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Abstract: Motivated by the lack of a systematic analysis of the use of life cycle assessment 

(LCA) to estimate the environmental impacts of roads, this study conducts a critical review to 

examine the methods, common practices, limitations, and underlying reasons, so that future 

directions can be recommended. In this work, 94 papers that adopt LCA methods to assess the 

environmental impacts over the whole life cycle of roads were analyzed. The results 

demonstrate that the process-based LCA remains the most commonly adopted LCA method; 

however, the hybrid LCA has been gradually recognized. After examining the goal and scope 

definition, life cycle inventory, life cycle impact assessment, and life cycle interpretation of 

these studies, it was found that the current LCA applications in roads face limitations owing to 

the inconsistent and inappropriate selection of the functional unit, limited consideration of the 

maintenance and repair, use, and end-of-life phases, limited reporting of data sources, lack of 

standardized impact assessment procedures, and lack of sensitivity and uncertainty analyses. 

These limitations can be attributed to the lack of a standardized LCA procedure for roads. There 

is also a lack of LCA studies focusing on network-level analysis, which may restrict the use of 

LCA to assist policy making in road planning and management. In addition, the time effect is 
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rarely considered to reflect the dynamic changes of environmental impacts over the project life 

cycle. Therefore, future directions are recommended accordingly. Improvements in these areas 

are expected to generate more reliable LCA results for informed decision making.

Keywords: Life cycle assessment (LCA), roads, sustainable development, green infrastructure

1 Introduction

Roads play a significant role in the transport network as people increasingly rely on vehicles 

for daily travel. A large network of roads causes adverse environmental impacts, such as global 

warming, energy consumption, landscape transformation, and soil acidification (Findlay and 

Bourdages, 2000; Santos et al., 2015). Construction works and regular maintenance of roads 

require materials that are produced through highly carbon-intensive and energy-demanding 

processes (Santos et al., 2015). In addition, road networks worldwide are also a major cause of 

significant biodiversity loss due to movement of species, habitat fragmentation, and increase 

of human access to existing natural habitats (Alkemade et al., 2009; Findlay and Bourdages, 

2000). Green designs and practices in the road sector are highly encouraged by transportation 

authorities to mitigate the adverse environmental impacts (Wu et al., 2017). 

The life cycle assessment (LCA) approach examines the environmental impacts of 

products/processes (Santero et al., 2011b). Unlike other sectors, the use of LCA in road 

assessment is still in its early stage. The first LCA study on roads was conducted in the 1990s 

(Inyim et al., 2016). Over the last two decades, LCA has attracted increasing interest as a 

method to evaluate the sustainability of roads. The current application of LCA in road 

evaluation often follows the ISO 14044 (2006) standard. However, this standard is primarily 

designed for the environmental assessment of manufactured products rather than infrastructure 

projects such as roads. As roads have their own unique characteristics, existing LCA practices 

may not be suitable in this area (Batouli and Mostafavi, 2017). 
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For example, when defining the goal and scope of an LCA analysis, it is a common practice to 

set a pre-defined analysis period and functional unit (FU) for a given product/process (ISO 

14044, 2006). However, for road projects, to ensure the continued functioning of a road, 

maintenance and rehabilitation are needed at regular intervals and road decommissioning is 

relatively rare. It is therefore difficult to pre-define a strict system boundary for a road (Batouli 

and Mostafavi, 2017). Furthermore, the performance of a road changes as the road condition 

deteriorates. The widely used FUs, including length (e.g., lane-kilometer, lane-mile) and area 

(e.g., square-meter), are unable to capture such dynamic changes (Batouli and Mostafavi, 2017). 

More importantly, owing to the changing road performance, the maintenance strategies and 

their frequency and impact on the sustainability of roads are difficult to be accurately predicted 

and modeled. However, these problems, along with their root causes, have not been widely 

recognized in current studies. Recently, researchers began to realize these limitations, such as 

the inconsistent selection of FUs and system boundaries (Inyim et al., 2016). Therefore, a 

systematic review of the current development and implementation of LCAs in road projects is 

needed to comprehensively explore their limitations so that future studies can better address 

them.

For now, there are already a few isolated publications that have reviewed the existing LCA 

research on roads or road pavements. For example, Anthonissen et al. (2016), Balaguera et al. 

(2018), and Jamshidi et al. (2017) conducted reviews on environmental impacts of sustainable 

alternative construction methods or construction materials for roads. Santero et al. (2011a, 

2011b) reviewed 15 pavement LCA related works, pointing out several limitations of the 

reviewed studies and environmental impact contributors to be considered in future studies. 

Inspired by Santero et al. (2011a), AzariJafari et al. (2016) investigated recent publications 

since 2011 to capture the latest development on the modeling of usually missing components 

such as pavement surface roughness, albedo effect, carbonation, etc. In addition, Inyim et al. 
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(2016) conducted a systematic review on 32 papers published between 1996 and 2015, with an 

attempt to reach a conclusion on the comparison of environmental sustainability between 

asphalt and concrete pavements. This study is distinct from the aforementioned ones in three 

ways. In contrast to previous reviews, which have focused on asphalt pavements (e.g. Wang et 

al., 2018) or alternative materials/construction technologies (e.g. Jamshidi et al., 2013), this 

study includes studies that cover a variety of LCA application areas. In addition, it covers the 

analysis period from 2003 to 2019, with 2017 to 2019 accounting for 34% of the publications. 

Therefore, this review offers an update on the most recent developments and applications of 

LCA in roads. Moreover, this study provides a new angle of understanding the use of LCA in 

roads by considering the nature of LCA and the unique characteristics of roads. 

By conducting a critical review, this work aims to fulfill three objectives: 1) to draw a picture 

of the current methods and implementation of LCA in road projects from a life cycle point of 

view; 2) to identify the limitations and challenges of using LCA in the environmental 

assessment of roads; and 3) to point out future directions. The rest of this paper is organized as 

follows. Section 2 provides the research method for this review and Section 3 presents an 

overview on existing publications. Section 4 summarizes the main findings of this study, 

including the three fundamental LCA approaches and their applications in road projects. 

Section 5 discusses the limitations of existing studies and investigates future directions of LCA 

in road projects, and Section 6 concludes this review.

2 Research method

A six-step approach, based on Thomé et al. (2016), was adopted so that a systematic review 

could be conducted. A similar review process is also used by Wan et al. (2018). The first step 

was to define the review scope. The aim of this review was to investigate the development and 
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implementation of the LCA approach in road projects. Therefore, all review activities were 

centered on this aim. 

The second step was related to the identification of relevant articles through searching 

techniques, including the selection of databases and keywords. The Web of Science database 

was selected as the primary source because of its coverage and prime quality (Li et al., 2017). 

The searching terms, (“life cycle assessment” OR “LCA”) AND (“road” OR “pavement”) were 

used to identify articles that contain such keywords in the title, abstract, or keywords sections. 

Only peer-reviewed journal papers and reviews were selected based on quality considerations 

(Li et al., 2019). Other publication types, such as conference papers, theses, and letters were 

excluded. 

Steps three and four were related to data collection and quality evaluation. Using the searching 

techniques mentioned above, 597 potentially relevant articles were identified, among which 

220 are directly related to road or pavement LCA. It should be noted that roads are usually 

classified into three types of facilities, including earthwork zones, bridges, and tunnels (Park 

et al., 2016). Most studies are limited to the earthwork zone of paved roads. To ensure that the 

research aim was consistent, 21 studies on unpaved roads, embankments, and trenches, 

roundabout intersections, bridges, and tunnels were excluded in this review. The screening 

process is also adopted by Inyim et al. (2016) and Wan et al. (2018). As a result, a total of 199 

peer-reviewed journal papers were retrieved. 

The last two steps were data analysis and interpretation. Content analysis was selected as the 

method for data analysis because it was recommended as the best fit for analyzing textual data 

(Erlingsson and Brysiewicz, 2017). Table 1 presents the codes for the content analysis, 

including year, author, journal, location, goal of study, FU, system boundary, life cycle 

assessment method, data sources, impact category, major findings, and future needs. These 
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codes were also aligned with the four-step LCA. For example, the FU and system boundary 

were related to the goal and scope definition.

Table 1. Codes for this review

Code Description of the codes in this review

Year Year of publication

Author Authors of the publication

Publication venue The journal where the paper is published

Location The location where the research was conducted

Goal of study The intended aim and objectives for carrying out the study

Functional unit (FU) The reference unit for the assessment

System boundary The phases and unit processes

Life cycle assessment method The method for conducting the LCA

Data sources The data sources

Impact category The environmental concerns to which the LCI analysis results are assigned

Major findings Main results that are related to the goal of the study

Future needs Limitations or future directions identified by the authors of the publication

3 Overview of existing LCA studies on road projects

A preliminary analysis of the 199 selected papers published from 2003 to 2019 was conducted 

to provide descriptive information of these studies, including the publication years, journal 

distribution, and general classifications.

3.1 Publication distribution

Figure 1 illustrates the distributions of the publications. It shows that LCA on roads has 

attracted substantial research interest since 2012, which demonstrates the rising interest about 

this research area in the LCA community in recent years. 
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Figure 1. Distribution of retrieved publications by year

Appendix A illustrates the distribution of these articles in publication venues. In total, 50 

journals have published relevant papers. Among these journals, the Journal of Cleaner 

Production has the highest number of publications (41), followed by Transportation Research 

Record: Journal of the Transportation Research Board and Transportation Research Part D: 

Transport and Environment, with 21 and 19 relevant articles, respectively.

3.2 General themes

In general, there were two main themes based on the goals, including the application of LCA 

in roads (113, 56.8%) and the modeling development of LCA in roads (77, 38.7%). Table 2 

presents the description of these two main themes. In the application theme, the study goal was 

the application of LCA to evaluate roads or road materials, following the LCA processes 

defined in ISO 14044 (2006). Among these studies, 94 papers targeted the road structure, 

whereas the other 19 targeted the materials. In the modeling development theme, the study 

purpose was to develop an LCA tool for roads, or to introduce a method for calculating certain 

new impacts that were often excluded in previous studies (e.g., traffic delay and rolling 

resistance). Based on the research aim and objectives, the 94 papers focusing on the application 
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of LCA in roads were targeted first. Table 2 and Figure 2 present the definition and distribution 

of themes, respectively, which show that the evaluation of materials is attracting immense 

research interest.

Table 2. Classification of the retrieved publications based on their goal of study

Classification Description of the classifications Publication

Road 

evaluation

To evaluate the environmental impacts of a road project 26

Alternative 

design

To compare different designs for a given road, such as 

rehabilitation methods, maintenance schemes, and various 

lifespan designs

19

Material 

evaluation

To evaluate the environmental impacts of a material, such as 

a mixture, an additive, or an eco-friendly material (e.g., 

industrial by-products, recycled materials, and other 

modified materials)

51

Typical 

application

Material 

comparison

To compare different materials, such as concrete versus 

asphalt, and different asphalt products

17

Framework/tool 

development

To develop a framework or calculation tool for road 

evaluation

24

LCC + LCCA To develop a method that integrates LCA and lifecycle cost 

analysis (LCCA) in road evaluation

23

Modelling 

development

New impacts To develop a method to capture new impacts that are rarely 

considered in previous studies, including traffic congestion, 

albedo effects, rolling resistance, carbonation, noise, and 

lighting

30

Others The goal of the study is not included in the above 

classifications

9
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Figure 2. Distribution of publications by theme and year

4 Critical review of the approaches and applications of LCA in roads

In this section, the commonly used LCA approaches are compared and findings on the 

applications of LCA in roads are presented following the typical procedures of conducting an 

LCA study defined in ISO 14044 (2006).

4.1 LCA approaches

LCA is often categorized into process-based LCA (P-LCA), environmental input–output LCA 

(EIO-LCA), and hybrid LCA (Santos et al., 2017). P-LCA defines the system boundary by 

processes and divides the target system into a series of process flows to model the inputs and 

outputs of every process (Horvath and Hendrickson, 1998). It has been widely adopted in 

environmental evaluation of roads (e.g. Chiu et al., 2008; Chowdhury et al., 2010; Huang et 

al., 2009), with 67 (71.3%) studies using this method. However, this method requires data on 

consumption and environmental output to be obtained for every process, which is labor- and 

time-intensive. Therefore, P-LCA is often expensive and time-consuming, especially for a 

complex system that encompasses thousands of processes (Suh et al., 2004). It also has the risk 
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of excluding a large number of inputs for upstream processes, which may have a significant 

effect on the total inventory (Choi et al., 2016). 

To simplify the LCA and generate more comprehensive LCA results, EIO-LCA is proposed. 

In EIO-LCA, the boundary often spans the global economy, which includes the entire chain of 

suppliers (Suh et al., 2004). When producing the products in a sector, inputs, which are the 

outputs of other sectors, are required. Because each sector has environmental impacts per dollar 

of output, the overall environmental impacts can be quantified by summing up the products of 

the inputs and the environmental impacts of the corresponding sectors (Horvath and 

Hendrickson, 1998). Although EIO-LCA is able to improve the completeness of the traditional 

method, it faces problems such as the age of input–output data, homogeneity assumption, use 

of national average data, and high levels of sector aggregation (Choi et al., 2016; Hendrickson 

et al., 2006). As can be observed in Table 3, EIO-LCA has not been fully embraced, with only 

6 studies conducted in the evaluation of roads (6.4%).

Hybrid LCA, which combines the two methods by using input–output (IO) data to complement 

the processes that are excluded in P-LCA, was later proposed (Bullard et al., 1978; Suh et al., 

2004). The main advantage of this approach is that it improves the completeness of P-LCA 

while raising the reliability of EIO-LCA (Bullard et al., 1978). Table 3 summarizes the 

advantages and disadvantages of each method. 
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Table 3. Pros and cons of existing LCA methods

Comparison Methods Pros Cons Frequency

Process-based LCA

(P-LCA)

• Identifies the input and output in each 

process of production of a product or 

service1

• Provides assessment for specific 

processes1

• Can obtain detailed results for each process1

• Has advantages when evaluating the use and 

EOL stages2 

• Allows comparison of specific products2

• Setting a system boundary is difficult3

• “Cut-off” errors1,3,4 

• Unable to capture circularity effects1

• Costly and time-consuming1,3

67

(71.3%)

EIO-LCA • Provides an assessment of the whole 

economic system1

• Quantifies interrelationships between 

various sectors of the economy1

• The analysis boundary is the whole 

economy; no “cut-off” errors1

• Solves the problem of circularity effects1

• Less costly and faster1 

• Reflects direct and indirect interactions 

between different economic sectors; provides 

both economic and sector-wide results1

• Unable to reflect particular processes 

owing to the heterogeneousness of 

sectors and the use of national average 

data3

• Homogeneity and linearity 

assumptions4

• Aged input–output data3,4

• High levels of sector aggregation3,4

6

(6.4%)
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Comparison Methods Pros Cons Frequency

Hybrid LCA Usually combines the two methods by 

using IO data to complement the 

upstream processes, which are often 

excluded in traditional P-LCA3

• Overcomes the problem of the costly, time-

consuming, or missing data of P-LCA3,4,5

• Reduces “cut-off” errors of P-LCA and 

improves the consistency across the stages of 

the road life cycle3,4,5

• Improves the reliability of EIO-LCA3,4,5

• Lack of standard methodological 

framework5

• Lack of mature tool5

11

(11.7%)

Note: 

1 Hendrickson et al. (2006); 2 Choi et al. (2016); 3 Suh et al. (2004); 4 Bullard et al. (1978); 5 Crawford et al. (2018).

This table include 84 papers and the remaining 10 papers are not presented because their methods are not reported.
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4.2 Current applications of LCA in roads

Complying with the ISO 14044 standard (ISO 14044, 2006), a typical LCA study often follows 

four steps: 1) defining goal and scope, clarifying system boundaries, and determining FUs; 2) 

compiling the life cycle inventory (LCI) by allocating the inputs (resources) and outputs (e.g., 

emissions) through the life cycle; 3) assessing the potential life cycle environmental impact of 

the target system (which is referred to as LCIA); and 4) interpreting the results from the LCIA 

for conclusions and recommendations. Each step will be investigated to examine the current 

common practices and identify limitations in existing studies so that future directions can be 

proposed accordingly for further improvement.

4.2.1 Goal and scope definition

4.2.1.1 The goal of the studies

The goal of LCA plays a vital role in defining the FU, setting the system boundary, and 

selecting data sources (Loijos et al., 2013). Existing LCA studies on roads are usually limited 

to four types of goals, namely, evaluating the environmental impact of roads, alternative 

designs, pavement materials, and alternative materials. In addition, the majority of the studies 

(89, 94.7%) were conducted based on a project-level analysis. Only a few have investigated 

the impacts of roads in a network context to inform policymaking at the network level. 

Therefore, the implications of these studies are limited to project level and can hardly benefit 

road planners or policy makers to achieve an optimal solution at a network or national level.

4.2.1.2 Functional unit (FU)

Like applying LCA in other sectors such as the buildings sector, various FUs were used in LCA 

studies on roads, making it difficult to compare results across studies (Anand and Amor, 2017; 

Säynäjoki et al., 2017). 68 studies (72.3%) used the road length, such as kilometer, lane-

kilometer, and lane-mile. In addition, 11 papers (11.7%) used the treatment area, expressed for 
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instance in square meters, as the FU where the scope of the study involved the surface or 

wearing course of the pavement. Another FU is the whole road project, which was usually used 

when evaluating the environmental impact of a specific strategy (e.g., road closure scheme 

during rehabilitation and emission control strategy) on a given road project. For example, 

Hanson and Noland (2015) compared the vehicle emissions when adopting various staging 

approaches for a rehabilitation project. Other studies have also used the volume (e.g., in cubic 

meters, cubic yards) to evaluate the impacts of earthworks or recycling of materials (e.g. 

Capony et al., 2013). 

The use of these FUs has limitations. A lane mile or a square meter cannot be used as a standard 

FU (Cass and Mukherjee, 2011). It was pointed out by AzariJafari et al. (2016) that the 

information related to the road specifications should include region, lane width, shoulder width, 

thickness, roadway type, pavement type, and analysis period. It was argued that road functions 

could not be appropriately reflected if the FU did not include the roadway classification, lane 

width, and number of lanes into account. Appendix B presents the goals of the studies, together 

with the FUs of the twenty most cited papers and two recent highly cited publications with 

more than 10 citations (referred to as the 22 HCPs). It is found that a systematic presentation 

of such information was rarely adopted in existing studies.

In addition, it is reported that the missing consideration of the condition of pavement is also a 

shortfall in existing studies (Inyim et al., 2016). Unlike other products or services, the condition 

of a pavement often deteriorates over the long service life and it directly influences the function 

of a road. For example, the pavement roughness is an important indicator for the serviceability 

of a road (Al-Omari, 1994) and can cause up to 70% variation in the fuel consumption impacts 

caused by on-road vehicles (Batouli and Mostafavi, 2017). Therefore, an FU that integrates the 
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changeable condition and performance of the pavement is required (Batouli and Mostafavi, 

2017; Inyim et al., 2016).

4.2.1.3 System boundary

There are six phases during a road’s life cycle, namely, materials extraction and production, 

materials transportation, construction, use, M&R, and EOL phases. The materials extraction 

and production stage usually includes the processes for manufacturing the road materials, from 

the acquisition of raw materials to final material production (i.e., mixing plant operations). The 

construction phase considers all preservation and construction activities, including the 

combustion of fuels of the paving equipment. It should be noted that materials transportation 

from manufacturing plants to construction sites may be integrated into the construction phase 

(e.g. Zhang et al., 2010) or treated as a separate phase (e.g. Kayo et al., 2015), depending on 

the specific aims of the studies. The M&R stage deals with three types of maintenance 

treatment, such as routine maintenance, preservation, and rehabilitation. In addition, EOL 

treatments include the demolition, debris transport, recycling, and final disposal at the end of a 

road’s service life (Celauro et al., 2015). However, there is no common agreement on what to 

be included in the use phase. For example, Loijos et al. (2013) only considered the effects of 

albedo, carbonation, roughness, and lighting, and excluded the vehicle emissions. On the 

contrary, Treloar et al. (2004) not only included the vehicle emissions, but considered the 

manufacture, use, and maintenance of vehicles as well.

The materials extraction, transportation, and construction stages were the commonly included 

life cycle stages, with 91 (96.8%), 59 (62.8%), and 81 (86.2%), respectively. Meanwhile, the 

consideration of use, M&R, and EOL stages was less frequent, with 28 (29.8%), 55 (58.5%), 

and 32 (34.0%) studies. Table 4 presents the summary of work in the 22 HCPs. The EOL stage 

is usually excluded as the total demolition and disposal of an infrastructure is not common 
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practice or is not allowed by the national maintenance policies (e.g., Italy) (Celauro et al., 2015). 

More importantly, the exclusion of the use stage from most of the existing studies is seen as a 

significant shortfall owing to its great global warming potential in roughness, structure, and 

albedo (Santero et al., 2011b). The omission is attributed to the limitations of the impact 

assessment method for the use phase and the common assumption that different roads generate 

the same impacts in this stage (Inyim et al., 2016).

Table 4. Summary of highly cited LCA studies in roads: system boundary

System boundary
Studies

Material production Transportation Construction Use M&R EOL

Chiu et al. (2008) √ √ × × √ ×

Treloar et al. (2004) √ × √ √ √ ×

Chowdhury et al. (2010) √ × × × × ×

Birgisdottir et al. (2006) √ √ √ × √ ×

Birgisdottir et al. (2007) √ √ √ × √ ×

Wang et al. (2012) √ √ × √ √ ×

Huang et al. (2009) √ √ × × √ ×

Vidal et al. (2013) √ √ √ √ √ √

Carpenter et al. (2007) - - - - - -

Cass and Mukherjee 

(2011)
√ × √ × × ×

Yu and Lu (2012) √ × √ √ √ √

Olsson et al. (2006) √ √ √ √ × ×

Loijos et al. (2013) √ × √ √ √ √

Jullien et al. (2006) √ - √ × × ×

Anastasiou et al. (2015) √ √ √ × √ √

Aurangzeb et al. (2014) √ √ √ × √ ×

Oliver-Sola et al. (2009) √ √ √ × √ ○

Roth and Eklund (2003) - - - - - -
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System boundary
Studies

Material production Transportation Construction Use M&R EOL

Tatari et al. (2012) √ √ √ × × ×

Giani et al. (2015) √ √ √ × √ √

Santos et al. (2017) √ √ √ √ √ √

Farina et al. (2017) √ × √ × √ ×

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 

citations.

4.2.2 Life cycle inventory (LCI)

4.2.2.1 LCI data sources

The choice of data sources can be a major decision in LCA studies (Martínez-Rocamora et al., 

2016). The International EPD® System categorizes the data into three types for the LCI phase, 

i.e., primary, secondary, and tertiary data. Primary data refers to first-hand data usually 

obtained by on-site surveys and field investigations. Secondary data can be obtained in the 

literature, including published articles, annual environmental reports, and commercial 

databases. Tertiary data, or other generic data, is often available through statistical averages 

(Moretti et al., 2017). 

Typically, an LCA study requires project (input) and emissions data. To obtain input data, 

primary data such as field investigation and interview with the contractors or equipment 

manufacturer are preferred (e.g. Cass and Mukherjee, 2011). However, first-hand data for 

material production and construction activities are not always complete (Gulotta et al., 2019). 

Therefore, secondary data are also a common source. For emissions data, primary data is 

extremely difficult to obtain and only Kang et al. (2014) and Al-Qadi et al. (2015) used self-

developed local or regional database. For others, Ecoinvent, U.S. LCI databases, Athena 
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database, and published literature are important sources for secondary data. The use of different 

sources can lead to distinct results even for the same product, compromising the comparability 

across studies. In addition, not all materials are included in the databases, especially recycled 

materials, which may lead to inaccuracy of the assessment results (dos Santos et al., 2017). 

Similar findings are also reported in the building LCA (Säynäjoki et al., 2017). More 

importantly, there were a significant number of studies (30, 31.9%) that did not report the data 

source, resulting in high uncertainty in the LCI results. Appendix C lists the data sources of the 

22 HCPs.

4.2.2.2 LCA Tools 

The selection of LCA tools is usually related to the adopted LCI method. Most of the papers 

that adopted the P-LCA method used SimaPro or GaBi software (e.g. Farina et al., 2017; Giani 

et al., 2015; Vidal et al., 2013). For EIO-LCA, the most commonly adopted tools are the 

Pavement Life-cycle Assessment Tool for Environmental and Economic Effects (PaLATE), 

which is a spreadsheet LCA and the LCCA program designed to assess the environmental and 

economic impacts of pavement and roads, and the Economic Input–Output Life Cycle 

Assessment (EIO-LCA) model, an online tool designed to make EIO-LCA method fast, easy 

to use, and free. For the hybrid LCA, however, there was no widely adopted tool, which may 

be one of the reasons that the hybrid approach is not widely used (Crawford et al., 2018). Unlike 

the building sector where the uncertainties aroused from the LCA tools have been widely 

discussed and highlighted (e.g. Emami et al., 2019), only dos Santos et al. (2017) conducted a 

comparative study on LCA tools for roads. It is concluded that results can vary significantly 

even when the same stages are considered with the same materials and equipment use. In 

addition, there are also 37 (39.4%) studies of which the tools are not reported. The analyst are 

recommend to be cautious in selecting LCA tool and improve their awareness to report the 
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selection (dos Santos et al., 2017). Appendix C summarizes the LCA methods and tools in the 

22 HCPs.

4.2.3 Life cycle impact assessment (LCIA)

4.2.3.1 LCIA methods

LCIA connects the LCI results to its environmental impacts by assigning the results to selected 

impact categories (ISO 14044, 2006). According to Van den Heede and De Belie (2012), there 

are two main schools of impact analysis methods. The first school is a damage-oriented method 

represented by Eco-indicator 99, which focuses on the endpoint environmental damages (where 

the actual environmental effects or damages occur), such as damage to ecosystem quality, 

damage to human health, and damage to mineral and fossil resources. The second one is 

considered to be a problem-oriented or midpoint method, and a representative example is CML 

2001, for quantitative modeling within the early stages of the cause–effect chain. For example, 

a road’s climate change effect can be calculated by an endpoint method to produce 

environmental damage to human health, or by a midpoint method (i.e. kilograms of CO2e). To 

offer users the choice of the level of results, methods that combine the midpoint and endpoint, 

such as ReCiPe, which is a fusion of CML 2001 and Eco-indicator 99, were also available.

In the existing literature, only 18 (19.1%) papers have reported the method of impact 

assessment. In these studies, many (17) adopted a midpoint method, including CML 2001 

midpoint method (4 papers), ReCiPe midpoint method (8 papers), TRACI midpoint method (2 

papers), and 3 other midpoint methods. The popularity of the ReCiPe may be attributed to the 

fact that it incorporated the widely used SimaPro software (Vidal et al., 2013), and it is 

convenient for having combined both assessment methods. Other publications, which did not 

report the method of impact assessment, commonly adopted midpoint methods for selecting 

midpoint impact categories, such as global warming potential, acidification, and eutrophication, 
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to name a few. Similar preference for the midpoint approach is also reported in other sectors 

(e.g. Yi et al., 2014). Main reasons are that the endpoint approach requires a high level of 

expertise and is exposed to much higher uncertainty than the midpoint approach. Nevertheless, 

the midpoint approach may not provide the results that decision makers really expect (Bare et 

al., 2000). Therefore, Bare et al. (2000) suggested that a consistent framework is needed to 

present both sets of results, either in a combined or parallel approach.

4.2.3.2 LCIA

Selecting impact categories and conducting the impact assessment are mandatory elements of 

an LCA study (ISO 14044, 2006). However, it should be noted that there is a lack of a 

standardized way of reporting the results. 

Many studies offer simple quantification of the outputs without impact assessment. For 

instance, Cass and Mukherjee (2011) calculated the greenhouse gas (GHG) emissions for 

highway construction without conducting a further impact assessment. Such omission of the 

impact assessment step can introduce difficulty in the decision-making process because the 

simple estimation of gas emissions cannot provide intuitive information (Inyim et al., 2016). A 

similar limitation can also be found in comparison studies, such as in Yu and Lu (2012). 

However, an LCI study alone is not supposed to be used for comparative assertions (ISO 14044, 

2006). 

Other studies, as can be observed in Appendix C, attempted to interpret the results using impact 

assessment, but they selected extremely varied impact categories, making it difficult to conduct 

a cross comparison between different studies. Among these studies, GHG emissions and energy 

consumption were the most consistently used assessment metrics. Other widely used categories 

also included damage to the ecosystem and human health. Little consideration has been given 

to natural resources such as land use. 
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It is also found that few authors explained the reasons for choosing certain impact categories, 

thus not clarifying whether the selection was consistent with the goal and scope of the study. 

For example, Santos et al. (2015) adopted eight impact categories, whereas Santos et al. (2017) 

only considered four categories without providing reasons for including or excluding certain 

impacts. Out of these studies, only two studies, i.e., Fitch et al. (2013) and Veran-Leigh et al. 

(2019), elaborated the reasons for selecting each impact category. 

4.2.4 Life cycle interpretation

Life cycle interpretation comprises three components, that is, identifying significant issues, 

checking completeness, consistency, and sensitivity, and drawing conclusions and 

recommendations (ISO 14044, 2006). 

4.2.4.1 Phase/Process

Each stage in the life cycle of a road contributes differently to its environmental impacts. As 

can be observed from Appendix D, the material extraction and production stage was identified 

as the main contributor to the total carbon emissions and energy consumption by most studies. 

In this stage, the cement production process has been highlighted as the main contributor (e.g. 

Choi et al., 2016; Loijos et al., 2013; Oliver-Sola et al., 2009; Weiland and Muench, 2010). 

Current studies also pointed out the importance of the use phase (e.g. Chen et al., 2016). 

According to Araujo et al. (2014), the impact of the use phase on the environment was 

approximately 700 times higher than that of the construction phase. The use phase also 

dominates the environmental performance for roads with high traffic volumes (Santos et al., 

2015).

4.2.4.2 Asphalt vs concrete pavement

The comparison of pavement materials such as asphalt and concrete has attracted much 

research attention over these years, although no general conclusion has been drawn. For 
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example, Weiland and Muench (2010) and Yu and Lu (2012) both investigated rehabilitation 

alternatives. The former argued that the hot mixed asphalt pavement (HMA) had a higher 

energy use and the Portland cement concrete (PCC) had a higher global warming potential 

(GWP); the latter drew the conclusion that PCC was better than HMA in both energy use and 

GWP performance. A possible reason for the different results could be the overlook of impacts 

from the use phase and EOL phase by Weiland and Muench (2010), whereas Yu and Lu (2012) 

considered the whole life cycle, except for the transportation of materials. More widely agreed 

results may be that the asphalt pavement could offer a reduction in GWP but concrete has an 

advantage in pavement energy demand (e.g. Dumitrescu et al., 2014; Gschosser and Wallbaum, 

2013; Gschosser et al., 2012; Weiland and Muench, 2010). It should also be noted that most 

studies had no or had limited consideration of the use phase, except Yu and Lu (2012), which 

might influence the results.

4.2.4.3 Impact of eco-friendly technologies

The reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) were the commonly 

investigated eco-friendly technologies in current studies. RAP allowed a reduction of the use 

of virgin materials and WMA was used to lower the production temperature of the asphalt 

mixture (Giani et al., 2015). Using RAP could have a significant potential of reducing eco 

burdens of both rehabilitation (Chiu et al., 2008; Turk et al., 2016) and initial construction 

projects (Aurangzeb and Al-Qadi, 2014; Aurangzeb et al., 2014), especially when combined 

with HMA (Giani et al., 2015; Vidal et al., 2013). However, the studies provided contrasting 

results related to the impacts of using a high content of RAP. Aurangzeb and Al-Qadi (2014) 

and Aurangzeb et al. (2014) proved that reductions of energy and GHG could increase with an 

increase of RAP content to 30%, 40%, and 50%. On the contrary, Saeedzadeh et al. (2018) 

reached the opposite conclusion that high RAP content could lead to higher environmental 

burdens. As for WMA, Liu et al. (2014) and Mazumder et al. (2016) indicated that WMA was 
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more beneficial to the environment than HMA. On the contrary, Tatari et al. (2012), Vidal et 

al. (2013), and Anthonissen et al. (2015) argued that this was not necessarily true because of 

the significant influence of additives, especially the synthetic zeolites.

4.2.4.4 Sensitivity and uncertainty analysis

A sensitivity analysis is a compulsory element in the life cycle interpretation phase by 

estimating the effects of a chosen method or data on the LCA results. The aim is to evaluate 

the reliability of the final results by quantifying the extent to which the results are affected by 

uncertainties coming from data, allocation methods, or LCIA calculation. The uncertainty 

analysis is often used as a supplement and is supposed to quantify uncertainties, such as model 

inaccuracy, input uncertainty, and data variability (ISO 14044, 2006). However, limited studies 

have reported such results, indicating high uncertainties in the results. In total, 32 studies 

(34.0%) conducted a sensitivity analysis, usually on the effects of transport management and 

traffic growth (e.g. Mendoza et al., 2012; Yu and Lu, 2012). In addition, only 17 studies (18.1%) 

conducted an uncertainty analysis. In these studies, only a few complied with the requirement 

of ISO 14044 (2006) that sensitivity analysis is mandatory and uncertainty analysis should 

supplement the results. For example, Wang et al. (2012) implemented a sensitivity analysis 

without clearly reporting the results. Giani et al. (2015) implemented a separate uncertainty 

analysis without conducting a sensitivity analysis. This may suggest a need for a clearer 

definition and guidance of the sensitivity and uncertainty analyses based on the ISO 14044 

(2006) standard.

5 Discussion and recommendations

Based on the findings and the future needs identified in existing studies, this section discusses 

the main limitations in LCA applications in roads and make recommendations for future 

directions accordingly.
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ISO 14044 (2006) provides a general framework and guideline for LCA, but the challenges of 

selecting FUs, defining system boundaries, and mining data for a specific field are left to the 

researchers based on their own discretion (Loijos et al., 2013). As can be observed from the 

findings of this review, several limitations can be found the LCA in existing studies. 

 Goal and scope definition

Mostly project-oriented research. Over 90% of the existing papers are project 

oriented and very few investigate the impacts of roads in a network context, limiting 

the value for policy makers, such as road authorities (Zhang et al., 2013). The 

cumulative emissions of the road network of a region/nation remain unclear and it is 

difficult to capture the regional disparities of the emissions under the existing LCA 

framework (Chen et al., 2017). Therefore, region-specific strategies for reducing the 

emissions are difficult to be developed. Another limitation of the project-level LCA is 

that road maintenance works are often planned in isolation to achieve an optimal 

solution for the project (Galatioto et al., 2015). The decision level at the network level, 

as Santos et al. (2017a) and Santos et al. (2018) have suggested, is much more 

complicated with budget consideration. It is therefore recommended that future 

research needs to consider the road network as a whole so that useful implications can 

be drawn for policymaking.

Inconsistent selection and definition of FU. There are various FUs being used by 

existing studies which makes it difficult to make comparison between studies. To 

improve the comparability across studies, the consistency of the use of FUs needs to be 

increased (Inyim et al., 2016). In addition, currently used FUs are considered 

insufficient to reflect the changing functions of a road. It is therefore recommended that 
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the definition of FU should consider the evolving road performance so that the real time 

function of roads can be reflected (Batouli and Mostafavi, 2017).

Lack of consideration of post construction stages. The use and M & R phases can 

have significant environmental impacts (Santero and Horvath, 2009; Wu et al., 2014). 

However, only a few studies have included these phases. There is still a lack of a method 

to accurately decide the maintenance measures for the whole life cycle of a road due to 

the constantly changing circumstances. In addition, the impact sources of the use phase 

are not consistently defined and methods for this phase is insufficiently developed. 

Future studies are recommended to fully capture these phases so that reliable outcomes 

can be delivered (Inyim et al., 2016). Furthermore, unlike common products, roads can 

receive rehabilitation over and over again and therefore may not have a clear life cycle. 

This suggests a need to further discuss the life cycle of a road and whether or how the 

EOL stage should be included in a typical LCA study (Batouli and Mostafavi, 2017).

 LCI: 

Limited report of data sources and LCA tools. Different databases and LCA tools 

are being used in existing studies, which can lead to distinct results even for the same 

product or processes (dos Santos et al., 2017). However, most authors are not aware of 

the uncertainty and do not report the data sources and LCA tools. Future studies are 

recommended to consider such uncertainty in sensitivity and uncertainty analysis 

(Emami et al., 2019). There is also a need for studies that compare the results generated 

from different data sources or LCA tools to reveal uncertainties introduced from data 

and tools can be revealed.

 LCIA:
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Lack of standardized LCIA procedure. Missing impact assessment phase, limited 

report of LCIA method and an inconsistent selection of impact categories are identified 

for the LCIA step, which result in difficulties in conducting comparisons across existing 

work (Inyim et al., 2016). A standardized LCIA procedure is therefore needed to 

improve the awareness of the LCIA step and guide the selection of LCIA method and 

impact categories. 

 Life cycle interpretation:

Lack of sensitivity and uncertainty analysis. A large amount of uncertainty exists for 

an LCA study, including parameter (input) and data uncertainty in the LCI step and 

method uncertainty in the LCIA step (Bare et al., 2000). The low awareness and lack 

of sensitivity and uncertainty considerations indicate high uncertainties on results 

delivered by existing publications. Future studies should conduct such analyses in order 

to ensure the reliability of their results.

As can be seen from the discussion, a lack of consistency and standardization is identified in 

each step, which echoes the key findings of AzariJafari et al. (2016), Inyim et al. (2016), and 

Santero et al. (2011b). Those limitations are considered to be rooted in the incompatibility of 

conventional LCA method and the characteristics of roads, meaning that the ISO 14044 is not 

perfectly suitable for guiding the LCA applications in roads (Batouli and Mostafavi, 2017; Cass 

and Mukherjee, 2011). There is therefore a need to standardize the LCA approach specifically 

for roads in future research.

In addition, from the review, it is found that the time effect has not been well captured in 

existing LCA studies on roads. For example, in current practice, it is common to simply 

aggregate the emissions generated at different times within the life cycle without discounting 

the values as the LCCA studies usually do (e.g. Cass and Mukherjee, 2011; Chiu et al., 2008; 
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Hanson and Noland, 2015; Yu and Lu, 2012; Yu et al., 2018). The aggregated LCI results are 

usually interpreted to potential environmental impacts through LCIA and adopted directly for 

decision making, which can cause several problems. First, it is difficult to compare two road 

designs with different service life. Second, the global warming impact of a GHG decreases 

with time and the GWP value, which evaluates such impact, is very sensitive to the time horizon 

(Levasseur et al., 2010), and cannot be reflected by an aggregated value. More importantly, the 

aggregated value masks the temporal distribution of emissions along the life cycle (Yu et al., 

2018). As a result, one project with low emissions at the construction phase and high emissions 

at the use phase may have the same LCI results as another that has a completely different 

emission distribution. Such practice creates difficulties in determining which project is more 

sustainable if the dynamic changes of the environmental impacts of emissions are not 

considered. Among the studies, only one study, i.e., Yu et al. (2018), has considered this effect. 

Therefore, taking into account the time effect should be an imperative improvement area for 

future studies. 

6 Conclusion

LCA has been widely adopted to evaluate the environmental impacts of roads so that 

sustainable practices in the life cycle stages of the road, including materials extraction, 

transportation, construction, operation, maintenance, and EOL treatments, can be adopted. 

Over the past two decades, a large number of LCA studies have been conducted in road projects 

and a complete review of these studies is conducted. It is found that there are two general 

themes in the existing studies, which are the application of LCA in roads and the modeling 

development of LCA. Among all the application themes, P-LCA is the most commonly adopted 

approach. In addition, most of the current applications have a project-oriented goal of study. 

They are also found to be inconsistent in terms of selection of FU, lack of consideration of the 
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M&R, use, and EOL phases, high uncertainty due to limited report on data sources, sensitivity 

and uncertainty analyses, and lacking a standardized way of conducting impact assessment. 

The consequences of these inconsistencies are also investigated. First, project-level studies 

have limited implications for policymaking. Second, the non-standardized procedure of 

conducting LCAs in roads is hindering their further development and implementation. Third, 

existing studies fail to consider the time effect of the environmental impact evaluation, causing 

difficulties in decision making between alternative road designs, which usually have a long life 

span. Therefore, it is recommended that future studies pay more attention to the network-level 

analysis and further standardize and tailor the LCA methods to align them with the 

characteristics of roads. Taking the dynamic changes in the environmental impacts of emissions 

into consideration in road LCA has also been highlighted for future work. Improvements in 

these areas can fill the existing knowledge gap and generate more reliable results to better 

inform both policymaking and decision making in the area of advancing the sustainability of 

roads. 
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Appendix B. Summary of highly cited LCA studies in roads: goal of study and functional parameters

Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

67 Chiu et al. 

(2008)

Material 

evaluation

China

(Taiwan)

Length:

per lane-

kilometer

- 2.65 m - 5 cm Asphalt, 1 40 years

58 Treloar et al. 

(2004)

Road 

evaluation

Australia Length:

5 km

Rural roads - - - Various, - 40 years, 

20 years

53 Chowdhury 

et al. (2010)

Material 

evaluation

US Length:

1 km

- 2.5 m - 600 mm -, - -

53 Birgisdottir 

et al. (2006)

Material 

evaluation

Denmark Length:

 1 km

Secondary road 3.5 m 2.1 m 0.7 m in total Asphalt, 2 100 

years

53 Birgisdottir 

et al. (2007)

Material 

evaluation

Denmark Length:

1 km

Secondary road 7 m in 

total

- 0.37 m Asphalt, - 100 

years

52 Wang et al. 

(2012)

Alternative 

design

US - Rural road - - - Both asphalt and 

concrete, -

-

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
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1705
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1707
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Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

50 Huang et al. 

(2009)

Alternative 

design

UK Length:

2.6 km

- 3.5 m - 200 mm base; 

60 mm binder 

course; 40/50 

mm layer

Asphalt, 2 -

50 Vidal et al. 

(2013)

Material 

evaluation

Spain Length:

1 km

1000 vehicles per 

day (8% heavy 

vehicles)

13 m - 0.08 m asphalt 

layer

Asphalt, 2 40 years

45 Carpenter et 

al. (2007)

Material 

evaluation

US Length:

305 m

Highway 10.4 m 1.5 m Various Asphalt, - -

44 Cass and 

Mukherjee 

(2011)

Road 

evaluation

US Length:

per lane mile

Highway 24 feet - - Concrete, 4 -

39 Yu and Lu 

(2012)

Alternative 

design

US Length:

one km overlay 

system

Highway 3.6 m 1.2 m, 

2.7 m

225 mm PCC 

surface; 250 

mm base 

course

Various, 2*2 40 years

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

31 Olsson et al. 

(2006)

Material 

evaluation

Sweden Length:

1 km road

- - - - -, - -

29 Loijos et al. 

(2013)

Road 

evaluation

US Various Various Various Various Various Concrete, various 40 years

29 Jullien et al. 

(2006)

Material 

evaluation

France Area:

a 3.8 m * 150 m 

road section 

- 3.8 m - 0.07 m Asphalt, - -

28 Anastasiou 

et al. (2015)

Material 

comparison

Greece Length:

1 km

Urban road (low 

traffic)

7.3 m in 

total

- - Concrete, 2 40 years

28 Aurangzeb 

et al. (2014)

Material 

evaluation

US Length:

a 1.6 km lane

- - 1.8 m 254 mm binder 

course; 51 mm 

surface course

Asphalt, 1 45 years

28 Oliver-Sola 

et al. (2009)

Alternative 

design

Spain Area:

1 m2 of sidewalk

Urban - - All layers Concrete, - 45 years

26 Roth and 

Eklund 

(2003)

Material 

evaluation

Sweden - - - - - -, - -

1758
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1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
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1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

25 Tatari et al. 

(2012)

Material 

comparison

US Length:

1 km

- 7.2 m 

(total)

- Different 

asphalt surface 

layer; 10 in. 

base course 

layer

Asphalt, 2 30 years

23 Giani et al. 

(2015)

Material 

evaluation

Italy Length:

 1 km

Suburban road 15 m 

(total)

- 25 cm Asphalt, 2 * 2 30 years

13 Santos et al. 

(2017)

Material 

evaluation

US Length:

1 km

Highway 3.66 m - - Asphalt, 2 50 years

11 Farina et al. 

(2017)

Material 

evaluation

- Length:

1 m of built 

pavement layer

- Depending 

on the 

project

- Depending on 

the project

Asphalt, - 18 years, 

20 years

Notes: 

1. - – not specified;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.
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Appendix C. Highly cited LCA studies in roads: LCI method, database and tool, impact categories, and sensitivity and uncertainty analysis

Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Wang et al. 

(2012)

Combined 

models

Stripple (1998); Athena 

Institute (2006); EcoInvent; 

USLCI; Cement LCI by PCA

- Energy use, Greenhouse gas (GHG) emissions √ √

Birgisdottir et 

al. (2006)

P-LCA Standard sources, i.e., Stripple 

(2001); Environmental Design 

of Industrial Products database 

ROAD-RES 

model 

Leaching of heavy metals and salts from the bottom ash, 

Resource and energy consumption, Emissions (CO2, NOx), 

Salts used for road salting

× ×

Vidal et al. 

(2013)

P-LCA Field study; Ecoinvent; 

Published literature

SimaPro All 18 ReCipe Midpoint impact categories; 3 ReCipe 

endpoint damage categories; cumulative energy demand

× √

Giani et al. 

(2015)

P-LCA Key processes: Company 

survey; 

Upstream processes: 

Ecoinvent database; published 

literature

SimaPro 7.3 All 18 ReCipe Midpoint impact categories × √

Oliver-Sola et 

al. (2009)

P-LCA Ecoinvent 1.2 database EcoConcrete 

LCA tool

Abiotic depletion potential, Acidification potential, 

Eutrophication potential, Global warming potential (GWP), 

Human toxicity potential, Ozone layer depletion potential, 

Photochemical ozone creation potential

× √

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Chiu et al. 

(2008)

P-LCA Eco-indicator 99 - Energy sources, Resources × ×

Chowdhury et 

al. (2010)

P-LCA Published literature; CMLCA CMLCA Acidification potential, Aquatic ecotoxicity potential, 

Aquatic sediment ecotoxicity potential, Energy 

consumption, GWP, Human toxicity potential, Terrestrial 

ecotoxicity potential

× ×

Huang et al. 

(2009)

P-LCA Published literature and 

publications

VISSIM, 

EnvPro

Acidification, Eco-toxicity, Eutrophication, Global 

warming, Human toxicity, Photo-oxidant formation

× ×

Loijos et al. 

(2013)

P-LCA Published literature and LCI 

databases

- GWP √ ×

Yu and Lu 

(2012)

P-LCA Portland Cement Association; 

Swedish Environmental 

Research Institute

- Energy (Primary and feedstock), GHG (CO2, CH4, N2O, 

VOC, NOx, CO, PM10, SOx)

√ √

Birgisdottir et 

al. (2007)

P-LCA - ROAD-RES 

model 

Acidification, Ecotoxicity in water/soil, Global Warming, 

Human Toxicity via air/water/soil, Nutrient Enrichment, 

Photochemical Ozone Formation, Stored Ecotoxicity to 

water/soil, Stratospheric Ozone Depletion 

√ ×

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Olsson et al. 

(2006)

P-LCA - - Emissions to air (SO2, NOx, CO, CO2, HC, CH4, VOC, N2O, 

and particles) and water (COD, N-tot, Oil, Phenol, As, Cd, 

Cr, Cu, Ni, Pb, and Zn), Resources use (natural aggregates, 

energy)

√ ×

Jullien et al. 

(2006)

P-LCA - - Odors, PAH, VOC × ×

Anastasiou et al. 

(2015)

P-LCA - SimaPro 7.1 GWP100, Resource use √ ×

Farina et al. 

(2017)

P-LCA - SimaPro 7.3 17 ReCiPe midpoint categories; 3 ReCiPe endpoint damage 

categories

× ×

Cass and 

Mukherjee 

(2011)

Hybrid Site investigation using 

FieldManager

SimaPro 7, 

EIO-LCA, e-

CALC

CO2 emissions × ×

Tatari et al. 

(2012)

Hybrid Published literature and 

report; National Renewable 

Energy Laboratory LCI 

database

- CH4, CO, CO2, N2O, PM, SO2, Cumulative mass, 

Ecological cumulative exergy consumption, Energy, 

Industrial cumulative exergy consumption

√ √

1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Treloar et al. 

(2004)

Hybrid Published literature - Energy × ×

Aurangzeb et al. 

(2014)

Hybrid - - Energy consumption, GHG emissions (CH4, CO2, N2O) × ×

Santos et al. 

(2017)

Hybrid - EIO-LCA 

model

Acidification air (AC), Eutrophication air (EU), Human 

health criteria pollutants (HH), Photochemical smog 

formation (PSF) 

√ √

Roth and 

Eklund (2003)

- - - - × ×

Carpenter et al. 

(2007)

- - PaLATE, 

HYDRUS2

D

CO, CO2, NOX, PM10, SO2, Energy, Hg, HTP (Cancer), 

HTP (Non-cancer), Pb, RCRA HazW Gen, Water

× ×

Notes: 

1. - – not specified; √ – included; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
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1997
1998
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Appendix D. Overview of key findings on the contributions of different life cycle phases 

Phases

Studies Location Material 

production

Transpor-

tation

Construc-

tion
Use

M&

R
EOL

Analysis 

Period

(years)

Results

Cass and 

Mukherjee 

(2011)

US √ × √ × × × - Materials, equipment, and fuel production: 90%–94% of 

the CO2 emissions; Equipment use and transportation: 6–

10%

Santos et al. 

(2015)

Portugal √ √ √ √ √ √ 40 Materials and usage phases: major contribution to overall 

environmental impacts (low-volume traffic roads: materials 

phase contributes the most; high-volume traffic roads: usage 

phase dominates)

Loijos et al. 

(2013)

US √ × √ ○ √ √ 40 Year one generates the majority of emissions (materials 

production, pavement construction)

Kayo et al. 

(2015)

Japan √ √ √ × × × - Raw material procurement - 88%; Material production - 

7%; Transportation - < 1%; Construction: 4%

Kang et al. 

(2014)

US √ √ √ × × × - The energy consumption and GWP in the material phase is 

remarkably higher than in the construction phase. 

Mendoza et 

al. (2012)

Spain √ × √ × × √ > 45 Construction materials have the highest environmental 

impact (48–87%) 

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044



Studies Location

Phases Analysis 

Period

(years)

ResultsOliver-Sola 

et al. (2009)

Spain √ √ √ × √ ○ 45 Main contributor: cement production (especially clinker)

Weiland and 

Muench 

(2010)

US √ √ √ × √ × 50 Material production (cement, asphalt, HMA, PCC) 

dominates all impact categories

Yu and Lu 

(2012)

US √ × √ √ √ √ 40 Materials, congestion, and usage contribute the most to air 

emissions and energy consumptions 

Chen et al. 

(2016)

US √ × √ √ √ √ 20, 40 Material module, usage module: two dominators

Choi et al. 

(2016)

US √ √ √ × √ √ 50 Cement manufacturing: top-contributing sector

Mazumder 

et al. (2016)

US √ √ √ √ √ × 50 Material phase: 97% of overall human toxicity in water 

(asphalt)

Araujo et al. 

(2014)

- √ × √ √ √ √ 20 The energy consumption of the use stage is about 700 times 

higher than that of the construction phase

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.
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Table 1. Codes for this review

Code Description of the codes in this review

Year Year of publication

Author Authors of the publication

Publication venue The journal where the paper is published

Location The location where the research was conducted

Goal of study The intended aim and objectives for carrying out the study

Functional unit (FU) The reference unit for the assessment

System boundary The phases and unit processes

Life cycle assessment method The method for conducting the LCA

Data sources The data sources

Impact category The environmental concerns to which the LCI analysis results are assigned

Major findings Main results that are related to the goal of the study

Future needs Limitations or future directions identified by the authors of the publication



Table 2. Classification of the retrieved publications based on their goal of study

Classification Description of the classifications Publication

Road 

evaluation

To evaluate the environmental impacts of a road project 26

Alternative 

design

To compare different designs for a given road, such as 

rehabilitation methods, maintenance schemes, and various 

lifespan designs

19

Material 

evaluation

To evaluate the environmental impacts of a material, such as 

a mixture, an additive, or an eco-friendly material (e.g., 

industrial by-products, recycled materials, and other 

modified materials)

51

Typical 

application

Material 

comparison

To compare different materials, such as concrete versus 

asphalt, and different asphalt products

17

Framework/tool 

development

To develop a framework or calculation tool for road 

evaluation

24

LCC + LCCA To develop a method that integrates LCA and lifecycle cost 

analysis (LCCA) in road evaluation

23

Modelling 

development

New impacts To develop a method to capture new impacts that are rarely 

considered in previous studies, including traffic congestion, 

albedo effects, rolling resistance, carbonation, noise, and 

lighting

30

Others The goal of the study is not included in the above 

classifications

9



Table 3. Pros and cons of existing LCA methods
Comparison Methods Pros Cons Frequency

Process-based LCA
(P-LCA)

• Identifies the input and output in each 
process of production of a product or 
service1

• Provides assessment for specific 
processes1

• Can obtain detailed results for each process1

• Has advantages when evaluating the use and 
EOL stages2 
• Allows comparison of specific products2

• Setting a system boundary is difficult3

• “Cut-off” errors1,3,4 

• Unable to capture circularity effects1

• Costly and time-consuming1,3

67
(71.28%)

EIO-LCA • Provides an assessment of the whole 
economic system1

• Quantifies interrelationships between 
various sectors of the economy1

• The analysis boundary is the whole 
economy; no “cut-off” errors1

• Solves the problem of circularity effects1

• Less costly and faster1 
• Reflects direct and indirect interactions 
between different economic sectors; provides 
both economic and sector-wide results1

• Unable to reflect particular processes 
owing to the heterogeneousness of 
sectors and the use of national average 
data3

• Homogeneity and linearity 
assumptions4

• Aged input–output data3,4

• High levels of sector aggregation3,4

6
(6.38%)

Hybrid LCA Usually combines the two methods by 
using IO data to complement the 
upstream processes, which are often 
excluded in traditional P-LCA3

• Overcomes the problem of the costly, time-
consuming, or missing data of P-LCA3,4,5

• Reduces “cut-off” errors of P-LCA and 
improves the consistency across the stages of 
the road life cycle3,4,5

• Improves the reliability of EIO-LCA3,4,5

• Lack of standard methodological 
framework5

• Lack of mature tool5

11
(11.70%)

Note: 
1 Hendrickson et al. (2006); 2 Choi et al. (2016); 3 Suh et al. (2004); 4 Bullard et al. (1978); 5 Crawford et al. (2018).

This table include 84 papers and the remaining 10 papers are not presented because their methods are not reported and difficult to tell from the context.



Table 4. Summary of highly cited LCA studies in roads: system boundary

System boundary
Studies

Material production Transportation Construction Use M&R EOL

Chiu et al. (2008) √ √ × × √ ×

Treloar et al. (2004) √ × √ √ √ ×

Chowdhury et al. (2010) √ × × × × ×

Birgisdottir et al. (2006) √ √ √ × √ ×

Birgisdottir et al. (2007) √ √ √ × √ ×

Wang et al. (2012) √ √ × √ √ ×

Huang et al. (2009) √ √ × × √ ×

Vidal et al. (2013) √ √ √ √ √ √

Carpenter et al. (2007) - - - - - -

Cass and Mukherjee 

(2011)
√ × √ × × ×

Yu and Lu (2012) √ × √ √ √ √

Olsson et al. (2006) √ √ √ √ × ×

Loijos et al. (2013) √ × √ √ √ √

Jullien et al. (2006) √ - √ × × ×

Anastasiou et al. (2015) √ √ √ × √ √

Aurangzeb et al. (2014) √ √ √ × √ ×

Oliver-Sola et al. (2009) √ √ √ × √ ○

Roth and Eklund (2003) - - - - - -

Tatari et al. (2012) √ √ √ × × ×

Giani et al. (2015) √ √ √ × √ √

Santos et al. (2017) √ √ √ √ √ √

Farina et al. (2017) √ × √ × √ ×

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 

citations.



Table S1. Summary of highly cited LCA studies in roads: goal of study and functional parameters

Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

67 Chiu et al. 

(2008)

Material 

evaluation

China

(Taiwan)

Length:

per lane-

kilometer

- 2.65 m - 5 cm Asphalt, 1 40 years

58 Treloar et al. 

(2004)

Road 

evaluation

Australia Length:

5 km

Rural roads - - - Various, - 40 years, 

20 years

53 Chowdhury 

et al. (2010)

Material 

evaluation

US Length:

1 km

- 2.5 m - 600 mm -, - -

53 Birgisdottir 

et al. (2006)

Material 

evaluation

Denmark Length:

 1 km

Secondary road 3.5 m 2.1 m 0.7 m in total Asphalt, 2 100 

years

53 Birgisdottir 

et al. (2007)

Material 

evaluation

Denmark Length:

1 km

Secondary road 7 m in 

total

- 0.37 m Asphalt, - 100 

years

52 Wang et al. 

(2012)

Alternative 

design

US - Rural road - - - Both asphalt and 

concrete, -

-



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

50 Huang et al. 

(2009)

Alternative 

design

UK Length:

2.6 km

- 3.5 m - 200 mm base; 

60 mm binder 

course; 40/50 

mm layer

Asphalt, 2 -

50 Vidal et al. 

(2013)

Material 

evaluation

Spain Length:

1 km

1000 vehicles per 

day (8% heavy 

vehicles)

13 m - 0.08 m asphalt 

layer

Asphalt, 2 40 years

45 Carpenter et 

al. (2007)

Material 

evaluation

US Length:

305 m

Highway 10.4 m 1.5 m Various Asphalt, - -

44 Cass and 

Mukherjee 

(2011)

Road 

evaluation

US Length:

per lane mile

Highway 24 feet - - Concrete, 4 -

39 Yu and Lu 

(2012)

Alternative 

design

US Length:

one km overlay 

system

Highway 3.6 m 1.2 m, 

2.7 m

225 mm PCC 

surface; 250 

mm base 

course

Various, 2*2 40 years



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

31 Olsson et al. 

(2006)

Material 

evaluation

Sweden Length:

1 km road

- - - - -, - -

29 Loijos et al. 

(2013)

Road 

evaluation

US Various Various Various Various Various Concrete, various 40 years

29 Jullien et al. 

(2006)

Material 

evaluation

France Area:

a 3.8 m * 150 m 

road section 

- 3.8 m - 0.07 m Asphalt, - -

28 Anastasiou 

et al. (2015)

Material 

comparison

Greece Length:

1 km

Urban road (low 

traffic)

7.3 m in 

total

- - Concrete, 2 40 years

28 Aurangzeb 

et al. (2014)

Material 

evaluation

US Length:

a 1.6 km lane

- - 1.8 m 254 mm binder 

course; 51 mm 

surface course

Asphalt, 1 45 years

28 Oliver-Sola 

et al. (2009)

Alternative 

design

Spain Area:

1 m2 of sidewalk

Urban - - All layers Concrete, - 45 years

26 Roth and 

Eklund 

(2003)

Material 

evaluation

Sweden - - - - - -, - -



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

25 Tatari et al. 

(2012)

Material 

comparison

US Length:

1 km

- 7.2 m 

(total)

- Different 

asphalt surface 

layer; 10 in. 

base course 

layer

Asphalt, 2 30 years

23 Giani et al. 

(2015)

Material 

evaluation

Italy Length:

 1 km

Suburban road 15 m 

(total)

- 25 cm Asphalt, 2 * 2 30 years

13 Santos et al. 

(2017b)

Material 

evaluation

US Length:

1 km

Highway 3.66 m - - Asphalt, 2 50 years

11 Farina et al. 

(2017)

Material 

evaluation

- Length:

1 m of built 

pavement layer

- Depending 

on the 

project

- Depending on 

the project

Asphalt, - 18 years, 

20 years

Notes: 

1. - – not specified;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.



Table S2. Summary of highly cited LCA studies in roads: LCI method, database and tool, impact categories, and sensitivity and uncertainty analysis

Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Wang et al. 

(2012)

Combined 

models

Stripple (1998); Athena 

Institute (2006); EcoInvent; 

USLCI; Cement LCI by PCA

- Energy use, Greenhouse gas (GHG) emissions √ √

Birgisdottir et 

al. (2006)

P-LCA Standard sources, i.e., Stripple 

(2001); Environmental Design 

of Industrial Products database 

ROAD-RES 

model 

Leaching of heavy metals and salts from the bottom ash, 

Resource and energy consumption, Emissions (CO2, NOx), 

Salts used for road salting

× ×

Vidal et al. 

(2013)

P-LCA Field study; Ecoinvent; 

Published literature

SimaPro All 18 ReCipe Midpoint impact categories; 3 ReCipe 

endpoint damage categories; cumulative energy demand

× √

Giani et al. 

(2015)

P-LCA Key processes: Company 

survey; 

Upstream processes: 

Ecoinvent database; published 

literature

SimaPro 7.3 All 18 ReCipe Midpoint impact categories × √

Oliver-Sola et 

al. (2009)

P-LCA Ecoinvent 1.2 database EcoConcrete 

LCA tool

Abiotic depletion potential, Acidification potential, 

Eutrophication potential, Global warming potential (GWP), 

Human toxicity potential, Ozone layer depletion potential, 

Photochemical ozone creation potential

× √



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Chiu et al. 

(2008)

P-LCA Eco-indicator 99 - Energy sources, Resources × ×

Chowdhury et 

al. (2010)

P-LCA Published literature; CMLCA CMLCA Acidification potential, Aquatic ecotoxicity potential, 

Aquatic sediment ecotoxicity potential, Energy 

consumption, GWP, Human toxicity potential, Terrestrial 

ecotoxicity potential

× ×

Huang et al. 

(2009)

P-LCA Published literature and 

publications

VISSIM, 

EnvPro

Acidification, Eco-toxicity, Eutrophication, Global 

warming, Human toxicity, Photo-oxidant formation

× ×

Loijos et al. 

(2013)

P-LCA Published literature and LCI 

databases

- GWP √ ×

Yu and Lu 

(2012)

P-LCA Portland Cement Association; 

Swedish Environmental 

Research Institute

- Energy (Primary and feedstock), GHG (CO2, CH4, N2O, 

VOC, NOx, CO, PM10, SOx)

√ √

Birgisdottir et 

al. (2007)

P-LCA - ROAD-RES 

model 

Acidification, Ecotoxicity in water/soil, Global Warming, 

Human Toxicity via air/water/soil, Nutrient Enrichment, 

Photochemical Ozone Formation, Stored Ecotoxicity to 

water/soil, Stratospheric Ozone Depletion 

√ ×



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Olsson et al. 

(2006)

P-LCA - - Emissions to air (SO2, NOx, CO, CO2, HC, CH4, VOC, N2O, 

and particles) and water (COD, N-tot, Oil, Phenol, As, Cd, 

Cr, Cu, Ni, Pb, and Zn), Resources use (natural aggregates, 

energy)

√ ×

Jullien et al. 

(2006)

P-LCA - - Odors, PAH, VOC × ×

Anastasiou et al. 

(2015)

P-LCA - SimaPro 7.1 GWP100, Resource use √ ×

Farina et al. 

(2017)

P-LCA - SimaPro 7.3 17 ReCiPe midpoint categories; 3 ReCiPe endpoint damage 

categories

× ×

Cass and 

Mukherjee 

(2011)

Hybrid Site investigation using 

FieldManager

SimaPro 7, 

EIO-LCA, e-

CALC

CO2 emissions × ×

Tatari et al. 

(2012)

Hybrid Published literature and 

report; National Renewable 

Energy Laboratory LCI 

database

- CH4, CO, CO2, N2O, PM, SO2, Cumulative mass, 

Ecological cumulative exergy consumption, Energy, 

Industrial cumulative exergy consumption

√ √



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Treloar et al. 

(2004)

Hybrid Published literature - Energy × ×

Aurangzeb et al. 

(2014)

Hybrid - - Energy consumption, GHG emissions (CH4, CO2, N2O) × ×

Santos et al. 

(2017b)

Hybrid - EIO-LCA 

model

Acidification air (AC), Eutrophication air (EU), Human 

health criteria pollutants (HH), Photochemical smog 

formation (PSF) 

√ √

Roth and 

Eklund (2003)

- - - - × ×

Carpenter et al. 

(2007)

- - PaLATE, 

HYDRUS2

D

CO, CO2, NOX, PM10, SO2, Energy, Hg, HTP (Cancer), 

HTP (Non-cancer), Pb, RCRA HazW Gen, Water

× ×

Notes: 

1. - – not specified; √ – included; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.



Table S3. Overview of key findings on the contributions of different life cycle phases

Phases

Studies Location Material 

production

Transpor-

tation

Construc-

tion
Use

M&

R
EOL

Analysis 

Period

(years)

Results

Cass and 

Mukherjee 

(2011)

US √ × √ × × × - Materials, equipment, and fuel production: 90%–94% of 

the CO2 emissions; Equipment use and transportation: 6–

10%

Santos et al. 

(2015)

Portugal √ √ √ √ √ √ 40 Materials and usage phases: major contribution to overall 

environmental impacts (low-volume traffic roads: materials 

phase contributes the most; high-volume traffic roads: usage 

phase dominates)

Loijos et al. 

(2013)

US √ × √ ○ √ √ 40 Year one generates the majority of emissions (materials 

production, pavement construction)

Kayo et al. 

(2015)

Japan √ √ √ × × × - Raw material procurement - 88%; Material production - 

7%; Transportation - < 1%; Construction: 4%

Kang et al. 

(2014)

US √ √ √ × × × - The energy consumption and GWP in the material phase is 

remarkably higher than in the construction phase. 

Mendoza et 

al. (2012)

Spain √ × √ × × √ > 45 Construction materials have the highest environmental 

impact (48–87%) 



Studies Location

Phases Analysis 

Period

(years)

ResultsOliver-Sola 

et al. (2009)

Spain √ √ √ × √ ○ 45 Main contributor: cement production (especially clinker)

Weiland and 

Muench 

(2010)

US √ √ √ × √ × 50 Material production (cement, asphalt, HMA, PCC) 

dominates all impact categories

Yu and Lu 

(2012)

US √ × √ √ √ √ 40 Materials, congestion, and usage contribute the most to air 

emissions and energy consumptions 

Chen et al. 

(2016)

US √ × √ √ √ √ 20, 40 Material module, usage module: two dominators

Choi et al. 

(2016)

US √ √ √ × √ √ 50 Cement manufacturing: top-contributing sector

Mazumder 

et al. (2016)

US √ √ √ √ √ × 50 Material phase: 97% of overall human toxicity in water 

(asphalt)

Araujo et al. 

(2014)

- √ × √ √ √ √ 20 The energy consumption of the use stage is about 700 times 

higher than that of the construction phase

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.
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Abstract: Motivated by the lack of a systematic analysis of the use of life cycle assessment 

(LCA) to estimate the environmental impacts of roads, this study conducts a critical review to 

examine the methods, common practices, limitations, and underlying reasons, so that future 

directions can be recommended. In this work, 94 papers that adopt LCA methods to assess the 

environmental impacts over the whole life cycle of roads were analyzed. The results 

demonstrate that the process-based LCA remains the most commonly adopted LCA method; 

however, the hybrid LCA has been gradually recognized. After examining the goal and scope 

definition, life cycle inventory, life cycle impact assessment, and life cycle interpretation of 

these studies, it was found that the current LCA applications in roads face limitations owing to 

the inconsistent and inappropriate selection of the functional unit, limited consideration of the 

maintenance and repair, use, and end-of-life phases, limited reporting of data sources, lack of 

standardized impact assessment procedures, and lack of sensitivity and uncertainty analyses. 

These limitations can be attributed to the lack of a standardized LCA procedure for roads. There 

is also a lack of LCA studies focusing on network-level analysis, which may restrict the use of 

LCA to assist policy making in road planning and management. In addition, the time effect is 
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rarely considered to reflect the dynamic changes of environmental impacts over the project life 

cycle. Therefore, future directions are recommended accordingly. Improvements in these areas 

are expected to generate more reliable LCA results for informed decision making.

Keywords: Life cycle assessment (LCA), roads, sustainable development, green infrastructure

1 Introduction

Roads play a significant role in the transport network as people increasingly rely on vehicles 

for daily travel. A large network of roads causes adverse environmental impacts, such as global 

warming, energy consumption, landscape transformation, and soil acidification (Findlay and 

Bourdages, 2000; Santos et al., 2015). Construction works and regular maintenance of roads 

require materials that are produced through highly carbon-intensive and energy-demanding 

processes (Santos et al., 2015). In addition, road networks worldwide are also a major cause of 

significant biodiversity loss due to movement of species, habitat fragmentation, and increase 

of human access to existing natural habitats (Alkemade et al., 2009; Findlay and Bourdages, 

2000). Green designs and practices in the road sector are highly encouraged by transportation 

authorities to mitigate the adverse environmental impacts (Wu et al., 2017). 

The life cycle assessment (LCA) approach examines the environmental impacts of 

products/processes (Santero et al., 2011b). Unlike other sectors, the use of LCA in road 

assessment is still in its early stage. The first LCA study on roads was conducted in the 1990s 

(Inyim et al., 2016). Over the last two decades, LCA has attracted increasing interest as a 

method to evaluate the sustainability of roads. The current application of LCA in road 

evaluation often follows the ISO 14044 (2006) standard. However, this standard is primarily 

designed for the environmental assessment of manufactured products rather than infrastructure 

projects such as roads. As roads have their own unique characteristics, existing LCA practices 

may not be suitable in this area (Batouli and Mostafavi, 2017). 



For example, when defining the goal and scope of an LCA analysis, it is a common practice to 

set a pre-defined analysis period and functional unit (FU) for a given product/process (ISO 

14044, 2006). However, for road projects, to ensure the continued functioning of a road, 

maintenance and rehabilitation are needed at regular intervals and road decommissioning is 

relatively rare. It is therefore difficult to pre-define a strict system boundary for a road (Batouli 

and Mostafavi, 2017). Furthermore, the performance of a road changes as the road condition 

deteriorates. The widely used FUs, including length (e.g., lane-kilometer, lane-mile) and area 

(e.g., square-meter), are unable to capture such dynamic changes (Batouli and Mostafavi, 2017). 

More importantly, owing to the changing road performance, the maintenance strategies and 

their frequency and impact on the sustainability of roads are difficult to be accurately predicted 

and modeled. However, these problems, along with their root causes, have not been widely 

recognized in current studies. Recently, researchers began to realize these limitations, such as 

the inconsistent selection of FUs and system boundaries (Inyim et al., 2016). Therefore, a 

systematic review of the current development and implementation of LCAs in road projects is 

needed to comprehensively explore their limitations so that future studies can better address 

them.

This study aims to thoroughly investigate the current implementations and limitations of the 

LCA approach in road projects and identify potential improvements in this specific research 

area. AlthoughFor now, there are already a few isolated publications that have reviewed the 

existing LCA research on roads or road pavements. For example, Anthonissen et al. (2016), 

Balaguera et al. (2018), and Jamshidi et al. (2017) conducted reviews on environmental impacts 

of sustainable alternative construction methods or construction materials for roads. Santero et 

al. (2011a, 2011b) Santero et al. (2011a)reviewed 15 pavement LCA related works, pointing 

out several limitations of the reviewed studies and environmental impact contributors to be 

considered in future studies. Inspired by Santero et al. (2011a), AzariJafari et al. (2016) 



investigated recent publications since 2011 to capture the latest development on the modeling 

of usually missing components such as pavement surface roughness, albedo effect, carbonation, 

etc. In addition, Inyim et al. (2016) conducted a systematic review on 32 papers published 

between 1996 and 2015, with an attempt to reach a conclusion on the comparison of 

environmental sustainability between asphalt and concrete pavements. this This study is 

distinct from the aforementioned ones in three ways. In contrast to previous reviews, which 

have focused on asphalt pavements (e.g. Wang et al., 2018) or alternative 

materials/construction technologies (e.g. Jamshidi et al., 2013), this study includes studies that 

cover a variety of LCA application areas. In addition, it covers the analysis period from 2003 

to 2019, with 2017 to 2019 accounting for 34% of the publications. Therefore, this review 

offers an update on the most recent developments and applications of LCA in roads. In 

additionMoreover, this study provides a new angle of understanding the use of LCA in roads 

by considering the nature of LCA and the unique characteristics of roads. 

By conducting a critical review, this work aims to fulfill three objectives: 1) to draw a picture 

of the current methods and implementation of LCA in road projects from a life cycle point of 

view; 2) to identify the limitations and challenges of using LCA in the environmental 

assessment of roads; and 3) to point out future directions. The rest of this paper is organized as 

follows. Section 2 provides the research method for this review and Section 3 presents an 

overview on existing publications. Section 4 summarizes the main findings of this study, 

including the three fundamental LCA approaches and their applications in road projects. 

Section 5 discusses the limitations of existing studies and investigates future directions of LCA 

in road projects, and Section 6 concludes this review.

2 Research method



A six-step approach, based on Thomé et al. (2016), was adopted so that a systematic review 

could be conducted. A similar review process is also used by Wan et al. (2018). The first step 

was to define the review scope. The aim of this review was to investigate the development and 

implementation of the LCA approach in road projects. Therefore, all review activities were 

centered on this aim. 

The second step was related to the identification of relevant articles through searching 

techniques, including the selection of databases and keywords. The Web of Science database 

was selected as the primary source because of its coverage and prime quality (Li et al., 2017). 

The searching terms, (“life cycle assessment” OR “LCA”) AND (“road” OR “pavement”) were 

used to identify articles that contain such keywords in the title, abstract, or keywords sections. 

Only peer-reviewed journal papers and reviews were selected based on quality considerations 

(Li et al., 2019). Other publication types, such as conference papers, theses, and letters were 

excluded. 

Steps three and four were related to data collection and quality evaluation. Using the searching 

techniques mentioned above, 597 potentially relevant articles were identified, among which 

220 are directly related to road or pavement LCA. It should be noted that roads are usually 

classified into three types of facilities, including earthwork zones, bridges, and tunnels (Park 

et al., 2016). Most studies are limited to the earthwork zone of paved roads. To ensure that the 

research aim was consistent, 21 studies on unpaved roads, embankments, and trenches, 

roundabout intersections, bridges, and tunnels were excluded in this review. The screening 

process is also adopted by Inyim et al. (2016) and Wan et al. (2018). As a result, a total of 199 

peer-reviewed journal papers were retrieved. 

The last two steps were data analysis and interpretation. Content analysis was selected as the 

method for data analysis because it was recommended as the best fit for analyzing textual data 



(Erlingsson and Brysiewicz, 2017). Table 1 presents the codes for the content analysis, 

including year, author, journal, location, goal of study, FU, system boundary, life cycle 

assessment method, data sources, impact category, major findings, and future needs. These 

codes were also aligned with the four-step LCA. For example, the FU and system boundary 

were related to the goal and scope definition.

Table 1. Codes for this review

Code Description of the codes in this review

Year Year of publication

Author Authors of the publication

Publication venue The journal where the paper is published

Location The location where the research was conducted

Goal of study The intended aim and objectives for carrying out the study

Functional unit (FU) The reference unit for the assessment

System boundary The phases and unit processes

Life cycle assessment method The method for conducting the LCA

Data sources The data sources

Impact category The environmental concerns to which the LCI analysis results are assigned

Major findings Main results that are related to the goal of the study

Future needs Limitations or future directions identified by the authors of the publication

3 Overview of existing LCA studies on road projects

A preliminary analysis of the 199 selected papers published from 2003 to 2019 was conducted 

to provide descriptive information of these studies, including the publication years, journal 

distribution, and general classifications.

3.1 Publication distribution



Figure 1 illustrates the distributions of the publications. It shows that LCA on roads has 

attracted substantial research interest since 2012, which demonstrates the rising interest about 

this research area in the LCA community in recent years. 
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Figure 1. Distribution of retrieved publications by year

Appendix A illustrates the distribution of these articles in publication venues. In total, 50 

journals have published relevant papers. Among these journals, the Journal of Cleaner 

Production has the highest number of publications (41), followed by Transportation Research 

Record: Journal of the Transportation Research Board and Transportation Research Part D: 

Transport and Environment, with 21 and 19 relevant articles, respectively.

3.2 General themes

In general, there were two main themes based on the goals, including the application of LCA 

in roads (113, 56.8%) and the modeling development of LCA in roads (77, 38.7%). Table 2 

presents the description of these two main themes. In the application theme, the study goal was 

the application of LCA to evaluate roads or road materials, following the LCA processes 

defined in ISO 14044 (2006). Among these studies, 94 papers targeted the road structure, 

whereas the other 19 targeted the materials. In the modeling development theme, the study 



purpose was to develop an LCA tool for roads, or to introduce a method for calculating certain 

new impacts that were often excluded in previous studies (e.g., traffic delay and rolling 

resistance). Based on the research aim and objectives, the 94 papers focusing on the application 

of LCA in roads were targeted first. Table 2 and Figure 2 present the definition and distribution 

of themes, respectively, which show that the evaluation of materials is attracting immense 

research interest.

Table 2. Classification of the retrieved publications based on their goal of study

Classification Description of the classifications Publication

Road 

evaluation

To evaluate the environmental impacts of a road project 26

Alternative 

design

To compare different designs for a given road, such as 

rehabilitation methods, maintenance schemes, and various 

lifespan designs

19

Material 

evaluation

To evaluate the environmental impacts of a material, such as 

a mixture, an additive, or an eco-friendly material (e.g., 

industrial by-products, recycled materials, and other 

modified materials)

51

Typical 

application

Material 

comparison

To compare different materials, such as concrete versus 

asphalt, and different asphalt products

17

Framework/tool 

development

To develop a framework or calculation tool for road 

evaluation

24

LCC + LCCA To develop a method that integrates LCA and lifecycle cost 

analysis (LCCA) in road evaluation

23

Modelling 

development

New impacts To develop a method to capture new impacts that are rarely 

considered in previous studies, including traffic congestion, 

albedo effects, rolling resistance, carbonation, noise, and 

lighting

30



Classification Description of the classifications Publication

Others The goal of the study is not included in the above 

classifications

9

Figure 2. Distribution of publications by theme and year

4 Critical review of the approaches and applications of LCA in roads

In this section, the commonly used LCA approaches are compared and findings on the 

applications of LCA in roads are presented following the typical procedures of conducting an 

LCA study defined in ISO 14044 (2006).

4.1 LCA approaches

LCA is often categorized into process-based LCA (P-LCA), environmental input–output LCA 

(EIO-LCA), and hybrid LCA (Santos et al., 2017). P-LCA defines the system boundary by 

processes and divides the target system into a series of process flows to model the inputs and 

outputs of every process (Horvath and Hendrickson, 1998). It has been widely adopted in 

environmental evaluation of roads (e.g. Chiu et al., 2008; Chowdhury et al., 2010; Huang et 

al., 2009), with 67 (71.3%) studies using this method. However, this method requires data on 



consumption and environmental output to be obtained for every process, which is labor- and 

time-intensive. Therefore, P-LCA is often expensive and time-consuming, especially for a 

complex system that encompasses thousands of processes (Suh et al., 2004). It also has the risk 

of excluding a large number of inputs for upstream processes, which may have a significant 

effect on the total inventory (Choi et al., 2016). 

To simplify the LCA and generate more comprehensive LCA results, EIO-LCA is proposed. 

In EIO-LCA, the boundary often spans the global economy, which includes the entire chain of 

suppliers (Suh et al., 2004). When producing the products in a sector, inputs, which are the 

outputs of other sectors, are required. Because each sector has environmental impacts per dollar 

of output, the overall environmental impacts can be quantified by summing up the products of 

the inputs and the environmental impacts of the corresponding sectors (Horvath and 

Hendrickson, 1998). Although EIO-LCA is able to improve the completeness of the traditional 

method, it faces problems such as the age of input–output data, homogeneity assumption, use 

of national average data, and high levels of sector aggregation (Choi et al., 2016; Hendrickson 

et al., 2006). As can be observed in Table 3, EIO-LCA has not been fully embraced, with only 

6 studies conducted in the evaluation of roads (6.4%).

Hybrid LCA, which combines the two methods by using input–output (IO) data to complement 

the processes that are excluded in P-LCA, was later proposed (Bullard et al., 1978; Suh et al., 

2004). The main advantage of this approach is that it improves the completeness of P-LCA 

while raising the reliability of EIO-LCA (Bullard et al., 1978). Table 3 summarizes the 

advantages and disadvantages of each method. 



Table 3. Pros and cons of existing LCA methods

Comparison Methods Pros Cons Frequency

Process-based LCA

(P-LCA)

• Identifies the input and output in each 

process of production of a product or 

service1

• Provides assessment for specific 

processes1

• Can obtain detailed results for each process1

• Has advantages when evaluating the use and 

EOL stages2 

• Allows comparison of specific products2

• Setting a system boundary is difficult3

• “Cut-off” errors1,3,4 

• Unable to capture circularity effects1

• Costly and time-consuming1,3

67

(71.3%)

EIO-LCA • Provides an assessment of the whole 

economic system1

• Quantifies interrelationships between 

various sectors of the economy1

• The analysis boundary is the whole 

economy; no “cut-off” errors1

• Solves the problem of circularity effects1

• Less costly and faster1 

• Reflects direct and indirect interactions 

between different economic sectors; provides 

both economic and sector-wide results1

• Unable to reflect particular processes 

owing to the heterogeneousness of 

sectors and the use of national average 

data3

• Homogeneity and linearity 

assumptions4

• Aged input–output data3,4

• High levels of sector aggregation3,4

6

(6.4%)



Comparison Methods Pros Cons Frequency

Hybrid LCA Usually combines the two methods by 

using IO data to complement the 

upstream processes, which are often 

excluded in traditional P-LCA3

• Overcomes the problem of the costly, time-

consuming, or missing data of P-LCA3,4,5

• Reduces “cut-off” errors of P-LCA and 

improves the consistency across the stages of 

the road life cycle3,4,5

• Improves the reliability of EIO-LCA3,4,5

• Lack of standard methodological 

framework5

• Lack of mature tool5

11

(11.7%)

Note: 

1 Hendrickson et al. (2006); 2 Choi et al. (2016); 3 Suh et al. (2004); 4 Bullard et al. (1978); 5 Crawford et al. (2018).

This table include 84 papers and the remaining 10 papers are not presented because their methods are not reported.



4.2 Current applications of LCA in roads

Complying with the ISO 14044 standard (ISO 14044, 2006), a typical LCA study often follows 

four steps: 1) defining goal and scope, clarifying system boundaries, and determining FUs; 2) 

compiling the life cycle inventory (LCI) by allocating the inputs (resources) and outputs (e.g., 

emissions) through the life cycle; 3) assessing the potential life cycle environmental impact of 

the target system (which is referred to as LCIA); and 4) interpreting the results from the LCIA 

for conclusions and recommendations. Each step will be investigated to examine the current 

common practices and identify limitations in existing studies so that future directions can be 

proposed accordingly for further improvement.

4.2.1 Goal and scope definition

4.2.1.1 The goal of the studies

The goal of LCA plays a vital role in defining the FU, setting the system boundary, and 

selecting data sources (Loijos et al., 2013). Existing LCA studies on roads are usually limited 

to four types of goals, namely, evaluating the environmental impact of roads, alternative 

designs, pavement materials, and alternative materials. In addition, the majority of the studies 

(89, 94.7%) were conducted based on a project-level analysis. Only a few have investigated 

the impacts of roads in a network context to inform policymaking at the network level. 

Therefore, the implications of these studies are limited to project level and can hardly benefit 

road planners or policy makers to achieve an optimal solution at a network or national level.

4.2.1.2 Functional unit (FU)

Like applying LCA in other sectors such as the buildings sector, various FUs were used in LCA 

studies on roads, making it difficult to compare results across studies (Anand and Amor, 2017; 

Säynäjoki et al., 2017). 68 studies (72.3%) used the road length, such as kilometer, lane-

kilometer, and lane-mile. In addition, 11 papers (11.7%) used the treatment area, expressed for 



instance in square meters, as the FU where the scope of the study involved the surface or 

wearing course of the pavement. Another FU is the whole road project, which was usually used 

when evaluating the environmental impact of a specific strategy (e.g., road closure scheme 

during rehabilitation and emission control strategy) on a given road project. For example, 

Hanson and Noland (2015) compared the vehicle emissions when adopting various staging 

approaches for a rehabilitation project. Other studies have also used the volume (e.g., in cubic 

meters, cubic yards) to evaluate the impacts of earthworks or recycling of materials (e.g. 

Capony et al., 2013). 

The use of these FUs has limitations. A lane mile or a square meter cannot be used as a standard 

FU (Cass and Mukherjee, 2011). It was pointed out by AzariJafari et al. (2016) that the 

information related to the road specifications should include region, lane width, shoulder width, 

thickness, roadway type, pavement type, and analysis period. It was argued that road functions 

could not be appropriately reflected if the FU did not include the roadway classification, lane 

width, and number of lanes into account. Appendix B presents the goals of the studies, together 

with the FUs of the twenty most cited papers and two recent highly cited publications with 

more than 10 citations (referred to as the 22 HCPs). It is found that a systematic presentation 

of such information was rarely adopted in existing studies.

In addition, it is reported that the missing consideration of the condition of pavement is also a 

shortfall in existing studies (Inyim et al., 2016). Unlike other products or services, the condition 

of a pavement often deteriorates over the long service life and it directly influences the function 

of a road. For example, the pavement roughness is an important indicator for the serviceability 

of a road (Al-Omari, 1994) and can cause up to 70% variation in the fuel consumption impacts 

caused by on-road vehicles (Batouli and Mostafavi, 2017). Therefore, an FU that integrates the 



changeable condition and performance of the pavement is required (Batouli and Mostafavi, 

2017; Inyim et al., 2016).

4.2.1.3 System boundary

There are six phases during a road’s life cycle, namely, materials extraction and production, 

materials transportation, construction, use, M&R, and EOL phases. The materials extraction 

and production stage usually includes the processes for manufacturing the road materials, from 

the acquisition of raw materials to final material production (i.e., mixing plant operations). The 

construction phase considers all preservation and construction activities, including the 

combustion of fuels of the paving equipment. It should be noted that materials transportation 

from manufacturing plants to construction sites may be integrated into the construction phase 

(e.g. Zhang et al., 2010) or treated as a separate phase (e.g. Kayo et al., 2015), depending on 

the specific aims of the studies. The M&R stage deals with three types of maintenance 

treatment, such as routine maintenance, preservation, and rehabilitation. In addition, EOL 

treatments include the demolition, debris transport, recycling, and final disposal at the end of a 

road’s service life (Celauro et al., 2015). However, there is no common agreement on what to 

be included in the use phase. For example, Loijos et al. (2013) only considered the effects of 

albedo, carbonation, roughness, and lighting, and excluded the vehicle emissions. On the 

contrary, Treloar et al. (2004) not only included the vehicle emissions, but considered the 

manufacture, use, and maintenance of vehicles as well.

The materials extraction, transportation, and construction stages were the commonly included 

life cycle stages, with 91 (96.8%), 59 (62.8%), and 81 (86.2%), respectively. Meanwhile, the 

consideration of use, M&R, and EOL stages was less frequent, with 28 (29.8%), 55 (58.5%), 

and 32 (34.0%) studies. Table 4 presents the summary of work in the 22 HCPs. The EOL stage 

is usually excluded as the total demolition and disposal of an infrastructure is not common 



practice or is not allowed by the national maintenance policies (e.g., Italy) (Celauro et al., 2015). 

More importantly, the exclusion of the use stage from most of the existing studies is seen as a 

significant shortfall owing to its great global warming potential in roughness, structure, and 

albedo (Santero et al., 2011b). The omission is attributed to the limitations of the impact 

assessment method for the use phase and the common assumption that different roads generate 

the same impacts in this stage (Inyim et al., 2016).

Table 4. Summary of highly cited LCA studies in roads: system boundary

System boundary
Studies

Material production Transportation Construction Use M&R EOL

Chiu et al. (2008) √ √ × × √ ×

Treloar et al. (2004) √ × √ √ √ ×

Chowdhury et al. (2010) √ × × × × ×

Birgisdottir et al. (2006) √ √ √ × √ ×

Birgisdottir et al. (2007) √ √ √ × √ ×

Wang et al. (2012) √ √ × √ √ ×

Huang et al. (2009) √ √ × × √ ×

Vidal et al. (2013) √ √ √ √ √ √

Carpenter et al. (2007) - - - - - -

Cass and Mukherjee 

(2011)
√ × √ × × ×

Yu and Lu (2012) √ × √ √ √ √

Olsson et al. (2006) √ √ √ √ × ×

Loijos et al. (2013) √ × √ √ √ √

Jullien et al. (2006) √ - √ × × ×

Anastasiou et al. (2015) √ √ √ × √ √

Aurangzeb et al. (2014) √ √ √ × √ ×

Oliver-Sola et al. (2009) √ √ √ × √ ○

Roth and Eklund (2003) - - - - - -



System boundary
Studies

Material production Transportation Construction Use M&R EOL

Tatari et al. (2012) √ √ √ × × ×

Giani et al. (2015) √ √ √ × √ √

Santos et al. (2017) √ √ √ √ √ √

Farina et al. (2017) √ × √ × √ ×

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 

citations.

4.2.2 Life cycle inventory (LCI)

4.2.2.1 LCI data sources

The choice of data sources can be a major decision in LCA studies (Martínez-Rocamora et al., 

2016). The International EPD® System categorizes the data into three types for the LCI phase, 

i.e., primary, secondary, and tertiary data. Primary data refers to first-hand data usually 

obtained by on-site surveys and field investigations. Secondary data can be obtained in the 

literature, including published articles, annual environmental reports, and commercial 

databases. Tertiary data, or other generic data, is often available through statistical averages 

(Moretti et al., 2017). 

Typically, an LCA study requires project (input) and emissions data. To obtain input data, 

primary data such as field investigation and interview with the contractors or equipment 

manufacturer are preferred (e.g. Cass and Mukherjee, 2011). However, first-hand data for 

material production and construction activities are not always complete (Gulotta et al., 2019). 

Therefore, secondary data are also a common source. For emissions data, primary data is 

extremely difficult to obtain and only Kang et al. (2014) and Al-Qadi et al. (2015) used self-

developed local or regional database. For others, Ecoinvent, U.S. LCI databases, Athena 



database, and published literature are important sources for secondary data. The use of different 

sources can lead to distinct results even for the same product, compromising the comparability 

across studies. In addition, not all materials are included in the databases, especially recycled 

materials, which may lead to inaccuracy of the assessment results (dos Santos et al., 2017). 

Similar findings are also reported in the building LCA (Säynäjoki et al., 2017). More 

importantly, there were a significant number of studies (30, 31.9%) that did not report the data 

source, resulting in high uncertainty in the LCI results. Appendix C lists the data sources of the 

22 HCPs.

4.2.2.2 LCA Tools 

The selection of LCA tools is usually related to the adopted LCI method. Most of the papers 

that adopted the P-LCA method used SimaPro or GaBi software (e.g. Farina et al., 2017; Giani 

et al., 2015; Vidal et al., 2013). For EIO-LCA, the most commonly adopted tools are the 

Pavement Life-cycle Assessment Tool for Environmental and Economic Effects (PaLATE), 

which is a spreadsheet LCA and the LCCA program designed to assess the environmental and 

economic impacts of pavement and roads, and the Economic Input–Output Life Cycle 

Assessment (EIO-LCA) model, an online tool designed to make EIO-LCA method fast, easy 

to use, and free. For the hybrid LCA, however, there was no widely adopted tool, which may 

be one of the reasons that the hybrid approach is not widely used (Crawford et al., 2018). Unlike 

the building sector where the uncertainties aroused from the LCA tools have been widely 

discussed and highlighted (e.g. Emami et al., 2019), only dos Santos et al. (2017) conducted a 

comparative study on LCA tools for roads. It is concluded that results can vary significantly 

even when the same stages are considered with the same materials and equipment use. In 

addition, there are also 37 (39.4%) studies of which the tools are not reported. The analyst are 

recommend to be cautious in selecting LCA tool and improve their awareness to report the 



selection (dos Santos et al., 2017). Appendix C summarizes the LCA methods and tools in the 

22 HCPs.

4.2.3 Life cycle impact assessment (LCIA)

4.2.3.1 LCIA methods

LCIA connects the LCI results to its environmental impacts by assigning the results to selected 

impact categories (ISO 14044, 2006). According to Van den Heede and De Belie (2012), there 

are two main schools of impact analysis methods. The first school is a damage-oriented method 

represented by Eco-indicator 99, which focuses on the endpoint environmental damages (where 

the actual environmental effects or damages occur), such as damage to ecosystem quality, 

damage to human health, and damage to mineral and fossil resources. The second one is 

considered to be a problem-oriented or midpoint method, and a representative example is CML 

2001, for quantitative modeling within the early stages of the cause–effect chain. For example, 

a road’s climate change effect can be calculated by an endpoint method to produce 

environmental damage to human health, or by a midpoint method (i.e. kilograms of CO2e). To 

offer users the choice of the level of results, methods that combine the midpoint and endpoint, 

such as ReCiPe, which is a fusion of CML 2001 and Eco-indicator 99, were also available.

In the existing literature, only 18 (19.1%) papers have reported the method of impact 

assessment. In these studies, many (17) adopted a midpoint method, including CML 2001 

midpoint method (4 papers), ReCiPe midpoint method (8 papers), TRACI midpoint method (2 

papers), and 3 other midpoint methods. The popularity of the ReCiPe may be attributed to the 

fact that it incorporated the widely used SimaPro software (Vidal et al., 2013), and it is 

convenient for having combined both assessment methods. Other publications, which did not 

report the method of impact assessment, commonly adopted midpoint methods for selecting 

midpoint impact categories, such as global warming potential, acidification, and eutrophication, 



to name a few. Similar preference for the midpoint approach is also reported in other sectors 

(e.g. Yi et al., 2014). Main reasons are that the endpoint approach requires a high level of 

expertise and is exposed to much higher uncertainty than the midpoint approach. Nevertheless, 

the midpoint approach may not provide the results that decision makers really expect (Bare et 

al., 2000). Therefore, Bare et al. (2000) suggested that a consistent framework is needed to 

present both sets of results, either in a combined or parallel approach.

4.2.3.2 LCIA

Selecting impact categories and conducting the impact assessment are mandatory elements of 

an LCA study (ISO 14044, 2006). However, it should be noted that there is a lack of a 

standardized way of reporting the results. 

Many studies offer simple quantification of the outputs without impact assessment. For 

instance, Cass and Mukherjee (2011) calculated the greenhouse gas (GHG) emissions for 

highway construction without conducting a further impact assessment. Such omission of the 

impact assessment step can introduce difficulty in the decision-making process because the 

simple estimation of gas emissions cannot provide intuitive information (Inyim et al., 2016). A 

similar limitation can also be found in comparison studies, such as in Yu and Lu (2012). 

However, an LCI study alone is not supposed to be used for comparative assertions (ISO 14044, 

2006). 

Other studies, as can be observed in Appendix C, attempted to interpret the results using impact 

assessment, but they selected extremely varied impact categories, making it difficult to conduct 

a cross comparison between different studies. Among these studies, GHG emissions and energy 

consumption were the most consistently used assessment metrics. Other widely used categories 

also included damage to the ecosystem and human health. Little consideration has been given 

to natural resources such as land use. 



It is also found that few authors explained the reasons for choosing certain impact categories, 

thus not clarifying whether the selection was consistent with the goal and scope of the study. 

For example, Santos et al. (2015) adopted eight impact categories, whereas Santos et al. (2017) 

only considered four categories without providing reasons for including or excluding certain 

impacts. Out of these studies, only two studies, i.e., Fitch et al. (2013) and Veran-Leigh et al. 

(2019), elaborated the reasons for selecting each impact category. 

4.2.4 Life cycle interpretation

Life cycle interpretation comprises three components, that is, identifying significant issues, 

checking completeness, consistency, and sensitivity, and drawing conclusions and 

recommendations (ISO 14044, 2006). 

4.2.4.1 Phase/Process

Each stage in the life cycle of a road contributes differently to its environmental impacts. As 

can be observed from Appendix D, the material extraction and production stage was identified 

as the main contributor to the total carbon emissions and energy consumption by most studies. 

In this stage, the cement production process has been highlighted as the main contributor (e.g. 

Choi et al., 2016; Loijos et al., 2013; Oliver-Sola et al., 2009; Weiland and Muench, 2010). 

Current studies also pointed out the importance of the use phase (e.g. Chen et al., 2016). 

According to Araujo et al. (2014), the impact of the use phase on the environment was 

approximately 700 times higher than that of the construction phase. The use phase also 

dominates the environmental performance for roads with high traffic volumes (Santos et al., 

2015).

4.2.4.2 Asphalt vs concrete pavement

The comparison of pavement materials such as asphalt and concrete has attracted much 

research attention over these years, although no general conclusion has been drawn. For 



example, Weiland and Muench (2010) and Yu and Lu (2012) both investigated rehabilitation 

alternatives. The former argued that the hot mixed asphalt pavement (HMA) had a higher 

energy use and the Portland cement concrete (PCC) had a higher global warming potential 

(GWP); the latter drew the conclusion that PCC was better than HMA in both energy use and 

GWP performance. A possible reason for the different results could be the overlook of impacts 

from the use phase and EOL phase by Weiland and Muench (2010), whereas Yu and Lu (2012) 

considered the whole life cycle, except for the transportation of materials. More widely agreed 

results may be that the asphalt pavement could offer a reduction in GWP but concrete has an 

advantage in pavement energy demand (e.g. Dumitrescu et al., 2014; Gschosser and Wallbaum, 

2013; Gschosser et al., 2012; Weiland and Muench, 2010). It should also be noted that most 

studies had no or had limited consideration of the use phase, except Yu and Lu (2012), which 

might influence the results.

4.2.4.3 Impact of eco-friendly technologies

The reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) were the commonly 

investigated eco-friendly technologies in current studies. RAP allowed a reduction of the use 

of virgin materials and WMA was used to lower the production temperature of the asphalt 

mixture (Giani et al., 2015). Using RAP could have a significant potential of reducing eco 

burdens of both rehabilitation (Chiu et al., 2008; Turk et al., 2016) and initial construction 

projects (Aurangzeb and Al-Qadi, 2014; Aurangzeb et al., 2014), especially when combined 

with HMA (Giani et al., 2015; Vidal et al., 2013). However, the studies provided contrasting 

results related to the impacts of using a high content of RAP. Aurangzeb and Al-Qadi (2014) 

and Aurangzeb et al. (2014) proved that reductions of energy and GHG could increase with an 

increase of RAP content to 30%, 40%, and 50%. On the contrary, Saeedzadeh et al. (2018) 

reached the opposite conclusion that high RAP content could lead to higher environmental 

burdens. As for WMA, Liu et al. (2014) and Mazumder et al. (2016) indicated that WMA was 



more beneficial to the environment than HMA. On the contrary, Tatari et al. (2012), Vidal et 

al. (2013), and Anthonissen et al. (2015) argued that this was not necessarily true because of 

the significant influence of additives, especially the synthetic zeolites.

4.2.4.4 Sensitivity and uncertainty analysis

A sensitivity analysis is a compulsory element in the life cycle interpretation phase by 

estimating the effects of a chosen method or data on the LCA results. The aim is to evaluate 

the reliability of the final results by quantifying the extent to which the results are affected by 

uncertainties coming from data, allocation methods, or LCIA calculation. The uncertainty 

analysis is often used as a supplement and is supposed to quantify uncertainties, such as model 

inaccuracy, input uncertainty, and data variability (ISO 14044, 2006). However, limited studies 

have reported such results, indicating high uncertainties in the results. In total, 32 studies 

(34.0%) conducted a sensitivity analysis, usually on the effects of transport management and 

traffic growth (e.g. Mendoza et al., 2012; Yu and Lu, 2012). In addition, only 17 studies (18.1%) 

conducted an uncertainty analysis. In these studies, only a few complied with the requirement 

of ISO 14044 (2006) that sensitivity analysis is mandatory and uncertainty analysis should 

supplement the results. For example, Wang et al. (2012) implemented a sensitivity analysis 

without clearly reporting the results. Giani et al. (2015) implemented a separate uncertainty 

analysis without conducting a sensitivity analysis. This may suggest a need for a clearer 

definition and guidance of the sensitivity and uncertainty analyses based on the ISO 14044 

(2006) standard.

5 Discussion and recommendations

Based on the findings and the future needs identified in existing studies, this section discusses 

the main limitations in LCA applications in roads and make recommendations for future 

directions accordingly.



ISO 14044 (2006) provides a general framework and guideline for LCA, but the challenges of 

selecting FUs, defining system boundaries, and mining data for a specific field are left to the 

researchers based on their own discretion (Loijos et al., 2013). As can be observed from the 

findings of this review, several limitations can be found the LCA in existing studies. 

 Goal and scope definition

Mostly project-oriented research. Over 90% of the existing papers are project 

oriented and very few investigate the impacts of roads in a network context, limiting 

the value for policy makers, such as road authorities (Zhang et al., 2013). The 

cumulative emissions of the road network of a region/nation remain unclear and it is 

difficult to capture the regional disparities of the emissions under the existing LCA 

framework (Chen et al., 2017). Therefore, region-specific strategies for reducing the 

emissions are difficult to be developed. Another limitation of the project-level LCA is 

that road maintenance works are often planned in isolation to achieve an optimal 

solution for the project (Galatioto et al., 2015). The decision level at the network level, 

as Santos et al. (2017a) and Santos et al. (2018) have suggested, is much more 

complicated with budget consideration. It is therefore recommended that future 

research needs to consider the road network as a whole so that useful implications can 

be drawn for policymaking.

Inconsistent selection and definition of FU. There are various FUs being used by 

existing studies which makes it difficult to make comparison between studies. To 

improve the comparability across studies, the consistency of the use of FUs needs to be 

increased (Inyim et al., 2016). In addition, currently used FUs are considered 

insufficient to reflect the changing functions of a road. It is therefore recommended that 



the definition of FU should consider the evolving road performance so that the real time 

function of roads can be reflected (Batouli and Mostafavi, 2017).

Lack of consideration of post construction stages. The use and M & R phases can 

have significant environmental impacts (Santero and Horvath, 2009; Wu et al., 2014). 

However, only a few studies have included these phases. There is still a lack of a method 

to accurately decide the maintenance measures for the whole life cycle of a road due to 

the constantly changing circumstances. In addition, the impact sources of the use phase 

are not consistently defined and methods for this phase is insufficiently developed. 

Future studies are recommended to fully capture these phases so that reliable outcomes 

can be delivered (Inyim et al., 2016). Furthermore, unlike common products, roads can 

receive rehabilitation over and over again and therefore may not have a clear life cycle. 

This suggests a need to further discuss the life cycle of a road and whether or how the 

EOL stage should be included in a typical LCA study (Batouli and Mostafavi, 2017).

 LCI: 

Limited report of data sources and LCA tools. Different databases and LCA tools 

are being used in existing studies, which can lead to distinct results even for the same 

product or processes (dos Santos et al., 2017). However, most authors are not aware of 

the uncertainty and do not report the data sources and LCA tools. Future studies are 

recommended to consider such uncertainty in sensitivity and uncertainty analysis 

(Emami et al., 2019). There is also a need for studies that compare the results generated 

from different data sources or LCA tools to reveal uncertainties introduced from data 

and tools can be revealed.

 LCIA:



Lack of standardized LCIA procedure. Missing impact assessment phase, limited 

report of LCIA method and an inconsistent selection of impact categories are identified 

for the LCIA step, which result in difficulties in conducting comparisons across existing 

work (Inyim et al., 2016). A standardized LCIA procedure is therefore needed to 

improve the awareness of the LCIA step and guide the selection of LCIA method and 

impact categories. 

 Life cycle interpretation:

Lack of sensitivity and uncertainty analysis. A large amount of uncertainty exists for 

an LCA study, including parameter (input) and data uncertainty in the LCI step and 

method uncertainty in the LCIA step (Bare et al., 2000). The low awareness and lack 

of sensitivity and uncertainty considerations indicate high uncertainties on results 

delivered by existing publications. Future studies should conduct such analyses in order 

to ensure the reliability of their results.

As can be seen from the discussion, a lack of consistency and standardization is identified in 

each step, which echoes the key findings of AzariJafari et al. (2016), Inyim et al. (2016), and 

Santero et al. (2011b). Those limitations are considered to be rooted in the incompatibility of 

conventional LCA method and the characteristics of roads, meaning that the ISO 14044 is not 

perfectly suitable for guiding the LCA applications in roads (Batouli and Mostafavi, 2017; Cass 

and Mukherjee, 2011). There is therefore a need to standardize the LCA approach specifically 

for roads in future research.

In addition, from the review, it is found that the time effect has not been well captured in 

existing LCA studies on roads. For example, in current practice, it is common to simply 

aggregate the emissions generated at different times within the life cycle without discounting 

the values as the LCCA studies usually do (e.g. Cass and Mukherjee, 2011; Chiu et al., 2008; 



Hanson and Noland, 2015; Yu and Lu, 2012; Yu et al., 2018). The aggregated LCI results are 

usually interpreted to potential environmental impacts through LCIA and adopted directly for 

decision making, which can cause several problems. First, it is difficult to compare two road 

designs with different service life. Second, the global warming impact of a GHG decreases 

with time and the GWP value, which evaluates such impact, is very sensitive to the time horizon 

(Levasseur et al., 2010), and cannot be reflected by an aggregated value. More importantly, the 

aggregated value masks the temporal distribution of emissions along the life cycle (Yu et al., 

2018). As a result, one project with low emissions at the construction phase and high emissions 

at the use phase may have the same LCI results as another that has a completely different 

emission distribution. Such practice creates difficulties in determining which project is more 

sustainable if the dynamic changes of the environmental impacts of emissions are not 

considered. Among the studies, only one study, i.e., Yu et al. (2018), has considered this effect. 

Therefore, taking into account the time effect should be an imperative improvement area for 

future studies. 

6 Conclusion

LCA has been widely adopted to evaluate the environmental impacts of roads so that 

sustainable practices in the life cycle stages of the road, including materials extraction, 

transportation, construction, operation, maintenance, and EOL treatments, can be adopted. 

Over the past two decades, a large number of LCA studies have been conducted in road projects 

and a complete review of these studies is conducted. It is found that there are two general 

themes in the existing studies, which are the application of LCA in roads and the modeling 

development of LCA. Among all the application themes, P-LCA is the most commonly adopted 

approach. In addition, most of the current applications have a project-oriented goal of study. 

They are also found to be inconsistent in terms of selection of FU, lack of consideration of the 



M&R, use, and EOL phases, high uncertainty due to limited report on data sources, sensitivity 

and uncertainty analyses, and lacking a standardized way of conducting impact assessment. 

The consequences of these inconsistencies are also investigated. First, project-level studies 

have limited implications for policymaking. Second, the non-standardized procedure of 

conducting LCAs in roads is hindering their further development and implementation. Third, 

existing studies fail to consider the time effect of the environmental impact evaluation, causing 

difficulties in decision making between alternative road designs, which usually have a long life 

span. Therefore, it is recommended that future studies pay more attention to the network-level 

analysis and further standardize and tailor the LCA methods to align them with the 

characteristics of roads. Taking the dynamic changes in the environmental impacts of emissions 

into consideration in road LCA has also been highlighted for future work. Improvements in 

these areas can fill the existing knowledge gap and generate more reliable results to better 

inform both policymaking and decision making in the area of advancing the sustainability of 

roads. 
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Appendix B. Summary of highly cited LCA studies in roads: goal of study and functional parameters

Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

67 Chiu et al. 

(2008)

Material 

evaluation

China

(Taiwan)

Length:

per lane-

kilometer

- 2.65 m - 5 cm Asphalt, 1 40 years

58 Treloar et al. 

(2004)

Road 

evaluation

Australia Length:

5 km

Rural roads - - - Various, - 40 years, 

20 years

53 Chowdhury 

et al. (2010)

Material 

evaluation

US Length:

1 km

- 2.5 m - 600 mm -, - -

53 Birgisdottir 

et al. (2006)

Material 

evaluation

Denmark Length:

 1 km

Secondary road 3.5 m 2.1 m 0.7 m in total Asphalt, 2 100 

years

53 Birgisdottir 

et al. (2007)

Material 

evaluation

Denmark Length:

1 km

Secondary road 7 m in 

total

- 0.37 m Asphalt, - 100 

years

52 Wang et al. 

(2012)

Alternative 

design

US - Rural road - - - Both asphalt and 

concrete, -

-



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

50 Huang et al. 

(2009)

Alternative 

design

UK Length:

2.6 km

- 3.5 m - 200 mm base; 

60 mm binder 

course; 40/50 

mm layer

Asphalt, 2 -

50 Vidal et al. 

(2013)

Material 

evaluation

Spain Length:

1 km

1000 vehicles per 

day (8% heavy 

vehicles)

13 m - 0.08 m asphalt 

layer

Asphalt, 2 40 years

45 Carpenter et 

al. (2007)

Material 

evaluation

US Length:

305 m

Highway 10.4 m 1.5 m Various Asphalt, - -

44 Cass and 

Mukherjee 

(2011)

Road 

evaluation

US Length:

per lane mile

Highway 24 feet - - Concrete, 4 -

39 Yu and Lu 

(2012)

Alternative 

design

US Length:

one km overlay 

system

Highway 3.6 m 1.2 m, 

2.7 m

225 mm PCC 

surface; 250 

mm base 

course

Various, 2*2 40 years



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

31 Olsson et al. 

(2006)

Material 

evaluation

Sweden Length:

1 km road

- - - - -, - -

29 Loijos et al. 

(2013)

Road 

evaluation

US Various Various Various Various Various Concrete, various 40 years

29 Jullien et al. 

(2006)

Material 

evaluation

France Area:

a 3.8 m * 150 m 

road section 

- 3.8 m - 0.07 m Asphalt, - -

28 Anastasiou 

et al. (2015)

Material 

comparison

Greece Length:

1 km

Urban road (low 

traffic)

7.3 m in 

total

- - Concrete, 2 40 years

28 Aurangzeb 

et al. (2014)

Material 

evaluation

US Length:

a 1.6 km lane

- - 1.8 m 254 mm binder 

course; 51 mm 

surface course

Asphalt, 1 45 years

28 Oliver-Sola 

et al. (2009)

Alternative 

design

Spain Area:

1 m2 of sidewalk

Urban - - All layers Concrete, - 45 years

26 Roth and 

Eklund 

(2003)

Material 

evaluation

Sweden - - - - - -, - -



Citation Studies Goal of study Location
Functional unit

(FU)

Roadway 

classification

Lane 

width

Shoulder 

width

Layers & 

Thickness

Lanes type and 

number

Analysis 

Period

25 Tatari et al. 

(2012)

Material 

comparison

US Length:

1 km

- 7.2 m 

(total)

- Different 

asphalt surface 

layer; 10 in. 

base course 

layer

Asphalt, 2 30 years

23 Giani et al. 

(2015)

Material 

evaluation

Italy Length:

 1 km

Suburban road 15 m 

(total)

- 25 cm Asphalt, 2 * 2 30 years

13 Santos et al. 

(2017)

Material 

evaluation

US Length:

1 km

Highway 3.66 m - - Asphalt, 2 50 years

11 Farina et al. 

(2017)

Material 

evaluation

- Length:

1 m of built 

pavement layer

- Depending 

on the 

project

- Depending on 

the project

Asphalt, - 18 years, 

20 years

Notes: 

1. - – not specified;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.



Appendix C. Highly cited LCA studies in roads: LCI method, database and tool, impact categories, and sensitivity and uncertainty analysis

Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Wang et al. 

(2012)

Combined 

models

Stripple (1998); Athena 

Institute (2006); EcoInvent; 

USLCI; Cement LCI by PCA

- Energy use, Greenhouse gas (GHG) emissions √ √

Birgisdottir et 

al. (2006)

P-LCA Standard sources, i.e., Stripple 

(2001); Environmental Design 

of Industrial Products database 

ROAD-RES 

model 

Leaching of heavy metals and salts from the bottom ash, 

Resource and energy consumption, Emissions (CO2, NOx), 

Salts used for road salting

× ×

Vidal et al. 

(2013)

P-LCA Field study; Ecoinvent; 

Published literature

SimaPro All 18 ReCipe Midpoint impact categories; 3 ReCipe 

endpoint damage categories; cumulative energy demand

× √

Giani et al. 

(2015)

P-LCA Key processes: Company 

survey; 

Upstream processes: 

Ecoinvent database; published 

literature

SimaPro 7.3 All 18 ReCipe Midpoint impact categories × √

Oliver-Sola et 

al. (2009)

P-LCA Ecoinvent 1.2 database EcoConcrete 

LCA tool

Abiotic depletion potential, Acidification potential, 

Eutrophication potential, Global warming potential (GWP), 

Human toxicity potential, Ozone layer depletion potential, 

Photochemical ozone creation potential

× √



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Chiu et al. 

(2008)

P-LCA Eco-indicator 99 - Energy sources, Resources × ×

Chowdhury et 

al. (2010)

P-LCA Published literature; CMLCA CMLCA Acidification potential, Aquatic ecotoxicity potential, 

Aquatic sediment ecotoxicity potential, Energy 

consumption, GWP, Human toxicity potential, Terrestrial 

ecotoxicity potential

× ×

Huang et al. 

(2009)

P-LCA Published literature and 

publications

VISSIM, 

EnvPro

Acidification, Eco-toxicity, Eutrophication, Global 

warming, Human toxicity, Photo-oxidant formation

× ×

Loijos et al. 

(2013)

P-LCA Published literature and LCI 

databases

- GWP √ ×

Yu and Lu 

(2012)

P-LCA Portland Cement Association; 

Swedish Environmental 

Research Institute

- Energy (Primary and feedstock), GHG (CO2, CH4, N2O, 

VOC, NOx, CO, PM10, SOx)

√ √

Birgisdottir et 

al. (2007)

P-LCA - ROAD-RES 

model 

Acidification, Ecotoxicity in water/soil, Global Warming, 

Human Toxicity via air/water/soil, Nutrient Enrichment, 

Photochemical Ozone Formation, Stored Ecotoxicity to 

water/soil, Stratospheric Ozone Depletion 

√ ×



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Olsson et al. 

(2006)

P-LCA - - Emissions to air (SO2, NOx, CO, CO2, HC, CH4, VOC, N2O, 

and particles) and water (COD, N-tot, Oil, Phenol, As, Cd, 

Cr, Cu, Ni, Pb, and Zn), Resources use (natural aggregates, 

energy)

√ ×

Jullien et al. 

(2006)

P-LCA - - Odors, PAH, VOC × ×

Anastasiou et al. 

(2015)

P-LCA - SimaPro 7.1 GWP100, Resource use √ ×

Farina et al. 

(2017)

P-LCA - SimaPro 7.3 17 ReCiPe midpoint categories; 3 ReCiPe endpoint damage 

categories

× ×

Cass and 

Mukherjee 

(2011)

Hybrid Site investigation using 

FieldManager

SimaPro 7, 

EIO-LCA, e-

CALC

CO2 emissions × ×

Tatari et al. 

(2012)

Hybrid Published literature and 

report; National Renewable 

Energy Laboratory LCI 

database

- CH4, CO, CO2, N2O, PM, SO2, Cumulative mass, 

Ecological cumulative exergy consumption, Energy, 

Industrial cumulative exergy consumption

√ √



Studies Method Data sources Tool Output/Impact categories Sensitivity Uncertainty

Treloar et al. 

(2004)

Hybrid Published literature - Energy × ×

Aurangzeb et al. 

(2014)

Hybrid - - Energy consumption, GHG emissions (CH4, CO2, N2O) × ×

Santos et al. 

(2017)

Hybrid - EIO-LCA 

model

Acidification air (AC), Eutrophication air (EU), Human 

health criteria pollutants (HH), Photochemical smog 

formation (PSF) 

√ √

Roth and 

Eklund (2003)

- - - - × ×

Carpenter et al. 

(2007)

- - PaLATE, 

HYDRUS2

D

CO, CO2, NOX, PM10, SO2, Energy, Hg, HTP (Cancer), 

HTP (Non-cancer), Pb, RCRA HazW Gen, Water

× ×

Notes: 

1. - – not specified; √ – included; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.



Appendix D. Overview of key findings on the contributions of different life cycle phases 

Phases

Studies Location Material 

production

Transpor-

tation

Construc-

tion
Use

M&

R
EOL

Analysis 

Period

(years)

Results

Cass and 

Mukherjee 

(2011)

US √ × √ × × × - Materials, equipment, and fuel production: 90%–94% of 

the CO2 emissions; Equipment use and transportation: 6–

10%

Santos et al. 

(2015)

Portugal √ √ √ √ √ √ 40 Materials and usage phases: major contribution to overall 

environmental impacts (low-volume traffic roads: materials 

phase contributes the most; high-volume traffic roads: usage 

phase dominates)

Loijos et al. 

(2013)

US √ × √ ○ √ √ 40 Year one generates the majority of emissions (materials 

production, pavement construction)

Kayo et al. 

(2015)

Japan √ √ √ × × × - Raw material procurement - 88%; Material production - 

7%; Transportation - < 1%; Construction: 4%

Kang et al. 

(2014)

US √ √ √ × × × - The energy consumption and GWP in the material phase is 

remarkably higher than in the construction phase. 

Mendoza et 

al. (2012)

Spain √ × √ × × √ > 45 Construction materials have the highest environmental 

impact (48–87%) 



Studies Location

Phases Analysis 

Period

(years)

ResultsOliver-Sola 

et al. (2009)

Spain √ √ √ × √ ○ 45 Main contributor: cement production (especially clinker)

Weiland and 

Muench 

(2010)

US √ √ √ × √ × 50 Material production (cement, asphalt, HMA, PCC) 

dominates all impact categories

Yu and Lu 

(2012)

US √ × √ √ √ √ 40 Materials, congestion, and usage contribute the most to air 

emissions and energy consumptions 

Chen et al. 

(2016)

US √ × √ √ √ √ 20, 40 Material module, usage module: two dominators

Choi et al. 

(2016)

US √ √ √ × √ √ 50 Cement manufacturing: top-contributing sector

Mazumder 

et al. (2016)

US √ √ √ √ √ × 50 Material phase: 97% of overall human toxicity in water 

(asphalt)

Araujo et al. 

(2014)

- √ × √ √ √ √ 20 The energy consumption of the use stage is about 700 times 

higher than that of the construction phase

Notes: 

1. √ – included; ○ – limited consideration; - – not specified; × – not included;

2. Highly cited means twenty most cited papers and two recent highly cited publications with more than 10 citations.
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