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Abstract 9 

Groundwater is one of the main sources of freshwater. To ensure its sustainability, it is 10 

important to know its current status and changing pattern over time, through the essential 11 

groundwater monitoring program conducted by water management planners, groundwater 12 

modelers and urban developers. However, uniformly distributed data is hardly available in 13 

most catchments. In this study, the Spatiotemporal Regression Kriging method (Rkriging) was 14 

adopted to derive a spatiotemporal pattern for Harvey River Catchment in Western Australia, 15 

using the limited groundwater data in the catchment. The accuracy of the estimation was 16 

investigated using the Leave-One-Out Cross-Validation approach. Time-series analysis (i.e., 17 

auto-correlation and cross-correlation) was then employed to provide a better understanding of 18 

the estimated groundwater level change (∆GWL) over time. To gain insight into the change of 19 

groundwater levels, the correlation between groundwater level (GWL) and precipitation 20 

pattern with possible time-lag was explored. The results showed that the Rkriging method is 21 

satisfactory and the findings were consistent with the previously published results in literature 22 

in the area. The estimated decreasing GWL trend matched the precipitation pattern in the 23 

catchment. Such shallow groundwater levels in Harvey Catchment resulted in a short time-lag 24 

between the precipitation and GWL time-series. The proposed method should be applied to 25 

other catchments with limited groundwater data and can be a useful approach for catchments 26 

with irregular temporal and spatial data. 27 
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1 Introduction 33 

Groundwater produces almost 30% of known freshwater resources worldwide and 34 

almost 96% of non-solid freshwater (Green et al., 2011). As groundwater is less sensitive to 35 

the immediate climate variation, it is a great water source to overcome droughts and mitigate 36 

climate change impacts on limited freshwater resources. However, excessive groundwater 37 

discharge and lack of enough recharge threaten the existence of these precious freshwater 38 

systems (Green et al., 2011). Regular monitoring program is usually conducted to understand 39 

the changing pattern of groundwater and help proposing effective groundwater management 40 

and decision-making plans. However, due to the costs and accessibility, only limited sites are 41 

monitored, resulting in sparse data series over the catchments, discontinuous sites and missing 42 

observations within sites. The lack of regular measurements, which results in spatiotemporal 43 

data gaps, can disturb our understanding of the catchment (Ruybal et al., 2019; Varouchakis & 44 

Hristopulos, 2013). To better understand the status and changing patterns of groundwater levels 45 

(GWL) for both management and research purposes, uniformly distributed GWL are necessary. 46 

This, only, can be achieved by filling the gaps (that is, estimating the missing values in space 47 

and time) through interpolation methods (Varouchakis & Hristopulos, 2013), which have been 48 

widely used in many research areas; for instance, rainfall pattern prediction (Goovaerts, 2000), 49 

climate parameters estimation (Haylock et al., 2008), spatial analysis of groundwater quantity 50 

and quality (Dash et al., 2010) and spatial variability of GWL (Varouchakis & Hristopulos, 51 

2013; Yao et al., 2014). Most of these studies, however, explored either spatial or temporal 52 

aspect of the subjects and not the interplay between time and space; while due to the changing 53 

environment, geohydrological parameters, such as groundwater, are subject to change in time 54 

and space (Varouchakis & Hristopulos, 2019). To accurately take account of these changes, 55 

the employed method should consider the interdependency between temporal and spatial 56 

aspects of the parameters. From modelling perspectives, simultaneously considering both the 57 

irregularly sampled spatial and temporal data can best use the available information. One of 58 

the popular interpolation methods is spatiotemporal regression kriging (Rkriging) which has 59 

been applied to variables in different catchments and will be used for this purpose. The 60 

Rkriging uses spatial and temporal correlations between observed (sampled) points to estimate 61 

the un-sampled spatiotemporal locations (Hu et al., 2017; Adigi 2019). The model, unlike most 62 

interpolation methods, performs well for un-sampled locations or where uniform data is not 63 

available (Hu et al., 2017; Adigi 2019). The Rkriging, unlike techniques such as spline 64 

interpolation, can interpret the geostatistical aspect of the parameter (Hengle et al., 2012) where 65 
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the variability of the parameter in space and time is modeled by adding the temporal element 66 

to the spatial domain. Hu et al (2017) used spatiotemporal regression kriging (Rkriging) to 67 

predict precipitation trend in Uygur region, where the station data is sparse and unevenly 68 

distributed. They chose Normalized Difference Vegetation Index (NDVI), Digital Elevation 69 

Model (DEM) and a temporal index as the model's regressors. The model was able to 70 

successfully detect a pattern in precipitation, and successfully reveal the correlation between 71 

precipitation and altitude (Hu et al., 2017). In another interesting research, Ruybal et al (2019) 72 

used Rkriging to predict groundwater level at ungauged locations in Arapahoe aquifer and 73 

showed that the Rkriging method is a competent approach to estimate the GWL. The model 74 

was able to produce realistic values and Rkriging showed to be superior to the traditional 75 

kriging method (Ruybal et al., 2019).  76 

The spatial and temporal dependency of the studied parameter (here, GWL) is called 77 

empirical variogram. The interpolation models, including kriging, fit a surface to the empirical 78 

variograms and produce modeled variograms (here after called variograms). Fitting the optimal 79 

variograms is the first and most important step for conducting an accurate spatiotemporal 80 

analysis. Adding temporal domain to the spatial interpolation, usually, results in a more 81 

accurate and realistic modeling, however it can increase the complexity of the model. For 82 

instance, the temporal and spatial structure of the variogram are not necessary the same. The 83 

spatial and temporal variograms can follow different covariance functions and patterns  (Graler 84 

et al., 2016; Voss et al., 2016). Earlier spatiotemporal variograms (STvariogram) were built of 85 

separate spatial and temporal domains. These domains werelater added or multiplied together, 86 

to form the final spatiotemporal variogram. These variograms, called separable, are simpler but 87 

based on unrealistic assumptions (Varouchakis & Hristopulos, 2019); therefore, non-separable 88 

variograms have been developed and were applied in many fields, including hydrogeology. For 89 

instance, Guo et al (2014) applied three non-separable spatiotemporal variogram models (i.e., 90 

Cressie–Huang model, Gneiting model and product-sum model) to predict the green gas 91 

emission over China, during 2009-2012. They compared these variogram models with the 92 

empirical variogram surface, and showed that the product-sum model predicts slightly better 93 

than the rest. However, the three models were almost equally capable of generating column-94 

averaged carbon dioxide dry air mole fractions (Xco2) concentration maps (Guo et al., 2014).   95 

In the current research, spatiotemporal regression kriging (Rkriging) method is adopted 96 

to investigate GWL, in the highly important Harvey Catchment in Western Australia, where 97 

the historical observed data were spatially and temporally irregular. The catchment is one of 98 

the main water sources for the Perth metropolitan (Al-Safi et al., 2020). It is home to a vast 99 
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range of groundwater-dependent biodiversity, and its wetlands and lakes are in the list of 100 

wetlands of international importance (Environmental Protection Authority, 2008). The 101 

proposed method produces spatiotemporal maps for the catchment to track the groundwater 102 

change during the study period of 1982-2017. To choose the best spatiotemporal variogram, 103 

for a given sample set, several variograms are compared; to find the optimum number of spatial 104 

and temporal observations, different spatiotemporal sampling sizes are investigated. The whole 105 

catchment is divided into fine grids and for each grid a monthly timetable is provided to 106 

overcome non-uniformity due to the temporal and spatial gap in the observed data. 107 

As the catchment information (such as location and elevation) can be highly corrected, 108 

direct use of this data may make the model too sensitive. Correlated covariates can affect the 109 

significance of the variables, and their interdependence can make the estimation sensitive to 110 

minor changes which might introduce imprecise regression coefficients and accordingly higher 111 

errors to the model. Therefore, Principal Component Analysis (PCA) is performed to prevent 112 

multi-collinearity in the covariates and to avoid information overlapping. The PCA is a 113 

common method that transforms the covariates into orthogonal and uncorrelated components. 114 

It reduces the original variables to a limited number of integrated variables, which explain most 115 

of the variance (Ruybal et al., 2019). The stepwise regression algorithm is, also, used to select 116 

the most significant regressors. The accuracy of the Rkriging method is examined by the Leave-117 

One-Out-Cross validation technique.  118 

 After studying groundwater change in the catchment, it is interesting to explore the 119 

possible reason behind the change. Although precipitation is one of the main factors affecting 120 

GWL, its impact on GWL is not fully understood (Kotchoni et al., 2019), mainly due to lack 121 

of enough GWL information and complicated structure of groundwater. Time-series analysis 122 

(i.e., cross-correlation and auto-correlation) is a common approach to investigate correlation 123 

between hydrological time-series (Cai & Ofterdinger, 2016; Duvert et al., 2015; John & John, 124 

2019; Kim & Lee, 2017; Lee et al., 2006; Lehmann & Rode, 2001; Shi et al., 2019). The cross-125 

correlation analysis provides useful information regarding the significance and the first 126 

response of the groundwater resources to precipitation. Auto-correlation analysis, on the other 127 

hand, reveals structure of the time-series and impact of memory effect. In this paper, the 128 

correlation between the estimated groundwater and observed precipitation time-series with 129 

possible lags is examined at a randomly selected number of points, to investigate the 130 

interdependency between GWL and precipitation time-series, and detect any possible time-lag.  131 
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The paper is organized as follows. The study area and data set are described in Section 132 

2, followed by the methodology. The results and model assessment in relation to the data set 133 

are given in section 4. In section 5, conclusions and a discussion are drawn from this study. 134 

2 Study area and data 135 

Harvey River Catchment with size of 1041 km2 is located at 130 km south of Perth city 136 

in Western Australia. The Harvey River is one of the most important water sources for Perth 137 

metropolitan area. The catchment, as a part of the bigger Peel-Harvey basin, is internationally 138 

recognized as the main water-birds place in south west of Australia (Kelsey et al., 2010; Ruibal-139 

Conti, 2014). It has a Mediterranean climate with hot-dry summers and cold-wet winters. 140 

Harvey catchment has experienced one of the fastest development and urbanization in Western 141 

Australia, especially in the coastal areas (Kazemi et al., 2019; Kelsey et al., 2010).  142 

Almost all climate scenarios (GCMs) predicted hotter and drier climate for south 143 

Western Australia, for the next decades (Ali et al., 2012; CSIRO, 2009). Direct impacts of 144 

hotter and drier climate on GWL is variation of streamflow and precipitation, and accordingly, 145 

decreasing groundwater recharge. Climate change can also affect GWL indirectly, by reshaping 146 

groundwater users’ daily routine (Taylor et al., 2013). Three main recharge mechanisms 147 

affecting groundwater system are direct recharge (e.g., infiltration resulted from precipitation), 148 

indirect recharge (e.g., infiltration from surface water), and localized recharge (e.g., 149 

concentrated surface water such as lakes and agricultural area) (De Vries & Simmers, 2002). 150 

In the case of Harvey catchment, where studies show the precipitation has decreased during 151 

the last decades, sandy soil structure of the area makes precipitation infiltration the only reliable 152 

means to replenish the water table. Groundwater consumption routine, on the other hand, has 153 

changed dramatically, from a very limited percentage during the 1960s to almost equal as 154 

surface water in 1985. Nowadays, more than 75% of water originates from groundwater in the 155 

area. Excessive water withdrawal for domestic, agricultural and industrial purposes, has 156 

affected the GWL, and therefore, has manipulated the dependent ecosystem (Ali et al., 2012; 157 

CSIRO, 2009).  158 

The required groundwater and climate data are available on the Bureau of Meteorology 159 

(BOM) of Australia’s website (BoM, 2020). The groundwater data were collected from 160 

monitoring wells for the period of 1982 to 2017, where the reference point is the mean sea 161 

level. The temporal and spatial availability of the data is highly non-uniform in the catchment. 162 

As presented in Figure 1 monitoring wells are unevenly scattered through the catchment. In the 163 

south-eastern part of the catchment, for instance, there are very few wells available.  164 

http://www.bom.gov.au/waterdata/
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 165 

 166 

Fig.1 Locations of groundwater wells and weather stations in Harvey Catchment 167 

The temporal distribution of the data is also not uniform. Many wells were operating 168 

only for limited years, some of the wells provide annual data and some monthly data (Fig.2). 169 

As presented in Fig.2, very few information is available in some years (e.g., 2000-2008). In 170 

this study, it is assumed that the temporal trend within the study period continues and is not 171 

affected by dramatic human-induced changes.  172 
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 173 
Fig.2 Heatmap of the available data showing non-uniform temporal distribution of the GWL information in the Harvey 174 

Catchment. N is number of available data in a month. 175 

3 Methodology 176 

Spatiotemporal Regression Kriging (Rkriging) predicts the spatial and temporal links 177 

between observed values. In this method, the regression (deterministic) and residual 178 

(stochastic) parts of the model are analyzed separately (Eq. (1)).  179 

 180 

𝑍(𝑠, 𝑡) = 𝑚(𝑠, 𝑡) + 𝜀(𝑠, 𝑡) + 𝑟  (1) 181 

where Z(s, t) is the observed GWL at space (s) and time (t), m(s, t) is the trend 182 

(deterministic) component, ε(s, t) is residual (stochastic) component of the model, which is the 183 

spatiotemporally auto-correlated residual for every (s, t) ∈ S × T where S ⊂ R2 is the spatial 184 

domain and T ⊂ R is the temporal domain (Varouchakis & Hristopulos, 2019), and r is the 185 

uncorrelated noise (Hu et al., 2017; Ruybal et al., 2019). The regression method is applied to 186 

predict the values on a fine grid. This part of the analysis, which called trend analysis, gives a 187 

rough estimation for each grid. Then, the residuals are extracted by deducting the trend from 188 

the observed data. For the residual part, the best spatiotemporal variogram (STvariogram) is 189 

fitted and the interpolated residuals for all grid values are calculated. Finally, the two 190 

components (trend and residual) are added back, to provide the final estimation of the GWL 191 
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(Hu et al., 2017). All of the analysis and codes are developed and performed in Rstudio 192 

platform. 193 

3.1 RKriging of the residuals 194 

The sample spatiotemporal semi-variogram (which is half the empirical STvariogram) 195 

is produced using the residuals as follow (Hu et al., 2017): 196 

 197 

𝛾(ℎ, 𝑢) =  
1

2𝑁(ℎ,𝑢)
∑ [𝜀(𝑠, 𝑡)𝑖 −  𝜀((𝑠 + ℎ𝑡)𝑖, (ℎ + 𝑢))]2𝑁(ℎ,𝑢)

𝑖=1  (2) 198 

where h is the separation distance for points in space, u is the separation in time, and 199 

N(h, u) is the number of paired observations of z separated by lag (h, u). A model is fitted after 200 

the sample STvariogram is determined. Among the several models to estimate STvariogram, 201 

separable, Product-sum, and sumMetric models are the most common (Hu et al., 2017; Ruybal 202 

et al., 2019; Varouchakis & Hristopulos, 2019). The separable model, belongs to the separable 203 

covariance models, assumes that space and time domains of the variogram are separate and 204 

treats them independently, while product-sum and sumMetric models, belong to the non-205 

separable covariance models, consider the interaction between space and time components. 206 

The advantages of the separable models are computationally fast with few parametrization, 207 

however these models cannot fully grasp the complicated interaction between the spatial and 208 

temporal components (Hengl et al., 2012; Geniaux, 2017; Varouchakis & Hristopulos, 2019). 209 

Therefore, in the current study, models from both separable and non-separable groups are 210 

selected and the results are compared to choose the best fit for the sample (empirical) 211 

spatiotemporal variogram.  212 

3.2 Leave-One-Out Cross-Validation (LOOC) 213 

To investigate the accuracy of the regression kriging, the Leave-One-Out Cross-214 

Validation (LOOC) method is applied. A code is written in R to perform the spatiotemporal 215 

cross validation. During this process, for each space-time data is removed once, the remaining 216 

data are used to calibrate the model which is used to predict the value of the removed point. 217 

This process is repeated for all values in the data pool. Finally, the predicted values and 218 

observed values are compared to examine the accuracy of the prediction (Learning E.o.M, 219 

2010).  220 
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3.3 Principal Component Analysis (PCA) 221 

In this study, the built-in R functions prcomp() is used to perform the PCA. This 222 

function determines rotation and shift of the original data to a new coordinate system, in which 223 

the covariates are independent. For the current work, the two groups of covariates for PCA 224 

analysis are Harvey digital elevation model (DEM) and the extended boundary of the 225 

catchment (i.e., Longitude and Latitude of the catchment), as suggested by (Ruybal et al., 226 

2019).  227 

3.4 Time-series Analysis 228 

Time-series analysis is carried out, for forty randomly selected grid points, to better 229 

understand interrelationship between estimated GWL and groundwater level change (∆GWL), 230 

and precipitation time-series. The Cross-Correlation function (CCF) provides time-lag between 231 

the input and output, which suggests the response time of the output time-series. Equations 3 232 

and 4 represent the mathematical expression of the CCF (Cai & Ofterdinger, 2016; Shi et al., 233 

2019). 234 

 𝐶𝑥𝑦(𝑘) =
1

𝑛
∑ (𝑥𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)𝑛−𝑘

𝑡=1  (3) 235 

 Γ𝑥𝑦(𝑘) =
𝐶𝑥𝑦(𝑘)

𝜎𝑥𝜎𝑦
  (4) 236 

where Cxy(k) is the cross-covariance between xt (input time-series) and yt (output time-237 

series),  k and n are the time-lag and the length of the time-series, respectively, and σ is the 238 

standard deviation of x and y.  239 

The Auto-Correlation Function (ACF), on the other hand, is cross-correlation of the 240 

time-series with itself, at different time-lags. This parameter provides the “memory effect” of 241 

the dataset, which shows interdependency of the time-series to its historical values. For an 242 

uncorrelated time-series, the ACF shows sharp decrease within a short period, while a gradual 243 

decline shows strong interdependency and a long memory effect (Cai & Ofterdinger, 2016; 244 

Larocque et al., 1998). 245 

4 Results 246 

The study area is divided into 450×450 meter grids. For each grid a monthly temporal 247 

data-frame is provided to produce a uniform spatiotemporal structure and cover the temporal 248 

and spatial gaps in the observed data. 249 
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4.1 PCA calculation  250 

As presented in Table 1, the PCA conversion of the original covariates (i.e., longitude, 251 

latitude and elevation) explained more than 96% of the variance with two components (i.e. 252 

PCA1 and PCA2).  253 

 254 

Table 1 PCA conversion of the original covariates longitude, latitude and elevation explaining 96% of the variance  255 

Parameters PCA1 PCA2 PCA3 

Standard deviation 1.375 0.9998 0.332 

Proportion of Variance 0.63 0.33 0.04 

Cumulative Proportion 0.63 0.96 1 

                          256 

As the difference between the variables’ ranges and magnitudes might introduce bias 257 

to the analysis, all the values were scaled before being projected to the new coordinate system 258 

(i.e., PCA provided coordinates). A stepwise regression analysis was performed to provide the 259 

subset of optimum regressors, which best describe the trend component. The stepwise 260 

regression showed that among the various combinations of the potential predictors (i.e., PCA1, 261 

PCA2, latitude (Lat), longitude (Long), Elevation (Elev), Year the measurement was taken, 262 

and Month the measurement was taken), PCA1 and Long give the optimum combination. 263 

Hence, the trend component of GWL in the Harvey catchment has only the spatial dimension 264 

(Eq. (5)): 265 

 266 

𝑚(𝑠)  =  −4.227 × 𝐿𝑜𝑛𝑔 + 2.398 × 𝑃𝐶𝐴1 + 1740.142                        (5)  267 

Augmented Dickey-Fuller test for stationarity was used to check the stationarity of the 268 

input times-series. The test showed that before the trending decomposition the data was non-269 

stationary with p-value = 0.3 and after decomposing and trend deduction, the residual became 270 

stationary with the p-value = 0.01. 271 

 272 

4.2 Spatiotemporal variogram (STvariogram) model for residuals 273 

Each component of the STvariogram can be described by a model such as spherical, 274 

exponential, Gaussian or Wave models. Different configuration of these models were tested 275 

for three widely used STvariograms (i.e., Separable, Product-sum and sumMetric), to 276 

determine the best model. Based on the least mean square value, the combination of the 277 

Exponential and Gaussian models were chosen for spatial and temporal components of the 278 
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STvariograms, respectively. For the joint component of the sumMetric STvariogram, the 279 

Exponential model was the best option (table 2). The initial values of sill, range and nugget 280 

were chosen based on the sample spatial and temporal variograms and then adjusted to 281 

minimize the mean square error between the sample and modeled STvariogram. In this case 282 

study, the directional sample variogram did not show strong anisotropic behavior, therefore the 283 

value of anisotropy (k) is set to minimum. 284 

 285 

Table 2 Parameters of the fitted models and comparison of the goodness of fit to choose the best STvariogram  286 

Variogram 

components 

Model Sill 

(km) 

Range 

(km/day) 

Nugget 

(km2) 

MSE (mean square error) 

Separable Product-

sum 

sumMetric 

Spatial  

Exponential 

60 10 0 231 212 209 

Temporal Gaussian 50 1000 0 

Joint (only for sumMetric) Exponential 80 20 40 

 287 

Fit.StVariogram function in the gstat package was used to fit the model against the 288 

empirical variogram from sample. The embedded L‐ BFGS‐ B algorithm was used to 289 

minimize the error between the model and the sample. The aforementioned algorithm is an 290 

extension of the Limited-memory BFGS optimization algorithm which belongs to Quasi-291 

Newton methods. It is one of the most popular and efficient algorithms for fitting kriging 292 

models which allows to impose simple box constraints on the variables for numerical 293 

optimizations (Guitton, 2004).  294 

The optimum number of spatiotemporal observations was determined by trial and error 295 

method. Comparing the STvariograms with the empirical variogram surface showed that both 296 

spatial closeness and number of available data in individual wells, play important roles in 297 

accuracy of the variograms. Congested number of wells in one location causes overfitting and 298 

scattered temporal data leads to unrealistic variogram. Finally, 641 wells, with at least 10 299 

available temporal data, were selected, for this study.  300 

As suggested in Table 2, the two non-separable models perform better than the 301 

separable model implying importance of the link between the spatial and temporal domains of 302 

the variogram. Among the three employed models, the sumMetric model outperforms the other 303 

STvariograms with lower Mean Square Error Value (MSE). The sumMetric model is a 304 

combination of sum and metric models (Eq.6) (Derakhshan & Leuangthong, 2006; 305 

Dimitrakopoulos & Luo, 1994; Rouhani & Hall, 1989). 306 
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 307 

 𝛾𝑆𝑇(𝑠, 𝑡) = 𝛾𝑆(ℎ) + 𝛾𝑇(𝑢) +  𝛾𝐽(√ℎ2 + (𝑘𝑢)2) (6) 308 

where κ is the spatio-temporal ratio of anisotropy, which combines spatial distances 309 

with temporal distances, and γS,γT, γJ  are the spatial, temporal, and joint components of the 310 

STvariograms, with separate nugget effects.  311 

Figure 3 compares the empirical surface variogram and the best fitted STvariograms 312 

(i.e., sumMetric estimated STvariogram). The general increasing tendency of gamma-ST (𝛾𝑆𝑇) 313 

with distance suggest that the correlation between the residuals decreases as the distance 314 

between the wells increases. The value of 𝛾𝑆𝑇, however, shows less sensitivity to time-lag.  315 

 316 

 317 

Fig.3 a) the empirical surface of the GWL residuals after trend removal and b) the fitted spatiotemporal variogram of the residuals using 318 

sumMetric model  319 

4.3 Spatiotemporal Kriging Predicted Groundwater Levels 320 

The trend (determinist component) and residual (stochastic component) together 321 

provide the final estimation of the GWL at any grid points in each month, based on which 322 

monthly GWL maps can be produced for the study years (i.e., 1982-2017). For the sake of 323 

presentation, Figure 4 presents only the maps for selected months of January, May and 324 

September in the selected years of 1982, 1997, 2007 and 2017. As expected, the deeper water 325 

table is located in south-eastern part of the catchment and shallower water table (the dark blue 326 

color) is in the coastal area (i.e., the north-western part, where the catchment meets the sea). It 327 

is also shown that GWL follows the same trend over the years although the actual GWL at each 328 

grid vary from year to year.  329 

a) b) 
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 330 

Fig.4 Created maps of estimated Harvey catchment GWL (m) for selected months of the study period (1982-2018) where hot 331 

and cold colors representing deeper and shallower groundwater level, respectivly  332 

4.4 Cross-validation 333 

The “Leave‐ one‐ out” cross‐ validation was carried out for almost 44000 334 

spatiotemporal data points to compare the estimated values with the observed values (Figure 335 

5). These spatiotemporal points are the observed GWL data from the wells, during the 36 years 336 

of study period. Non-uniformity of the observed data can also be observed from the figure 337 

where there is a lack of information within some ranges of elevation. The diagram suggests the 338 

Rkriging method is well capable of estimating GWL in the catchment, with the R-square value 339 

very close to 1 (i.e., 0.99).  340 

 341 
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 342 

Fig.5 Leave–One-Out Cross Validation result showing the goodness of fit between Rkriging predicted GWL and observed 343 

GWL information from the 641 wells in the Harvey Catchment. 344 

4.5 Time-series Analysis 345 

Forty randomly selected samples (as hypothetical wells) were chosen to perform the 346 

auto-correlation and cross-correlation analysis. The samples are almost uniformly distributed 347 

in the catchment and cover all of the elevation classes. Figure 6 shows the values of auto-348 

correlation function for GWL and ∆GWL. The gradual decline in the ground water level 349 

indicates the autocorrelation can last for at least four years (ACF above 0.2). Those samples 350 

which show sinusoidal, yet gradually decreasing patterns, are mainly located on the Collins 351 

Pool or very close to the pool. The ACF for ∆GWL shows completely different behavior and 352 

decreases rapidly which implies the effect of historical data naturally declines over time. For 353 

most of the cases, the ACF graphs for ∆GWL does not decrease with increasing lag and follow 354 

a sinusoidal pattern with 12 month circle, however, the seasonality and correlation are 355 

negligible. The aforementioned samples, located on or close to the Collins pool, perform higher 356 

seasonal auto-correlation values, indicating stronger impact of historical values and memory 357 

effect. As the pool is connected to the ocean (Figure 1), the unusual trend (i.e., stronger seasonal 358 

interdependency) of these samples can be because of the influence of ocean water. 359 
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 360 

 361 

Fig.6 a) Auto Correlation Function (ACF) for GWL and b) ∆GWL in 48 months showing the autocorrelation values between 362 

the time-series 363 

In Fig.7 the cross-correlation analysis between ∆GWL and average precipitation in the 364 

catchment is presented which suggests that the highest correlation happens at lag zero which 365 

indicates the time-lag between ∆GWL and precipitation is less than a month, meaning that 366 

precipitation needs less than a month to affect ∆GWL in the catchment. The short delay (lag-367 

time) between precipitation and ∆GWL significantly depends on the catchment characteristics 368 

such as soil type, porosity, conductivity, land use, etc. and might be different for other 369 

locations, however it can provide straightforward, yet easy to implement information about the 370 

hydro(geo)logical system. 371 

 372 
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 373 
Fig.7 Cross-correlation between ∆GWL values and Precipitation (P) values showing time-lag between ∆GWL and 374 

precipitation is less than a month (the dashed lines show lag month during which the highest CCF value occurs between the 375 

two time-series)  376 

5 Discussion  377 

According to Figure 8 the mean monthly GWL has increased during 1988-1993 and 378 

decreased afterward (the trend line). The previous studies for the Harvey region reported 379 

decrease in GWL since 1980s (Ali et al., 2012; CSIRO, 2009; Kelsey et al., 2010) mainly due 380 

to extensive agricultural activities, urban development, and rainfall reduction. The current 381 

research confirmed these findings, showing that GWL in the catchment has decreased after a 382 

short period of increasing.  383 

 384 
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 385 

 386 

Fig.8 Mean Monthly trend of GWL during the study period   387 

Figure 9 provides more detailed information. Although precipitation follows a 388 

decreasing trend (the red line), the annual precipitation during 1988 – 1993 is significantly 389 

above the average which coincides with those years in which GWL experienced a brief 390 

increase. The smooth bar around the trend lines for Figures 8 and 9 shows 95% level of 391 

confidence for the mean. 392 

 393 

 394 
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 395 

Fig.9 a) Annual Precipitation and b) Mean annual GWL trends during the study period 396 

The Harvey Catchment, specifically in the coastal area, is reported to have a shallow 397 

water table. By deducting earth elevation from estimated GWL at each grid point, it was 398 

confirmed that the catchment is shallow, and water level almost stands within 10 meters below 399 

the earth surface. The deepest water table is located in the southeastern part of the catchment 400 

(Figure 4), where water level stands between 10 to 16 meters from the surface. Shallow 401 

catchments, especially in cases like Harvey, where the precipitation is highly seasonal, rejects 402 

recharging, after being full during winter time. Therefore the catchment is more vulnerable to 403 

water loss. On the other hand, rapid and extensive development in the study area causes higher 404 

rate of discharge than recharge, and hence results in more water loss. Decreasing water level 405 

increases the risk of ocean water intrusion, and deteriorates water quality (Ali et al., 2012). 406 

Because of the shallow groundwater, high permeability (i.e., high hydraulic gradient) and 407 

sandy soil of the catchment, a short time-lag between precipitation and ∆GWL was expected. 408 

The cross-correlation analysis showed the time-lag between the two time-series is less than a 409 

month. However, because of the chosen monthly time step in this study, it was not possible to 410 

detect the exact response time of ∆GWL time-series. In future studies, with a finer temporal 411 

grid (e.g., daily scale), it might be possible to track the possible weekly or daily time-lag. 412 

Although, due to the extensive computational process, probably, a shorter time period should 413 

be adopted.  414 

The Rkriging method is a beneficial, yet, computationally extensive task. The model 415 

should perform the inversion covariance matrix, which makes the calculation process massive. 416 

Unlike spatial or temporal kriging, the method considers the time and space dependency of the 417 
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variables by building a correlation between the parameters so that even when some of the 418 

spatial or/and temporal points are missing the uniform spatiotemporal estimation is carried on 419 

(Varouchakis & Hristopulos, 2019).  420 

The proposed method showed that GWL has decreased in the catchment, during the 421 

study period. The estimated GWL provides valuable information about hydrogeological 422 

condition of the catchment, and hence can be useful for predicting future change and 423 

distinguishing potential environmental threats to the catchment (Ferdowsian & Pannell, 2009). 424 

Furthermore, the GWL information is important to accurately quantify water extraction 425 

capacity and amount of discharge and recharge to the groundwater system, which in return, is 426 

essential for proposing sustainable water supply plan (John & John, 2019; Kotchoni et al., 427 

2019). Therefore, the outcome of this study is, also, useful for policymakers and water 428 

resources manager in developing sustainable plans and sustainable groundwater management. 429 

The present research is part of a more extensive study on the impact of climate change and 430 

human activities on water resources. For the next phase of the study, outcome of the current 431 

research will be applied to investigate water resources variations in the Harvey Catchment, 432 

during 1982-2017. In the absence of hydrological modelling and complex dataset, this method 433 

can provide valuable information. Moreover, the Rkriging method is a competent approach for 434 

cases with sparse non-uniform data, in fields such as hydrology, pollution tracking or other 435 

environmental studies.  436 

 437 

6 Conclusion 438 

As uniformly distributed groundwater data is not available, this study successfully 439 

applies Rkriging method to investigate groundwater change in the Harvey Catchment, Western 440 

Australia. The method displayed spatiotemporal interpolation between the non-uniform 441 

observed groundwater data. To overcome the temporal and spatial gap in the data, a uniform 442 

spatiotemporal grid was produced and accordingly monthly maps of the groundwater level for 443 

the catchment were created. The proposed method confirmed the reported decreasing 444 

groundwater level status in the catchment. In order to further investigate this reduction and its 445 

correlation with temporal precipitation change, time-series analysis was performed. The results 446 

showed there is a short time-lag between the precipitation and ∆GWL time-series (less than a 447 

month), which is expected considering Harvey Catchment has relatively shallow groundwater 448 

table. The proposed method can be used for other catchments where limited groundwater data 449 
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is available. It increases the spatiotemporal understanding of the studied parameters where 450 

irregular temporal and spatial data is the only available information.  451 
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