99.5 billion in 2019 in Malaysia, with a positive growth of 2% (Mohd Uzir 

Mahidin, 2020b). On 2020, over 8.5 thousand tonnes of pepper has been exported to major 

countries like Japan, China, Vietnam, Taiwan and Singapore with export value of RM120.80 

million (MPB, 2021). All of these are owning to Sarawak, being the primary pepper producer 

among all states in Malaysia, as it accounts for 98% of total pepper production (Entebang et 

al., 2020; MPB, 2021). Additionally, high quality of Sarawak pepper ensures Malaysia's 

competitiveness in the global market on the pepper industry, as the prices of Sarawak peppers 
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are comparatively higher than those from other major exporting countries. This is presently 

shown in IPC website where the price of pepper for Kuching variant has been higher and more 

stable than that of most peppers from various countries (IPC, 2021). Furthermore, it boosts the 

Sarawak's economic growth by improving the quality of life and creating more job 

opportunities for local farmers in rural areas (Entebang et al., 2020; Keong, 2017). 

Nowadays, food fraudulence has become a norm, covering various types of food such 

as herbs and spices, meat, vegetables, dairy products, drugs, oil and so on. To take advantage 

of greater economic profit, adulterants, which exhibit features of being similar in appearance, 

smell and visually appealing are intentionally added into the original goods of interest since 

they are cheaper to be produced (ASTA, 2016; Bansal et al., 2017; Dhanya et al., 2009; 

Oliveira et al., 2019). Adulterants can also potentially cause adverse effects to human health 

if consumed excessively (Bansal et al., 2017; Bawden, 2015; Kassie et al., 1999; Kermanshai 

et al., 2001). Hence, this raises the importance of detector and estimator of adulterants in 

quality assurance within the food industry. Pepper is one of the highly-priced commodities 

which is vulnerable to adulteration due to the aforementioned benefits, primarily the papaya 

seeds are usually added into black pepper products because of their resemblance in appearance 

with the black pepper (Orrillo et al., 2019). Therefore, stringent regulation of the quality of 

these pepper products must be enforced at all times.  

Currently, in the literature, there were numerous methods of detecting the adulterants 

of black pepper products qualitatively and quantitatively. They could be divided into several 

categories. One of them was the physical technique which involved density-based method and 

visual inspection (Attrey, 2017; Bansal et al., 2017; Curl and Fenwick, 1983; Dhanya et al., 

2009; Orrillo et al., 2019; September, 2011; Tremlová, 2001; Vadivel et al., 2018). While they 

were simple to implement, these only provided qualitative information and created some 

challenges such as tedious sample preparation and expertise in carrying out the operation 

(Bansal et al., 2017; Vadivel et al., 2018). The other category was chemical analytical 

techniques which are commonly used as a detector of adulterants both qualitatively and 

quantitatively. This involved gas chromatography (Curl and Fenwick, 1983), thin-layer 

chromatography (Bhattacharjee et al., 2003; Paradkar et al., 2001), high-performance liquid 

chromatography (HPLC) (Jain et al., 2007; Vadivel et al., 2018), supercritical fluid extraction 

using carbon dioxide (Bhattacharjee et al., 2003), direct analysis of metabolic profile using 

real-time mass spectrometry (DART-MS) (Chandra et al., 2014) to detect for adulterants in 

black pepper samples. Liquid-liquid extraction using ethanol was also used to detect piperine 

content on adulterated black pepper with papaya seeds (Madan et al., 1996). Detailed 

qualitative and quantitative results could be obtained with the shortcomings of requiring 

tedious sample preparation, ample specialist training, high cost, causing destruction to samples 
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and having their operations limited within laboratories (Abbas et al., 2018; Bansal et al., 2017; 

Orrillo et al., 2019). Additionally, extraction and chromatographic methods produced chemical 

waste (Manley, 2014). Then, another type is molecular technique, which is a biological method 

to discriminate the adulterants from the original product and authenticate the product origin 

using molecular marker (Bansal et al., 2017; Zhang et al., 2019). Examples of molecular 

techniques include random amplified polymorphic DNA (RAPD) (Khan et al., 2010), 

sequence characterised amplified region (SCAR) marker (Dhanya et al., 2009), qPCR method 

(Sousa et al., 2019), and DNA barcoding (Parvathy et al., 2014; Zhang et al., 2019). However, 

its usage had to be in the hands of specialists and was limited only within laboratories (Oliveira 

et al., 2019). 

Due to the aforementioned drawbacks, the need for rapid, informative, cost-effective, 

non-contact, non-destructive and reproducible technique to detect for adulterants becomes 

essential. Vibrational spectroscopic technique, being part of the chemical analytical techniques 

is another method that provides spectral fingerprint or chemical information of any given 

sample (Lohumi et al., 2015; Park and Lu, 2015; Rodriguez-Saona et al., 2016). Near-infrared 

(NIR), mid-infrared (MIR), Fourier Transform infrared (FTIR) spectroscopies were some of 

the examples that were widely used as adulterants detection tools present in black pepper 

samples (McGoverin et al., 2012; Orrillo et al., 2019; Vadivel et al., 2018; Wilde et al., 2019). 

However, they are mostly point-based and can only cover a small area of sample which may 

not be representative to the sample as a whole (Lohumi et al., 2015). Another method is 

computer vision system (CVS) which is an optical method that captures digital spatial images 

of the whole object within the visible light spectrum to detect adulterants present in samples. 

It has been broadly used in food and agricultural products quality assessment, monitoring, 

evaluation and assurance (Bhargava and Bansal, 2018; Chen et al., 2019; Di Rosa et al., 2017; 

Koirala et al., 2019; Patel et al., 2012; Rong et al., 2019; Taheri-Garavand et al., 2019; Vithu 

and Moses, 2016; Wu and Sun, 2013a; Xu et al., 2017, 2019). This worked well for black 

pepper samples which are in berry form (P. R. Goswami and K. R. Jain, 2013), but did not 

perform well if the samples were in powdered form due to stark similarities on appearance 

(Bhargava and Bansal, 2018). Hyperspectral imaging (HSI) is one such solution that 

incorporates CVS and vibrational spectroscopy technique, providing digital spatial images 

over the range of ultraviolet, visible light and infrared regions (Elmasry et al., 2012; Lohumi 

et al., 2015; Park and Lu, 2015). Researches had been done to utilise HSI to predict essential 

analytical chemistry parameters such as % sugar content, % moisture content and % volatile 

oil content using the information from continuous bands of wavelengths through supervised 

learning (Ke et al., 2020; Shorten et al., 2019). 
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The size of hyperspectral images is substantial considering the rich spectral 

information with continuous bands of wavelengths for each pixel. Multivariate data analysis 

is applied to extract this information to produce a simpler and interpretable mathematical or 

statistical model. Chemometrics appears as part of multivariate data analysis which is tailored 

for determination of various chemical analytical properties (Elmasry et al., 2012). 

Chemometrics had been broadly applied in HSI applications to assess and predict the quality 

of various food and agricultural products, such as nitrogen content, mineral compositions, 

moisture content and others (Khan et al., 2020). Particularly, for the case of black pepper, HSI 

with the help of multivariate data analysis, had been used to detect for adulterants such as 

papaya seeds, buckwheat and millet (McGoverin et al., 2012; Orrillo et al., 2019). The main 

drawbacks of most multivariate data analysis methods are requirement of prior domain 

knowledge and frequent human intervention to effectively extract and utilise the information 

from the vast amount of data. It was later proven that deep learning is one such solution that 

allows automatic feature extraction during the processing of hyperspectral images in raw 

format without too much pre-processing (Al-Sarayreh et al., 2018; Emmert-Streib et al., 2020; 

LeCun et al., 2015; Li et al., 2017). Additionally, it is mainly powered by data, making it 

perform better when more data is provided. Deep learning on hyperspectral images had been 

mainly applied in remote sensing, but it was broadly expanded to various fields, particularly 

food and agriculture as indicated in recent increasing number of researches on that field (Saha 

and Manickavasagan, 2021; Signoroni et al., 2019; Yang et al., 2019).  

 

1.1 Motivation 
In this research, the main adulterant of black pepper products to be investigated is 

papaya seeds because of prevalent coverage in literature regarding its usage. Currently, black 

pepper products quality assessment and adulteration detection are mostly performed using 

laboratory chemical analytical techniques. While they provide detailed analyses, since most 

quality assurance and control activities demand the analysis to be done on-site and in real-time, 

the chemical analytical techniques usually require tedious sample preparation and proper 

specialist training, thus increasing time taken to retrieve the results. CVS is ineffective in 

detecting the adulterants with resembling appearance, even though it is affordable and rapid. 

Most spectroscopic techniques are point-based and thus time-consuming. Hence, HSI is 

introduced as a rapid alternative that combines computer vision and spectroscopy to assess the 

quality of black pepper products. However, HSI is not widely adopted in most on-site quality 

assurance and control of food and agricultural products in Malaysia. Most research on this 

field were still bounded within lab scale (Saha and Manickavasagan, 2021). This research 

serves to assess the applicability of HSI in determining the quality of particularly black pepper 
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powder products compared to chemical analytical techniques, so that HSI can be included as 

a potential alternative in most industrial real-time quality assurance applications. 

Hyperspectral images by nature have high dimensionality and a large volume of data, 

thus they require proper data pre-processing and effective feature extraction so that an 

interpretable model can be developed to verify the presence of adulteration in black pepper 

products and determine their quantity. Most multivariate data analysis techniques require prior 

knowledge and human intervention to effectively extract features and fit the model. Deep 

learning, on the other hand, allows automatic feature extraction and processing of these data 

in raw format without compromising the accuracy of its outputs. There were numerous deep 

learning methods which were mainly tasked for detecting food spice powder products, and the 

most commonly found ones were convolutional neural network and stacked autoencoders. To 

date, no previous work is found for utilising deep learning models in detecting and quantifying 

the adulterants present in black pepper powder samples, thus it is addressed in this research 

project. Furthermore, only a few handfuls of resources could be found in identifying the 

geographical origin of black pepper samples using HSI. It is thus addressed in this project as 

the geographical origin of black pepper samples has considerable influence on the pricing of 

black pepper and understanding it ensures appropriate actions can be made to maintain the 

excellence of quality of black pepper for that identified region (Liang et al., 2021). It is also 

of interest to predict the chemical and biological analytical properties using solely HSI inputs. 

This allows immediate analytical results to be produced from machine learning models while 

waiting for occasional chemical analyses to complete, hence reducing chemical resources and 

wastes. 

 

1.2 Objectives 
The research objectives are outlined as follows: 

1. To determine the characterisation of black pepper powder samples of different purity 

and geographical origins in Sarawak (Serian, Sungai Tenggang, Pakan, Lachau, Sibu) 

by representative features extracted from the HSI inputs; 

2. To assess and compare the predictive performance of various machine learning 

models which includes PLS, SVM and deep learning using HSI inputs in determining 

the purity of black pepper powder products and their geographical origins using 

RMSE (comparing predicted and true purity values of black pepper) and accuracy 

(comparing predicted and true geographical origins of black pepper) respectively; 

3. To evaluate the predictive performance of various machine learning models using HSI 

inputs on the prediction of chemical and biological analytical properties of black 
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pepper powder samples and compare them with true results from detailed chemistry 

analyses 

 

1.3 Significance 
This research seeks to bring about the contributions as follows: 

1. Since chemical analyses which are currently used to carry out quality control of black 

pepper require tedious sample preparation, high cost and expertise in operating and 

maintaining the equipment, HSI with functional machine learning model can be a 

viable, affordable and user-friendly alternative on lab scale and industrial on-line 

quality assessment; 

2. Development of such model ensures the consistent high quality of Sarawak black 

pepper powder products, hence bolstering the confidence among consumers on the 

food safety of the black pepper powder products;  

3. It is envisaged that the introduction of such technologies will enable Sarawak and 

subsequently Malaysia to achieve the goal of boosting the agricultural industry by 

streamlining the quality assurance process of not just black pepper products, but also 

various food and agricultural products, as well as digital economy indirectly by 

empowering the locals with the knowledge and understanding of cutting edge 

technologies and tools (SMA, 2019); 

4. Dataset containing qualitative and quantitative information of Sarawak black pepper 

from HSI can be provided, which subsequently delivers valuable comparisons and 

benchmark of machine learning models regarding the adulteration detection, 

classification of geographical origins and prediction of internal quality of black pepper 

products for future refinements 

 

1.4 Thesis Outline 
The contents of this thesis can be outlined as follows: 

Chapter 2 provides a detailed research background and literature review on 

adulteration issues for black pepper powder products, current adulterants detection methods, 

HSI and various machine learning models including deep learning before moving on to the 

core research. 

Chapter 3 presents the methodology of the research project. This includes materials 

preparation such as black pepper powder samples and its adulterant, chemical analyses to be 
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carried out, equipment and apparatus to be used, data pre-processing and processing, design 

of training pipeline for various machine learning models and optimisations to be made. 

The results of the research project are divided into two chapters: 

Chapter 4 presents the results for the adulteration detection and classification of 

geographical origin of black pepper powder samples. This includes an overview of preliminary 

data exploration, data pre-processing and results from various machine learning models 

including PLS, SVM and deep learning. The deep learning model training is also accompanied 

by a series of model parameters tuning. A critical and detailed analysis is made to assess if 

HSI qualify to be rapid, affordable and major alternative for chemical analytical techniques in 

detection of adulterants present in black pepper samples or not. 

Chapter 5 shows the results for the prediction of chemical and biological analytical 

properties based on solely HSI inputs. Comparisons on the predictive performance from 

various machine learning models including PLS, SVM and deep learning are made and 

analysed to assess the suitability of HSI inputs in predicting chemical and biological analytical 

properties accurately or not. 

Chapter 6 concludes the results and analyses of the research that shall fulfil the 

research objectives. Future outlook and recommendations on this research project are outlined 

as well. 
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CHAPTER 2 

RESEARCH BACKGROUND 

Food fraudulence has become a prevalent issue, covering various types of food such 

as herbs and spices, meat, vegetables, dairy products, drugs, oil and so on. Adulterants, which 

exhibit appealing appearance and similarity in appearance and smell with the original products 

of interest are intentionally added since they are cheaper and affordable to be produced to take 

advantage of greater economic profit (ASTA, 2016; Attrey, 2017; Bansal et al., 2017; Dhanya 

et al., 2009; Galvin-King et al., 2018; Oliveira et al., 2019; Sørensen et al., 2016). Adulterants 

can also potentially cause adverse effects to human health. For example, peanuts and almonds, 

which can be fatal for those who are allergic to them, are usually used as adulterants in cumin 

and paprika (Bawden, 2015), coffee powder adulterated with date seed powder or tamarind 

induces diarrhoea (Bansal et al., 2017), papaya seeds present in black pepper may cause 

damage to liver and DNA when consumed in excessive amount due to presence of benzyl 

isothiocyanate in papaya seeds (Bansal et al., 2017; Kassie et al., 1999; Kermanshai et al., 

2001). Hence, this raises the importance of detector and estimator of adulterants in quality 

assurance within the food industry. 

Pepper is one of the valuable spices and commodities in the world. On 2020, over 588 

thousand tonnes of pepper had been produced around the globe and Malaysia was the 5th 

largest pepper producer with 30.8 thousand tonnes of pepper was produced (IPC, 2018; MPB, 

2021). In terms of export and import of pepper in Malaysia, 8.5 thousand and 2.2 thousand 

tonnes of pepper were made respectively. Although other countries such as Vietnam and India 

had higher production rates than in Malaysia, Malaysia has the highest pepper price among all 

the pepper producing countries (Entebang et al., 2020; IPC, 2021). Because of its high 

economical and aforementioned nutritional value, pepper is particularly vulnerable to 

adulteration. The target of this research is black pepper is due to the fact that the adulteration 

issue on black pepper, both in berry and powdered forms, receives more attention than that of 

white pepper judging from the larger volume of literature covering such this issue. The 

adulterants of black pepper found in the literature were commonly papaya (Carica papaya L) 

seeds (Bhattacharjee et al., 2003; Curl and Fenwick, 1983; Dhanya et al., 2009; Govindarajan 

and Stahl, 1977; McGoverin et al., 2012; Orrillo et al., 2019; Paradkar et al., 2001; Sousa et 

al., 2019; Vadivel et al., 2018; Wilde et al., 2019), and the others including chilli powder 

(Parvathy et al., 2014), other pepper species (Chandra et al., 2014; Sousa et al., 2019), 

buckwheat and millet (McGoverin et al., 2012; September, 2011), maize (Sousa et al., 2019), 

black pepper plant parts such as husk, pinheads and spent (Wilde et al., 2019), cassava starch 

and corn flour (Lima et al., 2020). 
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2.1 Detection of Adulteration of Black Pepper 
To effectively detect for adulterants present in black pepper products qualitatively and 

quantitatively, numerous methods had been extensively researched in the past. They were 

divided into physical technique, chemical analytical technique which included vibrational 

spectroscopy, molecular technique, and imaging system including computer vision and 

hyperspectral imaging. Their functionality along with pros and cons are presented in Table 2.1. 

Most current adulteration detection methods of black pepper products are reviewed and 

outlined as tabulated in Table 2.2. The details of each method are subsequently elucidated in 

the following sections. 

 

2.1.1 Physical Techniques 
Physical technique is a simple technique that serves to provide macroscopic and 

microscopic visual inspection and analysis, and analyse various physical parameters of the 

samples of interest such as morphology, texture, solubility, bulk density, integrity and so on 

(Bansal et al., 2017). The oldest method involving physical technique to detect adulterants in 

black pepper samples was the use of alcohol to detect for floating papaya seeds in black pepper 

samples (Curl and Fenwick, 1983; Dhanya et al., 2009; September, 2011). Since that method 

was prone to human error, optical microscopic examination was used instead (Bansal et al., 

2017; Orrillo et al., 2019; Vadivel et al., 2018). From the examination as illustrated in Figure 

2.1, it revealed the presence of exclusive components found in papaya seed powder such as 

criss-cross fibres, fatty oil, oil globules, endosperm, long tubular cells, testa cells, aleurone 

grains, tracheids, vessel with spiral thickening and thick-walled parenchyma (Vadivel et al., 

2018). Other common components found in both black pepper and papaya seed powders were 

brown content, simple and compound starch grains, calcium oxalate crystals, fibres, 

parenchyma cells, sclerenchyma cells, sclereids and trichomes (Vadivel et al., 2018). One can 

identify the difference between black pepper and papaya seed powders through careful 

observation, sufficient expertise and good quality equipment. However, tedious sample 

preparation and availability of only qualitative assessment are main drawbacks of the physical 

detection methods since quantitative information is essential to fulfil industrial requirements 

and provide tangible information on the severity of adulteration (Bansal et al., 2017; Vadivel 

et al., 2018). 
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Table 2.1: Black pepper adulteration detection methods and their advantages and disadvantages 

Detection Method Type Feature Advantages Disadvantages 

Physical Detect components physically using 
visual observation 

• Easy to implement and execute 
• Rapid result fetching 

• Only qualitative results are available 
• Tedious sample preparation 

Chemical Analytical Detect and measure individual 
components using chemicals 

• Provide detailed qualitative and 
quantitative analysis 

• Analysis results are highly accurate 

• Tedious sample preparation 
• Not rapid 
• Samples are destroyed after analysis 
• Produce chemical waste 

Spectroscopic Use vibrational spectroscopy to 
detect spectral footprint of the sample 

• Provide non-destructive qualitative 
and quantitative analysis 

• Ease of sample preparation 

• Measurement is only done on one point 
at one time, hence require averaging 

• Not rapid 
Molecular Utilise molecular markers to identify 

DNA fingerprints of individual 
components present in the sample 

• Provide detailed qualitative and 
quantitative analysis 

• Rapid result fetching 

• Tedious sample preparation 
• Samples are destroyed after analysis 
• Operations limited within laboratories 

Computer Vision Use imaging device to capture images 
of samples within visible light region 
and perform detection 

• Provide non-destructive qualitative 
and quantitative analysis 

• Ease of sample preparation 

• Does not work well for samples with 
high visual similarity 

• Not as detailed as chemical analytical 
technique 

Hyperspectral Imaging Use hyperspectral imaging device to 
capture hyperspectral datacubes of 
samples and perform detection and 
estimation 

• Provide non-destructive qualitative 
and quantitative analysis 

• Ease of sample preparation 
• Has additional spectral dimension to 

provide informative analysis 

• Has large amount of data with high 
number of dimensions, causing data 
management issues 

• Not as detailed as chemical analytical 
technique 
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Table 2.2: Various black pepper adulteration detection methods found in the literature 

Reference Detection Methods Detection 
Method Type 

Adulterants Remarks 

Lima et al. (2020) NIR spectroscopy Spectroscopic Starch cassava and 
corn flour 

Using NIR with range of 1100 – 2500 nm, a model based on PLS 
to differentiate type of adulterants in black pepper and cumin 
samples yielded correlation coefficient of above 0.9 and RMSE 
ranging from 2.2 to 7, and based on 13 commercial black pepper 
powder samples, 62% of them were found to be adulterated with 
cassava starch or corn flour 

Wilde et al. 
(2019) 

NIR and FTIR spectroscopy Spectroscopic Papaya seeds, 
chilli powder and 
black pepper spent 
parts 

NIR and FTIR binary classification model of whether the black 
pepper samples were adulterated or not had a measure of fit R2 
of 0.93 and 0.83, and predictive ability Q2 of 0.98 and 0.97, 
respectively 

Sousa et al. 
(2019) 

DNA barcoding Molecular Papaya seeds, 
maize and cayenne 
pepper 

qPCR-based method on plant DNA barcodes (trnL and psbA-
trnH), detected 41% of all 29 samples were adulterated 

Orrillo et al. 
(2019) 

NIR hyperspectral imaging Hyperspectral 
Imaging 

Papaya seeds Classification using principal components analysis and soft 
independent modelling of class analogy yielded accuracy of 
100% for whole samples and 90% for ground samples; PLS 
regression pre-processed by standard normal variate (SNV) and 
2nd derivate yielded RMSEP of 2.51 and coefficient of 
determination of 0.93 

Gul et al. (2018) GC-mass spectrometry (MS) Chemical 
Analytical 

Papaya seeds Adulteration of papaya seeds on black pepper samples was able 
to be detected using the 500- and 750-bp-sized SCAR markers 
to amplify their specific SCAR primer sets. Additionally, 
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Sequence Characterised 
Amplified Region (SCAR) 
marker 

Molecular metabolic profiling using GC-MS on the black pepper and 
papaya seeds powder samples with different adulteration ratios 
was able to identify respective specific metabolites as low as 20 
mg/g 

Vadivel et al. 
(2018) 

Microscopic Physical Papaya seeds NIR spectroscopy was more efficient and rapid than 
microscopic, phytochemical techniques, HPTLC and GC-MS in 
black pepper adulterants detection 

Phytochemical techniques, 
high performance thin-layer 
chromatography (HPTLC), 
GC-MS 

Chemical 
Analytical 

NIR spectroscopy Spectroscopic 

Dissanayake et al. 
(2016) 

DNA barcoding (psbA-trnH) Molecular Papaya seeds and 
chilli powder 

Used DNA barcoding primer pair, psbA-trnH, to amplify DNA; 
black pepper DNA produced 200 bp bands, chilli and papaya 
DNA produced 450 bp bands, while mixture of black pepper 
with chilli and papaya seeds produced both 200 bp and 450 bp 
bands 

Parvathy et al. 
(2014) 

DNA barcoding Molecular Chilli powder Three barcoding loci psbA-trnH, rbcL, rpoC1 were used to 
detect adulteration in black pepper, psbA-trnH was the best in 
detecting chilli powder present in black pepper sample 

Chandra et al. 
(2014) 

Direct analysis using real-time 
mass spectrometry with 
multivariate analysis (DART-
MS) 

Chemical 
Analytical 

Other pepper 
species (Indian 
tipali, Bangla 
tipali) 

Metabolic profiling of peppers using DART-MS then performed 
discrimination using principal components analysis, alkaloids 
and amides of black pepper and other pepper species were found 

P. R. Goswami 
and K. R. Jain 
(2013) 

Computer vision and image 
processing 

Computer 
Vision 

Papaya seeds and 
other visually 
similar foreign 
objects 

Used Canny edge detection on RGB colours converted to 
grayscale image containing sparsely scattered black pepper with 
papaya seeds and other foreign objects 
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McGoverin et al. 
(2012) 

NIR and MIR hyperspectral 
imaging 

Hyperspectral 
Imaging 

Papaya seeds With recorded hyperspectral images of spatial resolution of 300 
µm × 300 µm with a range of 1000–2500 nm at 6.3 nm intervals, 
root mean square error of prediction (RMSEP) was 2.7% and 
ratio of standard error of prediction to standard deviation was 
11.14 

Khan et al. (2010) Random Amplified 
Polymorphic DNA (RAPD) 

Molecular Papaya seeds Five out of eight decamer oligonucleotide primers indicated 
clear discrimination on black pepper and papaya seeds 

Dhanya et al. 
(2009) 

SCAR marker Molecular Papaya seeds Detected the presence of papaya seeds in one of five branded 
black pepper  samples using SCAR molecular marker 

Jain et al. (2007) Fluorescence and high 
performance liquid 
chromatography (HPLC) 

Chemical 
Analytical 

Papaya seeds Detected papaya seeds adulteration in black pepper from HPLC; 
HPLC profiles of black pepper market samples had adulterated 
peaks compared to pure genuine black pepper samples at 
different retention times 

Bhattacharjee et 
al. (2003) 

Supercritical fluid extraction 
(SFE) using carbon dioxide 

Chemical 
Analytical 

Papaya seeds Thin-layer chromatography analysis on SFE showed fluorescent 
band at 366 nm at Rf 0.172 proving the presence of papaya seed 
in black pepper, gas chromatography identified aldehydes n-
nonanal, n-decanal, n-dodecanal proving the same 
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2.1.2 Chemical Analytical Techniques 
Chemical analytical techniques have been one of the most commonly used and well 

established qualitative and quantitative methods to perform quality assessments on various 

food and agricultural products with remarkable accuracy and precision. In assessing the degree 

of adulteration or authenticity of black pepper products, various literature indicated that most 

assessments involved chromatographic methods and vibrational spectroscopic techniques. 

 

2.1.1.1 Chromatography 
Chromatography is a technique that separates a mixture into basic components 

through the movement of molecules between stationary and mobile phases driven by affinity 

among the molecular weights and characteristics of the basic components (Coskun, 2016). 

There are various types of chromatography, such as gas, column, ion-exchange, thin-layer, 

high-performance liquid, affinity chromatography and others. Among them, the 

chromatographic techniques that were recently used in detecting for adulterants present in 

black pepper samples are as follows: 

• Gas chromatography (GC): 

Gul et al. (2018) utilised GC-MS to perform metabolic profiling on the black pepper and 

papaya seeds powder samples in different adulteration ratios. GC-MS was able to detect 44 

Figure 2.1: Microscopic characteristics of black pepper and papaya seeds (Vadivel et al., 2018) 
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and 33 metabolites out of 84 and 61 chemically diverse metabolites in black pepper and papaya 

seeds respectively. The detection performance could achieve detection as low as 20 mg/g of 

metabolites. 

• Thin-layer chromatography (TLC): 

Bhattacharjee et al. (2003) performed supercritical fluid extraction (SFE) using carbon dioxide 

on various proportions of black pepper and papaya seed samples and then to be sent to thin-

layer chromatography analysis using ethylene dichloride as solvent at 366 nm. The results 

indicated that SFE extracts of papaya seeds yielded an additional green fluorescent band at Rf 

0.172, thus proving the ability to detect the presence of adulteration of papaya seeds in black 

pepper samples, qualitatively, however. 

• High-performance liquid chromatography (HPLC): 

Jain et al. (2007) revealed that by using fluorescence markers and HPLC fingerprints, black 

pepper samples displayed lemon yellow fluorescence while papaya seeds displayed blue 

fluorescence under UV irradiation at 365 nm. Then, HPLC analysis showed that black pepper 

market samples had adulterated peaks compared to pure genuine black pepper samples at 

different retention times, distinguishing the difference between pure and adulterated black 

pepper products qualitatively. 

• High-performance thin-layer chromatography (HPTLC): 

Vadivel et al. (2018) prepared extracts of black pepper and papaya seeds using methanol which 

was then sent to HPTLC analysis to be viewed under UV irradiation at 254 and 366 nm. The 

results revealed that papaya seed extract had different band (Rf 0.35) than those of black pepper 

extracts (Rf 0.59) and standard piperine (Rf 0.58), allowing the detection of adulterants present 

in black pepper products qualitatively. 

 

2.1.1.2 Vibrational Spectroscopy 
Chromatographic techniques required high equipment and operation cost, expertise as 

well as their operations to be performed within the vicinity of laboratories. Furthermore, they 

produce environmental waste after the analysis (Manley, 2014). Vibrational spectroscopic 

technique, being another part of the chemical analytical technique is an optical method that 

evaluates the spectral fingerprint or the unique chemical information of a certain material 

(Elmasry et al., 2012; Lohumi et al., 2015; Park and Lu, 2015). The spectral fingerprint of a 

material refers to reflection, scattering, absorption and emission of electromagnetic energy in 

unique patterns at certain wavelengths or frequencies because of their intrinsic physical 
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structure and chemical composition (Danezis et al., 2016; Elmasry et al., 2012). Some 

examples of vibrational spectroscopic techniques include near-infrared (NIR), mid-infrared 

(MIR), Fourier Transform infrared (FTIR), Raman spectroscopies and others (Lohumi et al., 

2015; Park and Lu, 2015). A brief schematic of how these techniques work is depicted in 

Figure 2.2. Among these techniques, NIR, MIR and FTIR were used in detecting the 

adulterants present in black pepper samples.  

NIR covers the wavelength range between 780 – 2500 nm where overtones and 

combinations of fundamental vibrations of molecules occur. Examples of this include 𝐶𝐶 − 𝐻𝐻, 

𝑂𝑂 − 𝐻𝐻, 𝑁𝑁 − 𝐻𝐻 chemical bonds that have high vibrational frequency (Jha, 2016; Lohumi et al., 

2015; Oliveira et al., 2019; Park and Lu, 2015). On the other hand, mid-infrared covers the 

wavelength range between 2500 – 25000 nm which is comprised of functional group (usually 

2500 – 6667 nm) and fingerprint (usually 6667 – 20000 nm) regions. Examples of functional 

groups in MIR are 𝑂𝑂 − 𝐻𝐻 and 𝑁𝑁 −𝐻𝐻 stretching between 2703 – 4000 nm, 𝐶𝐶 − 𝐻𝐻 stretching 

between 3030 – 3571 nm, triple bonded functional groups (𝐶𝐶 ≡ 𝐶𝐶, 𝐶𝐶 ≡ 𝑁𝑁) between 3704 – 

5405 nm and double bonded functional groups (𝐶𝐶 = 𝐶𝐶, 𝐶𝐶 = 𝑁𝑁, 𝐶𝐶 = 𝑂𝑂) between 5128 – 6897 

nm (Jha, 2016; Lohumi et al., 2015; Oliveira et al., 2019). Further details about various spectra 

structure residing in NIR can be referred to Figure A.1 in Appendix A. Most spectroscopic 

analyses are processed using multivariate data analysis or chemometrics, which will be 

discussed in Section 2.3 as the spectroscopic results contain redundancies and are thus difficult 

to interpret and yield meaningful results. FTIR spectroscopy measures fundamental vibrations 

Figure 2.2: Brief introduction of most vibrational spectroscopic techniques (Oliveira et al., 2019) 
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instead of overtones and combinations through various measurement modes which include 

attenuated total reflectance, diffuse reflectance, high-throughput transmission and 

transmission cell (Jha, 2016; Lohumi et al., 2015). Attenuated total reflectance appeared as the 

most widely used mode in FTIR spectroscopy due to minimal effort in sample preparation for 

its qualitative and quantitative analysis. Vibrational spectroscopy techniques are widely used 

as qualitative and quantitative analysis for various food, condiments and agricultural products 

on their authenticity and adulteration levels (Kucharska-Ambrożej and Karpinska, 2020; 

Lohumi et al., 2015; Reinholds et al., 2015). McGoverin et al. (2012), Wilde et al. (2019) and 

Lima et al. (2020) utilised vibrational spectroscopy techniques in the detection of adulterants 

present in the black pepper samples. 

 McGoverin et al. (2012) used NIR hyperspectral imaging, which has better 

functionality than usual NIR spectroscopy and will be discussed further in Section 2.1.5, to 

detect for adulterants present in ground black pepper samples which were buckwheat and 

millet. Various proportions of buckwheat and millet were ground and mixed with ground black 

pepper samples, then sent to NIR hyperspectral imaging and FTIR spectrometer for MIR 

measurements. All the hyperspectral images were taken with spatial resolution of 300 µm × 

300 µm and spectral range of 1000 – 2500 nm at 6.3 nm intervals. For MIR spectral 

measurements, they were recorded within 550 – 3999 cm-1 with spectral resolution of 4 cm-1, 

with an average of 32 scans for each measured spectrum. Partial least square (PLS) regression 

modelling, which is part of the multivariate data analysis that will be discussed in Section 2.3.2 

was then performed using the NIR and MIR along with testing of various pre-processing 

methods such as standard normal variate, multiplicative scatter correcting and Savitzky-Golay 

derivative filtering to determine the amount of adulterants present in ground black pepper 

samples. The results were by using the pre-processing method of standard normal variate 

followed by first derivate pre-processing, root mean square error of prediction of 2.7% and 

ratio of the standard error of prediction to standard deviation of 11.14 for NIR hyperspectral 

imaging. 

 Wilde et al. (2019) performed NIR and FTIR spectroscopy to detect for adulterants 

present in black pepper samples which were papaya seeds, chilli, black pepper husks, pinheads 

and defatted spent materials. NIR spectra for the samples were acquired within the range of 

12000 – 4000 cm-1 (833 – 2500 nm) with 32 scans and resolution of 8 cm-1. While for FTIR 

spectra, they were acquired within the range of 4000 – 400 cm-1 (2500 – 25000 nm) with 32 

scans and resolution 4 cm-1. A binary classification model using orthogonal PLS discriminant 

analysis was constructed after a series of pre-processing methods such as derivatives, 

Savitzky-Golay filter and standard normal variate was made. The results indicated that the 

receiver operator characteristic curve was 0.98, measure of fit R2 0.93 and 0.83 and prediction 
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ability Q2 0.98 and 0.97 for NIR and FTIR spectroscopy respectively, proving its capability 

as qualitative and quantitative black pepper adulteration detector. 

 Lima et al. (2020) utilised NIR spectroscopy to detect and discriminate the adulterants 

in black pepper and cumin powder samples. The adulterants of interest were starch cassava 

and corn flour. Targeted models were then constructed based on multiple linear regression and 

PLS techniques while non-targeted models were based on soft independent modelling of class 

analogy (SIMCA) and PLS discriminant analysis. The targeted model yielded correlation 

coefficient of above 0.9 and RMSE ranging from 2.2 to 7. On the other hand, the non-targeted 

model that utilised SIMCA had high sensitivity in classifying genuine black pepper and cumin 

powder samples. With that, 13 commercial black pepper samples were tested and 62% of them 

were found to be adulterated. 

Although the detection performance of vibrational spectroscopy techniques is on par 

with that of the chromatographic technique, vibrational spectroscopy techniques are mostly 

point-based and can only cover a small area of sample which may not be representative to the 

sample as a whole. Furthermore, the measurement process could be time-consuming and 

inefficient considering a large number of samples to be assessed even though it can be 

performed on all other locations of sample multiple times (Lohumi et al., 2015). Additionally, 

if the sample was heterogeneous, the measurement of reflectance values would be inconsistent 

on all locations of the sample (Elmasry et al., 2012; Liu et al., 2017; Lohumi et al., 2015). 

 

2.1.1.3 Other Chemical Analytical Methods 
 Chandra et al. (2014) applied direct analysis of metabolic profile using real-time mass 

spectrometry (DART-MS) to detect for adulterants such as Indian tipali and Bangla tipali 

present in black pepper samples and profile for their alkaloids and amides. Through this 

method, mass spectra, or chemical fingerprints of fruits, leaves and roots for each species were 

analysed, and it was revealed that there were variations found in the distribution of some 

common piperamides in these parts for each species in terms of percent ionisation. 

Additionally, principal components analysis was then applied and it was able to identify 

distinct clusters belonging to respective species. 

Malaysian Pepper Board (MPB), which serves as an authority to aid in the production, 

development and growth of national pepper industry in Malaysia, had been using chemical 

analytical techniques in assessing the quality of black pepper products (MPB, 2021). As 

mentioned above, detailed qualitative and quantitative results could be obtained with the 

shortcomings of requiring tedious sample preparation, ample specialist training, high cost and 
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having their operations limited within laboratories (Abbas et al., 2018; Bansal et al., 2017; 

Orrillo et al., 2019). Additionally, extraction and chromatography methods produced chemical 

waste which may potentially cause environmental damage and hazards (Manley, 2014). 

 

2.1.3 Molecular Techniques 
Another type is molecular technique or sequencing-based technique, which is a 

biological method to discriminate the adulterants from the original product and authenticate 

the product origin using molecular markers (Bansal et al., 2017; Zhang et al., 2019). Examples 

of molecular techniques were molecular techniques included: 

• Random amplified polymorphic DNA (RAPD): 

Khan et al. (2010) displayed that through RAPD, five out of eight decamer oligonucleotide 

primers yielded species-specific reproducible unique amplicons, which indicated clear 

discrimination on black pepper and papaya seeds. 

• Sequence characterised amplified region (SCAR) marker: 

Dhanya et al. (2009) detected the presence of papaya seeds in one of five branded black pepper 

powder samples using SCAR molecular marker using polymerase chain reaction (PCR) 

amplification. 

Gul et al. (2018) were able to discriminate the papaya seeds and black pepper based on their 

DNA fingerprints using SCAR markers. By using their respective specific SCAR primer sets, 

500- and 750-bp-sized SCAR markers of black pepper and papaya seeds were amplified. 

• DNA barcoding: 

Sousa et al. (2019) proposed qPCR-based method on plant DNA barcodes using trnL and 

psbA-trnH primers, and successfully detected 41% of all 29 black pepper powder samples that 

were adulterated with papaya seeds, cayenne pepper and maize flour. 

Zhang et al. (2019) made use of DNA barcoding on 6 white pepper samples, although unrelated 

to black pepper but still relevant to adulteration detection, using ITS2 and psbA-trnH sequences 

and compared them with those in the barcode database. 2 out of 6 samples were found to be 

adulterated with grass (Setaria) and cumin (Cuminum cyminum). 

Dissanayake et al. (2016) applied DNA barcoding primer pair, psbA-trnH, to amplify DNA of 

the black pepper powder samples. Pure black pepper DNA produced 200 bp bands, while pure 

chilli and papaya DNA produced 450 bp bands. If the black pepper powder samples were 
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adulterated, their DNA produced 200 bp and 450 bp bands, thus enabling its use as a qualitative 

adulteration detection tool for black pepper samples. 

Parvathy et al. (2014) used three DNA barcoding loci psbA-trnH, rbcL, rpoC1 to detect 

adulteration in black pepper, with psbA-trnH was the best in detecting chilli powder present 

in black pepper samples. 2 out of 9 market black pepper powder samples were found to contain 

chilli powder adulteration through this method. 

Molecular techniques are particularly useful for the detection of genetically modified 

foods in various food samples and microbial contaminants (Bansal et al., 2017). Although its 

detection is rapid and low in cost, it requires a strictly controlled environment, specialised 

training and has its operations limited only within laboratories, making it highly unsuitable to 

be used in real time (Bansal et al., 2017; Oliveira et al., 2019). 

 

2.1.4 Computer Vision 
Another method is computer vision system (CVS) which is an optical method that 

captures digital images of the whole object within the visible light spectrum to detect 

adulterants present in samples. Computer vision system has been broadly used in food and 

agricultural products quality assessment, monitoring, evaluation and assurance (Bhargava and 

Bansal, 2018; Chen et al., 2019; Di Rosa et al., 2017; Koirala et al., 2019; Patel et al., 2012; 

Rong et al., 2019; Taheri-Garavand et al., 2019; Vithu and Moses, 2016; Wu and Sun, 2013a; 

Xu et al., 2017, 2019). CVS is one such method to provide rapid, reliable, objective, cost-

effective and highly available adulteration detection as well as reproducibility of data (Taheri-

Garavand et al., 2019). 

CVS setup is usually made up of charged-coupled device or complementary metal-

oxide semiconductor camera, lighting system, background screen, a sample of interest and 

computer to perform data exploratory, image processing and analysis (Bhargava and Bansal, 

2018; Vithu and Moses, 2016). A good lighting system includes proper selection of lighting 

source, arrangement and geometry as well as appropriate background screen selection are 

crucial in order to ensure consistency and homogeneity of illuminance over the sample for 

better image quality (Patel et al., 2012; Vithu and Moses, 2016). The digital images taken are 

usually within the visible light spectrum similar to how human eyes perceive and can have 

different colour spaces depending on the nature of the analysis carried out. Colour spaces 

found in the literature are comprised of red, green and blue (RGB), normalised RGB, XYZ 

(defined by International Commission on Illumination), HSV, HSL, L*a*b*, L*u*v*, YCrCb, 

YUV, TSL and I1I2I3 (García-Mateos et al., 2015; Ohta et al., 1980; Shih and Liu, 2005; 
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Terrillon et al., 2000). After that, the images undergo several levels of processing, namely low-

level processing (pre-processing to remove unwanted noise), intermediate-level processing 

(segmentation to locate and extract the boundaries of objects in images as well as feature 

extraction) and high-level processing (classification and recognition) (Bhargava and Bansal, 

2018; Patel et al., 2012; Taheri-Garavand et al., 2019). 

However, one of the main drawbacks of CVS is it has difficulties in detecting the 

adulterants which are similar in appearance with the original item of interest (Bhargava and 

Bansal, 2018; Modupalli et al., 2021). Particularly, the papaya seeds powder has similar dark 

brown colour as black pepper powder. Additionally, this worked well for black pepper samples 

which are in berry form (P. R. Goswami and K. R. Jain, 2013), but did not perform well if the 

samples were in powdered form due to stark similarities in terms of colour, texture and size 

(Bhargava and Bansal, 2018; Modupalli et al., 2021). Another drawback of CVS is in order to 

evaluate the chemical composition and internal quality characteristics of the sample, spectral 

information that is outside the visible light spectrum is essential such as certain wavelength 

range refers to certain functional groups as mentioned in Section 2.1.2, hence leading to the 

adoption of hyperspectral imaging (Bhargava and Bansal, 2018; Di Rosa et al., 2017; Elmasry 

et al., 2012; Gowen et al., 2007; Liu et al., 2017; Park and Lu, 2015; Wu and Sun, 2013b). 

 

2.1.5 Hyperspectral Imaging 
Hyperspectral imaging (HSI) is one such solution that incorporates computer vision 

system and vibrational spectroscopy technique, with its setup as shown in Figure 2.2. HSI 

generates a hypercube or spectral cube which consists of a stack of two-dimensional (x, y) 

images with varying continuous wavelengths as another dimension (λ). Hypercubes are then 

stored as band-interleaved-by-pixel (BIP) format which is mostly for microscopic imaging, or 

band-interleaved-by-line (BIL) format which is the most common mode due to its flexibility 

and practicability for most industrial applications (Lohumi et al., 2015; Park and Lu, 2015; 

Wu and Sun, 2013b). The captured hypercube typically has a spectral range covering visible 

(400 – 780 nm) and near-infrared (780 – 1700 nm) regions as shown in Figure 2.3 (Elmasry 

et al., 2012; Lohumi et al., 2015; Park and Lu, 2015; Xu et al., 2017). Another reason the HSI 

is generally favourable for industrial applications is it can be operated on-line, thus 

accelerating the data acquisition and quality assurance processes (Wu and Sun, 2013c). The 

use of HSI, which was primarily used in remote sensing, is now prevalent in various fields, 

notably agricultural (Elmasry et al., 2012; Mahesh et al., 2015; Steinbrener et al., 2019), food 

quality assurance (Elmasry et al., 2012; Gowen et al., 2007; Qin et al., 2020; Wu and Sun, 
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2013c), environment (Veraverbeke et al., 2018) and even document analysis (Qureshi et al., 

2019).  

Vibrational spectroscopy techniques are usually point-based scanning techniques, 

where all the measured points require averaging for consistency. If the surface of samples is 

complex and heterogeneous, the measured values are inconsistent and require further time-

consuming pre-processing. HSI, on the other hand, can cover the whole sample with push-

broom (or line) or area imaging (Gowen et al., 2007; Liu et al., 2017; Lohumi et al., 2015). 

Hypercubes are taken in either reflectance, transmittance or interactance modes, as shown in 

Figure 2.4 (Elmasry et al., 2012; Jha, 2016; Lohumi et al., 2015; Wu and Sun, 2013b). 

Reflectance mode, being the most common mode, is where the light source is reflected to the 

detector from the surface of the sample. Transmittance mode is where the light source passes 

through the sample and to the detector, while interactance mode is a combination of reflectance 

and transmittance, but requires a light barrier to eliminate the interference due to specular 

reflection (Lohumi et al., 2015; Wu and Sun, 2013b). Reflectance mode is greatly favoured 

particularly in quality control of food and agricultural products due to its compatibility with 

external quality features of food samples (Lohumi et al., 2015; Wu and Sun, 2013b).  

The size of hypercubes is substantial considering the rich spectral information with 

continuous bands of wavelengths they carry for each pixel. More importantly, due to high 

dimensionality (up to hundreds of dimensions, λ), the need for data to undergo further 

processing to produce an interpretable model with meaningful qualitative and quantitative 

Figure 2.3: Electromagnetic spectrum, with the box region indicating the range used for 
hyperspectral imaging (400 – 1700 nm) (Park and Lu, 2015)  
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results necessitates the use of multivariate data analysis or chemometrics, which will be 

discussed in Section 2.3 (Elmasry et al., 2012; Lohumi et al., 2015). In most analyses, the 

model uses mean spectra data from the hypercubes since they are rapid, convenient and 

informative enough to yield meaningful outputs. Pre-processing is usually performed on these 

spectral data sets. This is to ensure that the random noise from the ambient environment can 

be eliminated, the amount of variation in the data can be reduced for better generalisation of 

the model and, baseline and scattering effects can be scaled and corrected properly (Elmasry 

et al., 2012; Goodfellow et al., 2016; Yang et al., 2019). Examples of pre-processing methods 

include multiplicative scatter correction, standard normal variate (SNV), normalisation and 

Savitzky-Golay (SG) derivative filtering (Dhanoa et al., 1994; Lohumi et al., 2015; Wu and 

Sun, 2013b).  

There were previous works on detecting the adulterants in black pepper samples using 

HSI, including the variation of different pre-processing methods on the detection capability. 

For example, as mentioned in Section 2.1.2, McGoverin et al. (2012) utilised NIR HSI and 

spectral pre-processing methods such as SNV, multiplicative scatter correcting and SG 

derivative filtering to detect for adulterants present in ground black pepper samples which 

Figure 2.4: Different approaches and modes of scanning methods (Wu and Sun, 2013b) 
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were buckwheat and millet. Orrillo et al. (2019) used HSI system with the spectral range of 

900-1710 nm and 5 nm intervals which yields a total of 159 bands to detect different 

proportions of adulteration of papaya seed powder present in black pepper samples. Similar 

common spectral pre-processing methods such as multiplicative scatter correction, SNV, SG 

derivatives were performed to reduce random noise and correct variations in intensity signal 

from the detector. Principal components analysis (PCA) and soft independent modelling of 

class analogy (SIMCA) were used in the classification of black pepper and papaya seed 

samples. From there, 90% prediction accuracy was attained. Furthermore, PLS regression was 

applied for the quantitative determination of adulteration of papaya seeds in black pepper 

samples. It attained predictive RMSE of 2.51 and coefficient of determination of 0.93. 

 

2.2 Geographical Origin Classification 
Black pepper products from various countries of origin have different compositions 

such as volatile oil, non-volatile oil, piperine and oleoresin contents (Ravindran and 

Kallupurackal, 2001). Black pepper from most pepper producing countries contained around 

4.6% piperine, 10.3% oleoresin and 3.8% volatile oil (Ravindran and Kallupurackal, 2001). It 

was reported that Sarawak black pepper contains approximately 3.5% piperine, 11% oleoresin, 

2.8% volatile oil and 7.9% non-volatile oil (Johny et al., 2020). It was stated that different 

geographical origins of black pepper products brought considerable influence on their 

composition, bioactivities, quality and subsequently pricing (Li et al., 2020; Liang et al., 2021; 

Oliveira et al., 2019). Hence, it is essential to trace the geographical origin of black pepper 

products so that appropriate actions can be taken to ensure the excellence of quality of black 

pepper for that identified region. In identifying the geographical origin of black pepper, several 

handful methods were found in the literature. 

 Zhang et al. (2015) utilised GC to profile the black pepper extracts and classify their 

geographical origins which are Vietnam, Brazil, Indonesia and India using PLS discriminant 

analysis, resulting in 100% classification rate using the best combinations of polynomial order 

on baseline correction and degree of the root for logarithmic data transformation. 

 Hu et al. (2018) tested a total of 150 pure black pepper powder samples from different 

origins such as India, China, Malaysia and Vietnam using diffuse reactance mid-infrared 

Fourier Transform spectroscopy. They were adulterated with proportions of sorghum and 

Sichuan pepper and then detected using Fourier transform infrared spectrometer with a 

deuterated triglycine sulfate detector. Two chemometrical methods on identifying the 

geographical origins, namely genetic algorithm optimised SVM and PLS discriminant analysis, 
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achieved 100% recognition rate for pure black pepper powder samples, and 96% recognition 

rate for adulterated black pepper powder samples. 

 Mercer et al. (2019), on the other hand, utilised high-resolution gas chromatography 

mass spectrometry to record the profiles of volatile organic compounds present in 252 black 

pepper samples from Malaysia and India, and classify their geographical origins using PCA 

and fold change analysis. The results indicated that different compounds that originated from 

Malaysia or India were found, for example, gibbenellic acid was only found in Malaysia black 

pepper powder samples. Furthermore, two distinct clusters were identified from the PCA score 

plot and fold change analysis plot. 

 Li et al. (2020) applied various chemical analytical techniques such as gas 

chromatography mass spectrometry, systematic cluster analysis, chemical assaying and 

principal components analysis to investigate if different origins of black and white peppers 

influence chemical and biochemical activities or not. It was demonstrated that visually, 

essential oil in Hainan white pepper is colourless, Guangdong black pepper is dark green and 

other regions are yellow-green. There was also a difference in essential oil compositions, 

antioxidant and antifungal activities for pepper samples of different regions. 

 Liang et al. (2021) applied GC-MS, liquid chromatography-MS, thermal desorption 

DART-MS on seventeen black pepper powder samples to classify their geographical origins 

which were Indonesia, Brazil, India and Vietnam. Partial least square – discriminant analysis 

was used to classify the origins, followed by evaluation of total ion mass spectrum data profiles 

to assess the classification rates. It was demonstrated that by using cubic root data 

transformation during data pre-processing stage, the classification rate was best achieved by 

thermal desorption DART-MS method with 97.0 ± 0.3% correctly classified origins. 

Rivera-Pérez et al. (2021) made use of metabolomics approach based on GC-Orbitrap-

high resolution MS along with chemometrical methods which included principal component 

analysis (PCA) and orthogonal partial least square – discriminant analysis (OPLS-DA) to 

identify the geographical origins of black pepper powder samples. PCA and OPLS-DA models 

were built using 60 black pepper powder fingerprint data, where 80% of data went to training 

set while 20% went to prediction set. For PCA model, 91% of total variance of data was 

explained and predictive ability of model, Q2 was 0.818. While for OPLS-DA mode, 100% 

correct classification rate was achieved on the prediction set along with Q2 of 0.977. 

There were previous works on identifying the geographical origins of various food 

and agricultural products using HSI with multivariate data analysis (Choi et al., 2020; Guo et 

al., 2013; Kamruzzaman et al., 2014; Ke et al., 2020; Wang et al., 2019). However, limited 
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works could be found on classifying the geographical origins of black pepper using HSI, which 

will be one of the core objectives of this research project. 

 

2.3 Multivariate Data Analysis 
Vibrational spectroscopy techniques, including HSI, carry an immense volume of 

information but at the cost of having inherently high dimensionality and redundancies. It is 

therefore essential to reduce the dimensionality while at the same time trying to extract as 

much informative data or features as possible. Multivariate data analysis serves to perform the 

aforementioned spectral processing so that the data can be decomposed to yield interpretable 

model by establishing the relationship between the data and the desired attributes of test data 

(Amigo et al., 2013; Liu et al., 2014; Wu and Sun, 2013b). Chemometrics is part of the 

multivariate data analysis solutions which is geared for determination of chemical analytical 

properties (Khan et al., 2020). In most vibrational spectroscopy applications, chemometrics is 

broadly applied to assess and predict the quality of most food and agricultural products such 

as moisture content, mineral content, volatile oil % and so on (Elmasry et al., 2012; Khan et 

al., 2020). 

Qualitative classification and quantitative regression can be performed on the data or 

hypercubes. In both cases, a model is created and learns from the data so that its parameters 

can be tuned and optimised to establish the best possible weightings that can explain the 

aforementioned relationship, which is known as machine learning. Some examples of 

multivariate data analysis techniques were multiple linear regression, principal components 

analysis (PCA), k-means clustering, partial least square (PLS), support vector machine (SVM), 

support vector regression (SVR), k-nearest neighbour (KNN), artificial neural network (ANN) 

(Amigo et al., 2013; Kucharska-Ambrożej and Karpinska, 2020; Wu and Sun, 2013b). 

Qualitative classification serves to provide prediction where the results are belonging 

to what kind of class. The model is either created in a supervised or unsupervised manner 

where the former learns the data with appropriate labelling of their respective known classes 

while the latter learns the patterns present in the data (Wu and Sun, 2013b). From there, 

patterns of results were observed and analysed to  Examples of methods used in qualitative 

classification are PCA, SVM, k-means clustering to separate the dataset into k number of 

clusters where each data point belongs to the respective cluster with the minimum distance to 

the cluster centroid, linear discriminant analysis to classify objects by finding the optimal 

boundary that discriminates the classes with maximum between-class variance and minimum 

within-class variance (Elmasry et al., 2012; Wu and Sun, 2013b). 
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 On the other hand, quantitative regression provides numeric prediction from a linear 

or non-linear relationship between the data and desired attributes. A linear relationship is 

usually derived from the commonly used methods, such as multiple linear regression, principal 

component regression, SVR and PLS (Elmasry et al., 2012; Saha and Manickavasagan, 2021; 

Wu and Sun, 2013b). While for non-linear relationship, commonly used methods are SVR 

with radial basis or polynomial kernel function and ANN (Kucharska-Ambrożej and 

Karpinska, 2020; Saha and Manickavasagan, 2021; Yang et al., 2019). Particularly, ANN is 

given the most attention in recent machine learning research due to its promising breakthrough 

in its predictive capabilities and application in various fields. ANN paves the way to another 

branch of modelling known as deep neural network or deep learning which will be discussed 

in Section 2.4. 

 The performance criterion for classification is usually accuracy, precision, recall, F1 

score and others such as receiver operating characteristic which is suitable for binary 

classification (Elmasry et al., 2012; Goodfellow et al., 2016). Accuracy is a measure of number 

of correctly predicted class for all samples over total number of samples, and simply calculated 

as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (%) = 1
𝑛𝑛
∑ 1(𝑦𝑦� = 𝑦𝑦)𝑖𝑖𝑛𝑛
𝑖𝑖 × 100 (2.1) 

where for 𝑛𝑛 input data or total number of samples, 1(𝑦𝑦� = 𝑦𝑦)𝑖𝑖 is the indicator function which 

compares the predicted label, 𝑦𝑦�  of the sample 𝑖𝑖 with the ground truth, 𝑦𝑦  label, and hence 

returns 1 if true and 0 if false for each sample 𝑖𝑖. 

For classification of multiple classes, confusion matrix is used which is a measure of 

accuracy on determining how much correctly predicted classes of samples are made based on 

the actual classes of those samples. Confusion matrix allows visualisation and insight on how 

well the classification of all classes is performed. 

The performance criterion for regression are usually root mean squared error (RMSE) 

which compares predicted and true values of a dependent variable, with lower RMSE value 

indicating the predicted value is closer to the true value, and coefficient of determination (R2), 

which determines the goodness of fit of the model on the data (Elmasry et al., 2012). RMSE 

and R2 are calculated as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦� − 𝑦𝑦)𝑖𝑖2𝑛𝑛
𝑖𝑖  (2.2) 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖
∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖

 (2.3) 
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where the predicted value, 𝑦𝑦� is compared to the ground truth, 𝑦𝑦 value in each sample 𝑖𝑖 for 𝑛𝑛 

input data. 

 Mean absolute percentage error (MAPE) is another performance criterion which 

calculates how much the absolute error of predicted values deviates from the true values in 

average, and calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦�𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 × 100 (2.4) 

By using these metrics above, predictions from both classification and regression can 

be optimised and subsequently, meaningful predictive results can be obtained. The 

multivariate data analysis techniques which are more relevant to the research objectives are 

PCA, PLS, SVM and deep learning. The following sections elaborate these techniques in 

details and review them thoroughly. 

 

2.3.1 Principal Components Analysis 
Principal components analysis (PCA) is one of the most encountered methods in most 

multivariate data analysis. It performs dimensionality reduction and feature selection by 

decomposing the data into user-defined principal components that explains the highest 

variability of the data. PCA mainly linearly transforms the data with correlated variables into 

variables or principal components which are mutually uncorrelated (Goodfellow et al., 2016). 

PCA is mainly driven by singular value decomposition (SVD), where it factorised any matrix 

into singular vectors and singular values. SVD decomposes any matrix 𝑨𝑨 of 𝑚𝑚 × 𝑛𝑛 as follows: 

𝑨𝑨 = 𝑈𝑈Σ𝑉𝑉T (2.5) 

where 𝑈𝑈  and 𝑉𝑉  are orthogonal matrices of 𝑚𝑚 × 𝑚𝑚  and 𝑛𝑛 × 𝑛𝑛  respectively, Σ  = diagonal 

matrix of 𝑚𝑚 × 𝑛𝑛. 𝑈𝑈 constitutes eigenvectors of 𝑨𝑨𝑨𝑨T while 𝑉𝑉 has eigenvectors of 𝑨𝑨T𝑨𝑨. The 

diagonal matrix, Σ is the covariance matrix containing all the singular values so that data with 

highest variances can be extracted. For PCA, 𝑚𝑚 mainly refers to the number of samples in the 

data, 𝑛𝑛 refers to the number of features or variables in the data. It chooses the most significant 

terms or variables (known as principal components) based on SVD where the eigenvectors of 

first few highest singular values are selected. In summary, PCA separates the data into score, 

𝑈𝑈 (𝑚𝑚 × 𝑘𝑘) and loading, 𝑉𝑉 (𝑛𝑛 × 𝑘𝑘) matrices based on principal components where 𝑘𝑘 refers to 

the number of principal components as the goal is to decompose the data and reconstruct it 

using principal components which are fewer in number (Goodfellow et al., 2016; Kherif and 

Latypova, 2020). The loading and score matrices contain the maximum variability of data to 
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each other and their corresponding coefficients respectively, as well as the residual matrix 

(Amigo et al., 2013; Elmasry et al., 2012; Goodfellow et al., 2016; Jha, 2016).  

PCA is used to identify possible outliers present in the data as well as possible patterns 

or clusters which categorise the data into respective classes, for example clusters of black 

pepper samples belonging to respective geographical origins, using score and loading plots. 

Explained variance in PCA serves as an indicator to understand how much variance of data is 

accounted by the principal components while the remaining data corresponds to noise (Kherif 

and Latypova, 2020). For the first few principal components, the more the explained variance, 

the more these principal components can represent the distribution of the data, hence the less 

noisy the data is. 

 

2.3.2 Partial Least Square 
PLS is commonly found in most regression models. It projects the independent and 

dependent variables into a latent structure with orthogonal factors or latent variables so that 

the covariance between independent and dependent variables can be maximised, which solves 

the main drawback of PCA (Elmasry et al., 2012; Orrillo et al., 2019). The transformation is 

performed according to the equations as follows (Ge and Song, 2010): 

𝑋𝑋 = 𝑻𝑻T𝑃𝑃 + E (2.6) 

𝑦𝑦 = 𝑻𝑻q + f (2.7) 

Given a dataset with independent variables, 𝑋𝑋  and dependent variable, 𝑦𝑦 , PLS 

decomposes them into score matrix, 𝑻𝑻, loading matrix and vector, 𝑃𝑃 and q, weight matrix, 𝑾𝑾 

along with residual matrix and vector, E and f. The weight matrix is used to predict the new 

value of the output dependent variable using a new data point, xnew in the following equation: 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛 = xnew𝑾𝑾(𝑷𝑷T𝑾𝑾)−1q (2.8) 

PLS is generally more favourable than PCA because PLS considers relationship with 

response variable while PCA considers the variability of only the input variables (Elmasry et 

al., 2012; Orrillo et al., 2019). Although PLS is mostly used in regression, it can be applied to 

classification with usage of another technique known as discriminant analysis. Based on the 

threshold of predicted values for each sample, the class is assigned accordingly and compared 

with true label of respective samples.  

While PLS provides sufficient solution in the modelling for HSI data, there exists a 

possibility that the data exhibits non-linearity where PLS may fail to approximate the data to 
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yield meaningful predictions (Li et al., 2019; Petersson et al., 2016; Yang et al., 2019). Non-

linear modelling provides a better and more accurate analysis than linear models. Support 

vector machine and artificial neural network are notable examples of non-linear modelling. 

 

2.3.3 Support Vector Machine 
Support vector machine (SVM) is another commonly used supervised learning model 

which serves to find the optimal decision boundary to distinguish between clusters of two 

classes (Cortes and Vapnik, 1995; Elmasry et al., 2012; Goodfellow et al., 2016; Saha and 

Manickavasagan, 2021; Suthaharan, 2016). SVM uses kernel trick to evaluate the following 

output for prediction (Goodfellow et al., 2016): 

𝑦𝑦 = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾�𝒙𝒙,𝒙𝒙(𝑖𝑖)�𝑖𝑖 + 𝑏𝑏 (2.9) 

where 𝐾𝐾�𝒙𝒙,𝒙𝒙(𝑖𝑖)� is the kernel function which transforms non-linear data into linear feature 

space, 𝒙𝒙 and 𝒙𝒙(𝑖𝑖) are input training matrix and input training vector for sample i, 𝛼𝛼𝑖𝑖 is vector 

of coefficients and 𝑏𝑏 is the intercept of the model. Examples of kernel function are radial basis 

function or Gaussian kernel, polynomial kernel, linear kernel, sigmoid kernel (Saha and 

Manickavasagan, 2021). The widely used kernel function is Gaussian kernel function, which 

can be expressed as follows (Scholkopf et al., 1997): 

𝐾𝐾�𝒙𝒙,𝒙𝒙(𝑖𝑖)� = exp �− �𝒙𝒙−𝒙𝒙(𝒊𝒊)�
2

2𝜎𝜎2
� (2.10) 

where 𝜎𝜎2  is variance, and the expression inside exponential function is calculation of 

Euclidean distance between 𝒙𝒙 and 𝒙𝒙(𝑖𝑖). 

The main objective of SVM is to find the optimal decision boundary in the form of 

hyperplane (for linear data) or feature space (for non-linear data) which yields the maximum 

margin from vectors supported by kernel function shown in Equation (2.10) or support vectors 

between the feature space and the data belonging to certain class or label. SVM is mainly 

utilised in classification cases, while for regression cases, support vector regression (SVR) is 

applied instead. SVR works similar to SVM with the difference being SVR finds the feature 

space or hyperplane with permissible error margin, where this error margin is a parameter to 

be optimised, and hence providing continuous range of values in its prediction instead of 

discrete classes. 
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2.4 Deep Learning 
Multivariate data analysis has been a primary solution in developing an interpretable 

model to present functional predictions. Data pre-processing becomes essential as 

aforementioned to eliminate random noise or artefacts for robustness and reliability of the 

model (Elmasry et al., 2012). Feature selection can then proceed but is usually performed 

manually or through human intervention. This requires prior knowledge to enable modelling 

to function properly and is especially prone to errors in losing informative data (Li et al., 2017; 

Yang et al., 2019). Additionally, it becomes drastically harder to manage the staggeringly high 

number of variables of input data as general modelling functions are insufficient to explain 

that input data statistically (Goodfellow et al., 2016). 

Deep learning is one such solution that overcomes some of these shortcomings present 

in the most multivariate data analysis solutions. What makes deep learning appealing in 

modern modelling solutions is because deep learning serves like a black box model that relies 

solely on data, easing the whole modelling process. Hence, the more the data is provided, the 

better the predictive performance of the model (Yang et al., 2019). In recent years, deep 

learning has become a sensation in machine learning and artificial intelligence fields recently 

due to abundance of data and availability of hardware with high computational power (LeCun 

et al., 2015; Shrestha and Mahmood, 2019). To understand how deep learning performs 

extremely well, it is important to understand how it functions beneath the hood.  

 

Figure 2.5: Feedforward neural network 
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2.4.1 Introduction to Deep Learning 
Deep learning, or deep neural network, is based on artificial neural network (ANN), 

which loosely resembles human brain and nervous system that simulates its behaviour for 

learning and prediction purposes (Emmert-Streib et al., 2020; Goodfellow et al., 2016; Khan 

et al., 2019; Shrestha and Mahmood, 2019; Wu and Sun, 2013b). A typical neural network is 

made up of three main layers filled with artificial neurons, namely input, hidden, and output 

layers. The input feed flows from the input layer through the hidden layer to the output layer 

in one direction. Because no loopbacks of information are involved, this is known as 

feedforward neural network, which can be represented in Figure 2.5 (Emmert-Streib et al., 

2020; Goodfellow et al., 2016; Shrestha and Mahmood, 2019). 

Neurons are simple computational elements that utilise connectionism approach to 

process information (Goodfellow et al., 2016). The neurons in the hidden layer mainly serve 

to compute the features of the input data, which is known as representation learning. Each 

neuron is expressed with the following mathematical expression: 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(∑ 𝓌𝓌𝑖𝑖x𝑖𝑖 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 ) (2.11) 

For each output neuron 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜, there is a ranking of importance for all input neurons, x𝑖𝑖  

which is represented by their respective weights 𝓌𝓌𝑖𝑖. The output neuron is fully connected to 

all 𝑛𝑛 inputs of x of the previous layer as well as a bias constant, 𝑏𝑏 and transforms the sum 

using an activation function. Activation function is usually non-linear in the neural network 

since linear functions have limitations in describing the complex relationship of any input data 

(Emmert-Streib et al., 2020; Goodfellow et al., 2016). The commonly encountered activation 

functions include hyperbolic tangent, sigmoid and rectified linear unit (ReLU). Figure 2.6 

shows sigmoid and ReLU activation functions. 

 

Figure 2.6: Common activation functions used in deep learning 



33 
 

Sigmoid function is expressed as follows: 

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 , 0 ≤ 𝑓𝑓(𝑥𝑥) ≤ 1 (2.12) 

While for ReLU function: 

𝑓𝑓(𝑥𝑥) = max {0, 𝑥𝑥} (2.13) 

Tweaking the parameters which are weights and biases is the core objective of training 

a neural network to approximate a function that is suitable in explaining the relationship 

between target and input variables when given input data. To verify if the parameters are 

tweaked properly, cost or loss function serving as a performance metric is required to evaluate 

the predictive performance of the neural network. Examples of loss functions include RMSE 

and cross-entropy loss (Goodfellow et al., 2016). RMSE can be referred to Equation (2.2), 

while the cross-entropy loss which is used to compare the probabilities of predicted and true 

class mainly in the classification of multiple classes, can be defined as follows:  

𝐿𝐿(cross entropy) = 1
𝑛𝑛

(−∑ 𝑦𝑦𝑖𝑖 ∙ log(𝑦𝑦�𝑖𝑖)𝑛𝑛
𝑖𝑖 ) (2.14) 

where the predicted value, 𝑦𝑦� is compared to the ground truth, 𝑦𝑦 value in each sample 𝑖𝑖 for 𝑛𝑛 

input data. 

The derivatives of loss function with respect to weights and biases are the targets to 

be optimised in order to attain the minimum loss function. Back-propagation is hence 

performed to compute these derivatives from output layer back to input layer using chain rule 

differentiation due to its high efficiency to be executed in various machines (Goodfellow et 

al., 2016; LeCun et al., 2015). After these derivatives are computed, optimisation algorithms 

are then performed to enable the neural network to learn. The learning rate is another parameter 

that shall be tweaked to optimise the weights and biases (Goodfellow et al., 2016; Shrestha 

and Mahmood, 2019). Stochastic gradient descent (SGD) is one of the most commonly used 

optimisers to adjust learning rate so that the global minimum of the loss function can be 

attained (Emmert-Streib et al., 2020; Goodfellow et al., 2016). To get new weight, 𝓌𝓌 

(applicable to bias too), it can be done by adjusting the learning rate, 𝜂𝜂  according to the 

derivative of loss function with respect to current weight, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 as follows: 

𝓌𝓌 ←𝓌𝓌 − 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2.15) 

Normal gradient descent takes only one sample to update gradient at one time, which 

is slow and may be unable to attain the minimum cost function. SGD instead takes a minibatch 

of samples to optimise weights and biases, and thus speeds up the learning process of neural 
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network. One notable drawback for SGD is its fixed learning rate may increase the time taken 

for the neural network to finish learning, especially if the learning rate is set too small or large. 

To mitigate this issue, various optimisers that apply adaptive learning rate are introduced in 

the past, for instance, AdaGrad, RMSProp and Adam. Adam optimiser appears to be a more 

popular choice on most occasions due to its faster convergence at a cost of more parameters 

to tune (Goodfellow et al., 2016). 

The main data set to be fed for the neural network to learn is known as the training 

data set. Generalisation is another main criterion to dictate if the model can predict new unseen 

input data correctly or not. While the neural network is trained using training data set, a 

validation data set is often introduced to verify if the new weights and biases result in good 

generalisation ability of neural network or not. High training accuracy or low training RMSE 

does not necessarily indicate the model has better predictive performance on validation data 

set. The whole process is repeated until all the weights and biases are stabilised or convergence 

is reached. After that, testing data set which is not involved in the training of neural network 

is used to ultimately decide the generalisation ability of the trained neural network. A neural 

network with poor generalisation ability tends to underfit (where model still has a high error 

on training data set) or overfit (where model performs well on training data set but worse on 

testing data set) the data (Goodfellow et al., 2016; Shrestha and Mahmood, 2019). 

This whole process can be simplified as follows: 

1. Feed batches of input data using training data set into neural network and forward to output 

prediction 

2. Compare the prediction value with ground truth value 

3. Perform back-propagation to compute gradients of that compared result with respect to all 

weights and biases of all neurons, followed by optimisation algorithms such as SGD or 

Adam optimiser to obtain new weights and biases 

4. Use validation data set to determine if new weights and biases yield good prediction value 

or not 

5. Repeat the steps 1 - 4 until convergence is reached or the predicted value using validation 

data set is nearly identical with ground truth value using tolerance 

The neural network with one hidden layer is typically known as shallow network, 

while deep neural network generally refers to the neural network with more than two hidden 

layers (Emmert-Streib et al., 2020). Such this deep neural network is also known as multilayer 

perceptron. It was observed that the higher the depth of neural network or the number of hidden 

layers in the neural network, the more complexity of the features it can capture from the input 

data (Fan et al., 2019; Goodfellow et al., 2016). Hence, deep neural network hugely benefits 
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the more data is provided. The recent advancement and such success of deep learning can be 

attributed to the utilisation of graphical processing units and abundance of data as mentioned 

above (Krizhevsky et al., 2012; Shrestha and Mahmood, 2019). 

Deep neural networks still have some limitations. They require a certain amount of 

data to be functional, which may take a longer period to finish training than most conventional 

machine learning algorithms (Saha and Manickavasagan, 2021; Shrestha and Mahmood, 

2019). Next, it is noted that they tend to have extremely low or high gradients known as 

vanishing or exploding gradients where convergence cannot be achieved, prompting the use 

of proper activation functions such as ReLU instead of sigmoid because sigmoid is only 

sensitive to input when it approaches 0 (Goodfellow et al., 2016; Shrestha and Mahmood, 

2019). If the input data has a huge dimension size, it will result in an exorbitant number of 

parameters of deep neural networks to be tuned, further increasing the time taken to train the 

model. Hence, variants of deep neural networks are introduced to improve the training process. 

 

2.4.2 Types of Deep Neural Networks 
There are various types or architectures of deep neural network: convolution neural 

network (CNN), recurrent neural network, autoencoder, restricted Boltzmann machine, long 

short-term memory, deep belief networks and so on (Fan et al., 2019; Goodfellow et al., 2016; 

Modi, 2018; Shrestha and Mahmood, 2019; Signoroni et al., 2019; Yang et al., 2019). In most 

spectral analysis cases that are targeting at the food and agriculture, the commonly encountered 

types of deep neural networks are CNN and autoencoders (Saha and Manickavasagan, 2021; 

Yang et al., 2019; L. Zhou et al., 2019). Recurrent neural network and long short-term memory 

structures are not widely encountered compared to other structures due to presence of memory 

component which is more appropriate for speech or video data (Emmert-Streib et al., 2020). 

2.4.2.1 Convolutional Neural Network 
Convolutional neural network (CNN) is another variant of feedforward neural network 

with the difference being the additional layers that perform convolution and pooling (Emmert-

Streib et al., 2020; Khan et al., 2019; Modi, 2018; Saha and Manickavasagan, 2021; Shrestha 

and Mahmood, 2019; Yang et al., 2019). Figure 2.7 depicts the typical structure of CNN. CNN 

became famous thanks to the creation of AlexNet (Krizhevsky et al., 2012; LeCun et al., 2015). 

Its usage is currently prevalent in computer vision, face and video recognition, natural 

language processing, object recognition and so on (Khan et al., 2019; Shrestha and Mahmood, 

2019). There were variations of implementation of CNN architectures other than AlexNet, 

which included VGG, ResNet, GoogLeNet, Inception and many more (Khan et al., 2019; 

Shrestha and Mahmood, 2019; Yang et al., 2019).  
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Convolution operation in CNN extracts locally correlated information from the inputs 

using convolutional filter. The extracted features are considered spatially invariant, making it 

suitable for spatial data such as images. Assuming a two-dimensional image 𝐼𝐼  input, its 

convolution output or feature map 𝑆𝑆 using a two-dimensional kernel 𝐾𝐾 will be as follows 

(Goodfellow et al., 2016): 

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ∗ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝐼𝐼(𝑚𝑚,𝑛𝑛) 𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)𝑛𝑛𝑚𝑚    (2.16) 

where 𝑖𝑖 and 𝑗𝑗 are the current coordinates being referred at a time, 𝑚𝑚 and 𝑛𝑛 are the range of 

values within 𝑖𝑖 and 𝑗𝑗 respectively bounded by the kernel size. 

Convolutional filter is usually made up of several convolutional kernels. 

Convolutional kernel contains values to transform localised input within the kernel window of 

defined size into feature value. The kernel is later slid throughout the whole input to output a 

feature map. The kernel size determines how much the details to be extracted by the kernel, 

the smaller the kernel size, the finer the details can be extracted by the kernel. Stride controls 

the step size of kernel sliding the input and influences the feature map dimensions. 

Additionally, padding can be necessary if one wants the feature map dimensions to be as same 

as input dimensions, where the sides of input are filled with zero values. The feature map 

output dimension, 𝑂𝑂 is thus as follows: 

𝑂𝑂 = 𝐼𝐼+2𝑃𝑃−𝐾𝐾
𝑆𝑆

+ 1   (2.17) 

where 𝐼𝐼 = input size, 𝑃𝑃 = padding size, 𝐾𝐾 = kernel size and 𝑆𝑆 = stride. 

Next, pooling layer transforms localised input within specified size into another value. 

The commonly encountered pooling types are max pooling and average pooling (Emmert-

Streib et al., 2020; Goodfellow et al., 2016). Max pooling chooses the maximum value among 

all the localised input values while average pooling obtains the average of all the localised 

input values. Pooling also serves as dimensionality reducing tool, thus drastically reduces the 

Figure 2.7: Convolutional neural network (Goodfellow et al., 2016)  
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number of parameters, subsequently the network size and time taken to learn the input data 

(Emmert-Streib et al., 2020; Goodfellow et al., 2016; Khan et al., 2019; Saha and 

Manickavasagan, 2021; Shrestha and Mahmood, 2019; Yang et al., 2019). 

Dropout is a method that deactivates some neurons of targeted hidden layer in a 

probabilistic manner. This decreases the likelihood of the neural network to overfit the data. 

Dropouts are often used in CNN since the extracted features from convolution and pooling 

operations are fully captured by the fully connected hidden layers, causing the network to 

overfit easily (Goodfellow et al., 2016; Saha and Manickavasagan, 2021). 

CNN is more effective in dealing with multi-dimensional data than typical deep 

feedforward neural network due to its capability to extract local features which are invariant 

in their locations, hence the extracted features are still similar no matter how the variations of 

data are made (Al-Sarayreh et al., 2018; Emmert-Streib et al., 2020; Goodfellow et al., 2016). 

Subsequently, this reduces the dimensionality, the number of parameters, network size and 

time taken to train the network. However, CNN requires large amount of data to extract 

sizeable number of features and its pooling operation may lose valuable information due to 

dimensionality reduction (Goodfellow et al., 2016). 

 

2.4.2.2 Autoencoders 
Autoencoder is another part of deep neural network which has a structure similar to 

the feedforward neural network. The main purpose of the autoencoder is to reconstruct the 

input data using the representative features from dimensionality reduction (Goodfellow et al., 

2016; Shrestha and Mahmood, 2019). They primarily contain two components, namely 

encoder and decoder. The encoder reduces the dimensionality similar to PCA and outputs the 

non-linear representative features instead of linear. On the other hand, the decoder reconstructs 

the input data using these reduced features (Shrestha and Mahmood, 2019; Yang et al., 2019). 

Autoencoder usually performs unsupervised learning as they serve to reconstruct the input 

data just by extracting and learning the features presented by the input data without labels or 

ground truth values (Shrestha and Mahmood, 2019). Figure 2.8 illustrates the typical structure 

of stacked autoencoders, where the structure contains multiple layers of autoencoders. It is 

desirable to have higher depth because the nodes in each layer can approximate the inputs or 

feature outputs well while reducing their computational cost (Goodfellow et al., 2016). As 

shown in Figure 2.8, the left half of the structure is the encoder part which typically has several 

layers with decreasing number of nodes for each layer. The number of nodes is not set to be 

higher as autoencoder is expected to extract unique representative features and reconstruct the 

input, not copy the inputs perfectly. On the other hand, the decoder part constitutes the right 
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half of the structure, which is typically a mirror image of the left half of the structure. It has 

numerous layers with an increasing number of nodes until the final output containing the 

number of nodes as same as the number of input nodes.  

Most previous works that applied autoencoders for HSI in food and agricultural 

applications removed the decoder part to perform classification or regression. The intermediate 

layer with the least number of nodes in the encoder part is connected to another fully-connected 

layer where the nodes in fully-connected layer learn the representative features. For example, 

Yu et al. (2018) pre-trained 7-layer stacked autoencoders to obtain 10 nodes in the 4th layer, 

removed the decoder part (5th - 7th layers) and subsequently connected the 4th layer to another 

fully-connected layer to complete the training process and predict the nitrogen concentration 

in oilseed rape leaf. C. Zhang et al. (2020) also removed decoder part and replaced it with 

conventional machine learning methods which were PLS and SVM in the deep autoencoder 

neural network to determine the chemical composition in dry black goji berries. 

For autoencoders, they are generally simpler to construct than CNN as the parameters 

of autoencoders are generally number of encoding layers and their respective number of nodes 

while CNN has more parameters to consider, such as number of convolution layers, kernel 

size, number of kernels in convolutional filter, stride step size and padding size. However, 

some notable issues of autoencoders are they have more number of parameters to be trained 

compared to CNN if they have large input dimension and high number of nodes in hidden 

layers and they may end up learning more irrelevant information if the data contains a few 

relevant components, which can deteriorate the predictive performance of the model. 

 

Figure 2.8: Autoencoder 
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Table 2.3: Summary of deep learning architectures for the spectral analysis in this research 

Deep Learning 
Architecture Feature Advantages Disadvantages 

Feedforward 
Neural 
Network/Multilayer 
Perceptron 

Learn through mapping 
of activation functions 
and optimization of 
weights (Emmert-Streib 
et al., 2020) 

Simplest neural 
network structure to 
begin and train 

Large number of 
parameters or 
nodes to be 
trained, 
exacerbated by 
large input 
dimension 

Convolutional 
Neural Network 

Extract locally 
correlated information 
from the data and store 
in kernels (Goodfellow 
et al., 2016) 

Locally correlated 
information makes it 
invariant to any 
location, in addition 
to reduced number 
of trainable 
parameters 

Various 
parameters to be 
optimised and 
large number of 
data 

Autoencoder Unsupervised learning 
to reduce 
dimensionality and 
extract features through 
mapping of activation 
functions (Emmert-
Streib et al., 2020) 

Easier to implement 
with fewer 
parameters to train 

Large number of 
parameters or 
nodes to be trained 
and  

 

 

2.5 Outlook of Deep Learning based Spectral Analysis 
Table 2.3 summarised all the deep learning architectures described in the above 

sections that are to be used in this research. In the literature, deep learning for HSI was in 

prevalent research and use in remote sensing fields before it is applied to other fields such as 

biomedical, food and agriculture, document and forensic analyses (Signoroni et al., 2019; 

Yang et al., 2019). It is due to HSI was mainly introduced for remote sensing, hence that 

explains the abundance of the literature of application of deep learning for HSI in remote 

sensing fields. From there, deep learning was primarily used in the classification of crops and 

landmarks, segmentation of regions, anomaly detection as well as denoising the images to 

produce high-resolution images (Signoroni et al., 2019). Despite that, there was noticeably 

more research on applying deep learning for HSI in other fields recently. Table 2.4 outlines 

the application of deep learning for HSI technologies in food and agricultural applications. 

The input hypercubes were often multi-dimensional, and feature extraction and 

engineering were manually performed with the help of PCA. Deep learning allowed feature 
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extraction during the learning process (Al-Sarayreh et al., 2018; Li et al., 2017; Saha and 

Manickavasagan, 2021). As mentioned earlier, CNN and autoencoders were among the most 

used deep learning architectures in HSI. The input data with either spectral (1-dimensional), 

spatial (2-dimensional) or both spectral-spatial (3-dimensional) features were used for CNN 

layers to handle. Because of its proven capabilities to process a tremendous amount of data 

and dimensionality as well as extract valuable features on raw data without a lot of pre-

processing, deep learning is highly sought after for aforementioned applications. However, 

there is currently no literature in surveying the degree of adulteration present in black pepper 

powder samples using deep learning based HSI, thus deep learning will be assessed as part of 

main research and compared with other multivariate data analysis techniques. 
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Table 2.4: Use of most deep learning based hyperspectral imaging in food and agriculture applications 

Reference/Authors Objective Approach Remarks 
Al-Sarayreh et al. 

(2018) 

Detection of red-

meat adulteration 

Deep 1D and 

3D CNN 

CNN model was performed with input data of 1D mean spectrum and 3D visible-NIR 

hypercube to classify 75 red meat products (lamb, beef, pork and fat products). The model 

was able to perform self-extraction of spectral and spatial features, outputted F1 score and 

accuracy of 94.3% and 94.4% respectively, which were better than SVM model that used 

manually extracted spectral and spatial features. 

Jin et al. (2018) Classification of 

healthy and 

diseased wheat 

heads 

2D CNN Two-dimensional convolutional bidirectional gated recurrent unit neural network was used to 

classify healthy and diseased wheat heads using visible-NIR HSI after pre-processing 

methods of mean removal, PCA whitening and normalisation were performed. It managed to 

achieve F1 score and accuracy of 0.75 and 74.3% respectively. 

Nagasubramanian 

et al. (2018) 

Classification of 

healthy and 

diseased soybean 

crops 

Deep 3D CNN 3D deep CNN was used to test 539 soybean crop samples and managed to yield 95.73%, 0.92 

and 0.87 classification accuracy, recall and F1 score respectively. Saliency mapping was also 

applied to visualise the diseased regions of soybean crops and revealed the most sensitive 

wavelength regions through pixels of maximum magnitude of saliency gradient. 

Yu et al. (2018) Prediction of N 

concentration in 

oilseed rape leaf 

Autoencoders Visible-NIR HSI was used to capture oilseed rape leaves and these images were split to 128 

for training set and 64 for prediction set. Various regression models such as PLS and SVM 

were applied and compared with the deep learning model that was based on stacked 

autoencoders. The best stacked autoencoders model had a structure of 512-220-100-10-100-

220-512, where each number separated by dash is number of nodes in each layer that resulted 

in the best predictive performance to predict nitrogen concentration, with 𝑅𝑅𝑝𝑝2 of 0.903 and 

RMSEP of 0.307%. 
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Jiang et al. (2019) Detection of 

postharvest apple 

pesticide residues 

2D CNN Out of 18,432 apple samples for four types of pesticide residues using NIR HSI, 12,288 were 

used as training data set while the rest of them as testing data set to be fed into AlexNet CNN. 

Single image detection yielded 95.35% and testing data set detection yielded 99.09% 

classification accuracy, compared to KNN detection yielding only 43.75%. 

Yu et al. (2019) Prediction of TVB-

N content in Pacific 

white shrimp 

Autoencoders Total of 240 images of samples of Pacific white shrimps were captured using NIR HSI. 

Stacked autoencoders model and successive projection algorithm were applied and compared 

with each other in the extraction of spectral features. The processed data was split into 120 

for training set and 120 for prediction set, and then sent to PLS, SVM and multiple linear 

regression models for prediction of TVB-N concentration. The best prediction results were 

attained from the SVM model that used spectral features extracted by stacked autoencoders 

of 215-100-50-15-50-100-215 structure, which were 𝑅𝑅𝑝𝑝2 of 0.921 and RMSEP of 6.22 mg N 

[100 g]-1 on prediction set. 

Al-Sarayreh et al. 

(2020) 

Classification of 

species of red-meat 

products 

Deep 3D CNN With the help of novel graph-based post-processing method (connections of superpixels), 3D 

CNN was built using 105 red-meat samples as training set to classify new 79 red-meat 

samples using line scanning and snapshot HSI, and performed better than PLS discriminant 

analysis and SVM, which resulted in overall classification of accuracy of 98.6%, 96.9% and 

97.1% on line scanning, NIR and visible snapshots respectively. 

C. Zhang et al. 

(2020) 

Determination of 

chemical 

compositions in dry 

black goji berries 

1D CNN and 

autoencoders 

100 dry black goji berries were sampled using NIR HSI. Determination of total anthocyanins, 

avonoids and phenolics compositions were performed using 1D CNN on data with various 

feature selection methods, all resulted in lower RMSEP than that using PLS and SVM. PLS 

and SVM models performed better when the features of inputs were extracted using CNN and 

stacked autoencoders. 
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Gao et al. (2020) Classification of 

ripe and early ripe 

strawberries 

2D CNN Using portable snapshot visible-NIR HSI, input images of ripe and early ripe strawberries 

were captured in both field and laboratory conditions. PCA was performed on these 

hyperspectral images using 3 principal components for spatial feature extraction while 

sequential feature selection was performed for spectral feature wavelength selection. 336 and 

144 of them were used as training and validation data set respectively for training AlexNet 

CNN, and as a result, 98.6% classification accuracy was obtained. 

L. Zhang et al. 

(2020) 

Classification of 

frost-damaged rice 

seeds 

Deep forest 

model 

1800 NIR hyperspectral images of rice seeds with different degrees of frost damage were 

assessed, pre-processed using MSC, and modelled using decision tree, KNN, SVM, deep 

forest model. With only a small amount of data set (around 50 samples), deep forest model 

was able to achieve more than 80% classification accuracy easily than other models. 

Visualisation on classification of frost-damaged rice seeds by deep forest model was also 

made and the model correctly classified 298 out of 300 (99.33%) rice seeds samples. 

Ma et al. (2020) Classification of 

seed viability 

2D CNN A 2D CNN model was used using PCA and SVM mapping results from the NIR hyperspectral 

images of Japanese mustard spinach seeds as inputs on the wavelength range of 1002 – 2300 

nm to classify the viability of those seeds. The result on the testing set containing 240 seeds 

showed that combination of PCA and SVM mapping inputs after Savitzky-Golay pre-

processing yielded the best classification accuracy of approximately 90% (87.5% true 

positive, 91.1% true negative). 

Weng et al. (2020) Classification of 

rice variety 

Variant of CNN 

(PCANet) 

Visible-NIR HSI was used to capture images of 10 types of rice which were then pre-

processed using MSC, SNV, Savitzky-Golay filtering. The data, containing 3240 samples for 

training set and 1080 for prediction set, was later processed using PCA on spectroscopic and 

texture features and sent to deep learning model using PCANet (principal components 
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analysis network). It was compared with KNN and random forest models, and resulted in the 

best classification accuracy of 98.57%. 

Xin et al. (2020) Prediction of 

cadmium residue in 

lettuce leaves 

Autoencoders Line-scanning visible-NIR HSI was used to acquire 1120 hyperspectral images of lettuce 

leaves with 7 different concentrations of cadmium chloride. Using the best spectral pre-

processing method of Savitzky-Golay with 1st derivative, the best 𝑅𝑅𝑝𝑝2 of 0.9487 and RMSEP 

of 0.01049 could be obtained from stacked autoencoders of model scale 477-240-111-81 

(number of nodes for each layer, separated by dash) with least square SVM regression. 

Han et al. (2021) Predict quality level 

of nuts by peroxide 

values 

2D CNN The quality of unbalanced kernels of Canarium indicum nuts was estimated through Visible-

NIR HSI (388.9 – 1005.33 nm) using CNN model. The inputs were 60 2D sub-images from 

raw hyperspectral images. The classification (good, medium or poor quality) results were best 

achieved using inputs after dimensionality reduction by PCA, with testing accuracy of 

93.48%. The resulting CNN model consisted of 4 convolution layers of 1×1 convolution 

kernels and a SVM classifier. Regression was also made on predicting the peroxide values of 

nuts, but the model managed to produce R2 of only 0.67. 

Hong et al. (2021) Classification of 

storage years of 

black tea samples 

CNN, long 

short term 

memory 

(LSTM) and 

CNN-LSTM 

NIR hyperspectral images of black tea samples of different storage years using wavelength 

range of 874 – 1734 nm were captured. Their mean spectra were pre-processed with wavelet 

transform and processed using PCA so that obtained PCA loadings could be used as inputs of 

classification models. Common machine learning methods (linear regression, SVM) and deep 

learning (CNN, LSTM, and CNN-LSTM) were used to fit full range and optimal wavelengths 

spectra into models and then compared. Deep learning models had better classification 

performance, where the LSTM model using full range spectra had 83.601% accuracy, while 

the CNN-LSTM using optimal wavelengths spectra had 81.029% accuracy. 
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2.6 Summary 
Most black pepper powder samples were adulterated with papaya seeds powder due 

to resemblance in colour. To effectively detect and estimate these adulterants present in black 

pepper powder samples, a rapid, non-destructive and reliable detection method is required. 

Chemical analytical and molecular methods provide detailed qualitative and quantitative 

results, however they require high operating cost, tedious sample preparation, long processing 

time, controlled environment, and prior knowledge and expertise in operating the equipment 

and apparatus to be effective. In addition to that, chemical waste was produced as a result. As 

these methods could not be applied into real-time industrial quality assessment, CVS and 

vibrational spectroscopy were typical potential solutions for effective quality assessment of 

black pepper powder samples. However, CVS did not function well on powdered samples and 

there were various hidden chemical information and internal quality characteristics that could 

only be found outside the operating domain of computer vision. Vibrational spectroscopy 

lacked representativeness which could be inconsistent on every measurement of samples. Thus, 

HSI was introduced to address both the shortcomings. 

Due to exorbitant amount of data and high dimensionality in HSI, multivariate data 

analysis was used to extract representative features from the hyperspectral inputs. That 

extracted data would be used to create a model to predict the quantity of adulterants as well as 

most chemical analytical properties. To assess the model predictive performance, various 

multivariate data analysis techniques such as PCA, PLS and SVM were applied and compared 

with deep learning, which was demonstrated in literature that it outperformed the 

aforementioned techniques and was capable of handling raw data without deterioration of 

predictive performance. Yet, little to no reference could be found for black pepper powder 

adulteration detection using HSI and deep learning. The same goes to geographical origin 

classification, which is also crucial in understanding the state of black pepper powder samples 

in Sarawak. Hence, this research seeks to achieve these objectives and prove that HSI is fully 

capable to be an alternative to detailed analytical chemistry techniques as an effective detector 

and estimator of adulterants in Sarawak black pepper powder samples as well as classifier of 

geographical origin. 
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CHAPTER 3 

MATERIAL PREPARATION AND MODELLING 

METHODOLOGY 

This research ultimately seeks to investigate the effectiveness of hyperspectral 

imaging (HSI) in detecting the adulteration, assessing the authenticity and classifying the 

geographical origin of Sarawak black pepper powder samples. There are two cases of research 

to be investigated: (a) the authenticity of Sarawak black pepper powder samples are assessed 

by quantifying their degree of adulteration or purity of black pepper and their geographical 

origin is classified; (b) HSI is then assessed in predicting chemical and biological analytical 

properties of Sarawak black pepper powder samples. In both cases, the HSI inputs are pre-

processed using data pre-processing methods including Savitzky-Golay (SG), standard normal 

variate (SNV), SG-1st derivative and SG-2nd derivative, undergone data exploration using PCA 

and assessed on the prediction of intended targets using PLS, SVM, SVR and deep learning. 

 

3.1 Sample Preparation 
Pure black pepper berries from five regions of Sarawak (Serian, Sungai Tenggang, 

Pakan, Lachau and Sibu) and papaya seeds are acquired from local suppliers. The papaya seeds 

are dried in a natural convective oven at 45℃ for 5 – 7 days to ensure low moisture content. 

All the black pepper and papaya seeds are then milled into powder and packaged in 

polyethylene sealed bags. Two sets of black pepper powder samples were prepared, which 

were the training set and testing set. Different amount of samples in both sets are adjusted for 

two parts of research. 

For the determination of authenticity and origin of black pepper powder samples, the 

training set consisted of the black pepper powder samples adulterated with papaya seeds 

powder in 20 defined proportions of 0 - 15% (with 1% interval), 17.5%, 20%, 25% and 30%. 

Since there are 5 regions to be tested, this results in total of 5 × 20 = 100 black pepper powder 

samples to be analysed with HSI. An example of a training set containing pure and adulterated 

black pepper powder samples from Serian is shown in Figure 3.1. While for the testing set, it 

is made up of 29 black pepper powder samples with randomly defined and labelled proportions 

of papaya seeds powder. 

While for the prediction of chemical and biological analytical properties of black 

pepper powder samples, the samples are made up of black pepper powder samples with 11 

defined proportions of 0 – 10% (with 1% interval). This results in total of 11 × 5 = 55 samples 

to be analysed.  External third-party chemical and biological lab analysis is performed on these 
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samples. The scope of lab analysis may include the determination of moisture content, total 

ash content, volatile oil and non-volatile ether extract contents, and microbiological analysis 

such as checking total count of yeast, Escherichia coli and Salmonella spp (MPB, 2021). 

 

3.2 Data Acquisition 
The HSI equipment to be used in this research is Visible-NIR HSI equipment 

(Resonon Pika L) which has a spectral range of 400 – 1000 nm with spectral resolution of 2.1 

nm and 300 spectral bands. The frame rate and shutter time were set to be 50 frames/sec and 

17.446 ms respectively. Samples were placed on the centre of the stage illuminated by the 

halogen lamps and scanned subsequently line by line with speed of 4.5 mm/sec. The distance 

between the camera and the sample was approximately 0.2 m. The captured HSI data is in BIL 

format and can be processed using Spectral Python library. 

Figure 3.1: RGB image of Serian black pepper powder samples of different degree of adulteration 
of papaya seeds powder 
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The reflectance of captured HSI data or hypercubes is then calibrated in comparison 

with spectra of standard reference materials when appropriate according to Equation (3.1),  

𝑅𝑅𝑐𝑐 = 𝑅𝑅0−𝐷𝐷
𝑊𝑊−𝐷𝐷

× 100 (3.1) 

where 𝑅𝑅𝑐𝑐  is corrected reflectance, using reflectance from raw hypercube, 𝑅𝑅0  with the 

reflectance values of both reference, 𝑊𝑊 and dark, 𝐷𝐷 images (Elmasry et al., 2012; Orrillo et 

al., 2019; Wu and Sun, 2013b). 

From the centre of hyperspectral image of each sample, they are segmented into 81 

sub-samples where each sub-sample will have spatial dimension of 50 × 50, as illustrated in 

Figure 3.2. Sub-sampling increases the availability of the data, thus it allows machine learning 

models to learn and attain better predictive performance. However, more sub-samples will 

reduce the spatial dimension of hyperspectral images, hence the models will have less details 

and features to learn and eventually deteriorated predictive performance due to reduced fidelity 

of images. After that, the raw mean spectra of all these sub-samples (the black pepper powder 

samples from these segments) are obtained. As a result, 

(1) For determination of authenticity and origin of black pepper powder samples: 

• Training set = 100 × 81 = 8100 sub-samples 

• Testing set = 29 × 81 = 2349 sub-samples 

(2) For prediction of chemical and biological analytical parameters, training set from (1) has 

some unrelated samples (i.e. percentage of black pepper not covered in the lab analysis) 

removed, thus: 

• Total number of sub-samples = 8100 – 45 × 81 = 4455 sub-samples 

• Training set = 3113 sub-samples 

• Testing set = 1342 sub-samples 

 

3.3 Data Pre-processing 
Effects of various data pre-processing methods are assessed as data pre-processing 

enhances the predictive performance of machine learning models on the prediction of the 

aforementioned intended targets. It is of interest to investigate the effects of data pre-

processing on the predictive performance of various machine learning models. In HSI, data 

pre-processing is usually applied on primarily spectra data set, targeting the spectral dimension. 

It is especially helpful in removing redundancy and undesirable effects such as light scattering 

effects due to irregularity of surface and particle size of powder samples and random noise 

(Barnes et al., 1989; Orrillo et al., 2019; Saha and Manickavasagan, 2021; Wu and Sun, 2013b). 
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In this research, pre-processing is mostly applicable for mean spectra data set and 

some methods to be used are standard normal variate (SNV) and Savitzky-Golay (SG) filtering. 

SNV normalises the data by centring and scaling them by following the normal distribution 

(Barnes et al., 1989; Wu and Sun, 2013b). SNV scaled samples can be obtained using the 

following equation: 

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑥𝑥 − 𝑥̅𝑥)/�∑(𝑥𝑥−𝑥̅𝑥)2

𝑛𝑛−1
 (3.2) 

where 𝑥𝑥 is the value of a sample, 𝑥̅𝑥 is mean of samples, and 𝑛𝑛 refers to the total number of 

samples. 

SG filtering is usually used to smoothen the signal or spectra, and its derivative helps 

to correct the baseline effects present in the spectra (Elmasry et al., 2012; Wu and Sun, 2013b). 

The main factor of SG filtering is the frame length which allows the spectrum to be fitted into 

polynomial within frame of one measurement point (Savitzky and Golay, 1964). SG filters are 

tested using frame length of 15 points and second polynomial order with and without first and 

second derivatives. All pre-processing methods are implemented using Python Scikit-learn 

and SciPy libraries (Pedregosa et al., 2011). 

 

3.4 Data Exploration and Analysis 
The hypercubes usually contain a high number of variables in spectral dimension 

carrying redundant information that requires proper processing. Multivariate data analysis is 

broadly applied to address this issue by extracting the essential features in the spectral 

dimension. The data with extracted features contain information that explains the data and is 

Figure 3.2: Example of 81 sub-samples segmented from the center of Serian pure black pepper 
powder sample 
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subsequently used to fit a model to yield desired outputs. PCA is a widely used chemometrical 

method to act as preliminary data screening tool on whether discrimination of classes or 

clusters is possible or not (Galvin-King et al., 2021; Kherif and Latypova, 2020). It is also 

used to reduce the dimensionality and output a model with a certain number of principal 

components that capture the maximum variability of the data (Orrillo et al., 2019). As the 

spectral data usually has a high number of dimensions, PCA is used to observe whether the 

spectral data with reduced dimensionality has variability that explains the correlation (Wilde 

et al., 2019). The data of interest to be analysed is the mean spectra of the HSI data. PCA 

transforms the variables in the spectral dimension of the mean spectra into principal 

components, ranked by the amount of explained variability. The number of principal 

components is set to be 10. Both raw and pre-processed data that use SG filtering, SNV and 

SG with 1st and 2nd derivatives are explored using PCA. 

 

3.5 Model Development and Training 
Machine learning models for the two aforementioned cases of this research are built, 

developed and assessed. The models are trained using supervised learning, where the data with 

designated labels are trained. The main models of choice in this research are PLS, SVM, SVR 

and deep learning (DL). PLS and SVR are used for regression while PLS with discriminant 

analysis (DA) and SVM are chosen for classification instead. DL is used in both cases and its 

model architectures of choice are primarily CNN and stacked autoencoders. The whole 

implementation is performed using Python, where PLS and SVM models are based on 

functions from Scikit-learn and SciPy libraries, while DL is from Tensorflow Keras library. 

The performance criteria for regression are RMSE, R2 and MAPE from Equations (2.2) to (2.4). 

Parity plots are then used to review the regression results. For classification, accuracy from 

Equation (2.1) is usually used and confusion matrix is used to visualise and review the 

classification results. The details on implementation of these models for the two cases of this 

research are explained in the following sections. 

 

3.5.1 Determination of Authenticity and Origin of Sarawak Black 

Pepper Powder Samples 
The determination of authenticity is based on the purity of black pepper in those 

Sarawak black pepper powder samples, or degree of adulteration of papaya seeds (Orrillo et 

al., 2019; September, 2011; Wilde et al., 2019). The classification is mainly for identifying the 

geographical origins of black pepper powder samples, targeting mainly multiple regions in 
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Sarawak, Malaysia. The training set is further split into training and validation data sets with 

split ratio of 7:3. Typical split ratio is 8:2, however due to limited amount of data and potential 

overfitting issue by larger training data proportion, the split ratio is set to 7:3 instead 

(Goodfellow et al., 2016). This then results in: 8100 × 0.7 = 5670 in the training set, 8100 × 

0.3 = 2430 in the validation set. Validation data set is established to initially assess the model 

predictive performance before being tested in an unknown testing data set. 

For PLS, the main parameter to be tweaked is the number of latent variables. Thus, to 

find the optimal number of latent variables for both PLS models, minimum RMSE for PLS 

regression model and maximum classification accuracy for PLS-DA model are obtained 

respectively using a range of integers from 1 to 50 for the number of latent variables during 

training and validation of both PLS models. After the optimal number of latent variables is 

found, the predictive performance of both PLS regression and classification models are 

assessed using testing data set. 

For both SVM and SVR, the commonly used kernel function to yield the best decision 

boundary is the radial basis function kernel. The main parameter to be adjusted is the 

regularisation strength, C, where it controls the balance between smooth decision boundary 

and correct classification of trained data as well as γ, which is an important factor for radial 

basis function kernel in controlling influence of single training data on the model (Saha and 

Manickavasagan, 2021). The higher the C, the lesser the tendency for model to overfit but 

lesser number of training data to consider. For γ, higher flexibility or non-linear boundaries 

are considered rather than linear boundaries when higher γ is used. ε-SVR model is used in 

regression instead, and the parameters are C and γ. ε is another parameter which controls the 

tolerance during the training of SVR model and is responsible in finding balance between 

model predictive performance and model training time. ε is fixed to 0.01 in this case. For each 

different data pre-processing method, various values of C and γ are tested to find the best 

combination which yields the best model predictive performance. Possible values of C and γ 

to test are [1, 10, 100] and [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000] respectively. 

As the classification of origin involves multiple classes, the SVM decision boundary shape is 

set to “one-vs-one” in the Scikit-learn function. 

Next, DL models are compared with PLS and SVM or SVR models. There are two 

sections in the hidden layers of DL model. The first section acts as a feature extractor while 

the second section acts as a predictor or classifier. As aforementioned, there are two DL model 

architectures to be tested: CNN and stacked autoencoders (SAE). The input size is fixed at 280 

which corresponds to the number of spectral bands of each raw mean spectrum. 
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In CNN, the feature extractor section consists of convolution and pooling layers. There 

are several main parameters in the convolution part of CNN model to be adjusted: (1) number 

of convolutional layers, (2) size of convolutional kernels in each convolutional layer and (3) 

the layer configuration or number of convolutional kernels in each layer. In (1), the number of 

convolutional layers is set to 4. Such this adjustment relates to pooling operations as pooling 

reduces the dimensionality of inputs of each layer. Max pooling is used and its kernel size is 

fixed to 2, which divides dimensionality by 2. In (2), possible convolutional kernel sizes to be 

tested for each layer are [1, 3] in a Cartesian product combinations. While for (3), the number 

of kernels is initially set with proposed numerical values of base 2. Doing this is based on 

heuristics as it will be slow and inefficient to optimise based on range of values, for example 

1 to 10000. The layer configuration is set to 16-32-64-128. Each layer is always accompanied 

by ReLU activation function to ensure non-linearity of model. Batch normalisation component 

may be added between convolution and pooling to allow faster convergence, better 

generalisation due to standardisation of the inputs similar to SNV (Goodfellow et al., 2016; 

Yang et al., 2019). Using Tensorflow Keras library on the mean spectra data as input, conv1D 

function is used for the convolution operation while maxPool1D is used for the max pooling 

operation. Example of the CNN model was illustrated in Figure 3.3.  

 

Figure 3.3: Schematic of one example of DL CNN model structure 

In SAE, the feature extractor section is instead made up of multiple fully-connected 

autoencoders. The decoding part of SAE is removed, leaving only encoding part to extract the 

features. The main parameters to be adjusted are (1) number of SAE encoding layers and (2) 

the layer configuration. In (1), possible number of SAE encoding layers are [3, 4]. The layer 

configuration in (2) is proposed to be [192-16, 192-128-16, 192-128-64-16, 192-128-64-32-

16, 192-128-96-64-32-16]. Each layer is also accompanied by ReLU activation function. Most 

SAE layers are implemented using Dense function from Tensorflow Keras library. Example 

of the SAE model was illustrated in Figure 3.4. 
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Figure 3.4: Schematic of one example of DL SAE model structure 

After that, the predictor section of any model after the feature extraction is fully-

connected layers. It is set to 2 layers with layer configuration of 128-128. The reason for that 

was mainly increasing more layers could make model more computationally heavy and have 

higher tendency to overfit. These layers are responsible to decide the weighing of extracted 

features to make appropriate predictions. Each of these layers are accompanied by ReLU 

activation function as well. The output layer consists of two types of output, which are (1) 1 

node using sigmoid activation function from Equation (2.12) to output value of authenticity or 

purity of black pepper powder samples, {𝑥𝑥 ∈ ℝ | 0 ≤ 𝑥𝑥 ≤ 1}, and (2) 5 nodes of softmax 

activation function showing probability of identified geographical origin for 5 regions to be 

tested, {𝑥𝑥 ∈ ℝ | 0 ≤ 𝑥𝑥 ≤ 1}. Softmax activation function is defined as follows: 

softmax(𝑧𝑧𝑖𝑖) = exp(𝑧𝑧𝑖𝑖)
∑ exp�𝑧𝑧𝑗𝑗�𝑛𝑛
𝑗𝑗=1

 (3.3) 

Table 3.1: Details of output layer 

Output Type Activation Loss function Metric 

Authenticity of 
black pepper 

Regression Sigmoid RMSE RMSE 

Geographical 
origin 

Multi-class 
classification 

Softmax Categorical 
cross-entropy 

Accuracy 

 

To enable model training, Adam optimiser is used, proper loss functions and metrics 

are set according to Table 3.1. Before the training of DL model, hyperparameters are set 

externally by the user and they cannot be tweaked by machines easily. Hyperparameters such 

as the batch size which controls the number of input samples to be fed at one time, number of 

epochs which is the number of times the training process to be repeated and, decay and learning 
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rates for the Adam optimiser which controls the step size adaptively during each step of 

parameters tweaking of model are set. The batch size is set to 64 and number of epochs to 100. 

The learning rate is set to default 0.001 as recommended by the authors of Adam optimiser 

while the decay rate is set according to formula as follows (Kingma and Ba, 2017): 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠

 (3.4) 

Reproducibility is an important factor which affects the data splitting and selection. It 

is to ensure the consistency during comparison of predicted results from various models. The 

random seed number is fixed to 30. 

 

3.5.2 Prediction of Chemical and Biological Analytical Properties of 

Sarawak Black Pepper Powder Samples 
Because there is a lack of validation data set, cross validation of 10 folds is used 

instead. In this case, most chemical and biological analytical properties to be predicted are 

continuous real values, thus regression is only considered. The difference compared to the 

modelling done in Section 3.5.1 is the models are required to account for multiple outputs. 

There are total of 8 output variables to be trained for, where 6 of them belonging to chemical 

while the remaining 2 are biological properties. The details of these properties are outlined in 

Chapter 5. Both of these categories have to be trained in separate models due to difference in 

values. 

PLS and SVM models undergo similar assessments as in Section 3.5.1. The possible 

range for parameter of PLS which is number of latent variables is from 1 to 50. While for the 

parameters of SVM which are C and γ, their possible values are [1, 10, 100] and [0.001, 0.01, 

0.1, 1, 10, 100, 1000, 10000, 100000] respectively. 

For DL models, similar models (CNN and SAE), settings and comparison as in 

Section 3.5.1 are made. Some exceptions are the predictor section is instead made up of two 

separate fully-connected layers leading to respective outputs of chemical and biological 

analytical properties. The outputs use ReLU activation function to ensure non-negativity, 

{𝑥𝑥 ∈ ℝ | 𝑥𝑥 ≥ 0}. All the required hyperparameters such as number of epochs, learning rate, 

decay rate for the optimiser and random seed number are retained. Examples of the CNN and 

SAE models could be seen in Figure 3.5 and Figure 3.6. 
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Figure 3.5: Schematic of DL CNN model structure for prediction of chemical and biological 
analytical properties 

 

Figure 3.6: Schematic of DL SAE model structure for prediction of chemical and biological 
analytical properties 

 

3.6 Summary 
The whole research workflow is summarised as illustrated in Figure 3.7. The 

determination of authenticity and geographical origin of Sarawak black pepper powder 

samples using HSI along with data pre-processing and various machine learning techniques 

are assessed. After that, prediction of internal quality (chemical and biological analytical 

properties) of Sarawak black pepper powder samples is evaluated as well. All of these will be 

discussed in details in the following chapters. 
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Figure 3.7: Research workflow 
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CHAPTER 4 

REGRESSION OF DEGREE OF ADULTERATION AND 

CLASSIFICATION OF GEOGRAPHICAL ORIGIN 

To determine the degree of adulteration or authenticity and geographical origin of 

Sarawak black pepper powder samples, visible-NIR hyperspectral imaging (HSI) is mainly 

used to capture hyperspectral images of Sarawak black pepper powder samples before these 

HSI data are sent for further pre-processing and modelling. As the HSI equipment used in this 

research covers the wavelength range from visible light to NIR, it is of interest to observe the 

optical effects of adulteration under visible light. Referring back to Figure 3.1, an example of 

RGB image of pure and adulterated Serian black pepper powder samples from HSI equipment 

was shown. From there, it is apparent that the more adulterated the black pepper powder 

samples, the darker they appear due to darker colour of papaya seeds powder than black pepper 

powder.  

To prove this trend numerically, as shown in Figure 4.1, the reflectance measured by 

HSI for all Serian black pepper powder samples showed that the more adulterated the black 

pepper powder samples, the lower the reflectance as the darker colour of the samples reflects 

lesser light. In visible light region between 450 – 700 nm, the effects of adulteration on the 

difference in reflectance among samples were apparent, but they became less noticeable as the 

wavelength increases. On the NIR region beyond 700 nm, the difference in reflectance was 

still apparent from 700 – 800 nm, but it becomes spectrally similar after 800 nm. It could be 

Figure 4.1: Reflectance of raw mean spectra of pure (100%) and adulterated Serian black pepper 
powder samples 
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less helpful to rely on the spectral features after 800 nm as its similarity could potentially cause 

conflicting predictions. The black pepper powder samples from other regions had similar 

patterns on the effects of adulteration, which can be seen in Figure B.1 and Figure B.2 from 

Appendix B. It was further observed that there is a significant peak around 750 – 780 nm, 

which could be attributed to O–H third overtones, indicating the presence of water, or C–H 

fourth overtones  (Jha, 2016; Liu et al., 2014). Two alternating peaks were found between 630 

– 700 nm, which was related to reflection of red bands due to dark brownish colour of black 

pepper powder samples.  

On the other hand, from Figure 4.2, pure black pepper powder samples shared similar 

patterns with each other of different origins. Adulterated black pepper powder samples had 

similar patterns with the pure samples, with the exception of having lower reflectance. Lachau 

black pepper powder samples had the lowest reflectance compared to those of other origins, 

due to their darker appearance. Sibu had different spectral patterns compared to those of other 

origins, such as numerous peaks spotted on 700 – 800 nm and after 850 nm. There were no 

significant spectral differences for Serian, Sg Tenggang and Pakan black peppers, thus this 

required pre-processing or detailed analysis to clearly distinguish them. 

 

4.1 Data Pre-processing and Exploration 
Data pre-processing is usually performed on the spectral data to enhance the 

interpretability of the data. The data pre-processing methods used in this research were SG, 

SG with SNV, SG with 1st derivative and SG with 2nd derivative. SG and SG-SNV filters 

Figure 4.2: Reflectance of raw mean spectra of pure (100%) black pepper powder samples from 
different regions or geographical origins of Sarawak 
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retained most of the spectral properties as the raw data since SG filter only smoothened the 

spectral data while SG-SNV filter normalised the smoothened data. The derivatives on SG 

filter magnify the differences or show the gradients present in the spectral data. Examples of 

these data pre-processing methods in action were shown in Figure 4.3 and Figure 4.4. 

From Figure 4.3, as expected, SG only smoothened the spectra while SG-SNV 

normalised every spectrum. On the other hand, some prominent peaks such as 400 – 500 nm 

and 750 – 800 nm were spotted on SG-1st pre-processing method as well as a few spectral 

differences. For SG-2nd pre-processing method, there were hardly any notable spectral 

differences. Next, from Figure 4.4, it was observed that SG-1st and SG-2nd pre-processed mean 

spectra data had more spectral differences and prominent peaks than SG and SG-SNV pre-

processing methods. Other than that, Sibu black pepper powder samples particularly had 

different spectral patterns than other regions.  

PCA was then performed to transform and visualise the mean spectra data so that the 

data can be interpreted easily, hence allowing investigation and explanation which related to 

the research objectives. The number of principal components (PC) was set to reduce the 

dimensionality of the spectral data. PCA was applied on all raw and pre-processed mean 

spectra data using 10 PCs. After that, PCA score plots were made to visualise the scores, which 

are weights of each sample to projected PCs, according to various labels and targets, which 

are percentage authenticity or purity of black pepper and geographical origins. PCA score plots 

for first 3 PCs for all raw and pre-processed mean spectra data were illustrated in Figure 4.5 - 

Figure 4.9. Referring to these PCA score plots, the pattern of the scores after labelling could 

be observed and analysed on the possibility of clear discrimination of clusters or targets. From 

Figure 4.5, different states were observed for PCA score plots on comparison of two different 

PCs for raw mean spectra data for different classes of authenticity and geographical origins. 

On PC1 vs PC2, it was easier to spot the boundaries on different authenticity or purity of black 

pepper, but not for different geographical origins. Sibu black pepper powder samples appeared 

as a mixture among Serian, Sg Tenggang and Pakan samples. While for other comparisons 

which were PC1 vs PC3 and PC2 vs PC3, it was difficult to clearly discriminate the clusters 

and hence identifying the degree of adulteration and geographical origin, although to a lesser 

extent, it was still possible to identify the geographical origins based on PCA score plot for 

PC1 vs PC3. On the other hand, SG pre-processing data had similar effects with the raw mean 

spectra since it only smoothened the spectra, hence its PCA score plots in Figure 4.6 were 

unchanged. PCA score plots for SG-SNV pre-processing data in Figure 4.7 showed that for 

PC1 vs PC2, the distinction of clusters was visible to a smaller degree on the detection of 

degree of adulteration and classification of geographical origins. However, for SG-1st and SG-

2nd pre-processed data, the PCA score plots in Figure 4.8 and Figure 4.9 illustrated that 



60 
 

determination of degree of adulteration was slightly possible to smaller extent, but on the 

discrimination of geographical origins, Sibu labelled data were distant from other data, making 

the data pre-processing method a good candidate for further modelling purposes in the 

classification of geographical origins. 

Table 4.1: Explained variability of first 3 PCs of raw and pre-processed mean spectra data 

Pre-processing Explained Variability (%) 
PC1 PC2 PC3 

Raw 78.34 17.52 3.06 
SG 78.34 17.52 3.06 
SG-SNV 83.59 9.02 4.36 
SG-1st 46.15 24.37 12.36 
SG-2nd 63.02 12.66 9.91 

 

Explained variability was then determined where the degree of spread of data 

explained by PCs was calculated. The explained variability of first 3 PCs was illustrated in 

Table 4.1. Except SG-1st and SG-2nd, all mean spectra data had explained variability of more 

than 95% based on first 3 PCs, where the raw and SG pre-processed data were 98.92%, while 

SG-SNV was 96.98%. This is important because it is generally favourable to have a simpler 

model which contains lesser number of variables or PCs to explain most of the relationship 

contained in the data. The normalisation by SNV reduced the multiplicative scattering effects 

from the spectral data and subsequently provided a standardised baseline to allow clearer 

spread and better feature selection, as indicated with higher explained variable on first 

principal component (Barnes et al., 1989; Elmasry et al., 2012; Modupalli et al., 2021; Wu and 

Sun, 2013b). On the other hand, SG-1st and SG-2nd pre-processed mean spectra data had lower 

explained variability and hence required more principal components to fully explain the spread 

of the data. 

Judging from the PCA score plots and explained variability, it is of interest to 

understand whether data exploration by PCA revealed any intriguing explanation on the HSI 

spectra data with regards to the authenticity and geographical origin of Sarawak black pepper 

powder samples. PCA loading plots were hence constructed to investigate the relationship 

between the spectral bands and PCs. Figure 4.10 – Figure 4.12 illustrated the PCA loading 

plots for all the raw and pre-processed mean spectra data. In Figure 4.10, there were slight 

resemblance of patterns for loading plot of PC1 on raw mean spectra data with the reflectance 

as displayed in Figure 4.3 and Figure 4.4, except on the wavelength range above 800 nm. 

Drastic change in loading was found starting from 600 nm for PC2, while some peaks were 

found between 600 nm and 800 nm for PC3. This could indicate spectral bands between 600 

nm and 800 nm had significant impact for the results in score plots and explained variability. 
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For loading plots on SG pre-processed mean spectra data, it was hugely similar as those on 

raw mean spectra data. Next, in Figure 4.11, for SG-SNV pre-processed mean spectra data, 

the difference was clearly observed in the loading plot of PC1. Drastic change in loading 

values and many peaks were observed between 600 nm and 900 nm in both loading plots of 

PC2 and PC3. SG-SNV pre-processing made the spectral bands between 600 nm and 900 nm 

more clear and impactful, which further explained the normalisation effect of SNV. While for 

loading plots on SG-1st pre-processed mean spectra data, various peaks were observed in the 

loading plot of PC1, with the most prominent ones were in between 600 nm and 900 nm. 

Significant peak was observed around 800 nm for loading plots of PC2 and PC3, which 

explained separate clusters to be observed easily in PCA score plots as shown in Figure 4.8. 

Since the loading values were quite close to each other, this could be the reason why the 

explained variability was highly distributed among the PCs. In Figure 4.12, for loading plots 

on SG-2nd pre-processed mean spectra data, similar patterns could be observed as those on SG-

1st pre-processed mean spectra data, hence explaining the distinct clustering observed in PCA 

score plots as shown in Figure 4.9.  

Based on these observations, data pre-processing allowed the HSI mean spectral data 

to be interpreted easily and data exploration with PCA revealed which spectral bands in HSI 

mean spectra data were significant in qualitative manner. It was noted that PCA did not 

consider the relationship of independent variables with the dependent variable, thus the PCA 

score and loading plots might not be necessarily reflecting the relationship between 

wavelengths of mean spectra data and the target variables (Elmasry et al., 2012; September, 

2011; Wu and Sun, 2013b). Model development and training was then proceeded after 

preliminary investigation on the HSI spectra data was finished since quantitative analysis was 

not shown in the PCA. 
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Figure 4.3: Reflectance of black pepper powder samples from different range of degrees of adulteration using various data pre-processing methods 
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Figure 4.4: Reflectance of pure (100%) black pepper powder samples from various origins using various data pre-processing methods 
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(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 4.5: PCA score plots for first 3 principal components on raw mean spectra data: Based on percentage authenticity – (a) PC1 vs PC2, (b) PC1 vs 
PC3, (c) PC2 vs PC3; Based on geographical origins – (d) PC1 vs PC2, (e) PC1 vs PC3, (f) PC2 vs PC3 
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(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 4.6: PCA score plots for first 3 principal components on SG pre-processed mean spectra data: Based on percentage authenticity – (a) PC1 vs 
PC2, (b) PC1 vs PC3, (c) PC2 vs PC3; Based on geographical origins – (d) PC1 vs PC2, (e) PC1 vs PC3, (f) PC2 vs PC3 
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(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 4.7: PCA score plots for first 3 principal components on SG-SNV pre-processed mean spectra data: Based on percentage authenticity – (a) PC1 
vs PC2, (b) PC1 vs PC3, (c) PC2 vs PC3; Based on geographical origins – (d) PC1 vs PC2, (e) PC1 vs PC3, (f) PC2 vs PC3 
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(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 4.8: PCA score plots for first 3 principal components on SG-1st pre-processed mean spectra data: Based on percentage authenticity – (a) PC1 vs 
PC2, (b) PC1 vs PC3, (c) PC2 vs PC3; Based on geographical origins – (d) PC1 vs PC2, (e) PC1 vs PC3, (f) PC2 vs PC3 
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(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 4.9: PCA score plots for first 3 principal components on SG-2nd pre-processed mean spectra data: Based on percentage authenticity – (a) PC1 vs 
PC2, (b) PC1 vs PC3, (c) PC2 vs PC3; Based on geographical origins – (d) PC1 vs PC2, (e) PC1 vs PC3, (f) PC2 vs PC3 
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(a) (b) (c) 

(d) (e) (f) 

 

Figure 4.10: PCA loading plots for raw and SG pre-processed mean spectra data – (a) PC1, (b) PC2 and (c) PC3 for raw data; and (d) PC1, (e) PC2 and (f) PC3 for 
SG data 
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(a) (b) (c) 

(d) (e) (f) 

  

Figure 4.11: PCA loading plots for SG-SNV and SG-1st pre-processed mean spectra data – (a) PC1, (b) PC2 and (c) PC3 for SG-SNV data; and (d) PC1, (e) PC2 and 
(f) PC3 for SG-1st data 
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(a) (b) (c) 

Figure 4.12: PCA loading plots for SG-2nd pre-processed mean spectra data – Based on (a) PC1, (b) PC2 and (c) PC3 



72 
 

4.2 Determination of Authenticity 
Determining the authenticity, which is the purity of black pepper powder samples, was 

a regression task. The machine learning model was trained using supervised learning to learn 

the data and corresponding labels or targets. Machine learning techniques used in this research 

were PLS, SVR and DL. In DL, two model architectures were used: convolutional neural 

network (CNN) and modified stacked autoencoder (SAE). 

 

4.2.1 Partial Least Square 
PLS models were built and trained with all the raw and pre-processed mean spectra 

data. To obtain the best PLS model, the main parameter to be optimised is the number of latent 

variables. This optimisation was performed over a range of 50 latent variables to be based on 

the RMSE from the trained model tested on the validation data set. The final results could be 

seen in Table 4.2. 

Table 4.2: Results of PLS models on regression of determination of authenticity of black pepper 
powder samples, bolded results are the best results among the testing data set 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Best # Latent 

Variable 
30 46 36 33 49 

R2 
Train 0.9750 0.9556 0.9681 0.9513 0.9516 
Valid 0.9550 0.9555 0.9677 0.9517 0.9502 
Test 0.4327 0.4457 0.4475 0.4159 0.4298 

RMSE 
Train 0.0161 0.0164 0.0139 0.0171 0.0171 
Valid 0.0166 0.0166 0.0141 0.0173 0.0175 
Test 0.0343 0.0339 0.0338 0.0348 0.0344 

MAPE 
(%) 

Train 1.41 1.43 1.21 1.51 1.50 
Valid 1.48 1.46 1.24 1.53 1.56 
Test 2.91 2.89 2.88 3.03 2.98 

 

From Table 4.2, the best results based on the testing data set were obtained on SG-

SNV pre-processed mean spectra data. Its resulting R2, RMSE and MAPE were 0.4475, 0.0338 

and 2.88% respectively. Its optimisation on the best number of latent variables and 

subsequently parity plot were illustrated in Figure 4.13. Parity plots, plots of optimisation of 

latent variables and regression coefficients for PLS models with other data pre-processing 

methods could be referred to Figure B.3 and Figure B.4 in Appendix B. 

It was observed that SG-1st and SG-2nd pre-processed data worsened the predictive 

performance of PLS model, contrary to most findings in the literature where the SG filter with 

derivatives should yield better estimates (McGoverin et al., 2012; Orrillo et al., 2019). 
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However, SG and SG-SNV pre-processing methods improved the predictive performance on 

testing data set, although to a lesser extent. It was observed that all PLS models such as in the 

parity plot of SG-SNV pre-processed PLS model yielded predicted values exceeding 1.0, 

causing the best fit line of PLS to project values beyond 1.0, thus further increasing 

discrepancies between predicted and true values. More importantly, all PLS models for all 

testing mean spectra data only managed to yield R2 of less than 0.5, and it was only acceptable 

if R2 is more than 0.9 (Yu et al., 2018). It was most likely due to non-linearity of the data, as 

the PLS model was a linear model and would yield high predictive performance on both 

training and testing data sets if the data was linear. Even after PLS transformation, the latent 

variables which captured the maximum variability could not extract representative features 

from the data easily. 

Additionally, it was common that most machine learning models suffered from 

overfitting issues, where the PLS model had good training and validation predictive 

performance (R2 more than 0.95), but worse testing predictive performance. This could be 

attributed to conflicting data where the models found the mean spectra of one testing sample 

belonging to certain label similar to the mean spectra of one trained sample but belonging to 

another label. The MAPE, which determined the mean absolute error among the predicted and 

Figure 4.13: The best result of PLS model on SG-SNV pre-processed mean spectra data [Above –  
Parity plot, black line is 1:1 baseline, blue line is best fit line of predicted values; Below – (Left): 
Optimisation of number of latent variables based on validation RMSE, (Right): Regression 
coefficient of that resulting PLS model] 
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measured values, was within acceptable margin of 10%, where more than 10% indicating the 

predictions strayed away from intended measured targets. 

From Figure 4.13, plot of regression coefficients over wavelengths for the PLS model 

on SG-SNV mean spectra data was also included to investigate how spectral bands influence 

the final prediction results. From there, most prominent peaks were located below 750 nm, 

which is visible light region but fewer peaks could be located above 750 nm. For example, 

positive peaks on around 420, 520 and 615 nm and negative peaks on around 435, 460, 545, 

595, 745 and 800 nm were possible parts of factors which influenced the PLS regression results. 

Nevertheless, different machine learning techniques were to be explored for better prediction 

of authenticity of Sarawak black pepper powder products. 

 

4.2.2 Support Vector Regression 
Different SVR models were created for each data pre-processing method. Grid search 

algorithm was used to find the optimal combination of C and γ for each SVR model of different 

data pre-processing method. The final results of all SVR models could be seen in Table 4.3. 

Parity plot of the best SVR model based on SG-SNV pre-processed data was plotted in Figure 

4.14, with the rest of parity plots for other SVR models could be referred to Figure B.6 in 

Appendix B. 

Table 4.3: Results from SVR model on regression of determination of authenticity of black pepper 
powder samples, bolded results are the best results among the testing data set 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Best C 1 1 10 100 10 
Best γ 10 10 0.001 10 10000 

R2 
Train 0.9776 0.9773 0.9565 0.9654 0.9752 
Valid 0.9754 0.9751 0.9574 0.9666 0.9741 
Test 0.7855 0.7954 0.8032 0.7559 0.7197 

RMSE 
Train 0.0116 0.0117 0.0162 0.0144 0.0122 
Valid 0.0123 0.0124 0.0162 0.0143 0.0126 
Test 0.0211 0.0206 0.0202 0.0225 0.0241 

MAPE 
(%) 

Train 0.97 0.98 1.40 1.23 1.03 
Valid 1.03 1.04 1.40 1.24 1.06 
Test 1.72 1.66 1.75 1.98 2.09 

# Support Vectors 1815 1833 2680 2334 1945 
 

From Table 4.3, the best results were also from the SVR model for SG-SNV pre-

processed mean spectra data where the R2, RMSE and MAPE were 0.8032, 0.0202 and 1.75% 

respectively. Due to the standardisation of mean spectra data by SNV, the model predictive 
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performance could be improved. Additionally, the radial basis function kernel was a Gaussian 

function and normalisation usually followed Gaussian distribution (Goodfellow et al., 2016). 

All SVR models managed to perform better than PLS models, with most R2 achieving more 

than 0.7, since the radial basis function kernel in SVR model could translate the mean spectra 

data to make it more separable, hence making SVR model more robust and able to account for 

non-linearity and unknown testing data set easier than PLS model (Goodfellow et al., 2016; Z. 

Zhou et al., 2019). The issue of data with conflicting labels was still present but SVR model 

seemed to deal with that appropriately. There was also a substantial reduction in MAPE 

compared to that of PLS model. Even so, from Figure 4.14, SVR model yielded predicted 

values exceeding 1.0, which was outside appropriate range in determining the authenticity of 

black pepper powder samples to begin with. Additionally, several predicted values were not 

close to measured values. 

SVR models selected the input mean spectra data as support vectors for the decision 

function (i.e. radial basis function kernel), thus they were based on full spectra range instead 

of certain characteristic wavelengths or bands. The number of support vectors usually indicates 

the size of model to determine the best fit decision function. Referring to Table 4.3, somehow 

the SVR model using raw mean spectra data had the least number of support vectors. While 

SVR models yielded decent predictions in determining the authenticity of black pepper powder 

samples, it was of interest to investigate whether deep learning models performed better in this 

regression task or not. 

 

4.2.3 Deep Learning 
Deep learning (DL) model was a black box model entirely dependent on the data. 

CNN and SAE model architectures were considered in this research due to majority of 

Figure 4.14: Parity plot of SVR model using SG-SNV pre-processed mean spectra data 
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researches in determining the quality of food and agricultural products applied these 

architectures (Saha and Manickavasagan, 2021). Both CNN and SAE models were not pre-

trained (training the model with other mean spectra data before this training happened), tested 

and compared to investigate which model functions better for regression task. 

 

4.2.3.1 Convolutional Neural Network 
In CNN model, the convolution operations were responsible to extract locally 

correlated features present in the spectra. The design of the CNN model was based on the 

design from Han et al. (2021). There were total of 16 different model types to be assessed 

which involved altering of the kernel sizes in convolutional filters for each convolution layer, 

and could be referred to Table 4.4. The reason of using convolution kernel size of 1 or 3 was 

smaller kernel is able to capture finer features or details rather than obvious features (Han et 

al., 2021). The layer configuration or number of convolutional kernels in all convolutional 

layers was kept to be 16-32-64-128 for all model types, where the number being set to be base 

2 was common in most works and that configuration generally worked well (Blazhko et al., 

2021; Goodfellow et al., 2016; Han et al., 2021; Rong et al., 2019). As most spectra data were 

mostly similar to each other especially relationship among the bands or spectral features, it 

was beneficial to find for these local features so that the authenticity and geographical origins 

of black pepper powder samples easily could be predicted easily.  

Table 4.4: Different DL CNN models with respective definitions of kernel sizes of each layer 

Model Type 1D Kernel size (Layer 1-2-3-4) 
1 1 1 1 1 
2 1 1 1 3 
3 1 1 3 1 
4 1 1 3 3 
5 1 3 1 1 
6 1 3 1 3 
7 1 3 3 1 
8 1 3 3 3 
9 3 1 1 1 

10 3 1 1 3 
11 3 1 3 1 
12 3 1 3 3 
13 3 3 1 1 
14 3 3 1 3 
15 3 3 3 1 
16 3 3 3 3 
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All CNN models had in average of around 300,000 trainable parameters. The final 

results on the testing data sets were displayed in Table 4.5. For the training and validation 

results, they could be referred to Table B.1 in Appendix B. 

Table 4.5: Results from DL CNN models for regression, bolded results are the best results from 
testing data set for respective data pre-processing method 

Indicator Model 
Type 

Pre-processing 
Raw SG SG-SNV SG-1st SG-2nd 

R2 
Testing 

1 0.7272 0.7799 0.7449 0.6898 0.6525 
2 0.7466 0.7876 0.8671 0.8322 0.5471 
3 0.7347 0.8297 0.8663 0.8420 0.7052 
4 0.7439 0.7577 0.7679 0.8040 0.5899 
5 0.7740 0.7931 0.8372 0.7872 -1.6461 
6 0.7001 0.7579 0.7323 0.7643 0.6522 
7 0.7571 0.7568 0.8137 0.7760 0.6507 
8 0.7208 0.7898 0.8246 0.8271 0.4836 
9 0.8370 0.8509 0.8172 0.3479 -1.2065 
10 0.7816 0.7877 0.7530 -2.0652 -0.4153 
11 0.8284 0.8663 0.8412 0.1773 0.6151 
12 0.8153 0.8335 0.8018 0.7658 0.5344 
13 0.8307 0.8642 0.8319 0.8430 -2.1639 
14 0.8088 0.7078 0.8019 0.8025 0.5607 
15 0.7720 0.8471 0.8540 0.7593 0.4030 
16 0.8507 0.8176 0.8391 0.7883 0.6572 

Indicator Model 
Type 

Pre-processing 
Raw SG SG-SNV SG-1st SG-2nd 

RMSE 
Testing 

1 0.0238 0.0213 0.0230 0.0253 0.0268 
2 0.0231 0.0210 0.0166 0.0186 0.0306 
3 0.0234 0.0188 0.0166 0.0181 0.0247 
4 0.0230 0.0228 0.0219 0.0201 0.0291 
5 0.0211 0.0207 0.0184 0.0210 0.0740 
6 0.0249 0.0224 0.0236 0.0221 0.0268 
7 0.0224 0.0222 0.0196 0.0215 0.0269 
8 0.0233 0.0209 0.0191 0.0189 0.0327 
9 0.0184 0.0176 0.0195 0.0367 0.0676 
10 0.0213 0.0210 0.0226 0.0796 0.0541 
11 0.0188 0.0166 0.0181 0.0413 0.0282 
12 0.0196 0.0186 0.0203 0.0220 0.0310 
13 0.0187 0.0168 0.0187 0.0180 0.0809 
14 0.0199 0.0246 0.0202 0.0202 0.0302 
15 0.0217 0.0178 0.0174 0.0223 0.0352 
16 0.0176 0.0194 0.0183 0.0209 0.0266 

Indicator Model 
Type 

Pre-processing 
Raw SG SG-SNV SG-1st SG-2nd 

1 1.89 1.71 1.95 2.04 2.19 
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MAPE 
Testing 

(%) 

2 1.85 1.60 1.38 1.55 2.42 
3 1.88 1.42 1.40 1.52 2.03 
4 1.84 1.83 1.80 1.62 2.29 
5 1.75 1.74 1.58 1.72 5.56 
6 2.03 1.87 1.90 1.79 2.21 
7 1.77 1.75 1.64 1.78 2.25 
8 1.92 1.76 1.55 1.51 2.68 
9 1.51 1.40 1.65 2.54 4.50 
10 1.79 1.76 1.90 5.80 4.30 
11 1.60 1.39 1.52 3.33 2.42 
12 1.72 1.55 1.79 1.86 2.46 
13 1.56 1.40 1.54 1.55 6.37 
14 1.61 1.97 1.72 1.73 2.38 
15 1.74 1.43 1.41 1.80 2.86 
16 1.44 1.51 1.56 1.77 2.17 

 

Table 4.6: Example of DL CNN model architecture 

Layer Output Shape # of Parameters Connected To 
Input Layer (280, 1) 0 - 
Conv1D_1 [kernel size = 1] (280, 16) 32 Input Layer 
BatchNormalization_1 (280, 16) 64 Conv1D_1 
MaxPool1D_1 (140, 16) 0 BatchNormalization_1 
Conv1D_2 [kernel size = 1] (140, 32) 544 MaxPool1D_1 
BatchNormalization_2 (140, 32) 128 Conv1D_2 
MaxPool1D_2 (70, 32) 0 BatchNormalization_2 
Conv1D_3 [kernel size = 1] (70, 64) 2112 MaxPool1D_2 
BatchNormalization_3 (70, 64) 256 Conv1D_3 
MaxPool1D_3 (35, 64) 0 BatchNormalization_3 
Conv1D_4 [kernel size = 3] (35, 128) 24704 MaxPool1D_3 
BatchNormalization_4 (35, 128) 512 Conv1D_4 
MaxPool1D_4 (17, 128) 0 BatchNormalization_4 
Flatten (2176) 0 MaxPool1D_4 
Dense_1 (128) 278656 Flatten 
Dense_2 (128) 16512 Dense_1 
Dense_3 [authenticity] (1) 129 Dense_2 
Dense_4 [geog. origin] (5) 645 Dense_2 
Total of trainable number of parameters = 323,814 

 

From Table 4.5, the best result was the CNN model on SG-SNV pre-processed mean 

spectra data in Model Type 2 where the kernel sizes for each layer were [1-1-1-3]. An outline 

of the best CNN model was displayed in Table 4.6. Its resulting R2, RMSE and MAPE were 
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0.8671, 0.0166 and 1.38% respectively. As shown on its parity plot in Figure 4.15, thanks to 

sigmoid function which appropriately limited the output, this resulted in predictions with 

higher precision with the measured values. Plots of losses and RMSE metric over epochs were 

also shown in Figure 4.15 to assess the generalizability of the model, which was Model Type 

2. From those plots, it was safe to indicate that the model did not overfit on validation data set, 

where the validation loss were usually higher than training loss on overfitting case 

(Goodfellow et al., 2016).  

The Model Type 3 (layer configuration [1-1-3-1]) for SG-SNV pre-processed data had 

similar predictive performance as Type 2 with R2, RMSE and MAPE were 0.8663, 0.0166 and 

1.40% respectively. Another model which has closer predictive performance with SG-SNV 

pre-processed data was SG pre-processed model of Type 11 (layer configuration [3-1-3-1]). 

Although the CNN model had already decent predictive performance on raw mean spectra 

data where the best model type was Model Type 16 (layer configuration [3-3-3-3]), its R2, 

RMSE and MAPE were 0.8507, 0.0176 and 1.44% respectively, the data pre-processing on 

mean spectra data had further improved the CNN model predictive performance, albeit to a 

Figure 4.15: Best results of DL CNN model on SG-SNV pre-processed data (Model Type 2) 
[Above – Parity plot; Below – Loss and metric over epochs plots to monitor the generalizability 
of the model (Left) RMSE metric over epochs, (Right) Total loss over epochs 
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smaller extent. Since it was highly desirable to get lightweight model, Model Type 2 for SG-

SNV pre-processed data with the best predictive performance was hence selected. 

On the contrary, SG with 2nd derivative pre-processing seemed to cause opposite 

effects on the predictive performance of DL CNN models, where the final training and 

validation predictive performance were worse, as per reference to Table B.1 in Appendix B. 

This could be attributed to the many redundant and conflicting information present in the 

derivatives of the data were trained, subsequently making wrong predictions. It was well noted 

that CNN models with batch normalisation hugely improved the generalizability of CNN 

models. Dropouts were considered but they were found to impede the predictive performance 

of the model since batch normalisation components were already present in regularising the 

outputs (Goodfellow et al., 2016; Yang et al., 2019). 

 

4.2.3.2 Stacked Autoencoder 
SAE models were also explored as the encoding part of SAE could extract features by 

mapping values through the reduced dimensional space. Most settings and configurations were 

similar to CNN modelling, but the convolution part was substituted with SAE encoding part. 

In average, there were 110,000 trainable parameters, making them faster to train than CNN 

models. Assessments for different model types where the layer configuration of encoding part 

was altered were performed as shown in Table 4.7. The final results of all SAE models for 

different data pre-processing methods on testing data sets could be seen in Table 4.8. For the 

training and validation results, they could be referred to Table B.2 in Appendix B.  

Table 4.7: DL SAE models with different definitions of layer configuration 

Model Type Layer Configuration 
1 (192, 16) 
2 (192, 128, 16) 
3 (192, 128, 64, 16) 
4 (192, 128, 64, 32, 16) 
5 (192, 128, 96, 64, 32, 16) 

 

Table 4.8: Results from DL SAE model on regression, bolded results are the best results from 
testing data set for respective data pre-processing method 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Model Type R2 Testing 

1 0.8647 0.8807 0.8649 0.8372 0.4421 
2 0.8801 0.8424 0.8752 0.8784 0.4634 
3 0.8456 0.7807 0.7720 0.7883 -0.1915 
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4 0.7369 0.8347 0.8665 0.8173 0.1285 
5 0.8715 0.8504 0.9010 0.7509 0.3989 

Model Type RMSE Testing 
1 0.0167 0.0157 0.0167 0.0184 0.0340 
2 0.0158 0.0181 0.0161 0.0159 0.0333 
3 0.0179 0.0213 0.0219 0.0209 0.0497 
4 0.0233 0.0185 0.0166 0.0194 0.0425 
5 0.0163 0.0176 0.0143 0.0227 0.0353 

Model Type MAPE Testing (%) 

1 1.42 1.34 1.38 1.60 2.69 
2 1.38 1.42 1.34 1.30 2.64 
3 1.44 1.59 1.61 1.68 3.38 
4 1.69 1.47 1.37 1.50 3.20 
5 1.36 1.35 1.17 1.83 2.60 
 

Table 4.9: Example of DL SAE model architecture 

Layer Output Shape # of Parameters Connected To 
Input Layer (280) 0 - 
Dense_1 (192) 53952 Input Layer 
BatchNormalization_1 (192) 768 Dense_1 
Dense_2 (128) 24704 BatchNormalization_1 
BatchNormalization_2 (128) 512 Dense_2 
Dense_3 (96) 12384 BatchNormalization_2 
BatchNormalization_3 (96) 384 Dense_3 
Dense_4 (64) 6208 BatchNormalization_3 
BatchNormalization_4 (64) 256 Dense_4 
Dense_5 (32) 2080 BatchNormalization_4 
BatchNormalization_5 (32) 128 Dense_5 
Dense_6 (16) 528 BatchNormalization_5 
BatchNormalization_6 (16) 64 Dense_6 
Dense_7 (128) 2176 BatchNormalization_6 
Dense_8 (128) 16512 Dense_7 
Dense_9 [authenticity] (1) 129 Dense_8 
Dense_10 [geog. origin] (5) 645 Dense_8 
Total of trainable number of parameters = 120,374 

 

As a result, the best DL SAE model was based on Model Type 5 (layer configuration 

[192-128-96-64-32-16]) and SG-SNV pre-processed mean spectra data, where the testing R2, 

RMSE and MAPE were 0.9010, 0.0143 and 1.17% respectively. Its model architecture and 

parity plot could be referred to Table 4.9 and Figure 4.16 respectively. Batch normalisation 

components worked well with the SG-SNV pre-processed mean spectra data, resulting in high 

quality predictions. From Figure 4.16, plots of losses and RMSE metric over epochs were 
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presented. There were no obvious signs of overfitting found in those plots, and eventually this 

resulted in the model with best generalisation.  

It was found out that for all model types, all SAE models underwent similar trends in 

losses over epochs where it took numerous epochs for all these models to reduce losses to a 

reasonable degree (down to 10-3), unlike CNN models where the loss reduction was gradual. 

It was inferred that the updating of weights in Dense functions of feature extractor section 

required several runs to stabilise, compared to convolution filters which were more stable to 

update. Interestingly, the training and validation performance for SAE models were 

consistently more stable than CNN. SAE models had comparable predictive performance in 

most regression tasks to predict numerical properties as demonstrated in most literature (Xin 

et al., 2020; Yang et al., 2019; Yu et al., 2018; C. Zhang et al., 2020). 

Based on all the results from PLS, SVR, CNN and SAE models, it was evident that 

DL models performed better than most conventional machine learning techniques. Among all 

data pre-processing methods, SG-SNV pre-processed mean spectra data enabled all types of 

models to yield the best predictive performance in determining the authenticity of Sarawak 

black pepper powder samples, and DL-SAE model had the best predictive performance among 

all the models with R2 of 0.9010. Additionally, Visible-NIR HSI had quite considerable 

success in determining the authenticity of powder samples, as most researches using Visible-

Figure 4.16: Best results of DL SAE model on SG-SNV pre-processed data (Model Type 5) [Above 
– Parity plot; Below – Loss and metric over epochs plots to monitor the generalizability of the 
model (Left) RMSE metric over epochs, (Right) Total loss over epochs 
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NIR HSI were towards classification and determination of quality of non-powder opaque 

objects due to distinct dissimilarity while for black pepper powder samples, NIR spectral range 

with further wavelength range was used instead (Hu et al., 2018; Lima et al., 2020; McGoverin 

et al., 2012; Orrillo et al., 2019). 

 

4.3 Classification of Geographical Origin 
Classification of geographical origin involves classification and thus the machine 

learning techniques were required to be adjusted accordingly. PLS with discriminant analysis 

(DA), SVM and DL were applied in classification task. For DL, the CNN and SAE models 

were trained as outlined in Section 4.2.3.1 to yield multiple outputs including classification of 

geographical origins. 

 

4.3.1 Partial Least Square – Discriminant Analysis 
PLS-DA was performed based on the threshold of predicted values by PLS regression 

to determine the class of the predicted sample. The parameter to be optimised was still the 

number of latent variables and the validation accuracy was compared. The final results were 

tabulated in Table 4.10. The best PLS-DA model with the minimum number of latent variables 

was based on the SG-SNV pre-processed mean spectra data with the highest accuracy of 

68.07%, which was considered subpar. Based on its confusion matrix in Table 4.11, Sibu 

samples could be easily classified due to its uniqueness present in the mean spectra data, while 

samples of other regions could not be identified easily due to their spectral similarities. On the 

other hand, PLS-DA models were unable to learn the mean spectra data well with SG-1st and 

SG-2nd derivatives pre-processing methods, mainly because PLS-DA models were unfit for 

non-linear mean spectra data (Elmasry et al., 2012; Li et al., 2019; Petersson et al., 2016; Yang 

et al., 2019). While for models with other data pre-processing methods, the predictions were 

more towards misclassification of Pakan samples instead. 

Table 4.10: Results from PLS-DA model on classification of geographical origins of black pepper 
powder samples, bolded results are the best results among the testing data set 

Pre-processing 
Best # Latent 
Variables 

Accuracy (%) 
Train Valid Test 

Raw 37 98.96 98.72 63.94 
SG 42 98.89 98.64 63.52 
SG-SNV 33 97.39 97.82 68.07 
SG-1st 49 98.59 98.64 67.82 
SG-2nd 49 98.43 98.31 64.20 
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Table 4.11: Confusion matrix of PLS-DA model using SG-SNV pre-processed data 

  Predicted Category 
  

Serian Sg 
Tenggang 

Pakan Lachau Sibu 
T

ru
e 

C
at

eg
or

y 
Serian 468 18 0 0 0 

Sg Tenggang 240 246 0 0 0 
Pakan 0 325 161 0 0 

Lachau 0 0 167 238 0 
Sibu 0 0 0 0 486 

 

 Plots of optimisation of latent variables and regression coefficients of PLS-DA model 

on SG-SNV pre-processed data were displayed in Figure 4.17. Models of other pre-processing 

methods were shown in Figure B.5 of Appendix B. From the plot of regression coefficients in 

Figure 4.17, most coefficients were similar to each other and only a few notable peaks could 

be found on visible light region which is below 700 nm, such as around 420, 480 and 660 nm. 

Considering the low classification accuracy by the PLS-DA models, other machine learning 

techniques were then explored and assessed. 

 

4.3.2 Support Vector Machine 
SVM model was used specifically for classification tasks. Similar to how SVR 

modelling was performed, the final SVM models with the best C and γ on all mean spectra 

data were trained. The results were then displayed in Table 4.12. Table 4.13 displayed the 

confusion matrix of the best result which was from the SG-1st pre-processed SVM model. The 

best accuracy was now 100%, thanks to high capability of SVM to discriminate non-linear 

spectral data. The SG-1st pre-processed SVM model had the least number of support vectors, 

15. It was easier for SVM to have higher predictive classification performance than SVR on 

determination of authenticity of black pepper powder samples because the mean spectra data 

were distinct enough in conjunction with discrete values of regions for training SVM model 

Figure 4.17: Plots of PLS-DA model on SG-SNV pre-processed mean spectra data, (Left): 
Optimisation of number of latent variables based on validation accuracy, (Right): Regression 
coefficient of that resulting PLS-DA model 
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to classify the origins of black pepper powder samples. This resulted in easier construction of 

feature space by SVM model, hence lesser number of support vectors compared to SVR model 

which had to consider highly variable and continuous values in the determination of 

authenticity of black pepper. 

Table 4.12: Results of SVM models on classification of geographical origins of black pepper 
powder samples, bolded results are the best results among the testing data set 

Pre-
processing Best C Best γ 

# Support 
Vectors 

Accuracy (%) 
Train Valid Test 

Raw 100 0.1 206 99.51 99.22 99.87 
SG 100 0.1 206 99.49 99.22 99.87 
SG-SNV 100 0.1 44 99.98 100 99.83 
SG-1st 100 1000 15 100 100 100 
SG-2nd 100 10000 23 100 100 99.62 

 

Table 4.13: Confusion matrix of SVM model using SG-1st pre-processed data 

  Predicted Category 
  

Serian Sg 
Tenggang 

Pakan Lachau Sibu 

T
ru

e 
C

at
eg

or
y 

Serian 486 0 0 0 0 
Sg Tenggang 0 486 0 0 0 

Pakan 0 0 486 0 0 
Lachau 0 0 0 405 0 

Sibu 0 0 0 0 486 
 

 

4.3.3 Deep Learning 
Deep learning models used for the classification task were CNN and SAE models. The 

settings, definition, configurations and assessment of different model types were from Sections 

3.5.1 and 4.2.3, as all the models were trained to be multi-output, allowing simultaneous 

different outputs to be observed easily. 

 

4.3.3.1 Convolutional Neural Network 
Table 4.14 displayed the testing classification results of CNN models on all raw and 

pre-processed mean spectra data for all model types. Overall, except for SG-SNV and SG-2nd 

pre-processed mean spectra data, all CNN models on all data were able to yield 100% 

classification accuracy. Especially for the raw mean spectra data, CNN models were able to 

effectively extract spectral features from the data and classify the origins of black pepper 
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powder samples, which was proven to function well without much pre-processing (Yang et al., 

2019). Varying kernel sizes seemed to not affect the testing classification accuracy as it was 

inferred that most spectra data were distinct to be captured by convolutional filters and easily 

weighed on the predicting fully-connected layers to produce excellent classification results. 

Figure 4.18 showed the accuracy metric over epochs plot. From there, the model took only 

around 5 epochs to reach convergence, signifying the ease of training of DL models provided 

the definition of model architecture was performed properly. 

Table 4.14: Results of DL CNN models for different kernel sizes of each layer on geographical 
origin classification 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Model Type Accuracy Testing (%) 

1 97.87 99.66 99.28 96.51 94.76 
2 99.96 97.96 99.74 99.53 99.96 
3 99.91 99.15 99.74 100.00 98.68 
4 99.62 100.00 99.53 99.23 97.96 
5 97.62 99.91 97.53 99.36 85.65 
6 98.30 99.11 97.62 100.00 99.74 
7 100.00 100.00 99.15 97.66 98.51 
8 99.87 100.00 99.83 97.70 97.66 
9 99.11 100.00 98.42 95.79 85.57 
10 99.96 99.91 98.55 96.42 95.02 
11 99.96 100.00 99.02 99.96 95.32 
12 100.00 99.83 98.60 99.87 98.68 
13 98.85 99.15 99.66 99.83 85.06 
14 100.00 100.00 99.57 99.96 98.94 
15 100.00 99.96 99.19 99.32 93.44 
16 99.87 100.00 98.55 98.64 98.51 

 

Figure 4.18: Accuracy metric over epochs for DL-CNN model (Model Type 2) 
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4.3.3.2 Stacked Autoencoder 
Table 4.15 showed the results of DL SAE models on all raw and pre-processed mean 

spectra data for all model types. The results were similar to CNN models where all SAE 

models were able to yield 100% classification accuracy, even with varying number of nodes 

in the feature extractor layers. Figure 4.19 showed the accuracy metric over epochs plot. From 

there, the model took around 2 - 3 epochs to reach convergence, but the validation accuracy 

only stabilised after around 38 epochs due to updating of weights in the SAE model, which 

was explained in Section 4.2.3.2. 

Table 4.15: Results of DL SAE models for different number of nodes of each layer on geographical 
origin classification 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Model Type Accuracy Testing (%) 

1 99.91 99.96 99.83 99.70 89.19 
2 99.96 99.96 99.83 99.83 99.96 
3 99.96 99.96 100.00 99.87 97.02 
4 100.00 99.96 99.91 99.91 100.00 
5 99.87 99.87 99.96 100.00 99.83 
 

 

4.4 Summary 
To determine the authenticity or degree of adulteration and geographical origin of 

Sarawak black pepper powder samples, HSI was used to gather the data of the samples by 

capturing the images of them, and multivariate data analysis was applied for data exploration, 

analysis and modelling purposes. During data exploration, mean spectra of these hyperspectral 

images were obtained, pre-processed (SG, SG-SNV, SG-1st, SG-2nd) and analysed, followed 

by PCA to screen for possible discrimination of clusters or targets. Sibu black pepper powder 

Figure 4.19: Accuracy metric over epochs for DL-SAE model (Model Type 5) 
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samples exhibited unique features compared to those of other regions. From PCA score plots, 

it was fairly possible to differentiate the difference in degree of adulteration and geographical 

origin of these samples. Next, models which included PLS, SVM, SVR, CNN and SAE were 

built and trained using raw and pre-processed mean spectra data to determine the authenticity 

and geographical origin of Sarawak black pepper powder samples. In assessing the 

authenticity of black pepper, DL SAE model on SG-SNV pre-processed mean spectra data had 

the best predictive performance on testing data set with R2, RMSE and MAPE of 0.9010, 

0.0143 and 1.17% respectively. While for the classification of geographical origin of Sarawak 

black pepper, SVM and DL models managed to achieve perfect classification accuracy on 

testing data set. As the controlled data set had considerable success in the determination of 

authenticity and classification of geographical origins of Sarawak black pepper powder 

samples, more external samples from the market would be acquired to serve as testing data 

sets and further assessed on the effectiveness of all the predictive models in the future study. 

It was well noted that most research in the literature on detecting the authenticity and 

adulteration of black pepper was mainly focused on the further NIR wavelength range of more 

than 1000 nm. Considering the fact that Visible-NIR HSI mean spectra data which were 

focused on the visible light and close NIR regions were used, and most machine learning 

models were able to deliver high predictive performance, the main research objective in 

utilising the HSI with multivariate data analysis to effectively determine the authenticity and 

geographical origin of Sarawak black pepper powder samples was essentially achieved.  
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CHAPTER 5 

PREDICTION OF CHEMICAL AND BIOLOGICAL 

ANALYTICAL PROPERTIES 

Often, authenticity of black pepper powder products is tied with the internal quality 

of these products. Chemical and biological analyses were mainly performed to examine the 

chemical composition of contents of samples and micro-organism contents to determine the 

degree of contamination of the samples. The chemical composition of black pepper products 

was  affected by factors such as growing climate, temperature, rainfall, soil conditions and 

quality, type of fertiliser used (Mercer et al., 2019; Sun et al., 2021). For example, 

carbohydrate, moisture, protein, volatile oil compounds contents. Analysis of the chemical 

compositions of essential or volatile oils present in black pepper products to assess the quality 

or geographical origin of black pepper had been done in the past (Li et al., 2020; Mercer et al., 

2019).  

HSI had been explored in the literature on determining the quality or chemical 

composition of various food and agricultural products (Khan et al., 2020; Liu et al., 2017). In 

order to study how the aforementioned factors affecting the final quality of the black pepper 

products, one could study the spectral differences present in the HSI data. In this research, all 

the Sarawak black pepper powder samples were sent for third party lab analyses. The lab 

analytical results were then used as targets to perform supervised training on various models 

to predict chemical and biological analytical properties. As outlined in Section 3.1, the range 

of purity of black pepper powder samples to be covered was from 90% to 100%, or 0% to 10% 

papaya seeds powder adulteration with the interval of 1%. 

  

5.1 Preliminary Data Exploratory 
The main contents of the lab analytical results were categorised into chemical and 

microbiological analyses. The chemical analysis included moisture content, ash content, acid 

insoluble ash content, non-volatile ether extract content, volatile oil content, lead and arsenic 

contents. The arsenic contents were found to be negligible in all black pepper powder samples, 

while the rest of the properties were found to be within the specified range of values set by 

IPC (IPC, 2015). Most of these methods were performed according to AOAC and ISO 

standards. While for the microbiological analysis, it included total plate, yeast, mould and E. 

coli counts as well as salmonella spp. Only plate and yeast count had numerical results while 

the others returned negligible outputs. Microbiological analyses were based on Australian 

Standard. All those properties could be referred to Table 5.1. From that table, ranges of values 
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for those properties was included and they were compared with the standard ranges of values 

from MPB, which was one of the main parties for the laboratory quality assessment of black 

pepper products in Malaysia. Majority of those ranges of values were consistent with the 

standard ranges of values measured by MPB. 

Table 5.1: Chemical and biological (microbiological) analytical properties to be used in 
subsequent modelling tasks and their respective range of values 

Type of 
Properties Parameter Properties Range from 

Lab 
Standard  Range 
from MPB 

Chemical 

1 Moisture (%) 6 – 14% ≤ 12% 
2 Ash Content (%) 0.3 – 5% ≤ 5% 
3 Acid Insoluble Ash (%) 0.1 – 1% ≤ 0.5% 

4 Non-volatile Ether 
Extract (%) 

6 – 10% ≤ 6% 

5 Volatile Oil (%) 0.4 – 3% ≤ 2% 
6 Lead (mg/kg) 0.5 – 2.0 mg/kg N/A 

Biological 
7 Total plate count 

(CFU/g) 
103 – 105 CFU/g ≤ 10000 CFU/g 

8 Total yeast count 
(CFU/g) 

103 – 105 CFU/g ≤ 1000 CFU/g 

 

In particular, the volatile oil content was of main interest because of its contribution 

in the aroma and flavour of black pepper (Ravindran and Kallupurackal, 2001). The volatile 

oil contents of black pepper powder samples had been found to be random and have no definite 

relationship with the degree of adulteration. While for the geographical origins of Sarawak 

black pepper powder samples, the average volatile oil contents were as follows: Serian = 1.2%, 

Sungai Tenggang = 1.4%, Pakan = 1.0%, Lachau = 1.4%, Sibu = 1.6%. It was reported the 

volatile oil of black pepper was around 2.8%, which was higher than most average values of 

those black pepper powder samples under examination (Johny et al., 2020). The difference in 

the volatile oil contents could be attributed to different processing of the black pepper powder 

products and various environmental factors affecting the cultivation of these black pepper 

products (Johny et al., 2020; Ravindran and Kallupurackal, 2001). 

PCA was performed on the chemical and microbiological analyses data. The data was 

pre-processed through scaling with SNV due to disparity of values present among all variables. 

The explained variability distribution for first 6 principal components (PC) was as follows: 

• PC1 = 26.99% 

• PC2 = 17.01% 

• PC3 = 14.59% 

• PC4 = 12.84% 

• PC5 = 11.35% 

• PC6 = 10.91% 
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(e) 

 
(f) 

Figure 5.1: PCA score plots for first 4 principal components on the chemical and microbiological 
analytical data, with the labels being the geographical origins of black pepper powder samples: 
(a) PC2 vs PC1, (b) PC3 vs PC1, (c) PC4 vs PC1, (d) PC3 vs PC2, (e) PC4 vs PC2, (f) PC4 vs PC3 
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(d) 

 
(e) 

 
(f) 

Figure 5.2: PCA score plots for first 4 principal components on the chemical and microbiological 
analytical data, with the labels being the range of purity or authenticity of black pepper powder 
samples: (a) PC2 vs PC1, (b) PC3 vs PC1, (c) PC4 vs PC1, (d) PC3 vs PC2, (e) PC4 vs PC2, (f) 
PC4 vs PC3 
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It took 6 PCs to reach 93.7% explained variability, which indicated that almost all the 

properties or variables were crucial in this data. Figure 5.1 and Figure 5.2 showed the PCA 

score plots for first 4 PCs with different labels of authenticity and geographical origin of black 

pepper powder samples. Papaya seeds powder was included in the score plots as a reference 

of adulterant of black pepper. From there, in terms of geographical origins, it was difficult to 

screen for any distinct cluster or clear boundary in differentiating geographical origins of black 

pepper. This was peculiar as it was demonstrated in the literature that different origins of black 

pepper had different chemical compositions and bioactivities (Li et al., 2020; Liang et al., 

2021). However, in terms of authenticity of black pepper, PC2 vs PC1 seemed to have slightly 

clear distinction of clusters where higher purity of black pepper was more on the right side of 

plot while lower purity of black pepper was more towards left side of plot. Similar situation 

was observed in PC3 vs PC1 score plot, but not for other remaining comparisons of scores. 

 

5.2 Model Development and Training 
After the data exploration, Visible-NIR HSI mean spectra data were pre-processed 

and used along with the lab analytical results as targets to train the models to predict the 

chemical and biological (or microbiological) analytical properties. The details of all the 

properties could be referred to Table 5.1. As prediction of these properties was a regression 

task, PLS, SVR and DL (CNN and SAE) models were used and assessed on their predictive 

performance. 

 

5.2.1 Partial Least Square 
The PLS models were fed with both raw and pre-processed (SG, SG-SNV, SG-1st, 

SG-2nd) mean spectra data. Due to the difference in magnitudes of values in the lab results, 

models for chemical and biological analytical properties were trained separately. To obtain the 

best model, optimisation was made over a range of 50 latent variables and based on the RMSE 

from the trained model tested on the cross validation. The testing prediction results were 

tabulated in Table 5.2, along with the training and validation results as shown in Table C.1 of 

Appendix C. Parity plots for PLS models on chemical and biological properties were plotted. 

For example, parity plots on moisture content and total plate count could be seen in Figure 5.3. 

The rest of the parity plots could be referred to Figure C.1 in Appendix C. Additionally, plots 

of optimisation of latent variables, and regression coefficients for moisture content and total 

plate count were plotted in Figure 5.3 as well. The plots of regression coefficients for the 

remaining analytical properties could be referred to Figure C.2 in Appendix C. 
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Table 5.2: Results of PLS models on regression of prediction of chemical and microbiological 
properties with testing data set 

Pre-processing Raw SG SG-SNV SG-1st SG-2nd 
Best # 
Latent 

Variable 

Chemical 40 40 40 49 48 

Microbiological 27 32 38 44 47 

 

Indicator Pre-
processing 

Chemical Microbiological 
1 2 3 4 5 6 7 8 

R2 

Testing 

Raw 0.6569 0.6149 0.5459 0.2707 0.6387 0.4202 0.3093 0.1954 
SG 0.6560 0.6150 0.5482 0.2602 0.6361 0.4093 0.3023 0.1990 

SG-SNV 0.6578 0.6153 0.5508 0.2479 0.6332 0.4016 0.3052 0.1644 
SG-1st 0.6586 0.6123 0.5394 0.2594 0.6244 0.4150 0.3106 0.1730 
SG-2nd 0.6480 0.6096 0.5263 0.2382 0.6148 0.4068 0.3041 0.1615 

RMSE 
Testing 

Raw 0.9594 0.7714 0.1286 0.4589 0.2615 0.2435 104930.95 22939.09 
SG 0.9607 0.7712 0.1283 0.4622 0.2624 0.2458 105461.75 22886.91 

SG-SNV 0.9582 0.7710 0.1279 0.4660 0.2635 0.2473 105244.34 23376.22 
SG-1st 0.9570 0.7740 0.1295 0.4624 0.2666 0.2446 104834.12 23255.12 
SG-2nd 0.9718 0.7766 0.1314 0.4690 0.2700 0.2463 105331.59 23417.33 

MAPE 
Testing 

(%) 

Raw 8.84 32.04 27.81 4.03 18.89 16.56 142.20 105.87 
SG 8.93 32.92 27.87 4.05 18.93 16.30 139.77 108.82 

SG-SNV 8.86 32.98 27.52 4.10 18.85 16.58 147.39 116.18 
SG-1st 8.90 32.65 27.85 4.03 19.25 16.38 149.26 110.71 
SG-2nd 9.08 32.30 28.34 4.14 19.66 16.55 142.01 109.68 

 

In the case of prediction of chemical analytical properties, most PLS models for all 

data pre-processing methods required at least 40 latent variables to get the best testing 

predictive outputs. From Table 5.2, the best R2 result came from PLS model on predicting 

moisture content, which was 0.6586, while the worse one was on non-volatile ether extract, 

which was 0.2707. Only prediction of moisture content and non-volatile ether extract had 

MAPE of less than 10%. All data pre-processing methods had similar testing predictive 

performance by the PLS models. In terms of regression coefficients as shown in Figure 5.3, it 

could be observed that peaks around 590 and 615 nm were noticeably more prominent. 

While for the case of prediction of biological analytical properties, the PLS models 

had worse predictive performance, where all testing R2 values were lower than 0.5. The 

randomness of values of biological properties was the main factor the PLS models were unable 

to yield good testing predictive performance, causing extremely high RMSE to be optimised. 

From the parity plots in Figure 5.3, it was observed that some predictions were too different 

than the intended measured values. The predictions were subpar due to non-linearity of the 

spectral data, randomness present in the lab analytical results and higher order microorganism 

populations. While for the regression coefficients, the coefficients were larger in magnitude 

due to high values of the biological analytical properties, and around 550 nm, a prominent 

peak was found while on other range, the peaks in the spectra were spread out quite evenly. 
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5.2.2 Support Vector Regression 
Non-linear models were necessary to model for better prediction of chemical and 

biological analytical properties. SVR models were built and trained using all raw and pre-

processed mean spectra data. Due to difference in magnitude of values in the lab results, 

separate SVR models were trained for prediction of chemical and biological analytical 

properties. The same parameters (C and γ) to be optimised were following the same range as 

outlined in Sections 3.5.2 and 4.2.2. The testing prediction results were then outlined in Table 

5.3, with the training and validation results tabulated in Table C.2 of Appendix C. 

Table 5.3: Results of SVR models on regression of prediction of chemical and microbiological 
properties with testing data set 

Indicator 
Pre-

processi
ng 

Chemical Microbiological 

1 2 3 4 5 6 7 8 

Best C, γ Raw 100, 10 10, 100 100, 10 100, 10 100, 10 100, 10 100, 10 100, 100 

Figure 5.3: [Above] – Parity plots of PLS models, blue line represents the best fit line from the 
model; [Middle] – Finding the optimal number of PLS latent variables from cross validation 
RMSE; [Below] – Regression coefficients of PLS models; [Left side of all plots] – moisture 
content; [Right side of all plots] – total plate count 
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SG 100, 10 10, 100 100, 10 100, 10 100, 10 100, 10 100, 10 100, 100 
SG-SNV 100, 1 100, 1 100, 1 100, 1 100, 1 100, 1 100, 1 100, 1 

SG-1st 
100, 
105 

100, 
105 

100, 
104 

100, 
105 

100, 
105 10, 105 100, 104 100, 104 

SG-2nd 
100, 
105 

100, 
105 

100, 
105 

100, 
105 

100, 
105 

100, 
105 100, 105 100, 105 

R2 
Testing 

Raw 0.7032 0.6973 0.7414 0.2303 0.7253 0.4954 0.0277 0.0200 
SG 0.7020 0.6959 0.7390 0.2212 0.7177 0.4887 0.0277 0.0200 

SG-SNV 0.7105 0.7172 0.7793 0.3793 0.7450 0.5416 0.0094 0.0206 
SG-1st 0.7934 0.7853 0.8184 0.5939 0.8782 0.6837 0.0302 0.0330 
SG-2nd 0.7190 0.6656 0.7028 0.4423 0.7394 0.5739 0.0153 0.0317 

RMSE 
Testing 

Raw 0.8924 0.6839 0.0971 0.4715 0.2280 0.2271 124499.12 25315.91 
SG 0.8941 0.6855 0.0975 0.4742 0.2311 0.2287 124499.80 25315.69 

SG-SNV 0.8812 0.6610 0.0897 0.4234 0.2197 0.2165 125668.08 25308.12 
SG-1st 0.7446 0.5760 0.0813 0.3424 0.1519 0.1798 124341.81 25147.90 
SG-2nd 0.8682 0.7188 0.1041 0.4013 0.2221 0.2087 125293.46 25164.45 

MAPE 
Testing 

(%) 

Raw 7.23 28.41 17.08 3.35 13.98 10.73 225.85 144.62 
SG 7.26 28.47 17.11 3.38 14.18 10.81 225.84 144.62 

SG-SNV 6.90 29.33 15.68 3.03 12.53 10.68 243.47 145.43 
SG-1st 6.14 19.92 15.57 2.69 9.57 10.52 231.45 140.67 
SG-2nd 7.08 32.41 20.06 3.08 14.28 11.21 234.14 138.36 

 

From Table 5.3, all SVR models with SG-1st data pre-processing method had the best 

testing predictive performance. During the prediction of chemical analytical properties, all 

SVR models had drastically better testing predictive performance than PLS models. The best 

testing R2 result was achieved by the prediction of volatile oil content which was 0.8782, while 

the worst property was non-volatile ether extract, which had R2 of only 0.5939. Examples of 

parity plots of SVR models with the best pre-processing method were plotted as shown in 

Figure 5.4. The moisture content that had the highest measured values were considered outliers, 

thus the SVR model did not consider these samples, which yielded highly scattered outputs. 

For prediction of microbiological properties, the model was unable to fit the data, hence the 

prediction of constant values. The rest of the parity plots for other properties could be referred 

to Figure C.3 in Appendix C.  

Figure 5.4: Parity plots of SVR models for (Left) moisture content and (Right) total plate count 
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There were many probable unique spectral features present in the visible light region 

of Visible-NIR HSI SG-1st pre-processed mean spectra, thus allowing SVR models to 

differentiate and identify them, although the relationship between these spectral features in 

visible light region and SVR was rather unclear, even in the literature (Sun et al., 2021). 

However, in the prediction of biological analytical properties, the testing predictive 

performance of SVR models were even worse than PLS models. Due to the randomness of the 

lab results and higher order microorganism populations, the SVR models was unable to 

decently fit the spectral data into the decision function after exhausting all the inputs to be 

support vectors. This prompted for more data on lab analyses for higher predictive 

performance by the models. Next, prediction of moisture content, non-volatile ether extract 

and volatile oil content yielded MAPE of less than 10%, explaining the good capability of 

SVR model in forecasting the chemical analytical properties. 

 

5.2.3 Deep Learning 
It was of interest to investigate whether deep learning is capable of predicting both 

chemical and biological analytical properties effectively or not. CNN and SAE model 

architectures were used, and most of the settings, hyperparameters, configurations and 

assessment of different model types were retained with the following exception: The predictor 

section was instead made up of two diverging separate fully-connected layers where each layer 

connected to individual chemical (6 nodes) and biological (2 nodes) properties output nodes. 

Both would have two layers of 128 neurons to be optimised. 

 

5.2.3.1 Convolution Neural Network 
The list of CNN model types to be assessed could be referred to Table 4.4. The testing 

prediction results were presented in Table 5.4. Most of the best models were obtained based 

on SG-1st and SG-2nd pre-processed mean spectra data. The training and validation results 

could be referred to Table C.3 in Appendix C. From Table 5.4, for prediction of chemical 

analytical properties, the best testing R2 was achieved by moisture content of 0.7474 while the 

smallest best R2 was the non-volatile ether extract with only 0.1767. While for the prediction 

of biological analytical properties, there was a major improvement on the predictive 

performance as indicated by testing R2 on total plate and yeast count prediction, which were 

0.5240 and 0.2280 respectively. It was most likely that the derivatives from SG-1st and SG-2nd 

pre-processing methods contained numerous representative features which could match with 

the nature of lab analytical results. In terms of MAPE, only moisture content and non-volatile 

ether extract properties managed to achieve error of less than 10%. Parity plots from CNN 
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model with the best respective model types in Figure 5.5 were presented for the moisture 

content and total plate count, with the rest of properties could be referred to Figure C.4 in 

Appendix C. At the same time, loss over epochs plot was displayed and the exorbitantly high 

loss was due to high RMSE from the biological analytical properties prediction. Alterations 

on depth and complexity of model architecture or improvement on quality of data might be 

required in the future so that these results could be fit into the model. 

Table 5.4: Results of DL CNN models on regression of prediction of chemical and microbiological 
properties with testing data set, bolded results represent the best results 

Indicator Pre-
processing 

Chemical Microbiological 
1 2 3 4 5 6 7 8 

Best 
Model 
Type 

Raw 14 7 7 7 14 16 16 14 
SG 4 4 1 8 8 3 8 7 

SG-SNV 8 4 8 3 4 8 8 16 
SG-1st 4 4 16 14 14 3 14 14 
SG-2nd 1 15 1 1 15 15 8 6 

R2 
Testing 

Raw 0.6725 0.6892 0.5002 -0.0086 0.6103 0.3537 0.4132 0.2280 
SG 0.7224 0.6970 0.5833 0.1519 0.6723 0.4544 0.4710 0.1695 

SG-SNV 0.6996 0.6964 0.6199 -0.0195 0.6745 0.4274 0.4479 0.1285 
SG-1st 0.7474 0.7255 0.5867 0.1327 0.6771 0.4595 0.4587 0.1969 
SG-2nd 0.7346 0.7371 0.6529 0.1767 0.6881 0.4485 0.5240 0.1504 

RMSE 
Testing 

Raw 0.9427 0.6909 0.1349 0.5273 0.2807 0.2503 98449.60 22225.82 
SG 0.8680 0.6821 0.1231 0.4835 0.2574 0.2299 93482.07 23052.54 

SG-SNV 0.9029 0.6829 0.1176 0.5301 0.2565 0.2356 95501.95 23615.00 
SG-1st 0.8278 0.6493 0.1226 0.4889 0.2556 0.2289 94561.84 22669.38 
SG-2nd 0.8486 0.6354 0.1124 0.4764 0.2511 0.2312 88673.83 23316.02 

MAPE 
Testing 

(%) 

Raw 8.74 27.12 26.80 4.94 18.64 17.61 135.15 115.78 
SG 8.13 24.76 22.29 3.95 15.86 15.52 131.18 130.22 

SG-SNV 8.01 25.59 22.08 4.34 15.60 16.33 109.44 133.02 
SG-1st 7.45 21.79 23.90 4.16 16.66 15.48 110.01 112.79 
SG-2nd 7.51 22.36 20.33 4.12 16.54 17.43 102.78 124.81 

 

Table 5.5: Example of DL CNN model architecture (Model Type 15) for prediction of lab 
analytical properties 

Layer Output Shape # of Parameters Connected To 
Input Layer (280, 1) 0 - 
Conv1D_1 [kernel size = 3] (280, 16) 64 Input Layer 
BatchNormalization_1 (280, 16) 64 Conv1D_1 
MaxPool1D_1 (140, 16) 0 BatchNormalization_1 
Conv1D_2 [kernel size = 3] (140, 32) 1568 MaxPool1D_1 
BatchNormalization_2 (140, 32) 128 Conv1D_2 
MaxPool1D_2 (70, 32) 0 BatchNormalization_2 
Conv1D_3 [kernel size = 3] (70, 64) 6208 MaxPool1D_2 
BatchNormalization_3 (70, 64) 256 Conv1D_3 
MaxPool1D_3 (35, 64) 0 BatchNormalization_3 
Conv1D_4 [kernel size = 1] (35, 128) 8320 MaxPool1D_3 
BatchNormalization_4 (35, 128) 512 Conv1D_4 
MaxPool1D_4 (17, 128) 0 BatchNormalization_4 
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Flatten (2176) 0 MaxPool1D_4 
Dense_1 (128) 278656 Flatten 
Dense_2 (128) 16512 Dense_1 
Dense_3 (128) 278656 Flatten 
Dense_4 (128) 16512 Dense_3 
Dense_5 [chemical output] (6) 774 Dense_2 
Dense_6 [biological output] (2) 258 Dense_4 
Total of trainable number of parameters = 608,008 

 

Model summary of one of good performing CNN models (Model Type 15 of layer 

configuration [3-3-3-1]) was displayed in Table 5.5. This, in turn, required high number of 

parameters (i.e. 600,000+) to be trained, due to two fully-connected sections to be optimised. 

Usually, layers of kernels with larger size were placed on the first few layers followed by 

layers of kernels with smaller size, so that the feature extraction efficiency could be maximised 

Figure 5.5: Above – Parity plots of DL CNN models of the best model types for (Left) moisture 
content [Best Model Type = 4] and (Right) total plate count [Best Model Type = 8]; Middle – 
RMSE metric over epochs plot of CNN model using SG-1st pre-processed mean spectra data; 
Below – Loss over epochs plot 
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(Goodfellow et al., 2016; Nagasubramanian et al., 2018; Saha and Manickavasagan, 2021; 

Yang et al., 2019). For example, from Table 5.4, Model Type 15 depicted that configuration 

and had the best predicted R2 on ash and volatile oil contents, and Model Type 1 (layer 

configuration [1-1-1-1]) with the layers of smallest kernels had the best predicted R2 on the 

acid insoluble ash and non-volatile ether extract. Model Types 3 ([1-1-3-1]) and 4 ([1-1-3-3]) 

had different configurations but still had better predictive performance. Despite that, all CNN 

models had decent predictive performance. They had worse testing predictive performance 

than SVR models in the prediction of chemical analytical properties but better in the prediction 

of biological analytical properties. 

 

5.2.3.2 Stacked Autoencoder 
The assessment on the different model types of the SAE models were referred to Table 

4.7. The testing prediction results were tabulated in Table 5.6. The training and validation 

results could be referred to Table C.4 in Appendix C. Model summary of one of SAE models 

was displayed in Table 5.7. There were 130,000 trainable parameters in average, which was 

considerably faster to train than CNN models. Overall, the SAE model prediction results were 

the worst among all the models. From Table 5.6, for prediction of chemical analytical 

properties, the best testing R2 was 0.6025 on the moisture content while the smallest best 

testing R2 was 0.1077 on the non-volatile ether extract as well. On the other hand, only the 

total plate count was outputting reasonable predictions among the biological analytical 

properties. The parity plots of SAE models of best model types on the moisture content and 

total plate count were displayed in Figure 5.6, while the parity plots for the rest of other 

properties were in Figure C.5 of Appendix C. Plots of RMSE metric and losses over epochs 

on SAE model (SG-SNV pre-processed) were illustrated in Figure 5.6. 

Table 5.6: Results of DL SAE models on regression of prediction of chemical and microbiological 
properties with testing data set 

Indicator Pre-
processing 

Chemical Microbiological 
1 2 3 4 5 6 7 8 

Best 
Model 
Type 

Raw 5 4 4 4 4 4 4 1 
SG 5 4 1 5 5 5 5 5 

SG-SNV 2 5 5 2 2 2 1 2 
SG-1st 5 5 5 5 5 5 5 1 
SG-2nd 4 2 5 3 5 4 1 5 

R2 
Testing 

Raw 0.5588 0.5216 0.4196 -0.3750 0.4509 0.2447 0.3911 -0.4721 
SG -59.64 -4.1144 -7.1452 -1268.99 -4.8877 -4.1645 -10.031 -27.179 

SG-SNV 0.6025 0.5207 0.4772 0.1077 0.5098 0.3346 0.4069 -0.4448 
SG-1st 0.5878 0.5507 0.4527 0.0065 0.5538 0.3229 0.4247 -0.0613 
SG-2nd -0.4869 -0.1676 0.0414 -0.0145 -0.2804 -0.0007 0.2568 -0.0600 

RMSE 
Testing 

Raw 1.088 0.8597 0.1454 0.6301 0.3224 0.2779 98523.46 31027.84 
SG 12.755 2.8111 0.5447 19.150 1.0556 0.7267 419346.21 135749.58 
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SG-SNV 1.0327 0.8606 0.1380 0.5076 0.3046 0.2608 97235.04 30738.56 
SG-1st 1.0517 0.8332 0.1412 0.5356 0.2906 0.2631 95771.05 26345.42 
SG-2nd 1.9973 1.3432 0.1869 0.5412 0.4923 0.3199 108850.96 26328.81 

MAPE 
Testing 

(%) 

Raw 10.88 35.93 27.30 5.80 22.57 21.18 140.70 133.80 
SG 158.41 91.24 100.00 219.64 61.72 55.71 1433.61 539.06 

SG-SNV 9.61 35.08 30.53 4.28 21.53 17.10 174.48 132.69 
SG-1st 9.59 33.20 27.52 4.90 18.75 16.00 138.13 160.24 
SG-2nd 23.22 56.85 45.98 4.99 39.96 23.09 150.72 143.25 

 

Table 5.7: Example of DL SAE model architecture (Model Type 5) for prediction of lab analytical 
properties 

Layer Output 
Shape 

# of Parameters Connected To 

Input Layer (280) 0 - 
Dense_1 (192) 53952 Input Layer 
BatchNormalization_1 (192) 768 Dense_1 
Dense_2 (128) 24704 BatchNormalization_1 
BatchNormalization_2 (128) 512 Dense_2 
Dense_3 (96) 12384 BatchNormalization_2 
BatchNormalization_3 (96) 384 Dense_3 
Dense_4 (64) 6208 BatchNormalization_3 
BatchNormalization_4 (64) 256 Dense_4 
Dense_5 (32) 2080 BatchNormalization_4 
BatchNormalization_5 (32) 128 Dense_5 
Dense_6 (16) 528 BatchNormalization_5 
BatchNormalization_6 (16) 64 Dense_6 
Dense_7 (128) 2176 BatchNormalization_6 
Dense_8 (128) 2176 Dense_7 
Dense_9 (128) 16512 BatchNormalization_6 
Dense_10 (128) 16512 Dense_9 
Dense_11 [chemical output] (6) 774 Dense_8 
Dense_12 [biological output] (2) 258 Dense_10 
Total of trainable number of parameters = 139,320 

 

Looking at the parity plots in Figure 5.6, there were numerous scattered predictions 

that seemed like outliers, especially for the prediction of total plate count. In the prediction of 

total yeast count, the model was unable to fit the spectral data to explain the relationship. It 

was inferred that randomness of values in the total yeast count results caused mapping 

functions in SAE models to fluctuate, which was shown in Figure 5.6, losses over epoch plot 

for prediction of biological analytical properties. Hence, this resulted in near constant values 

and negative or zero R2. On the losses over epoch, the training loss was still reducing at the 

end of epochs while the validation loss remained unchanged. Yet, due to low or negative 

training predictive performance was found, increasing the number of epochs did not further 

help in boosting model predictive performance. Fundamentally, feature extractor section in 
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SAE models were made up of non-linear perceptrons. Updating convolution filters appeared 

to be more stable than updating the weights of perceptrons. Exploding gradients issue was 

more probable considering extremely large RMSE could cause updating of weights went 

haywire (Goodfellow et al., 2016; Paoletti et al., 2019; Shrestha and Mahmood, 2019). 

 

5.3 Summary 
As aforementioned, to assess the quality of black pepper powder products, detailed 

third-party lab analyses were inevitably required so that the quality of prediction of quality of 

black pepper powder products from HSI spectral analysis could be improved and more 

consistent. Yet, as these lab analyses were time-consuming, HSI along with initial lab 

Figure 5.6: Above – Parity plots of DL SAE models of the best model types for (Left) moisture 
content [Best Model Type = 2] and (Right) total plate count [Best Model Type = 5]; Middle – 
RMSE metric over epochs plot of SAE model using SG-SNV pre-processed mean spectra data; 
Below – Loss over epochs plot 
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analytical results were used to train predictive models to predict the quality or chemical 

composition of incoming black pepper powder samples. Biological, or specifically 

microbiological analytical results were also included in the prediction and then studied to 

investigate the extent and effectiveness of the predictive models. 

Table 5.8: The best machine learning models with their respective data pre-processing methods 
on the prediction of chemical and microbiological analytical properties 

Category Properties Best Model [Data Pre-processing Method] 
Chemical Moisture SVR [SG-1st] 

Ash Content SVR [SG-1st] 
Acid Insoluble Ash SVR [SG-1st] 
Non-volatile Ether Extract SVR [SG-1st] 
Volatile Oil SVR [SG-1st] 
Lead SVR [SG-1st] 

Microbiolo
gical 

Total plate count CNN [SG-2nd] 
Total yeast count CNN [Raw] 

 

PLS, SVR, CNN and SAE models were trained and the results were tabulated in Table 

5.8. From there, SVR model had the best predictions for all the chemical analytical properties, 

with the SG-1st pre-processing method on the mean spectra data. While for biological 

analytical properties, CNN model was the best. Moisture content and non-volatile ether extract 

were reliably predicted by the models. PLS model predictive performance was in between 

CNN and SVR models, while SAE model was the worst performing model. However, the 

randomness present in the lab analytical results which showed scattered and mixed clusters 

from PCA as well as complications from higher order microorganism populations, especially 

for biological analytical properties, had deteriorated the predictive performance of all models. 

Most importantly, the property of main constituent of black pepper which is piperine content 

was lacking from the lab analysis and might heavily improve the predictive performance of 

models as most research analysed piperine content to successfully verify the quality of black 

pepper powder products. Additionally, considering most chemical information resided outside 

Visible-NIR range (i.e. more than 1000 nm), Visible-NIR HSI data might be insufficient to 

reliably predict the chemical and biological analytical properties. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 This research has demonstrated that the concept of using hyperspectral imaging (HSI) 

was proven as a rapid, non-destructive and affordable alternative to detect the authenticity or 

degree of adulteration in Sarawak black pepper powder samples and classify their geographical 

origins. By using Visible-NIR HSI which covered the visible light and near infrared region 

(400 – 1000 nm), hyperspectral images were taken followed by processing to mean spectra 

data sets. Data pre-processing which included SG, SG-SNV, SG-1st and SG-2nd were applied 

onto the data and compared. PCA revealed that from PC2 vs PC1 score plots, there was a slight 

clear and distinctive cluster on different degree of adulteration on all raw and pre-processed 

data. For different geographical origins, only SG-1st and SG-2nd pre-processed data revealed 

Sibu cluster separated from other clusters. In terms of explained variability for first 3 principal 

components, raw and SG pre-processing method explained the highest variability of 98.92% 

while SG-SNV explained 96.98%. On the contrary, SG-1st and SG-2nd pre-processing had less 

than 95% explained variability. This indicates that SG with derivative pre-processing required 

more components to fully explain the data, which could increase the complexity of the results. 

Once the screening for different degrees of adulteration and geographical origin of 

black pepper powder samples was proven possible, various machine learning models (PLS, 

PLS-DA, SVR, SVM, DL CNN and DL SAE) were built and trained on all the raw and pre-

processed mean spectra data. Among all the models, DL SAE model had the best testing 

predictive performance in the determination of authenticity of black pepper powder samples. 

The resulting best SAE model had 6 fully-connected layers on the feature extractor section, 

was trained on SG-SNV pre-processed data and had R2, RMSE and MAPE of 0.9010, 0.0143 

and 1.13% respectively. SVM, DL CNN and DL SAE models had generally high testing 

predictive performance in classification of geographical origin.  

The utility of HSI data was tested further by assessing the prediction of chemical and 

biological analytical properties from various predictive models. While waiting for updated 

detailed but time-consuming lab analyses, the existing lab analytical results could be used to 

train the predictive models. Based on PCA, only PC2 vs PC1 score plots revealed minor 

discrimination on the clusters for different purity of black pepper powder samples. While for 

different geographical origins, PCA could not identify any direct or indirect separation of 

clusters. Explained variability could only go up to 93.7% using first 6 principal components. 

Next, PLS, SVR, DL CNN and DL SAE models were then trained with all the raw and pre-

processed mean spectra data along with their respective results of lab analytical properties. 

SVR model had the best testing predictive performance among all on SG-1st pre-processed 
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data in the prediction of chemical analytical properties, which had R2 of up to 0.8782 for 

volatile oil content. It had the worst predictive performance in the prediction of biological 

analytical properties. On the other hand, DL CNN model performed the best in the prediction 

of biological analytical properties because of its capability to extract features which hugely 

related to the lab results, albeit with lower than normal R2 of only 0.2280 on total yeast count. 

Despite good predictive performance displayed by these models using Visible-NIR 

HSI mean spectra data, there was no clear and direct relationship to explain authenticity, 

geographical origin and quality of black pepper using Visible-NIR bands information. Visible-

NIR HSI usually had higher success rate in most classification and determination of quality of 

non-powder opaque objects due to distinct dissimilarity. Visible-NIR HSI still lacked various 

chemical information such as overtones and bonding which resided beyond 1000 nm as most 

research reported more success in determination of authenticity and origin of black pepper (Hu 

et al., 2018; Lima et al., 2020; McGoverin et al., 2012; Orrillo et al., 2019; Wilde et al., 2019). 

Next, as it was costly to reproduce the lab analyses, these results were duplicated so that 

enough data could be fed to train the model for better generalizability. This caused conflicting 

predictions, where spectra data of similar values referred to drastically different targets or vice 

versa. Proper setup and sample preparation could help alleviate such this data quality issue 

while keeping the data abundant. Although deep learning models performed better than most 

conventional multivariate data analysis models, the deep learning model training took longer 

period to complete due to the nature of deep learning model training not easily understood and 

vast number of parameters to be optimised, thus finding the optimal design or architecture was 

a challenge (Paoletti et al., 2019; Shrestha and Mahmood, 2019; Yang et al., 2019). Simpler 

deep learning model architecture or network would be required to hasten the model training 

time and eventually be deployed in industrial real time quality monitoring and control 

applications not just to black pepper, but to other food and agricultural products. 

Nevertheless, overall, it was an acceptable success that HSI could be potentially 

applied in determining the authenticity and geographical origin of black pepper powder 

samples. On the prediction of chemical and biological analytical properties of black pepper 

powder samples, it was only possible to some extent that HSI could be used to provide such 

prediction with considerable accuracy. There are more to be considered on the application of 

HSI in order to create the rapid, real-time, non-destructive and affordable online detector and 

estimator of quality, authenticity and geographical origin of Sarawak black pepper powder 

samples. 
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6.1 Recommendations 
Future research work will be more focused on these following activities: 

1. Exploration and acquisition of hyperspectral data of wavelength range beyond 400 – 1000 

nm, which is 1000 – 1700 nm, as most literature on the detection of black pepper powder 

samples cover 1000 – 1700 nm which contains more chemical information and hence 

better determination of authenticity and geographical origin of black pepper powder 

samples 

2. Piperine content, which is a major component of black pepper will be included in future 

lab analyses for increased accuracy in the prediction of chemical analytical properties 

3. Hyperspectral data in three dimension will be explored for deep learning modelling as 

combination of spatial-spectral features may contain correlations that can improve the 

predictive performance of deep learning models 

4. Moving stage may be modified to conveyor belt type to simulate real time continuous data 

gathering in an online quality assessment environment 

5. As this research was assessed based on full spectra range, selection of optimal or feature 

wavelengths will be considered for comparative studies, because selection of optimal 

wavelengths reduces the model size and runtime, leading to more rapid detection of 

authenticity and geographical origin of black pepper powder samples 

• There were various dimensionality reduction algorithms studied, for example the 

commonly used PCA, wavelet transform, independent component analysis, genetic 

algorithm and successive projection algorithm (Anowar et al., 2021; Saha and 

Manickavasagan, 2021) 

• Selection of feature wavelengths is one such process of dimensionality reduction, 

where this process is generally incorporated in between the data pre-processing and 

model development steps to study the different effects or parameters of dimensionality 

reduction algorithms on the predictive performance of model.  

• For example, successive projection algorithm and principal component analysis are 

used to select important wavelengths from the data. Then, the data with selected 

wavelengths are sent to model development and training where the models are 

assessed accordingly (Orrillo et al., 2019; Pu et al., 2015; Xin et al., 2020).  
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APPENDIX A 

NEAR INFRARED BANDS AND SPECTRA STRUCTURE 

 

Figure A.1: NIR bands with associated spectra structure (Jha, 2016) 
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APPENDIX B 

SUPPLEMENTAL FIGURES AND TABLES FROM CHAPTER 4 

 

 

Figure B.1: Reflectance of raw mean spectra data of pure and adulterated black pepper powder 
samples [Above: From Sg Tenggang; Below: From Pakan] 



122 
 

 

 

Figure B.2: (Continued from Figure B.) Reflectance of raw mean spectra data of pure and 
adulterated black pepper powder samples [Above: From Lachau; Below: From Sibu] 
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(a)  (b)  

(c)  (d)  
Figure B.3: Parity plots of PLS models for determination of authenticity of black pepper powder samples with different data pre-processing methods [(a): Raw/without 
pre-processing; (b): SG; (c): SG-1st; (d): SG-2nd] 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure B.4: The best result of PLS model on various pre-processed mean spectra data: (a) 
Raw/Without pre-processing; (b) SG; (c) SG-1st; (d) SG-2nd [Left – Optimisation of number of 
latent variables based on validation RMSE, Right – Regression coefficient of that resulting PLS 
model] 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure B.5: The best result of PLS-DA model on various pre-processed mean spectra data: (a) 
Raw/Without pre-processing; (b) SG; (c) SG-1st; (d) SG-2nd [Left – Optimisation of number of 
latent variables based on validation RMSE, Right – Regression coefficient of that resulting PLS 
model] 
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(a)  (b)  

(c)  (d)  
Figure B.6: Parity plots of SVR models for determination of authenticity of black pepper powder samples with different data pre-processing methods [(a): Raw/without 
pre-processing; (b): SG; (c): SG-1st; (d): SG-2nd]  
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Table B.1: Training and validation results of DL CNN models for determination of authenticity of black pepper powder samples 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV SG-1st SG-2nd Raw SG SG-

SNV SG-1st SG-2nd 

R2 
Training 

1 0.9397 0.9541 0.9278 0.9557 0.9452 

R2 
Validation 

1 0.9405 0.9533 0.9268 0.9532 0.9436 
2 0.9493 0.9611 0.9499 0.9643 0.9219 2 0.9475 0.9599 0.9498 0.9636 0.9217 
3 0.9365 0.9730 0.9582 0.9664 0.9714 3 0.9376 0.9714 0.9590 0.9678 0.9701 
4 0.9473 0.9718 0.9491 0.9747 0.9766 4 0.9469 0.9710 0.9491 0.9735 0.9746 
5 0.9727 0.9565 0.9605 0.9718 -1.1675 5 0.9716 0.9576 0.9617 0.9706 -1.0943 
6 0.9775 0.9744 0.9741 0.9741 0.9592 6 0.9759 0.9736 0.9738 0.9736 0.9589 
7 0.9707 0.9763 0.9565 0.9607 0.9605 7 0.9696 0.9743 0.9566 0.9611 0.9594 
8 0.9733 0.9761 0.9649 0.9440 0.9546 8 0.9727 0.9745 0.9654 0.9431 0.9535 
9 0.9726 0.9699 0.9663 0.3713 0.5409 9 0.9720 0.9688 0.9676 0.4044 0.5241 
10 0.9741 0.9755 0.9738 -0.8937 -0.1000 10 0.9727 0.9744 0.9739 -0.8082 -0.1003 
11 0.9744 0.9750 0.9693 0.4931 0.9020 11 0.9720 0.9747 0.9690 0.4844 0.8896 
12 0.9717 0.9723 0.9724 0.9657 0.9019 12 0.9705 0.9722 0.9730 0.9656 0.9084 
13 0.9720 0.9712 0.9590 0.9589 -1.3221 13 0.9708 0.9696 0.9614 0.9584 -1.3232 
14 0.9711 0.9787 0.9537 0.9704 0.9674 14 0.9709 0.9782 0.9557 0.9681 0.9647 
15 0.9645 0.9731 0.9671 0.9610 0.9063 15 0.9657 0.9727 0.9673 0.9609 0.9005 
16 0.9721 0.9736 0.9673 0.9719 0.9576 16 0.9706 0.9728 0.9681 0.9711 0.9567 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV 

SG-1st SG-2nd Raw SG SG-
SNV 

SG-1st SG-2nd 

RMSE 
Training 

1 0.0191 0.0167 0.0209 0.0164 0.0182 
RMSE 

Validation 

1 0.0190 0.0168 0.0211 0.0169 0.0185 
2 0.0175 0.0154 0.0174 0.0147 0.0218 2 0.0179 0.0156 0.0175 0.0149 0.0218 
3 0.0196 0.0128 0.0159 0.0143 0.0132 3 0.0195 0.0132 0.0158 0.0140 0.0135 
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4 0.0179 0.0131 0.0176 0.0124 0.0119 4 0.0180 0.0133 0.0176 0.0127 0.0124 
5 0.0129 0.0162 0.0155 0.0131 0.1146 5 0.0131 0.0160 0.0153 0.0134 0.1128 
6 0.0117 0.0124 0.0125 0.0125 0.0157 6 0.0121 0.0127 0.0126 0.0127 0.0158 
7 0.0133 0.0120 0.0162 0.0154 0.0155 7 0.0136 0.0125 0.0163 0.0154 0.0157 
8 0.0127 0.0120 0.0146 0.0184 0.0166 8 0.0129 0.0124 0.0145 0.0186 0.0168 
9 0.0129 0.0135 0.0143 0.0617 0.0528 9 0.0130 0.0138 0.0140 0.0602 0.0538 
10 0.0125 0.0122 0.0126 0.1071 0.0817 10 0.0129 0.0125 0.0126 0.1048 0.0818 
11 0.0125 0.0123 0.0136 0.0554 0.0244 11 0.0131 0.0124 0.0137 0.0560 0.0259 
12 0.0131 0.0130 0.0129 0.0144 0.0244 12 0.0134 0.0130 0.0128 0.0145 0.0236 
13 0.0130 0.0132 0.0158 0.0158 0.1186 13 0.0133 0.0136 0.0153 0.0159 0.1188 
14 0.0132 0.0114 0.0168 0.0134 0.0141 14 0.0133 0.0115 0.0164 0.0139 0.0147 
15 0.0147 0.0128 0.0141 0.0154 0.0238 15 0.0144 0.0129 0.0141 0.0154 0.0246 
16 0.0130 0.0127 0.0141 0.0131 0.0160 16 0.0134 0.0129 0.0139 0.0133 0.0162 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV 

SG-1st SG-2nd Raw SG SG-
SNV 

SG-1st SG-2nd 

MAPE 
Training 

(%) 

1 1.73 1.47 1.92 1.45 1.64 

MAPE 
Validation 

(%) 

1 1.73 1.49 1.93 1.50 1.66 
2 1.53 1.33 1.53 1.30 2.00 2 1.58 1.36 1.53 1.30 1.99 
3 1.75 1.10 1.39 1.24 1.13 3 1.75 1.15 1.39 1.23 1.16 
4 1.58 1.12 1.53 1.06 1.03 4 1.62 1.15 1.55 1.08 1.07 
5 1.12 1.44 1.37 1.12 9.37 5 1.14 1.43 1.35 1.15 9.17 
6 1.00 1.07 1.08 1.05 1.35 6 1.04 1.09 1.10 1.08 1.36 
7 1.18 1.03 1.43 1.36 1.35 7 1.20 1.08 1.46 1.37 1.37 
8 1.09 1.04 1.26 1.60 1.47 8 1.13 1.08 1.27 1.63 1.49 
9 1.10 1.18 1.23 5.61 4.59 9 1.12 1.21 1.21 5.46 4.66 
10 1.07 1.04 1.09 10.06 7.87 10 1.11 1.08 1.10 9.78 7.88 
11 1.08 1.05 1.18 4.47 2.06 11 1.14 1.06 1.19 4.50 2.17 
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12 1.13 1.11 1.11 1.26 2.18 12 1.17 1.12 1.12 1.26 2.13 
13 1.12 1.12 1.38 1.38 10.79 13 1.15 1.17 1.36 1.39 10.81 
14 1.15 0.96 1.51 1.18 1.21 14 1.16 0.98 1.49 1.23 1.26 
15 1.28 1.09 1.23 1.34 2.09 15 1.27 1.11 1.23 1.35 2.18 
16 1.11 1.07 1.21 1.11 1.43 16 1.17 1.11 1.20 1.14 1.44 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV SG-1st SG-2nd Raw SG SG-

SNV SG-1st SG-2nd 

Accuracy 
Training 

(%) 

1 99.96 99.98 99.96 99.98 99.89 

Accuracy 
Validation 

(%) 

1 99.96 100 99.96 100 99.71 
2 99.98 100 100 100 99.77 2 100 100 100 100 99.75 
3 99.98 100 99.98 100 100 3 100 100 100 100 100 
4 99.98 100 100 100 100 4 100 100 100 100 100 
5 100 100 100 99.98 90.81 5 100 100 100 100 91.48 
6 100 100 100 100 99.98 6 100 100 100 100 100 
7 100 100 100 100 100 7 100 100 100 100 100 
8 100 100 100 99.96 99.98 8 100 100 100 100 100 
9 100 100 100 99.84 92.57 9 100 100 100 99.92 92.18 
10 100 100 100 99.03 96.47 10 100 100 100 98.97 96.67 
11 100 100 100 99.54 99.95 11 100 100 100 99.59 100 
12 100 100 100 100 99.40 12 100 100 100 100 99.59 
13 100 100 100 100 94.13 13 100 100 100 100 94.32 
14 100 100 100 100 100 14 100 100 100 100 100 
15 100 100 100 100 99.93 15 100 100 100 100 100 
16 100 100 100 100 100 16 100 100 100 100 100 
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Table B.2: Training and validation results of DL SAE models for determination of authenticity of black pepper powder samples 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV SG-1st SG-2nd Raw SG SG-

SNV SG-1st SG-2nd 

R2 
Training 

1 0.9594 0.9683 0.9615 0.9709 0.9446 

R2 
Validation 

1 0.9583 0.9661 0.9607 0.9706 0.9444 
2 0.9622 0.9663 0.9666 0.9680 0.9563 2 0.9606 0.9636 0.9643 0.9676 0.9552 
3 0.9660 0.9704 0.9579 0.9708 0.9553 3 0.9645 0.9678 0.9569 0.9695 0.9558 
4 0.9607 0.9661 0.9666 0.9747 0.9208 4 0.9587 0.9641 0.9637 0.9729 0.9233 
5 0.9624 0.9647 0.9680 0.9748 0.9524 5 0.9599 0.9646 0.9671 0.9723 0.9526 

Indicator 
Model 
Type 

Pre-processing 
Indicator 

Model 
Type 

Pre-processing 

Raw SG SG-
SNV SG-1st SG-2nd Raw SG SG-

SNV SG-1st SG-2nd 

RMSE 
Training 

1 0.0157 0.0139 0.0153 0.0133 0.0183 

RMSE 
Validation 

1 0.0159 0.0144 0.0155 0.0134 0.0184 
2 0.0151 0.0143 0.0142 0.0139 0.0163 2 0.0155 0.0149 0.0147 0.0140 0.0165 
3 0.0144 0.0134 0.0160 0.0133 0.0165 3 0.0147 0.0140 0.0162 0.0136 0.0164 
4 0.0154 0.0143 0.0142 0.0124 0.0219 4 0.0159 0.0148 0.0148 0.0128 0.0216 
5 0.0151 0.0146 0.0139 0.0124 0.0170 5 0.0156 0.0147 0.0141 0.0130 0.0170 

Indicator Model 
Type 

Pre-processing 
Indicator Model 

Type 

Pre-processing 

Raw SG SG-
SNV SG-1st SG-2nd Raw SG SG-

SNV SG-1st SG-2nd 

MAPE 
Training 

(%) 

1 1.38 1.20 1.33 1.14 1.63 
MAPE 

Validation 
(%) 

1 1.41 1.23 1.35 1.15 1.65 
2 1.34 1.24 1.24 1.19 1.41 2 1.38 1.29 1.27 1.22 1.44 
3 1.26 1.15 1.41 1.14 1.45 3 1.30 1.22 1.44 1.18 1.47 
4 1.33 1.23 1.24 1.06 1.96 4 1.39 1.29 1.28 1.10 1.96 
5 1.31 1.27 1.21 1.05 1.56 5 1.36 1.30 1.21 1.12 1.55 

Indicator Pre-processing Indicator Pre-processing 



131 
 

Model 
Type Raw SG 

SG-
SNV SG-1st SG-2nd 

Model 
Type Raw SG 

SG-
SNV SG-1st SG-2nd 

Accuracy 
Training 

(%) 

1 100 99.98 99.98 100 100 
Accuracy 
Validation 

(%) 

1 100 100 99.96 100 100 
2 100 100 99.98 100 100 2 100 100 100 100 100 
3 100 100 100 100 100 3 100 100 100 100 100 
4 100 100 100 100 100 4 100 100 100 100 100 
5 99.98 100 100 100 99.98 5 100 100 100 100 100 
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APPENDIX C 

SUPPLEMENTAL FIGURES AND TABLES FROM CHAPTER 5 

Table C.1: Training and validation results of PLS models for prediction of chemical and biological 
analytical properties 

Indicator Pre-
processing 

Chemical Microbiological 
1 2 3 4 5 6 7 8 

R2 
Training 

Raw 0.6745 0.6851 0.6268 0.2814 0.6839 0.4676 0.4010 0.2909 
SG 0.6750 0.6560 0.6110 0.2872 0.6751 0.4463 0.3546 0.2583 

SG-SNV 0.6751 0.6622 0.6076 0.2799 0.6716 0.4300 0.3697 0.2295 
SG-1st 0.6808 0.6637 0.6079 0.2853 0.6643 0.4423 0.3753 0.2753 
SG-2nd 0.6722 0.6819 0.6212 0.2904 0.6853 0.4549 0.4019 0.2850 

RMSE 
Training 

Raw 0.9398 0.6954 0.1165 0.4451 0.2528 0.2271 99471.54 21302.01 
SG 0.9392 0.7269 0.1190 0.4433 0.2563 0.2317 103256.63 21785.85 

SG-SNV 0.9390 0.7202 0.1195 0.4455 0.2577 0.2350 102036.89 22203.78 
SG-1st 0.9307 0.7187 0.1195 0.4439 0.2606 0.2325 101585.66 21534.83 
SG-2nd 0.9432 0.6989 0.1174 0.4422 0.2522 0.2298 99394.42 21390.37 

MAPE 
Training 

(%) 

Raw 8.82 26.91 24.12 3.91 17.92 16.17 168.59 100.42 
SG 8.80 29.01 24.75 3.91 18.18 16.17 154.13 102.36 

SG-SNV 8.74 28.79 24.72 3.94 18.07 16.60 166.42 108.69 
SG-1st 8.76 28.30 24.60 3.92 18.37 16.42 163.51 101.18 
SG-2nd 8.85 27.27 24.20 3.90 17.68 16.38 174.43 101.11 

R2 
Validation 

Raw 0.6577 0.6357 0.5655 0.2422 0.6468 0.4128 0.3173 0.2059 
SG 0.6587 0.6360 0.5686 0.2481 0.6423 0.4198 0.3214 0.2148 

SG-SNV 0.6607 0.6342 0.5683 0.2433 0.6372 0.4053 0.3265 0.1744 
SG-1st 0.6579 0.6345 0.5605 0.2386 0.6343 0.4093 0.3214 0.2096 
SG-2nd 0.6507 0.6220 0.5513 0.2279 0.6316 0.4029 0.3103 0.1634 

RMSE 
Validation 

Raw 0.9638 0.7480 0.1258 0.4570 0.2673 0.2386 106197.69 22542.23 
SG 0.9624 0.7477 0.1253 0.4553 0.2690 0.2371 105877.46 22415.56 

SG-SNV 0.9595 0.7495 0.1253 0.4567 0.2709 0.2401 105480.14 22985.34 
SG-1st 0.9635 0.7492 0.1265 0.4581 0.2719 0.2393 105874.99 22489.53 
SG-2nd 0.9736 0.7620 0.1278 0.4613 0.2729 0.2406 106740.49 23137.59 

MAPE 
Validation 

(%) 

Raw 9.04 29.15 26.05 4.02 18.92 16.98 181.45 105.84 
SG 9.02 29.88 26.08 4.02 19.03 16.57 160.13 105.19 

SG-SNV 8.93 29.98 25.97 4.04 18.96 16.98 172.35 112.30 
SG-1st 9.06 29.59 26.05 4.05 19.14 16.91 171.85 105.28 
SG-2nd 9.12 29.91 26.33 4.07 19.12 17.16 190.72 108.68 

 

Table C.2: Training and validation results of SVR models for prediction of chemical and 
biological analytical properties 

Indicator 
Pre-

processi
ng 

Chemical Microbiological 

1 2 3 4 5 6 7 8 

R2 
Training 

Raw 0.7371 0.8217 0.8214 0.3473 0.7802 0.5726 0.0221 0.0225 
SG 0.7338 0.8193 0.8109 0.3313 0.7703 0.5579 0.0221 0.0225 

SG-SNV 0.8064 0.7941 0.9031 0.5848 0.8735 0.7094 0.0093 0.0149 
SG-1st 0.9960 0.9954 0.9198 0.9994 0.9995 0.9534 0.0268 0.0218 
SG-2nd 0.7969 0.7601 0.8926 0.6398 0.8544 0.7654 0.0142 0.0188 

RMSE 
Training 

Raw 0.8446 0.5233 0.0806 0.4241 0.2108 0.2035 127094.61 25009.87 
SG 0.8499 0.5268 0.0830 0.4293 0.2155 0.207 127095.43 25009.62 

SG-SNV 0.7248 0.5624 0.0594 0.3383 0.1599 0.1678 127924.14 25107.36 
SG-1st 0.1038 0.0838 0.0540 0.0132 0.0098 0.0672 126791.72 25019.24 
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SG-2nd 0.7424 0.607 0.0625 0.3151 0.1716 0.1508 127606.39 25057.09 

MAPE 
Training 

(%) 

Raw 6.65 20.59 12.35 2.89 11.45 9.01 273.40 141.71 
SG 6.74 20.73 13.01 2.95 11.86 9.36 273.38 141.71 

SG-SNV 5.01 23.51 8.05 2.06 7.26 6.32 294.45 142.56 
SG-1st 0.25 1.89 8.22 0.12 0.82 2.16 280.36 138.25 
SG-2nd 5.18 25.54 8.93 1.97 7.99 5.77 283.19 136.12 

R2 
Validatio

n 

Raw 0.6943 0.6969 0.7626 0.2215 0.7182 0.5003 0.0203 0.0154 
SG 0.6926 0.6959 0.7601 0.2110 0.7123 0.4936 0.0203 0.0155 

SG-SNV 0.7245 0.7292 0.8003 0.3474 0.7573 0.5567 0.0075 0.0100 
SG-1st 0.8139 0.8179 0.8169 0.5762 0.8628 0.6776 0.0247 0.0169 
SG-2nd 0.7224 0.6846 0.6948 0.4385 0.7064 0.5815 0.0118 0.0162 

RMSE 
Validatio

n 

Raw 0.9109 0.6823 0.0929 0.4632 0.2387 0.2201 127211.67 25099.93 
SG 0.9133 0.6835 0.0934 0.4663 0.2412 0.2215 127212.18 25099.69 

SG-SNV 0.8647 0.6449 0.0852 0.4241 0.2215 0.2073 128044.71 25169.60 
SG-1st 0.7106 0.5288 0.0816 0.3418 0.1666 0.1768 126930.82 25081.02 
SG-2nd 0.8679 0.6959 0.1054 0.3934 0.2437 0.2014 127765.18 25090.61 

MAPE 
Validatio

n (%) 

Raw 7.65 27.08 15.70 3.39 13.95 10.96 274.17 142.04 
SG 7.70 27.12 15.82 3.41 14.12 11.09 274.16 142.04 

SG-SNV 6.98 26.99 14.43 3.08 12.23 10.64 294.95 142.88 
SG-1st 5.90 18.05 15.41 2.63 10.04 10.77 282.22 138.80 
SG-2nd 7.15 29.78 20.45 3.06 14.90 11.73 284.01 136.66 

# Support 
Vectors 

Raw 3060 3022 2559 2946 2861 2709 3113 3113 
SG 3045 3013 2522 2935 2880 2721 3113 3113 

SG-SNV 3035 3020 2526 2910 2856 2755 3113 3113 
SG-1st 3049 3031 2586 2887 2845 2838 3113 3113 
SG-2nd 3057 3062 2750 2974 2977 2905 3112 3113 

 

Table C.3: Training and validation results of DL CNN models with different model types for 
prediction of chemical and biological analytical properties 

Indicator Pre-
processing 

Chemical Microbiological 
1 2 3 4 5 6 7 8 

R2 
Training 

Raw 0.6648 0.6878 0.4977 0.0151 0.6093 0.3678 0.4202 0.2345 
SG 0.7262 0.7063 0.5869 0.1888 0.6739 0.4742 0.4885 0.1795 

SG-SNV 0.7135 0.7152 0.6257 0.0029 0.6805 0.4336 0.4725 0.1428 
SG-1st 0.7664 0.7472 0.6019 0.1484 0.6765 0.4837 0.4695 0.2062 
SG-2nd 0.7492 0.7467 0.6576 0.2401 0.6895 0.4604 0.5529 0.1603 

RMSE 
Training 

Raw 0.9412 0.6918 0.1328 0.5178 0.2797 0.2436 99139.87 22178.17 
SG 0.8507 0.6710 0.1204 0.4699 0.2555 0.2222 93113.68 22961.66 

SG-SNV 0.8702 0.6607 0.1146 0.5210 0.2529 0.2306 94559.78 23468.38 
SG-1st 0.7857 0.6225 0.1182 0.4815 0.2545 0.2202 94831.71 22584.25 
SG-2nd 0.8141 0.6231 0.1096 0.4548 0.2494 0.2251 87054.92 23228.42 

MAPE 
Training 

(%) 

Raw 8.81 26.47 26.27 4.85 18.56 17.57 132.71 113.88 
SG 7.98 23.90 21.50 3.84 15.60 15.37 126.67 126.88 

SG-SNV 7.73 24.22 21.38 4.29 15.19 16.32 105.83 129.75 
SG-1st 7.14 20.54 23.11 4.11 16.45 15.30 110.07 109.90 
SG-2nd 7.17 22.21 19.39 3.96 16.21 17.26 100.16 121.78 

R2 
Validation 

Raw 0.6877 0.6924 0.5054 -0.0621 0.6125 0.3226 0.3927 0.2120 
SG 0.7132 0.6755 0.5757 0.0687 0.6687 0.4114 0.4235 0.1453 

SG-SNV 0.6686 0.6528 0.6080 -0.0703 0.6609 0.4133 0.3821 0.0938 
SG-1st 0.7057 0.6752 0.5550 0.0972 0.6782 0.4074 0.4284 0.1742 
SG-2nd 0.7022 0.7148 0.6431 0.0341 0.6849 0.4224 0.4476 0.1264 

RMSE 
Validation 

Raw 0.9462 0.6888 0.1396 0.5486 0.2830 0.2651 96820.09 22336.58 
SG 0.9069 0.7075 0.1293 0.5137 0.2617 0.2471 94335.92 23263.18 

SG-SNV 0.9748 0.7319 0.1243 0.5507 0.2648 0.2467 97664.68 23953.58 
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SG-1st 0.9187 0.7078 0.1324 0.5058 0.2580 0.2480 93929.21 22866.77 
SG-2nd 0.924 0.6633 0.1186 0.5232 0.2553 0.2448 92340.42 23519.13 

MAPE 
Validation 

(%) 

Raw 8.60 28.64 28.04 5.14 18.83 17.71 140.84 120.22 
SG 8.48 26.78 24.14 4.19 16.46 15.86 141.69 138.00 

SG-SNV 8.65 28.78 23.73 4.47 16.56 16.36 117.86 140.67 
SG-1st 8.19 24.72 25.74 4.28 17.14 15.88 109.87 119.53 
SG-2nd 8.33 22.72 22.53 4.49 17.32 17.83 108.88 131.87 

 

Table C.4: Training and validation results of DL SAE models with different model types for 
prediction of chemical and biological analytical properties 

Indicator 
Pre-

processi
ng 

Chemical Microbiological 

1 2 3 4 5 6 7 8 

R2 
Training 

Raw 0.5404 0.5551 0.4600 -0.4474 0.4910 0.2239 0.4392 -0.5255 
SG -63.234 -4.7152 -7.4684 -1388.15 -5.2296 -4.0925 -9.9866 -30.128 

SG-SNV 0.6197 0.5827 0.5008 0.1880 0.5681 0.3778 0.4877 -0.4517 
SG-1st 0.6099 0.5849 0.4944 0.0205 0.5965 0.3829 0.6795 -0.0869 
SG-2nd -0.4983 -0.1435 0.0366 -0.0270 -0.2153 -0.0008 0.2908 -0.0532 

RMSE 
Training 

Raw 1.1022 0.8258 0.1377 0.6277 0.3193 0.2700 97502.10 31308.64 
SG 13.029 2.9598 0.5452 19.448 1.1169 0.6915 431560.91 141425.20 

SG-SNV 1.0026 0.7998 0.1324 0.4702 0.2941 0.2417 93190.91 30541.50 
SG-1st 1.0153 0.7977 0.1332 0.5164 0.2843 0.2407 73708.49 26426.70 
SG-2nd 1.9899 1.3239 0.1839 0.5288 0.4933 0.3065 109650.11 26014.04 

MAPE 
Training 

(%) 

Raw 11.02 31.49 25.07 5.66 21.65 21.78 158.52 132.21 
SG 161.91 90.13 100.00 223.81 65.08 53.62 1597.91 542.76 

SG-SNV 9.26 30.50 28.87 4.01 20.42 16.75 190.52 131.03 
SG-1st 9.24 29.27 25.47 4.68 18.05 15.08 132.82 155.11 
SG-2nd 23.27 52.06 43.23 4.94 38.67 23.03 169.20 137.58 

R2 
Validatio

n 

Raw 0.5805 0.5480 0.4718 -0.3692 0.5299 0.2258 0.4108 -0.4515 
SG -57.052 -4.4974 -6.7210 -1345.96 -4.8770 -4.1484 -11.319 -30.125 

SG-SNV 0.6149 0.5694 0.4993 0.0870 0.5647 0.3478 0.4266 -0.4196 
SG-1st 0.5969 0.5740 0.4869 0.0077 0.5813 0.2660 0.5926 -0.1337 
SG-2nd -0.3640 -0.1551 0.0782 -0.0349 -0.3106 -0.0007 0.2882 -0.0882 

RMSE 
Validatio

n 

Raw 1.0967 0.8350 0.1443 0.6229 0.3118 0.2834 95362.44 30315.85 
SG 12.902 2.9121 0.5516 19.537 1.1023 0.7309 436071.94 140384.29 

SG-SNV 1.0507 0.8150 0.1405 0.5087 0.3000 0.2601 94082.27 29980.82 
SG-1st 1.0751 0.8107 0.1422 0.5303 0.2942 0.2760 79304.12 26792.67 
SG-2nd 1.9776 1.3348 0.1906 0.5415 0.5206 0.3222 104817.92 26249.69 

MAPE 
Validatio

n (%) 

Raw 10.77 34.25 27.57 5.79 21.96 22.04 167.96 135.44 
SG 158.43 92.60 100.00 225.35 63.53 56.12 1949.06 567.36 

SG-SNV 9.65 32.88 31.14 4.37 21.55 16.88 226.32 135.64 
SG-1st 9.76 31.10 27.63 4.84 18.96 16.22 136.09 166.58 
SG-2nd 22.77 55.53 46.97 5.14 40.23 23.64 201.22 147.52 
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(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure C.1: Parity plots of best PLS models for different chemical and microbiological analytical properties - (a) ash content, (b) acid insoluble ash content, (c) non-
volatile ether extract, (d) volatile oil content, (e) lead content and (f) total yeast count 
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(d)

 

(e)

 

(f)

 
Figure C.2: Plots of regression coefficients of PLS models for prediction of chemical and biological analytical properties, (a) ash content, (b) acid insoluble ash content, 
(c) non-volatile ether extract, (d) volatile oil content, (e) lead content and (f) total yeast count 
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(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure C.3: Parity plots of best SVR models for different chemical and microbiological analytical properties - (a) ash content, (b) acid insoluble ash content, (c) non-
volatile ether extract, (d) volatile oil content, (e) lead content and (f) total yeast count 
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(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure C.4: Parity plots of best DL CNN models for different chemical and microbiological analytical properties - (a) ash content, (b) acid insoluble ash content, (c) 
non-volatile ether extract, (d) volatile oil content, (e) lead content and (f) total yeast count 
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(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure C.5: Parity plots of best DL SAE models for different chemical and microbiological analytical properties - (a) ash content, (b) acid insoluble ash content, (c) 
non-volatile ether extract, (d) volatile oil content, (e) lead content and (f) total yeast count 
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