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Abstract—Dynamically changing background (‘dynamic back-
ground’) still presents a great challenge to many motion-based
video surveillance systems. In the context of event detection, it
is a major source of false alarms. There is a strong need from
the security industry either to detect and suppress these false
alarms, or dampen the effects of background changes, so as to
increase the sensitivity to meaningful events of interest. In this
paper, we restrict our focus to one of the most common causes of
dynamic background changes: that of swaying tree branches and
their shadows under windy conditions. Considering the ultimate
goal in a video analytics pipeline, we formulate a new dynamic
background detection problem as a signal processing alternative
to the previously described but unreliable computer vision-based
approaches. Within this new framework, we directly reduce the
number of false alarms by testing if the detected events are due
to characteristic background motions. In addition, we introduce
a new dataset suitable for the evaluation of dynamic background
detection. It consists of real-world events detected by a commer-
cial surveillance system from two static surveillance cameras. The
research question we address is whether dynamic background can
be detected reliably and efficiently using simple motion features
and in the presence of similar but meaningful events such as
loitering. Inspired by the tree aerodynamics theory, we propose
a novel method named local variation persistence (LVP), that
captures the key characteristics of swaying motions. The method
is posed as a convex optimization problem whose variable is the
local variation. We derive a computationally efficient algorithm
for solving the optimization problem, the solution of which is
then used to form a powerful detection statistic. On our newly
collected dataset, we demonstrate that the proposed LVP achieves
excellent detection results and outperforms the best alternative
adapted from existing art in the dynamic background literature.

Index Terms—dynamic background, detection algorithms,
shadow, motion-based analysis, convex optimization, ADMM,
sparsity learning, ROC, mixture of Gaussians

I. INTRODUCTION

A dynamically changing background (or just ‘dynamic

background’ for short) in a video presents a major challenge
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to numerous machine vision tasks, confounding the extraction

of useful information about moving objects of interest [31].

Surveillance is one of the areas with the most urgent need for

methods which can improve the robustness of video analytics

in the presence of this challenge [12]. The literature in the last

decade has seen a considerable progress in the modeling of

dynamic background and the extraction of foreground objects.

The first class of techniques is based on the statistical modeling

of temporal data, which started with the seminal work of

Stauffer and Grimson [27]. They modeled the variation in

background appearance using an underlying mixture of Gaus-

sians (MoG), which can be seen as a simplified description of

the multi-modality of video data. The background is described

by mixture components that account for major energy contri-

bution in the distribution. A foreground pixel can be detected

by computing its likelihood conditional on the identified

background components. Since then, MoG has inspired many

extensions. Some of these examined more robust representa-

tions, such as dynamic texture [8] and local binary patterns

[5]. Others sought to model more complex statistical patterns

within the data, e.g. by using nonparametric density estimation

techniques rather than the parametric MoG approach [11] [25],

or by modeling the correlation of nearby pixels [16]. The

second class of techniques analyzes the subspace structure of

the background [2], some of which may include an internal

predictor [19], [29]. Finally, more recent methods look at a di-

rect foreground-background discrimination by exploiting both

spatial and temporal information. In particular, a number of

methods examined the difference between the motions of the

background and the foreground [17], [18]. This discrimination

is quantified by computing the mutual information between a

location of interest and its locally surrounding areas. However,

this approach is more suitable for detecting small objects in

a known persistent dynamic background. Another work based

on machine learning is proposed in [9], where a structure SVM

is derived in an incremental setting. Dynamic background is

therefore an active research area.

Despite these advances in dynamic background modeling

and subtraction, the existing methods are not sufficiently reli-

able for real-time surveillance. A recent survey [5] compares

pixel-level background subtraction techniques (including those

formulated specifically for dealing with a dynamic back-

ground) using semi-synthetic data. Dynamic background sets

they looked at included moving tree branches and changing

traffic lights. All existing methods failed to reach performance

which would be satisfactory in practice. Another interesting

finding of this work was that simpler methods, such as MoG,

actually performed better, though they are still far from being
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sufficiently reliable for practical use. Lastly, Brutzer et al.

highlighted a specific challenge posed by shadows [5]. All

examined methods struggled to identify weak shadows and

frequently misclassified strong shadows as foreground objects.

Thus, dynamic background subtraction is still an unsolved

problem in machine vision.

In this paper, we suggest a new perspective for addressing

the problem posed by a dynamic background, and propose an

effective solution. This work is motivated from our exposure

to video security through our industry partner. One of the

common problems with motion-based video analytics for static

cameras is the sudden change in the background statistics.

When that happens, non-robust motion-based anomaly de-

tection methods may experience an increase in false alarms.

This is because the underlying algorithm, much like all work

in the published literature, implicitly assumes a static or a

slowly changing background. Thus, the outstanding research

challenge is to suppress these false alarms while having

minimum computational or structural changes to the existing

analytics infrastructure.

To address this, we suggest a new paradigm, which is

best appreciated when considering the whole video analytics

processing chain. Here, instead of tackling the dynamic back-

ground problem at the front end like what the existing methods

attempt to do (as described previously, with limited success

and significant added computational cost), we approach the

problem of detecting background changes at the back end,

thereby filtering out false alarms. There are important practical

reasons for this alternative proposal:

• Scarcity of Background Changes: In many practical situ-

ations faced by our industry partner, background changes

are neither permanent nor of a fixed type as assumed

in most previous works. Rather, they appear rarely and

intermittently. Moreover, there may be a combination of

different factors simultaneously in a scene, such as the

moving branches and their long cast shadows, reflections

in puddles, cobweb build-up in front of cameras under

low-light and wind, and hostile weather conditions such

as rain or snow. In these cases, it is often impossible

to obtain perfect data for the modeling of the back-

ground. In addition, this also suggests that continuously

running existing dynamic background subtraction algo-

rithms, which are computationally expensive and often

unreliable, would create an unnecessary computational

burden.

• Surveillance End-Goal: An important goal of surveillance

video analytics is to control the number of false alarms

while maintaining a good detection rate of meaningful

events. In the situation faced by our industry partner,

the motion-based surveillance analytics raise reasonable

alarms when there is no dynamic background. A large

number of false alarms are typically raised only when

there is a sudden onset of background changes due to

extreme conditions. Thus, discarding false alarms due to

rare and prominent dynamic background changes would

be more sensible in practice.

To make the existing video surveillance analytics more

robust against infrequent dynamic background interference,

we formulate a new dynamic background detection problem.

Here, we focus on the dynamic background with repetitive

motions, which often cause unwanted alarms in motion-based

analytics. Given motion features from video which correspond

to an event, it is desirable to detect if prominent background

changes are present in any part of the scene during that event.

This is useful for determining whether the raised alarms are

purely due to a sudden onset of background changes. Here,

we restrict our attention to mostly static scenes and motion-

based analytics. By addressing the detection problem in the

event post-processing stage, the overall computational cost

can be reduced as detection is only needed when an alarm

is raised and that dynamic background occurs infrequently

and intermittently. In addition, we directly target the end goal

of a video analytic system, thus leaving front-end processing

blocks unchanged.

The first contribution in this work is an introduction of a

new problem that we view as a practical alternative to reducing

false alarms in motion-based analytics due to the presence

of a dynamic background. To the best of our knowledge, no

previous work directly solves a similar problem. Here, the

focus is not on the foreground, but the presence of dynamic

background. Additionally, it is an event-based post-processing

approach rather than the setting used in the corpus of previous

work on background modeling. Instead of working with raw

pixel data, we address the detection problem when only motion

features are available as an input.

Our second contribution is a new dynamic background

detection dataset from real-world sites and a novel detection

method. The research question is whether we can characterize

the signature of dynamic background with repetitive motions

and differentiate it against other potentially similar patterns

of interest such as loitering. The key finding, which is the

most important contribution in this work, is that temporal

persistence of local variation seems to be an important clue

for recognizing repetitive motion of the dynamic background.

This is fundamentally different from most previous works

on dynamic background, wherein the temporal dimension is

either ignored or treated lightly. The following two papers,

though solving different problems, are an exception. One is a

work on object tracking from an underwater camera [1] which

exploits optical distortion statistics. The other is on object

tracking from moving camera under turbulence condition [21]

which exploits an effective theory called particle advection.

Unfortunately, due to an entirely different physical modeling,

it is impossible to apply these works to the swaying motions

in this work. Here, we propose a novel method specifically for

the detection of swaying motions of trees and their shadows,

which we term local variation persistence (LVP). The method

first extracts the temporal variation through a robust convex

optimization, which is solved by a computationally efficient

algorithm. Then a novel detection statistic is formed as the

normalized ℓ1-norm of the local variation vector. On the new

evaluation data, we demonstrate that our approach provides

a considerable detection gain over an adaptation of the well-

known Gaussian mixture model by Stauffer and Grimson in

the dynamic background literature.
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The remainder of this paper is organized as follows. In

Section II, we describe the proposed problem setting in detail

and highlight how it differs from the setting adopted by pre-

vious works. Section III describes an adaptation of the classic

Stauffer & Grimson background modeling to the problem

setting described in Section II. Then we develop the new

detection algorithm that is based on the temporal persistence of

the local variation in Section III. Section IV describes the data

used for evaluation. Section V presents experimental results.

Finally, a summary of the paper and the key conclusions are

given in Section VI.

The data set and the code implementing the methods

discussed in this work are made publicly available at

https://sites.google.com/site/dspham.

II. PROBLEM STATEMENT

We next describe the specific settings imposed in this

work and the definitions of some key technical terms. Visual

illustrations can be found in Section IV. The overall scenario

is video surveillance of a scene by a static camera. Here, we

consider the front-end setting where each frame is divided by

a grid of size 20 × 20 into P = 400 equal non-overlapping

rectangular blocks p = 1, 2, . . . , P . Each block corresponds

to a spatial region of the scene, which we call a cell. Instead

of raw pixel values, the available data input is a vector/matrix

of motion quantities computed and collected from these P
cells, which we call motion features. Though motion features

can be any suitable measure of motion statistics (in a sense

which is further discussed in Section III), the specific motion

feature xi in each of the P cells considered in this work is

the number of optical flow vectors (i.e., motion count) whose

magnitude is greater than a noise threshold1. The choice of this

specific motion feature is largely imposed by the operational

framework of our industry partner as optic flow vectors can

be computed efficiently and reliably through recent advances

in GPU hardware and are more suitable for complex scenes

and non-tracking approaches [24].

We define events as the alarms generated by a surveillance

analytics system. Each event is a collection of consecutive

video frames with a start time and an end time. The duration

of an event typically ranges from half a minute to several

minutes. Given the above front-end processing, each event

is represented by a number of corresponding motion count

vectors. Each entry in a motion count vector corresponds to

a cell, and the motion observed in this cell may be due to

foreground, short-term static or dynamic background. In this

work, we restrict our attention to swaying tree branches and

their shadows. Unless otherwise explicitly specified, the term

dynamic background refers only to this special type, which

is common in many surveillance applications. The goal is

to detect if dynamic background is present in these P cells

in a sense that it lasts for a total of more than 50% of the

event duration. This allows for some foreground or period of

inactivity (purely static background).

1A motion feature is not directional for the current setting, but it is possible
to extend to the directional case by quantizing the optical flow vectors.

III. DYNAMIC BACKGROUND DETECTION

As mentioned previously, there are no existing methods

in the literature on dynamic background that can be applied

directly to the problem we address in this paper. In the

proposed setting, properties of the repetitive motions are not

known in advance (in fact the motion statistics of swaying

tree branches and their shadows may vary considerably over

time as well). Thus, it is not possible to formulate the problem

as supervised learning (binary classification) simply because

of the unavailability of training data. Thus, a wide range

of methods, such as those described in [9] [17], [18], that

require annotated training, cannot be used. The only class of

existing techniques that can be adapted to the proposed setting

uses adaptively learnt statistical models. By comparing the

underlying assumption of the dynamic background model and

the actual data, a conclusion can be made about whether the

data behaves like dynamic background.

In this section, we first present an adaptation of the clas-

sic Stauffer and Grimson’s MoG background modeling [27]

for this detection problem. The original MoG method fits

a mixture of Gaussian distributions to the statistics of the

observed data. Despite being simple, a recent independent

survey [5] demonstrated that this method outperforms all other

existing dynamic background methods. Its key advantage lies

in the ability to detect and extract the dynamic background

component from the overall background model of a scene

automatically. This is difficult to achieve with nonparametric

approaches, such as the computationally expensive kernel

density estimation [25].

We propose a novel detection method that is based on

the analysis of background dynamics. This analysis further

supports the intuition that dynamic background exhibits strong

temporal persistence, which is extracted by using a novel

formulation. We then derive an efficient algorithm to solve

this formulation in order to perform dynamic background

detection.

A. Mixture of Gaussians

In the seminal work of Stauffer and Grimson on background

modeling in the context of tracking [27], appearance is mod-

eled using a mixture of Gaussians. The focus of their work is

on background modeling with the aim of robust foreground

detection. Dynamic background detection as such was not

performed explicitly.

To adapt the method of Stauffer and Grimson to the problem

considered in this paper, we propose the following. First, we

obtain the parameters of a mixture of Gaussians, including:

the number of mixture components K, the associated means

and standard deviations µk and σk and their weights wk,

k = 1, . . . ,K. Then, the mixture components are sorted in

a decreasing order of w/σ as originally suggested. Next, we

separate the background from the foreground by selecting the

first Kbg components such that their total energy contribution

exceeds a specified threshold T

Kbg
∑

k=1

wk ≥ T. (1)

https://sites.google.com/site/dspham
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Fig. 1. Synthetic experiment for MoG estimation

Here, T = 0.7 is an average value for background modeling

used in previous works [14], [15]. Generally, a higher T
allows a richer multimodal modeling of background that

contains repetitive motion [27]. Next, we remove the Gaussian

component which corresponds to the static elements of the

background as the one with the smallest standard deviation

σk ≤ ε for some threshold ε. In some cases, the background

is purely dynamic, and hence a static background component

may not exist. The threshold ε is data dependent. Once the

static background component is removed, the next step is to

compute a score for the dynamic background components. The

desired criterion is that if the variation is large, the background

should appear more dynamic. To achieve this goal, we use

negative differential entropy on the remaining background

mixture components as the score S = −
∫

p(x) log(p(x))dx,

where

p(x) =

Kbg−1
∑

k=1

wkN (x|µk, σk). (2)

The entropy for mixture of Gaussians does not have an

analytical form, and thus it is computed numerically.
For the estimation of the MoG model, an online algorithm

was derived to construct the mixture [27]. However, our

experience over intensive numerical studies demonstrate that

the online algorithm does not have sufficient accuracy to

obtain a reliable MoG model. As our detection problem is

formulated as the basis for post-event analysis, we propose to

use the expectation-maximization (EM) algorithm to estimate

the MoG model in a batch setting. To select the optimal value

of K that avoids over-fitting, we track how the likelihood value

varies as K increases. If the relative decrease in the likelihood

as K is incremented falls below a specific threshold δ (in this

work we used δ = 0.1) then we stop at that value of K, which

we declare optimal.

Fig. 1 shows a synthetic example that demonstrates the

superior performance (both in terms of higher accuracy

and consistency) of the proposed algorithm over the online

algorithm In this synthetic example, we generate random

samples from a Gaussian mixture with three components

N (2, 0.2),N (5, 1), and N (2, 0.2). Their weights are 0.25,

0.5, and 0.25 respectively. The top right subplot shows the

actual mixture distribution, whilst the top left subplot shows

400 random samples we generate. To make it even easier for

Stauffer and Grimson’s online EM method, we have sorted

and ordered the samples according to the mixture component

they come from. The middle left and right subplots show
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how the online EM algorithm performs. Here, it is observed

that it overestimates the number of components (as shown

by the number of distinct colors on the middle left subplot)

and consequently the estimated distribution is considerably

different from the true mixture distribution. On the other hand,

the batch EM approach produces a consistent estimate of

the mixture order and more accurate mixture distribution (as

shown on the bottom subplots).

B. Local Variation Persistence

1) Overview of Tree Aerodynamics: The forestry research

literature suggests that the response of an isolated tree under

an action of wind flow can be modeled by a second-order

differential equation, which depends on both internal factors

(mass, damping, and stiffness) and external factors (aerody-

namic dragging force and constant gravitational force) [20],

[26]. The characteristic movement of a tree under an external

impulse largely depends on the tree itself and is described as a

damped oscillation. The oscillation comprises a wide range of

frequencies. Theoretical predictions and actual measurements

show that the mechanical transfer function decays at a slope of

about -4/3 [20], with local spectral peaks corresponding to the

vibration modes of the trees, also known as eigen-frequencies

[20], [26]. Because of this steep slope, the oscillation is

dominated by the principal eigen-frequency.

Further information can be deduced from tree aerodynamic

research. Obviously, the onset and the magnitude of the

swaying motion depend on the dragging force, which is de-

pendent on the airflow characteristics and the actual tree-wind

interaction. Wind velocity is likely to have large, intermittent

fluctuations, and it is established in [20] that the movements of

the upper parts of a tree correlate positively to wind velocity in

general. A sudden onset of a large wind flow, known as wind

gust, will excite large tree movements, though there could be

a lag due to previous motion. Within a longer temporal scope,

it is expected that the tree movement will have intermittent

driving pulses. The duration between the pulses may vary

widely, but it is generally much larger than the fundamental

oscillation of the tree mentioned above. Between large driving

pulses, the swaying motion is a damped natural oscillation

trending to rest in the absence of wind.

2) Proposed Method: Inspired by the previous analysis, it

is reasonable to assume that the tree swaying motion at a

particular location is dominated by its characteristic motion

over a short time scale during which the damping does not

change significantly. In other words, the normalized short-

time motion can be approximated by the transfer function in

the frequency domain and it is purely dependent on the tree

characteristics.

The tree aerodynamic theory above governs the behavior of

tree segment displacements. To make use of the theory when

only motion counts are available, we need to assume that the

mapping from the tree movement to the feature domain is

locally monotonic. In other words, for a small area of interest,

the observed motion counts have large values if the actual tree

movement is large and vice versa. In practice, this may only

hold approximately as the actual mapping may vary between

locations. Thus, the short-term spectral structure of the motion

counts is likely to be temporally persistent for the whole sway-

ing duration. Depending on how the mapping function converts

an actual movement to the feature domain, the spectral pattern

of the motion counts may be different to the spectral structure

of the actual characteristic tree movement. Nevertheless, the

crucial aspect of our argument is that persistence in short-term

spectral structure is the key signature of the motion counts for

a fixed mapping function at a particular location.

To test our argument empirically, we analyze the motion

counts of a cell of the shadow of a swaying tree from CAM2

dataset (see Section IV for details) as shown in Fig. 2. The

top subplot shows values of the motion counts over the entire

event, which is entirely dominated by the swaying shadow.

Using the 32-point short-time Fourier transform, we analyze

the instant spectrogram of the motion data in the second image

subplot. Here, it shows a rich frequency content. The large

values at the bottom of the plot correspond to low frequencies,

while the lighter color of higher frequencies implies a smaller

value. Each column in this subplot corresponds to a temporal

sliding analysis window. The lowest frequency corresponds to

the average power of the motion signal over the window which

may vary due to the varying power of the wind at different

times. To account for this variation, we normalize the spectrum

by the lowest frequency and plot this normalized version from

all windows in the third subplot of Fig. 2. Interestingly, we ob-

serve that there is an overall stable structure in the normalized

spectrum over all windows, with very small variations. This is

consistent with the arguments above. Finally, we plot the sum

of the normalized short-time spectrum in the bottom subplot

of Fig. 2. This serves as an overall summary of the spectrum.

Clearly, over the entire event, this summary statistic varies

little, mainly between 1 and 2. This suggests that a persistence

measure over the summary statistic would lead to a powerful

detector. For completeness, we also analyze a loitering event

and show the results in Fig. 3. Clearly, this loitering event

exhibits large variation in the normalized short-time spectrum,

and thus the summary statistic does not appear to be strongly

persistent.

Based on the above arguments, we now detail a detection

method, which we call local variation persistence (LVP). Note

that we detect at the cell level and do not exploit any spatial

correlation between cells. This is because, unlike pixel-based

approaches, the entire dynamic background might be confined

to a cell. Thus, it is reasonable to ignore correlation between

cells to simplify the computation.

Denote as xi, i = 1, 2, . . . , the motion counts of the

event from one cell. We first compute time-series features

of the motion counts signals by using sliding windows with

a lag ∆ and a length L. The data points from the j-th

window are Wj = {x(j−1)∆+1, . . . , x(j−1)∆+L−1}. Denote

as yj = F(Wj , L) a feature extraction for the window

Wj at length L. Here, the feature extractor F computes an

augmented normalized spectrum of the window Wj . Suppose

that [S1, S2, . . . , Sn] is the spectrum at normalized frequencies

f1, f2, . . . , fn, where f1 corresponds to the lowest frequency.
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Fig. 2. Local variation analysis of motion counts of a cell observing a purely swaying movement from a shadow of a tree branch.
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Fig. 3. Local variation analysis of motion counts of a cell observing a loitering movement.
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Then, the feature vector for window Wj is

yj =

[

S2

S1 + ǫ
, . . .

Sn

S1 + ǫ

]T

. (3)

Here, ǫ is a small number introduced in order to avoid

numerical instability. Then, we collect all feature vectors over

the temporal dimension to get a time-series feature matrix

Y = [y1 y2 . . . yn]. (4)

The motivation behind the method is to capture the temporal

variation as illustrated in the bottom subplots of Figs. 2 and

3 from this feature matrix. In the ideal case of a constant

swaying motion, the normalized response (as shown in the

third subplot of Figs. 2 and 3) is a constant vector across the

window and so is the temporal variation. In practice, there

could be slight variations between frames in terms of both

the normalized response and temporal variation. In addition,

we also need to account for both dense and sparse noise. To

describe this, we consider the following rank-1 approximation

modeling for the time-series feature matrix

Y = σuvT + E + N. (5)

Here, L = σuvT is the rank-1 approximation of the intrinsic

dynamic background data. In this modeling, u represents the

spectral structure that is common over the entire event, v < 0

is a vector which denotes the temporal variation , and σ > 0 is

a normalizing constant to reduce ambiguity together with the

unitary constraints ‖u‖2 = 1, ‖v‖2 = 1. E and N respectively

represent the outliers (sparse) and noise (dense) in the feature

due to extraction or modeling.

Our modeling is inspired by a recent seminal work known as

robust principal component analysis (RPCA) [7], in particular

its stable version [30]. It has seen related applications in

background subtraction for video surveillance [3]. In the

image processing context, extensions of RPCA to exploit

the spatio-temporal constraints, such as local sparseness [28]

and foreground local coherence [13], have been observed.

Note that RPCA-based variants operating at the pixel level

in video surveillance are far from being practical due to their

high computational cost [7]. In contrast, our proposed method

operates on motion counts and thus it is more practically

feasible. The fundamental difference is that RPCA seeks a

general “low-rank” structure, while we seek a specific rank-

1 structure. Under the modeling described by (5) and in the

absence of noise and corruption, the intrinsic background

L = σuvT is a rank-1 matrix. Thus, the rank-1 constraint

imposed by the proposed method is more suitable for the

problem. This will also lead to major algorithmic differences

which we will demonstrate subsequently.

We propose to extract the temporal variation v using the

following formulation

arg min
σ≥0,u,v,E

‖Y − σuvT − E‖2
F + λ‖E‖1 (6)

s.t uT u = 1

vT v = 1.

This problem is very challenging as it involves a nonlinear reg-

ularization term and unitary constraints. To solve it, we follow

the framework of alternative direction method of multipliers

(ADMM) [4], which has recently been found to be powerful

in many practical applications [23]. To convert the problem

to a solvable form, we rewrite the formulation by introducing

auxiliary variables

arg min
σ≥0,u,v,E

‖Y − σuvT − E‖2
F + λ‖E‖1 (7)

s.t uT p = 1,p = u

vT q = 1,q = v.

Under ADMM, the augmented Lagrangian in the scaled form

can be written as (see [4, Sec. 3.1.1])

L = ‖Y − σuvT − E‖2
F + λ‖E‖1

+η1(u
T p − 1 + a1)

2 + η2‖p − u + a2‖2
2

+η3(v
T q − 1 + a3)

2 + η4‖q − v + a4‖2
2. (8)

Here, a1,a2, a3,a4 are the scaled dual variables of the La-

grangian and η1, η2, η3, η4 are the augmented Largangian

parameters. According to ADMM theory, the augmented La-

grangian is minimized by iteratively solving for one variable

at the time while fixing the others. Denote as k the current

iteration number. First, the step for updating σ is found from

solving

σk+1 = arg min
σ≥0

‖Y − σLk − Ek‖2
F , Lk = uk(vk)T , (9)

which yields

σk+1 =
tr((Y − Ek)T Lk)

‖Lk‖2
F

. (10)

Next, we derive the update step for u by minimizing the

augmented Lagrangian with respect to u

uk+1 = arg min
u

‖Y − Ek − σk+1u(vk)T ‖2
F

+η1(u
T pk − 1 + ak

1)2

+η2‖pk − u + ak
2‖2

2. (11)

Straightforward algebra leads to

uk+1 = Q−1
u

(

σk+1(Y − Ek)vk + η1p
k(1 − ak

1)

+ η2(p
k + ak

2)
)

, (12)

where Qu = ((σk+1)2‖vk‖2
2 + 1)I + η1p

k(pk)T . It is noted

that due to the matrix inversion lemma, the inversion of Q can

be computed efficiently as follows

Q−1
u = ρ−1I − γpk(pk)T , (13)

here ρ = (σk+1)2‖vk‖2
2 + 1 and γ = ρ−2(η−1

1 +
ρ−1(pk)T pk)−1.

Next, we derive the update for p by solving the following

problem

pk+1 = arg min
p

η1((u
k+1)T p − 1 + ak

1)2

+η2‖p − uk+1 + ak
2‖2

2, (14)

which is

pk+1 = Q−1
p (η1(1 − ak

1)uk+1 + η2(u
k+1 − ak

2)),(15)
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CAM1 CAM2

Fig. 4. Screen-shots of the two cameras in the datasets. CAM1 (left) monitors a walk path to an organization, which is surrounded by large trees. CAM2
(right) monitors an asset site.

where Qp = η1u
k+1(uk+1)T + η2I and it can be efficiently

inverted via the inversion lemma.
The update steps for v and q are also derived similarly,

vk+1 = Q−1
v

(

σk+1(Y − Ek)T uk+1 + η3q
k(1 − ak

3)

+ η4(q
k + ak

4)
)

,

qk+1 = Q−1
q (η3(1 − ak

3)vk+1 + η4(v
k+1 − ak

4), (16)

where

Qv = ((σk+1)2‖uk‖2
2 + η4)I + η3q

k(qk)T

Qq = η3v
k+1(vk+1)T + η4I. (17)

Next, the update step for E is

Ek = arg min
E

‖Y − σk+1Lk+1 − E‖2
F + λ‖E‖1,(18)

which gives

Eij = Sλ/2(Yij − σk+1Lk+1
ij ), (19)

where Sτ (x) = max(0, |x|−τ)sign(x) is the soft-thresholding

shrinkage operator.
Finally, all the dual variables are updated as follows

ak+1
1 = ak

1 + (uk+1)T pk+1 − 1, (20)

ak+1
2 = ak

2 + pk+1 − uk+1, (21)

ak+1
3 = ak

3 + (vk+1)T qk+1 − 1, (22)

ak+1
4 = ak

4 + qk+1 − vk+1. (23)

The iteration is terminated when the following primal and dual

residuals are smaller than specified thresholds (for more detail,

see [4, Sec. 3.2])

rk
1 = (uk)T pk − 1, (24)

r2 = pk − uk, (25)

rk
3 = (vk)T qk − 1, (26)

rk
4 = qk − vk, (27)

sk
1 = η2(p

k − pk−1), (28)

sk
2 = η(q

k − qk−1). (29)

Once the temporal variation v is found, we compute a

dynamic background score. As we aim to seek persistence over

the temporal dimension, this score is proposed as follows

SLVP =
‖v‖1√

M
. (30)

Here, the ℓ1 norm is defined as the sum of absolutes ‖v‖1 =
∑

i |vi| and M is the dimension of v. A dynamic background

event is raised when the decision statistic is above a specified

threshold SLVP ≥ Sth.

We briefly explain the intuition behind this dynamic back-

ground statistic. At first, it may appear counter-intuitive as the

ℓ1-norm is often used in the compressed sensing (CS) literature

[10] [22] as a sparsity promoting norm. However, CS seeks

a minimization of the ℓ1 norm to find sparse patterns. Here,

we seek a maximization of the ℓ1 norm to promote dense

patterns, which are favoured by temporal persistence. In other

words, a larger value of the ℓ1 norm indicates a more dynamic

background-like event. It is also important to note that as v

is a singular vector, its ℓ2 norm is ‖v‖2 = 1. Thus, it can

be shown that 1 ≤ ‖v‖1 ≤
√

M , where the maximization is

attained when all entries in v have a magnitude of
√

1/M .

The normalization factor
√

M ensures that events of different

lengths are comparable under this scheme, so that the decision

statistic is within (0, 1], which is scale-invariant to the choice

of feature units. Due to the normalization factor, for two

signals with same non-zeros entries in v, the one with fewer

‘silent’ windows will have a higher score, and thus is more

likely to contain dynamic background. In practice, this is

useful in discriminating other types of events such as loitering,

where the signatures in the active windows maybe very similar

but are often mixed with non-active windows.

IV. DATA AND EVALUATION

A. Data

The data used in this work comprises two sets of events

from two real cameras “CAM1” and “CAM2” operating at an
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average rate of 5fps. Each set is a collection of events detected

by the video surveillance analytics system of our industry

partner during a particular day when there was a combined

effect of strong sun and windy conditions:

• CAM1 (see the left-hand subplot in Fig. 4): this camera

monitors a walk path to a university, which is surrounded

by large trees. It has a total of 31 events for the selected

day. Students typically walk through the path back and

forth to the site. Events such as loitering or swinging the

gate are considered of security interest and thus they are

not to be suppressed.

• CAM2 (see the right-hand subplot in Fig. 4): this camera

monitors an asset site. It has a total of 30 events for

the selected day. The scene is dominated by a grassy

area with electric poles and large trees surrounding the

area. Only authorized workers are supposed to be present

during the day, and no one is supposed to be there during

the night. There are some trees on the highway in the far

field of the camera as well.

Examples of the motion counts and typical events are shown in

Figures 5 and 6. The events triggered by the system are entirely

based on the same motion counts used in this work. Whilst

the detailed implementation is not available due to commercial

confidentiality, the general detection mechanism is based on

an early work on unsupervised anomaly detection [6]. This

system is being used in many sites world-wide.

B. Evaluation

Detection of potential dynamic background areas is evalu-

ated according to the standard detection evaluation framework,

which looks at the trade-off between the detection probability

and the probability of false alarms. This relation is known

as receiver operating characteristic (ROC), and the area under

the ROC curve (AUC) is commonly used to condense this

information for the sake of an easy comparison of different

methods.

V. EXPERIMENTAL RESULTS

Detection Performance. We compare the proposed LVP

detection method with an adaptation of the Stauffer and

Grimson’s MoG, using the dataset described in Section IV.

Since there is no previous work directly relevant to the specific

setting of the new problem described here, this is the only

comparison that we could make. Also note that the adapted

MoG uses raw motion counts directly as an input due to the

specific setting in this work. To extract time-series features, we

set the window length to 1 second and the number of short-

time FFT points to 32. We then obtain the dynamic background

scores over all cells of all events in the dataset. The threshold

is varied to detect the dynamic background in each cell. The

relation between the false alarm and detection rates is shown

in the ROC plot in Fig. 7. In the region where the false alarm

rate is lower than 1%, LVP has a similar detection rate to the

MoG-based approach, both only detecting 20% of the cells

that are considered to be a part of the dynamic background.

However, the advantage of LVP becomes evident when the

false alarm rate is above 1%. For example, at the 5% false

frame number

c
e
ll
 n

u
m

b
e
r

An event from CAM2

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

50

100

150

200

250

300

350

400

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

frame number

m
o
ti
o
n
 f
e
a
tu

re
 v

a
lu

e

cell 50

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

frame number

m
o
ti
o
n
 f
e
a
tu

re
 v

a
lu

e

cell 51

0

200

400

600

800

1000

Fig. 5. Example of an event from CAM2. At the top is an image plot of the
motion counts for the event. During this event, there was a person walking
in the scene, which is considered normal. There were only two cells (50 and
51) that exhibit strong shadow characteristics. The actual time-series values of
these two cells are further shown on the bottom pair of subplots. From the top
subplot and its heat-map legend, it is observed that the average values of the
shadow cells are much smaller than those corresponding to the motion of the
person. This highlights the challenge when detecting this particular type of
moving shadow. It also suggests that feature spatial intensity is an unreliable
cue. The premise of our work is that effective discrimination between the
two types of event can be achieved by better exploiting the spatio-temporal
characteristics of shadows.

alarm rate, LVP detects 70% of the dynamic background cells

correctly. Overall, LVP achieves the ROC AUC value of 0.95,

considerably above that of MoG with an AUC score of only

0.76.

Computational Complexity. The MoG method is underlain

by the EM algorithm which is used compute the mixture

components, while the main computational engine of the

proposed LVP method is the ADMM algorithm. As both the

EM and the ADMM algorithms are iterative in nature, it is not

possible to compare their performance in a fully controlled

fashion. In an attempt to make a fair comparison, for both

algorithms we set the same termination criterion and measure

the actual running time measured for each event in the dataset.

Specifically, we terminated iterations when the relative change

in the solution falls below 10−3, which we found to be a
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Fig. 6. Example of the motion data. The four subplots on the left-hand side are examples of the dynamic background to be detected. Here, the signals do vary
between cameras and the types of dynamic background. The top 3 subplots correspond to purely strong shadow events, whereas the bottom plot corresponds
to an optical distortion on the camera lens due to water condensation which leads to repetitive motion in the video frames. These events are not of security
interest and it is desirable to suppress them. The four subplots on the right-hand side are examples of repetitive motions from loitering events, which are of
security interest. The motion characteristics of loitering also seems to vary between cameras.
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Fig. 7. ROC performance

good trade-off between accuracy and complexity for both

algorithms. Fig. 9 shows the measured computation time (in

seconds) taken by LVP and MoG. Overall, the LVP method is

considerably faster than the MoG based approach. On average,

LVP takes only a few seconds to process an event, which

makes it readily deployable within the framework of existing

surveillance systems.

Threshold Sensitivity. Here, we examine the dependence of

the false alarm rate on the value of the detection threshold.

Using the same parameter values as in the previous experi-

ments, we measured the sensitivity by plotting the required

thresholds for LVP needed to achieve different false alarm

rates. The threshold false alarm rate curve is shown in Fig. 8.

Observe that the threshold varies little over the range where

the false alarm rate is lower than 5%. This implies that the

proposed method is quite sensitive to threshold setting in this

region. If an operating point is to be specified in this region, a

careful choice is needed. Thus, this is an important issue for

future work.

Temporal Dynamics. In the previous experiments, we set
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the length of the temporal window to 1 second, which is

a time scale at which it is reasonable to assume that the

observed motion is dominated by the corresponding charac-

teristic frequency. We now examine in further detail the effect

of varying the window length. From theory, it is expected that

as the time window increases in duration, a greater amount

of damping and more external factors affect the observed

motion. We varied the window length from 1 second to 20

seconds and examined the corresponding AUC. The results

are summarized in Fig. 10. As the plot shows, the detection

performance worsens as the window length is increased, with

an approximately linear decrease in the AUC. Therefore it

appears advantageous to keep the analysis window short. We

also observe that shortening the window length beyond 1

second does not improve the detection results any further and

thus we omit plotting the ROC curves for these cases for the

sake of better clarity.

Discussion. The results in the above studies suggest that

the proposed method is promising in reducing false alarms in

motion-based surveillance analytics. Note that how detection

results by the proposed method be used for final decision in

a commercial surveillance analytics is not discussed in this

work, as it obviously depends on the actual implementation in

the subsequent alarm reporting stage, which resolves results

from multiple detectors and other high-level semantic rules.

The results also suggest that future work should focus on the

low false alarm region where the proposed method currently

lacks a clear gain over MoG. This could be due to some

loitering movements being difficult to be distinguished from

swaying motions. One possible direction, which is suggested

by an anonymous reviewer of this work, is to extend local

variation persistence with an analysis of the high-frequency

contents.
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Fig. 9. Computational time

VI. CONCLUSION

In this paper, we introduced a novel method that addresses

the challenge posed by background changes to surveillance

systems aimed at detecting salient foreground events. It was

argued that in many practical surveillance applications, it is

more effective and efficient to detect background motion at

the back-end of the system pipeline, rather than at the front-

end using the traditional background-foreground separation

approach, which is complex and unreliable. Based on this

key idea, we formulated a new problem paradigm, derived an

adaptation of the leading existing method to this setting, and

proposed a fundamentally novel approach based on a theoret-

ical analysis of wind-induced oscillations and specifically the

persistence of local variation which we derive as the corner-

stone discriminative factor. We made a further contribution by

showing how the ADMM algorithm can be used to solve an

optimization problem with unitary constraints. Lastly, in this

work we also introduced a new evaluation dataset, acquired in

the real world using an operational commercial surveillance

system. Using this data set we conducted a comprehensive

experimental evaluation and demonstrated that the proposed

method outperforms the current state-of-the-art on a number

of different performance measures.
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for detecting moving objects.” in Proc. BMVC, 2004.
[16] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of

complex backgrounds for foreground object detection,” IEEE Trans.

Image Process., vol. 13, no. 11, pp. 1459–1472, 2004.
[17] V. Mahadevan and N. Vasconcelos, “Background subtraction in highly

dynamic scenes,” in Proc. CVPR. IEEE, 2008, pp. 1–6.
[18] ——, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 32, no. 1, pp. 171–177, 2010.
[19] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background

modeling and subtraction of dynamic scenes,” in Proc. CVPR. IEEE,
2003, pp. 1305–1312.

[20] J. R. Moore and D. A. Maguire, “Simulating the dynamic behavior of
douglas-fir trees under applied loads by the finite element method,” Tree

physiology, vol. 28, no. 1, pp. 75–83, 2008.
[21] O. Oreifej, X. Li, and M. Shah, “Simultaneous video stabilization and

moving object detection in turbulence,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 35, no. 2, pp. 450–462, 2013.
[22] D. S. Pham and S. Venkatesh, “Improved image recovery from com-

pressed data contaminated with impulsive noise,” IEEE Trans. Image

Process., vol. 21, no. 1, pp. 397–405, 2012.
[23] ——, “Efficient algorithms for robust recovery of images from com-

pressed data,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 4724–
4737, 2013.

[24] I. Saleemi, L. Hartung, and M. Shah, “Scene understanding by statistical
modeling of motion patterns,” in Proc. CVPR. IEEE, 2010, pp. 2069–
2076.

[25] Y. Sheikh and M. Shah, “Bayesian object detection in dynamic scenes,”
in Proc. CVPR, vol. 1. IEEE, 2005, pp. 74–79.
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