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CHAPTER 1 ABSTRACT 

Direct identification of physical parameters, such as, physical stiffness and damping 

parameters of linear structures, plays a significant role in structural health assessment. 

Vibration-based techniques have been developed to identify the physical parameters of 

time-invariant structures in the field of structural health monitoring (SHM) [1]. However, 

structural physical parameters may vary under severe loading conditions, such as strong 

seismic and wind loads, as well as other environmental effects, e.g., temperature and/or 

corrosion effect. Effective methods are therefore also needed to identify the dynamic 

characteristics of time-varying structures, adaptively assess and evaluate the performance 

of time-varying structural systems [2, 3]. 

Relevant studies have been conducted in the time-domain and time-frequency 

domain. The state space model based methods have shown a high efficiency in the time-

domain to track the change of physical parameters [4-12]. Among these methods, the 

Kalman filter (KF) series methods have been commonly used with an outstanding feature 

that only incomplete measurements are required in the identification process [6-12]. 

Based on KF series methods, the time-varying physical parameters can be identified by 

introducing the fading-factor to adjust the state prediction covariance matrix in real time. 

However, it is difficult to determine the optimal fading-factor. As a result, some of these 

methods were proposed based on an empirical factor [6] or the empirical formula [7, 8]. 

Furthermore, the adaptive factor matrix at each time instant is developed, but it is 

computational expensive [9, 10]. In addition, the time-varying physical parameters can 

be identified by updating the process noise covariance in KF series methods [11, 12], 

which also depends on the selection of empirical factors.  
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The time-frequency domain methods that are developed to identify the structural 

time-varying physical parameters mainly refer to the wavelet multiresolution (WM) based 

methods [13-20]. Most of these methods expand the time-varying structural physical 

parameters into scale coefficients, and then identify these coefficients by the linear least-

squares estimation [13-19]. However, complete measurements of structural responses at 

all degrees of freedom (DOFs) are required in these methods, which is impractical for 

real applications. To overcome the limitation on full observations, a novel method has 

been proposed recently to identify the time-varying physical parameters of linear 

structures under known excitations using partial measurements [20]. Nevertheless, such 

method is only applicable for linear time-varying structures with known excitations, and 

it is required to expand all physical parameters (including time-varying parameters and 

time-invariant parameters) into scale coefficients based on WM.  

Overall, there are still some difficulties and limitations in the identification of time-

varying physical parameters, including: (1) the number of sensors is large, because the 

full observations of all the displacement, velocity, and acceleration responses are needed. 

Furthermore, the known external excitation is required; (2) There is a lack of effective 

identification methods for the large-scale time-varying structures. Although the 

substructure technique provides a feasible manner for the identification of large-scale 

structures, determining the interaction forces between adjacent substructures is still a 

great challenge in the case of unavailable observations at the interface of substructures; 

(3) The identification of nonlinear time-varying physical parameters is more difficult than 

that of linear time-varying structures; (4) The identification of gradually varying physical 

parameters is more challenging than that of abruptly changing physical parameters, for 

example, the identification of the gradually-varying cable force is worth of further studies; 

(5) The diagnosis of structural damage is an important purpose of identifying the physical 
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parameters of time-varying structures. Nevertheless, detecting structural damage by using 

partial measurements still needs investigations, etc.  

It is noted that measuring the displacement, velocity and acceleration responses of 

all DOFs is unrealistic and uneconomic in practical engineering, and the external load 

information is often difficult to obtain directly. Therefore, it is suggested to investigate 

the identification methods for time-varying physical parameters by using only partially 

measured responses under unknown excitations, and explore suitable identification 

methods for large-scale structures, nonlinear systems, and gradually varying systems. 

Moreover, a novel method is desired to diagnosis the structural damage using only partial 

structural measurements. It is more in line with the requirements of engineering practices, 

which has more theoretical research value and engineering significance.  

Thus, in this thesis, the followings are investigated step by step, including: “Chapter 

2: Simultaneous identification of structural time-varying physical parameters and 

unknown excitations using partial measurements”, “Chapter 3: Identification of time-

varying large-scale structures by integrated sub-structural and wavelet multiresolution 

approach with partial measurements”, “Chapter 4: Identification of time-varying 

nonlinear structural physical parameters by integrated WMA and UKF/UKF-UI”, 

“Chapter 5: Identification of gradually varying physical parameters based on discrete 

cosine transform using partial measurements” and “Chapter 6: Structural damage 

diagnosis based on the temporal moment of partially measured structural responses”. The 

methods in Chapters 2 – 5 are proposed based on the KF series methods and the Kalman 

filter under unknown input series methods. These proposed methods improve the 

traditional methods based on the WM analysis, and overcome the shortcomings of full 

observations of all displacement, velocity and acceleration responses. Additionally, the 

identification of time-varying physical parameters under unknown loads is discussed. In 
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Chapter 6, a structural damage detection algorithm based on temporal moments by using 

only incomplete measured structural response is proposed, which shows a good accuracy 

in structural damage diagnosis with noise resistance. The contents of each chapter are 

introduced as follows. 

Chapter 2: Simultaneous identification of structural time-varying physical 

parameters and unknown excitations using partial measurements. 

Current structural time-varying physical parameters identification methods based on 

WM analysis need full measurements of structural acceleration, velocity and 

displacement responses together with the external excitation information, which greatly 

restricts their applications in practice [14-19]. Inspired by the merits of both the recently 

developed data fusing based Kalman filter under unknown input (KF-UI) [21] and the 

WM analysis, this chapter aims to overcome the limitations of previous WM-based 

methods for the identification of time-varying physical parameters. An algorithm is 

proposed by integrating the WM analysis and the data fusion based KF-UI to identify 

structural time-varying systems and the unknown excitations using only partially 

measured structural responses. In the proposed algorithm, structural mass is assumed 

time-invariant and known while structural stiffness and damping parameters are time-

varying and unknown, the structure is subjected to unknown excitation, and only partial 

measurements of structure responses are observed. The WM analysis is utilized to expand 

the structural time-varying physical parameters at a multi-scale profile, which transforms 

the time-varying physical parameter identification into equivalent estimation of time-

invariant scale coefficients. To overcome the previously mentioned limitation on 

requiring full measurements of structural responses and external excitations, the 

advantage of the data fusion based KF-UI is adopted to identify structural state using only 

partial measurements of structural responses. Finally, the scale coefficients of WM 
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analysis are estimated by the nonlinear least-squares optimization, and structural time-

varying physical parameters and the unknown external loads are also identified 

accordingly. The effect of noise can be minimized based on the noise immunity of the 

KF-UI. Three numerical examples including various scenarios (e.g. suddenly or gradually 

varying of structural physical parameters) simulated on the shear-type frame, beam and 

plane frames under unknown excitations have validated the proposed algorithm. 

Furthermore, experimental data of a three-story time-varying frame from the Research 

Center of Earthquake Engineering in Taipei [22] are utilized to validate the proposed 

algorithm. 

The proposed identification approach in Chapter 2 contains the following main 

procedures: 

(1) Based on the WM expansion, the time-varying structural physical parameters are 

approximately expressed by a truncated WM analysis in the discrete form with the 

resolution level J  and unknown wavelet scale coefficients. Then, the identification task 

is transformed into estimating the time-invariant coefficients in WM analysis. 

(2) With given wavelet scale coefficients, structural full responses at all DOFs 

together with the unknown excitation can be estimated by the data fusion based KF-UI 

using partially measured structural responses. The identified structural responses and 

unknown external excitations are implicit functions of the wavelet scale coefficients. 

(3) The unknown wavelet scale coefficients are estimated by solving a nonlinear 

optimization problem with the objective function using the nonlinear least-squares 

estimation. 

(4) With the estimated wavelet scale coefficients, structural time-varying physical 

parameters can be reconstructed by WM, and structural external excitations can also be 

identified simultaneously. 
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The main contributions of this chapter are listed as follows. (i) A novel algorithm is 

proposed for simultaneously identifying structural time-varying parameters and unknown 

external excitations using only partial measurements instead of full measurements of 

structural responses at all DOFs; (ii) The unknown excitations to the time-varying 

structures are considered and identified; (iii) The effect of measurements noise is 

minimized due to the fact that KF-UI approach itself can include the influences of 

modelling error and measurements noise. Such an identification algorithm is not available 

in the literature. 

Similar as other previous WM-based methods for time-varying parameter 

identification, the proposed algorithm in Chapter 2 may not be effective for large size 

structures considering the difficulty in the multiple-parameter optimization problem. This 

is the drawback of the proposed method. This difficulty can be solved by the sub-

structural identification approach. Such relevant research is conducted in Chapter 3 and 

is briefly summarized as follows. 

Chapter 3: Identification of time-varying large-scale structures by integrated 

sub-structural and wavelet multiresolution approach with partial measurements. 

Method developed in Chapter 2 requires to expand all physical parameters 

(including time-varying parameters and time-invariant parameters) into scale coefficients 

based on WM. The number of expanded coefficients increases greatly as the structural 

size increases, making it difficult to obtain a global optimal solution especially when the 

quality of the collected data is poor. Therefore, the proposed method is still applicable to 

small-scale structures with a small number of DOFs. 
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For the parametric identification of large-scale structures, sub-structural 

identification technique is more efficient [23-29]. However, these methods are mostly 

used to identify the parameters of time-invariant systems. For time-varying systems, Shi 

and Chang [15, 16] used the sub-structural identification technique to identify the time-

varying physical parameters of a numerical 10-story shear frame and a 3-story 

experimental shear building model. Each structure was divided into several small size 

substructures, and WM was adopted to identify the time-varying physical parameters of 

each substructure. Recently, Wang et al. [19] presented a wavelet transform and sub-

structural algorithm to track the abrupt stiffness degradation of a numerical 7-story shear 

frame and a laboratory 3-storey shear-type structure. However, measurements of 

complete structural responses of acceleration, velocity and displacement responses at 

every DOF including those at sub-structural interfaces, were needed for each substructure 

in the above studies. With the full measurements of structural responses and known 

excitations, the identification can be accomplished by the simple linear least-squares 

estimation. Although sub-structural technique provides a very useful tool for parametric 

identification of large-scale structures, it is still a challenging task to properly model the 

interaction forces between adjacent substructures without the fully measured responses at 

the sub-structural interfaces. 

Based on the above literature review of current existing methods, it is obvious that 

there are still some limitations in identifying the time-varying physical parameters of 

large-scale structures. This chapter aims to circumvent these limitations and propose a 

novel approach for the identification of time-varying physical parameters of large-scale 
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structures by integrating sub-structural and WM methods using only partially measured 

structural responses. Two main technical innovation aspects are summarized as follows:  

1. Substructure identification is conducted based on the partial observations of sub-

structural responses. 

Usually, dynamic responses at the sub-structural interfaces are required in the 

previous sub-structural identification techniques, which limits the practical applications 

[24, 26]. Interaction forces between adjacent substructures can be considered as 

‘unknown inputs’ to the substructure of interest. The generalized Kalman filter under 

unknown input (GKF-UI), which was recently proposed for the identification of time-

invariant systems by the authors [30], is used to identify each substructure with only 

partial measurements of sub-structural responses without measurements at the interface 

DOFs. Then, the identification of a large-scale structure is transformed to the 

identification of each substructure independently, which greatly simplifies the 

identification of the time-varying structural parameters of the large-scale structure in the 

optimization problem. 

2. Localization of time-varying physical parameters is conducted to reduce the 

number of expanded scale coefficients and ensure a global optimal solution. 

In this chapter, a fading-factor generalized extended Kalman filter under unknown 

input (FGEKF-UI) is proposed to firstly locate the time-varying physical parameters in 

each substructure, in which the unknown sub-structural interaction forces are regarded as 

“additional unknown inputs’ imposed to the target substructure. Then only the time-

varying parameters are expanded by WM, greatly reducing the number of expanded scale 
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coefficients compared with the current WM based methods for the identification of time-

varying structures, since all physical parameters including time-varying and time-

invariant parameters are expanded into scale coefficients in the latter. 

Inspired by the merits of sub-structural identification technique and WM analysis 

for time-varying parameters, a novel two-step approach is proposed in this chapter for the 

identification of time-varying physical parameters of large-scale structures using only 

partially measured structural responses. In this study, structural mass is assumed time-

invariant and known, while structural stiffness and damping are time varying parameters 

to be identified. A large-scale structure is divided into several substructures, and the sub-

structural interaction forces are treated as ‘additional unknown inputs’ to the target 

substructure. Each substructure is identified in a parallel manner with a two-step 

procedure. In the first step, the time-varying sub-structural physical parameters are 

located by the FGEKF-UI algorithm. In the second step, these parameters are expanded 

into fewer scale coefficients by the WM analysis, therefore the identification of time-

varying systems is transformed into the identification of time-invariant scale coefficients 

together with the time-invariant physical parameters. Then, the GKF-UI algorithm is used 

for the identification of sub-structural state under unknown inputs using data fusion of 

partial measurements. Finally, the scale coefficients and time-invariant physical 

parameters are estimated by solving a nonlinear optimization problem, and the original 

unknown time-varying structural physical parameters are reconstructed by the estimated 

scale coefficients. Numerical results of identifying time-varying physical parameters of a 

30-story shear frame and a three-span truss bridge model demonstrate that the proposed 
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approach can effectively identify the abruptly changing, gradually varying and time-

invariant stiffness and damping parameters. The structures investigated in this chapter are 

of relatively larger-scale compared with the numerical structures in the previous WM-

based studies. Moreover, the external excitations can be unknown in both cases and can 

also be identified. 

The main contributions of this chapter are listed as follows:  

(1) A new two-step approach is proposed for the identification of large-scale linear 

structures with time-varying physical parameters using only partially measured structural 

responses;  

(2) FGEKF-UI is firstly proposed to locate the time-varying parameters and enable 

dimensionality reduction of scale coefficients to the greatest extent, resulting in only a 

few variables involved in the optimization process;  

(3) GKF-UI is used to estimate the sub-structural state, where the known interaction 

forces and full observations are not required, and observations at the interface are not 

required either. The effect of measurement noise is minimized, owning to that GKF-UI 

algorithm itself can include the influence of modelling error and measurement noise; 

(4) The proposed approach can be applied to each substructure independently by 

parallel computing, which greatly simplifies the difficulties in identifying large-scale 

time-varying structural parameters. 

Chapter 4 Identification of time-varying nonlinear structural physical 

parameters by integrated WMA and UKF/UKF-UI 
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Methods proposed in Chapters 2 and 3 are based on the assumption of the linear 

structural model. However, under strong external loads such as earthquake, strong wind, 

impact and explosion, engineering structural components may respond nonlinearly [31-

33]. In recent years, many researchers have carried out in-depth researches on the 

identification of nonlinear structural characteristics and presented a variety of 

identification methods, including time-domain [34-37], frequency-domain [39] or time-

frequency analysis methods [39-43]. However, the parameters of nonlinear models are 

assumed to be steady in most of these methods, only a few efforts have been attempted 

on the identification of time-varying nonlinear systems. Adaptive identification 

techniques based on the Kalman Filter (KF) have the potential to track time-varying 

parameters of hysterically degrading structures [10, 44, 45], which exploited the track 

factor, adaptive correction factor, or adaptive factor matrix to deal with the evolution of 

system variation. The challenging issue is that either these adaptive algorithms have 

strong subjectivity on empirical factors [45], or it is time-consuming in calculating the 

optimal matrix at each time-step [44]. The WMA based method mentioned above can 

also be used to identify the time-varying nonlinear systems. For instance, Chang and Shi 

[14] proposed a method to identify the time-varying physical parameters and model 

parameters in the Bouc-Wen hysteresis model based on WMA. However, this method 

needs full information on the structural displacement, velocity, acceleration responses, 

and excitation. Furthermore, in addition to the stiffness and damping parameters, the 

parameters in the nonlinear model are also needed to be expanded by WMA, which 

increases the complexity than the identification of linear systems.  
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With partial measurements, the extended Kalman filter (EKF) and unscented 

Kalman filter (UKF) [46] have been commonly used in the identification of nonlinear 

time-invariant systems. Compared with EKF, UKF is more superior as it does not need 

the calculation of the Jacobian matrix and a linearization-based approximation of the 

nonlinear system, realizing an on-line identification with a better recognition accuracy 

[47]. Furthermore, UKF method for the case of unknown excitations has been derived 

and successfully applied to the physical parameter identification of nonlinear systems 

under unknown loads [48]. However, these methods are only suitable for the time-

invariant systems. Adaptive UKF methods have been proposed for the identification of 

time-varying structures, combining with the adjustment of error covariance [49, 50] or 

the adjustment of noise covariance matrix [51, 52]. This may depend on the fading factors 

in most of the developed methods. However, if the fading factors are not selected properly, 

one may only roughly determine which parameter has the most possibility of varying 

property, but the change degree is difficult to be accurately determined. Moreover, all 

these adaptive methods are derived on the premise of known excitation. To the best 

knowledge of the authors, there is a lack in the identification of time-varying nonlinear 

systems under unknown excitations. 

In addition, it should be pointed out that the existing WMA based methods are only 

applicable to structures with a small number of elements [14-20]. The reason is that the 

number of scale coefficients in the least-squares optimization process will increase with 

the number of elements, which makes it difficult to obtain the global optimal solution 

especially when the quality of observation data is poor. The “divide and conquer” idea of 
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the sub-structural based methods provides a feasible strategy for the identification of 

structures with more elements [23-29]. Many scholars have also introduced the concept 

of substructure analysis into the identification of nonlinear structures [53-56]. However, 

these methods are mostly used to identify the parameters of time-invariant systems, and 

they still have some shortcomings such as the difficulties in determining the interface 

forces, the incapability of parallel identification, and the existence of propagation errors 

[57]. Shi and Chang [15, 16] presented an offline sub-structural method to identify the 

time-varying nonlinear shear-type buildings based on WMA. Nevertheless, the method 

requires all the displacement, velocity and acceleration responses inside and at the 

interfaces of the substructure. Further development and studies on identification 

techniques for time-varying nonlinear structures with more elements are still needed. 

Based on the above-mentioned detailed literature, most WMA based methods are 

used to identify the physical parameters of time-varying linear systems, while only a few 

studies are conducted for the time-varying nonlinear systems. In addition, these methods 

require full measurements of displacement, velocity, acceleration and external loads. 

Furthermore, all physical parameters including time-varying and time-invariant 

parameters are expanded by WMA, which leads to a significant increase in the number 

of scale coefficients. Therefore, two-step identification processes are proposed in this 

chapter to identify the physical parameters of time-varying nonlinear systems by using 

partial measurements. Three cases are discussed respectively. 

The first case is the identification of time-varying nonlinear structures with a small 

number of elements under known excitations. The time-varying physical parameters are 
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located by the fading-factor unscented Kalman filter (FUKF) in the first step, and the 

method integrating WMA with UKF is proposed to identify the time-varying physical 

parameters in the second step, which uses partially measured acceleration responses. A 

numerical example of a 6-story time-varying nonlinear shear frame under known seismic 

acceleration is provided, with abruptly changing or gradually varying parameters, to 

verify the effectiveness of the first proposed identification process. The proposed 

identification process contributes to reducing the number of scale coefficients, since not 

all physical parameters are required to be expanded after the locations of time-varying 

physical parameters are detected. Most importantly, only partial response measurements 

are needed in the identification process, with a clear improvement compared with the 

previous WMA based methods which require response measurements at all DOFs. 

Considering that the external loads are always hard to measure in practical situations, 

the study is extended to the second case, that is, the identification of time-varying 

nonlinear structures with a small number of elements but under unknown excitations. 

Herein, the improved unscented Kalman filter under unknown input (UKF-UI) method 

proposed by the authors [48] is adopted. The time-varying physical parameters are located 

by the proposed fading-factor UKF-UI (FUKF-UI) in the first step, and the method 

integrating WMA with UKF-UI is proposed to identify the physical parameters using 

partially measured acceleration and displacement responses in the second step. Numerical 

study on a truss structure is conducted to identify the time-varying parameters and 

unknown excitations simultaneously. The proposed identification process meets the needs 

of practical engineering applications, since the physical parameters of time-varying 
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nonlinear system can be identified by using partial response measurements under 

unknown excitations. 

The last case is the identification of time-varying nonlinear structures with more 

number of elements under unknown excitations, which is investigated based on the sub-

structural method. The time-varying physical parameters of the whole structure are 

located by the proposed FUKF-UI method in the first step. In the second step, the whole 

structure is divided into several substructures and the unknown interaction force is 

considered as the fictitious “unknown input”. Therefore, each substructure can be 

identified in parallel using the proposed WMA integrated with UKF-UI method. 

Numerical study on a 10-story shear frame demonstrates that the proposed identification 

process is effective for the identification of structures with more number of elements 

under unknown excitations. With partial response measurements, each substructure can 

be identified in parallel without measuring the interaction forces.  

Chapter 5 Identification of time-varying nonlinear structural physical 

parameters by integrated WMA and UKF/UKF-UI 

Change in physical parameters of civil engineering structures is a gradual process in 

most circumstances. For instance, the cumulative structural damage evolves from minor 

to severe, leading to gradually changing vibration characteristics [58]. For the vehicle-

bridge coupling system, the mass distribution of the system varies with time due to the 

moving of vehicles, which also results in the gradually varying features of the system [59-

61]. Tracking the gradual evolution process and identifying the gradually changing 

physical parameters accurately is still a challenging issue that is worth of investigation. 
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The core of the WM-based method is to reparametrize the time-varying model by wavelet 

basis for the purpose of reducing the dimensionality of the inverse problem and 

computational complexity. Then, the unknown physical parameters are equal to the 

product of the scale coefficients and the base functions. However, the wavelet basis 

function is not particularly suitable for the decomposition of gradually changing 

parameters. The reason is that relatively more scale coefficients should be retained to 

guarantee the accuracy of reconstructed gradually changing parameters, while a large 

number of scale coefficients may result in the convergence to local optimization results, 

especially when the measured structural responses are contaminated by a high-level noise. 

Furthermore, the determination of appropriate mother function and decomposition level 

in WM is a pending issue that is not yet well resolved [62]. Besides, the boundary effect 

of WM is also inevitable. Therefore, other decomposition basis which is more suitable for 

gradually changing parameters should be investigated to reduce the number of 

coefficients as much as possible. Discrete cosine transform (DCT) is a kind of 

transformation defined for analysing real signals [63]. A series of DCT coefficients are 

obtained in frequency domain after transformation. Most importantly, energy 

concentration is a very valuable property of DCT, that is, a majority of energy in natural 

signals (e.g., sound and image) is concentrated in the low frequency range, promoting the 

wide application of DCT in data compression [64, 65]. In addition, some researchers have 

adopted DCT for the identification of unknown parameters benefitting from the 

dimensional reduction of DCT [66, 67]. Zhang [68] used the DCT basis and wavelet basis 

to expand the same gradually changing signal, and then compared the sparsity of DCT 
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coefficients and scale coefficients, respectively. Results showed that DCT coefficients 

contained more coefficients close to zero, demonstrating a better sparsity. It means that 

DCT instead of WM can use less number of coefficients to express the original gradually 

changing signal. Considering that the energy of vibration of civil engineering structures 

is mainly distributed in the low-frequency component [18], therefore, it is worth 

decomposing the gradually varying physical parameters into low-order DCT coefficients, 

especially when the measured responses are polluted by a high-level noise. 

Cable is a common time-varying system. With the advantages of low cost, high 

bearing capacity and wind stability, cables have been widely used as the main components 

in long-span bridges [69-71]. Under complex load conditions and harsh environmental 

effects, the structural cable condition inevitably deteriorates by a number of issues, such 

as fatigue, corrosion and prestress loss, which can introduce negative effects on the cable, 

such as weakening the stiffness and reducing the bearing capacity, and eventually leading 

to cable fracture, which endangers the safety of the cable-supported bridges [72]. 

Therefore, the identification of cable force plays an indispensable role in the SHM of 

cable-supported bridges. Specifically, the existing cable force identification methods can 

be roughly divided into five categories: lift-off method, load cell method, magnetic flux 

leakage method, fiber Bragg grating method and vibration-based method [72]. As an 

indirect measurement method, the vibration-based methods have the advantages of simple 

installation, convenient operation, reusability, high precision and low price [73, 74]. 

Although many in-depth studies have been carried out, most of the proposed methods can 

only be used to estimate the average value of cable forces in a specific duration. However, 
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the cable force is time-varying subjected to the live load in the long-span cable-supported 

bridge. The average cable force value may not be used to evaluate the fatigue damage of 

the cable accurately. Therefore, it is of great theoretical significance and engineering 

application importance to develop the identification method of time-varying cable force 

for the safety assessment of bridges. Some attempts have been conducted to obtain the 

time-varying cable tension from the dynamic responses of cables [72, 75-80]. It shall be 

noted that the varying cable force is in the form of gradual change in the abovementioned 

studies. 

Inspired by the merits of DCT and KF series methods, this chapter proposes novel 

two-step approaches for the identification of gradually varying physical parameters of 

structural cables under known and unknown excitations, respectively. In this study, the 

structural mass is a known and time-invariant parameter, and only partially measured 

structural responses are used for the identification of gradually varying physical 

parameters. Approach I is proposed for the case of time-varying system identification 

under known excitations. The gradually varying physical parameters are localized by the 

fading-factor extended Kalman filter (FEKF) algorithm in the first step, and then 

identified by the proposed DCT integrated with KF method. Approach II is proposed to 

conduct the time varying system identification under unknown excitations. In this 

approach, the gradually varying physical parameters are localized by the proposed fading-

factor extended Kalman filter under unknown input (FEKF-UI) algorithm, and identified 

by the proposed DCT integrated with Kalman filter under unknown input (KF-UI) method. 

Moreover, considering that the stay cable is a common time-varying system as its cable 
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force changes with time under the combined action of vehicle load and wind load, it is 

investigated as a case study in this paper. The discrete equation of motion of stay cables 

in modal domain is given and the steps of identifying the time-varying cable force by the 

proposed approach I are presented. Results obtained from numerical studies on Nanjing 

Yangtze River No. 3 Bridge and experimental tests on the scaled cable demonstrate that 

the change of cable force can be identified by using only one acceleration response on the 

cable, with or without the anemometer installed on the bridge. 

The main contributions of this paper are listed as follows.  

(1) Novel two-step approaches are proposed for the identification of gradually 

varying physical parameters of linear structures using only partially measured structural 

responses; 

(2) FEKF-UI is firstly proposed to locate the time-varying parameters under 

unknown input. Locating the time-varying parameters aids to reduce the number of 

coefficients involved in the optimization process; 

(3) DCT is used to expand the gradually varying physical parameters instead of 

previous WM analysis. It is more suitable for the decomposition of gradually changing 

parameters, which can retain less coefficients to reconstruct the original physical 

parameters. Thus, the proposed approaches are robust even when the measurements are 

polluted by high-level noises. In addition, the boundary effect of WM is avoided;  

(4) It is further extended to the identification of gradually changing physical 

parameters under unknown excitations. Both the time-varying parameters and the 

unknown excitations are identified simultaneously. 
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Chapter 6 Structural damage diagnosis based on the temporal moment of 

partially measured structural responses 

Damage detection of civil structures is still a challenging task, since current damage 

detection methods are either insensitive to local structural damage or sensitive to 

measurement noise. It is noted that methods based on statistical moment of structural 

responses are proposed and shown to be an efficient tool because of its good noise 

immunity [81-95]. Generally speaking, a significant advantage of the method based on 

statistical moment of structural responses is that it is not only sensitive to local structural 

damage but also insensitive to measurement noise. However, the limitation is that it can 

only be applied when the number of measured responses is less than that of the structural 

stiffness, greatly restricting the application in engineering practice. Given the above, an 

improved temporal moment-based damage detection (TMBDD) method is proposed in 

this chapter. Firstly, structural incomplete acceleration responses are measured and 

divided into a series of time segments. Then, the temporal moments of the measured 

accelerations and those of the calculated accelerations are obtained respectively, and the 

objective error function between them is constructed. Finally, the structural stiffness can 

be estimated by minimizing the objective error function. The validity of the method is 

verfied by numerical examples and experimental model respectively. 

Compared with the previous work, the proposed algorithm has the following 

innovations: 1) The proposed algorithm only needs partial observed structural 

acceleration responses. Moreover, the number of measured acceleration responses is less 

than that of the structural stiffness. 2) This method shows a good accuracy in structural 
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damage diagnosis with noise resistance. 
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CHAPTER 2 Simultaneous identification of structural time-

varying physical parameters and unknown excitations using 

partial measurements 

ABSTRACT 

Structural systems often exhibit time-varying dynamic characteristics during their service 

life due to serve hazards and/or environmental erosion. Therefore, the identification of time-

varying structural systems is important. So far, methods based on wavelet multiresolution (WM) 

analysis have been proposed for the identification of structural time-varying physical parameters. 

However, full information on both complete structural responses and external excitations were 

requested in previous approaches, which greatly restricts their applications in practice. To 

overcome this severe limitation, an algorithm is proposed in this paper for simultaneous 

identification of structural time-varying physical parameters and unknown external excitations 

using only partially measured structural responses. The proposed algorithm is based on the 

integration of WM analysis and the Kalman filter with unknown input (KF-UI) algorithm recently 

developed by the authors. Firstly, structural time-varying physical parameters are decomposed by 

WM expansion, transforming the identification task into time-invariant scale coefficients 

estimation. Then, the KF-UI algorithm is used for simultaneous identification of structural state 

and unknown excitations using partially measured structural responses. Finally, the scale 

coefficients are estimated by nonlinear least-squares optimization and the original time-varying 

physical parameters are re-constructed. Numerical simulations and an experimental test are 

conducted to validate the proposed algorithm. 

 

This chapter was published in Engineering Structures with the full bibliographic citation as 

follows: Lei Y, Yang N. Simultaneous identification of structural time-varying physical 

parameters and unknown excitations using partial measurements. Engineering Structures, 

2020, 214:110672. 
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1. Introduction 

Structural system identification is an important issue and has received great attention [1]. So 

far, the identification of time-invariant structural systems has been widely investigated and 

various vibration-based techniques have been developed [2-3]. However, structures usually 

exhibit time-varying behavior in their service process due to severe hazards (e.g. strong seismic 

and wind loads) and complex internal degradation. It is more suitable to adopt time-varying 

models for dynamic behavior description and life-cycle management than the time-invariant 

models. Therefore, it is essential to investigate the identification of structural time-varying 

physical parameters. 

Generally, the currently existing identification methods for time-varying structural systems 

can be categorized into time-domain and time-frequency-domain classifications. Time-domain 

identification methods mainly include the time series-based methods [4-5] and the state-space 

model-based methods [6-10]. For example, the time-varying autoregressive moving average 

model (TV-ARMA) has been proposed as a time series-based method to recognize the time-

varying modal parameters such as frequency and damping ratio [5]. Simultaneously, many 

identification methods have been presented based on state-space models. For example, empirical 

approaches based on the track factor [6] or adaptive correction factor [7] have been developed, 

and the adaptive factor matrix has been proposed to track arbitrary changes in structural 

parameters [8]. However, updating the adaptive factor matrix by optimization at each time instant 

is computational inefficiency. Moreover, the Bayesian-based method by online updating noise 

covariance matrix has been presented to treat time-varying systems [9-10]. Time-frequency 

domain methods mainly focus on the Hilbert transform (HT) and the wavelet-based methods [11], 

e.g., the empirical mode decomposition (EMD) based HT [12-14], the variational mode 

decomposition (VMD) based HT [15], and the analytical mode decompositions (AMD) based HT 

[16-19] have been developed for estimating time-varying parameters of linear and nonlinear 

structural systems. 
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Wavelet transform (WT) is another widely used time-frequency analysis tool for time-

varying signal processing and structural damage detection [20-23] as it reveals the detail and 

approximation information by multiresolution analysis. In particular, some methodologies based 

on wavelet multiresolution (WM) analysis have been proposed to identify structural time-varying 

physical parameters [24-30]. These methods can be mainly divided into two categories: one is 

expanding the response signals by WM and capturing the time-varying characteristics by least-

squares with a sliding window [25] or the state-space method [26], and the other one is 

transforming the time-varying stiffness and damping parameters into wavelet coefficients, then 

identify them by the least-squares estimation [27-30]. Although satisfactory identification results 

for structural time-varying physical parameters have been obtained by these methods, full 

measurements of structural responses (including acceleration, velocity, and displacement) and 

external excitations are requested in these methodologies, which greatly restricts their 

applications in practice. 

On the other hand, the Kalman filter (KF) [31] has been widely utilized for structural state 

estimation using only partially observed structural responses. However, in the classical KF 

approach, external excitation information is needed [31-32]. Although some KF based methods 

have been developed to identify the unknown input before, improvements are still needed as their 

derivation processes were relatively complicated, and most importantly, severe ‘drift’ 

phenomenon existed in the identification results by these previous methods [33-34]. Recently, a 

data fusion based Kalman filter with unknown inputs (KF-UI) algorithm has been proposed by 

the authors to identify structural state and unknown excitations simultaneously [35], which is 

directly derived according to the KF framework to make the derivation process much clearer and 

simpler, and the ‘drift’ phenomenon is avoided by the data fusion of accelerations and 

displacements. However, this KF-UI cannot be directly adopted to identify structural time-

varying physical parameters. 

In view of the above-mentioned literature, current structural time-varying physical 

parameters identification methods based on WM analysis need full measurements of structural 
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acceleration, velocity and displacement responses together with the external excitation 

information, which greatly restricts their applications in practice. Inspired by the merits of both 

the recently proposed data fusing based KF-UI and the WM analysis, this paper aims to overcome 

the limitations of previous WM-based methods for the identification of time-varying physical 

parameters. An algorithm is proposed by integrating the WM analysis and the data fusion based 

KF-UI to identify structural time-varying systems and the unknown excitations using only 

partially measured structural responses. In the proposed algorithm, structural mass is assumed 

time-invariant and known while structural stiffness and damping parameters are time-varying and 

unknown, the structure is subjected to unknown excitation, and only partial measurements of 

structure responses are observed. The WM analysis is utilized to expand the structural time-

varying physical parameters at a multi-scale profile, which transforms the time-varying physical 

parameter identification into equivalent time-invariant scale coefficient estimation. To overcome 

the previously mentioned limitation on requiring full measurements of structural responses and 

external excitations, the advantage of the data fusion based KF-UI is adopted to identify structural 

state using only partial measurements of structural responses. Finally, the scale coefficients of 

WM analysis are estimated by the nonlinear least-squares optimization, and structural time-

varying physical parameters and the unknown external loads are also identified accordingly. The 

effect of noise can be minimized based on the noise immunity of the KF-UI. Three numerical 

examples including the various scenarios of time-varying structural physical parameters in a 3-

story shear frame, a simply supported beam, and a plane frame, respectively are used to test the 

efficiency of the proposed algorithm. Furthermore, experimental data of a three-story time-

varying frame from the Research Center of Earthquake Engineering in Taipei [36] are utilized to 

validate the proposed algorithm. 

The main contributions of this paper list as follows. (i) Propose a simultaneous identification 

algorithm for structural time-varying parameters and unknown external excitations using only 

partial measurements instead of full measurements of structural responses at all DOFs; (ii) 

Consider the unknown excitations to the time-varying structures and identify the unknown 
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excitations simultaneously; (iii) Minimize the effect of measurements noise due to the fact that 

KF-UI approach itself can include the influences of modeling error and measurements noise. 

The remaining part of the paper is organized as: In section 2, the details of the proposed 

algorithm are presented. In section 3, three numerical examples including various scenarios of 

structural time-varying physical parameters in different types of models are utilized to test the 

performance of the proposed algorithm. In section 4, an experimental test of a three-story time-

varying frame is utilized to further validate the proposed algorithm. Finally, some conclusions 

with further research issues are presented in the conclusion part. 

2. The proposed identification algorithm 

The wavelet multiresolution (WM) analysis is used to expand structural time-varying 

physical parameters in the process of the proposed method for system identification. 

2.1. Wavelet multiresolution expansion 

The WM analysis can expand a signal into approximate and detailed parts at multi-scale 

levels. For any continuous signal f(t) with finite energy, it can be orthogonally expanded as [27-

30]: 

, , , ,( ) ( ) ( )J l J l j l j l

l j J l

f t c t d t 
  

  

  
                   

(1) 

where   /2

, 2 (2 )J J

J l t t l    and   /2

, 2 (2 )j j

j l t t l    are the scale function and the mother 

wavelet function, respectively, 
,J lc  is the scale coefficient at the level J, and ,j ld  is the detail 

or wavelet coefficient at the level j. For a discrete signal ( )nf t  sampled with tN  number of 

points, the discrete form of Eq. (1) can be written as: 

, , , ,

1

( ) (2 ) (2 ) 1,2,3......
J

J j

J l J l j l j l

l j l

nf c n l d n lt n Nt 


      ，

          

 (2) 
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Usually, the energy of the signal mainly concentrates on the low-frequency components. The 

discrete signal ( )nf t  can be represented by a cut-down WM expansion up to the scale level J , 

i.e., ( )nf t  is approximated as [27]:  

, ,( ) (2 ) 1,2,3......J

J l J ln

l

f c n lt n Nt   ，                  (3) 

In this paper, structural stiffness and damping are time-varying and unknown. By expanding 

the stiffness and viscous damping coefficients according to Eq. (3), Eq. (4) can be derived as [27-

30]: 

, , , ,
( ) (2 ); ( ) (2 ) 1,2,3......

k c
i i

k k k k c c c c
i i i i i i i i

k c
i i

J Jk k c c

i i i iJ l J l J l J l
l

n n

l

k k n l c ct n l n Ntt       ，   

 

(4) 

in which, ( )nik t and ( )nic t represent the i th  stiffness and damping parameter at time nt , 

respectively, ,k k
i iJ l

k is the corresponding decomposed scale coefficient for stiffness ik  at the 
k

iJ

resolution scale, and ,c c
i iJ l

c is the damping scale coefficient at the 
c

iJ  resolution scale, k

il and c

il

are the numbers of scale coefficients for the parameters ik  and ic , respectively. If the scale 

coefficient ,k k
i iJ l

k and ,c c
i iJ l

c  are estimated, the time-varying physical parameter ( )nik t  and 

( )nic t can be reconstructed through Eq. (4). Therefore, the task of identifying time-varying 

structural physical parameters is converted to the identification of time-invariant scale 

coefficients based on the WM expansion.  

2.2 Previous identification based on wavelet multiresolution expansion 

The governing equation of a multi degrees-of-freedom (MDOFs) linear time-varying 

structural system is described by: 

( ) ( ) ( ) ( ) ( ) ( )t t t t t t  Mx C x K x ηf
                  

(5) 
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where (t)x , (t)x and (t)x are the vector of structural displacement, velocity, and acceleration 

response time history, respectively. M represents the structural mass matrix which is assumed to 

be time-invariant with a known value. K(t) and C(t) denote the stiffness and damping matrix with 

time-varying parameters, respectively. f(t) is an external excitation vector with the influence 

matrix η . When the sampling time is =1, 2,..., n Nt , the corresponding discrete format for Eq.(5) 

is: 

( ) ( ) ( ) ( ) ( ) ( )n n n n n nt t t t t t  Mx C x K x ηf                (6) 

In previous approaches based on WM analysis for the identification of time-varying physical 

parameters, the preconditions are that the full responses of structural displacement, velocity, and 

acceleration are observed, and the external excitation f(t) is assumed known. Under these 

prerequisites, by substituting the expansion of stiffness and damping parameters in Eq. (4) into 

Eq. (6), Eq. (6) can be re-written as:  

Θ Y                                   (7) 

in which 

=Θ QW  

     
1 1 1 1

1 1 2 2, , , ,
= , , , , , ; ( ) , ( ) , , ( )c c c c k k k k

t ti i i i

T T

N NJ l J l J l J l
c c k k t t t t t t     

  
Y = ηf Mx ηf Mx ηf Mx (8) 

in which W  is the corresponding WM matrix contains the wavelet scale functions in Eq.(4), 

and the matrix Q  is related to the measured structural displacement, velocity responses at all 

DOFs, which is specified as shown in Eq. (9). 

 
 
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If all structural responses are measured, it’s obvious that the matrix Θ  is known because 

it’s constituted by the measured structural displacement, velocity, and the wavelet scale functions. 

The output matrix Y  is also known because the mass matrix, acceleration, and the external 

excitation are all preset information. The vector is unknown as it contains the unknown wavelet 

scale coefficients from the expansion of stiffness and damping parameters in Eq. (4). Then, the 

unknown stiffness and damping scale coefficients can be obtained from Eq. (7) by the linear least-

squares estimation. More detailed derivation of the previous identification method based on WM 

expansion refers to [27-30]. 

However, requiring full measurements of all structural responses is impractical. Also, it is 

often difficult to obtain accurate excitation information. Herein, an improved identification 

algorithm to overcome these limitations is studied. It is based on the integration of WM expansion 

of time-varying stiffness and damping parameters and the data fusing based KF-UI recently 

developed by the authors [35] with limited measurements of structural responses. 

2.3 Identify structural state and excitation by KF-UI with given scale coefficients 

When the above linear time-varying structural system is subjected to unknown external 

excitations, its governing equation can be re-written as: 

( ) ( ) ( ) ( ) ( ) ( )Mx C x K x η f
u ut t t t t t  

                  
 (10) 

where ( )f
u t  is the unknown input vector with the influence matrix 

u
η . With the given wavelet 

scale coefficients for the time-varying stiffness and damping parameters, structural physical 

parameters can be reconstructed through Eq. (4). The data fusing based KF-UI proposed by the 

authors is utilized herein for the identification of structural system under unknown inputs. 

Eq. (8) can be transformed into the system state equation. Describe the state equation in the 

discrete form based on the zero-order holder (ZOH) discretization: 

1X X f w
u

k k k k k k    
                          

(11) 
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where X k
is the system state vector at time t k t  , k  is the state transfer matrix, 

k  is the 

influence matrix of the unknown input vector f
u

k , and kw is the modeling error assumed as a 

Gaussian white noise vector with zero mean and a covariance matrix Qk . 

Given partial structural responses, the discrete observation equations can be expressed as: 

1 1 1 1 1 1+y H X D f v
u

k+ k k k k k     
                      

(12) 

where 1yk+ is the measured response vector at time  1t k t   , 
1Hk

and 
1Dk

are 

measurement matrices associated with structural state and external force vectors, respectively, 

and 1vk is the measurement noise vector, which is also assumed as a Gaussian white noise 

vector with zero mean and a covariance matrix
1Rk

. 

The proposed KF-UI contains two procedures [35]. First, 
1|k kX  is predicted as: 

1| | |
ˆˆX X f

u

k k k k k k k k                           (13) 

where 
1|Xk k

,
|X̂ k k

, and |f̂
u

k k denote the predicted 
1X k
, estimated X k , and f

u
at time t k t  , 

respectively. 

Then, the estimated 1kX  in the measurement update procedure is derived as: [35] 

1| 1 1| 1 1 1 1| 1 1| 1
ˆˆ ( )X X K Y H X D f

u

k k k k k k k k k k k k            
            

(14) 

where 
1| 1X̂ k k 

 and 
1| 1f̂

u

k k 
 denote the estimated 

1X k
and 1f

u

k  given the observations 1y , 2y ,..., 

1ky , respectively, 
1K k
 is the Kalman gain matrix which can be derived as: [35] 

1

1 1| 1 1 1| 1 1( )K P H H P H R
T T

k k k k k k k k k



       
                

(15) 

in which
1|Pk k

is the error covariance of the predicted 
1|Xk k

. 

If the number of measured responses is no less than that of the unknown inputs, 
1| 1f̂

u

k k 
 can 

be obtained by the least-squares estimation as: [35] 

 1

1| 1 1 1 1 1 1 1 1 1|
ˆ ( )

Tu

k k k k k k k k k k k



           f S D R I H K y H X
        

(16) 
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where I  denotes a unit matrix, and 1 1

1 1 1 1 1 1=[ ( ) ]S D R I H K D
T

k k k k k k

 

      . 

Also, the error covariance matrices are expressed as: [35] 

1

+1| 1 1 1 1 1 1 1 1 1 +1|
ˆ ( )( )X X
P I + K D S D R H I K H P

T T

k k k k k k k k k k+ | k k



        
         

(17) 

+1| +1 1
ˆ =P S

f

k k k                                
(18) 

+1| 1 +1| 1 1 1 1
ˆ ˆ( )Xf fX
P P K D S

T

k k k k k k k      
                 

(19) 

Moreover, the drift problem in the identification results by previous identification 

approaches can be effectively overcome by the data fusion of acceleration and displacement 

measurements in the proposed KF-UI [35]. Thus, the observation equation in Eq. (12) can be 

expressed as: 

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

+ +
0 0s

Y E F x G
Y = + f v H X D f v

Y L x

a a a

u uk k k k k

k k k k k k k kd

k k

    

       

 

          
        
          

  (20) 

where 1E
a

k and 1F
a

k  are matrices related to observed accelerations, sL  represents the location 

of displacement sensors, and 1Gk  denotes the influence matrix of unknown inputs on the 

acceleration responses [35]. 

2.4 Scale coefficient estimation by nonlinear optimization 

In the above identification procedures, the identified structural state vector and the 

unknown excitation depend on the values of wavelet scale coefficients ,k k
i iJ l

k and ,c c
i iJ l

c in the WM 

expansion of structural stiffness and damping parameters by Eq.(4). Then, structural acceleration 

responses can be estimated by the following formula as: 

1ˆ ˆ ˆˆ= ( )x M η f Kx Cx
u u                            

(21) 

Therefore, the estimated acceleration vector x̂  is also an implicit function of the scale 

coefficients which can be expressed as  , ,

ˆ= ,  x̂ x k ck k c cJ l J l
, in which 

,
k k kJ l

and 
,

c c cJ l
denote the 

scale coefficient vector of ,k k
i iJ l

k and ,c c
i iJ l

c , respectively. 
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Finally, the scale coefficient vector 
,

k k kJ l
and 

,
c c cJ l

can be estimated through a nonlinear 

optimization problem by minimizing the following objective function as: 

    
2

, , , ,
2

ˆ,   ,k c = x H x k ck k c c k k c cm aJ l J l J l J l
 

                
(22) 

where Ha  denotes the located matrix of partial acceleration measurement xm . By solving the 

above optimization problem, the optimal 
,

k k kJ l
and 

,
c c cJ l

could be obtained. Afterward, 

structural time-varying stiffness and damping parameters can be reconstructed through Eq. (4).  

Herein, the command ‘lsqnonlin’ with Levenberg-Marquardt (LM) algorithm in MATLAB 

is applied to solve the nonlinear least-squares problem. The default stopping criterion of the LM 

algorithm in MATLAB is used. The initial values of scale coefficients play a critical role in the 

nonlinear least-squares estimation. Considering that the change of structural parameters is caused 

by an external load, it is less possible for the structural parameters to have a sudden change or 

gradual change in the initial stage of vibration in practice. Therefore, in the initial stage, that is, 

when the physical parameters are time-invariant, the EKF-UI method can be used to estimate the 

unknown physical parameters and set them as the initial values of time-varying structural 

parameters. The EKF-UI method can identify the unknown time-invariant physical parameters 

by limited measurements when the excitation is unknown. Such a method is also proposed by 

the authors and has been published before [37]. Then the initial values of scale coefficients can 

be calculated by the estimated initial physical parameters based on the WM transformation.  

Besides, particular attention should be paid to the selection of wavelet scale function and 

resolution scale. On one hand, the number of coefficients that need to be optimized is greatly 

increased with a small resolution scale. It is more likely that the optimization problem in Eq. (22) 

cannot get the global optimal solution, and over-fine fitting of time-varying physical parameters 

will also amplify the influence of high-frequency noise, so the decomposition level is not 

recommended to be too small. On the other hand, too many high-order energies and details in 

signals will be lost when the resolution level is too high, which will lead to lower accuracy of 

physical parameter identification. Therefore, the choice of wavelet scale function and resolution 
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scale is an important issue. Usually, the DbN wavelet has been widely used in time-varying 

physical parameter identification because of its superior orthogonal properties and compact 

support characteristics. Chang and Shi [29] suggested that the Db1 wavelet is appropriate for 

abrupt change. Herein, the Db1 wavelet is chosen as the scale function for the abrupt change of 

structural physical parameters while Db3 is adopted for the gradual change of physical 

parameters. Concerning the selection of the resolution scale, the orthogonal forward regression 

(OFR) algorithm [29-30] is used to determine a suitable resolution scale and reduce the number 

of the estimated wavelet coefficients. It is well known that selecting the most appropriate scale 

function and resolution scale is still a challenging problem in the wavelet analysis and further 

investigations are needed in the follow-up research. 

2.5 Summary of the proposed identification procedures 

Fig.1 shows the flowchart of the proposed identification procedure.  

Start

Initial  guess  of  system  

wavelet  coefficients 

Reconstruct  system  

parameters  by  WM

Response  reconstruction  and  force  

identification  by  KF-UI 

Calculate  the  objective  

function 

Convergence

met?

yes

Optimal  Solution  of  

wavelet  coefficients  

Reconstruct  system  

parameters  by  WM

Output

no

Calculate  the  wavelet  

coefficients  by  nonlinear  

least-square  estimation  

 

Fig. 1. Procedure of the simultaneous identification algorithm 
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In summary, the proposed identification algorithm contains the following main procedures: 

(1) Based on the WM expansion, the time-varying structural physical parameters are 

approximately expressed by a truncated WM analysis in the discrete form with the resolution 

level J and unknown wavelet scale coefficients as shown in Eq. (4). Then, the identification task 

is transformed into estimating time-invariant coefficients in WM analysis. 

(2) With given wavelet scale coefficients, structural full responses at all DOFs together with 

the unknown excitation can be estimated by the data fusion based KF-UI using partially 

measured structural responses through Eqs.(10)-(20). The identified structural responses and 

unknown external excitations are implicit functions of the wavelet scale coefficients. 

(3) The unknown wavelet scale coefficients are estimated by solving a nonlinear 

optimization problem with the objective function shown in Eq. (22) using the nonlinear least-

squares estimation. 

(4) With the estimated wavelet scale coefficients, structural time-varying physical 

parameters can be reconstructed by Eq. (4), and structural external excitations can also be 

identified simultaneously. 

3. Numerical example validations  

In this paper, three numerical examples for the identification of various time-varying 

structural physical parameters in different types of structural models are used to validate the 

proposed algorithm.  

3.1 Example 1: A 3-story time-varying shear frame under unknown seismic excitation  

A numerical example is given to recognize the time-varying stiffness and damping 

coefficient of a three-story shear frame under unknown seismic excitation. The mass of the frame 

is assumed to be known with m1= m2= m3=2500kg. The sampling frequency is 50Hz and the 

sampling time is 10s, thus there are 1503 stiffness parameters and 1503 damping parameters to 

be identified in total. Only two accelerometers are deployed on the 1st and 3rd floors, respectively. 

To avoid the drifts in the identification results, the displacement response at the 1st floor is also 
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measured. To consider the influence of measurement noise, all the measured structural responses 

are polluted by white noise with 1% in root mean square (RMS). The frame is stimulated by the 

EL-Centro earthquake excitation. The three-story time-varying shear frame model is shown in 

Fig.2. 

 

Fig. 2. Three-story time-varying shear frame model 

Three different scenarios of time-varying structural physical parameters are simulated in this 

example. Case I: multi abruptly varying stiffness and time-invariant damping parameters; Case 

II: both time-varying stiffness and damping parameters; Case III: gradually varying and abruptly 

varying stiffness parameters with time-invariant damping parameters. 

3.1.1 Case I: multi abruptly varying stiffness and time-invariant damping parameters 

In this case, it is assumed that sudden reduction occurs on the structural stiffness parameters 

k1 and k3 respectively, while parameters k2 and ci (i=1,2,3) remain constant. The changes in the 

physical parameters are specified as shown in Eq. (23). Herein, Db1 is adopted as the scale 

function for abruptly varying case [29] and scale level J=7 is used to expand the abruptly varying 

stiffness and invariant damping parameters. Thus, there are totally 24 unknown scale coefficients 

to be optimized in the nonlinear least-squares estimation. 
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                    (23) 

Figs.3-4 show the identified time-varying or time-invariant structural stiffness and damping 

parameters with comparison to their exact values, respectively. It is illustrated that the proposed 

algorithm can accurately track the abrupt change of structural stiffness parameters.  

 

 

Fig. 3. Identified time-varying stiffness of the 3-story shear frame in case I 
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Fig. 4. Identified damping of the 3-story shear frame in case I 

Based on the proposed algorithm, all unmeasured structural responses can be identified. 

Some identified structural displacement and velocity responses are compared with their exact 

values in Fig.5. It is noted that the identified structural responses are in agreement with their exact 

values.  

 

Fig. 5. Identified displacement and velocity of the 3-story shear frame in case I 
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Moreover, the identified earthquake acceleration agrees with the exact one, as shown in Fig. 

6. 

 

Fig.6. Identified seismic acceleration to the 3-story shear frame in case I 

3.1.2. Case II: both time-varying stiffness and damping parameters 

Different from the case I, the damping parameters are also time-varying in case II. It is 

assumed c1 and c3 suddenly increase according to Eq. (24), while other stiffness and damping 

parameters are consistent with those in case I. The number of the unknown scale coefficients is 

the same with that in case I. 
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   (24) 

From Fig.7, it is noted that the identified time-varying stiffness parameters are in good 

agreement with the exact values. The identified time-varying damping parameters are not so 

accurate as shown in Fig. 8, but it is well known that it is hard to accurately identify damping 

parameters. Although the changing time can be tracked, the recognition errors are larger than 

those of stiffness parameters because the damping coefficients orders are much smaller than 

those of stiffness parameters. The identification of damping coefficients is more sensitive to 

noise [27]. 
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As indicated in Fig.9, the identified earthquake ground acceleration is entirely precise in 

this case. 

 

 

Fig. 7. Identified time-varying stiffness of the 3-story shear frame in case II 

 

 

Fig. 8. Identified time-varying damping of the 3-story shear frame in case II 
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Fig.9. Identified seismic acceleration to the 3-story shear frame in case II 

3.1.3. Case III: Gradually varying and abruptly varying stiffness with time-invariant 

damping 

To further verify the proposed algorithm for the identification of gradually time-varying type, 

it is assumed that the time-varying k1 is set to be in a linear form. The changes in the physical 

parameters are specified as shown in Eq. (25). 

 1

2

3

1 2 3

250kN/ m,  0s  4s

12.5 300 kN/ m ,   4s 8s

200kN/ m,   8s 10s

=  200kN/ m,   0s 10s

180kN/ m,  0s 5.2s

  140kN/ m,   5.2s 10s

kN2 s/ m,   0s 10.5 s

t

k t t

t

k t

t
k

t

c c c t

 


    
  

 

 
 

 

     

                 (25) 

For the decomposition of gradually varying stiffness parameter k1, Db3 is selected as the 

wavelet function with the scale level J=5. The number of unknown stiffness scale coefficients is 

24. 

Fig.10 illustrates that both the gradually and abruptly time-varying stiffness parameters in 

this example can be well-identified. The identification results of damping parameters are also 

acceptable, but these results are not shown herein due to page limitations.  

Again, the identified ground acceleration is quite accurate in this case, as shown in Fig. 11. 
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Fig.10. Identified time-varying stiffness of the 3-story shear frame in case III 

 

Fig.11. Identified seismic acceleration to the 3-story shear frame in case III 

3.2 Example 2: A simply supported beam under unknown external excitation 

Considering only shear-type frames were studied in most previous literature, a time-varying 

beam-type structure is investigated as another numerical example. As shown in Fig.12, a simply 

supported beam is divided into four finite elements. The model is built based on the Euler-

Bernoulli theory. There are 8 DOFs in total, including 3 vertical displacement DOFs and 5 rotation 
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DOFs. The length of each element is l=1.5m with uniformly distributed mass 7850kg/m, and the 

Rayleigh damping is adopted with the first two damping ratios being 0.03. A white noise 

excitation is acted on the 2nd DOF of the beam. The sampling frequency is 50Hz and the sampling 

time is 10s, thus 2004 stiffness parameters need to be identified in total. Only three accelerometers 

are deployed at the 2nd, 4th, and 6th DOFs, respectively. For data fusion, two displacement 

sensors fixed on the 2nd and 4th DOF are used. In this example, responses of the rotation DOFs 

are non-essential. The measured structural responses are polluted by white noise with 1% in RMS. 

Two cases of time-varying stiffness parameters are investigated as follows. 

 

Fig.12. A simply supported beam with time-varying stiffness parameters 

3.2.1. Case I: multi abruptly varying stiffness 

In case I, it is assumed that the changes of stiffness parameter k2 and k3 are linear while the 

physical parameters k1 and k4 are time-invariant. The values of stiffness parameters are specified 

in Eq. (26). Also, Db1 is utilized as the wavelet function with the resolution scale J=7. Thus, there 

are totally 16 unknown stiffness scale coefficients to be optimized in the nonlinear least-squares 

estimation.  
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Fig.13 shows the identified time-varying stiffness parameters of this simply supported beam 

model, which are in favorable agreement with the exact time-varying curves. Furthermore, all 
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responses and external excitations can be estimated accurately. For saving space, only the 

identified external excitation is shown and compared with its exact time history in Fig.14.  

 

 

Fig.13. Identified time-varying stiffness of the beam in case I 

 

Fig.14. Identified external excitation to the beam in case I 

3.2.2. Case II: gradually varying and abruptly varying stiffness 

In this case, structural physical parameters are consistent with those in case I, except that k3 

is in a gradually varying trend as: 
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(27) 

Analogously, Db3 is selected as the wavelet scale function for the expansion of gradually 

varying parameter k3 and the scale level is J=4. The number of unknown stiffness scale 

coefficients is 44 in total.  

Fig.15 shows the identified time-varying stiffness parameters. Although the recognition error 

is greater when the stiffness changes gradually, it is still within an acceptable range.  Furthermore, 

all responses and external excitations can be identified and the identified external excitation is 

shown and compared with its exact time history in Fig.16.  

Summarizing the two identification cases, it is shown that the proposed algorithm is also 

effective in identifying the time-varying structural physical parameters of beam-type structures 

subjected to unknown external excitations. 

 

 

Fig.15. Identified time-varying stiffness of the beam in case II 
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Fig.16. Identified external excitation to the beam in case II 

3.3 Example 3: A plane frame under unknown seismic excitation  

To further validate the proposed algorithm for the identification of time-varying physical 

parameters in complex structures, the time-varying physical parameters identification of a two-

dimensional (2D) plane frame shown in Fig. 17 is investigated. 

 

Fig.17. A time-varying one-bay two-story plane frame model 

This frame studied herein is one bay and two-story with linear elements of four columns and 

two beams [30]. Neglecting axis deformation of the rigid frame, only six DOFs including two 

horizontal DOFs and four rotational ones are considered. The same uniform mass density with 

m=240kg/m is used for all columns and beams. The height of the column is H=5m and the length 

of the beam is L=6m. The frame is excited by the El-Centro earthquake ground motion. The 
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sampling frequency is 50Hz and the sampling time is 10s. Acceleration responses of u11, u12, u21, 

and u22 DOFs in Fig.17 are used as measurements for identification. Since rotational accelerations 

are hard to be measured, it is usually a good approximation to assume that rotational motion at a 

joint is related to the horizontal motion through the static deflection relation [38-39]. Herein, the 

rotational accelerations are estimated from the measured horizontal acceleration. Also, two 

horizontal displacements of the u11 and u21 DOF are used for data fusing. All the measured 

structural responses are contaminated by white noise with 1% RMS on account of noise influence. 

In this numerical illustration, the linear stiffness    i t EI t L  is considered as a time-

varying parameter to reflect the time-varying property of the member, that is the six linear 

stiffness parameters i1l, i1r, i2l, i2r, i1b, i1b, i2b are time-varying, in which the first subscript denotes 

the story number while the second index indicates the left column (l), right column (r), and the 

beam (b), respectively. It is assumed the stiffness parameters vary abruptly as: i1l is reduced from 

4000kN∙m to 3400kN∙m at 5.12 second, i1b is changed from 3500kN∙m to 2800kN∙m at 7.68 

second, i1r=i2l=i2r=4000kN∙m and i2b=3500kN∙m. Db1 is used as the mother function in this case 

and the resolution scale is chosen as J=7 to expand the stiffness parameters. The number of 

unknown stiffness scale coefficients is 24 in total. Viscous damping coefficient is assumed for 

each DOF in the plane frame, respectively [30]. Herein, damping coefficients are assumed 

constant as:c1t=50kN∙s/m, c1l=c1r=10kN∙s/m, c2t=20kN∙s/m, and c2l= c2r=70kN∙s/m. 

According to the identified results shown in Fig.18, it is validated that the proposed 

algorithm is capable of identifying time-varying stiffness parameters in the plane frame model. 

Furthermore, the identified earthquake ground acceleration to the plane frame by the proposed 

algorithm is satisfactory, as shown in Fig. 19. 
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Fig. 18. Identified time-varying stiffness of the plane frame 
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Fig.19. Identified external excitation to the plane frame 

4. Experimental verification 

To further verify the effectiveness of the proposed algorithm, an experiment test with a three-

story steel frame is used to identify the sudden change of stiffness parameter. The experiment was 

completed in the Research Centre of Earthquake Engineering in Taiwan [36]. As shown in Fig.20, 

the structure was placed on the seismic shaking table and the ground acceleration was measured 

by the accelerometer fixed on the table. To simulate the suddenly changing stiffness of the 1st 

floor, a locking system supported by a V-shaped bracing was assembled on the first floor and the 

locking system could be released at any time during the process of earthquake excitation, so the 

frame can display abruptly time-varying characteristics [36]. 

The structural system is a lumped mass reduced-order structural model with three DOFs and 

the lumped mass of each floor is known as 6000kg. The damping parameters are selected 

according to [36]. The structural stiffness matrix K is unknown. Different from the stiffness matrix 

of traditional shear frames, the stiffness matrix K herein contains all elements naming 

 1,2,3, 1,2,3ijk i j  in the i-th row and the j-th column. Inter-story stiffness  1,2,3mk m  can 

be obtained as shown in Eq.(28) [36]: 

 
3 3

= 1,2,3m ij

i m j m

k k m
 

                         (28) 
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Fig.20. A 3-story steel frame with a lock-up system on the 1st floor (referred to [36]) 

In the experiment, sensors for measuring acceleration, velocity, and displacement were 

installed on each floor, but only the collected acceleration data of the 1st and 3rd floor and 

displacement data of the 1st floor are used in the proposed algorithm. The sampling time interval 

is 0.02s and the whole sampling time is 30s. Thus, take k1 as an example, the stiffness parameters 

of the first floor are 1500 in total. Adopt the mother function Db1 and the scale level J=6 to 

expand the abruptly varying stiffness k1, thus 24 unknown stiffness scale coefficients of the first 

floor participate in the nonlinear optimization. The 6th-order Butterworth band-pass filter is 

adopted pre-processing the collected data to remove the high-frequency noise influence. The 

stiffness parameters before and after the sudden change together with the unknown ground 

acceleration of the shaking table are identified by the proposed algorithm in this paper. 

From the comparison for the time-varying inter-story stiffness parameters shown in Fig.21, 

it is demonstrated that not only the abrupt change of k1 can be tracked but also the time-invariant 

inter-story stiffness k2 and k3 can be identified. Moreover, the unknown acceleration of the shaking 

table can also be identified as shown in Fig. 22. The experimental testing case is more complex 

compared with those numerical simulation studies, so the identified seismic acceleration deviates 

from the measured value, but the error is still within the acceptable range in the experimental test. 
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Fig. 21. Identified time-varying inter-story stiffness of the experimental steel frame 

 

Fig. 22. Identified acceleration of the shaking table in the experimental test 

5. Conclusions 

It is necessary to investigate an effective algorithm for the identification of time-varying 

structural systems. Current identification approaches based on the WM analysis request the full 

structural response measurements. Moreover, external excitations to the structures are also needed 

to be known or assumed. To overcome these limitations, an algorithm is proposed for 

simultaneous identification of structural time-varying physical parameters and unknown external 
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excitation only using limited observed responses. Structural time-varying physical parameters are 

expanded using a discrete wavelet basis and resolution scale. Structural responses and unknown 

excitations are estimated by the data fusion based KF-UI approach developed by the authors with 

partially measured responses and pre-assumed scale coefficients. The KF-UI approach can 

include the influence of measurement noise as a measurement noise vector is considered in the 

observation equation. The expanded scale coefficients are estimated by solving a nonlinear 

optimization problem. Afterward, structural time-varying parameters are reconstructed 

accordingly, and the unknown external excitations can be identified simultaneously.  

Three numerical examples including various sceneries (e.g. suddenly or gradually varying 

of structural physical parameters) in the shear-type frame, beam and plane frame under unknown 

excitations have validated the proposed algorithm. Moreover, an experimental shaking table test 

for a time-varying frame further validates the effectiveness of the proposed algorithm. The 

proposed novel algorithm is effective for simultaneous identification of structural time-varying 

physical parameters and unknown excitations only using partially measured responses of 

structures, which is suitable for practical application. Such an identification algorithm is not 

available in the literature. 

In this paper, the selection of appropriate resolution scale in the wavelet analysis is an 

important but a challenging task. Further related investigations are needed in the follow-up 

research. Similar to other previous WM-based approaches for time-varying parameter 

identification, the proposed algorithm is not applicable for large size structures due to the 

difficulty in the multiple-parameter optimization problem. This is the drawback of the proposed 

method. This difficulty can be solved by the sub-structural identification approach. Such relevant 

research is being conducted and identification results will be published subsequently. 
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CHAPTER 3 Identification of time-varying large-scale 

structures by integrated sub-structural and wavelet 

multiresolution approach with partial measurements 

ABSTRACT 

Currently, most wavelet multiresolution (WM) based methods for the identification of time-

varying structural physical parameters request the full measurements of all structural responses. 

All physical parameters including time-varying and time-invariant parameters are expanded by 

WM, so it is only applicable to small-scale structures with a few degree-of-freedoms (DOFs). In 

this paper, based on the sub-structural identification technique, a novel two-step approach is 

proposed to identify the time-varying physical parameters of large-scale structures under 

unknown external excitations using only partially measured responses. A large-scale structure is 

divided into several substructures. For a substructure concerned, the unknown interaction forces 

from neighboring structures are treated as ‘additional unknown inputs’ imposed to the 

substructure, so the identification of large-scale structure can be transformed to the identification 

of each substructure with parallel computing in two steps. In the first step, the fading-factor 

generalized extended Kalman filter under unknown input (FGEKF-UI) algorithm is proposed to 

locate the time-varying physical parameters in each substructure. In the second step, a synthesized 

method is developed for the quantitative identification of time-varying physical parameters based 

on the integration of WM analysis and the generalized Kalman filter under unknown input (GKF-

UI) proposed by the authors. The time-varying structural physical parameters distinguished in the 

first step are expanded into scale coefficients by WM analysis. Then, the time-invariant physical 

parameters and the scale coefficients of time-varying physical parameters are identified by 

performing the nonlinear optimization with an objective function established by the proposed 

GKF-UI algorithm. Finally, the estimated scale coefficients are used to reconstruct the original 

time-varying structural physical parameters. Several numerical examples are used to demonstrate 

the effectiveness of the proposed approach. 

 

Lei Y, Yang N, Li J, Hao H, Huang JS. Identification of time-varying large-scale structures 

by integrated sub-structural and wavelet multiresolution approach with partial measurements. 

Engineering Structures, 2021. (Under review) 
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1. Introduction 

Many vibration-based techniques have been developed to identify the physical parameters 

of time-invariant structures in the field of structural health monitoring (SHM) [1, 2]. However, 

structural dynamic parameters often change owning to severe hazards, e.g. strong seismic and 

wind loads, as well as other environmental effects, e.g., temperature or corrosion effect. Effective 

methods need to be investigated to identify the dynamic characteristics of time-varying structures, 

assess and adaptively evaluate the performance of time-varying structural systems [3]. 

Therefore, particular attentions have been concentrated on the modal parameters 

identification of time-varying structures [4]. Some methods in the time-domain, e.g., the time-

varying autoregressive moving average model (TV-ARMA) [5,6], have been proposed to identify 

the time-varying modal parameters. Many time-frequency domain methods have also been 

developed to successfully estimate the time-varying modal parameters and detect the structural 

damage [7, 8]. For example, the HT based methods, such as Empirical Mode Decomposition 

(EMD)[9], Variational Mode Decomposition (VMD)[10] and Analytical Mode Decomposition 

(AMD) [11, 12], and methods based on the wavelet decomposition, such as Empirical Wavelet 

Transform (EWT) [13], wavelet transform with independent component analysis (ICA) [14] and 

the synchrosqueezed wavelet transform [15, 16], etc. 

On the other hand, direct identification of physical parameters, such as physical stiffness and 

damping parameters of time-varying linear structures, is more intuitive to assess the time-varying 

systems [1]. Relevant studies have been conducted in the time-domain and time-frequency 

domain. The state space model-based methods [17-21], have shown a high efficiency in the time-

domain to track the change of physical parameters by introducing the fading-factor related to the 
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time-varying parameters. However, it is difficult to select the most optimal fading-factor. 

Therefore, some of these methods were proposed based on an empirical fading-factor [17-20]. In 

addition, researches to find the most optimal fading-factor were attempted by updating the 

adaptive factor matrix at each time instant [21], but it is computational expensive for large-scale 

structures. The time-frequency domain methods based on the wavelet multiresolution (WM) have 

been developed to identify the structural time-varying physical parameters [22-26]. These 

methods expand the physical parameters of time-varying structures into scale coefficients, which 

are identified by the linear least-squares estimation. However, these methods are not suitable for 

large-scale structures due to the reason that complete measurements of all structural responses are 

required, which is impractical for real applications. To overcome this limitation on full 

observations, some novel methods have been proposed [27,28] recently by the authors to identify 

the time-varying physical parameters of linear structures under known or unknown excitations 

using only partial measurements of structural responses. However, it is required to expand all 

physical parameters (including time-varying parameters and time-invariant parameters) into scale 

coefficients based on WM. The number of expanded coefficients increases greatly as the 

structural size increases, making it difficult to obtain a global optimal solution especially when 

the quality of the collected data is poor. Therefore, the proposed methods are still applicable to 

small-scale structures with a small number of degree-of-freedoms (DOFs). 

For the parametric identification of large-scale structures, sub-structural identification 

technique is more efficient [29-35]. However, these methods are mostly used to identify the 

parameters of time-invariant systems. For time-varying systems, Shi and Chang [22,23] used the 

sub-structural identification technique to identify the time-varying physical parameters of a 
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numerical 10-story shear frame and a 3-story experimental shear building model. Each structure 

was divided into several small size substructures, and WM was adopted to identify the time-

varying physical parameters of each substructure. Recently, Wang et al. [24] presented a wavelet 

transform and sub-structural algorithm to track the abrupt stiffness degradation of a numerical 7-

story shear frame and a lab experimental 3-story shear-type structure. However, measurements of 

complete structural responses of acceleration, velocity and displacement responses at every DOF 

including the one at sub-structural interfaces, were needed for each substructure in the above 

studies. With the full measurements of structural responses and known excitations, the 

identification can be accomplished by the simple linear least-squares estimation. Although sub-

structural technique provides a very useful tool for parametric identification of large-scale 

structures, it is still a challenging task to properly consider the interaction forces between adjacent 

substructures without the fully measured responses at the sub-structural interfaces. 

Based on the above literature review of current existing methods, it is noted that there are 

still some limitations in identifying the time-varying physical parameters of large-scale structures. 

This paper aims to circumvent these limitations and propose a novel approach for the 

identification of time-varying physical parameters of large-scale structures by integrating sub-

structural and WM methods using only partially measured structural responses. Two main 

technical innovation aspects are summarized as follows:  

1. Substructure identification based on the partial observations of sub-structural responses. 

Usually, dynamic responses at the sub-structural interfaces are required in the previous sub-

structural identification techniques, which limits the practical applications [30,32]. Interaction 

forces between adjacent substructures can be considered as ‘unknown inputs’ to the substructure 
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of interest. The generalized Kalman filter under unknown input (GKF-UI), which was recently 

proposed for the identification of time-invariant systems by the authors [36], is used to identify 

each substructure with only partial measurements of sub-structural responses without 

measurements at the interface DOFs. Then, the identification of a large-scale structure is 

transformed to the identification of each substructure independently, which greatly simplifies the 

identification of the time-varying structural parameters of the large-scale structure in the 

optimization problem. 

2. Localization of time-varying physical parameters to reduce the number of expanded scale 

coefficients and ensure a global optimal solution. 

In this paper, a fading-factor generalized extended Kalman filter under unknown input 

(FGEKF-UI) is proposed to firstly locate the time-varying physical parameters in each 

substructure, in which the unknown sub-structural interaction forces are regarded as “additional 

unknown inputs’ imposed to the target substructure. Then only the time-varying parameters are 

expanded by WM, greatly reducing the number of expanded scale coefficients compared with the 

current WM based methods for the identification of time-varying structures, as all physical 

parameters including time-varying and time-invariant parameters are expanded into scale 

coefficients in the latter. 

Inspired by the merits of sub-structural identification technique and WM analysis for time-

varying parameters, a novel two-step approach is proposed in this paper for the identification of 

time-varying physical parameters of large-scale structures using only partially measured 

structural responses. In this study, structural mass is assumed time-invariant and known, while 

structural stiffness and damping are time varying parameters to be identified. A large-scale 
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structure is divided into several substructures, and the sub-structural interaction forces are treated 

as ‘additional unknown inputs’ to the target substructure. Each substructure is identified in a 

parallel manner with two-step. In the first step, the time-varying sub-structural physical 

parameters are located by the FGEKF-UI algorithm. In the second step, these parameters are 

expanded into fewer scale coefficients by the WM analysis, so the identification of time-varying 

systems is transformed into the identification of time-invariant scale coefficients together with 

the time-invariant physical parameters. Then, the GKF-UI algorithm is used for the identification 

of sub-structural state under unknown inputs using data fusion of partial measurements. Finally, 

the scale coefficients and time-invariant physical parameters are estimated by solving a nonlinear 

optimization problem, and the original unknown time-varying structural physical parameters are 

reconstructed by the estimated scale coefficients. Numerical studies of identifying the abruptly 

and/or gradually time-varying parameters of a 30-story shear frame and a three-span truss bridge 

with 55 members are conducted to demonstrate the effectiveness of the proposed two-step 

approach. 

The remaining parts of the paper are organized as follows. In Section 2, previous 

identification of sub-structural time-varying parameters based on WM expansion is briefly 

introduced for the completeness of this manuscript. In Section 3, the details of the proposed two-

step approach are presented, in which Section 3.1 investigates the localization of time-varying 

physical parameters in each substructure using FGEKF-UI algorithm; Section 3.2 introduces the 

integrated WM and GKF-UI algorithm; and Section 3.3 summaries the procedures of the proposed 

approach. In Section 4, two numerical identification examples including a 30-story shear frame 

and a three-span truss bridge are presented to validate the performance of the proposed approach 
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in identifying various scenarios of time-varying physical parameters of large-scale structures. 

Finally, some conclusions with further research issues are presented in the conclusions. 

2. Previous identification of sub-structural time-varying parameters 

based on WM analysis  

Shi and Chang [22, 23] and Wang et al. [24] presented novel methods to identify the time-

varying parameters based on the combination of sub-structural technique and WM analysis. For 

brevity but without losing generality, the main idea and formulas are briefly introduced as follows. 

After dividing a large-scale structure into several substructures, the equation of motion of 

the target sub-structural system can be written as [30,31] 

( ) ( ) ( ) ( ) ( ) ( ) ( )u u

s s s s s s s s s st t t t t t t   M x C x K x η f η f                 (1) 

in which 
T

u u u u u u

s se sb s se sb
       η η η f f f， . In Eq.(1), the subscript s represents ‘substructure’; 

 s tx ,  s tx , and  s tx are the sub-structural displacement, velocity, and acceleration vector, 

respectively; sM  means the underlying sub-structural mass matrix which is time-invariant and 

known; ( )s tK  and ( )s tC  denote the sub-structural stiffness and damping matrix respectively, 

which are assembled by the time-varying parameters to be estimated; ( )s tf  is the known external 

excitation vector applied on the substructure with the influence matrix sη , and ( )u

s tf  is the 

unknown input vector of the substructure with the influence matrix 
u

sη , ( )u

s tf  is composed of the 

actual unknown external excitation vector ( )u

se tf  and the unknown sub-structural interaction 

force vector ( )u

sb tf , 
u

seη  and u

sbη  are their influence matrices, respectively. Rewrite Eq. (1) into 

the corresponding discrete format, one can have  

( ) ( ) ( ) ( ) ( ) ( )s s s s s sn n n n n n  M x C x K x ηF                    (2) 
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where =1, 2, ..., , , ( ) ( ) ( )
T

u u

s s s sn Nt n n n       η η η F f f , and Nt  is the number of sampled 

points. 

WM analysis can decompose an arbitrary signal into approximate and detailed portions in 

different scale levels, expressed as the summation of the high-frequency and low-frequency 

components, respectively [24, 25]. When the signal energies mainly centralize on the low-

frequency components, physical parameters including stiffness and damping coefficients 

throughout the whole time-domain can be expanded in the wavelet domain as 

, ,, , , ,
( ) (2 )  ( ) (2 )

k c
i i

k k k k c c c c
i i i i i i i i

k c
i i

J Jk c

s i i s i iJ l J l J l J l
l l

k n k n l c n c n l     ，             (3) 

where , ( )s ik n  and , ( )s ic n  denote the -i th  stiffness and damping parameter in the target 

substructure, respectively.
,k k

i iJ l
k  is the scale coefficient for stiffness ,s ik  at the resolution scale 

k

iJ , 

and 
,c c

i iJ l
c is the corresponding damping scale coefficient at the resolution scale 

c

iJ . 
k

il  and 
c

il  

are the numbers of stiffness and damping scale coefficients, respectively. 
,k k

i iJ l
  and 

,c c
i iJ l

  are the 

scale functions in the WM analysis. From Eq. (3), the time-varying physical parameters can also 

be reconstructed based on the estimated scale coefficient vectors 
,k kJ l

k  and 
,c cJ l

c  accordingly. 

Under the condition that: (a) sub-structural displacement, velocity and acceleration 

responses of the target substructure, including the ones at the sub-structural interface, are fully 

observed inside the target substructure；and (b) external excitation and interaction force (that is, 

( )nF ) are assumed to be known, Eq. (2) can be expressed by substituting the scale coefficients 

of stiffness and damping parameters by WM analysis in Eq. (3) as 

s s sε Y                                  (4) 

in which 
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1 1 1 1, , , ,

(1) (1)

= , , , , ,

( ) ( )

c c c c k k k k
m m m m

s s
T

s sJ l J l J l J l

s s

c c k k

Nt Nt

 
     
  

ηF M x

Y

ηF M x

=，            (5) 

where m  is the number of the elements, and sε  is constituted by the measured sub-structural 

displacement and velocity responses at all DOFs, and the wavelet scale functions in Eq. (3). Thus, 

with known interaction forces, known external excitations and full responses in the substructure, 

the expanded unknown scale coefficients vector s  can be easily obtained from Eq. (4) by the 

linear least-squares estimation [22-26]. However, the assumption that the external and interface 

forces and responses at all DOFs are known is impractical. In addition, such method needs to 

expand all physical parameters into scale coefficients. It is more feasible and effective to 

distinguish the time-varying parameters qualitatively and then concentrate on identifying the scale 

coefficients of those time-varying parameters. Therefore, a novel two-step approach is proposed 

for the identification of time-varying parameter of large-scale structures based on the sub-

structural technique using only partially measured structural responses. 

3. The proposed two-step identification approach  

In the proposed two-step identification approach, a large-scale structure is divided into 

several substructures. The sub-structural interaction forces are considered as ‘additional unknown 

inputs’ to the target substructure. Each substructure is identified using partial measurements in 

parallel following the two steps. The first step is to locate the time-varying physical parameters 

in the substructure using the proposed FGEKF-UI. The second step performs the WM analysis of 

time-varying structural physical parameters and establishes objective function based on GKF-UI. 

The scale coefficients are estimated by performing nonlinear optimization. It should be noted that 

“generalized” means that FGEKF-UI and GKF-UI are efficient even when structural 

measurement/observation equations do not contain the unknown excitations. That is, when the 

sub-structural interaction forces are treated as ‘additional unknown inputs’ to the target 
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substructure, it is unnecessary to measure the responses at the substructure interfaces. This is 

crucial for large-scale structures as it may be impractical to place sensors at all DOFs of interfaces. 

Each of the integrated techniques is presented in the following subsections. 

3.1 Step 1: Locate the time-varying physical parameters in the substructure using FGEKF-

UI algorithm. 

FGEKF-UI is firstly proposed to locate the time-varying physical parameters in the 

substructure based on the GEKF-UI algorithm proposed by the authors [37-39]. GEKF-UI can be 

used to simultaneously identify the structural parameters and unknown excitations, even when 

structural measurement/observation equations do not contain the unknown excitations. However, 

GEKF-UI can only be adopted in the identification of time-invariant systems. Herein, a fading-

factor is adopted to extend its application to the identification of time-varying systems. 

By defining a 2n+l  dimensional augmented state vector  , ,
T

T T T

s s s s=Z x x θ , in which sθ  

is the vector of unknown sub-structural parameters including stiffness and damping parameters, 

Eq. (1) can be rewritten into the following state space equation as 

 

 

1 1 1( ) ( )+ ( ) ( ) + + +

     = +

ss

u u
ss s s s s s s s s s s s s

s

u u c
s s s s s s

t t t t

g

  

      
      

         
       
       



x 0 0x

xZ M C x K x M f M f w

0 0 0θ

Z B f f + w

η η

B

        (6) 

in which  g   is a nonlinear function, sw  is the process noise (or model noise) with zero mean 

and a covariance matrix T
s s sE  

 
w w Q= . 

Data fusion of partially measured displacement and acceleration responses is utilized to 

prevent the drifts in the identified displacement and unknown excitations based on previous 

algorithms [37]. Therefore, the measurement equation is written as 
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 

1 1 1
, 1 , 1 , 1 , 1, 1

1 , 1 , 1 , 1

, 1 , 1

, 1 , 1 , 1 , 1

+

+ + +

am a u a
s s s k s k s k s ks k us s s s s s

s,k+ s k s k s km d
s k s s k

u u c

s k s s k s s k s kh

  
   

  

 

   

                  
          

L M C x K xx L M η L M η
y f f v

x 0 0L x

         = Z D f D f v

  (7) 

in which 1s,k+y , , 1

m

s kx , and , 1

m

s kx  represent the observation, the measured acceleration, and the 

measured displacement at the time instant  1t k t    inside the substructures, respectively. t  

is the sampling interval. 
a

sL  and 
d

sL  are sensor location matrices associated with the acceleration 

and displacement measurements, respectively.  h   is a nonlinear function.
, 1s kv  is the 

measurement noise assumed as a Gaussian white noise process, with mean value of zero and 

covariance matrix of 
, 1 , 1 , 1

T
s k s k s kE   

 
 
v v R= .  

It can be seen from Eq. (7) that =u

sD 0  if no accelerometers are installed at the locations of 

unknown forces, i.e. at the sub-structural interfaces or the locations of actual unknown forces, 

resulting in that 
, 1

u

s kf  will not appear in the measurement equation. GEKF-UI algorithm was 

proposed to process the identification of time-invariant systems when =u

sD 0 [37]. According to 

this, the FGEKF-UI is developed by extending the GEKF-UI for the identification of time-varying 

substructures under the condition that interface measurements are not available. 

Let ˆ
s,k k

Z  be the estimated augmented state vector at the time instant t k t  , the state 

equation is linearized at ˆ
s,k k

Z  by  using the first order Taylor series expansion  

 ˆ ˆ= + +u u c
s s s s s s ss,k k s,k k s,k k s,k k

g  
 

Z G Z B f B f Z G Z + w               (8) 

in which 
 

ˆ
s s,k k

s

s,k k
s

g







Z Z

Z
G

Z
. 

Similarly, the measurement equation can be linearized as 

1 , 1 , 1 , 1 , 1+1 , +1
+ + +u u c

s,k+ s k s s k s s k s ks,k k s k k   y = H Z D f D f h v                (9) 



 

79 

 

where  
 

+1 +1

+1

+1 , +1 +1 +1 +1

+1
s,k s,k k

s,k

s,k k s k k s,k k s,k k s,k k

s,k

h
h




  


Z Z

Z
H h Z H Z

Z
； , and 

+1s,k k
Z  is estimated by  

 
 1

+1
ˆˆ ˆ= + d

k t
u u c

s s s,ks,k k s,k k s,t k s,k kk t
g t

 



  
 Z Z Z B f B f                (10) 

If 
u

sf  is sampled based on the first-order holder (FOH) [37] within  1,k kt t t  , which means

, 1 ,

,( ) ( )

u u

s k s ku u

s s k kt t t
t

 
  



f f
f f , then the discrete form of the state equation can be described in a 

recurrence form 

+1 +1 +1= + + + +u u u u c
s,k s,k s,k s,k s,k s,k s,k s,k s,k s,ks,k k

Z A Z B f B f B f g w          (11) 

in which =
s,k k t

s,k e
G

A ,     
1

ˆ ˆ= s,ks,k k s,k k s,k k s,k k s,k k
t g t


    
 

g A I G Z G Z ,

    
1

c c
s,k s,k ss,k k

t t


   B A I G B ,       
1 1

u u
s,k s,k s,k ss,k k s,k k

t t t
  

       
B A A I G G B ,

      
1 1

1
u u
s,k+ s,k ss,k k s,k k

t t t
  

       
B A I G I G B . 

The detailed derivation of Eqs. (9) and (11) can be referred to [37]. 

The proposed FGEKF-UI has a similar process with GEKF-UI. It is implemented in the 

following steps: 

Time update (prediction): 

The time prediction 
+1

p

s,k k
Z  is defined according to Eq.(11): 

+1 1+1
ˆˆ= + + +p u u u u c

s,k s,k s,k s,k+ s,k s,ks,k k s,k k s,k k s,k k
Z A Z B f B f B f g             (12) 

in which ˆu

s,k k
f  is the estimated value of 

u

s,kf .  

The predicted error of 
+1

p

s,k k
Z  is defined as 

+1+1 +1

p p

s,ks,k k s,k k
Z

e = Z Z , and its corresponding 

covariance matrix could be presented as: 

,+1

ˆ ˆ

=
ˆ ˆ

T
s,k k s,k k s,kp u T

s,k s,k s ks,k k uT

s,ks,k k s,k k

   
          

Z Zf

Z

fZ f

P P A
P Λ A B Λ + Q

BP P

                  (13) 
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where ˆ
s,k k


P  is the corresponding estimation error covariance matrix at t k t  . Noted that Eq. 

(13) is different from the 
+1

p

s,k k

Z
P  in GEKF-UI [37], since the fading-factor matrix Λ  is 

introduced as follows to gradually fade the previous information and track the possible changes 

of the parameter vector 

 1 2 1=diag ,n l Λ 1 1                              (14) 

where 1  . In the first step, 2
=2 uN  is adopted based on an existing study [40], which 

implies that the half-life of the contribution of a data point is uN  time steps. 

Measurement update (correction): 

The estimation value of 
+1s,kZ  is defined as 

+1 1
ˆ c

s,k k+
Z : 

 +1 1 +1 +1+1 1 +1 +1+1 +1
ˆ +c p g p u u c

s,k s,k+ s s,k s s,ks,k k+ s,k k s,k ks,k k s,k k
    Z Z K y H Z D f D f h          (15) 

in which +1
g
s,kK  is the Kalman gain matrix which can be obtained as [37] 

 
1

+1 +1+1 +1 +1+1 +1
=g p T p T

s,k s,ks,k k s,k k s,k ks,k k s,k k



Z ZK P H H P H R                 (16) 

Given the error of the estimated 
+1 1

ˆ c

s,k k+
Z  as 

+1+1 +1 +1 1
ˆˆ c c

s,ks,k k s,k k+
Z

e = Z Z , its covariance matrix 

could be derived as: 

 , +1| 1 , +1| +1 , +1| , +1| , +1| , +1| , 1 +1 , +1| , +1| , +1| , 1 , 1
ˆ c p g p p T gT g p T gT

s k k s k k s,k s k k s k k s k k s k k s k s,k s k k s k k s k k s k s k       Z Z Z Z Z
P P K H P P H K K H P H R K    (17) 

Under the condition that the number of observed measurements (sensors) is larger than that 

of the unknown excitations, the estimated force vector 
1 1

ˆu
s,k+ kf  can be computed by the least-

squares estimation as [37] 

 1 1 , 11 1 +1 +1
ˆ ˆˆ= + +u u u c

s,k+ s,k+ s,k s,k s s ks,k+ k s,k k s,k k s,k k s,k k s,k k
   
 

f S y H A Z B f g D f h       (18)  
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where 

     

 

-1
1 1

1 +1 +1 +1 +1 +1+1 +1 +1

1
1

+1 +1+1 +1+1

= + + +
T T

u u u u u u
s,k+ s,k s s,k s,k s s,k s s,ks,k k s,k k s,k k

p T
s,k s,ks,k k s,k ks,k k

 




 
 
 

 Z

S  H B D R H B D  H B D R

                               R H P H R

 

And the error covariance matrix of +1 +1
ˆ

s,k k

f
e (

+1+1 +1 +1 1
ˆˆ u u

s,ks,k k s,k k+
f

e = f f ) could be given as 

 , +1| 1 , 1 , +1| , +1| , +1| , 1 , 1
ˆ p T T

s k k s k s k k s k k s k k s k s k    f Z
P S H P H R S            (19) 

Thus, by substituting the estimated unknown force vector 
1

u
s,k+f  into Eqs.(12) and (15), the 

estimation value of augmented state vector could be obtained by accomplishing the process of 

time prediction and measurement correction. 

The time prediction of structural state in FGEKF-UI is given as 

+1+1 1 1
ˆ ˆˆ= + + +u u u u c

s,k s,k s,k s,k s,ks,k k s,k k s,k k s,k+ k s,k k
Z A Z B f B f B f g       (20) 

And structural state is updated as: 

 +1 1 +1+1 +1 +1 +1 +1 +1 +1 +1
ˆˆ = + g u u c

s,k s,k+ s s s,ks,k k s,k k s,k k s,k k s,k k s,k k
   Z Z K y H Z D f D f h      (21) 

In addition, the corresponding error covariance matrices are expressed as [37] 

   , +1| 1 +1 , +1| , +1| +1 , +1| , 1 , 1 , +1| 1 +1 , +1| , 1 , 1
ˆ ˆ( )

T
g p g u u u g u u u

s k k s,k s k k s k k s,k s k k s k s s k s k k s,k s k k s k s s k     
         
   

Z Z f
P I K H P K H B D B P K H B D B

(22) 

 , +1| 1 , +1| 1 +1 , 1| , 1 , 1 , +1| 1
ˆ ˆ ˆ( )T g u u u

s k k s k k s,k s k k s k s s k s k k     
     
 

Zf fZ f
P P K H B D B P         (23) 

It is concluded from the above formulas that the accuracy of state estimation completely 

depends on the selection of the fading-factor matrix Λ . Theoretically, the results of estimated 

physical parameter vector will be more ideal if an optimal Λ  is updated with time, but it will 

undoubtedly increase more workload. Obviously, due to the use of empirical formula in Eq. (14), 
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the accurate estimated time-varying parameters cannot be obtained herein. It can only roughly 

determine if a parameter has the time varying property. Then, the parameter vector sθ  is further 

divided into a time-varying parameter vector 1sθ  and a time-invariant parameter vector 2sθ  

successfully.  

3.2 Step 2: Identify the time-varying physical parameters in the substructure using the 

integrated WM and GKF-UI method. 

In the second step, a novel method based on WM and GKF-UI is proposed to quantitatively 

identify 2sθ  and scale coefficients corresponding to 1sθ  in the substructure using partial sub-

structural responses.  

3.2.1. Wavelet multiresolution expansion of time-varying parameters 

Similar as Eq. (3), the time-varying physical parameter  1, 1,2, ,s i i p   is expanded in the 

wavelet domain as 

1, , ,
( ) (2 ) 1,2, ,i

i i i i

i

J

 s i n iJ l J l
l

t n l n Nt     ，               (24) 

where 1,s i  denotes the -i th  time-varying parameter in the target substructure, p  is the 

number of time-varying parameters, 
,i iJ l

  is the scale coefficient at the scale level iJ , il  is the 

number of corresponding scale coefficients, and 
,i iJ l

  is the scale function in WM.  

3.2.2 Developing GKF-UI for the identification of time-varying substructure under given 

scale coefficients and time-invariant parameters 

From Eq. (24), the time-varying physical parameter vector 1sθ  can be reconstructed based 

on the given time-invariant scale coefficient vector ,J l  accordingly. Thus, together with the 

given time-invariant parameter vector 2sθ , the identification of time-varying parameters is 

converted into the identification of time-invariant parameters. Recently, the GKF-UI algorithm 
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has been proposed by the authors to identify the state of time-invariant system and the unknown 

inputs [36]. This algorithm is implemented under the condition of known physical parameters. It 

is still workable even when the structural measurement/observation equation does not contain the 

unknown excitations. Thus, by using limited measurements within the substructure, the GKF-UI 

algorithm can be adopted herein to estimate the structural state and unknown inputs, including 

the unknown sub-structural interaction forces when accelerometers are not deployed at interfaces. 

The equation of motion of a time-invariant linear system is rewritten as 

   , ,( ) , ( ) , ( ) ( ) ( )u u

s s s J l s2 s s J l s2 s s s s st t t t t   M x C θ x K θ x η f η f     (25) 

Setting the state vector as  
T

T T

s s s
   X x x , Eq. (25) can be changed into the system state 

equation as 

= = + +G u G Gc Gu u

s s s s s s s s s s s s su

s s

   
     

   

0 0
X A X f f w A X B f B f w

η η
+         (26) 

in which 
G

sA  is the state transformation matrix, and it is the implicit function of physical 

parameter vectors 1sθ  and s2θ . Based on FOH[36], Eq.(26) is discretized into the following 

equation as 

, 1 , , , , , 1 , 1 , , ,+G G u G u Gc

s k s k s k s k s k s k s k s k s k s k     X A X B f B f B f w         (27) 

in which 

 
      

           

1 1

, , , ,

1 1 1

, +1 , , ,

= =
G
s tG G G G G G Gu

s k s k s k s k s s s

G G G G Gu Gc G G Gc

s k s k s s s s k s k s s

t t t

t t t t t

 


  

     
  

          
  

A
A B A A I A A B

B A I A I A B B A I A B

e ； ；

；
       (28)

 

The observation equation is written in the following form by the data fusion of acceleration 

and displacement measurements 
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1 1
, 1

1 , 1 1 , 1 , 1 , 1

, 1

, 1 1 , 1 , 1 , 1

+

+ + +

m a u a
s k G us s s s s s

s,k+ s k s,k+ s k s k s km

s k

G Gu u Gc

s k s,k+ s s k s s k s k

 


   



   

     
        
      

x L M η L M η
y C X f f v

x 0 0

         = C X D f D f v

       (29) 

in which , 1

G

s kC  is the measurement matrix. Data fusion can prevent the spurious low-frequency 

drifts in the estimation of displacement and unknown input since acceleration and displacement 

responses contain high-frequency and low-frequency dynamic characteristics, respectively [36]. 

It is noted that the previous KF-UI methods request that all the unknown excitations are 

included in the observation equations, that is, matrix 
Gu

sD  in Eq. (29) must be a full matrix [41,42]. 

However, when sub-structural acceleration responses at interfaces are not measured, that is, 

matrix 
Gu

sD  becomes non-full rank matrix or even zero matrix, previous KF-UI methods are not 

applicable. This is the reason to utilize the developed GKF-UI algorithm to estimate the sub-

structural state. 

The proposed GKF-UI has two procedures [36]. First, the time prediction of structural state 

1|s,k+ kX  
is conducted as follows  

, +1+1 1 1
ˆ ˆˆ= + +G G u G u Gc

s k s,k s,k s,k s,ks,k k s,k k s,k k s,k+ k
X A X B f B f B f             (30) 

Then the estimated +1 +1
ˆ

s,k |kX
 
in the measurement updating procedure is derived as

 

 G
+1 1 1 +1+1 +1 +1 +1 +1 +1

ˆˆ = + G Gu u Gc
s,k s,k+ s,k+ s s s,ks,k k s,k k s,k k s,k k

  X X K y C X D f D f         (31) 

    
1

+1 , +1| 1 1 , +1| 1 1

T T
G G G G

s,k s k k s,k s,k s k k s,k s,k+



   Z Z
K P C C P C R                (32)

 

It can be observed from Eq. (30) that the calculation of 
1|s,k+ kX  

can proceed unless the value 

of
 +1 +1

ˆu

s,k k
f  is already known, which needs to be solved. Herein , 1s kΔ  is defined as

 

      
, 1 1 1| 1

1 +1 1 1 , | | +1 1 +1 1| 1

ˆ

ˆ ˆˆ=

s k s,k s,k k+

G G G G G u Gc G G Gu u

s,k+ s,k s,k s,k+ s k s,k k s,k k k s s,k s,k+ s,k s k k+

  

 

 

    

Δ y y

I C K y C A X B f D f C B D f+
  (33)
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By minimizing , 1s kΔ , +1 +1
ˆu

s,k k
f  can be obtained using the least-squares method when the 

number of sensors installed on the structure (that is, the number of observed structural responses) 

is more than the number of unknown external excitations. 

  , 1| 1 , 1 1 1 , | | +1
ˆ ˆˆ +u G G G G u Gc

s k k+ s k s,k s,k+ s k s,k k s,k k k s s,k    f S y C A X B f D f           (34)
 

in which 

     

  

1
-1 -1

, 1 1 +1 , 1 1 +1 1 +1 , 1
1

-1

, 1 1 , 1| 1 , 1

T T
G G G Gu G G Gu G G Gu

s k s,k+ s,k s s k s,k+ s,k s s,k+ s,k s s k

T
G G

s k s,k+ s k k s,k+ s k



  


  

 
  

 X

S C B D R C B D C B D R

R C P C R

+ + +

                                

    
 
(35)

 

The error covariance matrices required in the procedure are expressed as follows. Owning 

to the page limit, only the main formulas are listed. The detailed derivations can be referred to 

[36]. 

 

 

,

, +1| , , ,

,

ˆ ˆ

ˆ ˆ

T
G

s ks,k k s,k kG G

s k k s k s k s kT
G

s,k k s,k k s k

  
        

    

X Xf

X

fX f

P P A
P A B Q

P P B
 
              (36)

 

  , +1| 1 , 1 1 , +1| 1 , 1 , 1
ˆ

T
G G G GT

s k k s k s,k+ s k k s,k+ s k s k    f X
P S C P C R S                

(37) 

   , +1| 1 , 1 1 , +1| , +1| 1 , 1 , 1 1 , +1| 1 , 1 , 1
ˆ G G GT GT G G GT GT

s k k s k s,k+ s k k s k k s,k+ s k s k s,k+ s k k s,k+ s k s k         X X X X
P I K C P P C K K C P C R K   (38)

 

 , +1| 1 , 1 1 +1 +1 , +1| 1
ˆ ˆG G G Gu G

s k k s k s,k+ s,k s s,k s k k  
   
 

Xf f
P K C B D B P+            (39)

 

 , +1| 1 , +1| 1
ˆ ˆ

T

s k k s k k fX Xf
P P

            
                (40) 

3.2.3 Estimation of scale coefficients and time-invariant parameters by nonlinear 

optimization 

As can be seen from the above Section 3.2.2, the estimated state and unknown excitations 

are implicit functions of scale coefficient vector J,l  and time-invariant parameter vector 2sθ  

   2 2
ˆ ˆˆ ˆ= , = ,u u

s s J,l s s s J,l sX X θ f f θ；                        (41) 



 

86 

 

in which ˆ
sX  is the estimated sub-structural state vector, and ˆu

sf  is the estimated unknown 

excitation vector including unknown interaction forces. Thus, the sub-structural acceleration 

vector can be obtained as  

            1
2 2 2 2 2 2

ˆˆ ˆ ˆ, + , , , , ,u u
s J,l s s s s s s J,l s s J,l s s J,l s s J,l s s J,l s

  x θ M η f η f θ C θ x θ K θ x θ=      (42)
 

where ˆ
sx  and ˆ

sx  are the estimated sub-structural displacement and velocity response vectors, 

respectively.  

By setting an error function between the measured acceleration 
m

sx  and the estimated 

acceleration ˆ
sx , the optimal scale coefficient vector 

,J l  and optimal time-invariant parameter 

vector 
2sθ  can be obtained by minimizing the following objective function 

  
, 2

2

, 2 , 2
, 2

ˆ, arg min ,
J l s

m a

J l s s s s J l s
    θ

θ x L x θ=


                   (43)
 

Afterwards, the optimal time-varying parameter vector 
1sθ  in the substructure can be 

reconstructed successively by using Eq. (24).  

3.3 Summary of the identification procedure of the proposed approach 

For clear presentation, the flowchart of the proposed approach for identification of time-

varying large-scale structures is shown in Fig. 1. A large-scale structure is firstly divided into 

several substructures, and then parallel identification is conducted for substructures. 
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Fig. 1. Flowchart of the proposed identification approach and detail procedure in each substructure 

4. Numerical validations 

Numerical studies of two time-varying structures, namely, a 30-story shear frame model and 

a three-span truss bridge model with 55 elements, are conducted to validate the identification 

accuracy of the proposed approach. Compared with the numerical structures in the previous WM-

based studies, for example, a 7-story shear frame by Wang et al. [24], a 10-story shear frame by 

Shi and Chang [22,23], and a 6-DOF plane frame by Xiang et al. [26], etc., the structures 

investigated in this paper are of relatively larger-scale.  

4.1 Example 1: A 30-story time-varying shear frame under unknown seismic excitations 

The stiffness and damping coefficients of the 30-story shear frame are time-varying and to 

be identified. The mass of each story is assumed to be known with  =500kg 1 2 30im i  ，， ， . The 

shear frame is excited by the 1940 El Centro N-S earthquake excitation, but the excitation is 

assumed unknown in the identification. The corresponding dynamic responses are computed with 
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a sampling frequency of 50Hz, and the complete sampling duration is 20s. The equation of motion 

is given as 

 ( ) ( ) ( ) ( ) ( ) ( )gt t t t t x t   Mx C x K x M I                   (44) 

where ( )gx t  is the base acceleration. Partial structural responses are used for parameter 

identification and are polluted by white noises with 2% in root mean square (RMS), namely 

 2%noisy clean cleanstd   x x x rand                 
     

(45)
 

where noisyx  is the simulated noisy acceleration response vector, cleanx  is the noisy-free 

acceleration vector,  cleanstd x  means the standard deviation of cleanx  and rand  is a random 

standard normal distribution vector. 

It should be noticed that Eq. (44) is a relative motion equation. However, only absolute 

acceleration responses can be measured in the case of unknown base acceleration, and the inter-

story displacement responses of the frame structure are easy to be measured by using the 

displacement sensor in practical engineering applications. The whole shear frame is divided into 

three substructures, as shown in Fig. 2. According to Yuen et al., [19], the structural physical 

parameters at the lower part are more likely to change with time. Therefore, the identification of 

lower and middle substructures is studied in details. 
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Fig. 2. Substructure for a 30-story shear frame 

(1) The lower substructure 

It can be observed from Fig. 2 that the lower part is a 10-DOF shear structure subjected to 

two unknown excitations: one is the earthquake excitation gx  applied to the frame base, and the 

other one 
u

lf  is the interaction force imposed on the 10th DOF of the substructure. Thus, the 

motion equation of the lower substructure is rewritten as 

 ( ) ( ) ( ) ( ) + u u

s s s s s s s g l lt t t t x   M x C x K x M I η f                  (46) 

where 
u

lη  is the unknown interaction force location matrix. The physical parameters in the lower 

substructure are defined as 
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Fig. 2 also shows the location of accelerometers and inter-story displacement gauges for 

measuring vibration responses. For the lower substructure, the absolute accelerations of the 1st, 

3rd, 9th floor and the inter-story displacements of the 2nd-3rd and 6th-7th floors are used as partial 

measurements. It shall be noted that no sensors have to be placed at the interface DOF in this 

proposed approach. Thus, the measurement equation of the lower substructure is expressed as 

    1 1
, 1 , 1 , 1 , 1 , 1 , 1

, 1

, 1, 1

+a a a u
s s k g k s s s k s k s k s k us s l

s k ld dd d

s s s ks s s k

x  
     





      
       

         

L x I L M C x K x L M η
y f

0L ς xL ς x     
(47) 

where 
d

sς  is the inter-story displacement conversion matrix. It is obvious that the unknown 

seismic excitation gx  does not appear in the measurement equation. Furthermore, the unknown 

interaction force 
u

lf  is not included either in the measurement equation without accelerometer 

placed at the interface story. This explains the motivation why the “generalized” Kalman filter 

algorithms with unknown input are adopted in the proposed approach to identify the sub-structural 

time-varying physical parameters. 

In the first step, the FGEKF-UI algorithm is implemented to locate the time-varying 

parameters in the lower substructure. 
2 50=2 =1.03  [40] is used in this case, which indicates that 

the half-life is 50 time steps. Identification results of time-varying stiffness and damping 

parameters are shown in Figs. 3 and 4.  
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(a)                        (b)                         (c) 

 

(d)                          (e)                           (f) 

 

(g)                         (h)                           (i) 

 

(j) 

Fig. 3. Location of time-varying stiffness parameters using FGEKF-UI in the lower substructure: (a) 

k1; (b) k2; (c) k3; (d) k4; (e) k5; (f) k6 ; (g) k7; (h) k8 ; (i) k9; (j) k10 
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(a)                          (b)                          (c) 

   

(d)                          (e)                          (f) 

Fig. 4. Location of partial time-varying damping parameters using FGEKF-UI in the lower substructure: 

(a) c1; (b) c2; (c) c4; (d) c6; (e) c7; (f) c9.  

It is observed from Fig. 3 that the stiffness parameters of the second and seventh stories are 

more likely to have the time-varying properties, while other stiffness values are more likely to 

remain unchanged. Likewise, the damping of the second story is identified as a time-varying 

parameter, as shown in Fig. 4. However, since the identified physical parameters are varied 

gradually, it is difficult to determine the exact beginning and end time instants and the form of 

stiffness variation. 

In the second step, Db1 is adopted as the mother wavelet function for abruptly varying case 

as suggested by Chang and Shi [43] and the scale level 8J   is used to expand the time-varying 

stiffness and damping parameters by WM. Thus, the identification of 10,000 unknown stiffness 

parameter coefficients in the time-domain is converted to the identification of eight scale 

coefficients of time-varying stiffness parameters 2k  and 7k , and other eight time-invariant 

stiffness parameters. Similarly, the dimension of 10,000 damping coefficients in time-domain is 

reduced to four scale coefficients of time-varying damping parameter 2c  and other nine time-
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invariant damping parameters. Based on the integrated WM and GKF-UI method, the time-

varying and time-invariant structural stiffness and damping parameters are shown in Figs. 5-6 

with comparisons to their exact values.  

 

(a)                         (b)                          (c) 

 

(d)                         (e)                           (f) 

 

(g)                         (h)                           (i) 

 

(j) 

Fig. 5. Comparison of the identified stiffness parameters in the lower substructure: (a) k1; (b) k2; (c) k3; 

(d) k4; (e) k5; (f) k6 ; (g) k7; (h) k8 ; (i) k9; (j) k10. 
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(a)                          (b)                         (c) 

 

(d)                          (e)                          (f) 

 

(g)                          (h)                          (i) 

 

(j) 

Fig. 6. Comparison of the identified damping parameters in the lower substructure: (a) c1; (b) c2; (c) c3; 

(d) c4; (e) c5; (f) c6 ; (g) c7; (h) c8 ; (i) c9; (j) c10 
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The precise tracking of the time instant and varying extent illustrate that the proposed 

approach can effectively track the abrupt change of structural physical parameters in the lower 

substructure. Furthermore, the identification of other time-invariant parameters also shows a high 

precision. 

(2) The middle substructure 

As can be seen from Fig. 2, the middle substructure contains the 10th-19th DOFs, which is 

subjected to the seismic excitation and two unknown interaction forces. It is assumed that the 

time-varying stiffness parameter 15k  is set to be in a linearly changing form, and other stiffness 

parameters are constant, which are specified as 
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Four acceleration responses at the 11th, 13th, 14th and 18th DOFs are used in the analysis, with 

data fusion of inter-story displacement responses at the 11th-12th and 15th-16th DOFs. Because of 

more interaction forces than that in the lower substructure, more sensors are required for the 

physical parameter identification of the middle substructure. However, it is noted that it is not 

necessary to measure the responses at the interface DOFs. 

Firstly, the time-varying physical parameters are detected based on the FGEKF-UI algorithm. 

Only partial identification results are shown in Fig. 7, owning to a large number of parameters in 

this substructure and page limitation. Most physical parameters converge to fixed values despite 

occasional fluctuations, except for 15k . Then 15k  is expanded by WM with 6J   using Db3 as 

the wavelet function as suggested by Chang and Shi [43]. The number of unknown variables in 

the nonlinear least-squares process is 35 in total, including 16 scale coefficients for 15k , 9 

parameters for other time-invariant stiffness and 10 parameters for time-invariant damping. Fig. 

8 illustrates that both the gradually varying and time-invariant stiffness parameters in the middle 
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substructure can be accurately identified. The identification results of damping parameters are 

also acceptable, which are shown in Fig. 9. 

  

(a)                             (b) 

 

(c)                             (d) 

 

(e)                             (f) 

Fig. 7. Location of partial time-varying physical parameters using FGEKF-UI in the middle substructure: 

(a) k13; (b) k15; (c) k18; (d) c11; (e) c12; (f) c17. 
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(a)                        (b)                         (c) 

  

(d)                          (e)                          (f) 

 

(g)                       (h)                         (i) 

 

(j) 

Fig. 8. Comparison of identified stiffness parameters in the middle substructure: (a) k10; (b) k11; (c) k12; 

(d) k13; (e) k14; (f) k15 ; (g) k16; (h) k17 ; (i) k18; (j) k19. 
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(a)                          (b)                          (c) 

  

(d)                          (e)                          (f) 

  

(g)                          (h)                          (i) 

 

(j) 

Fig. 9. Comparison of identified damping parameters in the middle substructure: (a) c10; (b) c11; (c) c12; 

(d) c13; (e) c14; (f) c15 ; (g) c16; (h) c17 ; (i) c18; (j) c19. 
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4.2 Example 2: A three-span truss bridge model under unknown external excitation 

To further demonstrate the performance of the proposed approach for the identification of 

time-varying parameters in other types of structures, a three-span truss bridge model with 55 

members as shown in Fig. 10(a) is utilized as another numerical example.   

This three-span truss bridge model contains 55 members, 50 DOFs and 29 nodes in total. 

The length and cross-section of each bar is set to be =1mil and  2=0.785cm 1 55iA i  ， ， , 

respectively. The total mass of each bar is constant and known as  =5.495kg 1 55im i  ， ， . The 

first four modal frequencies of the time-invariant bridge model are 1.28, 3.13, 5.45 and 5.64Hz. 

The Rayleigh damping model is adopted with the first two damping ratios assumed as 0.02. An 

unknown white noise excitation 1 u
f  is applied at the 12th DOF. The sampling frequency is set 

as 50 Hz for dynamic response calculation. The whole truss bridge model is divided into two 

substructures. Herein only the detailed identification process of the left substructure is presented 

due to page space. 

1 2

3 4
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1

2 3

4

6 7

5

8

10 11

9

14 15

13 17 21 25 29 33 37 41 45 49 53

12 16 20 24 28 32 36 40 44 48 52

18 22 26 30 34 38 42 46 50 5419 23 27 31 35 39 43 47 51 55

 

(a)  

1 2

3 4

5 6 9 10 13

7 8 11 12 15

(1,2)

(3,4) (5,6) (7,8) (11,12) (15,16) (19,20) (23,24)

(9,10) (13,14) (17,18) (21,22)

1

2 3

4

6 7

5

8

10 11

9

14 15

13 17 21 25

12 16 20 24
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(b)  

Fig. 10. Substructure formulation in a three-span truss: (a) complete structure; and (b) left substructure.  

(Notes: ①,②…are the number of members. (1,2) represents the number of DOFs, in which the former one 

is the horizontal DOF and the latter one is the vertical DOF, and so on.) 
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Fig. 10(b) indicates that the left substructure consists of 27 members and 26 DOFs. Apart 

from unknown white noise excitation 1 u
f , the other four unknown interface forces are also 

imposed on the substructure which are shown as   2 5u

i i f ， ， . These interface forces are 

generated by the interaction between substructures. The stiffness parameters of the left 

substructure are to be identified and their changing forms are assumed as 

 

14

16

157 kN/ m,  0s 10.2s
                     

  126kN/ m,   10.2s 20s

157 kN/ m,  0s 15.4s

  133kN/ m,   15.4s 20s

= 157 kN/ m,   0s 20s 1 13,15 17 27   i

t
k

t

t
k

t

k t i

 
 

 

 
 

 

   ， ， ，， ，

 

Acceleration responses at the 2nd, 8th, 10th, 19th - 22nd and 24th DOFs, and displacement 

responses at the 4th and 16th DOFs from the left substructure are assumed being recorded and used 

for identification analysis, and the numerically calculated results are added with a 2% RMS white 

noise to consider the effect of noise. The proposed approach is used in this case as not all the 

unknown interaction forces appear in the observation equation. 

There are totally 27,000 stiffness coefficients in the time-domain to be identified inside the 

substructure. Firstly, the proposed FGEKF-UI is applied to find out the time-varying stiffness 

parameters in the left substructure. Fig. 11 shows the localization results of several elemental 

stiffness. It is observed that the stiffness parameters of the 14th and 16th elements are more likely 

to be time varying, since they transit from one stable converged value to another stable value. 
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(a)                        (b)                        (c) 

 

(d)                        (e)                        (f) 

    

(g)                       (h)                         (i) 

   

(j)                       (k)                         (l) 

Fig. 11. Location of time-varying stiffness parameters using FGEKF-UI in the left substructure: (a) k1; (b) 

k3; (c) k6; (d) k10; (e) k13; (f) k14 ; (g) k15; (h) k16 ; (i) k18; (j) k20; (k) k22 ; (l) k23. 

Secondly, Db1 is applied as the wavelet function according to Chang and Shi [43] and the 

scale level is defined as 8J   to expand the time-varying stiffness coefficients, transforming the 

parameters to be identified as 8 scale coefficients and 25 time-invariant stiffness parameters. 
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According to the identification results as shown in Fig. 12 and Table 1, it is validated that the 

proposed approach is capable of identifying the time-varying or time-invariant stiffness 

parameters in the bridge truss model. Only partial results are shown in Fig. 12 due to the page 

limitation, and more final identified values of time-invariant stiffness can be found in Table 1 in 

detail. Furthermore, the identification accuracy of the unknown white noise excitation is also good, 

compared with the exact value used as input in calculating the dynamic responses of the truss 

model as shown in Fig. 13. 

 

(a)                           (b) 

Fig. 12. Comparison of the identified stiffness of members with stiffness change in the left substructure: 

(a) k14; (b) k16. 

 

Fig. 13. Comparison of the identified external excitation to the truss structure (8s -16s) 
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Table 1 Identified stiffness of time-invariant members in the left substructure 

Member No. Actual Stiffness ( kN/m ) Identified Stiffness ( kN/m ) Relative Error 

1 157.00  154.65  -1.50% 

2 157.00  160.69  2.35% 

3 157.00  149.75  -4.62% 

4 157.00  159.34  1.49% 

5 157.00  162.57  3.55% 

6 157.00  164.68  4.89% 

7 157.00  154.31  -1.71% 

8 157.00  156.85  -0.10% 

9 157.00  157.77  0.49% 

10 157.00  155.47  -0.97% 

11 157.00  158.99  1.27% 

12 157.00  159.17  1.38% 

13 157.00  156.28  -0.46% 

15 157.00  160.14  2.00% 

17 157.00  157.38  0.24% 

18 157.00  158.36  0.87% 

19 157.00  155.73  -0.81% 

20 157.00  156.00  -0.64% 

21 157.00  154.59  -1.53% 

22 157.00  153.27  -2.38% 

23 157.00  157.42  0.27% 

24 157.00  156.46  -0.34% 

25 157.00  155.98  -0.65% 

26 157.00  158.36  0.86% 

27 157.00  162.11  3.26% 

5. Conclusions 

In this paper, a novel two-step approach is proposed to identify the time-varying physical 

parameters of large-scale structures with incomplete measurements and unknown inputs. The 

proposed approach is based on the sub-structural technique and conducted in two-step by parallel 

computing. In the first step, the time-varying physical parameters are localized by the proposed 

FGEKF-UI algorithm, and then the time-varying physical parameters are identified using the 

integrated WM and GKF-UI method in the second step. The main contributions of this paper are 

listed as follows.  

(i) A new two-step approach is proposed for the identification of large-scale linear 

structure with time-varying physical parameters using only partially measured 

structural responses;  
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(ii) FGEKF-UI is firstly proposed to locate the time-varying parameters and enable 

dimensionality reduction of scale coefficients to the greatest extent, resulting in only 

a few variables involved in the optimization process;  

(iii) GKF-UI is used to estimate the sub-structural state, where the known interaction 

forces and full observations are not required, and observations at the interface are not 

required either. The effect of measurement noise is minimized, owning to that GKF-

UI algorithm itself can include the influence of modelling error and measurement 

noise; 

(iv) The proposed approach can be applied to each substructure independently by parallel 

computing, which greatly simplifies the difficulties in identifying large-scale time-

varying structural parameters;  

Numerical results of identifying time-varying physical parameters of a 30-story shear frame 

and a three-span truss bridge model demonstrate the proposed approach can effectively identify 

the abruptly changing, gradually varying and time-invariant stiffness and damping parameters. 

The structures investigated in this paper are of relatively larger-scale compared with the numerical 

structures in the previous WM-based studies. Moreover, the external excitations can be unknown 

in both cases and can also be identified. Experimental studies on a large-scale shear frame 

structure are being conducted to further verify the effectiveness of the proposed approach, which 

will be reported subsequently. Further studies on the identification of time-varying physical 

parameters of large-scale nonlinear structures will be conducted in future.  
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CHAPTER 4 Identification of time-varying nonlinear 

structural physical parameters by integrated WMA and 

UKF/UKF-UI 

ABSTRACT 

The identification of time-varying physical parameters of nonlinear systems is still a 

challenging task. Limited studies based on the wavelet multiresolution analysis (WMA) have 

been attempted, which requires full measurements of structural displacement, velocity and 

acceleration responses of all degrees of freedom and exact information of external excitations. 

This limits the engineering application of these methods. This paper proposes approaches to 

identify the time-varying physical parameters of nonlinear structures in three cases using only 

partially measured structural responses. Firstly, the identification of time-varying nonlinear 

structures with a small number of elements under known excitations is discussed. The fading-

factor unscented Kalman filter (FUKF) method is applied to locate the time-varying parameters, 

and WMA integrated with UKF method is employed using partially measured acceleration 

responses. Secondly, it is further extended to the identification of time-varying nonlinear 

structures with a small number of elements but under unknown excitations. An improved fading-

factor unscented Kalman filter under unknown input (FUKF-UI) method is proposed to locate the 

time-varying parameters, and WMA integrated with UKF-UI method is utilized with partially 

observed acceleration and displacement responses. Thirdly, for practical engineering applications, 

the identification of time-varying nonlinear structure with more elements under unknown 

excitations is conducted. The proposed FUKF-UI method is employed to locate the time-varying 

parameters of the whole structure. Then the whole structure is divided into several substructures 

and the unknown interaction forces are regarded as the fictitious unknown inputs to the 

substructure. Thus, physical parameters of each substructure can be identified in parallel by the 

combination of WMA and UKF-UI. Three numerical studies corresponding to these three cases 

are conducted respectively to demonstrate the effectiveness and accuracy of the proposed 

methods.  

 

Yang N, Li J, Lei Y, Hao H. Identification of time-varying nonlinear structural physical 

parameters by integrated WMA and UKF/UKF-UI. Nonlinear Dynamics, 2021. DOI: 

10.1007/s11071-021-06682-y. (In Press) 
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1 Introduction 

Time-varying properties are common for structures in service due to severe natural and 

manmade hazards, resulting in that the identification of time-varying structural systems is a very 

important research topic [1-3]. Bao et al. [4] conducted a comprehensive state-of-art review about 

the latest development of structural health monitoring, pointing out that reliable identification of 

structural physical parameters has clearer applications, because physical structural parameters 

correlate with the location and severity of possible damage through the time-varying 

characteristics of the system. Effective methods have been investigated to identify the time-

varying physical parameters, such as the state-space model-based methods [5-7] in the time 

domain, or the wavelet multiresolution analysis (WMA) based methods [8-12] in the time-

frequency domain. In particular, WMA has an excellent function on arbitrarily adjustable time-

frequency resolution. Most existing WMA based methods expand the time-varying structural 

physical parameters into scale coefficients and then identify these coefficients by the linear least-

squares estimation [8-10]. However, it is required that the displacement, velocity, acceleration 

responses at all degrees of freedom (DOFs) and external load information are known in these 

methods, which is a tough condition in actual applications. To overcome the limitation on full 

observations, novel methods have been proposed [11, 12] recently by the authors to identify the 

time-varying linear structures under known or unknown excitations using partial measurements 

based on the synthesis of WMA and Kalman filter (KF), transforming the solution of scale 

coefficients into a nonlinear least-squares optimization problem. However, it is required to expand 

all physical parameters, including time-varying parameters and time-invariant parameters, into 
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scale coefficients based on WMA. With the growing number of scale coefficients, the difficulty 

of least-squares optimization is heavily increased. 

Moreover, these above-mentioned methods are proposed based on the assumption of the 

linear model. However, under strong external loads such as earthquake, strong wind, impact and 

explosion, engineering structural components may present nonlinear behavior intrinsically [13-

15]. Xu et al. [14] successfully analyzed the nonlinear failure mechanism of reinforced concrete 

columns under earthquake based on a region‐based deep convolutional neural network. In recent 

years, many scholars have carried out in-depth researches on the identification of nonlinear 

structural characteristics and presented a variety of identification methods, including time-domain 

[16-19], frequency-domain [20] or time-frequency analysis methods [21-27]. However, the 

parameters of nonlinear models are assumed to be steady in most of these methods, only a few 

efforts have been attempted on the identification of time-varying nonlinear systems. Adaptive 

identification techniques based on the Kalman Filter (KF) have the potential to track time-varying 

parameters of hysterically degrading structures [5-7], which exploited the track factor, adaptive 

correction factor, or adaptive factor matrix to deal with the evolution of system variation. The 

challenging issue is that either these adaptive algorithms have strong subjectivity on empirical 

factors [7], or it is time-consuming in calculating the optimal matrix at each time-step [6]. The 

WMA based method mentioned above can also be used to identify the time-varying nonlinear 

systems. For instance, Chang and Shi [27] proposed a method to identify the time-varying 

physical parameters and model parameters in the Bouc-Wen hysteresis model based on WMA. 

However, this method needs full information on the structural displacement, velocity, acceleration 

responses, and excitation. Furthermore, in addition to the stiffness and damping parameters, the 
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parameters in the nonlinear model are also needed to be expanded by WMA, which increases the 

complexity than the identification of linear systems.  

With partial measurements, the extended Kalman filter (EKF) and unscented Kalman filter 

(UKF) [28] have been commonly used in the identification of nonlinear time-invariant systems. 

Compared with EKF, UKF is more superior as it does not need the calculation of the Jacobian 

matrix and a linearization-based approximation of the nonlinear system, realizing an on-line 

identification with a better recognition accuracy [29]. Furthermore, UKF method for the case of 

unknown excitations has been derived and successfully applied to the physical parameter 

identification of nonlinear systems under unknown loads [30]. However, these methods are only 

suitable for the time-invariant systems. Adaptive UKF methods have been proposed for the 

identification of time-varying structures, combining with the adjustment of error covariance [31-

33] or the adjustment of noise covariance matrix [34, 35]. This may depend on the fading factors 

in most of the developed methods. However, if the fading factors are not selected properly, one 

may only roughly judge which parameter has the most possibility of varying property, but the 

change degree is difficult to be accurately determined. Moreover, all these adaptive methods are 

derived on the premise of known excitation. To the best knowledge of the authors, there is a lack 

in the identification of time-varying nonlinear systems under unknown excitations. 

In addition, it should be pointed out that the existing WMA based methods are only 

applicable to structures with a small number of elements [8-12, 27]. The reason is that the number 

of scale coefficients in the least-squares process will increase with the number of elements, which 

makes it difficult to obtain the global optimal solution especially when the quality of observation 

data is poor. The “divide and conquer” idea of the sub-structural based methods provides a 
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feasible strategy for the identification of structures with more elements [36-40]. Many scholars 

have also introduced the concept of substructure into the identification of nonlinear structures 

[41-44]. However, these methods are mostly used to identify the parameters of time-invariant 

systems, and they still have some shortcomings such as the difficulties in determining the interface 

forces, the incapability of parallel identification, and the existence of propagation errors [45]. Shi 

and Chang [46, 47] presented an offline sub-structural method to identify the time-varying 

nonlinear shear-type buildings based on WMA. Nevertheless, the method requires all the 

displacement, velocity and acceleration responses inside and at the interfaces of the substructure. 

Further development and studies on identification techniques for time-varying nonlinear 

structures with more elements are still needed. 

Based on the above-mentioned detailed literature, most WMA based methods are used to 

identify the physical parameters of time-varying linear systems, while only a few studies are 

conducted for the time-varying nonlinear systems. In addition, these methods require full 

measurements of displacement, velocity, acceleration and external loads. Furthermore, all 

physical parameters including time-varying and time-invariant parameters are expanded by WMA, 

which leads to a significant increase in the number of scale coefficients. Therefore, two-step 

identification processes are proposed in this paper to identify the physical parameters of time-

varying nonlinear systems by using partial measurements. Three cases are discussed respectively. 

The first case is the identification of time-varying nonlinear structures with a small number of 

elements under known excitations. The time-varying physical parameters are located by the 

fading-factor unscented Kalman filter (FUKF) in the first step, and the method integrating WMA 

with UKF is proposed to identify the time-varying physical parameters in the second step, which 
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uses partially measured acceleration responses. A numerical example of a 6-story time-varying 

nonlinear shear frame under known seismic acceleration is provided, with abruptly changed or 

gradually varying parameters, to verify the effectiveness of the first proposed identification 

process. Considering that the external loads are always hard to measure in practical situations, the 

study is extended to the second case, that is, the identification of time-varying nonlinear structures 

with a small number of elements but under unknown excitations. Herein, the improved unscented 

Kalman filter under unknown input (UKF-UI) method proposed by the authors [30] is adopted. 

The time-varying physical parameters are located by the proposed fading-factor UKF-UI (FUKF-

UI) in the first step, and the method integrating WMA with UKF-UI is proposed to identify the 

physical parameters using partially measured acceleration and displacement responses in the 

second step. Numerical study on a truss structure is conducted to identify the time-varying 

parameters and unknown excitations simultaneously. The last case is the identification of time-

varying nonlinear structures with more number of elements under unknown excitations, which is 

investigated based on the sub-structural method. The time-varying physical parameters of the 

whole structure are located by the proposed FUKF-UI method in the first step. In the second step, 

the whole structure is divided into several substructures and the unknown interaction force is 

considered as the fictitious “unknown input”. Therefore, each substructure can be identified in 

parallel using the proposed WMA integrated with UKF-UI method. Numerical study on a 10-

story shear frame demonstrates that the third proposed identification process is effective for the 

identification of structures with more number of elements under unknown excitations. 

The remaining part of this paper is organized as: Section 2 presents the identification process 

and numerical validation of time-varying nonlinear structures with a small number of elements 



 

115 

 

under known excitations. Section 3 is extended to the case of time-varying nonlinear structures 

with a small number of elements but under unknown excitations. Section 4 further extends the 

study to the case of time-varying nonlinear structures with more number of elements under 

unknown excitations by using sub-structural method. Finally, some conclusions with 

recommendations on the further research are presented in Section 5. 

2 Identification of time-varying nonlinear structures with a small 

number of elements under known excitations 

2.1 The proposed two-step identification process 

The expansion of all physical parameters, including stiffness parameters, damping 

parameters and nonlinear model parameters, leads to a large number of scale coefficients. This 

increases the possibility of not obtaining local optimization solutions, especially for the case with 

poor-quality measurement data. Thus, it is difficult or even impossible to obtain global optimal 

scale coefficients when the number of unknown parameters is large. In fact, the time-varying 

physical parameters are always sparse in the systems [38]. The time-invariant parameter can be 

identified directly as a time-invariant coefficient. It is not necessary to expand all parameters into 

scale coefficients by WMA, which increases the number of coefficients to be identified for the 

time-invariant parameters instead. This paper proposes a two-step identification process for the 

time-varying nonlinear physical parameters. The time-varying parameters are localized using the 

FUKF method in the first step. Then an objective function is constructed based on WMA and 

UKF in the second step, which is the implicit function of the time-invariant physical parameters 

and scale coefficients of time-varying parameters. Finally, these unknown variables are solved by 

the nonlinear least-squares optimization. The detailed procedure is introduced as follows. 
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2.1.1. Locate the time-varying physical parameters by the FUKF method 

The equation of motion of a time-varying nonlinear system is described as: 

 ( ) ( ), ( ), ( ) ( )t t t t t Mx R θ x x ηf                     (1) 

in which M  is the time-invariant and known mass matrix, f  is the known excitation with the 

influence matrix η , x , x  and x  are displacement, velocity, and acceleration vector, 

respectively, θ  is the vector of physical parameters including stiffness, damping and nonlinear 

model parameters, R  is the total restoring force of the structural system. 

Supposing an augmented state vector  , ,
T

T T T=Z x x θ , Eq. (1) can be converted into the 

following state space equation as 

   1 , , + = +

  
  

        
   
   

xx

xZ M ηf R θ x x w g Z,f w

θ 0

             (2) 

in which w  is the process noise that is assumed to be a Gaussian white noise process with zero 

mean and a covariance matrix 
T

E  
 
ww Q= . 

Given partially measured acceleration responses, the discrete observation equations is 

expressed as 

 

 

1

1 , 1 1 1 1 1 1 1 1

1 1 1

+ , , +

       = +

k+ m k a k k a k k k k k

k k k,



       

  

      y x L x v L M f R θ x x v

h Z f v


     (3) 

where 1k+y  and , 1m kx  represent the observation and the measured acceleration at the time 

instant  1t k t   , respectively, t  is the sampling interval, aL  is the accelerometer position 

matrix, and 1kv  is the measurement noise assumed as a Gaussian white noise process, with 

mean value of zero and covariance matrix of 1 1 1
T

k k kE   
 
 
v v R= . 
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Similar as conventional UKF [28], the FUKF method is implemented based on the following 

procedure, including sigma point calculation, time predication and measurement updating [31]. 

Sigma point calculation 

A set of 2 1N   sigma points k kχ  are generated by using the unscented transform 

  
  

                                     ,   = 0

   ,  = 1,

   ,  = 1 2

k k

i ,k k k k ,k k
i

k k ,k k
i

ˆ i 

ˆ ˆN i N

ˆ ˆN i N , N










  



  


Z

Z

Z

Z P

Z P ，

              (4) 

where N  is the dimension of Z , k kẐ  is the estimated state at t k t  , 
,k k

ˆ
ZP  is the error 

covariance matrix that is expressed as     ,
ˆ ˆ ˆ

T

k kk k k k k k
E  

Z
P Z Z Z Z , 2

1 2( )N N     , 1  

and 2  are scaling parameters determining the spread of the sigma points.  

Time predication 

The propagation of the sigma points is predicted based on the state space equation 

 
( 1)

, 1 , d
k t

i k+ k i k k t kk t
 t 

 


   g Z ,f                    (5) 

The predicted state vector 
1k+ kZ  and error covariance matrix 

, 1k+ kZ
P  are given as 

2

1 1
0

N
m

ik k i ,k k
i

W 


Z χ                           (6) 

2

1, 1 , 1 1 1 1
0

( )( )
N

c T
i kk k i k k k k i,k k k k

i

W     


   ZP Z Z Q            (7) 

where 
m

iW  and 
c

iW  are the weight coefficients of the predicted mean and covariance, 

respectively. Herein a fading factor  1    is introduced into the conventional UKF. In the 

first step, 
2

=2 uN  is adopted based on an existing study [38], which implies that the half-life 

of the contribution of a data point is uN  time steps. 
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Similarly, the estimated measurement vector 1 1
ˆ

k k  y  at  1t k t    and its error 

covariance matrix 
, 1

ˆ
kyP  are computed as 

 
2

1, 1 1 1 1 1 , 1 1
0

ˆ ˆ ˆ, ;       
N

m
k ii k+ k i,k k k k i k k

i

W     


 y h χ f y y          (8) 

2

, 1 1, 1 1 1 1 , 1 1 1 1
0

ˆ ˆ ˆ ˆ ˆ( )( )
N

c T
k i ki k k k k i k k k k

i

W        


   yP y y y y R         (9) 

Besides, the cross-covariance matrix 
, 1

ˆ
k+ZyP  is estimated as 

  
2

, 1 , 1 1 , 1 1 1 1
0

ˆ ˆ ˆ ˆ

TN
c

k i i k k k k i k k k k
i

W      


  ZyP Z y y           (10) 

Measurement Updating 

The structural state vector 
1 1

ˆ
k k 

Z  and error covariance matrix 
, 1 1

ˆ
k k Z

P  are updated as 

, 1 11 1 1 1 1
ˆ ˆ( )G k kk k k k k k     

  Z Z K y y                (11) 

, 1 , 1 , 1, 1 1 , 1
ˆ ˆ T

G k k G kk k k k     
  yZ Z

P P K P K                (12) 

in which , 1G kK  is the Kalman gain matrix expressed as 

1

, 1 , 1 , 1
ˆ ˆ( )G k k k



   Zy yK P P                          (13) 

Based on the identification results of FUKF, the physical parameter vector θ  is divided 

into a time-varying parameter vector 1θ  and a time-invariant parameter vector 2θ  qualitatively. 

Thus, the time-varying physical parameters can be successfully localized. 

2.1.2. Identify the time-varying physical parameters by the proposed WMA integrated with 

UKF method 

In the second step, a novel method based on WMA and UKF is proposed to identify 2θ  and 

scale coefficients corresponding to 1θ  quantitatively.  
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Wavelet multiresolution analysis 

WMA possesses a strong capability in decomposing any signal into approximate and detailed 

parts in different scale levels, corresponding to the low-frequency and high-frequency 

components of the signal respectively [8-12]. Considering that the signal energies in civil 

engineering are mostly concentrated in the low-frequency component, the time-varying physical 

parameter  1, 1 1,2, ,i i m   is expanded in the wavelet domain by only reserving the low-

frequency part as 

1, , ,
( ) (2 ) 1,2, ,i

i i i i

i

J

i n iJ l J l
l

t n l n Nt     ，                (14) 

where 1,i  denotes the -i th  time-varying parameter, 1m  is the number of time-varying 

parameters, 
,i iJ l

 is the scale coefficient at the scale level iJ , il is the number of corresponding 

scale coefficients,
,i iJ l

 is the scale function in WMA, Nt  is the number of sampling points.  

Identify structural state by UKF with given scale coefficients and time-

invariant physical parameters 

By Eq. (14), the time-varying physical parameters can be reconstructed based on the given 

time-invariant scale coefficient vector ,J l  accordingly. Thus, it is transformed into the 

identification of scale coefficients and time-invariant physical parameters. UKF is utilized to 

estimate the state under the condition of partial acceleration observations. Owning to page 

limitation, only main formulas are listed in Eqs. (15)-(22). 

The equation of motion, state equation and measurement equation of a nonlinear system are 

rewritten as  

  1 2( ) , , ( ), ( ) ( )J,lt t t t Mx R θ θ x x ηf               (15) 
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  
  1 21

1 2

+ = , +
, ,

J,l

J,l


    
          

xx
X w g X,θ θ ,f w

M ηf R θ θ ,x xx



        (16) 

  

  

1

1 , 1 1 1 1 1 2 1 1 1

1 1 2 1 1

+ , , , +

       = , , +

k+ m k a k k a k J,l k k k

k J,l k k,



      

  

    
 

y x L x v L M f R θ θ x x v

h X θ θ f v

 


     (17) 

The predicted state vector 
1k+ kX  and error covariance matrix 

, 1k+ kXP  are given as 

  
2

( 1)

1 2, 1 , 1 , 1
0

, , d
N

k t m
J,l ii k+ k i k k t k k k i k kk t

i

 t W
 

 


   g X ,θ θ f X χ；        (18) 

2

1, 1 , 1 1 1 1
0

( )( )
N

c T
i kk k i k k k k i,k k k k

i

W     


   XP X X Q               (19) 

The estimated measurement vector 
1 1

ˆ
k k  y , its error covariance matrix 

, 1
ˆ

kyP , and the 

cross-covariance matrix 
, 1

ˆ
k+XyP  are rewritten as  

  
2

1 2 1, 1 1 1 1 1 , 1 1
0

ˆ ˆ ˆ, , ;       
N

m
J,l k ii k+ k i,k k k k i k k

i

W     


 y h χ θ θ f y y,         (20) 

2

, 1 1, 1 1 1 1 , 1 1 1 1
0

ˆ ˆ ˆ ˆ ˆ( )( )
N

c T
k i ki k k k k i k k k k

i

W        


   yP y y y y R          (21) 

  
2

, 1 , 1 1 , 1 1 1 1
0

ˆ ˆ ˆ ˆ

TN
c

k i i k k k k i k k k k
i

W      


  XyP X y y                (22) 

Finally, the structural state vector and error covariance matrix in Eqs. (11) and (12) are 

updated, respectively. 

Estimate scale coefficients and time-invariant physical parameters by nonlinear 

optimization 

As can be seen from the above sections, the estimated state is an implicit function of the 

scale coefficient vector J,l  and time-invariant physical parameter vector 2θ , 

 2
ˆ ˆ= ,J,lX X θ                             (23) 

Then the estimated acceleration is obtained by using the equation of motion in Eq. (15) 
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         1
2 1 2 2 2

ˆ ˆˆ, , , , ,J,l J,l J,l J,l
 x θ M ηf R θ ,θ x θ x θ=             (24) 

An objective error function is established by integrating the observed acceleration mx  and 

the estimated acceleration x̂  as 

   
2

, 2 , 2
2

ˆ, ,J l m a J l θ x L x θ=                       (25) 

The optimal scale coefficient vector 
,J l  and optimal time-invariant physical parameter 

vector 
2θ  are calculated by minimizing the objective error function 

  
, 2

2

, 2 , 2
, 2

ˆ, arg min ,
J l

J l m a J l
    θ

θ x L x θ=


                (26) 

Finally, the optimal time-varying physical parameter vector 
1θ  is reconstructed by using 

the inverse WMA in Eq. (14).  

The procedure of the proposed method is listed in Fig. 1.
 

Reconstruct time-varying physical parameters 

by WMA

Estimate structural state by UKF 

Calculate the objective  error function 

Convergence

met?

yes

Optimal solution of  scale coefficients and time-invariant 

physical parameters  

Reconstruct  the time-varying physical  parameters by 

WMA

no

Calculate the scale 

coefficients and  

time-invariant 

physical parameters 

by  nonlinear least-

squares estimation  

Initial guess on scale coefficients of time-

varying physical parameters 

FUKF  to locate the time-varying physical 

parameters

Initial guess on time-invariant physical 

parameters 

Estimate structural acceleration by equation of motion 

 

Fig. 1 Procedure of the proposed method to identify the time-varying nonlinear structures with a small 

number of elements under known excitation 

2.2 Numerical verification：Identification of a time-varying nonlinear six-story shear frame 

subjected to a known seismic acceleration 
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The first numerical example is a 6-story shear frame with a Bouc-Wen model subjected to 

the 1940 El Centro N-S earthquake with the peak value scaled to 0.4g. The equation of motion of 

the structure is given as 

 ( ) ( ) ( ) ( ) ( ) ( )t t t t t x t   Mx C x K z M I g
               (27) 

where C  and K  are global damping and stiffness matrices which are composed of the unknown 

time-varying damping and stiffness parameters,  I  is a unit vector and ( )x t
g

 is the base 

acceleration. ( )tz  is the hysteretic displacement vector with the specific expression as follows 

   
1

-1 -1 -1  1,2, ,6
n n

i i i i i i iz = x - x x x z z x x z i 


    i i

i i i i i ，       (28) 

where ni ,  i
, and  i

  1,2, ,6i   are parameters for the Bouc-Wen hysteretic model. It is 

assumed that the nonlinear damage occurs with the restoring force between the first floor and the 

ground following the Bouc-Wen model. It should be noted that the Bouc-Wen model is adopted 

here only as an example to illustrate the proposed method. The proposed approach can be applied 

to identify structural physical parameters with different nonlinear response characteristics. 

Structural parameters are selected as follows: the mass of each story and the Bouc-Wen 

hysteretic model parameter 1n  are assumed to be known as  =200kg 1,2 ,6im i   and 

1 1.8n  . The corresponding dynamic responses are computed with a sampling frequency of 50Hz, 

and the complete sampling period is 10s. The acceleration measurements at the 1st, 3rd, and 5th 

floors are used. Each measured response is polluted by white noise with 2% variance in root mean 

square (RMS), namely: 

   2% 1,3,5i,noisy i,clean i,cleanstd    x x x rand  i，
          

(29)
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where i,noisyx  is the measured noisy acceleration vector, i,cleanx  is the noisy-free acceleration 

vector,  i,cleanstd x  means the standard deviation of i,cleanx  and rand  is a random standard 

normal distribution vector. 

The stiffness, viscous damping parameters of each story  ,  1,2 ,6i ik c i  , and the Bouc-

Wen hysteretic model parameters   and   need to be identified. Two cases are discussed here. 

2.2.1. Case I: Identification of abruptly changing physical parameters 

The theoretical values of the physical parameters in case I are given below: 

 

 

5

5

1 5

1

1

1.0 10 N/ m,  0s 5.2s
    = 1.5 10 N/ m,   0s 10s  2, ,6              

 0.8 10 N/ m,   5.2s 10s

800 N s/ m,  0s 5.2s
     = N s/ m,   0s 10s  2, ,6

  N s
1000

/ m,   5.2s 10s

600,  0s

1120

i

i

t
k k t i

t

t
c c t i

t

t


   
    

  

  
    

  

 
 1

5.2s
    600,   0s 10s                            

  780,  5.2s 10s
t

t



  

 

 

Referring to the flowchart in Fig. 1, the identification process is accomplished by the 

following procedure. Firstly, the time-varying physical parameters are distinguished using the 

FUKF method, which is shown in Fig. 2. 2 30=2 =1.0473  is used, which indicates the half-life 

is 30 time steps. It can be seen from Fig. 2 that stiffness parameter 1k  changes gradually from a 

stable converged value to another stable converged value, implying that 1k  may be a time-

varying physical parameter. Similarly, 1c  has the tendency to increase, which can also be 

selected as another time-varying physical parameter. However, the FUKF method can only 

roughly determine these physical parameters with the time-varying properties, but it is unable to 

detect the time-varying instant, time-varying trend and time-varying degree. 
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(a)                        (b)                         (c) 

   

(d)                        (e)                         (f) 

 
(g)                        (h)                         (i) 

   

(j)                         (k)                         (l) 

 

(m)                       (n) 

Fig. 2 Identification results using the FUKF method in case I. (a) 1k ; (b)
2k ; (c) 3k ; (d) 4k ; (e)

5k ; (f) 6k ; (g)

1c ; (h) 2c ; (i) 3c ; (j) 4c ; (k) 5c ; (l) 6c ; (m)
1 ; (n)

1  
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Secondly, the proposed WMA integrated with UKF method is applied to conduct the 

identification of time-varying physical parameters. Following the experience in an existing study 

by Chang and Shi [27], Db1 is adopted herein as the wavelet function to expand the time-varying 

1k , 1c , and nonlinear model parameters 1  and 1 . The scale level is 7J  . The number of 

scale coefficients is 16 in total. The remaining five time-invariant stiffness parameters and five 

time-invariant damping parameters are not expanded by the WMA, and they are directly included 

in the nonlinear optimization process.  

Figs. 3-5 show the identified physical parameters with comparisons to their exact values, 

respectively. It can be seen from Figs. 3-4 that the proposed WMA integrated with UKF method 

can precisely track the sudden change of stiffness and damping parameters, and the identification 

of time-invariant parameters also shows a high precision. Fig. 5 shows that the proposed method 

is also effective in identifying the time-varying nonlinear model parameters. It is noted that 

desirable results are achieved by using only three noisy acceleration responses. 

 

(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

Fig. 3 Comparison of the exact and identified stiffness parameters. (a)
1k ; (b)

2k ; (c)
3k ; (d)

4k ; (e)
5k ; (f)

6k  
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(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

Fig. 4 The exact and identified damping parameters: (a)
1c ; (b)

2c ; (c)
3c ; (d)

4c ; (e)
5c ; (f) 6c  

 

(a)                          (b) 

Fig. 5 Comparison of the exact and identified nonlinear model parameters in case I. (a)
1 ; (b) 1  

2.2.2. Case II: Identification of gradually varying physical parameters 

The theoretical values of the physical parameters in case II are shown below, in which 1k  

is gradually varying and expressed as 

   

 

5

5 5

1

5

1

1

1.0 10 N/ m,  0s  2s

5360 1.1 10 N/ m ,   2s 7.6s     = 1.5 10 N/ m,  

800

 0s 10s  2, ,6       

0.7 10 N/ m,   7.6s 10s

= N s/ m,   0s 10s     1000 = N s/ m,   0s 10s  2, ,6

600,  0s 5.2

i

i

t

k t t k t i

t

c t c t i

t


   


         
   

      

 


 

1

s
        600,   0s 10s     

  780,   5.2s 10s
t

t



  

 
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The time-varying physical parameters are roughly located using the FUKF method. For 

brevity and without losing generality, only partial identification results are shown in Fig. 6. It is 

observed that the identified value of 1k  tends to change gradually, while other stiffness and 

damping parameters converge to fixed values. However, it should be noted that a relatively large 

error may be present at the start and end time instants. 

 

(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

 

(g)                        (h) 

Fig. 6 Partial identification results using the FUKF method in case II. (a) 1k ; (b) 3k ; (c) 6k ; (d) 1c ; (e) 5c ; 

(f) 6c ; (g)
1 ; (h) 1  
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The gradually varying 1k  is expanded using the wavelet function Db3 with the scale level 

5J   suggested by Chang and Shi [27]. The time-varying nonlinear model parameters 1  and 

1  are also expanded using the wavelet function Db1 with the scale level 7J  . Thus, the 

variables involved in the nonlinear optimization include 24 scale coefficients and 11 time-

invariant physical parameters. Identification results are shown in Figs.7-9, demonstrating that the 

proposed method is also suitable for the identification of gradually changing parameters in the 

presence of measurement noise. It not only effectively detects the start and end time of the gradual 

change, but also accurately identifies the degree of the varying parameters. Meanwhile, the 

identified time-invariant physical parameters are in good agreement with the exact values. 

 

(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

Fig. 7 Comparison of the exact and identified stiffness parameters in case II. (a) 1k ; (b) 2k ; (c) 3k ; (d) 4k ; 

(e) 5k ; (f) 6k  
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(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

Fig. 8 Comparison of the exact and identified damping parameters in case II. (a) 1c ; (b) 2c ; (c) 3c ; (d) 4c ; 

(e) 5c ; (f) 6c  

 

(a)                          (b) 

Fig. 9 Comparison of the exact and identified nonlinear model parameters in case II. (a)
1 ; (b) 1  

3 Identification of time-varying nonlinear structures with a small 

number of elements under unknown excitations 

It shall be noted that the proposed method in Section 2 is only applicable for the case of 

known excitations, owning to the limitation of UKF itself. However, external excitations could 

not be always measured directly and easily in practical engineering applications. To further 
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generalize the application to a more common case, the identification of time-varying nonlinear 

structures with a small number of elements but under unknown excitations is discussed in this 

section. 

3.1 The proposed two-step identification process 

3.1.1. Locate the time-varying physical parameters by the proposed FUKF-UI method 

In this section, the method introduced in Section 2.1.1 is further extended to locate the time-

varying physical parameters under unknown excitations. A new method, that is fading-factor 

unscented Kalman filter under unknown input, is proposed. It is also an improvement for the data 

fusion based UKF-UI proposed by the authors in 2019 [30], for the reason that the latter is only 

available for the identification of time-invariant systems under the condition of unknown 

excitations. 

If partial external inputs to the time-varying nonlinear structure are unknown, the equation 

of motion in Eq. (1) can be rewritten as 

 ( ) ( ), ( ), ( ) ( )+ ( )u ut t t t t t Mx R θ x x ηηf f                  (30)  

where 
u

f denotes the unknown input vector with the corresponding influence matrix 
u
η . The 

state space equation can be expressed as 

   1 1, , + + = + +u u u u 

    
    

          
     
     

x 0x

xZ M ηf R θ x x M f w g Z,fη φ f w

0θ 0

     (31) 

where 
u

φ  is the influence matrix related to the unknown input 
u

f  in the above equation. 
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It should be emphasized that the partially measured acceleration and displacement responses 

are used in the data fusion based UKF-UI as an on-line technique to restrain the ‘drift’ in 

identification results [30]. Thus, the observation equation in the discrete form is given as 

 

 

1 1
, 1 1 1 1 1 1

1 1

, 1 1

1 1 1 1

, ,
+

+ +

u u
m k k k k ka a k

k+ k

m k d k

u u

k k k k,

 
     



 

   

                
       

x M ηf R θ x xL 0 L M η f
y v

x 0 L 0x

= h Z f f v

 (32) 

where 
, 1m kx  is the measured displacement at  1t k t    with the position matrix dL , and 

u  is the influence matrix. 

The proposed FUKF-UI has a similar process with FUKF. Only the main formulas are briefly 

presented here. 

Sigma point calculation 

The same set of sigma points k k  are generated as shown in Eq. (4). 

Time predication 

Under the premise of zero-order hold (ZOH), the propagation of the sigma points at 

 1t k t    is expressed as 

( 1)

1 ( )d
k t u u

i,k+ k i,k k i,t k k kk t
t t

 


    g ,f f                (33) 

The predicted state vector 
1k+ kZ  and its error covariance matrix 

, 1k+ kZ
P  are provided by the 

same formulas in Eqs. (6) and (7), respectively. 

The estimated measurement vector 
1 1

ˆ
k k  y  at  1t k t    is given as 

 
2

11 1 1 1 1
0

ˆˆ +
N

m u u
i kk k i,k k k+ k

i

W    


 
  y h χ f λ f,              (34) 
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The error covariance matrix of measurement vector 
, 1

ˆ
kyP  and the cross-covariance matrix 

, 1
ˆ

k+ZyP  are found in Eqs. (9) and (10), respectively.  

Unknown input calculation 

The state vector is updated by Eq. (11), which is workable only when the unknown input 

1 1
ˆu
k+ kf  is given for the reason that 1 1

ˆ
k k 

y  is a function of 
1 1

ˆu
k+ kf , as shown in Eq. (34). To 

solve the unknown force 
1 1

ˆu
k+ kf , the estimated state vector 

1 1
ˆ

k k 
Z  in Eq. (11) is substituted 

into the measurement equation  

 11 1 1 1 1 1
ˆˆˆ u u

kk k k k k k      y h Z f λ f,                     (35) 

Then an estimation error function is established between the real measurement and the 

estimated measurement as 

 1 1 11 1 1 1
ˆˆ u u

k k kk k k k       y h Z f f,                    (36) 

Under the condition that the number of observed measurements is larger than that of the 

unknown excitations, 
1 1

ˆu
k+ kf  can be computed by minimizing the error 1k  in Eq. (36) by 

solving a nonlinear least-squares problem. 

Measurement updating 

Once 
1 1

ˆu
k+ kf  is obtained, the estimated measurement vector 

1 1
ˆ

k k  y  can be calculated with 

Eq. (34). Then the estimated state vector 
1 1

ˆ
k k 

Z  is solved by Eq. (11). Finally, the error 

covariance matrix 
, 1 1

ˆ
k k Z

P  is updated using Eq. (12). 

3.1.2. Identify the time-varying physical parameters by the proposed WMA integrated with 

UKF-UI method 



 

133 

 

After the qualitative analysis of time-varying physical parameters under unknown 

excitations by FUKF-UI, a new method is proposed for quantitative identification of time-varying 

parameters, which combines the advantage of WMA and UKF-UI under unknown excitations.  

The proposed WMA integrated with UKF-UI method has a similar process as WMA 

integrated with UKF method presented in Section 2.1.2. Firstly, the time-varying physical 

parameters distinguished in the first step can be reconstructed based on the given time-invariant 

scale coefficient vector ,J l  in Eq. (14). Then with the initial time-invariant physical parameter 

vector 2θ , UKF-UI is applied to obtain the estimated state and input following Eqs. (37)-(41). 

The equation of motion, state equation and measurement equation of a nonlinear system 

under unknown excitations are rewritten as 

  1 2( ) , , ( ), ( ) ( )+ ( )u u

J,lt t t t t Mx R θ θ x x ηf fη              (37) 

  
  1 21 1

1 2

+ + = , , + +
, , ,

u u u
J,lu

J,l
 

        
               

x 0x
X f w g X,θ θ f φ f w

M ηf R θ θ x xx M η



 (38) 

  

  

1 1
, 1 1 1 2 1 1 1

1 1

, 1
1

1 1 2 1 1 1

, , ,
+

, , + +

u u
m k k J,l k ka a k

k+ k

m k d
k

u u

k J,l k k k,

 
    






   

               
      

x M ηf R θ θ x xL 0 L M η f
y v

x 0 L 0x

= h X θ θ f f v



 

(39) 

The predicted state vector 
1k+ kX  is given as 

 
2

( 1)

1 21 1 , 1
0

( , , )d
N

k t u u m
J,l ii,k+ k i,k k i,t k k k k k i k kk t

i

t t W
 

 


     g ,θ θ f f X χ；      (40) 

The estimated measurement vector 1 1
ˆ

k k  y  is rewritten as 

  
2

1 2 11 1 1 1 1
0

ˆˆ , , +
N

m u u
i J,l kk k i,k k k+ k

i

W    


 
  y h χ θ θ f λ f,              (41) 

The related error covariance matrices are shown in Eqs. (19), (21) and (22), respectively. 
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Under the condition that the number of measurements is larger than that of the unknown 

excitations, 
1 1

ˆu
k+ kf  can be computed by minimizing the error 1k   

  1 1 1 2 11 1 1 1
ˆˆ , , u u

k k J,l kk k k k       y h X θ θ f f,                (42) 

Then the estimated measurement vector 
1 1

ˆ
k k  y  is obtained by Eq. (34), and the structural 

state vector 
1 1

ˆ
k k 

X  and error covariance matrix 
, 1 1

ˆ
k k X

P  are updated by Eqs. (11) and (12), 

respectively.   

In conclusion, the estimated state vector X̂  and estimated excitation vector ˆu
f  are implicit 

functions of scale coefficient vector J,l  and time-invariant physical parameter vector 2θ , 

namely: 

   2 2
ˆ ˆˆ ˆ= , = ,u u

J,l J,lX X θ f f θ，                        (43) 

Similarly, the estimated acceleration is rewritten as 

           1
2 2 1 2 2 2

ˆˆ ˆˆ, + , , , , ,u u
J,l J,l J,l J,l J,l

 x θ M ηf η f θ R θ ,θ x θ x θ=      (44) 

Finally, the optimal scale coefficient vector 
,J l  and optimal time-invariant physical 

parameter vector 
2θ  are obtained by minimizing the same objective error function in Eq. (26), 

and the optimal time-varying physical parameter vector 
1θ  is reconstructed by the inverse WMA 

in Eq. (14). 

3.2 Numerical verification： Identification of a time-varying nonlinear one-span truss 

subjected to an unknown force excitation 

As shown in Fig. 10, a one-span truss subjected to an unknown white noise excitation is 

investigated as a more complex numerical example. It is aimed at identifying the stiffness 
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parameter of each member and the Bouc-Wen model parameters with partial acceleration and 

displacement measurements. 

(1,2) (7,8)

(9,10)(5,6)(3,4) (13,14)

(11,12)7

2

1

3 5

4 8

6 9

10

11

12

13 14

15

 

Fig. 10 A one-span truss subjected to an unknown white noise excitation 

The truss consists of 15 members and 14 DOFs in total, as shown in Fig. 10. In this numerical 

example, structural parameters are selected as: The length and cross-section of each bar is =1mil  

and  5 2=7.85 10 m  1,2 ,15iA i  , respectively. The total mass of each bar is constant as 

 =54.95kg  1,2 ,15im i  . The Rayleigh damping is adopted with the first two damping ratios 

assumed as 0.02. The first five-order natural frequencies of the time-invariant truss are 1.46Hz, 

2.99Hz, 3.92Hz, 6.32Hz and 7.31Hz, respectively. An unknown white noise excitation 
uf  is 

applied on the 4th DOF of the truss. The sampling frequency is 50Hz during the process of 

dynamic response calculation and the sampling period is 10s. Six accelerations of the 2nd, 4th, 

6th, 8th, 10th, and 12th DOFs and two displacements of the 6th and 14th DOFs are polluted with 

2% RMS noise and used as measured responses for identification analysis. 

Nonlinear damage is assumed in the 2nd bar element with the Bouc-Wen model governed 

by Eq. (28). The time-varying physical parameters are defined as  
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 
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 

  

   

 
 

 

 
 

 

 

The identified stiffness results using the FUKF-UI method are shown in Fig. 11. 2k  and 

nonlinear model parameters are expanded by the Db1 wavelet function and the scale level is 

7J   based on the studies in Ref. [27]. Fig. 12 shows the identified time-varying stiffness 

parameter and Bouc-Wen model parameters using the proposed WMA integrated with UKF-UI 

method, which manifests its effectiveness in identifying physical parameters of time-varying 

nonlinear truss structure with limited number of response measurements and unknown excitations. 

Meanwhile, the proposed method also gives accurate reconstruction of external force as 

demonstrated in Fig. 13. Table 1 lists the calculated relative errors of time-invariant stiffness 

parameters. Most of the relative errors are around 1%, and the maximum value is only 5.29% for 

the eighth element stiffness parameter. 
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(a)                        (b)                         (c) 

 
(d)                        (e)                         (f) 

 
(g)                        (h)                         (i) 

 
(j)                        (k)                         (l) 

 
(m)                        (n)                         (o) 

Fig. 11 Identification results of the truss model using the FUKF-UI method. (a) 1k ; (b) 2k ; (c)
3k ; (d) 4k ; 

(e) 5k ; (f) 6k ; (g) 7k ; (h) 8k ; (i) 9k ; (j)
10k ; (k) 11k ; (l) 12k ; (m) 13k ; (n) 14k ; (o) 15k  
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(a)                        (b)                         (c) 

Fig. 12 Comparison of the exact and identified time-varying physical parameters of the truss. (a)
2k ; (b)

2 ; (c) 2  

Table 1 Identified stiffness of time-invariant members in the truss. 

Member No. Actual stiffness ( N/m ) Identified stiffness ( N/m ) Relative error 

1 157000  159139.70  1.36% 

3 157000   158973.71  1.26% 

4 157000 155389.34  -1.03% 

5 157000 159695.78  1.72% 

6 157000 162307.30  3.38% 

7 157000 155094.62  -1.21% 

8 157000 165298.77  5.29% 

9 157000 157728.76  0.46% 

10 157000 156832.25  -0.11% 

11 157000 156068.42  -0.59% 

12 157000 159077.60  1.32% 

13 157000 164468.80  4.76% 

14 157000 157312.26  0.20% 

15 157000 159619.98  1.67% 

 

Fig. 13 Comparison of the exact and identified external excitation (6s～10s) 
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4 Identification of time-varying nonlinear structures with more number 

of elements under unknown excitations 

It should be noted that the cases discussed above are all about the identification of time-

varying nonlinear structures with a small number of elements. With the increasing number of 

elements, the number of expanded scale coefficients is also significantly increased. Since the basis 

of the proposed methods in Section 2.1.2 and Section 3.1.2 is a nonlinear least-squares 

optimization, a large number of scale coefficients may result in convergence to local optimization 

results, especially when the quality of the collected data is poor. Herein, combining the sub-

structural method, a two-step identification process is proposed for the identification of time-

varying nonlinear structures with more number of elements under unknown excitations.  

4.1 The proposed two-step identification process 

4.1.1. Locate the time-varying physical parameters of the whole structure by the proposed 

FUKF-UI method 

The FUKF-UI method proposed in Section 3.1.1 is used here to locate the time-varying 

physical parameters of the whole structure.  

4.1.2. Divide into substructures and identify the sub-structural time-varying physical 

parameters by the proposed WMA integrated with UKF-UI method 

As demonstrated above the proposed WMA integrated with UKF-UI method can accurately 

identify the actual unknown external loads. Therefore, it can be used to determine the unknown 

interaction forces acting on the divided substructures in the following sub-structural based method. 

When aiming at the identification of time-varying nonlinear structures with more elements, 

the whole structure is divided into several substructures to limit the number of parameters in each 
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optimization analysis. For each substructure, the initial time-varying physical parameter vector 

1θs  can be reconstructed by the given time-invariant scale coefficient vector ,s sJ l  by Eq. (14). 

Thus, it is converted into the identification of a time-invariant nonlinear system. The equation of 

motion of the substructure is written as 

  1 , 2

*

*

,

             

s s

u u

s s s s J l s s s s s s s

u u

s se sb

T
u u

s se sb

  

    


   

M x R θ θ x x η f η f

η η η

f f f

 , ,

             (45) 

in which the subscript “ s ” indicates that these properties are possessed by the substructure. sM  

is the mass matrix of the substructure. sx , sx , and sx  are displacement, velocity, and 

acceleration response vector of substructure, respectively. 2sθ  is the time-invariant physical 

parameter vector of the substructure, sf  is the known excitation (if have) of the substructure with 

the influence matrix sη , and 
u

sf  is the unknown input of the substructure with the influence 

matrix 
u

sη . 
u

sf  is composed of the actual unknown external excitation 
u

sef  and the unknown 

sub-structural interaction force 
*

sbf , 
u

seη  and 
*

sbη  are their influence matrix, respectively. 

The state space equation and measurement equation are given as 
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where sw  is the process noise, 1s,k+y  is the sub-structural measurements at the time instant 

 1t k t    including the partially measured acceleration response , 1sm kx  and displacement 

response , 1sm kx . saL  and sdL  are position matrices of accelerometer and displacement 

responses in the substructure, respectively. sv  is the measurement noise. 

Following the procedure of UKF-UI, the estimated state vector of substructure ˆ
sX  and 

unknown excitation vector ˆu
sf  can be obtained, which are implicit functions of scale coefficient 

vector ,s sJ l  and time-invariant physical parameter vector 2sθ , that is 

   , 2 , 2
ˆ ˆˆ ˆ= , = ,

s s s s

u u
s s J l s s s J l sX X θ f f θ，                  (48) 

Similarly, the estimated acceleration is rewritten as 

           1
, 2 , 2 1 , 2 , 2 , 2

ˆˆ ˆˆ, + , , , , ,
s s s s s s s s s s s s

u u
s J l s s s s J l s s s J l s s J l s s J l s

 x θ M η f η f θ R θ ,θ x θ x θ=      (49) 

Finally, the optimal scale coefficient vector 
,s sJ l  and optimal time-invariant physical 

parameter vector 
2sθ  for the substructure are obtained by minimizing the objective error 

function in Eq. (50). Then the optimal time-varying physical parameter vector 
1sθ  is 

reconstructed by the inverse WMA. 

 
, 2

2

, 2 , 2
, 2

ˆ, arg min ,
s s s s

J l ss s

J l s sm sa s J l s

       θ
θ x L x θ=


               (50) 

Considering that every substructure is independent of each other, the time-varying physical 

parameters can be identified by using the proposed WMA integrated with UKF-UI method in 

parallel, which greatly improves the computational efficiency. 

4.2 Numerical verification：Identification of a time-varying nonlinear 10-story shear frame 

with an unknown excitation using the sub-structural method  
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In this section, a 10-story shear frame under unknown excitation is used to demonstrate the 

feasibility of the sub-structural method for the identification of a time-varying nonlinear structure 

with more number of elements. The mass of each story is  =2000kg  1,2 ,10im i  . The first 

five-order natural frequencies of the time-invariant system are 0.31Hz, 0.92Hz, 1.52Hz, 2.08Hz 

and 2.60Hz, respectively. It is assumed that the nonlinear damage occurs in the first floor and the 

Bouc-Wen model governed by Eq. (28) is assumed. 1 1.8n  . A white noise excitation is imposed 

on the top floor to excite the structure, which is assumed unknown in the identification analysis. 

The corresponding dynamic responses are computed with a sampling frequency of 50Hz, and the 

complete sampling period is 10s. The specific expressions of other physical parameters are given 

as 
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The FUKF-UI method is implemented to roughly locate the changing physical parameters. 

Six acceleration measurements at the 1st, 3rd, 5th, 7th, 8th, and 10th floors and two interlayer 

displacements of the 1st-2nd and 9th-10th floors are used. Each response is contaminated with a 

2% RMS white noise. Stiffness identification results are shown in Fig. 14. The stiffness of the 1st, 

7th, and 10th stories are more likely to change, as they transit from one stable convergence value 

to the other stable value, while other stiffness values are more likely to remain unchanged, since 

only one convergence value appears despite occasional fluctuations. 
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(a)                        (b)                         (c) 

 
(d)                        (e)                         (f) 

 

(g)                        (h)                         (i) 

 

(j) 

Fig. 14 Identification results using the FUKF-UI method in the shear frame. (a) 1k ; (b) 2k ; (c) 3k ; (d) 4k ; 

(e) 5k ; (f) 6k ; (g) 7k ; (h) 8k ; (i) 9k ; (j) 10k  
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Fig. 15 Substructures of a 10-story shear frame 

The whole structure is divided into two substructures as illustrated in Fig. 15, and the 

physical parameters in each substructure are identified using the proposed WMA integrated with 

UKF-UI method in parallel. 

Lower substructure  

In this numerical example, the 1st～5th DOFs are in the scope of the lower substructure. The 

accelerations of the 1st, 3rd, and 5th floors and interlayer displacement of the 1st-2nd floors are 

measured with a 2% RMS noise and used as recorded responses for the identification analysis. 

1k , 1  and 1  are expanded by the Db1 wavelet function and the scale level is 7J  [27]. Fig. 

16 exhibits the identified stiffness and nonlinear model parameters inside the lower substructure 

employing the WMA integrated with UKF-UI method. The results demonstrate that the 

identification accuracy is good, even the step changes in time-varying physical parameters can be 

identified accurately. 
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(a)                        (b)                         (c) 

 

(d)                            (e) 

 

(f)                            (g) 

Fig. 16 Comparison of the exact and identified physical parameters of the lower substructure. (a) 1k ; (b)

2k ; (c) 3k ; (d) 4k ; (e) 5k ; (f) 1 ; (g) 1  

Upper substructure 

The upper substructure is composed of 6～10 DOFs. The accelerations of the 6th, 8th and 

10th floors and interlayer displacement of the 9th-10th floors are used as measurements with a 2% 

RMS noise for the identification analysis. 7k  and 10k  are expanded by the Db1 wavelet 

function and the scale level is 7J  . Fig. 17 displays the identified stiffness parameters inside 
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the upper substructure, which demonstrates that the proposed WMA integrated with UKF-UI 

method is capable of the parametric identification of structures with more number of elements 

when combining with the sub-structural method. The external load applied on the top floor can 

also be identified as shown in Fig. 18, which shows that the identified force matches well with 

the exact one. 

 

(a)                        (b)                         (c) 

 

(d)                          (e) 

Fig. 17 Comparison of the exact and identified physical parameters of the upper substructure. (a) 6k ; (b)

7k ; (c) 8k ; (d) 9k ; (e) 10k  

 

Fig. 18 Comparison of the exact and identified external excitations (5s～10s) 
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5 Conclusions 

The identification of time-varying nonlinear structural physical parameters is an important 

research topic with practical applications. Methods based on WMA can not only identify the time-

varying physical parameters such as stiffness and damping coefficients but also the time-varying 

parameters in the nonlinear model. However, they require displacement, velocity, and 

acceleration responses of all DOFs, and known excitations to be used in the analysis. Moreover, 

all physical parameters are expanded into scale coefficients by WMA, which leads to a large 

number of scale coefficients and increases the difficulties in nonlinear system identification. This 

paper presents two-step identification processes using partial measurements to identify the time-

varying physical parameters of nonlinear systems.  

Firstly, the identification of time-varying nonlinear structures with a small number of 

elements under known excitations is conducted. The time-varying physical parameters are 

distinguished using the FUKF method. Then a method integrating WMA and UKF is proposed to 

identify the physical parameters in the case of known excitations. The proposed identification 

process contributes to reduce the number of scale coefficients, since not all physical parameters 

are required to be expanded after the locations of time-varying physical parameters are detected. 

Most importantly, only partial response measurements are needed in the identification process, a 

clear improvement of the previous WMA based methods which require response measurements 

at all DOFs. 

Secondly, it is extended to the identification of time-varying nonlinear structures with a small 

number of elements but under unknown excitations. The time-varying physical parameters are 

localized using the proposed FUKF-UI method, and then all the physical parameters, as well as 



 

148 

 

the excitations are identified by the proposed WMA integrated with UKF-UI method. The 

proposed identification process meets the needs of practical engineering applications, since the 

physical parameters of time-varying nonlinear system can be identified by using partial response 

measurements under unknown excitations. 

Thirdly, combining with the sub-structural method, it is further extended to identify the time-

varying nonlinear structures with more number of elements under unknown excitations. The time-

varying physical parameters of the whole structure are located by the proposed FUKF-UI method. 

Then the whole structure is divided into several substructures. Based on the proposed WMA 

integrated with UKF-UI method, each substructure is identified by considering the unknown 

interaction forces as the fictitious unknown inputs. With partial response measurements, each 

substructure can be identified in parallel without measuring the interaction forces.  

Three numerical examples with noisy measurement data are conducted to verify the 

effectiveness and accuracy of the proposed identification methods. Experimental verification is 

still required in future to further demonstrate the efficiency of the proposed methods. 
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CHAPTER 5 Identification of gradually varying physical 

parameters based on discrete cosine transform using partial 

measurements 

ABSTRACT 

Structural physical parameters often vary gradually due to the degradation of material 

properties or effects of environment. In this paper, two novel approaches are proposed to identify 

the gradually varying physical parameters based on the discrete cosine transform (DCT) using 

partial measurements of structural responses. Approach I is proposed for the circumstance of 

known excitations. The gradually varying physical parameters are firstly located by the fading-

factor extended Kalman filter (FEKF), and then identified by the proposed DCT integrated with 

Kalman filter (KF) method. Approach II is proposed for the identification of gradually varying 

physical parameters under unknown excitations. The gradually varying physical parameters are 

firstly localized by the proposed fading-factor extended Kalman filter under unknown input 

(FEKF-UI), and then identified by the proposed DCT integrated with Kalman filter under 

unknown input (KF-UI). Numerical examples demonstrate that the proposed approaches can 

identify the gradually varying physical parameters accurately with incomplete measurement data. 

Moreover, the identification of time-varying cable force in cable-stayed bridge is also discussed 

as a case study of the proposed approach I. Both numerical example and experimental verification 

show that it provides a new path to identify the time-varying cable force by only using one 

acceleration response measurement of the cable. 

 

1. Introduction 

Direct identification of physical parameters, such as physical stiffness and damping 

parameters of linear structures, plays an indispensable role in structural health assessment. 

Ning Yang, Ying Lei, Jun Li, Hong Hao. Identification of gradually varying physical 

parameters based on discrete cosine transform using partial measurements, Structural Control 

& Health Monitoring, 2021. (Under review) 
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Vibration-based techniques have been developed to identify the physical parameters of time-

invariant structures in the field of structural health monitoring (SHM)1. However, structural 

physical parameters often vary owning to severe hazards, such as strong seismic and wind loads, 

as well as other environmental effects, e.g., temperature or corrosion effect. Bao and Li 2 

conducted a comprehensive review about the recent methodologies for SHM, especially machine 

learning paradigm for SHM. However, effective methods are still needed to describe the dynamic 

characteristics of time-varying structures, adaptively assess and evaluate the performance of time-

varying structural systems3, 4. 

Relevant studies have been conducted in the time-domain and time-frequency domain. The 

state space model based methods have shown a high efficiency in the time-domain to track the 

change of physical parameters 5-14. Among these methods, the Kalman filter (KF) series methods 

have been commonly used with an outstanding feature that only incomplete measurements are 

required in the identification process 7-14. Based on KF series methods, the time-varying physical 

parameters are able to be identified by introducing the fading-factor to adjust the state prediction 

covariance matrix in real time. However, it is difficult to determine the optimal fading-factor. 

Therefore, some of these methods were proposed based on an empirical factor7 or the empirical 

formula8-9. Furthermore, the method was modified by updating the factor matrix at each time 

instant, but it is computationally expensive. 10-11 In addition, the time-varying physical parameters 

can be identified by updating the process noise covariance in KF series methods, 12-13 which also 

depends on the selection of empirical factors. Most recently, a novel method combining the sparse 

Bayesian learning and KF was proposed by Huang et al.14 to identify the abruptly changed 

physical parameters, but further exploration is still needed in the identification of gradually 

changing physical parameters. 

The time-frequency domain methods that are developed to identify the structural time-

varying physical parameters mainly refer to the wavelet multiresolution (WM) based methods. 15-

23 Most of these methods expand the time-varying structural physical parameters into scale 
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coefficients, and then identify these coefficients by the linear least-squares estimation.15-21 

However, complete measurements of structural responses at all degrees of freedom (DOFs) are 

required in these methods, which is impractical for real applications. To conquer the limitation 

on full observations, novel methods have been proposed recently by the authors to identify the 

time-varying physical parameters of linear structures under known or unknown excitations based 

on partial measurements.22-23 Nevertheless, the methods require to expand all physical parameters 

(including time-varying parameters and time-invariant parameters) into scale coefficients based 

on WM. The number of expanded coefficients increases greatly as the structural size increases, 

making it difficult to obtain a global optimal solution especially when the quality of the collected 

data is poor. Additionally, more low-frequency scale coefficients need be retained to ensure the 

accuracy of reconstructing the gradually changing parameters, which also leads to the growth in 

the number of scale coefficients. Furthermore, the determination of appropriate mother function 

and decomposition level in WM is a pending issue that is not yet well resolved.24 Besides, the 

boundary effect of WM is also inevitable. 

In fact, the change in physical parameters of civil engineering structures is a gradual process 

in most circumstances. For instance, the cumulative structural damage evolves from minor to 

severe, leading to gradually changing vibration characteristics.25 For the vehicle-bridge coupling 

system, the mass distribution of the system varies with time due to the vehicle movement, which 

also results in the gradually varying features of the system.26-28 Tracking the gradual evolution 

process and identifying the gradually changing physical parameters accurately is still a 

challenging issue that is worth of investigation. The core of the WM-based method is to 

reparametrize the time-varying model by wavelet basis for the purpose of reducing the 

dimensionality of unknown parameters in the inverse problem. Then, the unknown physical 

parameters are equal to the product of the scale coefficients and the base functions. However, the 

wavelet basis function is not particularly suitable for the decomposition of gradually changing 

parameters. The reason is that relatively more scale coefficients should be retained to guarantee 

the accuracy of reconstructed gradually changing parameters, while a large number of scale 
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coefficients may result in the convergence to local optimization results, especially when the 

structural responses for analysis are polluted by high-level noise. Therefore, other decomposition 

basis which is more suitable for gradually changing parameters should be investigated to reduce 

the number of coefficients as much as possible. Discrete cosine transform (DCT) is a kind of 

transformation defined for analyzing real signals.29 A series of DCT coefficients are obtained in 

frequency domain after transformation. Most importantly, energy concentration is a very valuable 

property of DCT, that is, a majority of energy in natural signals (e.g., sound and image) is 

concentrated in the low frequency range, promoting the wide application of DCT in data 

compression.30, 31 In addition, some researchers have adopted DCT for the identification of 

unknown parameters benefitting from the dimensional reduction of DCT. For example, Eom32 

expanded the time-varying autoregressive parameters by using a low-order DCT to analyze the 

acoustic signatures from moving vehicles. Aleardi33 proposed a novel method using DCT to 

reparametrize and reduce dimensionality of parameters. The unknown parameters became the 

coefficient sequence related to DCT basis functions. Zhang34 used the DCT basis and wavelet 

basis to expand the same gradually changing signal, and then compared the sparsity of DCT 

coefficients and scale coefficients, respectively. Results showed that DCT coefficients contained 

more coefficients close to zero, demonstrating a better sparsity. It means that DCT instead of WM 

can use less coefficients to express the original gradually changing signal. By considering the 

energy of vibration of civil structures is mainly distributed in the low-frequency component21, it 

is worth decomposing the gradually varying physical parameters into low-order DCT coefficients, 

especially when the measured responses are polluted by high-level noise. 

Cable force in a cable-stayed bridge is time-varying. With the advantages of low cost, high 

bearing capacity and wind stability, cables have been widely used as the main components in 

long-span bridges. 35-37 The healthy state of cables is of great significance to the safety of the 

whole cable-stayed bridge, Li et al. 36 proposed diagnostic approach through the variation of 

pattern parameters, and the results are so promising and validated through an actual long-span 

cable-stayed bridge. Under complex load effects and formidable natural conditions, the cable is 
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inevitably damaged by a number of issues, such as fatigue, corrosion and prestress loss. Damage 

can introduce negative effects on the cable, such as weakening the stiffness and reducing the 

bearing capacity, and eventually leading to cable fracture, which endangers the safety of the cable-

supported bridges.38 Therefore, the identification of cable force plays an indispensable role in the 

SHM of cable-supported bridges. Li and Ou39, and Zhang et al.40 have conducted comprehensive 

literature reviews on the methods of monitoring and identifying cable tension force, which can be 

roughly divided into five categories: lift-off method, load cell method, magnetic flux leakage 

method, fiber Bragg grating method and vibration-based method.39,40 Among these methods, the 

vibration-based method is adopted as an indirect way to obtain the cable force by inverse analysis, 

with the advantages of simple installation, convenient operation, reusability, high precision and 

low cost.40 Although many in-depth studies have been carried out, most of the proposed methods 

can only acquire the average value of cable force in a specific duration. However, the cable force 

is time-varying subjected to the live load in the long-span cable-supported bridge. The average 

cable force value may not be used to evaluate the fatigue damage of the cable accurately. 

Therefore, it is of great theoretical significance and engineering application importance to develop 

the identification method of time-varying cable force for the safety assessment of bridges.  

Some attempts have been conducted to identify the time-varying cable tension from the 

dynamic responses of cable. Li et al.41 proposed a real-time method to estimate the time-varying 

cable forces based on the extended Kalman filter (EKF). However, the influence of process noise 

and measurement noise in EKF on identification results cannot be ignored. Bao et al.42 presented 

an adaptive sparse time-frequency (ASTF) analysis method to identify the instantaneous 

frequency of cables, and then obtain the time-varying cable force according to the tension string 

theory. Furthermore, to solve the non-convex least-squares optimization in the algorithm, a 

machine learning–based method was developed by Bao et al.43 to enhance the ASTF method. 

However, the selection of initial phase in these methods has influence on the identification result. 

Yang et al.44 proposed a data-driven method for real-time identification of time-varying cable 

tension force based on the complexity pursuit algorithm using more than two monitored 
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acceleration responses of the cable. In addition, depending on the time-frequency analysis method, 

some studies have been conducted to obtain the time-varying cable force by identifying the 

instantaneous frequency. For example, Xue and Shen45 performed cable force identification by 

combining the short time sparse time domain algorithm and the simplified half wave method. 

Zhang et al.38 presented the synchrosqueezing short-time Fourier transform to identify the 

instantaneous frequency and time-varying cable force. Wang et al.46 developed a method which 

combines the variational mode decomposition and generalized Morse wavelet to identify the 

instantaneous frequency and time-varying cable force. Obviously, the accuracy of using these 

methods to identify the time-varying cable force depends on the resolution of time-frequency 

analysis method both in time and frequency domains. Additionally, it shall be noted that the 

varying cable force is in the form of gradual change in all of the studies mentioned above. 

Inspired by the merits of DCT and KF series methods, this paper proposes novel two-step 

approaches for the identification of structural gradually varying physical parameters under known 

or unknown excitations, respectively. In this study, the structural mass is a known and time-

invariant parameter, and only partially measured structural responses are used for the 

identification of other gradually varying physical parameters. Approach I is proposed for the case 

of time-varying system identification under known excitations. The gradually varying physical 

parameters are localized by the fading-factor extended Kalman filter (FEKF) algorithm in the first 

step, and then identified by the proposed DCT integrated with KF method. Approach II is 

proposed to conduct the time-varying system identification under unknown excitations. In this 

approach, the gradually varying physical parameters are localized by the proposed fading-factor 

extended Kalman filter under unknown input (FEKF-UI) algorithm, and identified by the 

proposed DCT integrated with Kalman filter under unknown input (KF-UI) method. Moreover, 

by considering that the stay cable is a time-varying system as its cable force changes with time 

under the joint action of vehicle and wind loads, it is investigated as a case study in this paper. 

The discrete equation of motion of stay cables in modal domain is given and the steps of 

identifying the time-varying cable force by the proposed approach I are presented. Numerical 
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studies on Nanjing Yangtze River No. 3 Bridge and experimental tests on the scaled cable are 

conducted by using only one acceleration response on the cable, with or without the anemometer 

installed on the bridge. 

The rest of the paper is organized as follows. The theoretical background and development 

of the proposed approach I (identification under known excitations) and approach II 

(identification under unknown excitations) are presented in Section 2 and Section 3, respectively. 

Then in Section 4.1, numerical models including a gradually varying truss and a gradually varying 

bridge under known excitations are used to demonstrate the performance of the proposed 

approach I, and in Section 4.2, the same models under unknown excitations are employed to 

validate the effectiveness of the proposed approach II. In Section 5, the procedures to identify the 

time-varying cable force are presented based on the proposed approach I. Numerical example and 

experimental verification results are given to verify the effectiveness of the proposed cable force 

identification method. Finally, conclusions and discussions are presented in the conclusion 

section. 

2. The proposed approach I: two-step approach to identify the gradually 

varying physical parameters under known excitations 

Considering that the gradually varying physical parameters are expected to be sparse in the 

systems47, it is unnecessary to consider that all physical parameters are time-varying and then 

expanded into corresponding numerical coefficients. It is more feasible and effective to 

distinguish the time-varying parameters qualitatively and then concentrate on identifying those 

time-varying parameters. Therefore, the proposed approaches in this paper are conducted in two 

steps. The detailed procedures are introduced as follows. 

2.1 Step 1: Locating the gradually varying physical parameters by the FEKF algorithm 

In the first step, the gradually varying physical parameters, including stiffness and damping 

parameters, are localized by using the FEKF algorithm.  

The governing equation of a multi-DOF time-varying linear structure is expressed as 
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( ) ( ) ( ) ( ) ( ) ( )t t t t t t  Mx C x K x ηf                     (1) 

where  tx ,  tx  and  tx  are the structural acceleration, velocity, and displacement response 

vectors, respectively; M  is the matrix of structural mass, and it is time-invariant and known; 

( )tK  and ( )tC  denote the stiffness and damping matrices, respectively, and are assembled by 

the time-varying physical parameters; ( )tf  is a known external excitation vector with the 

influence matrix η . 

An augmented state vector with a dimension of  2 1n+l   is defined as  , ,
T

T T T=Z x x θ , 

in which n  is the number of DOF, l  is the number of unknown structural parameters, and θ  is 

the vector of unknown structural physical parameters including stiffness and damping parameters. 

Rewritten Eq. (1) into the following state space equation as 

   1 ( ) ( ) ( ) ( ) = +t t t t

  
  

      
   
   

xx

xZ M ηf C x K x g Z,f w

0θ

                (2) 

in which  g  is a nonlinear function, w  is the process noise (or model noise) with zero mean 

and a covariance matrix T
E  
 
ww Q= . 

When only partial acceleration responses are provided as available measurements, the 

discrete observation equation is expressed as 

   1

1 , 1 1 1 1 1 1 1 1 1 1 1 1+ + = +k+ m k a k k a k k k k k k k k k,

               y x L x v L M f C x K x v h Z f v   (3) 

where 
1k+y  represents the observation vector at the time instant  1t k t   , , 1m kx  is the 

measured acceleration response vector, t  is the sampling interval, 
aL  denotes the mapping 

matrix of measurement locations, and 1kv  is the measurement noise which is assumed as a 

Gaussian white noise process, with mean value of zero and covariance matrix of  

1 1 1
T

k k kE   
 
 
v v R= . 
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Let ˆ
k k

Z  be the estimated state vector at the time instant t k t   and 
+1k k

Z  be the predicted 

state vector at the time instant  1t k t   , Eqs. (2) and (3) are linearized at ˆ
k k

Z  and 
+1k k

Z  by 

using the first order Taylor series expansion and expressed as  

       

ˆ

ˆ ˆ+ ;     

k k

k k k k k k k k




  


Z Z

g Z,f
g Z,f g Z ,f G Z Z G

Z
           (4) 

     
 

+1

1 1 1 1+1 +1 +1 +1
;        




  


Z Z

h Z,f
h Z f h Z f + H Z Z H

Z
k k

k k k kk k k k k k k k
, ,    (5) 

Similar to the conventional EKF which is used in the estimation of time-invariant systems, 

the FEKF algorithm is implemented in the following two steps: 

1) Time update (prediction) procedure 

 
 1

+1 +1
ˆ ˆ ˆ= + d =

k t
T T

kk k k k t k k k k k k k k kk t
t

 

Z Z g Z ,f P ΛΘ P Θ Λ + Q；            (6) 

where 
+1k k

P  is the prediction error covariance matrix, ˆ
k k

P  is the estimation error covariance 

matrix, and 
2 +n lk k k k

t Θ I G  where 
2n lI  is an unit matrix. It is noted that Eq. (6) is different 

from the conventional EKF, since the fading factor matrix Λ  is introduced as follows to 

gradually fade the previous information and track the possible changes of the parameter vector 

 1 2 1=diag ,n l Λ 1 1                            (7) 

where 1  . In the first step, 2
=2 uN  is adopted based on an existing study, which implies that 

the half-life of the contribution of a data point is 
uN  time steps. 8 

2) Measurement update (correction) procedure 

  +1 1 1+1 +1 +1 +1
ˆ = + G,k k+ kk k k k k k

, Z Z K y h Z f               (8) 

where 
+1 +1

ˆ
k k

Z  is the estimated state vector at the time instant  1t k t   , and 
+1G,kK  is the 

Kalman gain matrix which can be derived as  
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 
-1

+1 +1+1 +1 +1 +1 +1
= +T T

G,k kk k k k k k k k k k
K P H H P H R                   (9) 

In addition, the updated error covariance matrix 
+1 +1

ˆ
k k

P  is obtained as 

   2 +1 2 +1 +1 +1 +1+1 +1 +1 +1 +1
ˆ = +

T
T

n l G,k n l G,k G,k k G,kk k k k k k k k  P I K H P I K H K R K      (10) 

Thus, the time-varying physical parameter vector 
1 1

ˆ
k k 
θ  can be updated in real time since 

they are included in the augmented vector 
+1 +1

ˆ
k k

Z . It is concluded from the above formulas that 

the accuracy of state estimation completely depends on the selection of fading factor matrix Λ . 

Theoretically, the results of estimated physical parameter vector will be more ideal whenΛ  is 

updated with time, however, it will undoubtedly increase more workload. Obviously, owning to 

the use of empirical formula in Eq. (7), the accurate estimation of gradually varying parameters 

cannot be obtained herein. It can be used to roughly determine which physical parameter has the 

greatest possibility of time-varying changes. Thus, the physical parameter vector θ  is divided 

into two parts including a gradually varying parameter vector 
1θ  and a time-invariant parameter 

vector 
2θ . 

2.2 Step 2: Identifying the gradually varying physical parameters by the proposed DCT 

integrated with KF method 

In the second step, based on DCT and KF, the time-invariant parameter vector 
2θ  and the 

DCT coefficients corresponding to 
1θ  can be identified more exactly. 

2.2.1 Expansion of gradually varying physical parameters by using discrete cosine 

transform 

Supposing that the number of gradually varying elements is M  and the number of sampled 

points is N , the DCT of the i th  gradually varying physical parameter 

   1,  1,2, , ; 1,2, ,i nt i M n N    can be written as follows 
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      
1 1,

1

2 1
cos 2 1 1

21

N

i pp i
m

r m t p m
N N






 
   

  
              (11) 

where 
ir  denotes the DCT coefficients that fully describe the i th  gradually varying physical 

parameter 
1,i  in the transformed DCT space, 

1m  represents the Kronecker delta, and m  

represents the order of each DCT coefficient. Rewritten Eq. (11) into the matrix form as 

1=r Bθ                                   (12) 

in which r  represents the transformed DCT coefficient vector, and B  is an orthonormal 

matrix composed of the cosine functions which is N -by- N . =T
BB I , where I  is the identity 

matrix. Eq. (12) shows that DCT is a linear and reversible transformation.  

Energy concentration is an important property of DCT, that is, most of the energy in natural 

signals is concentrated in the low frequency components (the low order DCT coefficients). The 

energy of vibration of civil structures is mainly distributed in the low-frequency component.21 

This means that an approximation of the time-varying physical parameter can be obtained by 

considering only the first q  DCT coefficients 

1 1= T

q qθ θ B r                               (13) 

in which 1θ  is the approximated gradually varying physical parameter vector, T

qB  is a partition 

of the matrix B , which is N -by- q  representing that the first q  DCT base functions are used, 

and qr  only contains the first q  coefficients in r . Thus, the identification of N -

dimensional gradually varying physical parameter is transformed into the determination of q -

dimensional DCT coefficients. The dimension of unknown parameters is greatly reduced.  

Then an example is provided to prove the superiority of DCT in decomposing gradually 

changing parameters. A pre-set gradient physical parameter 
1k  is decomposed and reconstructed 

by WM and DCT, respectively. In this example, the sampling interval is 0.01s and the entire 
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sampling duration is 20s, thus the total number of the discrete points in the time-domain is 2000. 

Fig. 1(a) shows the reconstructed results by WM. a  represents the number of scale coefficients 

at the scale level J . With a lower scale level, more scale coefficients are retained to provide a 

more accurate reconstruction result. However, the boundary effect is still obvious even when the 

scale level is low, owning to the characteristics of wavelet basis function. Fig. 1(b) presents the 

reconstruction results of using DCT. The reconstructed signals are always consistent with the 

exact stiffness parameter even when the number of DCT coefficients is 8q  . However, when 

the number of wavelet scale coefficients is 8a  , the reconstructed signal differs greatly from 

the original one. It is demonstrated that DCT is better than WM in reducing the dimensionality of 

gradually changing physical parameters. In addition, the boundary effect is mitigated when using 

DCT to decompose and reconstruct signals. 

 

(a)                            (b) 

FIGURE 1 Decomposition and reconstruction of gradually varying k1 by: (a) WM; and (b) DCT 

2.2.2 Identification of structural state by KF under given DCT coefficients 

By Eq. (13), the gradually varying physical parameter vector 
1θ  is reconstructed based on 

the given time-invariant DCT coefficient vector qr  accordingly. Thus, the identification of 

original physical parameters is converted into the identification of time-invariant DCT coefficient 

vector qr  and time-invariant physical parameter vector 
2θ . The equation of motion of a time-

invariant linear system is rewritten as 
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   2 2( ) , ( ) , ( ) ( )q qt t t t  Mx C r θ x K r θ x ηf                   (14) 

KF is adopted to estimate the state (including displacement and velocity) of all DOFs with 

partial measurements when the external excitations are known. Owning to page limitation, only 

main formulas are listed in Eqs. (15)- (19). 

Defining the state vector  ,
T

T T=X x x , the state equation can be described in the discrete 

form as: 

1k k k k k k=  X A X B f w                         (15) 

in which 
kX  is the system state vector at the time instant t k t  , 

kA  is the state 

transformation matrix which is the implicit function of vectors qr  and 
2θ , and 

kB  is the 

influence matrix of 
kf . The discrete measurement equation is expressed as 

1 , 1 1 1 1 1 1k+ m k k k k k k        y x C X D f v                     (16) 

in which 
1kC  is the measurement matrix related to vectors qr  and 

2θ , and 
1kD  is the 

measurement matrix associated with the external force vector 
1kf . 

The KF algorithm includes two main procedures. The time update (prediction) is the first 

procedure, which is expressed as 

+1 +1
ˆ ˆ= = T

k k k k k kk k k k k k k k
 X A X B f P A P A Q；                 (17) 

The second procedure is the measurement update (correction). It can be expressed as  

   
-1

+1 1 1 1 1 +1 +1 +1 +1 +1+1 +1 +1 +1 +1 +1
ˆ = + = +T T

G,k k+ k k k G,k k k k kk k k k k k k k k k   X X K y C X D f K P C C P C R； (18) 

 +1 +1+1 +1 +1
ˆ = G,k kk k k k

P I K C P                         (19) 

Following the procedures of KF, the structural state vector is updated finally. 
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2.2.3 Estimation of DCT coefficients and time-invariant parameters by nonlinear 

optimization 

As can be seen from the above sections, the estimated state is an implicit function of DCT 

coefficient vector 
qr  and time-invariant parameter vector 

2θ , that is 

 2
ˆ ˆ= ,qX X r θ                                 (20) 

Then the estimated acceleration vector can be obtained by Eq. (14) as 

          1
2 2 2 2 2

ˆ ˆ ˆ, , , , ,q q q q q
  x r θ M ηf C r θ x r θ K r θ x r θ            (21) 

Finally, the optimal DCT coefficient vector 
qr  and the optimal time-invariant parameter 

vector 2θ  are estimated by minimizing the following objective error function 

  
2

2

2 2
, 2

ˆ, arg min ,
q

q m a q
    r θ
r θ x L x r θ=                     (22) 

Thus, the optimal gradually varying parameter vector 
1θ  can be reconstructed by using Eq. 

(13). 

In conclusion, the procedures of the proposed approach I to identify the gradually varying 

physical parameters under known excitations are shown in Fig. 2. 
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Reconstruct gradually varying 

physical parameters by DCT

Estimate structural state by KF 

Calculate the objective error function 

Convergence

met?

yes

Optimal solution of  DCT coefficients and time-invariant 

physical parameters  

Reconstruct  the gradually varying physical parameters by DCT

no

Calculate the DCT 

coefficients and  

time-invariant 

parameters by  

nonlinear least-

squares estimation  

Initial guess on DCT coefficients 

of gradually varying parameters 

FEKF  to locate the gradually varying physical parameters

Initial guess on time-invariant 

physical parameters 

Estimate structural acceleration by equation of motion 

 

FIGURE 2 Procedures of the proposed approach I under known excitations 

3. The proposed approach II: two-step approach to identify the 

gradually varying physical parameters under unknown excitations 

The proposed approach I is developed to identify the gradually varying physical parameters 

under known excitations by using partially measured acceleration responses. However, external 

excitations could not be always measured directly and easily in practical engineering 

applications48, 49. To further generalize the application to a more common case, the identification 

of gradually varying physical parameters under unknown excitations is discussed in this section. 

3.1 Step 1: Locating the gradually varying physical parameters by the proposed FEKF-UI 

algorithm 

In this section, a new algorithm, that is fading-factor extended Kalman filter under unknown 

input, is proposed. It is improved from the data fusion based EKF-UI proposed in 2016 by the 

authors, 50  as the latter one is only efficient to identify the time-invariant systems under unknown 

excitations. This study extends the algorithm for the identification of time-varying systems.  
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When the time-varying linear system is also subjected to partial unknown external inputs, 

the equation of motion in Eq. (1) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( )+ ( )u ut t t t t t t  Mx C x K x ηηf f                  (23) 

in which 
u
η  is the influence matrix of unknown input vector 

u
f . 

The state space equation is expressed as 

   1 1( ) ( ) ( ) ( ) + + = +u u ut t t t 

    
    

        
     
     

x 0x

xZ M ηf C x K x M f w g Z,f,f w

0 0θ

η       (24) 

Let ˆu

k k
f  be the estimation at t k t  , Eq. (24) is linearized at ˆ

k k
Z  and ˆu

k k
f  by the first 

order Taylor series expansion 

       ˆ ˆˆ ˆ+ +u u u u u

k k k k k k k k k k k k
  g Z,f,f g Z ,f,f G Z Z B f f             (25) 

where  

   

ˆ ˆˆ ˆ= =

=

u u u u
k k k kk k k k

u u

u

k k k k u

 

 


 
Z Z ;f f Z Z ;f f

g Z,f,f g Z,f,f
G B

Z f
;           (26) 

When using the EKF-UI algorithm to identify time-invariant systems under unknown 

excitations, partial acceleration and displacement (or strain) responses are fused as observations, 

which can be used to restrain the ‘drift’ in recognition results50. The observation equation herein 

can be expressed as: 

 
 

1 1
, 1 1 1 1 1 1 1

1 1 1 1 1 1

, 1 1

+ +
u u

m k a uk k k k k a k

k+ k k k k k

m k d k

, ,
 

      

    

 

      
       

     

x L 0 M ηf C x K x L M η f
y v = h Z f f v

x 0 L x 0
(27) 

where 
, 1m kx  is the measured displacement (or strain) responses at  1t k t    with the position 

matrix 
dL . 
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Eq. (27) can be linearized at 
+1k k

Z  and ˆu

k k
f  by using the first order Taylor series 

expansion 

       1 1 1 1 1 1+1 +1 +1 +1
ˆ ˆu u u u u

k k k k k kk k k k k k k k k k k k
, , ,        h Z f f h Z f f + H Z Z D f f,      (28) 

where 

   

+1 +1

+1 +1

ˆ ˆ= =u u u u
k k k k k k k k

u u

u

k k k k u

 

 
 

 
Z Z ;f f Z Z ;f f

h Z,f,f h Z,f,f
H D

Z f
；          (29) 

The proposed FEKF-UI has a similar process with FEKF. Only some main formulas are 

briefly presented here. 

1) Time update (prediction) 

 
 1

+1 +1

ˆ ˆ
ˆˆ ˆ= + d =

ˆ ˆ

T
k t k k k k k ku u T

kk k k k t k k k k k k k k k uTk t
k kk k k k

t t
t

 



   
    

       


Z Zf

Z

fZ f

P P Θ
Z Z g Z ,f,f P Λ Θ B Λ + Q

BP P
；  (30) 

where 
+1k k

Z
P  is the prediction error covariance matrix of state at  1t k t   , ˆ

k k


P  is the 

corresponding estimation error covariance matrix at t k t  , and 
2 +n lk k k k

t Θ I G . It is noted that 

the same fading factor matrix Λ  is used for the identification of time-varying systems, which 

can be found in Eq. (7). 

2) Unknown excitation calculation 

Under the condition that the number of observed measurements (sensors) is larger than that 

of the unknown excitations, 
1 1

ˆu
k+ kf  can be computed as50 

    1
1 1 +1 1 11 1 +1 +1 +1 +1

ˆ ˆ ˆ=u uT u u u
k+ k+ G,k k+ kk+ k k k k k k k k k k k k k,

   f S D R Ι H K y h Z f ,f D f     (31) 

 
-1

1
1 1 +1+1 +1 +1= uT u

k+ k+ G,kk k k k k k
 

 
S D R Ι H K D                    (32) 
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where 
+1 +1

ˆu

k k
f  is the estimation of 

u
f  at  1t k t   , and 

+1G,kK  is the Kalman gain matrix 

which can be found in Eq. (9). 

3) Measurement update (correction) 

    +1 1 1+1 +1 +1 +1 +1 +1 +1
ˆ ˆ ˆˆ = + u u u u

G,k k+ kk k k k k k k k k k k k k k
,   Z Z K y h Z f ,f D f f      (33) 

In addition, the error covariance matrices are expressed as50 

1

+1| 1 1 +1| 1 +1| 1 +1| 1 +1| +1|
ˆ ( + )( )u uT T

k k G,k k k k k k k k k G,k k k k k



     Z Z
P I K D S D R H I K H P

         
(34) 

+1| +1 1 +1| 1 +1| 1 1 +1| 1
ˆ ˆ ˆ= ( )T u

k k k k k k k G,k k k k      f Zf fZ
P S P P K D S；                (35) 

Similarly, based on the identification results of FEKF-UI, the parameter vector θ  is divided 

into a gradually varying parameter vector 
1θ  and a time-invariant parameter vector 

2θ  

qualitatively. 

3.2 Step 2: Identification of the gradually varying physical parameters by the proposed DCT 

integrated with KF-UI method 

After the localization of gradually varying physical parameters by using FEKF-UI, a new 

method is proposed for the identification of the time-invariant parameter vector 
2θ  and the DCT 

coefficient vector qr  corresponding to 
1θ  under unknown excitations, which combines the 

advantages of DCT and KF-UI. KF-UI was proposed by the authors in previous studies to estimate 

the structural state of a time-invariant system by using partial measurements when the external 

excitations are unknown.51 Physical parameters of the time-invariant system should be known in 

advance when performing KF-UI. Thus, given the assumed qr  and 
2θ , KF-UI can be applied 

herein to estimate the structural state and unknown excitations simultaneously.  

The proposed method by using DCT integrated with KF-UI has a similar process as method 

in Section 2.2. Firstly, the gradually varying physical parameters distinguished in the first step 

can be reconstructed based on the given time-invariant DCT coefficient vector qr  in Eq. (13). 
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Then with the initial time-invariant parameter vector 
2θ , KF-UI is applied to obtain the estimated 

state and input. 

The equation of motion of a time-invariant linear system under unknown excitations is 

rewritten as： 

   2 2( ) , ( ) , ( ) ( )+ ( )u u

q qt t t t t  Mx C r θ x K r θ x η ηf f               (36) 

The state equation can be described in the discrete form as 

1

u u

k k k k k k k k=   X A X B f B f w                     (37) 

where u

kB  is the influence matrix of u

kf . 

The discrete measurement equation is expressed as 

, 1

1 1 1 1 1 1 1 1

, 1

m k u u

k+ k k k k k k k

m k



      



 
     
 

x
y C X D f D f v

x
            (38) 

The main formulas of KF-UI are briefly presented as follows： 

1) Time update (prediction) 

+1 +1

ˆ ˆ
ˆˆ= =

ˆ ˆ

T
k k k ku u u k

k k k k k k kk k k k k k k k T

kk k k k

   
           

X Xf

X

fX f

P P A
X A X B f B f P A B + Q

BP P
；         (39) 

2) Unknown excitation calculation 

Under the condition that the number of observed measurements (sensors) is larger than that 

of the unknown excitations, 
1 1

ˆu
k+ kf  can be computed as51 

  1
1 +1 1 1 +1 1 1 1 11 1 +1

ˆ =u uT
k+ k k+ k G,k k+ k k kk+ k k k


      f S D R Ι C K y C X D f          (40) 

in which  
-1

1
1 +1 1 1 +1 +1= uT u

k+ k k+ k G,k k



 
 

S D R Ι C K D , and +1G,kK  can be found in Eq. (18). 

3) Measurement update (correction) 

 +1 1 1 1 1 +1+1 +1 +1 +1 +1 +1
ˆˆ = + u u

G,k k+ k k k kk k k k k k k k    X X K y C X D f D f           (41) 
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In addition, the error covariance matrices are expressed as51 

1

+1| 1 , 1 +1 1 +1 1 +1 , 1 +1 +1|
ˆ ( + )( )u uT T

k k G k k k k k k G k k k k



     X X
P I K D S D R C I K C P

        
(42) 

+1| +1 1 +1| 1 +1| 1 , 1 +1 1
ˆ ˆ ˆ= ( )T u

k k k k k k k G k k k      f Xf fX
P S P P K D S；               (43) 

Thus, following the procedures of KF-UI, the structural state vector and unknown input are 

updated as 

   2 2
ˆ ˆˆ ˆ= , ; = ,u u

q qX X r θ f f r θ                         (44) 

Similarly, the estimated acceleration is rewritten as 

            1
2 2 2 2 2 2

ˆˆ ˆ ˆ, + , , , , ,u u
q q q q q q

  x r θ M ηf η f r θ C r θ x r θ K r θ x r θ      (45) 

Finally, the optimal DCT coefficient vector qr  and the optimal time-invariant physical 

parameter vector 2θ  are obtained by minimizing the same objective error function in Eq. (22), 

and the optimal gradually varying physical parameter vector 
1θ  can be reconstructed by DCT in 

Eq. (13). The detailed procedures of the proposed approach II are shown in Fig. 3. 

Reconstruct gradually varying 

physical parameters by DCT

Estimate structural state by KF-UI 

Calculate the objective error function 

Convergence

met?

yes

Optimal solution of  DCT coefficients and time-invariant 

physical parameters  

Reconstruct  the gradually varying physical parameters by DCT

no

Calculate the DCT 

coefficients and  

time-invariant 

parameters by  

nonlinear least-

squares estimation  

Initial guess on DCT coefficients of 

gradually varying parameters 

FEKF-UI  to locate the gradually 

varying physical parameters

Initial guess on time-invariant 

physical parameters 

Estimate structural acceleration by equation of motion 

 

FIGURE 3 Procedures of the proposed approach II under unknown excitations 
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4. Numerical verifications 

4.1 Identification of gradually varying physical parameters subjected to known excitations 

Example 1: A gradually varying truss model subjected to a known external excitation 

As shown in Fig. 4, a one-span truss structure subjected to a known white noise excitation is 

investigated. The proposed approach I is used to identify the stiffness parameter of each member 

using only partially measured acceleration responses. 

(1,2) (7,8)

(9,10)(5,6)(3,4) (13,14)

(11,12)7

2

1

3 5

4 8

6 9

10

11

12

13 14

15

f(t)

 

FIGURE 4 A one-span truss subjected to a white noise excitation 

（Note: the symbols ①,②.. represent the number of member. (1, 2) means the horizontal and vertical DOFs 

of a specific node.） 

The truss structure contains 15 members and 14 DOFs in total. The length and cross-section 

of each bar is =1mil  and  5 2=7.85 10 m  1,2 ,15iA i  , respectively. The total mass of each 

bar is  =54.95kg 1,2 ,15im i  . The Rayleigh damping is adopted with the first two damping 

ratios assumed as 0.02. The first five natural frequencies of the time-invariant truss are 1.48Hz, 

2.99Hz, 4.03Hz, 6.38Hz and 7.42Hz, respectively. The truss model is subjected to a white noise 

excitation ( )f t , which acts on the 4th DOF. The sampling frequency is 100Hz during the process 

of dynamic response calculation, and the sampling duration is 10s. Seven acceleration responses 

of the 2nd, 4th, 6th, 8th, 10th, 12th and 14th DOFs are used as measured responses for the identification. 

They are the vertical acceleration responses of nodes. Each measured response is polluted by 

white noise with 3% variance in root mean square (RMS), namely 

   3%   2,4,6 8 10 12 14i,noisy i,clean i,cleanstd    x x x rand i ，，，，          (46) 
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where i,noisyx  is the simulated ‘measured’ noisy acceleration vector, i,cleanx  is the noisy-free 

acceleration vector,  i,cleanstd x  means the standard deviation of 
i,cleanx  and rand  is a random 

standard normal distribution vector. 

In the truss model, single gradual change of the member stiffness is assumed. The stiffness 

parameter change in the truss is defined as  

 

 

5

5

3 5

2

7

1.57 10 N m  1,3,4 ,15

1.57 10 N/ m,  0s  2s

-3.62 10 1.64 10 N/ m ,   2s 8.5s     

1.33 10 N/ m,   8.5s 10s

  

   


     
   

，ik i

t

k t t

t

 

In the first step, the FEKF algorithm is implemented to locate the gradually varying 

parameters in the truss. 2 70=2 =1.02  is used in this case.8 Results of locating time-varying 

stiffness parameters are shown in Fig. 5. It is observed from Fig. 5 that the stiffness parameter of 

the second element is more likely to have the time-varying property, since it transits from one 

stable converged value to the other stable value, while other stiffness values are more likely to 

remain unchanged with occasional fluctuations. However, it is difficult to determine the exact 

beginning and end time instants and the specific form of stiffness variation. 
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(a)                           (b) 

 

(c)                           (d) 

 

(e)                           (f) 

FIGURE 5 Location of time-varying stiffness parameters using FEKF (3% noise): (a)
2k ; (b)

4k ; (c)

9k ; (d) 
11k ; (e)

12k ; (f) 
14k  

In the second step, 
2k  is expanded by DCT with =8q . Thus, the identification of 15,000 

unknown stiffness parameter coefficients in the time-domain is converted to the identification of 

eight DCT coefficients of 
2k  and other 14 time-invariant stiffness parameters. Based on the 

proposed approach I which integrating DCT and KF, the gradually changing and time-invariant 
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structural stiffness parameters are identified and shown in Fig. 6 with comparisons to the exact 

values. It is illustrated that the proposed approach I can effectively track the gradually change of 

structural physical parameters in the truss. Furthermore, the identification of other time-invariant 

parameters also shows a high precision. Most of the identified time-invariant parameters are 

identical to the exact values, and the maximum relative error is around 0.5% for the twelfth 

element stiffness parameter. 

     

(a)                        (b)                          (c) 

   

(d)                        (e)                          (f) 

FIGURE 6 Identification of partial stiffness parameters: (a)
2k ; (b)

3k ; (c)
6k ; (d)

7k ; (e)
11k ; (f)

12k  

Example 2: A gradually varying bridge model subjected to a known ground excitation 

As shown in Fig. 7, the finite element model of a bridge is composed of three-span main beam 

models and two pier models. The whole model is divided into 16 elements. Each element contains 

two nodes and three DOFs in the horizontal, vertical, and rotational directions. The beam has a 

uniform cross section with area 21.56mbA   and moment of inertia 44.02mbI  . The length of 

beam element between two adjacent nodes is 12mbl  . The cross section area of the two piers is 

21.57mpA   and the element length is 5mpl  . The mass density is 3300kg m   and the 

modulus of elasticity is assumed as 810 PaE  . Rayleigh damping model is used and the damping 
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ratios of the first two modes of the bridge are 2%. The first four modal frequencies for the time-

invariant bridge are 0.516 Hz, 1.296 Hz, 1.513 Hz and 1.758 Hz. 

1 2 3 4 5 6 7 8 9 10 11 12 13

14

15

16

17

a cb

a:Horizontal response；b:Vertical response；c:Rotational response

36m 72m 36m

 

FIGURE 7 A bridge model 

The dynamic responses are computed with a sampling frequency of 100 Hz and a sampling 

duration of 10 s. The bridge model is subjected to the 1940 El Centro N-S earthquake with the 

peak value scaled to 0.2g. The vertical acceleration responses at the nodes No. 2, 3, 5, 6, 7, 8, 9, 

11 and 12, and the horizontal acceleration responses at the nodes No. 14  and 16  are used as 

measurements. Each measured response is polluted by white noise with 3% RMS as 

   3% 3,6,10 13 16 19 22 26 29 32 33 36 37i,noisy i,clean i,cleanstd    x x x rand  i ，，，， ， ， ， ， ， ，       (47) 

Two pier elements are assumed to be gradually varying. The theoretical values of the 

stiffness parameters are given as below 

   

 

 

7 7

7

5 7

13

7

7

6 7

16

7

3.35 10 N m  1,2, ,12 3.14 10 N m  14,15

3.35 10 N/ m,  0s  3s

8.38 10 3.60 10 N/ m ,   3s 7s

3.02 10 N/ m,   7s 10s

3.14 10 N/ m,  0s  2s

1.22 10 3.38 10 N/ m ,   2s 8.5s

2.35 10 N

     

   


      
   

  

      



；i ik i k i

t

k t t
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t

k t t     

/ m,   8.5s 10s




   t

 

The time-varying stiffness parameters are localized using the FEKF algorithm. For brevity 

and without losing generality, only partial identification results are shown in Fig. 8. Herein, the 

fading factor is adopted as 2 70=2 =1.02 .8 According to the identification results in Fig. 8, the 

stiffness of pier element between nodes 4 and 14 (
13k ), and the stiffness of pier element between 
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nodes 16 and 17 (
16k ), have the highest possibility of having changes. However, it is difficult to 

determine the pattern and degree of change accurately owning to the coarse identification results. 

 

(a)                        (b)                      (c) 

 

(d)                        (e)                      (f) 

FIGURE 8 Location of time-varying stiffness parameters: (a)
1k ; (b)

3k ; (c)
7k ; (d)

10k ; (e)
13k ; (f)

16k  

According to the localization results of time-varying parameters in Fig.8, 
13k  and 

16k  are 

expanded by using DCT with =6q . Therefore, the unknown variables in the nonlinear least-

squares optimization process include 6 DCT coefficients for 
13k , 6 DCT coefficients for 

16k  and 

14 parameters for other time-invariant stiffness. Fig. 9 shows the optimization results of gradually 

varying stiffness parameters using the proposed DCT integrated with KF method when the RMS 

level of noise is 3%. The identification results are consistent with the exact values. The proposed 

approach I can accurately track the start and end time instants of the gradual change, the form of 

varying, and the time-varying stiffness values with changes.  
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(a)                          (b) 

FIGURE 9 Identification of gradually varying stiffness parameters (3% noise): (a)
13k ; (b)

16k  

Fig. 10 shows the identification results of partial time-invariant stiffness parameters. It can 

be observed that most stiffness parameters are identified accurately. It should be noted that 
15k  

has the maximum identification error, however, the relative error is only 1.2%. The desirable 

identification results are obtained using only partial acceleration responses which are polluted by 

a high level of measurement noise. 

 

(a)                          (b) 

 

   (c) 

FIGURE 10 Identification of partial time-invariant stiffness parameters of the bridge: (a)
1k ; (b)

7k ; (c)
15k  
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4.2 Identification of gradually varying physical parameters subjected to unknown 

excitations 

Example 1: A gradually varying truss model subjected to an unknown external excitation 

The same truss model in Fig. 4 is utilized to validate the effectiveness of the proposed 

approach II with unknown excitations. The external white noise excitation is assumed unknown 

in the identification analysis. The acceleration responses of the 2nd, 4th, 6th, 8th, 10th, 12th and 14th 

DOFs are collected as measurements for identification. Additionally, the displacement responses 

of the 4th and 10th DOFs are measured as a supplement for data fusion. White noise with 3% 

variance in RMS is added to all the measured responses. 

There are totally 15,000 stiffness coefficients in the time-domain to be identified in the truss. 

First, the proposed FEKF-UI is applied to locate the gradually varying stiffness parameters. Fig. 

11 shows the localization results of some elemental stiffness. It is noted that 
2k  is likely to be 

time varying as it transits from one converged value to another value. 

 

(a)                        (b)                      (c) 

FIGURE 11 Location of time-varying stiffness parameters using FEKF-UI (3% noise): (a)
2k ; (b)

3k ; (c)

11k   

Then, 
2k  is expanded by DCT with =6q , transforming the parameters to be identified into 

6 DCT coefficients and 14 time-invariant stiffness parameters. The identification results shown 

in Fig.12 validate that the proposed approach II could identify the gradually varying or time-
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invariant stiffness parameters in the truss model. Furthermore, the identification accuracy of the 

unknown white noise excitation is good by comparing with its exact value as shown in Fig. 13. 

 

(a)                        (b)                      (c) 

FIGURE 12 Identification of partial stiffness parameters in the truss: (a)
2k ; (b)

5k ; (c)
11k   

 

FIGURE 13 Identification of external excitation (3% noise) 

Example 2: A gradually varying bridge model subjected to an unknown ground excitation 

In this section, the same bridge model in Fig. 7 is used to verify the effectiveness of the 

proposed approach II, and the ground excitation is assumed unknown in the identification. Partial 

measurements include the vertical acceleration responses at the nodes No. 2, 3, 5, 6, 7, 8, 9, 11 

and 12, the horizontal acceleration responses at the nodes No. 14 and 16, and the strain responses 

on the top surface of the 2nd, 3rd and 14th nodes. Each measured response is polluted by white 

noise with 3% variance in RMS. 

The proposed FEKF-UI is applied to locate the gradually varying stiffness parameters when 

the external excitations are unknown. Fig. 14 shows the localization results of some elemental 

stiffness values. 
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(a)                     (b)                      (c) 

  

(d)                     (e)                      (f) 

FIGURE 14 Location of time-varying stiffness parameters using FEKF-UI (3% noise):(a)
1k ; (b)

3k ; 

(c)
7k ; (d)

10k ; (e)
13k ; (f)

16k  

The stiffness of the 13th and 16th elements are more likely to be time varying since their 

stiffness values transit from one stable convergence value to the other stable one. Then DCT is 

utilized to transform the time-varying stiffness parameters 
13k  and 

16k  with =6q  into the 

corresponding coefficients. The number of unknown DCT coefficients and the time-invariant 

stiffness parameters in the nonlinear least-squares optimization process is 26 in total, and these 

DCT coefficients and time-invariant stiffness parameters are identified by the proposed method. 

Fig. 15 shows the reconstructed gradually varying stiffness parameters based on the optimized 

DCT coefficients. In addition, for brevity and without losing generality, part of the optimized 

time-invariant physical parameters are shown in Fig. 16. The results demonstrate that the 

identification accuracy is good when the noise RMS degree is 3%. The proposed approach II can 

be used to identify the external excitations simultaneously, as shown in Fig. 17. It is demonstrated 

that the proposed approach II is effective in identifying the gradually varying physical parameters 

under unknown excitations with a relatively high level of noise. 
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(a)                       (b) 

 FIGURE 15 Identification of gradually varying stiffness parameters of the bridge: (a)
13k ; (b)

16k  

 

(a)                    (b)                      (c) 

FIGURE 16 Identification of partial time-invariant stiffness parameters of the bridge: (a)
1k ; (b)

7k ; (c)
14k   

 

FIGURE 17 Identification of seismic acceleration (3% noise) 

5. Case study: Identification of time-varying cable forces in cable-stayed 

bridges 

5.1 Using the proposed approach I to identify the time-varying cable force 

Under the influence of external excitations such as wind and vehicle loads, the cable tension 

force of a cable-stayed bridge can vary gradually with time. The proposed approach I provides an 

idea to identify the cable force using only one monitored acceleration response of the cable. 

The motion of equation of a cable subjected to distributed force along the cable length (such 

as wind) has been investigated by many researchers.41 Assuming that the vibration of the cable 
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contains only r  modes, the governing equation of the first r -order can be written in the matrix 

form as 

        1,2, ,r r r r r r r r ra t t Nt   M q C q K q Λ q f+               (48) 

in which rq , rq , and rq  are the first r -order modal acceleration, modal velocity and modal 

displacement vectors, respectively;  a t  denotes the variation coefficient of the cable tension 

force, namely     0=a t T t T , where 
0T  is the static tension,  T t  is the varied cable force, Nt  is 

the number of time steps. The term 
rΛ  is related to the nonlinear vibrations, which reflects the 

axial elongation effect due to the transverse vibration of the cable. rf  is the modal input vector; 

rM , 
rC  and 

rK  are mass, damping and stiffness matrices, which can be expressed as  

   
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TL
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 (49) 

where   is the mass density per unit length of cable, L  is the cable length under the static 

tension, 1  is the first order natural circular frequency,   1,2, ,n r  is the damping ratio of the 

mode n . 

It shall be noted that the varied cable tension force can be determined when  a t  is identified. 

rf  is the modal input of the applied wind load. Considering two common cases in engineering 

applications with and without anemometers installed on the bridge, the identification of  a t  

based on the integrated DCT with KF method is discussed. 

5.1.1 Case I: Identification of time-varying cable force when anemometer installed on the 

bridge 

For most long-span cable-stayed bridges, wind anemoscopes are required for SHM and used 

to provide the data of wind speed and wind load. Thus, the identification of  a t  can be 
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conducted by the proposed approach I under the case of known excitations. In addition, 

considering  a t  is an unknown scalar, the first step of time-varying parameter localisation in 

the proposed approach I can be omitted. The following section presents the identification 

procedures of variation coefficient  a t  using the method in the second step of the proposed 

approach I.  

(1) Decompose the Nt -dimensional  a t  into q  coefficients by DCT. 

(2) Given initial guess of DCT coefficients   1,2, ,d i i q , the initial value of  a t  can 

be reconstructed. Then the process in Step 2 of the proposed approach I is followed to identify 

the structural state by KF.  

The state vector is defined as 
T

= T T

r r r
 
 X q ,q . Considering that the transverse vibration 

amplitude of the cable is small, the nonlinear item 
r rΛ q  can be ignored. Thus, the state equation 

can be rewritten as: 

 
  -1= =

 
 

  

q
X g X w

M f C q d K q

r

r r
r r r r r ra

               (50) 

In practice, accelerometers are commonly used to measure the vibration of stay cables. 

Therefore, the measurement equation is rewritten as 

     

     
 

1 1

1 1
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= +
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 
 
 
 
 
 

Y g X v

r a r a

k r k k

p p

r a r a

l l

l l

             (51) 

in which p  is the number of accelerometers,  j
al  represents the position of the j th  

accelerometer.  r  is the mode shape function of mode r  and    sini x i x L  . 

Formulas of KF used to estimate the structural state can be referred to Eqs. (17)-(19). The 

estimated acceleration response can be obtained as 
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        -1ˆ ˆ ˆ=  q d M f C q d d K q dr r r r r r ra                 (52) 

(3) Estimate DCT coefficients by nonlinear optimization and reconstruct  a t . 

The optimal DCT coefficient   1,2, ,d i i q  can be estimated by minimising the 

following objective error function 

  
2

+1
2

ˆargmin=    d
d Y L q dk qa r                     (53) 
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. Thus, the optimal variation coefficient of the cable tension 

force  a t  can be reconstructed by Eq. (13). 

5.1.2 Case II: Identification of time-varying cable force when no anemometer on the bridge 

When no anemometer is installed on the bridge, the wind load can be included in the process 

noise according to previous studies41 to simplify the complexity of the problem. Thus, the above 

proposed approach in case I is modified to identify the time-varying cable force when the 

anemometer is not installed on the bridge. 

The state equation is rewritten as  

 
  -1= =
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X g X w

M C q d K q

r

r r
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               (54) 

The state equation is discretized into 

, 1 ,r k k r k k= X A X w                            (55) 

The observation equation is rewritten as  
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The main formulas of KF algorithm are modified as 
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The estimation of acceleration response is derived as  

        -1ˆ ˆ ˆ
r r r r r ra q d M C q d d K q d=                   (60) 

Finally, the optimal DCT coefficient   1,2, ,d i i q  can be estimated by Eq. (53). 

5.2 Numerical verification 

The Nanjing Yangtze River No. 3 Bridge is adopted in the numerical study to validate the 

effectiveness of the proposed approach in case I (with anemometer installed on the bridge). Fig. 

18 shows the structural geometric information. The details of the whole bridge model can be 

referred to Li et al.41, which are not introduced herein owning to the page limitation. There are 

totally 168 stay cables installed on the bridge. Among these, the No. J03 cable, which is marked 

red in Fig. 18 (b), is investigated as the target cable. The parameters of No. J03 cable is: the length 

is 112.029m ; the section area is 241.948cm ; the unit length mass is 32.929kg/m ; the static 

tension is 
0 =1470kNT ; the fundamental frequency at the initial tension is 0.9031Hz ; and the 

damping ratio is assumed to be 0.01. 
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(a) 

 

(b) 

FIGURE 18 Geometric dimensions of the cable-stayed bridge: (a) elevation of the bridge (unit: cm. The 

unit of height is meter.) and (b) sequential numbers of cables (unit: cm). (Referred to Li et al.41) 

It is assumed that the time-varying cable force of No. J03 cable is induced by a truck 

weighted 100t passing over the bridge with a speed of 20 m/s. Then the real variation coefficient 

of the cable tension force can be obtained by     0=a t T t T . Additionally, the fluctuating wind load 

causes the vibration of the cable, and the wind load can be generated by Davenport spectrum52. 

Since an anemometer is installed on the bridge, the wind force is assumed known in the 

identification process. Thus, the modal input vector 
rf  can be calculated accordingly. 

rf  is 

applied in Eq. (48) together with the real variation coefficient  a t . When given 11r   as in 

reference41 the modal acceleration responses of the target cable can be calculated by solving Eq. 

(48). In addition, the calculated acceleration responses are polluted by white noise with 5% 
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variance in RMS. Only one acceleration at one sixth of the length from the bottom of the cable is 

used as the measurement for identification. 

The variation coefficient of the cable force  a t  is expanded by DCT with 30q  . Then 

the optimal DCT coefficient d  is identified following the procedures of the integrated DCT with 

KF method. The identified cable tension force is shown in Fig. 19 compared with the exact value. 

Results indicate that even in the case of high level noise, the gradually varying cable force can be 

identified accurately by using the proposed approach I when only one acceleration sensor is fixed 

on the cable and the wind load are available.  

 

FIGURE 19 Identified cable force by the proposed approach I with anemometer on the bridge  

5.3 Experimental verification 

A scaled steel stay cable experiment carried out at Harbin Institute of Technology42 is further 

employed to validate the effectiveness of the proposed approach in case II (without anemometer 

installed on the bridge). The length, mass per unit length, damping ratio and natural frequency of 

the cable model are 14.03 m, 1.33 kg/m, 0.012 and 2.493 Hz, respectively. The experimental setup 

is shown in Fig. 20. Two 550kw blower fans (marked as Blower No.1 and Blower No.2 in Fig.20) 

are utilized to simulate the influence of wind and excite the vibrations of the cable both in-plane 

and out-of-plane. The cable tension can be adjusted by a threaded rod, since the rod is installed 

in a series connection with the cable and can be operated manually to produce a changing cable 
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force. Then the real cable force is measured simultaneously by the load cell installed between the 

left anchorage and the sliding bearing. Herein, the in-plane acceleration response measured by an 

accelerometer installed 3.6m from the sliding bearing is employed to identify the varied cable 

force using the proposed approach. The acceleration and cable tension data are recorded by the 

DSpace data acquisition system and its sampling frequency is 200 Hz. More details of this 

experiment can be referred to Bao et al.42.  

 
(a) 

   

(b) (c) (d) 

FIGURE 20 Experiment setup: (a) experimental model; (b) tension adjusting device; (c) data acquisition 

system; and (d) blowers and cable. (Referred to Bao et al.42) 

Since the fluctuating wind cannot be measured in the test, the wind load is unknown in the 

identification. Therefore, the proposed approach in case II (without anemometer installed on the 

bridge) is applied to identify the time-varying force of the cable in test. The variation coefficient 

of the cable force  a t  is expanded by DCT with 30q  . Then the initial value of  a t  is 

reconstructed by the given initial guess of DCT coefficients, and the structural state is estimated 

by KF using the measured in-plane acceleration response. The optimal DCT coefficient d  

estimated by the nonlinear optimization in Eq. (53), and the optimal variation coefficient of the 
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cable force  a t  is reconstructed by DCT. Afterwards, the cable force can be obtained by 

    0=T t a t T , which is shown in Fig. 21.  

 
FIGURE 21 Identified cable force by the proposed approach I without anemometer on the bridge 

The identification results show that the proposed approach I can track the change of cable 

force accurately when no anemometer is installed on the bridge. This result validates that the 

proposed approach I can be applied to conduct the identification of time-varying cable forces in 

practical engineering applications. When no load cell and anemometer are installed on the cable, 

it is very economical and practical to identify the change of cable force by using the measured 

acceleration response of an accelerometer mounted on the cable. 

6. Conclusions 

In this paper, two approaches are proposed to identify the gradually varying physical 

parameters under known/unknown excitations by using the limited number of measurements. The 

proposed approaches are based on the FEKF/ FEKF-UI for locating time-varying physical 

parameters, DCT analysis for expanding time-varying parameters, KF/KF-UI for identifying 

structural state by using partial measurements and nonlinear optimization for estimating 

coefficients. The main contributions of this paper are listed as follows.  

(i) Two-step approaches are proposed for the identification of gradually varying physical 

parameters of linear structures using only partially measured structural responses. FEKF-

UI is firstly proposed to locate the time-varying parameters under unknown excitations, 

which aids to reduce the number of coefficients involved in the optimization process; 
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(ii) DCT is used to expand the gradually varying physical parameters instead of previous WM 

analysis. It is demonstrated that DCT is more suitable for the decomposition of gradually 

varying parameters, which retains less coefficients to reconstruct the original varying 

parameters. As the number of unknown coefficients involved in the optimization is 

reduced, the proposed approaches are more efficient and robust to measurement noise than 

previous WM based methods. In addition, the boundary effect of WM can be avoided;  

(iii) It is further extended to the identification of gradually changing physical parameters under 

unknown excitations. Both the time-varying parameters and unknown excitations are 

identified simultaneously. 

Numerical identification results of a truss and a bridge model validate that the proposed 

approaches can effectively identify the gradually varying and time-invariant physical parameters 

under known/unknown excitations. Moreover, the identification of time-varying cable force of 

cable-stayed bridges is investigated as a case study of the proposed approach I. Both the numerical 

and experimental results show that the proposed approach can be used to identify the time-varying 

cable force by only using the measurement of one accelerometer installed on the cable. 

Acknowledgments 

This research is supported by the National Natural Science Foundation of China through the 

key project No. 51838006. The authors also appreciate the support from Professor Hui Li and 

Professor Yuequan Bao at Harbin Institute of Technology for providing experimental data of the 

time-varying cable force. Finally, contributions by the anonymous reviewers are also highly 

appreciated. 

References  

[1] Hou RR, Xia Y. Review on the new development of vibration-based damage identification 

for civil engineering structures: 2010-2019. Journal of Sound and Vibration. 2020; 491(9): 

115741. 

[2] Bao YQ, Li H. Machine learning paradigm for structural health monitoring. Structural health 

monitoring. 2020; 4:147592172097241. 



 

193 

 

[3] Wang ZC, Ren WX, Chen GD. Time-frequency analysis and applications in time-

varying/nonlinear structural systems: A state-of-the-art review. Advances in Structural 

Engineering. 2018; 21: 1562-1584. 

[4] Ni PH, Li J, Hao H, Xia Y, Wang X, Lee JM, Jung KH. Time-varying system identification 

using variational mode decomposition. Structural Control & Health Monitoring. 2018; 25(6): 

e2175. 

[5] Lin JW, Betti R, Smyth AW, Longman RW. On-line identification of nonlinear hysteretic 

structural systems using a variable trace approach. Earthquake Engineering and Structural 

Dynamics. 2001; 30(9):1279-1303.  

[6] Askari M, Yu Y, Zhang CW, Samali B, Gu XY. Real-time tracking of structural stiffness 

reduction with unknown inputs, using self-adaptive recursive least-square and curvature-

change techniques. International Journal of Structural Stability and Dynamics. 2019; 

19(10):1950123. 

[7] Bisht SS, Singh MP. An adaptive unscented Kalman filter for tracking sudden stiffness 

changes. Mechanical Systems and Signal Processing. 2014; 49(1-2):181-195. 

[8] Yuen KV, Kuok SC. Online updating and uncertainty quantification using nonstationary 

output-only measurement. Mechanical Systems and Signal Processing. 2016; 66-67:62–77. 

[9] Yuen KV, Kuok SC, Dong L. Self-calibrating Bayesian real-time system identification. 

Computer-Aided Civil and Infrastructure Engineering. 2019; 34: 806–821.  

[10] Yang JN, Lin SL, Huang HW, Zhou L. An adaptive extended Kalman filter for structural 

damage identification. Structural Control & Health Monitoring. 2006; 13: 849–867.  

[11] Huang Q, Xu YL, Liu HJ. An efficient algorithm for simultaneous identification of time-

varying structural parameters and unknown excitations of a building structure. Engineering 

Structures. 2015; 98:29–37. 

[12] Yang YH, Nagayama T, Xue K. Structure system estimation under seismic excitation with 

an adaptive extended Kalman filter. Journal of Sound and Vibration. 2020; 489:115690. 

[13] Wang N, Li L, Wang Q. Adaptive UKF-based parameter estimation for Bouc-Wen model of 

magnetorheological elastomer materials. Journal of Aerospace Engineering. 2019; 32(1): 

04018130. 

[14] Huang Y, Yu JQ, Beck JL, Zhu HP, Li H. Novel sparseness-inducing dual Kalman filter and 

its application to tracking time-varying spatially-sparse structural stiffness changes and 

inputs. Computer Methods in Applied Mechanics and Engineering. 2020; 372:113411. 

[15] Ghanem R, Romeo F. A wavelet-based approach for the identification of linear time-varying 

dynamical systems. Journal of Sound and Vibration. 2000; 234(4):555-576. 

https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112067337.html
https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112067337.html


 

194 

 

[16] Chang CC, Shi YF. Identification of time-varying hysteretic structures using wavelet 

multiresolution analysis. International Journal of Non-Linear Mechanics. 2010; 45(1): 21-

34. 

[17] Shi YF, Chang CC. Substructural time-varying parameter identification using wavelet 

multiresolution approximation. Journal of Engineering Mechanics. 2012; 138(1):50-59. 

[18] Shi YF, Chang CC. Wavelet-based identification of time-varying shear-beam buildings 

using incomplete and noisy measurement data. Nonlinear Engineering. 2013; 2(1-2): 29-37. 

[19] Xiang M, Xiong F, Shi YF, Dai KS, Ding ZB. Wavelet multi-resolution approximation of 

time-varying frame structure. Advances in Mechanical Engineering. 2018; 10(8):1-19. 

[20] Wang C, Ren WX, Wang ZC, Zhu HP. Time-varying physical parameter identification of 

shear type structures based on discrete wavelet transform. Smart Structures and Systems. 

2014; 14(5): 831-845. 

[21] Wang C, Ai DM, Ren WX. A wavelet transform and substructure algorithm for tracking the 

abrupt stiffness degradation of shear structure. Advances in Structural Engineering. 2019; 

22(5): 1136-1148. 

[22] Chen SY, Lu JB, Lei Y, Identification of time-varying systems with partial acceleration 

measurements by synthesis of wavelet decomposition and Kalman filter. Advances in 

Mechanical Engineering. 2020; 12(6):168781402093046.  

[23] Lei Y, Yang N. Simultaneous identification of structural time-varying physical parameters 

and unknown excitations using partial measurements. Engineering Structures. 2020; 214: 

110672. 

[24] Silik A, Noori M, Altabey WA, Ghiasi R. Selecting optimum levels of wavelet multi-

resolution analysis for time-varying signals in structural health monitoring. Structural 

Control & Health Monitoring.2021; e2762. 

[25] Xin Y, Li J, Hao H. Enhanced vibration decomposition method based on 

multisynchrosqueezing transform and analytical mode decomposition. Structural Control & 

Health Monitoring.2021; 28: e2730. 

[26] Li JT, Zhu XQ, Law SS, Samali B. Time-varying characteristics of bridges under the passage 

of vehicles using synchroextracting transform. Mechanical Systems and Signal Processing. 

2020; 140:106727.1-106727.19.  

[27] Zhu XQ, Law SS. Recent developments in inverse problems of vehicle-bridge interaction 

dynamics. Journal of Civil Structural Health Monitoring. 2016; 6(1): 107-128. 

[28] Tian YD, Wang L, Zhang J. Time-varying frequency-based scaled flexibility identification 

of a posttensioned concrete bridge through vehicle-bridge interaction analysis. Structural 

Control & Health Monitoring. 2021; 28: e2631. 

https://webvpn.xmu.edu.cn/http/77726476706e69737468656265737421f1e7518f69276d52710e82a297422f30a0c6fa320a29ae/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=5C9mpyjQbspcey2Aqzw&page=1&doc=2
https://webvpn.xmu.edu.cn/http/77726476706e69737468656265737421f1e7518f69276d52710e82a297422f30a0c6fa320a29ae/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=5C9mpyjQbspcey2Aqzw&page=1&doc=2
https://webvpn.xmu.edu.cn/http/77726476706e69737468656265737421f1e7518f69276d52710e82a297422f30a0c6fa320a29ae/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=5C9mpyjQbspcey2Aqzw&page=1&doc=5
https://webvpn.xmu.edu.cn/http/77726476706e69737468656265737421f1e7518f69276d52710e82a297422f30a0c6fa320a29ae/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=5C9mpyjQbspcey2Aqzw&page=1&doc=5


 

195 

 

[29] Ahmed N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Transactions on 

Computers. 1974; C-23:90-93. 

[30] Garcia-Hernandez JJ, Gomez-Flores W. Detection of AAC compression using MDCT-

based features and supervised learning. Journal of Experimental & Theoretical Artificial 

Intelligence. 2021; 10:1-18. 

[31] Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated 

DCT. IEEE Transactions on Information Forensics & Security. 2015; 10(2):219-228. 

[32] Eom KB. Analysis of acoustic signatures from moving vehicles using time-varying 

autoregressive models. Multidimensional Systems and Signal Processing. 1999; 10(4):357-

378. 

[33] Aleardi M. Discrete cosine transform for parameter space reduction in linear and non-linear 

AVA inversions. Journal of Applied Geophysics. 2020; 179:104106. 

[34] Zhang S. Study the method of under sampling flight data reconstruction based on 

compressive sensing. Master Thesis, Civil Aviation University of China, China, May 2015. 

(In Chinese) 

[35] Alamdari MM, Khoa NLD, Wang Y, Samali B, Zhu XQ. A multi-way data analysis approach 

for structural health monitoring of a cable-stayed bridge. Structural Health Monitoring. 2019; 

18(1):35-48. 

[36] Li SL, Wei SY, Bao YQ, Li H. Condition assessment of cables by pattern recognition of 

vehicle-induced cable tension ratio. Engineering Structures. 2018; 155(15): 1-15. 

[37] Kim SW, Jeon BG, Kim NS, Park JC. Vision-based monitoring system for evaluating cable 

tensile forces on a cable-stayed bridge. Structural Health Monitoring. 2013; 12(5-6): 440-

456. 

[38] Zhang X, Peng JY, Cao MS, Damjanovic D, Ostachowicz W. Identification of instantaneous 

tension of bridge cables from dynamic responses: STRICT algorithm and applications. 

Mechanical Systems and Signal Processing. 2020; 142: 106729. 

[39] Li H, Ou JP. The state of the art in structural health monitoring of cable-stayed bridges. 

Journal of Civil Structural Health Monitoring. 2016; 6:43-67. 

[40] Zhang LX, Qiu GY, Chen ZS. Structural health monitoring methods of cables in cable-stayed 

bridge: a review. Measurement. 2020; 168:108343. 

[41] Li H, Zhang FJ, Jin YZ. Real-time identification of time-varying tension in stay cables by 

monitoring cable transversal acceleration. Structural Control & Health Monitoring. 2014; 

21:1100–1117. 

[42] Bao YQ, Shi ZQ, Beck JL, Li H, Hou TY. Identification of time-varying cable tension forces 

based on adaptive sparse time-frequency analysis of cable vibrations. Structural Control & 

Health Monitoring. 2016; 24(3). 

https://webvpn.xmu.edu.cn/http/77726476706e69737468656265737421f1e7518f69276d52710e82a297422f30a0c6fa320a29ae/OutboundService.do?SID=7DssgINySv6wFpmg5Dr&mode=rrcAuthorRecordService&action=go&product=WOS&lang=zh_CN&daisIds=42804868
https://www.springer.com/journal/13349


 

196 

 

[43] Bao YQ, Guo YB, Li H. A machine learning-based approach for adaptive sparse time-

frequency analysis used in structural health monitoring. Structural Health Monitoring. 2020；

19(6): 1963–1975 

[44] Yang YC, Li SL, Nagarajaiah S, Li H, Zhou P. Real-time output-only identification of time-

varying cable tension from accelerations via complexity pursuit. Journal of Structural 

Engineering. 2016; 142(1):1-10. 

[45] Xue SL, Shen RL. Real time cable force identification by short time sparse time domain 

algorithm with half wave. Measurement. 2020; 152:107355. 

[46] Wang C, Zhang J, Zhu HP. A combined method for time-varying parameter identification 

based on variational mode decomposition and generalized Morse wavelet. International 

Journal of Structural Stability and Dynamics. 2020; 10:2050077. 

[47] Hou RR, Wang XY, Xia Y. Sparse damage detection via the elastic net method using modal 

data. Structural Health Monitoring. 2021; 0(0):1-17. 

[48] Zhang CD, Xu YL. Structural damage identification via response reconstruction under 

unknown excitation. Structural Control & Health Monitoring. 2016; 24(8):e1953.1-e1953.11. 

[49] He J, Xu YL, Zhan S, Huang Q. Structural control and health monitoring of building 

structures with unknown ground excitations: Experimental investigation. Journal of Sound 

and Vibration. 2017; 390:23-38. 

[50] Liu LJ, Su Y, Zhu JJ, Lei Y. Data fusion based EKF-UI for real-time simultaneous 

identification of structural systems and unknown external inputs. Measurement. 2016; 88: 

456–467. 

[51] Liu LJ, Zhu JJ, Su Y, Lei Y. Improved Kalman filter with unknown inputs based on data 

fusion of partial acceleration and displacement measurements. Smart Structures and Systems. 

2016; 17(6): 903-915. 

[52] Achkire Y. Active tendon control of cable-stayed bridges. Ph.D. Thesis, ULB, Belgium, May 

1997. 

 



 

197 

 

CHAPTER 6 Structural damage diagnosis based on the 

temporal moment of partially measured structural responses 

ABSTRACT 

Structural damage diagnosis is still a challenging task, as current methods are either 

insensitive to local structural damage or sensitive to measurement noise. Statistical moment-based 

structural damage detection (SMBDD) algorithm has been proposed to locate and detect damages, 

revealing superiority in noise immunity. However, it requests the number of measured responses 

should be no less than that of unknown structural parameters. In this paper, to reduce the number 

of measurements required in the SMBDD algorithm, an improved method for damage diagnosis 

is proposed based on the temporal moment of partially measured structural responses. First, 

structural partial acceleration responses are measured and split into several time segments. Then, 

the temporal moment in each segment of measured acceleration response time history is estimated. 

Finally, an objective error function is established by the temporal moments of measured 

accelerations and calculated accelerations, and structural stiffness can be identified by minimizing 

the objective error function. The proposed method is simple and feasible with a robust anti-noise 

property and can identify structural damage when the number of measured responses is less than 

that of the structural stiffness. Numerical simulations and experimental study are conducted 

respectively to verify the feasibility and effectiveness of the proposed method. 

 

Introduction 

In recent years, based on advanced sensing technology and data-driven techniques, structural 

health monitoring (SHM) has made great progress in many fields such as civil engineering, 

This chapter was published in Journal of Aerospace Engineering with the full bibliographic 

citation as follows: Yang N, Luo SJ, Lei Y. Structural damage detection based on the 

temporal moments of partially measured structural responses. Journal of Aerospace 

Engineering, 2021, 34(1): 04020106. 
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mechanical engineering, aerospace, etc. (Ou and Li 2010; Chen and Ni 2018). Structural damage 

occurs unavoidably due to hazard environment (e.g., earthquake, typhoon and fire, etc.) and 

deterioration of structural performance. How to locate and quantify the potential damage, assess 

the structural integrity and security, and predict the remaining service life has always been an 

important research topic in SHM. The vibration-based structural damage detection approaches 

have attracted extensive attention in recent years and the development is becoming more and more 

mature. Most vibration-based structural damage diagnosis methods are established on the idea 

that the measured modal parameters or the parameters derived from these modal parameters are 

closely related to the physical characteristics of the structure, therefore, the change of physical 

characteristics can be reflected by detecting the change of modal parameters (Doebling et al. 

1998). Researches on different modal damage indices have been performed to recognize structural 

damage, including the change in natural frequency (Mekjavić and Damjanović 2017), mode shape 

(Chen and Büyüköztürk 2017), mode shape curvature( Shokrani et al. 2018), flexibility matrix 

(Katebi et al. 2018), and modal strain energy(Yang et al. 2019), etc. Among those, damage 

detection method based on natural frequency change is proved to be relatively easy with higher 

precision, but it has low sensitivity to local damages (Salawu 1997) and is failure to locate damage 

effectively. On the contrary, the change in mode shape can provide the spatial damaged location 

information in theory, but they can not quantify the damage along with other limitations including 

requirements on numerous sensors and poor noise resistance (Farrar and Jauregui 1998). Alvandi 

and Cremona found that the modal strain energy performed best in noise resistance, but even so, 

3% noise had seriously affected the accuracy of damage identification in practice (Alvandi and 

Cremona 2006). 

In conclusion, damage detection of civil structures is still a challenging task, as current 

damage detection methods are either insensitive to local structural damage or sensitive to 

measurement noise. It’s noted that methods based on structural response statistical moment are 

proposed and shown to be an efficient tool because of its good noise immunity. Farrar et al. set 

up a statistical pattern recognition paradigm for damage detection in SHM (Farrar et al. 2000). 
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Sohn et al. combined autoregressive (AR) model and Auto-Regressive with eXogenous inputs 

(ARX) prediction model in the context of a statistical pattern recognition paradigm to diagnose 

damage (Sohn et al. 2003). Zhang and Xu in the Hong Kong Polytechnic University proposed a 

novel damage detection method called statistical moment-based structural damage detection 

(SMBDD) method and have published a series of papers (Zhang et al. 2008,2011a,2011b,2013; 

Xu et al. 2009,2011). The sensitivity of statistical moment to structural damage was discussed 

and the formula was derived under a random excitation for the first time, and numerical examples 

including single and multi-story shear buildings were both employed to illustrate the accuracy of 

the method (Zhang et al. 2008). Then a shaking table test of a three shear building model subjected 

to ground motions was completed to further prove the validity of the proposed method (Xu et al. 

2009). The displacement and acceleration responses were analyzed to locate damages and 

quantify severities. After that, the SMBDD method was extended in theory with more a general 

application (Zhang et al. 2011b). Particularly, the applicability of the SMBDD method under the 

conditions of non-Gaussian and non-stationary excitations was discussed with emphasis (Zhang 

et al. 2013). Considering the uncertainties in the first modal damping ratio, a method to identify 

damage for buildings with parametric uncertainties was presented by the combination of the 

SMBDD and the probability density evolution method (Xu et al. 2011). Besides, component and 

system reliability were evaluated taking advantage of the SMBDD account for the uncertainties 

in both the structure model and the external excitation (Zhang et al. 2011a). Also, Zhu and Wang 

in Huazhong University of Science and Technology in China came up with an idea of a two-step 

damage identification method based on the fourth strain statistical moment (FSSM) (Wang et al. 

2014a, 2014b, 2016). This method has been verified by numerical simulation of beams (Wang et 

al. 2014a), numerical simulation of plates (Wang et al. 2014b), and experiments of beams (Wang 

et al. 2016), successively. Furthermore, Zhou et al. utilized a novel structural damage detection 

indicator called fourth-order voltage statistical moment (FVSM) which was established on the 

electromechanical impedance (EMI) principle to locate the damage element (Zhou et al. 2018). 

Xia and Hao took the uncertainties in random noise into consideration and assumed it had normal 
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distribution (Xia and Hao 2003). They put forward a statistical damage detection algorithm 

according to the change in frequency. Yu and Zhu applied higher statistical moments of structural 

responses to assess the nonlinear damaged behaviors (Yu and Zhu 2015). Impollonia et al. used 

the second-order moments of displacement and velocity to diagnose the change in stiffness and 

modal damping parameters (Impollonia et al. 2016). Lei et al. proposed two probabilistic 

structural damage detection approaches based on the SMBDD method when considering various 

uncertainties in structural parameters and external excitation (Lei et al. 2017). The probability 

density model of the parameter was discussed both in Gaussian distribution and logarithmic 

Gaussian distribution, respectively. Yang et al. fused two different statistical moments of 

structural dynamic responses including the fourth-order statistical moment of displacement and 

the eighth-order statistical moment of acceleration to identify damage in structures (Yang et al. 

2018).  

Generally speaking, a significant advantage of the method based on structural response 

statistical moment is that it is not only sensitive to local structural damage but also insensitive to 

measurement noise. However, the limitation is that it can only be applied when the number of 

measured responses is less than that of the structural stiffness, greatly restricting the application 

in engineering practice. Given the above, an improved temporal moment-based damage detection 

(TMBDD) method is proposed in this paper. Firstly, structural incomplete acceleration responses 

are measured and divided into a series of time segments. Then, the temporal moments of the 

measured accelerations and those of the calculated accelerations are obtained respectively, and 

the objective error function between them is constructed. Finally, the structural stiffness can be 

estimated by minimizing the objective error function. The innovation of the method is that it takes 

the advantage of statistical moment method on good anti-noise performance but only needs partial 

observations, i.e., it is effective when the number of observations is less than that of the structural 

stiffness to be identified. The validity of the method is confirmed by numerical examples and 

experimental model respectively. 
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The rest of the paper is organized as follows: Section 2 gives a detailed introduction to the 

process of the TMBDD method. In Section 3, four numerical examples are completed and 

analyzed for different structural types under various load styles, which prove the universality of 

the method. Section 4 presents a five-story shear frame test model to verify the effectiveness of 

the method from the experimental point of view, and its merits are demonstrated by comparing it 

with the traditional method. Section 5 gives information on the main contents and innovations to 

summarize. 

The Proposed Algorithm 

The motion equation of a linear structure under external excitation can be written as: 

       t t t tMx Cx Kx Bf+ + =                         (1) 

where andx x x,   ， are the vectors of displacement, velocity, and acceleration responses, 

respectively. Only part of acceleration responses is measured herein.  tf  is a known external 

excitation vector with the position matrix B . M and C  are the mass matrix and the damp matrix 

of the structure which are assumed to be known. K  is the global stiffness matrix of the structure, 

and it can be expressed as: 

1 1 2 2

1

n

i i n n

i

a α α α


    K k k k k                      (2) 

where ai is unknown and denotes the i-th elemental relative stiffness coefficient of the reference 

FE model. n is the number of elements in the structure; ik  is the i-th elemental stiffness matrix.  

The proposed TMBDD method can be implemented in the following steps:  

First, acquire calculated acceleration response 
c

x  and measured acceleration responses 
m

x  

respectively: 
c

x can be computed by Eq. (1) when the initial values of the stiffness are known and 

m
x  can be obtained by accelerometers installed on practical structures. 

Equations can be solved only if the number of equations is greater than or equal to the 

number of unknowns. Therefore, a partial observation method is proposed in this paper to satisfy 
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the above conditions, which splits the acceleration responses into time segments to ensure that 

temporal moments in each segment are different, namely: 

 1 2 3 1 2 2, , , , , , , , t ；N N N N dNt t t t t t t t                    (3) 

in which N  is the number of sample points in each response time segments; d  represents the 

number of time segments.  

Then, calculate temporal moments of measured acceleration m
M  and temporal moments of 

calculated acceleration c
M  in each segment.  

 
   

2
2

1 1 1 1

1 1
( ) ( 1,2, , )

jN jN
m m m

j k k

k j N k j N

j d
N N     

   M x x            (4) 

 
   

2
2

1 1 1 1

1 1
( ) ( 1,2, , )

jN jN
c c c

j k k

k j N k j N

j d
N N     

   M x x             (5) 

where the subscript j denotes the temporal moment of acceleration response of the j-th time 

segment. 

If the number of measured accelerations is l , the number of responses time segment is d , 

then the temporal moments can be written as:   

   

1 1

2 2

c m

c m

c m

c m

ld ld

   
   
             
   
      

M M

M M
M α M α

M M

                   (6) 

For a structure with n  degrees of freedom and m  elements, the number of acceleration 

observations must satisfy the following constraints： 

l d n                                 (7) 

Finally, the stiffness is estimated by solving the optimization problem.  

The main idea of this method is to identify structural stiffness by using the relationship 

between the temporal moments of measured acceleration and those of calculated acceleration. 

Therefore, compute the residual between these two temporal moments as: 
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 ( ) ( ) ( ) 1,2, ,c m
j j j j d  F α M α M α                         (8) 

2

1

( ) ( )
d

j

j

g α F α                                  (9) 

Ideally, if the given stiffness vector parameter is equal to the actual value, the 2-norm of the 

residual vector 
2

( )jF α  will be zero. Herein, the FMINCON function in MATLAB is used to 

minimize the objective error function ( )g α . It can be expressed as: 

min ( ) subject to  
α

g α    lb α ub                     (10) 

where lb  and ub  denote the lower bound and upper bound in the optimization process, 

respectively.  

Numerical Examples 

Damage Detection on Truss with Incomplete Measurement 

A numerical example in this section is given to recognize truss stiffness under two separate 

white noise excitations. The structural parameters of truss are as follows: 

As shown in Fig.1, the truss consists of 11 bars with the same cross section area 

5 27.854 10 mA   , Young’s modulus 
8 22 10 N mE    -

, and the mass density 
-37850 kg m   . 

The length of each horizontal bar is 2ml   while the length of each inclined bar is 2 ml  . The 

finite element model of the truss has 11 members with 10 degrees of freedom (DOFs), i.e. each 

free node has the lateral and vertical DOFs. Structural global stiffness matrix K  can be 

formulated as the summation of each element stiffness matrix, in which the stiffness of i th  

truss element is defined as  / 1, ,11i ik EA l i  . The mass is concentrated on each node. The 

damping of the truss is assumed as viscous damping.  
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Fig. 1. A truss model subjected to two external excitations 

In this numerical example, the duration of the excitation time history is 100s with the 

sampling frequency of 1000 Hz. The number of response time segments is 20; the initial value of 

relative stiffness coefficient is 0.8 and the domain of lower and upper bound is [0.8,1.2]. The truss 

is subjected to two external excitations of a band-limited white noise sequence in the vertical 

direction at node 3 and node 4. Only five accelerometers are deployed on the 1st, 3rd, 4th, 5th, 

and 10th DOFs. All the measured acceleration responses of structure are polluted by white noises 

with 10% root mean square (RMS). 

Stiffness reduction of the element is given to simulate the damage. Single-damage and multi-

damage are considered, respectively. Table 1 and Table 2 list the recognized stiffness coefficients 

of the undamaged and damaged elements. Table 1 is the case of single-damage with a 10% 

stiffness reduction on the 6th element. Table 2 shows the multi-damage with an 8% stiffness 

reduction on the 3rd element, a 10% stiffness reduction on the 6th element, and a 12% stiffness 

reduction on the 9th element. In these tables, 
uα  and 

dα  are relative stiffness parameters of 

undamaged structure and damaged structure, respectively.   is the theoretical damage scenario. 

̂  is the identified damage scenario, namely: 

ˆ 100%


 
d u

u

α α
μ

α
                           (11)  
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Table 1. The results of the truss single damage identification 

Element Number uα  
dα  

  ̂  

1 1.0044 1.0044 0 0.00% 

2 1.0121 1.0126 0 0.05% 

3 0.9836 0.9919 0 0.84% 

4 0.9660 0.9693 0 0.34% 

5 1.0171 1.0139 0 -0.31% 

6 1.0007 0.9114 -10% -8.92% 

7 1.0316 1.0250 0 -0.64% 

8 1.0073 0.9962 0 -1.10% 

9 1.0143 1.0137 0 -0.06% 

10 1.0058 1.0042 0 -0.16% 

11 0.9896 0.9927 0 0.31% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario 

ˆ 100%
d u

u

α α
μ

α


  . 

Table 2. The results of the truss multi-damage identification 

Element Number uα  
dα  

  ̂  

1 1.0044 1.0041 0 -0.03% 

2 1.0121 1.0070 0 -0.50% 

3 0.9836 0.9090 -8% -7.58% 

4 0.9660 0.9552 0 -1.12% 

5 1.0171 1.0141 0 -0.29% 

6 1.0007 0.9114 -10% -8.92% 

7 1.0316 1.0142 0 -1.69% 

8 1.0073 0.9945 0 -1.27% 

9 1.0143 0.8967 12% -11.59% 

10 1.0058 1.0064 0 0.06% 

11 0.9896 1.0041 0 1.47% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario  

ˆ 100%
d u

u

α α
μ

α


  . 
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Table1 and Table 2 show that noise has little effect on recognition results even when the 

measurement noise intensity is as high as 10%, and the damage severities and locations can be 

properly discovered. Although only part of the accelerations are measured, the relative error is 

less than 1.69% for both single damage and multi-damage. Therefore, this method is not only 

insensitive to measurement noise, but also sensitive to damage with strong robustness and 

reliability. More importantly, it has a significant advantage that the number of observations is less 

than that of the structural stiffness. 

Damage Detection on Continuous Beam with Incomplete Measurement  

A continuous beam is selected as another numerical example to demonstrate the accuracy of 

the proposed method for identifying more complicated damage. The continuous beam is divided 

into ten finite elements and it has 19 DOFs (Fig. 2). The structural parameters of continuous beam 

are as follows: The length of each element is 1ml  ; uniformly distributed mass is 
-1785 kg m ; 

and the exact stiffness of each element is
5 -1

1 2 10 1.111 10 N mk k k      . A white noise 

excitation acts on the 6th DOF. Only seven accelerometers are installed at the 2nd, 4th, 6th, 8th, 

11th, 15th, and 17th DOFs, which means only partial vertical accelerations are observed, and the 

rotation accelerations are non-essential. In this numerical example, the duration of the excitation 

time history is 200s with 1000 Hz sampling frequency. And the number of response time segments 

is 100; the initial value of relative stiffness coefficient is 0.8. 10% RMS noise intensity is 

considered in this case. 

 

Fig. 2. A continuous beam model 
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The identification results are shown in Table 3 and Table 4. Table 3 proves that the identified 

results are accurate for single damage detection, in which case the theoretical stiffness value of 

the 4th element is reduced by 10%. The relative errors of the recognized values are less than 0.5% 

for all elements compared with the exact values when 10% noise intensity is considered. Table 4 

shows that this method can locate and determine the multi-damage severity precisely. To simulate 

the multi-damage, an 8% stiffness reduction and a 12% stiffness reduction occurs on the 2nd and 

7th element, respectively. It is obvious that the proposed algorithm can distinguish the structural 

stiffness accurately based on partial measured responses for continuous beam, demonstrating its 

reliability and feasibility again. 

Table 3. The results of single damage identification of the continuous beam 

Element Number uα  
dα  

  ̂  

1 1.0265 1.0260 0 -0.05% 

2 1.0024 1.0005 0 -0.19% 

3 0.9758 0.9735 0 -0.24% 

4 0.9791 0.8819 -10% -9.93% 

5 1.0255 1.0303 0 0.47% 

6 1.0026 1.0023 0 -0.03% 

7 1.0273 1.0257 0 -0.16% 

8 1.0312 1.0293 0 -0.18% 

9 0.9693 0.9692 0 -0.01% 

10 0.9826 0.9835 0 0.09% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario  

ˆ 100%
d u

u

α α
μ

α


  .  
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Table 4. The results of multi-damage identification of the continuous beam 

Element Number uα  
dα  

  ̂  

1 1.0265 1.0260 0 -0.05% 

2 1.0024 0.9222 -8% -8.00% 

3 0.9758 0.9735 0 -0.24% 

4 0.8820 0.8819 0 -0.01% 

5 1.0255 1.0303 0 0.47% 

6 1.0026 1.0023 0 -0.03% 

7 1.0273 0.9065 -12% -11.76% 

8 1.0312 1.0293 0 -0.18% 

9 0.9693 0.9692 0 -0.01% 

10 0.9826 0.9835 0 0.09% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario  

ˆ 100%
d u

u

α α
μ

α


  . 

Damage Detection on Shear Frame with Incomplete Measurement 

An eight-story shear frame under colored noise ground excitation is investigated in this 

section. The ground acceleration is modeled as a colored noise with the Kanai-Tajimi spectrum 

having parameters 
-115.6 rad sg    and 15.6g  . Structural parameters of the building are 

2500kg,im   
6 -17.0 10 N mik    ，  4 -15.0 10 N s m    1 ,8ic i    ， ， . In this case, only five 

accelerometers are deployed at the 1st, 2nd, 4th, 6th, and 8th stories. The duration of the excitation 

time history is 100s with 1000 Hz sampling frequency. And the number of response time segments 

is 20; the initial value of stiffness is 80% of exact value. 

Table 5 and Table 6 show the identified stiffness coefficients for all stories of the undamaged 

and damaged building with 10% RMS noise level. Table 5 is the identification results of the 

single-damage case, where the 2nd element has an 8% stiffness reduction. Table 6 is the 

identification results of the multi-damage case. Herein the 2nd element has an 8% stiffness 

reduction and the 6th element has a 10% stiffness reduction. It is noted that there is no much 
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difference between the estimated damage scenarios and the theoretical damage scenarios when 

the structure is subjected to colored noise ground excitation. It proves that the proposed method 

is not only suitable under Gaussian white noise excitation but also appropriate under non-

Gaussian colored noise ground excitation. 

Table 5. The results of single damage identification of the shear frame with colored noise ground excitation 

Element Number 
uα  

dα  
  ̂  

1 
0.9899 0.9767 

0 
-1.33% 

2 
1.0070 0.9221 

-8% 
-8.43% 

3 
1.0024 0.9983 

0 
-0.41% 

4 
0.9905 0.9903 

0 
-0.02% 

5 
1.0089 1.0042 

0 
-0.47% 

6 
0.9835 0.9895 

0 
0.61% 

7 
1.0562 1.0479 

0 
-0.79% 

8 
1.0181 1.0212 

0 
0.30% 

Note: uα  and dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario  

ˆ 100%
d u

u

α α
μ

α


 

. 

Table 6. The results of multi-damage identification of the shear frame with colored noise ground excitation 

Element Number 
uα  

dα  
  ̂  

1 
0.9899 0.9685 0 -2.16% 

2 
1.0066 0.9324 -8% -7.37% 

3 
1.0098 0.9981 0 -1.16% 

4 
0.9978 0.9934 0 -0.44% 

5 
0.9778 0.9848 0 0.72% 

6 
0.9983 0.9043 -10% -9.42% 

7 
1.0552 1.0441 0 -1.05% 

8 
1.0184 1.0245 0 0.60% 

Note: uα  and dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario 

ˆ 100%
d u

u

α α
μ

α


 

. 
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Damage Detection on Shear Frame with Non-stationary Excitation 

In this section another shear frame numerical investigation is analyzed to further extend the 

proposed method from non-Gaussian colored noise ground excitation to non-stationary and non-

Gaussian colored noise ground excitation. The utilized non-stationary external excitation takes 

the form of 

( ) ( ) ( )g gGx t x t g t                                   (12) 

in which ( )gGx t  is the aforementioned Gaussian colored noise, ( )g t  is a specified envelope or 

modulation function as: 

 

0 0
( )

2.5974 exp( 0.2 ) exp( 0.6 ) 0

t
g t

t t t


 

                    (13) 

Parameters of shear frame are the same with the third numerical example. Only seven 

accelerometers are mounted at the 1st, 2nd, 4th, 6th, 9th, 10th, and 12th stories. The duration of 

the excitation time history is 100s with the sampling frequency of 1000Hz. And the number of 

response time segments is 20; the initial value of stiffness is 80% of exact value.  

The calculating results are listed in Table 7 and Table 8. In Table 7, the theoretical stiffness 

value of the 2nd element is reduced by 10%. In Table 8, the stiffness of the 2nd and 10th element 

is damaged by 10% and 8% respectively. It can be seen from Table 7 and Table 8 that the damage 

locations of all the concerned damage scenarios can be accurately discovered when the 

measurement noise RMS is 10%, with the maximal relative error being less than 1%. Therefore, 

the sensitivity to structural local damage, insensitivity to measurement noise and applicability to 

non-stationary external excitations are demonstrated. 
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Table 7. Results of single damage identification of the shear frame with non-stationary colored noise ground excitation 

Element Number 
uα  

dα  
  ̂  

1 1.0033 1.0042 0 0.09% 

2 1.0038 0.9005 10% -10.29% 

3 1.0289 1.0242 0 -0.46% 

4 0.9634 0.9694 0 0.62% 

5 0.9839 0.9869 0 0.30% 

6 1.0295 1.0256 0 -0.38% 

7 0.9937 0.9961 0 0.24% 

8 0.9839 0.9860 0 0.21% 

9 1.0276 1.0211 0 -0.63% 

10 0.9984 0.9986 0 0.02% 

11 0.9881 0.9910 0 0.29% 

12 1.0299 1.0225 0 -0.72% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario  

ˆ 100%
d u

u

α α
μ

α


  . 

Table 8. Results of multi-damage identification of the shear frame with non-stationary colored noise ground excitation 

Element Number 
uα  

dα  
  ̂  

1 1.0033 1.0039 0 0.06% 

2 1.0038 0.9003 10% -10.31% 

3 1.0289 1.0237 0 -0.51% 

4 0.9634 0.9702 0 0.71% 

5 0.9839 0.9869 0 0.30% 

6 1.0295 1.0260 0 -0.34% 

7 0.9937 0.9968 0 0.31% 

8 0.9839 0.9859 0 0.20% 

9 1.0276 1.0209 0 -0.65% 

10 0.9984 0.9186 8% -7.99% 

11 0.9881 0.9904 0 0.23% 

12 1.0162 1.0230 0 0.67% 

Note: 
uα  and 

dα are relative stiffness parameters of undamaged structure and damaged structure, 

respectively.   is the theoretical damage scenario. ̂  is the identified damage scenario 

ˆ 100%
d u

u

α α
μ

α


  . 
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Experimental Validation 

In this section, a five-story shear frame (as shown in Fig. 3) subjected to white noise 

excitation has been used as experimental model to validate the proposed method. The length, 

width, and height of each story is 0.35m, 0.25m, and 0.2m, respectively. The junction nodes are 

connected to double bolts, it can be approximated that the connection between the support 

columns and the floors is consolidation. The structural materials are all steel with the Young’s 

modulus 
11 22 10 N mE    -

  and the mass density
-37850 kg m    . The mass of each story 

(including the floor and steel column’s weights concentrating to the floor) and theoretical stiffness 

are shown in Table 9. The white noise excitation acts on the third floor in this experiment. The 

duration of the excitation time history is 40s with the sampling frequency of 1024Hz. Five 

accelerometers are deployed at the 1st, 2nd, 3rd, 4th, and 5th stories. 

 

 

Fig. 3. An experimental study on a five-story building 
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Table 9. The mass and theoretical stiffness of frame 

Story Mass (kg) 
Theoretical Stiffness (

1kN m ) 

1 9.945 125.20 

2 10.171 74.80 

3 8.355 129.57 

4 8.732 112.87 

5 7.983 141.95 

The effectiveness of the proposed method is proved by comparing with the existing SMBDD 

method. Firstly, apply SMBDD method to identify the structural parameters by measuring all the 

accelerations. Secondly, utilize the proposed method (TMBDD) to recognize the structural 

parameters with partial accelerations. The number of response time segments is 100. Only the 

30000 sample points of accelerations on the 1st, 2nd and 5th story have been used to estimate the 

parameters. Recognition results of the two methods are presented in Table 10. 

Table 10. The recognition results of the two methods 

Story Results of SMBDD Results of TMBDD Relative Error (%) 

1 1.002 1.017 1.49 

2 0.974 0.994 2.05 

3 1.000 0.993 -0.70 

4 1.020 0.994 -2.55 

5 1.003 0.993 -0.99 

It can be found from Table 10 that the results of TMBDD method is close to SMBDD with 

the maximal relative error being less than 3%. It testifies that the TMBDD method can check the 

structural parameters exactly only using partial response measurements, and retains the 

advantages of good anti-noise performance of the SMBDD method. 

Conclusions 

In this paper, a structural damage detection algorithm based on incomplete measured 

structural response is proposed. It divides the responses into time segments to ensure that the 



 

214 

 

sampling time is different in each segment. In order to improve the noise immunity, the response 

time should be as long as possible but ensure that temporal moments in each segment are different. 

Then, the structural stiffness is identified by the relationship between the temporal moments of 

the measured and the calculated accelerations. Four numerical examples are given to demonstrate 

the effectiveness of the proposed method. In addition, the reliability and feasibility are proved by 

a five-story shear frame experimental test.  

Compared with the previous work, the proposed algorithm has the following innovations: 1) 

The proposed algorithm only needs partial observed structural acceleration responses. Moreover, 

the number of measured acceleration responses is less than that of the structural stiffness. 2) This 

method shows good accuracy in structural damage diagnosis with noise resistance. 

Data Availability Statement 

All data, models, and code generated or used during the study are available from the 

corresponding author upon reasonable request. 

Acknowledgements 

This work was supported by the Natural Science Foundation of China (NSFC) through the 

Grant No. 51678509. 

References 

Alvandi, A., and C. Cremona.2006. “Assessment of vibration-based damage identification techniques.” 

Journal of Sound and Vibration. 292 (1-2):179-202. https://doi.org/10.1016/j.jsv.2005.07.036. 

Chen H.P., and Y.Q. Ni. 2018. “Introduction to structural health monitoring.” Structural Health Monitoring 

of Large Civil Engineering Structures. https://doi.org/10.1002/9781119166641.ch1. 

Chen, J.G., and O. Büyüköztürk. 2017. “A symmetry measure for damage detection with mode shapes.” 

Journal of Sound and Vibration.408:123-137. https://doi.org/10.1016/j.jsv.2017.07.022. 

Doebling, S.W., C.R. Farrar, and M.B. Prime. 1998. “A summary review of vibration-based damage 

identification methods.” The Shock and Vibration Digest. 30(2): 91-105. 

https://doi.org/10.1.1.57.9721. 

Farrar, C.R., T.A. Duffey, S.W. Doebling, and D.A. Nix. 2000. “A statistical pattern recognition paradegm 

for vibration-based structural health monitoring.” Structural & Multidisciplinary Optimization.41 

(1):57-64. https://doi.org/10.1007/s00158-009-0407-z. 

https://doi.org/10.1016/j.jsv.2005.07.036
https://doi.org/10.1002/9781119166641.ch1
https://doi.org/10.1016/j.jsv.2017.07.022
https://doi.org/10.1.1.57.9721
https://doi.org/10.1007/s00158-009-0407-z


 

215 

 

Farrar, C.R., and D.A. Jauregui.1998. “Comparative study of damage identification algorithms applied to a 

bridge: I. experiment.” Smart Materials and Structures. 7(5): 704-719. https://doi.org/10.1088/0964-

1726/7/5/013. 

Impollonia, N., I. Failla, and G. Ricciardi. 2016. “Parametric statistical moment method for damage 

detection and health monitoring.” ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems, Part A: Civil Engineering. C4016001. https://doi.org/10.1061/AJRUA6.0000863. 

Katebi, L., M. Tehranizadeh, and N. Mohammadgholibeyki. 2018. “A generalized flexibility matrix-based 

model updating method for damage detection of plane truss and frame structures.” Journal of Civil 

Structural Health Monitoring. 8(2): 301-314. https://doi.org/10.1007/s13349-018-0276-5. 

Lei, Y., N. Yang, and D.D. Xia. 2017. “Probabilistic structural damage detection approaches based on 

structural dynamic response moments.” Smart Structures and Systems. 20(2):207-217.  

https://doi.org/10.12989/sss.2017.20.2.207. 

Mekjavić, I., and D. Damjanović. 2017. “Damage assessment in bridges based on measured natural 

frequencies.” International Journal of Structural Stability and Dynamics. 17(2):1750022. 

https://doi.org/10.1142/S0219455417500225. 

Ou, J.P., and H. Li. 2010. “Structural health monitoring in mainland China: review and future trends.” 

Structural Health Monitoring. 9(3):219–231. https://doi.org/10.1177/1475921710365269. 

Salawu, O.S. 1997. “Detection of structural damage through changes in frequency: a review.” Engineering 

Structures, 19 (9):718-723. https://doi.org/10.1016/S0141-0296 (96)00149-6. 

Shokrani, Y., V. K. Dertimanis, E. N. Chatzi, and M.N. Savoia. 2018. “On the use of mode shape curvatures 

for damage localization under varying environmental conditions.” Structural Control & Health 

Monitoring. 25(4):e2132.1-e2132.20. https://doi.org/10.1002/stc.2132. 

Sohn, H., C.R. Farrar, N.F. Hunter, and K. Worden.2003. “Structural health monitoring using statistical 

pattern recognition techniques.” Journal of Dynamic Systems Measurement and Control. 123(4):706-

711. https://doi.org/10.1115/1.1410933. 

Wang, D.S., Z. Chen, X. Wei, and H.P. Zhu. 2016. “Experimental investigation of damage identification in 

beam structures based on the strain statistical moment.” Advances in Structural Engineering. 

20(5):747-758. https://doi.org/10.1177/1369433216664349. 

Wang, D.S., W. Xiang, and H.P. Zhu. 2014a. “Damage identification in beam type structures based on 

statistical moment using a two-step method.” Journal of Sound and Vibration. 333(3):745-760. 

https://doi.org/10.1016/j.jsv.2013.10.007. 

Wang, D.S., W. Xiang, and H.P. Zhu. 2014b. “Damage identification in a plate structure based on strain 

statistical moment.” Advances in Structural Engineering. 17(11):1639-1655. 

https://doi.org/10.1260/1369-4332.17.11.1639. 

Xia, Y., and H. Hao.2003. “Statistical damage identification of structures with frequency changes.” Journal 

of Sound and Vibration. 263(4):853-870. https://doi.org/10.1016/S0022-460X(02)01077-5. 

Xu, Y.L., J. Zhang, J. Li, and X.M. Wang. 2011. “Stochastic damage detection method for building 

structures with parametric uncertainties.” Journal of Sound and Vibration. 330(20):4725-4737. 

https://doi.org/10.1016/j.jsv.2011.03.026. 

https://doi.org/10.1088/0964-1726/7/5/013
https://doi.org/10.1088/0964-1726/7/5/013
https://doi.org/10.1007/s13349-018-0276-5
https://doi.org/10.1177/1475921710365269
https://doi.org/10.1002/stc.2132
https://doi.org/


 

216 

 

Xu, Y.L., J. Zhang, J.C. Li, and Y. Xia. 2009. “Experimental investigation on statistical moment-based 

structural damage detection method.” Structural Health Monitoring. 8(6):555-571. 

https://doi.org/10.1177/1475921709341011. 

Yang, D.L., C.Y. Kang, Z.M. Hua, B.L.Ye, and P.Xiang. 2019.“On the study of element modal strain energy 

sensitivity for damage detection of functionally graded beams.” Composite Structures. 224: 110989. 

https://doi.org/10.1016/j.compstruct.2019.110989. 

Yang, Y., J.L. Li, C.H. Zhou, S.S. Law, and L. Lv. 2018. “Damage detection of structures with parametric 

uncertainties based on fusion of statistical moments.” Journal of Sound and Vibration.442:200-219. 

https://doi.org/10.1016/j.jsv.2018.10.005. 

Yu, L., and J.H. Zhu. 2015. “Nonlinear damage detection using higher statistical moments of structural 

responses.” Structural Engineering and Mechanics. 54(2):221-237.  

https://doi.org/10.12989/sem.2015.54.2.221. 

Zhang, J., Y.L. Xu, and J. Li. 2011a. “Integrated system identification and reliability evaluation of stochastic 

building structures.” Probabilistic Engineering Mechanics. 26(4):528-538. 

https://doi.org/10.1016/j.probengmech.2011.04.002. 

Zhang, J., Y.L. Xu, J. Li, Y. Xia, and J.C. Li. 2008. “A new statistical moment-based structural damage 

detection method.” Earthquake Engineering & Engineering Vibration. 12(1). 

https://doi.org/10.1007/s11803-012-0147-8. 

Zhang, J., Y. L. Xu, J. Li, Y. Xia, and J.C. Li. 2013. “Statistical moment-based structural damage detection 

method in time domain.” Earthquake Engineering and Engineering Vibration. 1291(1):1671-3664. 

https://doi.org/10.1007/s11803-012-0147-8. 

Zhang, J., Y.L. Xu, Y. Xia, and J. Li. 2011b. “Generalization of the statistical moment-based damage 

detection method.” Structural Engineering and Mechanics. 38(6):715-732.  

https://doi.org/10.12989/sem.2011.38.6.715. 

Zhou, P., D.S. Wang, and H.P. Zhu. 2018. “A novel damage indicator based on the electromechanical 

impedance principle for structural damage identification.” Sensors. 18(7):2199.  

https://doi.org/10.3390/s18072199.

https://doi.org/10.1177/1475921709341011
https://doi.org/10.12989/sem.2015.54.2.221
https://doi.org/


 

217 

 

APPENDIX I 

ATTRIBUTION OF AUTHORSHIP 

 

To whom it may concern 

I, Ning Yang, conducted numerical, experimental investigations, data processing, analysis 

and wrote manuscript of the paper titled as follows, which was revised and edited by the first co-

author. He also provided insights on data processing and data analysis. 

Simultaneous identification of structural time-varying physical parameters and unknown 

excitations using partial measurements  

 

(          ) 

 

I, as a co-author, endorse that this level of contribution by the candidate indicated above is 

appropriate. 

 

 

(Prof. Ying Lei)                                       (             )



 

218 

 

 

To whom it may concern 

I, Ning Yang, conducted numerical, data processing, analysis and wrote manuscript of the 

paper titled as follows, which was revised and edited by the first, third and the fourth co-authors. 

They also provided insights on data processing and data analysis. The last co-author helped 

conduct the numerical studies. 

Identification of time-varying large-scale structures by integrated sub-structural and 

wavelet multiresolution approach with partial measurements  

 

(        ) 

 

I, as a co-author, endorse that this level of contribution by the candidate indicated above is 

appropriate. 

 

(Prof. Ying Lei)                                           (          ) 

 

(Associate Prof. Jun Li)                                    (           ) 

 

(Prof. Hong Hao)                                         (           ) 

 

(Dr. Jinshan Huang)                                      (          .)



 

219 

 

To whom it may concern 

I, Ning Yang, conducted numerical, data processing, analysis and wrote manuscript of the 

paper titled as follows, which was revised and edited by other co-authors. They also provided 

insights on data processing and data analysis.  

Identification of time-varying nonlinear structural physical parameters by integrated 

WMA and UKF/UKF-UI  

 

(            ) 

 

I, as a co-author, endorse that this level of contribution by the candidate indicated above is 

appropriate. 

 

(Associate Prof. Jun Li)                              (                  ) 

 

(Prof. Ying Lei)                                    (                 ) 

 

(Prof. Hong Hao)                                   (                 )



 

220 

 

To whom it may concern 

I, Ning Yang, conducted numerical, experimental investigations, data processing, analysis 

and wrote manuscript of the paper titled as follows, which was revised and edited by other co-

authors. They also provided insights on data processing and data analysis. The third co-author 

also helped to provide test data of the cable force experiment. 

Identification of gradually varying physical parameters based on discrete cosine transform 

using partial measurements  

 

(            ) 

 

I, as a co-author, endorse that this level of contribution by the candidate indicated above is 

appropriate. 

 

(Prof. Ying Lei)                                     (                ) 

 

(Associate Prof. Jun Li)                               (                ) 

 

(Prof. Hong Hao)                                    (                )



 

221 

 

To whom it may concern 

I, Ning Yang, conducted numerical, experimental investigations, data processing, analysis 

and wrote manuscript of the paper titled as follows, which was revised and edited by the last co-

author. The second author helped conduct the numerical studies and experimental test.  

Structural damage diagnosis based on the temporal moment of partially measured 

structural responses  

 

(          ) 

 

I, as a co-author, endorse that this level of contribution by the candidate indicated above is 

appropriate. 

 

(Mrs. Sujuan Luo)                                     (               ) 

 

(Prof. Ying Lei)                                       (              ) 



 

222 

 

 

APPENDIX II  

COPYRIGHT CLEARANCE 

The proof of the rights, granted by publishers for the publication that forms the chapters of 

this thesis, to reproduce the contribution in the thesis are attached below. 

 

 

Lei Y, Yang N. Simultaneous identification of structural time-varying physical parameters and 

unknown excitations using partial measurements. Engineering Structures, 2020, 214:110672. 

 

 



 

223 

 

Yang N, Li J, Lei Y, Hao H. Identification of time-varying nonlinear structural physical 

parameters by integrated WMA and UKF/UKF-UI. Nonlinear Dynamics, 2021. DOI: 

10.1007/s11071-021-06682-y. (In Press) 

 



 

224 

 

 



 

225 

 

 



 

226 

 

Yang N, Luo SJ, Lei Y. Structural damage diagnosis based on the temporal moment of partially 

measured structural responses. Journal of Aerospace Engineering, 2021, 34(1): 04020106. 

 

 

 

  



 

227 

 

BIBLIOGRAPHY DISCLAIMER  

Every reasonable effort has been made to acknowledge the owners of copyright material. I 

would be pleased to hear from any copyright owner who has been omitted or incorrectly 

acknowledged. 


