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Abstract

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty 

tissue, has been determined as an independent risk factor for developing breast cancer.

Previous studies have reported that the potential risk of breast cancer in women with 

dense breasts is three- to five-fold higher than in women with fatty breasts. Numerous 

MR breast-imaging protocols have been applied to the screening and/or the assessment 

of breast density, ranging from contrast- to non-contrast-enhanced imaging with or 

without the implementation of fat-suppression techniques. However, there has been 

little consensus on the optimal MR breast-imaging protocol and measurement method 

for breast density screening and/or assessment, especially in the context of women 

with dense breast tissues. The main aim of this study was to determine the most 

appropriate technical/operational MRI protocols for the quantitative assessment of 

breast density.

A systematic review and meta-analysis study was first conducted to review the 

existing measurement methods and breast-imaging protocols for the quantitative 

assessment of breast density using MRI over the previous decade of publications.

Following this, a patient-specific breast model was developed using 3D-printing 

techniques and tissue mimicking materials to identify the most appropriate materials 

for simulating the MRI related-characteristics of fibroglandular and adipose breast 

tissues. Anthropomorphic shapes of skin and fibroglandular tissues were constructed 

using 3D-printing techniques based on the segmentations of breast MR images from 

a selected healthy patient’s data. All the 3D skin and fibroglandular region shells were 

designed as hollow structures using polylactic acid (PLA) and photopolymer resin. 
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Then, using a personalized 3D-printed breast model and an objective comparison of

the non-fat-suppressed and fat-suppressed sequences, an analysis was conducted to 

determine the most suitable MR breast-imaging protocols for the quantitative 

assessment of breast density. Finally, in a cohort of 11 high-risk women, a study was 

performed to investigate the difference between the quantitative measurements of 

breast volume, fibroglandular tissue volume, and percentage of breast density of two 

MR techniques, the non-fat-suppressed versus the fat-suppressed T2-weighted 

imaging sequences.

The following are some of the study’s findings:

Results for the quantitative measurement of breast density using MRI: A systematic 

review and meta-analysis:

The review of 38 studies confirmed high levels of heterogeneity within the 

breast density studies, mainly due to the applications of MR breast-imaging 

protocols and the use of different breast density segmentation/measurement 

methods.

The analysis confirmed that the non-contrast-enhanced T1-weighted 

acquisition was commonly utilized among all MR breast-imaging protocols 

and the fuzzy C-mean clustering (FCM) is the most frequently used algorithm 

amongst the breast density segmentation/measurement methods.

Results for the development of patient-specific 3D-printed breast model using silicone 

and peanut oils for MRI:
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A patient-specific 3D-printed breast phantom was successfully designed and 

constructed using silicone and peanut oils to simulate the MR imaging 

characteristics of fibroglandular and adipose tissues.

The silicone and peanut oils were found to closely resemble the T1 relaxation 

times and imaging characteristics of these two tissues, which are 

1,515.8±105.5 and 405.4±15.1 ms, respectively. 

The agarose gel with different concentrations, ranging from 0.5 to 2.5 wt%, 

was found to have the longest T1 relaxation times.

Results for the quantitative measurement of breast density using personalized 3D-

printed breast model for MRI:

The volume of fibroglandular tissue and the percentage of breast density were 

significantly higher in the fat-suppressed sequences than in the non-fat-

suppressed sequences (p < 0.05); however, the difference in breast volume was 

not statistically significant (p = 0.529). 

A fat-suppressed T2-weighted with turbo inversion recovery magnitude 

(TIRM) imaging sequence was superior to the non-fat- and fat-suppressed T1-

and T2-weighted sequences for the quantitative measurement of breast density 

due to its ability to represent the exact breast tissue compositions. 

This study shows that the fat-suppressed sequences tended to be more useful 

than the non-fat-suppressed sequences for the quantitative measurements of 

the volume of fibroglandular tissue and the percentage of breast density.

Results for the quantitative measurement of breast density in a high-risk group using 

fat-suppressed and non-fat-suppressed T2-weighted MRI sequences:
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The results revealed no indication of measurement bias between the non-fat-

suppressed and fat-suppressed T2-weighted imaging sequences with respect to 

breast density parameters, and no evidence to reject the presumption that the 

differences were normally distributed. 

Although the breast volume measured in the fat-suppressed T2-weighted 

sequence was slightly higher than that in the non-fat-suppressed T2-weighted 

sequence and the difference was close to significant (p = 0.078), the findings 

showed no significant difference in the breast density parameters analyzed 

from the two imaging techniques. 

This study showed no substantial differences between the non-fat-suppressed 

and fat-suppressed sequences in the quantitative measurement of breast density

parameters; however, further studies with inclusion of a larger sample size are 

required to validate the complementary role of T2-weighted imaging in this 

regard.

 
In conclusion, this research has intensified the need for a standardized imaging 

protocol and/or measurement method for the evaluation of breast density 

predominantly for women at an elevated risk of developing breast cancer, such as 

those with high breast density. Using 3D-printing techniques and tissue mimicking 

materials, this study has suggested that silicone and peanut oils can be used to 

efficiently simulate the MR imaging characteristics of breast structures and produce 

further models. The proposed methodologies can be used as a preliminary work for 

breast structure simulations and the construction of further patient models using MRI 

dataset.
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Introduction to Thesis

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty 

tissue, has been determined as an independent risk factor for developing breast cancer.

To date different MR breast imaging protocols have been applied to the screening 

and/or the assessment of breast density, ranging from non-contrast-enhanced T1-

weighted to contrast-enhanced T1-weighted and diffusion-weighted acquisitions.

Along with this growth in the quantitative assessment of breast density using MR 

imaging, however, there has been no general agreement about the optimal technical 

approach in this aspect.

The applications of 3D printing in breast tissue are limited, therefore, a patient-specific 

3D printed breast model could be used to examine different MR breast-imaging 

protocols. This can make a substantial contribution to the quantitative assessment of 

breast density by exploring the optimal protocol with this regard. An important 

implication of this is the possibility that breast density is assessed, thus, the risk factor 

of breast cancer can be identified to some extent.

The purpose of this study is to identify the optimal MR breast-imaging protocol and 

measurement method for the quantitative assessment of breast density. In more detail, 

this study aims to achieve the following objectives:

Development of patient-specific breast model using 3D-printing techniques 

and tissue mimicking materials for MRI. This endeavours to identify the most 

appropriate materials for simulating the MR imaging characteristics of 

fibroglandular and adipose tissues, demonstrates the feasibility of creating a
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realistic 3D-printed breast model for breast density assessment and further 

study.

Quantitative measurement of breast density using a patient-specific 3D-printed 

breast model for MRI. This attempts to determine the optimal MR breast-

imaging protocol for assessing breast density quantitatively, taking into 

account a variety of imaging techniques, acquisition modes, and fat-

suppression methods. This entails a review of the usefulness, applicability, 

ease of use, and outcomes of a semi-automated approach for segmenting and 

measuring breast density parameters.

Quantitative measurement of breast density in participants’ clinical breast MRI 

datasets. This aims to investigate the difference between the quantitative 

measurements of breast volume, fibroglandular tissue volume, and percentage 

of breast density of two MR techniques, the non-fat-suppressed versus the fat-

suppressed T2-weighted imaging sequences.

Thesis Outline

The thesis is divided into six chapters in its overall structure. Chapter 1 is the 

introductory background for this study. It includes a summary of the importance role 

of MRI in breast density screening and evaluation, as well as a literature review of

current MRI protocols and segmentation/measurement for breast density assessment. 

This chapter concludes with a discussion of existing 3D printing technologies and MRI 

breast phantoms. Chapter 2 is the chronologically first publication and is entitled 

“Quantitative Measurements of breast density using magnetic resonance imaging: A 
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systematic review and meta-analysis”. Chapter 3 is the chronologically third 

publication and is entitled “Development of patient-specific 3D-printed breast 

phantom using silicone and peanut oils for magnetic resonance imaging”. Chapter 4

is the chronologically fifth publication and is entitled “Quantitative measurement of 

breast density using personalized 3D-printed breast model for magnetic resonance 

imaging”. Chapter 5 is the “Quantitative measurement of breast density in a high-risk 

group using fat-suppressed and non-fat-suppressed T2-weighted magnetic resonance 

imaging sequences”. Finally, Chapter 6 is a list of observations, which includes a

concise summary and critique of the findings as well as potential future directions.

Statistical Analysis

In chapter 2, a single arm meta-analysis was conducted to determine the quantitative 

values of MRI in breast density assessments. Combined means with their 95% 

confidence interval (CI) were calculated using a fixed- effect model. A forest plot was 

generated, displaying the individual study (% breast density) means with 95% 

confidence interval (CI) limits, inverse variance study weights, and the pooled mean 

and confidence limits. The data was analyzed by the “metamean” function in the 

“meta” package in the R system, Version 3.4.1 (http://www.r- project.org/).

Heterogeneity of study means was assessed using Cochran’s Q-test, and heterogeneity 

of study variances was assessed with Bartlett’s test. A conclusion to pool studies 

requires both heterogeneity tests to be non-significant at the 5% level
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Furthermore, alternative groupings based on statistical similarities were identified via 

a cluster analysis employing study means and standard deviations in a Nearest 

Neighbor/Single Linkage. The International Business Machines Statistical Package 

for the Social Sciences (IBM SPSS) Statistics software Version 25.0 was used for 

cluster analysis.

In chapter 4, the repeated-measures analysis of variance (ANOVA) was performed to 

examine the difference between the quantitative measurements of breast volume, 

fibroglandular tissue volume, and percentage of breast density with regard to the non-

fat-suppressed and fat-suppressed MRI sequences. This variance model was employed 

to account for the variation both between sequences (i.e., between subjects) and within 

repeated measurements (i.e., within subjects). Significance levels were set at the 5% 

level. Descriptive data and box plots were also produced for all variables, 

demonstrating the distribution and median of breast volume, fibroglandular tissue 

volume, and percentage of breast density measured in the non-fat-suppressed and fat-

suppressed imaging groups. Statistical analyses were conducted using NCSS V 19.0.5 

(NCSS, LLC., Kaysville, UT, USA).

In chapter 5, averages of repeated-measures observations through the Bland-Altman 

comparison of measurements were conducted to examine the difference between the 

non-fat-suppressed T2-weighted TSE and the fat-suppressed T2-weighted STIR MRI 

sequences with regard to the quantitative measurements of breast volume, 

fibroglandular tissue volume, and percentage of breast density. The Bland-Altman 

scatter plots were produced for the two MRI sequences, demonstrating the difference 

against the average, which illustrates a system with zero bias of one method relative 

to the other with respect to breast volume, fibroglandular tissue volume, and 
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percentage of breast density. The normality assumptions of the datasets distributed 

were also examined using the Shapiro-Wilk, Skewness, Kurtosis, and Omnibus tests. 

Statistical significance was evaluated using the one-sample t-test as appropriate and 

set at the 5% level. 

Statistical analyses for chapters 4 and 5 were conducted using NCSS V 19.0.5 (NCSS, 

LLC. Kaysville, UT, USA).
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1.1 Breast Density and Classification

Breast density, a measure of fibroglandular, dense tissue relative to fatty, non-dense 

tissue, is an independent risk factor of breast cancer.1-3 Consistent with this risk 

relationship, women who have dense breasts have a likelihood of developing breast 

cancer that is fourfold higher than those with fatty breasts.4, 5

The evaluation of fibroglandular tissue is based on a subjective assessment 

recommended by the American College of Radiology (ACR) Breast Imaging-

Reporting and Data System (BI-RADS), which is commonly used for mammography 

but also for magnetic resonance imaging (MRI). The BI-RADS Atlas can be described 

as a classification system that characterises breast density on the basis of the amount 

of fibroglandular tissue into four categories: 1) almost entirely fat, 2) scattered 

fibroglandular tissue, 3) heterogeneous fibroglandular tissue, and 4) extreme 

fibroglandular tissue.6, 7

1.2 Imaging Modalities for Breast Density Assessment

Most information about breast density estimation and screening for breast cancer is 

obtained through full-field digital mammography (FFDM), a two-dimensional (2D) 

imaging technique. FFDM is considered an effective screening modality that can 

contribute to the reduction of breast cancer mortality, particularly at an early stage of 

the disease.8, 9 However, the evaluation of breast density based on mammograms is 

limited due to tissue overlapping, variations in breast compression, and inappropriate 

positioning, which can lead to artefacts (skin folds) and insufficient imaging of breast 

tissue.10, 11 Another problem with this modality is its low sensitivity in detecting breast 

cancer when the breast tissue is dense, which is the case for 40% to 50% of women 
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under the age of 50 years.12 Kolb et al13 found that as breast density increases, the 

sensitivity in detecting breast cancer is decreased from 89% in fatty breasts to 42% in 

women with over 75% mammographic density. These factors can limit

mammography’s precision and reliability for the detection of small changes in breast 

density over brief timespans.14, 15

1.2.1 Digital Breast Tomosynthesis

To address the limitations of conventional mammography, digital breast 

tomosynthesis (DBT) has been developed, which enables three-dimensional (3D) 

reconstructions of the breast volume and has become one of the most widely imaging 

tools in breast centres worldwide.16, 17 Recent research has shown a dramatic 

improvement in screening outcomes of  breast density assessments with this 

technique.16-19 It provides high-resolution imaging, higher diagnostic accuracy, and 

better detection rates compared to conventional digital mammography.20, 21 DBT 

differs from conventional two-dimensional mammography in several respects. In 

FFDM, the planar information is obtained from multiple projection images. As each 

scan can create only one image plane, multiple scans are required to reconstruct the 

whole breast.22, 23

In contrast, in DBT, the planar information is obtained using only one set of X-ray 

projections at various angles; therefore, one scan can produce a 3D reconstruction of 

all planes, creating a full breast volume.20-22 However, despite differences of opinion,

there appears to be some agreement that 2D images are still essential, as some 

microcalcification clusters are not easily detectable in 3D images.8 The US Food and 

Drug Administration (FDA) has recommended that DBT be used in combination with 

FFDM to enhance the diagnostic reliability and screening performance of standard 
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mammography.22, 23 However, a major problem with this recommendation is the 

exposure of patients to a double radiation dose, as the radiation exposure of DBT is 

comparable to that of FFDM.8, 22, 23 Therefore, there seems to be a need for wider 

acceptance of DBT in breast screening to limit radiation exposure.

1.2.2 Breast Ultrasonography

Breast ultrasonography (US), a non-ionizing technology, is an important imaging 

modality for breast cancer detection. It has played a key role in image-guided biopsy

and lymph node diagnosis for a long time, as it is inexpensive and widely available.25, 

26, 30 A variety of ultrasound imaging techniques have been used for breast cancer 

detection, which can be classified into five main categories: ultrasound-based 

elastography, contrast-enhanced ultrasound, 3D ultrasound, automated breast 

sonography, and computer-aided detection of breast lesions.25-30

For breast density assessments, two types of automatic breast volume scanning have

been used as a tool complementary to mammography, each with its advantages and 

disadvantages: hand-held ultrasound (HHUS) and automated breast ultrasound

(ABUS).25, 29, 30 HHUS is a novel technique for breast tissue characterization that uses 

a conventional US system and a passive reflector, which is placed at the opposite side 

of the US probe. The purpose of the passive reflector is to measure the speed of sound 

in tissue and reflect it back to the US probe.29, 30 However, due to practical constraints, 

HHUS cannot yield reproducible results or image and/or store 3D volumes of the 

breast. Other major drawbacks of this approach are that it cannot reconstruct the whole 

breast and that it largely relies on the operator’s skills.29, 30
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ABUS, also known as automated breast volumetric scanning (ABVS), was approved

by the US FDA in September 2012 and has been used in various studies for 3D 

ultrasonographic depictions of the whole-breast structure to assess breast density.25, 26

The ABUS technique is one of the more practical methods of breast density analysis, 

as it can provide true volumetric imaging data. The concept of this modality is based 

on combining breast echoic reflex images to produce multiplanar whole-breast 

reconstructions.25, 27 Most of the breast structure, such as the skin, subcutaneous fat, 

fibroglandular tissue (FGT), mamilla, retromammary fat, muscle fascia, and ribs, can 

be clearly visible in ABUS images.26 Several studies have shown that the echogenicity

and speed of sound tend to be higher in FGT than in subcutaneous and retromammary 

fat.26, 28, 29 This provides the ability to differentiate between FGT and other breast 

structures in surrounding tissue, thus enabling more accurate breast density

measurements. ABUS can mainly be applied in women with high breast density, no 

previous invasive procedures, and a BI-RADS score of 1, which indicates negative 

cancer results on X-ray mammography.25-28, 30 However, despite its increasing 

popularity for breast density assessments, ABUS has certain limitations, such as its 

reliance on a dedicated ultrasound system and custom add-on software.28, 29 Therefore,

further studies should be conducted to determine the exact utility of this novel 

technique for breast density assessments and as a biomarker for breast cancer.

1.2.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most widely used methods for breast 

cancer detection, in conjunction with mammography, US, and image-guided needle 

biopsy. It has been extensively applied for the screening of women at high risk of 

breast cancer, preoperative staging of newly diagnosed breast cancer (ipsilateral and 
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contralateral), evaluation of women with breast implants, and breast cancer treatment

follow-ups.31-33 The European Society of Breast Imaging (EUSOBI) has 

recommended that breast MRI be used as an adjuvant modality in women at high risk 

of developing breast cancer, such as those with breast cancer susceptibility gene 

(BRCA)-positive genetic mutation carriers, a family history of breast cancer, and/or 

high breast density.33, 34 Previous studies have reported that the sensitivity of MRI for 

breast cancer is up to 98% for invasive and 60–80% for ductal in situ breast 

carcinomas.32, 33 Several studies have also shown that MRI can detect enhancing 

invisible in mammography and US, 50% of which are cancerous.32, 33

1.3 MRI Protocols for Breast Density Assessment

1.3.1 Dynamic Contrast-Enhanced Imaging

To date, various breast MRI protocols have been developed. The dynamic contrast-

enhanced (DCE)-MRI technique is the most frequently used for the screening of 

women at high risk of breast cancer and has been included in standard clinical breast

MRI protocols.35, 36 The sensitivity of this technique for breast characterization tends

to be very high, in the range of 94–100 %, whereas its specificity is relatively low,

ranging between 40 % and 80%.37 Despite its long clinical success, DCE-MRI has

certain disadvantages, such as long scanning time, high cost, and potential harm caused

by the contrast agent.37 Although contradictory findings have been reported in the 

literature about the precipitation and accumulation of gadolinium contrast–based 

agents in the brain, there is no general agreement regarding the risk of repeated 

gadolinium administration.36 Nevertheless, questions have been raised about the 

safety of prolonged use of DCE-MRI as a primary screening method for breast cancer.

On the other hand, despite considerable new knowledge about the role of MRI in breast 
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screening, many studies have reported the role of MRI in breast density analysis.36 It

has been used for qualitative and/or quantitative evaluations of breast density because 

it provides a three-dimensional volume image of breast tissue with excellent soft tissue 

contrast, which assists in the differentiation between fibroglandular and fatty, or 

adipose, tissue.12, 38-40

1.3.2 Diffusion-Weighted Imaging 

Diffusion-weighted imaging (DWI) is a non-contrast-enhanced MRI technique that

measures Brownian motion, that is, random movements of free water molecules in all 

directions.35, 41, 42 Evidence suggests that the diffusion of water molecules is greatly

affected by the tissue’s cellularity.35, 41, 42 Restricted diffusion generally occurs in 

tissue with higher cellular density, as water molecules cannot diffuse easily within the 

tissue, bouncing back towards the impermeable cell walls.35, 41, 42 This phenomenon 

is observed in most cancers and is associated with high intensity on DWI.35, 41, 42 

Apparent diffusion coefficients (ADCs), also known as estimated diffusion rates, 

calculated from DWI, play an important role in the differentiation between benign and 

malignant breast lesions.35 Several studies exploring DWI as a screening tool

supplemental to mammography have reported its advantages for breast cancer 

detection, predominantly in high-risk women with dense breasts.35, 43, 44 As an 

unenhanced MRI technique, DWI has been proposed as an alternative to DCE-MRI in 

terms of safety and cost related to the exposure to gadolinium contrast– based agents.35, 

41, 42 However, breast DWI technique has not been standardized yet, and more research 

is required to determine its value as an adjunct screening tool in women at high risk of 

breast cancer.
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1.3.3 Non- and Fat-Suppression T1-Weighted Imaging 

Non-fat-suppressed and fat-suppressed T1-weighted images are frequently used either 

with 2D spin echo (SE) or 3D gradient echo (GRE) in standard clinical breast MRI 

protocols.36, 45 However, there is no consensus about the optimal protocol in this

regard. The American College of Radiology (ACR) has recommended that fat-

suppressed images with high spatial resolution be used in clinical breast MRI 

protocols, as the evaluation of fat-suppressed sequences based on the acquisition of 

post-contrast images without subtraction can eliminate misregistration, which mainly 

occurs when a patient moves during the acquisition of pre- and post-contrast images.36,

45 However, this recommendation is at odds with that of the EUSOBI, which considers

non-fat-suppressed sequences based on the acquisition of subtraction images more 

useful.45, 46 In fact, non-fat-suppressed images tend to have a higher signal-to-noise 

ratio (SNR) and stronger tissue contrast than fat-suppressed images.45, 46

Although non-fat-suppressed T1-weighted acquisition is commonly included in

standard clinical MRI protocols to better visualize the breast’s anatomy and fat 

distribution, there appears to be some agreement that other breast MRI techniques, 

including T2-weighted images, DCE, and DWI, tend to benefit from its combination 

with fat-suppression techniques for several reasons.1, 36, 45, 47 First, fat tends to appear 

bright in T2-weighted images due to its long T2 relaxation time. Therefore, if the fat 

signal is not completely eliminated, it can obfuscate the features of interest and 

interfere with the assessment of benign lesions.1, 36, 45, 47 Second, an unsuppressed fat 

signal can induce a chemical shift artefact caused by signal variations due to the 

inherent differences in resonant frequency between fat and water, usually observed on

fat and soft tissue boundaries.45, 47, 48 Third, fat appears hyperintense on DCE-MRI 
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because of its comparatively short T1 relaxation time. If the fat signal is not completely 

suppressed, it can obfuscate the enhancing lesions and interfere with the variations of 

signal intensity caused by the contrast agent.45, 47, 49 It can thus be suggested that fat 

suppression is a very important technique to better visualize the enhancing lesions on 

DCE-MRI.49 Furthermore, breast MRI is more susceptible to the inherent magnetic 

field (B0) inhomogeneity caused by the difference in magnetic susceptibility between

breast tissue and the surrounding air.48, 50 Therefore, the fat-suppression technique

could be a reasonable approach to tolerate the B0 inhomogeneity.48, 50 Finally, fat 

suppression has received considerable critical attention in breast DWI, which is largely 

based upon an echo-planar imaging (EPI) sequence.50, 53, 54 In a single-shot EPI, all 

the spatial-encoding data of an image can be obtained after a single radio frequency 

excitation in a few seconds. However, a main issue with this application is that

chemical shift artefacts can lead to a significant displacement of the fat signal in the 

phase-encoding direction of EPI.50, 53, 54 Therefore, since the breast consists of a 

considerable amount of fat, fat suppression is necessary to eliminate its signal in breast 

DWI.50, 53, 54 Fat suppression has proven to be an essential component of DWI for

different parts in the body, as it assists to overcome the limitations associated with 

fatty tissue.50, 53

1.3.4 Fat-Suppression Imaging 

Fat suppression is used in breast MRI to improve the visibility of pathology, contrast 

enhancement, and image quality, thus allowing a better differentiation between fatty 

non-glandular and glandular tissue.45, 47 It has been combined with other techniques

because of the difficulty of eliminating the high signal intensity associated with fatty 

tissue.45, 47 Over the years, several methods have been proposed for fat suppression in
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breast MRI, including chemical shift spectral-selective saturation (CHESS), which 

relies on the chemical shift variation between fat and water, inversion recovery (IR),

which relies on the variation of T1 relaxation time, hybrid CHESS–inversion recovery 

methods, and Dixon fat-water separation, which relies on the phase variation between 

fat and water signals at different echo times (TEs).3, 41, 42, 45, 47, 55

In CHESS, also known as fat saturation (Fat Sat), a 90o frequency-selective excitation

pulse followed by a homogeneity spoiler gradient is applied to saturate/dephase the fat 

protons only, thus suppressing the fat signal while leaving the water signal relatively 

unaffected.47, 56-59 Although the CHESS technique has been successfully used in breast 

MRI, it has certain limitations related to its higher sensitivity to the inhomogeneity of

the magnetic (B0) and radio frequency (B1) fields, which can cause significant 

heterogeneity in fat suppression.47, 56-59 Another limitation of this approach is that it 

cannot be implemented at each pulse repetition time (TR) on a repeated series of pulses

and echoes in a fast GRE acquisition. Consequently, the steady-state signal and the 

quality of fat suppression can be affected even if the B0 is completely homogeneous

across the entire field of view.56, 59 Fat suppression based on CHESS or other chemical 

shift selective excitation techniques can be improved by using a high-field MRI system 

(≥3T), especially with the acquisition of a GRE pulse sequence.47, 56, 60 This is because

the chemical shift difference between fat and water at higher magnetic field strengths

is increased, achieving B0 and B1 homogeneity. Nevertheless, field heterogeneity is 

more prominent in 3T MRI systems, which inevitably affects the fat suppression

performance and image quality.47, 56, 60
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In an inversion-based technique known as short TI inversion recovery (STIR), a 180o

non-spectral-selective inversion pulse is applied, followed by either a single 90o pulse 

or a pair of 90o and 180o pulses for the IR and SE imaging, respectively.47, 56, 58, 61, 62

The time between the 180o inversion pulse and the subsequent 90o pulse is referred to 

as inversion time (TI), which for fatty tissue is assumed to be 180 and 215 ms for 1.5T

and 3T MR systems, respectively.47, 56, 58, 61, 62 During the TI interval, the T1 relaxation 

time of fat is shorter than that of water, and thus fat is recovered faster. Subsequently,

at the 90o excitation pulse, the fat signal is nulled out, and a fat-free signal is 

produced.47, 56, 58, 61, 62 Because of the expected longer T1 relaxation time of water,

more time is required for the signal to reach the null point; consequently, it is 

attenuated and/or reduced.47, 56, 58, 61, 62 STIR sequences are among the most widely 

used fat-suppression techniques in breast imaging due to their insensitivity to B0 and 

B1 heterogeneity.47, 62 However, STIR suffers from major drawbacks, including its 

long imaging time, low SNR, and high specific absorption rate (SAR) of the radio

frequency energy.41, 47, 56, 58, 61, 62 Another considerable disadvantage is that, because 

STIR is not a fat-specific suppression technique and relies on the variation of T1 

relaxation times, during the TI interval, it can also suppress all other tissues and 

substances with a short T1 relaxation time along with fat tissue.47, 56, 58, 61, 62

Regarding hybrid approaches, two fat-suppression techniques have commonly been 

used: spectral pre-saturation with inversion recovery (SPIR) and spectral pre-

saturation attenuated with inversion recovery (SPAIR).41,47,62 In SPIR, an 180o

spectral-selective inversion pulse is applied for fat only, followed by a single 90o

excitation pulse after a certain TI.41, 47, 62 Clear benefits of SPIR are that it has a higher

SNR than purely inversion-based techniques and that it does not suppress other tissues 

with short T1 relaxation times, as the latter do.41, 47, 62 Despite its advantageous fat-
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suppression approach, SPIR still suffers from B1 inhomogeneity due to the expected 

variation of the radio frequency amplitude across the entire field of view.41, 47, 56, 58, 61, 

62 On the other hand, in SPAIR, an 180o spectral-selective adiabatic inversion pulse

is applied for fat only, followed by a single 90o excitation pulse after a certain TI.41, 47, 

62 The purpose of the adiabatic radio frequency pulse is to reduce the radio frequency 

amplitude variations, thus mitigating the B1 inhomogeneity and providing more 

uniform fat suppression than CHESS and STIR, particularly in high-field MRI 

systems.41, 47, 56, 58, 61, 62 Overall, perhaps the most obvious advantage of using hybrid

methods for fat suppression in breast MRI is their higher SNR, since SPIR and SPAIR 

are fat-selective techniques.41, 47

In the Dixon technique, also known as fat-water separation, two separate images can 

be produced based on the resonant frequency difference between fat and water, by 

combining an in-phase and an opposed-phase GRE image at different TEs.41, 47, 55, 57

As fat and water can be specifically constructed, the sum of the fat and water signals 

generates a water-only image, while the difference between them generates a fat-only 

image.41, 47, 55-60 A significant advantage of the Dixon technique is its lower sensitivity

to the B0 and B1 inhomogeneity – especially in high-field MRI systems, where the

heterogeneity is more pronounced – which enables more uniform fat suppression.41, 47, 

55, 57 In addition, it can be implemented with various pulse sequences in breast 

imaging.59 In view of its advantages, fat-water separation is a highly recommended

sequence among fat-suppression methods for breast imaging, as it can be used to 

specifically image the water that corresponds to the FGT, thus allowing an optimal 

assessment of breast density.41, 47, 55-60
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1.4 MR Breast Density Segmentation/Measurement Methods

Conventionally, breast density assessment is based on a qualitative approach using the 

ACR BI-RADS Atlas, which classifies density into four categories based on the 

amount of FGT.6, 7 Despite its long clinical success, BI-RADS scores are subjective,

resulting in inter- and even intra-reader variability.63-65 To overcome this issue, several

methods and algorithms have been proposed for quantitative breast density

assessments.66-72

While various definitions of the term “breast density” have been proposed, in this 

context, the term “fibroglandular tissue” (FGT) is used to refer to breast density.

Indeed, breast density is measured as the percentage of FGT volume to the total breast 

volume.1-3 Two steps are required to quantify the FGT volume from MRI data: breast

segmentation and FGT segmentation.38, 72 Breast segmentation distinguishes the 

breast’s body from the surrounding tissue, including the pectoral muscle, heart, lungs, 

and thorax. FGT segmentation distinguishes parenchymal from adipose tissue.38, 66, 72

Several methods have been developed to segment the FGT in breast MRIs, which can 

be categorized into four conceptual models: a clustering algorithm, an interactive 

thresholding algorithm to segment glandular and fatty tissue, a logistic function 

approach, and a curve-fitting algorithm.36, 66-72

Clustering algorithms classify breast regions into clusters/groups displayed in a

histogram using a code based on greyscale intensity. As an unsupervised algorithm,

each voxel is assigned to a cluster. In other words, all voxels in the segmented breast 

are assigned a code representing the FGT content with different greyscale tones.12, 38

An updated version of this algorithm, the fuzzy C-means (FCM) clustering algorithm,

is one of the most common methods used to separate FGT from fatty tissue in breast 
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MRI.36 It has also been combined with the non-parametric non-uniformity

normalization (N3) algorithm for image inhomogeneity and/or bias field correction .67,

68 The N3 algorithm is used for non-parametric non-uniform intensity normalization 

to adjust the signal intensity variations within the same structure.67, 68

Interactive thresholding algorithms categorize the breast voxels according to a

threshold value usually specified by the radiologist. The breast voxels are classified 

into two groups: voxel values above the threshold correspond to dense tissue, while 

voxel values below the threshold correspond to fat tissue. Breast density is calculated 

as the number of voxels in the dense area divided by the total number of voxels across 

the whole breast region.70 The logistic function approach, or Bayesian probability,

estimates the highest-probability combination of materials within each voxel-sized 

region. Then, the possible tissue types within each voxel are identified, and continuous

‘‘basis’’ functions are assumed to represent the probability that a particular voxel 

contains a specific type of tissue.71

The curve-fitting algorithm technique compares breast tissue to a mixture model 

known as the 3D volume-rendered breast model, whereby all MR voxel signal 

intensities are extracted from the 3D model to generate a signal intensity histogram. 

On that basis, a two-compartment model of breast tissue compositions can be

constructed. The histogram of the MRI signal intensities usually contains two major 

peaks: one corresponds to adipose tissue, and the other to non-adipose tissue. The sum 

of voxels represents the FGT.70

Each of the aforementioned semi-automatic thresholding and segmentation

approaches has its own advantages and limitations in the quantitative assessment of 

breast density.66-72 No consensus has been reached about the best method to date.36



15

1.5 3D Printing Technology 

The last decade has seen significant advances in 3D printing technology, also known 

as additive manufacturing, rapid prototyping, or solid freeform fabrication.73-78 It is 

used in various medical applications, including cardiovascular disease treatment,

orthopaedic surgery, prosthetics, and neurosurgery.73-78 Prosthetics was the first 

biomedical field to take advantage of 3D printing, with considerable achievements in 

terms of improved visualization and surgical outcomes.79, 80 Patient-specific guides

and 3D-printed anatomical models and prostheses derived from either computed 

tomography (CT) or MRI data have assisted in developing surgical implants,

practising procedures, teaching students, and improving the individual’s 

understanding with precise reproductions of complex anatomical structures and 

pathologies.73-78, 81, 82 The technology’s main advantages are shorter surgical times,

reduced radiation exposure, and improved diagnosis and outcomes.73, 81

Additive manufacturing can be generally described as the construction of an object’s

components by placing a material on a certain kind of building platform.79-82 It starts 

with a meshed 3D computer model that can be generated through the acquisition of 

image data and/or structures, mostly designed using computer-aided design (CAD)

software.80-83 Standard Tessellation Language (STL) is the standard file format for

storing 3D models.80-83 The mesh data is further divided into a 2D-layered build file 

and fed into the 3D printer.80-83 Various additive manufacturing techniques have been

extensively used for fabricating polymer composites and other composite materials,

each with its own advantages and disadvantages.80-83 Multiple factors determine the

appropriate additive manufacturing technique, such as raw materials, processing 
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speed, resolution requirements, costs, and performance specifications of the final 

product.80-83

Additive manufacturing techniques can be classified into three categories: selective 

binding, selective solidification, and selective deposition.79, 80, 82 Selective binding 

technologies render a 3D-printed object from a powder (thermoplastic powders are the 

most common) using binding agents or heat to bind the powder’s particles together.79, 

80 An example is selective laser sintering (SLS), whereby constructive layers of 

powdered material are fused by a laser.79-83 The first layer is melted to a base; then,

another thin layer is deposited on top of it. The process is repeated until the model 

construction is complete79-83. The powder serves as a print support medium; therefore,

highly complex and precise prints can be produced.79-83 However, fine powders can be 

difficult to handle, and printers based on the SLS technique are often expensive.79-83

The resolution of SLS 3D-printing technology is mainly determined by the material’s 

particle size, laser strength, scan spacing, and scanning speed.80-83

Selective solidification technologies render a solid object of a liquid vat under a light 

source (photopolymer resins are the most commonly used materials), where 

constructive layers of liquid photopolymer resin are solidified using selective 

energy.79, 80 The first layer is usually constructed on a kind of building platform that 

is elevated onto a resin tank, a light source, and galvanometers.79-86 Examples are 

stereolithography (SLA), which uses a laser to solidify the resin with ultraviolet (UV) 

light, and a digital light projection (DLP) imager used to stiffen each layer79-86. In both

approaches, the mould needs to be cured thereafter, and the resin can be challenging 

to handle.79-83 The main benefit of SLA 3D printing is its capability of producing

models with high resolution and/or quality.80-83 Furthermore, as a nozzle-free
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technique, it eliminates nozzle clogging.80-83 Nevertheless, the main disadvantages are 

its high cost, which can be a significant concern for industrial and medical 

applications, and its potential cytotoxicity of the uncured resin and the residual 

photoinitiator.80-84

In selective deposition technologies, a layer-by-layer deposition of a molten polymeric 

material on a building platform is the working concept, whereby a heated nozzle

moves at the xyz axis, where layers are fused and then solidified into the final object.79-

85 Thermoplastic filaments are the most commonly used materials owing to their 

melting temperature.79-83,85 An example is fused deposition modelling (FDM), also 

known as fused filament fabrication (FFF).79, 80 Filament-based printers melt a 

filament into a semi-liquid and deposit it precisely to create an object 80-83. Other 3D

printers use liquid resin with inkjet, which is then cured with UV light.83 Some printers 

combine the selective binding and selective deposition techniques using a powder 

mixed with a binder.79-83

FDM/FFF is one of the most used approaches for rapid prototyping, primarily due to 

the wide availability of cheap printers with high speed, simplicity, and low operation 

costs.80, 81, 84 An important drawback is that the composite materials need to be in a 

filament shape to facilitate the extrusion process and are limited to thermoplastic 

polymers with melt viscosity high enough for structural support and low enough to 

allow extrusion.80-84 It can thus be difficult to remove the supporting structures when 

the printing process is completed.80-84 Comparison of different types of 3D-printing 

techniques, including their advantages and disadvantages are summarized in Table 1.1.
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Table 1.1. Comparison of different types of 3D-printing technologies.79-86

Abbreviations: SLS: selective laser sintering; SLA: stereolithography; FDM: fused deposition modelling; FFT: fused filament fabrication; PA: polyamide; ABS: acrylonitrile 
butadiene styrene; PLA: polylactic acid; PVA: polyvinyl alcohol; PC: polycarbonate; HIPS: high impact polystyrene; PETG: polyethylene terephthalate (glycol).

Technology Approach Principle Materials Layer Thickness Advantages Disadvantages

SLS Laser and 
heat 
induced 
sintering.

Localized powder 
melting.

Thermoplastic powder: 
Nylon (e.g., PA), steel, 
titanium, alloys, and 
ceramic powders.

25-92 μm. -No requirement of pre-
designed support structure. 
-Good strength of produced 
parts. 
-Low UV radiation.
-Less post-processing.

-Parts may suffer shrinkage and 
warpage due to sintering and 
cooling. 
-Powder can get into vulnerable 
areas, inducing health problems.
-High cost. 

SLA Laser and 
UV
induced 
curing.

Localized co-
polymerization.

Photopolymer resins (e.g., 
epoxy or acrylate-based 
resin), with high-
temperature resistant 
resins.

< 10 μm. -High resolution. 
-Nozzle-free technology. 

-Cytotoxicity of residual 
photoinitiator and uncured resin. 
-Misuse of liquid resins constitutes 
a risk, and ingestion is hazardous.
-Post-processing is required to 
remove support materials.
-High UV radiation.
-High cost.

FDM/FFF Extrusion 
and 
deposition.

Liquified 
polymers using 
nozzles.

Thermoplastic filament: 
ABS, PLA, PVA, PC, 
HIPS, PETG, and Nylon 
(e.g., PA).

100-250 μm. -Low cost.
-Good strength of produced 
parts. 
-Deposition of different 
materials.
-Printed parts are multi-purpose. 
-No use of UV radiation.

-Low resolution on the z axis 
relative to other 3D printing 
technologies.
-It may require days to produce 
through, complicated pieces for a 
slow operation.
-Should be in a filament format.
-Homogeneity lack for the disperse 
material.
-A limitation with nozzle clogging.
-Post-processing is required to 
remove support materials.
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Table 1.1. Continued.74,80, 82

Abbreviations: 3DP: three-dimensional printing; CJP: colour jet printing.

Technology Approach Principle Materials Layer Thickness Advantages Disadvantages

PolyJet Laser and 
UV
induced 
curing.

Polymerization of 
deposited droplets 
of photopolymer
ink.

Photopolymer resins. 25-50 μm. -High resolution. 
-Good surface finish and 
smoothness.

-Post-processing is required to 
remove support materials.
-High cost. 
-Slow speed.

3DP/CJP Powders 
and 
binders.

Drop-on-demand 
binder printing.

Powder. 100-400 μm. -Low cost.
-Multi-material capability.
-Supporting material can be 
easily removed.

-Clogging of binder jet. 
-Binder contamination.
-Printing resolution is limited.
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1.6 MRI Breast Phantom

A breast phantom comparable to the anatomical structures of human tissues can be a 

valuable tool for examining different breast MRI protocols, test the radio frequency 

coils, and evaluate system performance.87-94  Such a phantom should resemble the MR-

related characteristics of T1 and T2 relaxation times that are analogous to those of the 

simulated tissue and load the radio frequency coils electrically as real tissue.87-94

Further, it should be made from appropriate materials to produce precise shapes and/or 

sizes of such complex anatomical structures.87-94 These materials should ideally be 

affordable, readily accessible, and easy to process.87-94 More broadly, the phantom 

should also maintain its chemical and physical characteristics over an extended 

period.87-94

Although several studies have produced anthropomorphic breast phantoms for X-ray 

imaging, the data available for MR imaging is still insufficient.88-95 Carton et al88 used 

a computational model and a rapid prototyping technique to generate 3D breast 

phantoms with different compositions, sizes, and shapes made from tissue-equivalent 

materials for quality assessments of 2D and 3D breast X-ray imaging systems. The 

epoxy resins used in their study can simulate 100% of the characteristics of adipose 

tissue, while the FC-270 photopolymer simulates 50% of the properties of 

fibroglandular tissue.88 Although this phantom effectively demonstrated a 

heterogeneous distribution of fibroglandular and adipose tissue that can be analogous 

to clinical breast images, it has certain limitations in terms of its fabrication method 

and applications: it is printed in slab form, which is overly complicated and time-

consuming to manufacture on its actual format.88
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Mazzara et al89 used the polysaccharide material TX-151 with water, sodium chloride 

(NaCl), and aluminium (Al) powder to create a tissue-mimicking material (TMM) in 

the form of a gel for constructing a realistic, inexpensive, easily mouldable, and 

temporally stable tissue-equivalent MRI breast phantom. The Al powder was used to 

decrease the T2 relaxation time, allowing the adaptation of the phantom to a wide 

range of relaxation times to simulate various human tissues and organs.89 In addition, 

gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA), a paramagnetic metal 

complex, was used to adjust the T1 (and T2) relaxation times.89

Liney et al90 designed a simple and an inexpensive tissue-equivalent MRI breast 

phantom consisting of a layer of lard (a commercially available fat product) simulating 

adipose tissue, surrounded by a commercial jelly with varying concentrations 

simulating normal glandular tissue. Both of these phantoms can be used to conduct 

multipurpose quality assurance tests of such parameters as SNR, uniformity, and 

resolution, test the radio frequency coils, or examine various MRI diagnostic 

protocols.89, 90  Freed et al91 developed a tissue-equivalent phantom for quantitative 

assessments of breast MRI protocols using a combination of lard and egg whites to 

simulate adipose and glandular tissue, respectively. Although the materials 

successfully simulated the MR-related characteristics of T1 and T2 relaxation times of 

the tissues, they lack a heterogeneous structure and thus have minimal applicability 

for quantitative breast density assessment studies.91

Although some research has been conducted on the use of 3D printing techniques to 

develop breast phantoms for MRI, few studies have attempted to generate a 

personalized 3D-printed phantom based on breast MR images that can be similar to 

the anatomical structures of human tissues.88-95  Burfeindt et al92 reported a convenient 
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synthetic procedure to develop an MRI-derived 3D-printed phantom for preclinical 

use in microwave breast imaging experiments. Although it successfully simulated the 

dielectric properties of biological breast tissues, it was designed for microwave breast 

imaging rather than for MRI systems.92

The importance of realistic phantom structures simulating the acoustic and optical 

breast tissue properties for the assessment of photoacoustic breast imaging systems 

was demonstrated by Dantuma et al.93 In this study, a semi-anthropomorphic 3D-

printed mould derived from an MRI segmented numerical breast model was developed 

using polyvinyl chloride plastisol (PVCP) to imitate real breast morphology.93

However, there are limits to the extent to which a phantom designed for ultrasound 

and photoacoustic imaging can be used to simulate the MRI characteristics of breast 

tissues.93 He et al94 developed a 3D-printed breast phantom for machine calibration 

and image optimization in multi-modality imaging using a mixture of PVC powder 

and softener (dioctyl terephthalate) as a TMM. Although breast structures were 

successfully simulated, they lacked the appearance, variability, and heterogeneity of 

physiological tissue constructions.94 Another potential limitation is that the materials’ 

T1 and T2 relaxation times were found to be shorter than those reported in human 

breast tissues.94, 95
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Chapter 2                                                   

Quantitative Measurements of Breast Density Using 

Magnetic Resonance Imaging: A Systematic Review and 

Meta-Analysis
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2.1 Abstract

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty 

tissue, is confirmed as an independent risk factor of breast cancer. Although there has 

been an increasing interest in the quantitative assessment of breast density, no research 

has investigated the optimal technical approach of breast MRI in this aspect. 

Therefore, we performed a systematic review and meta-analysis to analyze the current 

studies on quantitative assessment of breast density using MRI and to determine the 

most appropriate technical/operational protocol. Databases (PubMed, EMBASE, 

ScienceDirect, and Web of Science) were searched systematically for eligible studies. 

Single arm meta-analysis was conducted to determine quantitative values of MRI in 

breast density assessments. Combined means with their 95% confidence interval (CI) 

were calculated using a fixed- effect model. In addition, subgroup meta-analyses were 

performed with stratification by breast density segmentation/measurement method. 

Furthermore, alternative groupings based on statistical similarities were identified via 

a cluster analysis employing study means and standard deviations in a Nearest 

Neighbor/Single Linkage. A total of 38 studies matched the inclusion criteria for this 

systematic review. Twenty-one of these studies were judged to be eligible for meta-

analysis. The results indicated, generally, high levels of heterogeneity between study 

means within groups and high levels of heterogeneity between study variances within 

groups. The studies in two main clusters identified by the cluster analysis were also 

subjected to meta-analyses. The review confirmed high levels of heterogeneity within 

the breast density studies, considered to be due mainly to the applications of MR 

breast-imaging protocols and the use of breast density segmentation/measurement 

methods. Further research should be performed to determine the most appropriate 

protocol and method for quantifying breast density using MRI. 
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2.2 Introduction

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty 

tissue, is an independent risk factor for breast cancer.1–3 Consistent with this risk 

relationship, women who have dense breasts have a likelihood of developing breast 

cancer that is fourfold higher than those with fatty breasts.4,5 Most of the information 

regarding breast density has been acquired with two- dimensional imaging, which is 

mammography. However, the evaluation of breast density based on mammograms is 

limited due to the overlapping of tissues, variations in breast compression, and 

inappropriate positioning that lead to artefacts (skin folder) and inclusion of 

insufficient breast tissue.6,7 These factors could affect mammography’s performance 

for precise, reliable measurements of small changes in breast density over brief 

timespans.8,9

Magnetic resonance imaging (MRI), an alternative imaging modality in breast imaging 

can estimate the actual breast density value because it provides a three-dimensional 

volume assessment of breast tissue, with excellent contrast resolution in the 

differentiation between fibroglandular and fatty tissues.10–13 Conventionally, breast 

density is assessed qualitatively using the American College of Radiology (ACR) 

Breast Imaging-Reporting and Data System (BI-RADS) atlas, which is a classification 

system commonly used for mammography, according to which density has four 

categories based on the amount of fibroglandular tissue: “(1) almost entirely fat, (2) 

scattered fibroglandular tissue, (3) heterogeneous fibroglandular dense and (4) 
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extreme fibroglandular tissue”.14,15 The interpretations of these four categories are 

also applied for MRI. Despite its long clinical success, the BI-RADS scoring atlas is 

subjective and varies between readers, even within the same reader.16 To overcome a 

subjective assessment of breast density and to reduce inter- and intra- reader 

variability, different methods for quantitative breast density have been proposed, with 

a range of algorithms or methods reported in the literature.17–22 Each of these methods 

were shown to have advantages and limitations through the use of semi-automatic 

thresholding and segmentation approaches for quantitative assessment of breast 

density. 

There is no doubt that MRI is one of the most useful modalities for breast imaging and 

that the analysis of breast density in quantitative synthesis is a well-established 

approach. In spite of the fact that extensive research has been carried out on breast 

density measurements, no consensus has been reached about the optimal approach to 

quantify breast density using MRI. Therefore, the purpose of this review is to analyze 

the current methods for the quantitative assessment of breast density using MRI over 

the past decade of publications. Due to the expected heterogeneity of MRI scanning 

protocols, both systematic review and meta-analysis were performed to analyze the 

available studies. 

2.3 Materials and Methods

This systematic review and meta-analysis were performed according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria.23,24

No ethics committee approval was required. 
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2.3.1 Search Strategy and Eligibility Criteria

A systematic literature review was conducted of studies that analyzed breast density 

in a quantitative pattern using MRI. Briefly, a search for studies published between 1 

January 2009 and 31 December 2018 was conducted in different databases: PubMed 

(MEDLINE, U.S. National Library of Medicine and National Institutes of Health, 

Bethesda, MD, USA), EMBASE (Elsevier, Amsterdam, The Netherlands), 

ScienceDirect (Elsevier, Amsterdam, The Netherlands), and Web of Science 

(Clarivate Analytics, Philadelphia, PA, USA) using the search terms detailed below. 

Systematic search expressions were employed using MeSH (medical subject headings) 

in PubMed and the thesaurus in EMBASE, ScienceDirect, and Web of Science. A 

search structure was based on combining three main terms as follows: “breast density,” 

“quantitative analysis,” and “MRI.” The exact search expressions were “Breast 

Density” (MeSH term) OR “fibroglandular tissue” (Text word) OR “breast densit*” 

(Text word) OR “FGT” (Text word) OR “FT” (Text word) OR “fibroglandular 

densit*” (Text word) AND “Quantitative analysis” (Subject heading) AND “Magnetic 

Resonance Imaging” (MeSH term) OR “nuclear magnetic resonance imaging” (Text 

word) OR “MRI” (Text word) OR “magnetic resonance imaging” (Text word). The 

criteria for selecting the studies for eligibility were based on their title, abstract, and 

subsequently the full text, this was performed independently by two reviewers (R.S. 

and Z.S.). Studies addressing the quantitative analysis of breast density using MRI 

were considered eligible for inclusion and also studies on human subjects since 2009 

had to be published in peer-reviewed journals and written in English. For study 

inclusion, the subjects must have undergone breast MRI studies and the breast density 

measurement method is known. Eligible studies were retrieved, and full manuscripts 
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were read. No restricted conditions have been applied in terms of study characteristics, 

the purpose of study, and the results. Publications were only included in the analysis 

if the measurement of breast density had been performed in a quantitative manner 

regardless of the MRI technique or breast density segmentation/measurement method. 

2.3.2 Data Extraction

On completing the eligibility screening, the process of data extraction from the 

included studies was carried out manually by the same two reviewers. Descriptive data 

were extracted for all variables as follows: the first author’s surname; year of 

publication; journal of publication; study type; total number of participants/patients; 

mean age; age range of participants/patients; MRI technique (pulse sequence/breast-

imaging protocol and static magnetic field strength); and breast 

segmentation/measurement method. For each study analyzed, estimates of breast 

volume, fibroglandular-tissue volume and percentage breast density were recorded 

using descriptive statistics, arithmetic means and standard deviations, whenever 

appropriate. Due to the heterogeneous nature of this analysis, some of the included 

studies produced their results in a median and interquartile range (IQR). Accordingly, 

the researchers decided to stratify results and excluded them from the meta-analysis 

only. 

2.3.3 Data Synthesis

The combinations of MRI techniques and the applied breast

segmentation/measurement methods encountered in the studies were considered to be

technologically heterogeneous. To address this issue and acquire more reasonable 

estimates, the analyses were stratified by breast segmentation method into three 
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discrete groups (fuzzy c-mean clustering (FCM), FCM and nonparametric 

nonuniformity normalization (N3), and signal intensity thresholding). In each sub 

meta-analysis, the number of the included studies were selected on the basis of a 

degree of homogeneity of their breast density segmentation/measurement results. 

2.3.4 Statistical Analysis

The measurement of breast density as ascertained by MRI using semi- or fully-

automated segmentation method was assessed. The primary outcome was the 

percentage breast density (%BD). Data input for each study within a group consisted 

of the study size (N), the ‘raw’ study mean (i.e., with no re-scaling or standardization), 

and the study standard deviation. The data was analyzed by the “metamean” function 

in the “meta” package in the R system, Version 3.4.1 (http://www.r- project.org/). This 

facilitates the meta-analysis of a single arm trial, as opposed to the traditional two arm 

trial with a control group and a treatment group, equivalent to a one-way analysis of 

variance. A forest plot was generated, displaying the individual study (%BD) means 

with 95% confidence interval (CI) limits, inverse variance study weights, and the 

pooled mean and confidence limits. Heterogeneity of study means was assessed using 

Cochran’s Q-test, and heterogeneity of study variances was assessed with Bartlett’s 

test. A conclusion to pool studies requires both heterogeneity tests to be non-

significant at the 5% level. 

As an alternative to grouping the studies on a technological basis, a cluster analysis 

was run to investigate any similarities between studies with respect to two attributes,

namely study mean and study standard deviation. The International Business 

Machines Statistical Package for the Social Sciences (IBM SPSS) Statistics software 

Version 25.0 was used for cluster analysis. The procedure provides for a wide selection 
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of combinations of distance measures and clustering methods, but for the current 

application, the simplest of these was chosen, namely Euclidean distance and nearest 

neighbor agglomeration. This algorithm calculates a proximity matrix of distances 

between all possible pairs of studies and allocates the closest pair into a cluster, then 

examines the remaining clusters to identify which is the next nearest or whether there 

is a pair that are closer to one another, and so on. 

2.4 Results

2.4.1 Literature Search

Figure 2.1 presents an overview of the systematic search of the literature through 

different databases. The complete search yielded 941 studies. After removing 

duplicates (n = 70), 871 were screened, based on their titles, which resulted in 765 

being excluded, followed by 27 of the remaining studies being excluded on the basis 

of their abstracts. Of the remaining 79 studies, the full manuscript was retrieved and 

reviewed. Forty-one studies did not meet the selection inclusion criteria: no adequate 

breast density data (n = 20), qualitative analysis (n = 12), editorials (n = 4), conference 

abstracts (n = 3), post-mortem study (n = 1), and phantom study (n = 1). Finally, 38 

studies attained the inclusion criteria1–3,5,11,25–57 and were included in the analysis as 

shown in Table 2.1.
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Figure 2.1. Preferred reporting items for systematic review and meta-analysis (PRISMA) flowchart of 
systematic review and meta-analysis of the excluded and included studies.
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Records identified through database searching
Databases: MEDLINE; (n=529), EMBASE; (n=62), ScienceDirect;(n=326), 
and Web of Science; (n=24).
Limits: Published in the last 10 years, English-language and humans’ species.

941 studies identified through database searching

871 studies after duplicates removed

765 studies exclude based on title

106 abstracts of studies screened

27 studies exclude based on abstract

79 full-text studies assessed for eligibility

41 studies exclude:
20 studies: No adequate BD data
12 studies: Qualitative analysis
4 studies: Letter to the editor
3 studies: Conference abstract
1 study: Post-mortem 
1 study: Phantom

38 studies included in quantitative synthesis
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2.4.2 Systematic Search

Table 2.1 demonstrates some of the main characteristics of the 38 included studies, 

while Figure 2.2 shows details of the study design and MRI system used in these 

studies. Several MRI sequences were used to enable the precise differentiation 

between adipose and fibroglandular tissues; of these, non- contrast-enhanced T1-

weighted was widely used either with 2D spin echo or 3D gradient echo. In fact, 16 

studies (41.03%) used non-contrast-enhanced T1-weighted,1,2,26–29,31,33,35,44,45,48–51,53

while in 12 studies (30.77%) non-contrast-enhanced images were integrated with 

contrast-enhanced images.25,36–44,47,49 In terms of breast density 

segmentation/measurement, the majority of the studies (20 studies; 51.28%) used 

FCM clustering algorithm,1,2,11,25–29,31–42 while 7 studies (17.95%) used FCM and N3 

algorithm,45–51 4 studies (10.26%) interactive thresholding algorithm,3,5,52,53 4 studies 

(10.26%) in-house customized software,29,53–55 one study (2.56%) manual software;57

however, two studies did not provide the information.43,44

Among the thirty-eight studies included in the systematic review and meta-analysis, 

21 studies qualified for meta-analysis since they reported the percent breast density 

using an identical expression of measurement and dispersion (Table 2.1).1,3,11,25–32,36–

38,45,48–50,53–55 However, for the remaining 17 studies, the percent breast density was 

reported in different format: in eight of these studies, it was defined as a median and 

interquartile range (IQR),2,39–44,47 and in the other nine, it was reported either in 

different measurement unit or the subject’s sets were not independent, due to multiple 

usage.5,33–35,46,51,52,56,57 To perform the meta-analysis precisely, all the measured 

quantities should be reported in an identical expression of measurement and 

dispersion, thus we decided to exclude them from the meta-analysis.
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Table 2.1. Characteristics of the included studies in the systematic review and meta-analysis. 

Author, year 
of 
publication 
[Reference]

Study 
design

Study 
participants

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI 
Sequence

Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Chang, 2011 
[25] NA 38 (28-82), 48 Philips, 3.0

Fat-
suppressed 
3D SPAIR

Axial, 160 6.20/1.26 (3.01-
38.0)

1.0 480×480 12 NA

FCM
Non-fat-
suppressed 
2D TSE

Axial, 84 800/8.6 (31.0-
38.0) 2.0 480×480 90 NA

Nie, 2010 
[26] NA 230 50±11.0 Philips, 1.5

Non-fat-
suppressed 
3D SGRE 
(T1W) 

Axial, 32 8.1/4.0 (31.0-
38.0) 4.0 256×256 20 NA FCM

Pertuz, 2016 
[27] Retro. 68 (24-82), 52 Siemens, 1.5

Non-fat-
suppressed 
(T1W)

NA NA NA (2.4-3.5) 512×512 NA NA FCM

Moon, 2018 
[28] Retro. 89 51.81±11.08 GE, 1.5

Non-fat-
suppressed 
(T1W)

Axial 6.2/2.1 20.0 1.0 512×217 NA NA FCM

Chen, 2010 
[29] Retro. 35 (30-74), 47 Philips, 1.5

Non-fat-
suppressed 
3D SGRE 
(T1W)

Axial, 32 8.1/4.0 38.0 (3.0-4.0) 256×128 20

Dedicated 
4-channel 
phased 
array

FCM

Chen, 2016 
[31] NA 23 40.5±8.2 Philips, 3.0

Non-fat-
suppressed 
2D TSE 
(T1W)

Axial, 90 654/9.0 33.0 2.0 328×384 NA NA FCM

Moon, 2011 
[32] Retro. 40 50.9±9.4 GE, 1.5

Fat-
suppressed 
3D 
VIBRANT 
(T1W)

Sagittal, 144-
192 6.1/2.5 19.0 1.5 512×512 NA NA FCM
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Subject 
number

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI Sequence Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Klifa, 2010 
[11] Retro. 35 (28-59), 43 GE, 1.5

Fat-suppressed 
3D Fast GRE 
(T1W)

Axial, 60 8.0/4.2 NA 2.0 NA 20

Dedicated 
bilateral 
phased 
array

FCM

Chen, 2011 
[1] Retro. 16 (33-51), 43 GE, 1.5

Non-fat-
suppressed 3D 
(T1W)

Axial, 56 7.4/3.3 30 2.0 512×512 NA
Dedicated 
8-channel 
bilateral

FCM

Nie, 2010 
[33] NA 50 NA Philips, 1.5

Non-fat-
suppressed 3D 
GRE (T1W)

Axial, 32 8.1/4.0 38.0 4.0 256×128 NA NA FCM

Kim, 2014 
[34] Retro. 80 (27-68), 44 GE, 1.5

Fat-suppressed 
2D FSE (T2W) Sagittal 5500-

7150/82 20.0 1.5 256×160 NA
Dedicated 
8-channel 
bilateral

FCM
Fat-suppressed 
3D Fast SGRE 
(T2W)

Sagittal 6.2/2.5 20.0 1.5 256×160 10
Dedicated 
8-channel 
bilateral

Nie, 2010 
[35] NA 321 (25-84), 54 Philips, 1.5

Non-fat-
suppressed 3D 
SGRE (T1W)

Axial, 32 8.1/4.0
(32.0-
38.0) 4.0 256×128 20

Dedicated 
4-channel 
phased-
array

FCM

Wang, 2013 
[2] Retro. 99 47.2±12.1 GE, 1.5/3.0

Non-fat-
suppressed 
(T1W)

Axial NA NA 2.0 NA NA

Dedicated 
bilateral 
phased-
array

FCM

Bertrand, 
2015 [36] Pros. 182 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA (32.0-

40.0) NA NA NA Dedicated 
RF coil FCM
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Subject 
number

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI Sequence Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Bertrand, 
2016 [37] Pros. 172 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

NA NA (32.0-
40.0) NA NA NA Dedicated 

RF coil FCM

Dorgan, 
2012 [38] NA 174 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA (32.0-

40.0) NA NA NA Dedicated 
RF coil FCM

Gabriel, 
2013 [39] NA 182 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA (32.0-

40.0) NA NA NA Dedicated 
RF coil FCM

Jung, 2015 
[40] Pros. 180 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA

(32.0-
40.0) NA NA NA

Dedicated 
RF coil FCM

Jung, 2016 
[41] Pros. 177 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA (32.0-

40.0) NA NA NA Dedicated 
RF coil FCM

Dorgan, 
2013 [42] C.S. 176 (27.0-27.3), 

27.2 NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA (32.0-

40.0) NA NA NA Dedicated 
RF coil FCM

Jung, 2015 
[43] Pros. 177 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA NA NA NA NA Dedicated 

RF coil NA
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Subject 
number

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI Sequence Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Jones, 2015 
[44] C.S. 172 (25-29) NA, 1.5/3.0

Non-fat- & fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial & 
Coronal NA NA NA NA NA Dedicated 

RF coil NA

Chen, 2012 
[45] NA 34 (20-64), 35

GE, 1.5 
Non-fat-
suppressed 2D 
FSE (T1W)

Axial 607/9.0 38.0 2.0 256×192 NA
Dedicated 
8-channel 
bilateral

FCM & N3

GE, 3.0
Non-fat-
suppressed 2D 
FSE (T1W)

Axial 650/9.0 38.0 2.0 256×192 NA
Dedicated 
8-channel 
bilateral

Philips, 3.0
Non-fat-
suppressed 2D 
FSE (T1W)

Axial 650/9.0 33.0 2.0 328×384 NA
Dedicated 
16-channel 
bilateral

Siemens, 1.5
Non-fat-
suppressed 2D 
FSE (T1W)

Axial 650/9.8 33.0 2.0 330×384 20
Dedicated 
4-channel 
bilateral

Chen, 2015 
[46] NA 32 (22-53), 41 Siemens, 1.5

Non-fat-
suppressed 2D 
FSE (T1W)

Axial 650/9.8 33.0 2.0
256×256
&
512×512

NA
Dedicated 
4-channel 
bilateral

FCM & N3

Chen, 2013 
[47] NA 44 (28-82), 47 Philips, 3.0

Non-fat-
suppressed 2D 
TSE (T1W)

Axial 800/8.6 (31.0-
38.0) 2.0 480×480 90

Dedicated 
4-channel 
bilateral

FCM & N3
Fat-suppressed 
3D GRE (T1W)

Axial 6.2/1.26 (31.0-
36.0)

2.0 480×480 12
Dedicated 
4-channel 
bilateral
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Subject 
number

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI Sequence Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Chan, 2011 
[48] NA 30

Pre:(N=24) 
(23-48), 29
Post:(N=6) 
(51-61), 57

Siemens, 1.5
Non-fat-
suppressed 3D 
GRE (T1W)

Axial 11/4.7 35.0 2.0 256×256 20 4-channel 
dual-mode FCM & N3

Choi, 2017 
[49] Retro. 38 (32-79), 45 Philips, 3.0

Non-fat-
suppressed SE 
(T2W)

Axial 620/10 (20.0-
34.0) 3.0 332×332 NA

Dedicated 
7-channel 
bilateral

FCM & N3
STIR & SE-EPI 
(DW) Axial 3265/54 35.0 4.0 288×288 90

Dedicated 
7-channel 
bilateral

Chen, 2013 
[50] NA 24 (23-48), 29 Siemens, 1.5

Non-fat-
suppressed 3D 
Fast GRE 
(T1W)

Axial 11/4.7 35.0 2.0 256×256 20 4-channel 
dual-mode FCM & N3

Clendenen, 
2013 [51] NA 9 (24-31) Siemens, 3.0

Non-fat-
suppressed 3D 
VIBE (T1W)

Axial 4.19/1.62
26.9×
20.2×
28.8

0.6×0.6×1 448×336
×288 12

Dedicated 
7-channel 
bilateral

FCM & N33-Point Dixon 
Non-fat-
suppressed 3D 
FLASH (T1W)

Axial 7.6/3.37, 
4.17. 4.96 NA 0.88×0.88×

1.5 NA 10
Dedicated 
7-channel 
bilateral

McDonald, 
2014 [52] Retro. 103 47 ± 11 Philips, 3.0 EPI-Parallel 

Imaging (DWI)
NA 5336/61 36.0 5.0 240×240 NA

Dedicated 
16 channel 
bilateral

Semi-automated 
Interactive 
Threshold
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Study 
participants

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI 
Sequence

Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Tagliafico, 
2013 [5] Pros. 48 (35-67), 41 GE, 3.0

3D Fast 
SGRE & 
VIBRANT 
(T1W)

NA 6.2/3.0 NA NA 350×350 10
Dedicated 
8-channel 
bilateral Semi-automated 

Interactive 
Threshold

IDEAL NA 4380/130.
872 NA NA 360×360 90

Dedicated 
8-channel 
bilateral

Tagliafico, 
2014 [3] NA 48 (35-67), 41 GE, 3.0

TSE (T1W) NA 600/9.0 NA 4.0 350×350 90
Dedicated 
8-channel 
bilateral

Semi-automated 
Interactive 
Threshold

TSE (T2W) NA 5200/103 NA 4.0 350×350 90
Dedicated 
8-channel 
bilateral

VIBRANT NA 6.2/3.0 NA 1.2 350×350 10
Dedicated 
8-channel 
bilateral

IDEAL NA 4380/130 NA 1.2 360×360 90
Dedicated 
8-channel 
bilateral

Chen, 2013 
[53] NA 24 (23-48), 29.4 Siemens, 1.5

Non-fat-
suppressed 
3D GRE 
(T1W)

Axial 11/4.7 35.0 2.0 256×256 20 NA

Semi-automated 
Interactive 
Threshold

Ha, 2016 
[30] Fe. 60 54.2 GE, 1.5/3.0

Fat-
suppressed 
Fast SGRE 
(T1W)

Axial 17/2.4 (18.0-
22.0) 2.0 256×192 35 8-channel 

breast array

Semi-automated 
(In-house 
software)
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Table 2.1. Continued.

Author, 
Year 
[Reference]

Study 
design

Study 
participants

Age range, 
average 
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI 
Sequence

Orientation, 
Slice #

TR/TE 
(ms)

FOV 
(cm)

Slice 
Thickness 
(mm)

Matrix 
size

Flip 
angle 
(o)

Breast coil Segmentation 
method

Lodger, 2016 
[54] NA 10 (23-50), 31 Siemens, 1.5

HR/LR 
3D GRE 
(PDW)

Axial 7.34/4.77, 
2.39 NA NA NA 4

Sentinelle 
variable 
coil 
geometry

Semi-automated 
(In-house 
software)

HR/LR
3D GRE 
(T1W)

Axial
7.34/4.77, 
2.39 NA NA NA 25

Sentinelle 
variable 
coil 
geometry

LR 2D SE 
(T1W) Axial 500/12 NA 7.0 NA NA

Sentinelle 
variable 
coil 
geometry

Wengert, 
2015 [55] Pros. 43 (21-71), 38 Siemens, 3.0 Dixon Axial, 192 NA/6.0, 

2.45, 2.67 NA NA 352×352 6
Dedicated 
4-channel 
bilateral

Fully-automated 
(AUQV)

O’Flynn, 
2014 [56] Retro. 33

(N=17): (33-
49), 43
(N=16): (27-
49), 40

Siemens, 1.5

Fat-
suppressed 
SS-EPI 
(DWI)

Axial 6300/83 34.0 5.0 NA NA
Dedicated 
4-channel 
bilateral

Dedicated IDL 
based software 
for ADC 
calculation

Kim, 2016 
[57] Pros. 57 (32-74), 50.8 Siemens, 3.0

Fat-
suppressed 
TSE (T2W)

Sagittal 7623/91 22×22 3.0 320×246 NA
Dedicated 
4-breast 
array

ManuallyFat-
suppressed 
SS-EPI 
(DWI)

Axial 5200/74
340×1
79

5.0 80×190 NA
Dedicated 
4-breast 
array
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Table 2.1. Continued.

Author,
Year
[Reference]

Study
design

Study
participants

Age range, 
average
(Years) or 
Mean ± SD

MR Scanner 
Manufacturer, 
Field Strength 
(Tesla, T)

MRI
Sequence

Orientation,
Slice #

TR/TE
(ms)

FOV
(cm)

Slice
Thickness
(mm)

Matrix
size

Flip
angle
(o)

Breast
coil

Segmentation 
method

Kim, 2016 
[57] Pros. 57 (32-74), 50.8 Siemens, 3.0

Fat-
suppressed
3D FLASH 
(T1W)

Sagittal 4.5/1.6 22×22 2.0 352×292 20
Dedicated
4-breast
array

Manually

Abbreviations: Ret.: retrospective; Pros.: prospective; C.S.: cross-sectional; F.: feasibility; Pre.: pre-menopausal; Post.: post-menopausal; T1W: T1-weighted; T2W: T2-
weighted; SPAIR: spectral attenuated inversion recovery; TSE: turbo spin-echo; SGRE: spoiled gradient-echo; VIBRANT: volume image breast assessment; GRE: gradient-
echo; FSE: fast spin-echo; STIR: short-TI inversion recovery; DWI: diffusion-weighted imaging; VIBE: volumetric interpolated breath-hold examination; FLASH: fast low 
angle shot; IDEAL: iterative decomposition of water and fat with echo asymmetry and least squares estimation; HR: high-resolution; LR: low-resolution; PDW: proton density-
weighted; SS-EPI: single shot- echo-planar imaging; FCM: fuzzy c-mean clustering algorithm; N3: non-parametric non-uniformity normalization; AUQV: automated user-
independent quantitative volumetric
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Figure 2.2. Flowchart of the study characteristics (study design, MRI system, MRI sequence, breast 
density (BD) segmentation method) of 38 studies.

 

2.4.3 Subgroup Analyses

The final inclusion consisted of a total of twenty-one studies in the meta-analyses; the 

forest plots and pooled results are shown in Figure 2.3.
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(E)

Figure 2.3. Forest plot of the study means, and 95% confidence limits of the breast density among 21 
included studies in the subgroup meta-analyses. (A) Fixed effect meta-analysis of the fuzzy c-mean 
clustering (FCM) group of studies of % breast density. (B) Fixed effect meta-analysis of the FCM group 
of studies of %dense breast volume. (C) fixed effect meta-analysis of the FCM and N3 group of studies 
of % breast density. (D) fixed effect meta-analysis of the semi-automated threshold group of studies of 
% breast density. (E) fixed effect meta-analysis of the semi-automated threshold group of studies of % 
breast density. 

2.4.3.1 Fuzzy C-mean Clustering (FCM)

The FCM subgroup consisted of 13 studies, of which, 10 studies reported breast 

density as a percentage breast density (% BD),1,11,25–32 whereas 3 studies as a 

percentage of the dense breast volume (% DBV).36–38 On one hand, 10 studies with 

inclusion of 634 patients were included, as Figure 2.3A shows, there is a wide range 

of mean values as well as standard deviation (SDs) from those studies, which indicated 

enormous heterogeneity among study means (Cochran’s Q test: X2 = 86.93, P < 

0.0001). Indeed, there is a substantial heterogeneity among study variances (Bartlett’s 

test: X2 = 110.59, P < 0.0001). On the other hand, three studies with inclusion of 528 

patients were analyzed. Figure 2.3B shows there is a high level of homogeneity among 

study means (Cochran’s Q test: X2 = 0.13, P = 0.94), and a high level of homogeneity 

among study variances (Bartlett’s test: X2 = 0.12, P = 0.94), which would be expected 

as those studies used an identical combination of MR technique and breast density 

segmentation/measurement approach. 
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2.4.3.2 FCM and Nonparametric Nonuniformity Normalization (N3)

The FCM and N3 subgroup included 4 studies with inclusion of 126 patients,45,48–50

as Figure 2.3C shows, there is a wide range of mean values as well as SDs from those 

studies, which indicated tremendous heterogeneity among study means (Cochran’s Q 

test: X2 = 99.94, P < 0.0001). Indeed, there is a substantial heterogeneity among study 

variances (Bartlett’s test: X2 = 45.41, P < 0.0001), which would be expected as those 

studies used different MR breast-imaging protocols. 

2.4.3.3 Interactive Semi-Automated Threshold

Two studies3,54 comprising of 58 patients were included in the analysis, which 

indicated a considerable heterogeneity among study means (Cochran’s Q test: X2 =

10.26, P = 0.0014). In contrast, there was no evidence of heterogeneity among study 

variances (Bartlett’s test: X2 = 1.61, P = 0.2072). On the other hand, two studies with 

inclusion of 67 patients53,55 were analyzed as shown in Figure 2.3E, there was no 

evidence of heterogeneity among study means (Cochran’s Q test: X2 = 3.01, P = 

0.0825), which would be expected as those studies used the same MRI technique and 

breast density measurement. However, there is a substantial heterogeneity among 

study variances (Bartlett’s test: X2 = 18.84, P < 0.0001). 

2.4.4 Cluster Analysis

The results obtained from the clustering analysis “Dendrogram using Single Linkage” 

are shown in Figure 2.4. From this data, it can be seen that a hierarchical diagram 

showing various distances (0-25) at which studies joined various groups. On that basis, 

six clusters were identified. A list of cluster membership, study means, SDs, and CVs 
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(expressed as a percentage) is shown in Table 2.3. A scatter plot of the study means 

versus SDs is shown in Figure 2.5, the legend in the scatter plot indicates the number

of studies in each cluster. Cluster markers with solid fill indicate clusters with two or 

more studies, whereas open markers indicate singletons. Cluster 1 included nine 

studies that analysed breast density with a combination of contrast and non-contrast

T1-weighted either with 2D spin echo or 3D gradient echo; however, Choi et al49 used 

diffusion-weighted scanning technique. From the data in Table 2.3, it is apparent that 

the CVs are varied in value, but in Choi’s study49 the CV is almost 100% because of 

the mean and SD are almost identical. In contrast, the CVs for Chan et al48 and Chen

et al53 are much lower than the rest of the included studies, largely because of the small 

SDs and the breast segmentation methods being used which are FCM & N3 and 

interactive semi-automated threshold algorithms, respectively.
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Table 2.2. Sample size, Mean, and SD of breast volume, fibroglandular volume, and percent of breast 
density of the (21) included studies in the subgroup meta-analyses. 

Author, Year 
[Reference]

Breast Volume,          
BV (cm3)

Fibroglandular 
Volume, FV (cm3)

Breast Density,        
BD (%)

Mean SD Mean SD N Mean SD

Chang, 2011 [25] 681 - 100 58 38 17.50 9.50

Nie, 2010 [26]
- - 104 62 141 15.30 8.10

- - 112 73 89 16.70 10.10

Perutz, 2016 [27] 2210 1125 297 128 68 16.60 11.20

Moon, 2018 [28] 537.59 287.74 - - 89 20.30 8.60

Chen, 2010 [29] - - - - 35 16.6 0 9.30

Ha, 2016 [30] - - - - 60 15.30 10.07

Chen, 2016 [31 ] 537.59 287.74 - - 23 24.71 15.16

Moon, 2011 [32] 544.90 207.41 - - 40 23.79 16.62

Klifa, 2010 [11] - - - - 35 28.0 18.00

Chen, 2011 [1] 358 174 79 66 16 22.10 2.60
Bertrand, 2015 
[36] 413.5 364.3 104.2 70.6 182 27.60 20.50

Bertrand, 2016 
[37]

418.7 369.3 104.7 70.3 172 27.40 20.00

Dorgan, 2012 
[38]

- - 104.67 71.28 174 28.15 20.39

Chen, 2012 [45] 528 263 117 82 34 24.10 12.40

Choi, 2017 [49] - - - - 38 14.80 14.40

Chan, 2011 [48]
- - - - 6 8.70 3.40
- - - - 24 21.20 8.30

Chen, 2013 [50] - - - - 24 7.50 3.80
Tagliafico, 2014 
[3]

- - - -
48 55.00 23.20

Lodger, 2016 
[54] 482.6 296.2 135.2 56.2 10 35.40 16.20

Chen, 2013 [53] - - 48.1 (ml) 24.7 (ml) 24 20.20 7.80
Wengert, 2015 
[55] 1462.43 803.38

- -
43 26.05 19.47
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In contrast, cluster 2 consisted of 8 studies that assessed breast density with a 

combination of contrast- and non-contrast-enhanced T1-weighted with 3D gradient 

echo, however, Chen et al31 and Chen et al45 used non-contrast- and contrast-enhanced 

T1-weighted with 2D spin-echo, respectively. Indeed, Chen et al45 analyzed breast 

density using FCM and N3 algorithms. From the data in Figure 2.5 and Table 2.3

(Cluster 2), it is apparent that the CVs are almost within a closed range except for Chen

et al45 where the CV is much lower than the remaining studies because of the small 

SD and the breast segmentation method that previously mentioned. Also, Wengert et

al55 used Dixon method as a technical protocol for breast-imaging, although they 

measured the breast density using in-house customized software, the mean and SD are 

not different to the other included studies. The most striking result to emerge from the 

data in Figure 2.5 and Table 2.3 (Cluster 3–6) is the Chen et al1 study (i.e., Cluster 3), 

although it used non-contrast-enhanced T1-weighted with 3D gradient echo and 

analyzed breast density by FCM algorithm, the CV (11.67%) is much lower than the 

remaining studies, mainly because of the small SD. 

Cluster 4 included two studies Chan et al48 and Chen et al50 that assessed breast density 

using FCM and N3 algorithms and non-contrast-enhanced T1-weighted with 3D 

gradient echo. As can be seen from the data in Figure 2.5 and Table 2.3 (Cluster 3–6) 

the study means and SDs are not different. In contrast to this Cluster 5, the Tagliafico

et al3 study used 3D contrast-enhanced T1-weighted gradient echo sequence and 

analyzed the breast density by semi-automated interactive threshold, in particular, 

(MedDensity). As Figure 2.5 and Table 2.3 (Cluster 3–6) show, the study mean is 

much higher than the remaining studies, largely because of the technical method used. 

Finally, cluster 6 consisted of Lodger et al,54 this is the only study that used proton 
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density weighted sequence. Detailed information of clustering membership, study 

means, SDs, and CVs is shown in Table 2.3, Figures 2.4 and 2.5.

Switching from technology groupings of studies to groupings identified by the cluster 

analysis, meta-analysis of cluster 1 revealed that the study means, and study variances 

are both heterogeneous (Cochran’s test for heterogeneity of study means, X2 = 22.26, 

P = 0.0045, and Bartlett’s test for heterogeneity of study variances, X2 = 21.47, P = 

0.0060, see Figure 2.6A). When Choi et al49 was excluded (because of the very large 

CV), the cluster has improved somewhat, which would be expected as this study used 

different protocols (i.e. diffusion-weighted imaging). It can be seen from the data in 

Figure 2.6B that the study variances are no longer heterogeneous (X2 = 8.84, P = 

0.2641), although the study means remain heterogeneous (X2 = 19.54, P = 0.0066). In 

contrast, meta-analysis of cluster 2 indicated that the study means are not 

heterogeneous (X2 = 4.77, P = 0.6874), while the study variances are mildly 

heterogeneous (X2 = 15.54, P = 0.0206, see Figure 2.7).
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Figure 2.4. Dendrogram clustering analysis using “single linkage” method of the study means, and 
study SDS among 21 included studies in the subgroup meta-analysis.
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Table 2.3. Study size (N), mean, SD, CV, and cluster membership of the included studies. 

Study 

Code

Author, Year 

[Reference]
N Mean SD CV

Cluster 

Membership

P1.01 Chang, 2011 [25] 38 17.50 9.50 54.29 1

P1.04 Nie, 2010 [26] 89 16.70 10.10 60.48 1

P1.05 Pertuz, 2016 [27] 68 16.60 11.20 67.47 1

P1.06 Moon, 2018 [28] 89 20.30 8.60 42.36 1

P1.07 Chen, 2010 [29] 35 16.60 9.30 56.02 1

P1.08 Ha, 2016 [30] 60 15.30 10.07 65.82 1

P4.13 Choi, 2017 [49] 38 14.80 14.40 97.30 1

P4.15 Chen, 2011 [48] 24 21.20 8.30 39.15 1

P6.03 Chen, 2013 [53] 24 20.20 7.80 38.61 1

P1.09 Chen, 2016 [31] 23 24.71 15.16 61.35 2

P1.10 Moon, 2011 [32] 40 23.79 16.62 69.86 2

P1.11 Klifa, 2010 [11] 35 28.00 18.00 64.29 2

P3.01 Bertrand,2015 [36] 182 27.60 20.50 74.28 2

P3.02 Bertrand, 2016 [37] 172 27.40 20.00 72.99 2

P3.03 Dorgan, 2012 [38] 174 28.15 20.39 72.43 2

P4.03 Chen, 2012 [45] 34 24.10 12.40 51.45 2

P6.05 Wengert, 2015 [55] 43 26.05 19.47 74.74 2

P1.12 Chen, 2011 [1] 16 22.10 2.60 11.76 3

P4.14 Chan, 2011 [48] 6 8.70 3.40 39.08 4

P4.16 Chen, 2013 [50] 24 7.50 3.80 50.67 4

P5.04 Tagliafico, 2014 [3] 48 55.00 23.20 42.18 5

P5.08 Lodger, 2016 [54] 10 33.40 16.20 45.76 6
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(A)

 

(B)

Figure 2.5. Scatter plot of the study means versus SDs using 6-clusters memberships of the 21 included 
studies in the subgroup meta-analyses. legend indicates the number of studies in each cluster, solid fill 
represents cluster with two or more studies, while open markers represent singleton study. Scatter plot 
of study means versus SDs with study codes (A) and without study codes (B).

 



65

 

(A)

(B)

Figure 2.6. Forest plot of the study means, and 95% confidence limits of the studies in cluster 1 
with/without P4.13 (Choi et al49) of % breast density. (A) fixed effect meta-analysis of the studies in 
cluster 1 (9 studies) of % breast density. (B) Fixed effect meta-analysis of the studies in cluster 1 (8 
studies) of % breast density. 

 

 
 

Figure 2.7. Forest plot of the study means, and 95% confidence limits of the studies in cluster 2 (8 
studies) of % breast density.



66

2.5 Discussion

The present systematic review and meta-analysis was performed to analyze the current 

studies on quantitative breast density using MRI and to determine the most appropriate 

technical/operational protocol. Through reviewing 38 studies from the literature, 

despite many methods and protocols available, no gold standard has been established 

with a wide range of heterogeneous methods or protocols used in these studies. To the 

best of our knowledge, this is the first comprehensive systematic review and meta-

analysis of pooling the results of all breast density segmentation/measurement

methods using MRI data. The analysis indicated that the non-contrast-enhanced T1-

weighted acquisition was commonly utilized among all MR breast-imaging protocols. 

Another important finding of this analysis was that the FCM is the most frequently 

used algorithm amongst the breast density segmentation/measurement methods. Also, 

the results showed that a high level of heterogeneity was mainly associated with the 

breast-imaging protocols and the breast density segmentation/measurement methods. 

Further attempts have been made by using clustering methods and meta-analysis to 

identify groups of studies which are as homogeneous as possible within groups and as 

heterogeneous as possible between groups. The included studies were grouped 

together into clusters based on their nearest neighbor Euclidean distances. On that 

basis, clusters 1 and 2 were considered as the most valuable results. Briefly, cluster 1 

consisted of 9 studies,25–30,48,49,53 as shown from the data in Table 2.3 and Figure 2.6A 

that the CVs are varied in value, but in Choi et al49 the CV is almost 100% because of 

the mean and SD are almost identical. This result may be explained by the fact that 

among the 8 studies,11,31,32,36–38,45,55 the breast-imaging protocol was a combination of 

contrast- and non-contrast-enhanced T1-weighted either with 2D spin echo or 3D 
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gradient echo, while in Choi et al49 the MRI protocol used was diffusion-weighted 

imaging. Consequently, it is advisable to exclude it from the meta-analysis to reduce 

the heterogeneity within cluster 1. Consistent with this hypothesis, the results have 

improved in somewhat, even though the study variances are not heterogeneous (P > 

0.05), the study means are heterogeneous (P < 0.05) (Figure 2.6B). Although exclusion 

of Choi et al49 did not reduce the heterogeneity, these results should be interpreted with 

caution. The discrepancy could be largely attributed to that although the MR breast-

imaging protocols are not dissimilar (i.e., contrast- and non-contrast-enhanced T1-

weighted), the breast segmentation/measurement methods are vice versa (i.e., FCM, 

FCM and N3, and in-house customized software). In contrast, cluster 2 included 8 

studies, in 3 of these studies the breast density was reported as a (%DBV), while the 

remaining as a (% BD). Among these studies, the contrast- and non-contrast-enhanced 

T1-weighted was often used. From the data in Table 2.3 and Figure 2.7, it is apparent 

that the study means are not dissimilar (P > 0.05), although the study variances are 

heterogeneous (P < 0.05). Among the 21 studies included in the cluster analysis, 

although the fixed effect meta-analysis of cluster 2 has improved slightly, the 

heterogeneity within group still exist. There are two likely causes for this 

heterogeneity: the applied MR breast-imaging protocol and the used breast density 

segmentation/measurement methods. 

Although the study has successfully confirmed the variation in the breast density 

segmentation/measurement methods using MRI data, the findings are subject to 

several limitations. First, the heterogeneity of study aims, the study design utilized, 

and the technical/operational methods applied, for instance, the MR breast-imaging 

protocol, MR scanner manufacturer, and the static magnetic field strength present 

challenges for performing the meta-analysis. Second, the breast density 
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segmentation/measurement algorithm used is another limitation. Although we 

classified the included studies into discrete subgroups (i.e., FCM, FCM and N3, and 

interactive semi-automated threshold), and applied stratified analyses, the 

heterogeneity remains. Third, the definition of the breast density was inconsistent 

because some studies reported it as a percentage of dense breast volume, while the 

others as a percentage of breast density. Fourth, among the 38 studies included in this 

analysis, only 21 studies were eligible for meta-analysis due to the statistical 

requirements for the input values that should be in identical expression of 

measurement and dispersion. In addition, some of the included studies used the same 

set of the subject multiple times for different purpose and feature. Even though we 

decided to rectify the issue by selecting one of the results of data at random, or by any 

meaningful clinical criterion, the heterogeneity continues to exist. Notwithstanding 

these limitations, the study further supports the idea of developing a standard MRI 

protocol for the quantitative assessment of breast density. 

Future research can be suggested according to findings of this review. A recent study 

has reported the feasibility of creating a realistic 3D printed breast phantom for quality 

control purpose.58 Thus, we consider 3D printing technique can be used to develop a 

patient-specific 3D printed breast phantom with different amounts of breast 

composition to quantify the volume of FGT. Further, the 3D printed model can be used 

to examine several MR breast-imaging protocols not only to measure the breast density 

but also to assess the impact of implementing various image quality parameters (i.e., 

FOV, matrix size and slice thickness) on the segmentation/measurement of breast 

density. Finally, the accuracy of different breast density/FGT segmentation methods 

can be determined.
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2.6 Conclusion

This systematic review and meta-analysis confirms and substantiates the variation 

among the breast density segmentation/measurement methods using MRI. 

Furthermore, subgroup meta-analyses and further clustering methods indicated that a 

significant heterogeneity within and between groups exist. The analysis confirmed that 

the non-contrast-enhanced T1-weighted acquisition was commonly utilized among all 

MR breast-imaging protocols and the FCM is the most frequently used algorithm 

amongst the breast density segmentation/measurement methods. Future work will 

need to determine the most appropriate protocol and method for quantifying breast 

density using MRI.
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Chapter 3                                                           

Development of Patient-Specific 3D-Printed Breast 

Phantom Using Silicone and Peanut Oils for Magnetic 

Resonance Imaging
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3.1 Abstract

Background: Despite increasing reports of 3D printing in medical applications, the 

use of 3D printing in breast imaging is limited, thus, personalized 3D-printed breast 

model could be a novel approach to overcome current limitations in utilizing breast 

magnetic resonance imaging (MRI) for quantitative assessment of breast density. 

Purpose: The aim of this study is to develop a patient-specific 3D-printed breast 

phantom and to identify the most appropriate materials for simulating the MR imaging 

characteristics of fibroglandular and adipose tissues. Methods: A patient-specific 3D-

printed breast model was generated using 3D-printing techniques for the construction 

of the hollow skin and fibroglandular region shells. Then, the T1 relaxation times of 

the five selected materials (agarose gel, silicone rubber with/without fish oil, silicone 

oil, and peanut oil) were measured on a 3T MRI system to determine the appropriate 

ones to represent the MR imaging characteristics of fibroglandular and adipose tissues. 

Results were then compared to the reference values of T1 relaxation times of the 

corresponding tissues: 1,324.42±167.63 and 449.27±26.09 ms, respectively. Finally, 

the materials that matched the T1 relaxation times of the respective tissues were used 

to fill the 3D-printed hollow breast shells. Results: The silicone and peanut oils were 

found to closely resemble the T1 relaxation times and imaging characteristics of these 

two tissues, which are 1,515.8±105.5 and 405.4±15.1 ms, respectively. The agarose 

gel with different concentrations, ranging from 0.5 to 2.5 wt%, was found to have the 

longest T1 relaxation times. Conclusions: A patient-specific 3D-printed breast 

phantom was successfully designed and constructed using silicone and peanut oils to 

simulate the MR imaging characteristics of fibroglandular and adipose tissues. The 

phantom can be used to investigate different MR breast imaging protocols for the 

quantitative assessment of breast density. 
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3.2 Introduction

Breast magnetic resonance imaging (MRI) is a well- established approach in the 

diagnosis of breast disease, and it has become an important modality in the screening 

of women at high-risk of breast cancer, preoperative staging of newly diagnosed breast 

cancer, and follow-up of breast cancer treatment.1-3 Hence, the European Society of 

Breast Imaging (EUSOBI) has recommended that breast MRI be used as an adjuvant 

modality in women at high- risk of developing breast cancer,3 for those with (BRCA-

positive genetic mutation carriers), family history, and/or high breast density.4

Breast density, a measure of fibroglandular, dense tissue relative to fatty, non-dense 

tissue, is an independent risk factor of breast cancer.5-7 Consistent with this risk 

relationship, women who have dense breasts have a likelihood of developing breast 

cancer that is fourfold higher than those with fatty breasts.8,9 Currently various 

methods have been developed and introduced to segment/ measure breast density using 

MRI: the utilization of a clustering algorithm, the segmentation of glandular and fatty 

tissues with an interactive thresholding algorithm, a logistic function approach and a 

curve-fitting algorithm; each has its advantages and limitations.10-14 However, there 

are certain drawbacks associated with the use of these algorithms as most of them are 

interpreted as measurements with a semi-automatic thresholding and segmentation 

methods. Likewise, different MR breast- imaging protocols have been used to 

differentiate between adipose and fibroglandular tissues ranging from non- contrast-
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enhanced T1-weighted to contrast-enhanced T1- weighted and diffusion-weighted 

acquisitions.15-19 Despite improvements in the quantitative assessment of breast

density using MR imaging, there has been no general agreement about the optimal 

scanning protocol in this aspect. A recent systematic review and meta-analysis about 

the quantitative assessment of breast density has confirmed these variations among 

breast segmentation/measurement methods and MR breast-imaging protocols.20

In recent years, there has been an increasing interest in 3D printing techniques, which 

are being used in different medical domains such as cardiovascular disease, 

orthopaedic surgery, prosthetics, and neurosurgery.21-24 3D-printed models have been 

shown to assist in the development of many surgical implants, which can improve the 

individual’s understanding of such a complex anatomical structure.21 Several studies 

have produced anthropomorphic breast phantoms for X-ray imaging, but there is still 

insufficient data available for MR imaging.25-30 Carton et al25 developed a 3D 

anthropomorphic breast phantom for the evaluation of image quality of 2D and 3D 

breast X-ray imaging systems. This phantom was based on a computational model and 

a rapid prototyping technique to generate breast phantom with different compositions, 

sizes, and shapes by using a tissue-equivalent material.25 While the phantom has 

effectively demonstrated a heterogeneous distribution of the fibroglandular and 

adipose tissues that can be analogous to the clinical breast images, it has certain 

limitations in terms of its fabrication method and application. The phantom has been 

printed in slabs form, which is very complicated to manufacture and it is a time-

consuming process.25

Although some research has been carried out on the use of 3D printing techniques to 

develop a breast phantom for MR imaging, only few studies have attempted to 
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generate a personalized 3D-printed breast phantom based on a realistic breast MR 

images that can be similar to the anatomical structures seen in human tissues.26-30

Burfeindt et al26 reported a new and convenient synthetic procedure to develop an 

MRI-derived 3D-printed breast phantom for the preclinical use in microwave breast-

imaging experiments. Although the phantom has successfully simulated the dielectric 

properties of the biological breast tissues, it has been designed for microwave breast-

imaging rather than for MR imaging system.26 Furthermore, the importance of 

realistic phantom structure in the assessment of photoacoustic breast imaging systems 

for the purpose of simulating the acoustic and optical breast tissues properties was 

demonstrated in a study by Dantuma et al,27 in which a semi-anthropomorphic 3D-

printed moulds derived from a MRI segmented numerical breast model was developed 

to produce real breast morphology using polyvinyl chloride plastisol (PVCP). 

However, there are limits to how far the phantom that has been designed for ultrasound 

and photoacoustic imaging can be used to simulate the MR imaging characteristics of 

breast tissues.27 Moreover, He et al28 developed a 3D-printed breast phantom for 

machine calibration and image optimization in multi-modalities imaging, where a 

mixture of PVC powder and softener (i.e., dioctyl terephthalate) was used as a tissue-

mimicking material (TMM) of breast tissues. 

Although the study has successful demonstrated the simulation of breast structures, it 

has certain limitations in terms of the lack of the appearance, variability, and 

heterogeneity of structures that are presented in the physiological tissues.28 Another 

potential limitation is that the T1 and T2 relaxation times of the materials were 

measured and found to be shorter than those reported in the physiological human breast 

tissues.28,29 While most of the aforementioned phantoms address their objectives in 

the medical imaging discipline, there are currently no phantoms available to evaluate 
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the breast density based on a realistic morphology of breast structures derived from a

MR images of human tissues. Likewise, uncertainties still exist about the most

appropriate TMMs that can be used to simulate the MR- related characteristics and 

appearance of breast structures, particularly fibroglandular tissue. Such a personalized 

3D-printed breast model could be used to examine different MR breast-imaging 

protocols not only to evaluate the breast density but also to determine the impact of 

applying various image quality parameters on the segmentation/ measurement 

methods of breast density. Therefore, the aim of this study is to develop a patient-

specific 3D-printed breast phantom and to identify the most appropriate materials for 

simulating the MR imaging characteristics of fibroglandular and adipose tissues. 

3.3 Methods

3.3.1 Patient Data

Ethical approval was obtained from Curtin University’s Human Research Ethics 

Committee (HREC) and King Fahd Armed Forces Hospital’s (Jeddah) Research and 

Ethics Committee. A random sample of patients with no history of breast disease was 

retrospectively reviewed from an existing breast MRI database. The criteria for 

selecting the subjects were the following: no previous surgery, no radiotherapy 

treatment on the chest wall, no history of breast cancer, and a Breast Imaging-

Reporting and Data System (BI-RADS) classification of 1, indicating a negative 

likelihood of cancer. A 46-year-old woman was identified by a senior radiology 

resident to match the selection criteria. The breast MRI examination was performed 

using 1.5T system (MAGNETOM Aera, Siemens, Germany) with a dedicated breast 

coil (18 channels). The MR breast imaging protocol was chosen based on the 

recommendations of a recent systematic review and meta-analysis20 as high-resolution 
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non-contrast-enhanced T1-weighted images to allow a precise differentiation between 

adipose and fibroglandular tissues: TR/TE 11.8/6.0 ms; matrix size 384×384; slice 

thickness 0.9 mm with no gap. 

3.3.2 Image Post-processing and Segmentation Process

A series of image post-processing and segmentation of the volumetric data was 

performed. First, the anonymized Digital Imaging and Communications in Medicine 

(DICOM) MR images were imported into the commercially available software 

Analyze 12.0 (AnalyzeDirect, Inc., Lexana, KS, USA) to segment the non-contrast-

enhanced T1-weighted breast images. Second, the breast’s boundary was delineated 

manually to distinguish the breast’s body from the surrounding tissues (pectoral 

muscle, heart, lungs, and thorax) on each 2D slice based on grayscale intensity, 

displayed in a histogram. Then, the 3D breast volume was created by these 2D images 

and was subsequently used to design the 3D-printed breast model. Finally, the 3D 

segmented MR breast volume was saved as a standard tessellation language (STL) file 

for further image post- processing and 3D printing. Figure 3.1 presents a schematic 

flowchart of the process of developing a patient-specific 3D-printed breast model 

using MRI data. For more details, the phantom consists of three main parts: the outer 

shell, simulating the skin layer, and the internal structures, which include 

fibroglandular and fat tissues, imitating the breast composition. To generate the skin 

shell, the STL file containing the 3D segmented MR breast volume was imported into 

the Blender software, version 2.79b (Blender Foundation, Amsterdam, Netherlands) 

to hollow the model and ensure that all the internal structures were perfectly extracted. 

On the other hand, the DICOM MR breast dataset was loaded into the 3D Slicer 

software, version 4.10.2 [National Alliance for Medical Image Computing (NA-MIC)] 
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to segment out the fibroglandular tissue and ensure that all the surrounding structures 

were completely removed. To increase reliability of the segmentation, each slice was 

segmented in different orientations using the threshold function, which was adjusted 

manually. This approach was used to threshold the DICOM dataset so that only the 

fibroglandular tissue structures were kept in the final segmented data. Subsequently, 

the segmented fibroglandular model was saved as a STL file and imported into the 

(version 3.5.474, Autodesk Inc., San Rafael, CA, USA) open-source software for 

further edit. Any deformities or free-floating objects were removed, and any holes 

were fixed during the editing process. 

 

Figure 3.1. Schematic flowchart demonstrates the process of developing a patient-specific 3D-printed 
breast model.

 
 

3.3.3 Overview and Breast Phantom Design

This part is divided into three sections, each detailing the construction process related 

to the 3D-printed breast model components. 
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3.3.3.1 Skin Layer

Based on the dimensions of a realistic tissue, the outer phantom shell had an average 

thickness of 3.0 mm, which corresponds to the normal skin thickness. The cover of the 

skin shell was designed using a computer-aided design (CAD) software. The skin shell 

and the cover were fabricated with fused deposition modelling (FDM) technology 

using polylactic acid (PLA) (Polymaker, Shanghai, China) on a Raise3D N2 Plus 3D 

printer (Raise3D, Irvine, CA, USA). The skin shell was printed with a layer height of 

0.15 mm, average printing time of 40 hours, and a resolution of 12.5 μm (Figure 3.2).

Figure 3.2. External structure of the patient-specific 3D-printed breast phantom that consists of 3 mm 
thick skin layer and compartments to be filled with fibroglandular and adipose tissues models.

 

3.3.3.2 Fibroglandular Region

The fibroglandular models constitute the internal component of the 3D-printed breast 

phantom. While various definitions of the term “breast density” have been proposed, 

in this study, the term “fibroglandular tissue” is used to refer to the breast density. 

Naturally, the fibroglandular region contains variable shapes and/or volumes of 

glandular tissue, includes fibrous or connective tissue. In clinical practice, the 

evaluation of fibroglandular tissue is based on a subjective assessment recommended 

by the American College of Radiology (ACR) BI-RADS, which is commonly used for 
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mammography but also for MRI. The BI-RADS atlas can be described as a 

classification system that characterises breast density on the basis of the amount of 

fibroglandular tissue into four categories: (I) almost entirely fat, (II) scattered 

fibroglandular tissue, (III) heterogeneous fibroglandular tissue, and (IV) extreme 

fibroglandular tissue.31,32

In order to simulate the MR imaging characteristics, the 3D fibroglandular models 

were designed as hollow structures with an average thickness of 2.0 mm. The 

fibroglandular models were fabricated using the digital light processing (DLP) 

technology on an Anycubic Photon S 3D DLP UV resin printer (Shenzhen Anycubic 

Technology Co. Ltd., Shenzhen, China) using white photopolymer resin (Magma H 

LINE Photopolymer Resin) from Magma Filament, Malaysia. A curing time of 10 sec 

per layer, a layer thickness of 0.05 mm, and a resolution of 47 μm were used to 

fabricate the fibroglandular models. The printing duration for both left and right 

fibroglandular models was about 17 hours (Figure 3.3).

Figure 3.3. Fabrication of the hollow fibroglandular models using the Anycubic photon S high-
resolution 3D DLP UV resin printer. The thickness of the wall is 2.0 mm. DLP, digital light processing. 
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3.3.3.3 Fat/Adipose Region

This region comprises a considerable part of the 3D-printed breast model. It consists 

of a selected material that simulates the MR imaging relaxation times of adipose tissue. 

3.3.3.4 Fibroglandular TMMs

Agarose gels with different concentrations vary in their ability to simulate the MR 

imaging characteristics of T1 and T2 relaxation times of an extensive range of human 

tissues.33,34 In a study investigating the T1 and T2 relaxation times of four sample 

phantom liquids, Gach et al33 found that silicone oil had the longest T1 and T2 times 

on a 3T MRI system: 1,068.29±5.95 and 566.40±4.68 ms, respectively. These results 

provide further support to the hypothesis that agarose gel or silicone oil could be used 

to mimic the MR imaging characteristics of fibroglandular tissue based on T1 and/or 

T2 relaxation times. Thus, four different raw materials were scanned to determine 

which one could be used to mimic the T1 and/or T2 relaxation times of fibroglandular 

tissue. The candidate materials were silicone oil with a viscosity of 50 mm
2
/s at 25 °C 

(TEX Chemical Inc., Country), agarose (Thermo Fisher, Waltham, MA, USA), 

silicone rubber RTV (Craftiviti Sdn. Bhd., Selangor, Malaysia), and fish oil 

(Blackmores, Sydney, Australia) (Figure 3.4).

3.3.3.5 Fat/Adipose TMMs

As Niebuhr et al35 reported, olive oil successfully simulates the MR imaging relaxation 

times of adipose tissue in abdominal and pelvic tissues measured in-vivo. In another 

study, Niebuhr et al34 found that peanut oil efficiently simulates the MR imaging 

characteristics of subcutaneous fat for pelvis phantoms. Peanut oil was preferred in 

this study for several reasons, including its relatively similar MR imaging 
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characteristics (T1 and T2 relaxation times) for adipose tissue, its translucent 

appearance, and its high oxidation stability.34,35 These characteristics suggest that 

peanut oil could be a performed material to mimic the T1 and/or T2 relaxation times 

of breast adipose tissue. Two types of peanut oil were scanned for testing: peanut oil 

Basso (raw material: Arachis hypogea; price: US$ 5/1L; Basso), and peanut oil Pressed 

Purity (raw materials: oleic acid (96.2%) and linoleic acid (13.2%), price: US$18/1.5L, 

Proteco Oils) (Figure 3.4).

3.3.4 Breast Phantom Construction

The T1 relaxation times of the five selected materials (agarose gel, silicone rubber 

with/without fish oil, silicone oil, and peanut oil) were measured at room temperature 

using a 3T MRI system to determine which ones could be used to mimic the MR 

imaging characteristics of fibroglandular and adipose tissues. The results were then 

compared to the reference values of T1 relaxation times of the corresponding tissues. 

Following this, the materials that matched the T1 relaxation times of the respective 

tissues were chosen to fill the 3D-printed hollow breast shells. 

Figure 3.4. Test raw materials. (A) Silicone rubber; (B) silicone rubber with fish oil; (C) fresh silicone 
rubber; (D) silicone oil with a viscosity of 50 mm2/s; (E) peanut oil (basso); (F) peanut oil (pressed 
purity); (G) agarose gel 0.5 wt%; (H) agarose gel 1.0 wt%; (I) agarose gel 1.5 wt%; (J) agarose gel 2.0 
wt%; (K) agarose gel 2.5 wt%. 



91

3.4 Results

3.4.1 3D-printed Hollow Models

The 3D-printed models of the hollow skin and fibroglandular region shells were 

scanned on a 3T MRI system (MAGNETOM Prisma, Siemens Healthcare, Erlangen, 

Germany) to check whether the models printed with the PLA or the photopolymer 

resin produce MR signals corresponding with these tissue features. Fortunately, no 

MR signal was observed from scanning the 3D-printed hollow models, indicating the 

possibility of using these materials for breast structure simulation and further patient 

models. It is important to note that the selected materials were checked when the 3D 

printing was initially performed and then checked again at the end of the breast 

phantom construction. 

3.4.2 Sample Characteristics

The five selected materials were scanned on the same 3T MRI system, with the 

materials placed in the 18-channel body and 32-channel spine coils. The MR breast 

scanning was chosen based on the institutional clinical protocol using 3D T1- and T2-

weighted turbo spin echo (TSE) sequences: TR/TE 650.0/10.0 ms; matrix size 

384×384; slice thickness 2.9 mm; no gap, and TR/TE 6,080.0/78.0 ms; matrix size 

384×384; slice thickness 4.0 mm; no gap, respectively. 

Figure 3.5 presents the MR imaging T1 relaxation times of the five materials (agarose 

gel, silicone rubber with/without fish oil, silicone oil, and peanut oil) simulating the 

breast composition. Figure 3.5D shows that the T1-weighted image of the silicone oil 

was associated with a mid-grey signal intensity, which is usually related to water-based 

tissues characterized by a moderate T1 relaxation time. On the other hand, Figure 
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3.5E,F shows that the T1-weighted images of the peanut oils indicated a high signal 

intensity, which was within expectation, as fat-based tissues have a short T1 relaxation 

time. In contrast, the T1-weighted images of the agarose gel with different 

concentrations, 0.5 to 2.5 wt%; were associated with low signal intensity, which is 

mainly observed in free water and other fluids (Figure 3.5G,H,I,J,K). 

Figure 3.5. T1-weighted images. (A) Silicone rubber; (B) silicone rubber with fish oil; (C) fresh silicone 
rubber; (D) silicone oil with a viscosity of 50 mm2/s; (E) peanut oil (basso); (F) peanut oil (pressed 
purity); (G) agarose gel 0.5 wt%; (H) agarose gel 1.0 wt%; (I) agarose gel 1.5 wt%; (J) agarose gel 2.0 
wt%; (K) agarose gel 2.5 wt%.

3.4.3 T1 Relaxation Times of the Sample Characteristics

The T1 relaxation times of these five materials are listed in Table 3.1. Silicone oil had 

a T1 relaxation time similar to that of fibroglandular tissue: 1,515.8±105.5 ms. In 

contrast, the Basso and Pressed Purity peanut oils had T1 relaxation times analogous 

to that of adipose tissue: 405.4±15.1 and 404.1±10.5 ms, respectively. For comparison, 

the T1 and T2 relaxation times of fibroglandular and adipose tissues measured using a 

1.5T and a 3T MRI system are presented in Table 3.2.

As shown in Table 3.1, the agarose gel with different concentrations, ranging from 0.5 

to 2.5 wt%, had the longest T1 relaxation times, which are similar to that of free water. 

The interesting finding is that the lowest concentration was associated with the highest 
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T1 relaxation time. Overall, the results presented in Table 3.1 and Figure 3.5 indicate

that the silicone and peanut oils closely resemble the MR imaging T1 relaxation times 

of the fibroglandular and adipose tissues, respectively. Therefore, these materials were 

chosen to fill the 3D-printed hollow models. 

Figure 3.6 provides an overview of the construction process of the 3D-printed breast 

phantom. The two fibroglandular shell models were filled with a silicone oil and then 

sealed using UV-curable photopolymer resin. Following this, the filled fibroglandular 

shell models were fixed inside the skin shell model using acrylic-based adhesive. 

Further, the space between the fibroglandular and skin shell models was filled with 

peanut oil. A home-made silicone gasket and cover were used to enclose the breast 

phantom. Finally, the cover was tighten using the commercially available 

polycarbonate bolt and nuts. 

Table 3.1. T1 Relaxation times of different materials for tissue surrogates used in the experiment.

*, Viscosity unit. TMM, tissue-mimicking material.

Phantom, TMM T1 (average SD, ms), 3T 
Siemens MR Scanner

Fibroglandular shell No signal
Skin/outer shell No signal
Silicone rubber 577.2 ± 107.8
Silicone rubber with fish oil 902.1 ± 120.5
Fresh Silicone rubber 638.3 ± 108.5
Silicone oil 50 mm2/s * 1515.8 ± 105.5
Peanut oil (Basso) 405.4 ± 15.1
Peanut Oil (Pressed Purity) 404.1 ± 10.5
Agarose gel 0.5 wt% 4015.5 ± 100.2
Agarose gel 1.0 wt% 3877.8 ± 130.5
Agarose gel 1.5 wt% 3404.8 ± 255.9
Agarose gel 2.0 wt% 3572.6 ± 100.4
Agarose gel 2.5 wt% 3617.2 ± 101.5
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Table 3.2. T1 and T2 Relaxation times of the breast tissues at 1.5T and 3T using FSE-IR scans.36

Tissue 
(reference)

T1 (average SD, 
ms), 1.5T

T2 (average
SD,  ms), 1.5T

T1 (average
SD, ms), 3T

T2 (average
SD,  ms), 3T

Adipose/Fat 372.04 ± 8.6 53.33 ± 2.11 449.27 ± 26.09 52.96 ± 1.54

Fibroglandular 1135.98 ± 151.37 57.51 ± 10.15 1324.42 ± 167.63 54.36 ± 9.35

FSE-IR, Fast Spin Echo-Inversion Recovery.

Figure 3.6. Flow chart showing 3D construction of the breast phantom. 3D-printing technique was used 
to create the hollow shells for skin and fibroglandular regions. Fibroglandular and adipose tissues were 
simulated using silicone and peanut oils, respectively.
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3.4.4 Scanning of the 3D-printed Breast Phantom

The MR images of the phantom were acquired following the same breast imaging 

protocols described in the Results, Sample Characteristics. The phantom was scanned 

in a prone position using a dedicated 18-channel breast coil. Figure 3.7 shows the T1-

and T2-weighted MR images of a patient-specific 3D-printed breast phantom using 

silicone and peanut oils as surrogates of the fibroglandular and adipose tissues, 

respectively. These oils presented an acceptable level of contrast and MR-related 

characteristics in both the T1- and the T2-weighted images. One of the most noticeable 

features of this phantom is that it is slightly inhomogeneous. However, this feature 

simulates the considerable inhomogeneity as often observed among the irregular 

distribution of the patient. Overall, the results shown in Table 3.1 and Figure 3.5

indicate that the MR imaging T1 relaxation times of the silicone and peanut oils used 

for the simulation of fibroglandular and adipose tissues are similar to their respective 

reference values reported in the literature.

 
 
Figure 3.7. MR images of the 3D-printed breast phantom. (A) T1-weighted image; (B) T2-weighted 
image using TSE scans. TSE, turbo spin echo.
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3.5 Discussion

This study aimed to develop a patient-specific 3D-printed breast phantom and to 

determine the most appropriate materials for simulating the MR imaging 

characteristics of fibroglandular and adipose tissues. Anthropomorphic shapes of skin 

and fibroglandular tissues were constructed using 3D-printing techniques based on the 

segmentations of breast MR images from a selected healthy patient’s data. All the 3D 

skin and fibroglandular region shells were designed as hollow structures using PLA 

and photopolymer resin. Since no MR signal was generated by the 3D-printed hollow 

models of those corresponding shells, different materials were selected to search for 

suitable ones with silicone oil and peanut oil being the most appropriate materials with 

similar T1 relaxation times to fibroglandular and adipose tissues. 

It was assumed that the T1 relaxation times would effectively supplement and extend 

our knowledge about the selected materials since most organs’ T1 values are five times 

longer than their T2 values. A comparison of the T1 relaxation times of the scanned 

materials with breast structure and literature reports showed that the silicone and 

peanut oils closely resemble the MR imaging T1 relaxation times of the fibroglandular 

and adipose tissues, respectively. Surprisingly, this study did not find a significant 

difference in the T1 relaxation times between different concentrations of agarose gel, 

which exhibited long T1 relaxation times, similar to that of water. Nevertheless, the 

agarose gel can be mixed with a gadolinium-based contrast agent for T1 adaptation, 

and can thus be used to simulate the MR imaging relaxation times of a wide range of 

human tissues. However, this would be costly and requires precautions when handling 

the contrast agent. Another unexpected finding was the slight difference in the T1 

relaxation times between the Basso and Pressed Purity peanut oils. However, the 
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observed difference was not significant. It is also worth noting that the Basso peanut 

oil was preferable due to its purity, availability, and low cost.

The most important clinically relevant finding was that the silicone and peanut oils 

demonstrated an acceptable level of contrast and MR-related characteristics of breast 

structures in both the T1- and the T2-weighted images. These findings are in line with 

Niebuhr et al,34 who suggested that peanut oil efficiently simulates the MR imaging 

characteristics of subcutaneous fat for pelvis phantoms. In accordance with the present 

results, previous studies demonstrated that silicone oil with a viscosity of 50 mm2/s 

had the longest T1 and T2 relaxation times on a 3T MRI system.33,35 However, silicone 

oil was not previously used for simulating the MR-related characteristics of breast 

structures, particularly fibroglandular tissue. Thus, this study presents interesting 

findings to encourage more research along this direction in breast phantom. 

The observed correlation between silicone oil’s T1 relaxation time and fibroglandular 

tissue could be attributed to its chemical composition and physical properties such as 

viscosity and density. This preliminary finding: suggests that silicone and peanut oils 

can be used to efficiently simulate the MR imaging characteristics of breast structures 

and produce further models. An implication of this is the possibility to examine 

different MR breast imaging protocols to identify the most appropriate for the 

quantitative assessment of breast density. For future investigations, it might be 

possible to use different chemical compositions and physical properties of silicone oils 

to evaluate the MR imaging relaxation times of breast structures. Since the relationship 

between silicone oil and fibroglandular tissue has not been studied, further research is 

required to better understand it. 
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Although the study has successfully designed and constructed a patient-specific 3D-

printed breast phantom, the findings are subject to several limitations. The study was 

not specifically designed to evaluate the mechanical properties of breast tissue 

components, such as elastic modulus or tissue strength. Examining the mechanical 

features along with the physical properties of selected materials could provide an idea 

of their characteristics and allow more detailed comparisons to the human breast tissue. 

Moreover, there are certain drawbacks to the use of 3D printing techniques for the 

construction of skin and fibroglandular hollow shells. One of them is the potential risk 

for some of the connected structures to break easily during the cleaning process. For 

this reason, several models of varying wall thicknesses, ranging between 1.0 and 2.5 

mm, were printed. However, increasing the thickness of photopolymer resin can cause 

considerable deformation of the fibroglandular structure. Another potential limitation 

is due to the complexity of the fibroglandular structure, with holes formed in the final 

mould. For this reason, a wrapping process was performed manually for each model 

to ensure that all the small gaps had been completely sealed. 

A further study on a patient-specific 3D-printed breast phantom will be conducted with 

a focus on different percentages of fibroglandular tissue. This can correspond to the 

four categories of the ACR BI-RADS atlas, thus allowing an estimation of the volumes 

of fibroglandular tissue. Varying its proportions will allow the quantitative 

assessments of breast density to be performed.
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3.6 Conclusion

In this study, a patient-specific 3D-printed breast phantom was successfully 

constructed using silicone and peanut oils to simulate the MR-related characteristics 

of breast fibroglandular and adipose tissues. The proposed methodologies can be used 

as a preliminary work for breast structure simulations and the construction of further 

patient models using MRI dataset. The phantom can be used to test different breast 

MR imaging protocols to determine the optimum scanning parameters and analysis 

algorithms for the quantitative assessment of breast density.
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Chapter 4                                                          

Quantitative Measurement of Breast Density Using

Personalized 3D-Printed Breast Model for Magnetic 

Resonance Imaging
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4.1 Abstract

Despite the development and implementation of several MRI techniques for breast 

density assessments, there is no consensus on the optimal protocol in this regard. This 

study aimed to determine the most appropriate MRI protocols for the quantitative 

assessment of breast density using a personalized 3D-printed breast model. The breast 

model was developed using silicone and peanut oils to simulate the MRI related-

characteristics of fibroglandular and adipose breast tissues, and then scanned on a 3T 

MRI system using non-fat-suppressed and fat-suppressed sequences. Breast volume, 

fibroglandular tissue volume, and percentage of breast density from these imaging 

sequences were objectively assessed using Analyze 14.0 software. Finally, the 

repeated-measures analysis of variance (ANOVA) was performed to examine the 

differences between the quantitative measurements of breast volume, fibroglandular 

tissue volume, and percentage of breast density with respect to the corresponding 

sequences. The volume of fibroglandular tissue and the percentage of breast density 

were significantly higher in the fat-suppressed sequences than in the non-fat-

suppressed sequences (p < 0.05); however, the difference in breast volume was not 

statistically significant (p = 0.529). Further, a fat-suppressed T2-weighted with turbo 

inversion recovery magnitude (TIRM) imaging sequence was superior to the non-fat-

and fat-suppressed T1- and T2-weighted sequences for the quantitative measurement 

of breast density due to its ability to represent the exact breast tissue compositions. 

This study shows that the fat-suppressed sequences tended to be more useful than the 

non-fat-suppressed sequences for the quantitative measurements of the volume of 

fibroglandular tissue and the percentage of breast density.

Keywords MRI; fibroglandular tissue; breast density; 3D-printed model; fat 

suppression; TIRM
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4.2 Introduction

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty 

tissue, has been determined as an independent risk factor for developing breast 

cancer.1–4 Previous studies have reported that the potential risk of breast cancer in 

women with dense breasts is three- to five-fold higher than in women with fatty 

breasts.5–7 Recent developments in breast cancer screening have intensified the need 

for a standardized imaging protocol and/or measurement method for the evaluation of 

breast density predominantly for women at an elevated risk of developing breast 

cancer, such as those with high breast density.4,8–10 A considerable amount of literature 

has been published on the assessment of breast density with several methods and 

algorithms proposed to segment and/or measure breast density using MRI datasets.11–

19 Nevertheless, research has consistently shown that these methods/algorithms seem 

to have certain drawbacks, mostly due to the use of a semi-automatic approach or a 

high-level of dependency on user interaction. Likewise, numerous MR breast-imaging 

protocols have been applied to the screening and/or the assessment of breast density, 

ranging from contrast- to non-contrast-enhanced imaging with or without the 

implementation of fat-suppression techniques.3,4,8–10,20–25 To date, there has been little 

consensus on the optimal MR breast-imaging protocol and measurement method for 

breast density screening and/or assessment, especially in the context of women with 

dense breast tissues. 

The dynamic contrast-enhanced (DCE)-MRI technique has been widely used for the 

screening of women at high risk of breast cancer and has been included in standard 

clinical breast MRI protocols.4,8 Despite its long clinical success, DCE-MRI has 

certain disadvantages, such as long scanning time, high cost, and potential harm caused 
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by the contrast agent.4,26 Although contradictory findings have been reported in the 

literature about the precipitation and accumulation of gadolinium contrast-based 

agents in the brain, there is no general agreement regarding the risk of repeated 

gadolinium administration.4,27–29 Nevertheless, questions have been raised about the 

safety of prolonged use of DCE-MRI as a primary screening method for the detection 

of breast cancer and/or the assessment of breast density. On the other hand, the fat-

suppression technique has been suggested in breast MRI to improve the visibility of 

pathology, contrast enhancement, and image quality, thus allowing for better 

differentiation between dense fibroglandular and non-dense fatty tissues.17,30 It has 

been combined with other techniques and/or sequence types due to the difficulty of 

eliminating the high signal intensity associated with fatty tissues.17,30 Several methods 

have been proposed for fat suppression in breast MRI, including chemical shift 

spectral-selective saturation (CHESS) based on the chemical shift variation between 

fat and water, inversion recovery (IR) based on variation in T1 relaxation time, hybrid 

CHESS–inversion recovery methods, and Dixon fat–water separation based on phase 

variation between fat and water signals at different echo times (TEs).3,17,20,30–32

Non-fat-suppressed and fat-suppressed T1-weighted images are frequently used with 

either 2D spin echo (SE) or 3D gradient echo (GRE) in standard clinical breast MRI 

protocols.8,17 Nevertheless, there is no consensus as to which of these 

sequences/techniques is the most efficient in this regard. The American College of 

Radiology (ACR) has recommended that the fat-suppressed images with high spatial 

resolution be used in clinical breast MRI protocols as images acquired with this 

sequence can eliminate misregistration, which mainly occurs when a patient moves 

during the acquisition of pre- and post-contrast images.8,17 However, this 

recommendation contrasts with that of the European Society of Breast Imaging 
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(EUSOBI), which considers non-fat-suppressed sequences based on the acquisition of 

subtraction images more useful.17,33 Despite this, there seems to be some consensus 

that other breast MRI techniques, including T2-weighted images, DCE, and diffusion-

weighted imaging (DWI), tend to benefit from its combination with fat-suppression 

techniques for several reasons.1,8,17,30 For instance, turbo inversion recovery 

magnitude (TIRM), a type of inversion recovery sequence with the advantage of short 

image acquisition time, has been widely used in the delineation of tumor and/or 

lymphatic spread and could possibly be combined with fat-suppression technique for 

the assessment of breast density.4,34 Patient-specific 3D-printed breast models, derived 

from a patient’s MR imaging data and comparable to the anatomical structures of 

human tissues, can be a valuable tool for examining different breast MRI protocols, 

testing the radio frequency coils, and evaluating system performance.35–42 The aim of 

this study is to determine the most appropriate MR breast-imaging protocols for the 

quantitative assessment of breast density using a personalized 3D-printed breast model 

based on an objective comparison between the non-fat-suppressed and fat-suppressed 

sequences. We hypothesize that fat-suppressed sequences allow for more accurate 

assessment of breast density while TIRM with fat-suppressed sequence further 

enhances its accuracy in quantitative assessment of breast density.

4.3 Materials and Methods

4.3.1 Study Subject: A Personalized 3D-Printed Breast Model 

A personalized 3D-printed breast model which was developed in our previous study43 

used 3D-printing techniques and tissue-mimicking materials (TMMs) with the 

intention of simulating the MR-related characteristics of fibroglandular and adipose 

breast tissues for the quantitative assessment of breast density. The model consisted of 
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two main parts: an outer shell to simulate the breast outline, and an inner shell filled 

with silicone and peanut oils to mimic the internal breast compositions. The results

showed that the silicone and peanut oils successfully resemble the MR-imaging 

characteristics and T1 relaxation times of fibroglandular and adipose breast tissues, 

respectively.43 This combination of findings further supports the hypothesis that such 

a model could be used to examine different MR breast-imaging protocols in order to 

determine the optimum for the quantitative assessment of breast density. Figure 4.1

demonstrates the schematic flowchart of the construction process for developing a 

personalized 3D-printed breast model. 

4.3.2 MR Scanning Protocol

The 3D-printed breast model was scanned on a 3T MRI system (MAGNETOM 

Prisma, Siemens Healthcare, Erlangen, Germany) in a prone position using a dedicated 

18-channel breast coil. Different MR imaging sequences were applied to improve the 

visibility of structure and contrast enhancement, thus allowing for better 

differentiation between fatty non-glandular and glandular structures. The site’s 

standard clinical breast MRI protocols of the site were used with no further 

modification and/or adjustment to the technical parameters. Table 4.1 displays the 

image acquisition parameters of the six MR imaging sequences used in this study.
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Figure 4.1. Flow chart demonstrates the construction process of the personalized 3D-printed breast 
model for MRI.43

 

4.3.3 Quantitative Measurement: Breast Volume, Fibroglandular Tissue Volume, 

and Percentage of Breast Density

Breast volume and fibroglandular tissue volume were objectively measured with a 

semi-automated segmentation method using a commercially available biomedical 

imaging software, Analyze V 14.0 (AnalyzeDirect, Inc., Lexana, KS, USA). Two steps 
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were performed to measure the percentage of breast density from MRI data: breast 

segmentation and fibroglandular tissue segmentation. The purpose of breast 

segmentation is to separate the breast’s body from the surrounding structure and/or 

background, while fibroglandular tissue segmentation separates the glandular from the 

fatty tissue. 

To differentiate the breast’s body from the background, the breast’s boundary was first 

delineated semi-automatically using an interactive tool based on the threshold signal 

intensity function by setting seed points on a series of 2D axial slices comprising the 

entire breast volume. The minimum and maximum threshold limits were then adjusted 

to define the region of interest. The software spontaneously interpolated between these 

slices and generated a mask of the whole breast volume. Once the breast’s body was 

segmented out, an automated method incorporating several morphological processing 

operations and spatial filters were used to segment out the fibroglandular tissue from 

the surrounding fatty tissue. Upon completion of this segmentation process, the breast 

volume and fibroglandular tissue volume were measured using a 3D-measurement tool 

based on the size intensity function. The percentage of breast density was then 

computed as the ratio of the fibroglandular tissue volume relative to the total breast 

volume. Finally, the results were analyzed to assess the differences between the 

measurement of breast volume, fibroglandular tissue volume, and percentage of breast 

density based on the different MRI sequences.

4.3.4 Data Synthesis

The acquisition of the different MRI sequences and the implementation of several fat-

suppression techniques, as applied in the proposed study, are considered to be 
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technically heterogeneous. To address this complexity and provide more objective 

comparisons, the six MRI sequence compartments were re-configured into a two-way 

cross-classification, namely two fat-suppression categories: non-fat-suppression MRI 

sequences (i.e., MR Seq. 1, 2, and 3) and fat-suppression MRI sequences (i.e., MR 

Seq. 4, 5, and 6). For the purpose of the analysis, the segmentation processes of both 

the breast volume and the fibroglandular tissue volume were performed three times, 

thus extracting three segments from each MRI sequence. Subsequently, the 

measurements were conducted three times with respect to the volume of the breast, the 

volume of the fibroglandular tissue, and, thereby, the percentage of the breast density.

4.3.5 Statistical Analysis

Statistical analyses were conducted using NCSS V 19.0.5 (NCSS, LLC., Kaysville, 

UT, USA). The repeated-measures analysis of variance (ANOVA) was performed to 

examine the difference between the quantitative measurements of breast volume, 

fibroglandular tissue volume, and percentage of breast density with regard to the non-

fat-suppressed and fat-suppressed MRI sequences. This variance model was employed 

to account for the variation both between sequences (i.e., between subjects) and within 

repeated measurements (i.e., within subjects). Significance levels were set at the 5% 

level. Descriptive data and box plots were also produced for all variables, 

demonstrating the distribution and median of breast volume, fibroglandular tissue 

volume, and percentage of breast density measured in the non-fat-suppressed and fat-

suppressed imaging groups.
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Table 4.1. Image acquisition parameters of the MR breast-imaging sequences using a personalized 3D-printed breast model.

Abbreviations: TR: repetition time; TE: echo time; TI: inversion time; FOV: field-of-view; NSA: number of signal averages/excitations; 2D: two-dimensional; 3D: three-

dimensional; TSE: turbo (fast) spin-echo; T1W: T1-weighted; T2W: T2-weighted; SPACE: sampling perfection with application optimized contrasts using different flip angle 

evolution; SPAIR: spectral attenuation inversion recovery; SE: spin-echo; IR: inversion recovery; PFP: partial fourier phase; TIRM: turbo inversion recovery magnitude.

No. MRI sequence
Acquisition

type

Orientation,

Slice No.

TR

(ms)

TE

(ms)

TI

(ms)

FOV

(mm)

Matrix

size

Slice

thickness

(mm)

Flip

angle

(°)

NSA

Scan

time

(min)

1.
Non-fat-suppressed

TSE (T2W)
2D Axial, 33 6080 78 - 350×350 336×448 4.0 80 1 1.10

2.
Non-fat-suppressed

TSE (T1W)
2D Axial, 37 709 10 - 350×350 224×320 2.9 130 2 2.38

3.
Non-fat-suppressed

TSE SPACE (T1W)
3D Axial, 88 600 3.4 - 400×400 256×256 1.6 120 2 2.47

4.
Fat-suppressed TSE

SPACE (T1W)
3D Axial, 88 1500 3.4 - 400×400 256×256 1.6 120 1 4.58

5.
Fat-suppressed TSE

SPACE SPAIR (T1W)
3D Axial, 88 1500 3.4 - 400×400 256×256 1.6 120 1 4.58

6.
Fat-suppressed IR/PFP

TIRM (T2W)
2D Axial, 37 4120 70 230 340×340 358×448 3.0 80 2 1.51
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4.4 Results

4.4.1 Scanning of the Personalized 3D-Printed Breast Model 

Figure 4.2 shows the MR images of the personalized 3D-printed breast model using 

silicone and peanut oils as surrogates for fibroglandular and fatty breast tissues, 

respectively, for the various scanning sequences. These oils produced a reasonable 

level of contrast and MR-related characteristics amongst the T1- and T2-weighted 

images with and without the implementation of the fat-suppression techniques. 

Although the most noticeable feature of the personalized 3D-printed breast model was 

that it was somewhat inhomogeneous, this feature nevertheless mimics the substantial 

inhomogeneity sometimes encountered in patients’ irregular distributions. The used 

tissue-mimicking materials for simulating the MR imaging characteristics for 

fibroglandular and adipose tissues have been induced similar appearance, variability, 

and heterogeneity of the breast structures that seen in the physiological tissues.

The suppression of fat signals in the T1-weighted images with both SPACE and 

SPAIR acquisitions did not substantially increase the contrast enhancement or 

visualization between the dense fibroglandular and non-dense fatty structures (Figure 

4.2D, E). A possible explanation for this could be that these types of acquisitions are 

highly affected by inhomogeneity in the magnetic field, demonstrating 

inhomogeneous fat suppression in the fatty structures. On the contrary, Figure 4.2F 

shows that the fat-suppressed T2-weighted image with TIRM acquisition 

demonstrated a homogenous high signal intensity in the fibroglandular structure and a 

low signal intensity in the fatty structure for both the right and left breasts. The 

suppression of fat signals significantly improved the contrast between the 
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fibroglandular and fatty structures, further enhanced visualization, and provided more 

anatomical information which may assist in the segmentation and/or quantification of 

breast density.

 

Figure 4.2. Central axial slice of a personalized 3D-printed breast model for the different MR imaging 
pulse sequences. (A) Non-fat-suppressed TSE (T2W); (B) Non-fat-suppressed TSE (T1W); (C) Non-
fat-suppressed TSE SPACE (T1W); (D) Fat-suppressed TSE SPACE (T1W); (E) Fat-suppressed TSE
SPACE SPAIR (T1W); (F) Fat-suppressed IR/PFP TIRM (T2W). For pulse sequences, refer to Table 
4.1.
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4.4.2 Quantitative Measurement of Breast Volume, Fibroglandular Tissue 

Volume, and Percentage of Breast Density

Table 4.2 displays the quantitative measurements (mean and standard deviations) of 

the breast volume, fibroglandular tissue volume, and percentage of breast density for 

the different MRI sequences. For the SPACE T1-weighted images (i.e., MR Seq. 3 

and 4), there was evidence of a difference in breast density between the non-fat-

suppressed sequence (7.719 ± 0.366%) and the fat-suppressed sequence (11.698 ± 

0.351%). This difference can be explained by the direct relationship between

fibroglandular tissue volume and breast density, as shown in Table 4.2, the volume of 

fibroglandular tissue measured in the fat-suppressed sequence (i.e., MR Seq. 4) was 

higher than that in the non-fat-suppressed sequence (i.e., MR Seq. 3): 53.940 ± 1.083

cm3 and 34.261 ± 1.809 cm3, respectively. 

For the breast density assessment, there was a substantial difference between the non-

fat-suppressed sequence (5.401 ± 0.165%) and the fat-suppressed sequence (9.498 ± 

0.930%) measured in the T2-weighted images, MR Seq. 1 and MR Seq. 6, 

respectively. This difference might explain the relatively good improvement in the 

contrast between the fibroglandular and fatty structures (Figure 4.2F) owing to the 

implementation of the fat-suppression technique, which had a major effect on the 

segmentation process and, therefore, the measurement of breast density. By contrast, 

the means of the breast density for the non-fat suppressed (i.e., MR Seq. 2) and the fat-

suppressed (i.e., MR Seq. 5) were 7.733 ± 0.365% and 10.467 ± 0.084%, respectively. 

A comparison of MR Seq. 2 and MR Seq. 5 revealed that the breast volume, 

fibroglandular tissue volume, and percentage of breast density measured in the fat-



118

suppressed sequence tended to be higher than that measured in the non-fat-suppressed 

sequence (Table 4.2).

 

 

 

 

Table 4.2. Results of the estimated mean and standard deviation of breast volume, fibroglandular tissue 
volume, and percentage of breast density for the different MRI sequences using a personalized 3D-
printed breast model.

MRI sequence*
Breast volume (cm3)

Fibroglandular 
tissue volume (cm3)

Breast density         
(%)

Mean SD Mean SD Mean SD

Non-fat-suppression group (MR Sequences 1, 2, and 3)

MR Seq. 1 (N = 3) 592.291 5.065 31.984 0.735 5.401 0.165

MR Seq. 2 (N = 3) 388.793 4.159 30.067 1.159 7.733 0.365

MR Seq. 3 (N = 3) 443.884 11.913 34.261 1.809 7.719 0.366

Combined (N = 9) 474.989 91.406 32.104 2.144 6.952 1.194

Fat-suppression group (MR Sequences 4, 5, and 6)

MR Seq. 4 (N = 3) 461.188 4.699 53.940 1.083 11.698 0.351

MR Seq. 5 (N = 3) 462.948 11.882 48.456 1.140 10.467 0.084

MR Seq. 6 (N = 3) 715.784 32.097 67.794 3.623 9.498 0.930

Combined (N = 9) 546.640 128.031 56.730 8.854 10.555 1.077

*For pulse sequences, refer to Table 4.1.
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4.4.3 Comparison of Measurements Between Non-Fat-Suppression and Fat-

Suppression Groups

Table 4.3 demonstrates the results (mean, standard error, F-ratio, and P-value) of the 

repeated-measures ANOVA of breast volume, fibroglandular tissue volume, and 

percentage of breast density with respect to the non-fat-suppression and fat-

suppression groups. The box plots of these parameters for the two groups are shown 

in Figure 4.3.

 

 

 

Table 4.3. Results of the repeated-measures ANOVA, including total mean, standard error (SE), F-
ratio, probability level (Prob level) of breast volume, fibroglandular tissue volume, and percentage of 
breast density between two imaging groups: non-fat-suppressed and fat-suppressed MRI pulse 
sequences.

Breast Density 
Parameter

Non-fat-suppressed (N =
9)

Fat-suppressed (N = 9) F-
ratio

Prob 
level**

Mean SE (4 df*) Mean SE (4 df*)

Breast volume (cm3) 474.989 73.639 546.640 73.639 0.47 0.5293

Fibroglandular 
tissue volume (cm3)

32.104 4.158 56.730 4.158 17.54 0.0138

Breast density (%) 6.952 0.709 10.555 0.709 12.90 0.0229

*The degrees of freedom; **The significance level of the F-ratio (the probability that the difference 

between data is significant or not). The significant difference between the quantitative measurements 

of breast volume, fibroglandular volume, and percentage of breast density based on the non-fat 

suppressed and the fat-suppressed MRI sequences was determined at the 5% level.

 

For breast volume, although the mean measured from the non-fat-suppression group 

(474.989 cm3 ) tended to be lower than that from the fat-suppression group (546.640 

cm3), the difference was not statistically significant (p = 0.5293), with an F-ratio of 

0.47 and a standard error for both means of 73.639. However, for the fibroglandular 
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tissue volume and the percentage of breast density, the repeated-measures ANOVA

showed that the difference between the non-fat-suppression group and the fat-

suppression group was statistically significant at the 5% level. The values measured 

from the non-fat-suppression group were lower than those from the fat-suppression 

group, as shown in Table 4.2; Table 4.3. The mean volume of fibroglandular tissue 

was 32.104 cm3 for the non-fat-suppression group and 56.730 cm3 for the fat-

suppression group, which was statistically significant (F = 17.54; p = 0.0138), with a 

standard error of 4.158. Likewise, there was a significant difference (F = 12.90; p = 

0.0229) between the two groups: the mean breast density measured in the non-fat-

suppression group (6.952%) tended to be lower than that of the fat-suppression group 

(10.555%), with a standard error for both means of 0.709.

 
 

(A)
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(B)

 
 

(C)
 

Figure 4.3. Box plots demonstrate the distribution and median of three main parameters: (A) breast 
volume, (B) fibroglandular tissue volume, and (C) percentage of breast density measured on the non-
fat-suppressed and the fat-suppressed MRI sequences. The six MRI sequences compartments were re-
configured into a two-way cross-classification, namely two fat-suppression categories. As shown, 
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“1/No” is the non-fat-suppression, “2/Yes” is the fat-suppression, which are on the x-axis, while the 
three parameters measured with respect to these two corresponding categories are on the y-axis.

 

4.5 Discussion

Recently, for women with an elevated risk of developing breast cancer, such as those 

with high breast density, the importance of establishing a standardized MRI protocol 

and/or measurement method for the assessment of breast density has increased in 

clinical and research domains. Although fat-suppressed and non-fat-suppressed 

sequences have frequently been included for both T1- and T2-weighted images in 

clinical breast MRI protocol, there is no agreement on which of these sequences should 

be used in this regard.1,8,17,30 The current study was designed to determine the most 

appropriate MRI sequence for the quantitative assessment of breast density using a 

personalized 3D-printed breast model43 based on an objective comparison between fat-

suppressed and non-fat-suppressed sequences. Six MRI sequences were acquired and 

categorized into fat-suppression and non-fat-suppression categories to examine the 

difference between the quantitative measurements of breast volume, fibroglandular 

tissue volume, and percentage of breast density between these two imaging groups. 

Comparing the two fat-suppression groups, the repeated-measures ANOVA showed 

that the differences between the non-fat-suppressed and fat-suppressed MRI sequences 

(i.e., MR Seq. 1, 2, and 3 and MR Seq. 4, 5, and 6) were statistically significant at the 

5% level for both fibroglandular tissue volume and percentage of breast density. On 

the contrary, the observed difference between these corresponding sequences was not 

statistically significant with respect to breast volume. The current findings seem to be 

consistent with other research documenting that the assessment of breast density is 

considered to fluctuate with MRI sequences and with the application of fat-suppression 
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techniques.3,16,17 A comparison of our results with Chang et al,17 who suggested that 

breast volumes measured in T1-weighted sequences with and without fat suppression 

were almost identical for a similar case, is encouraging. Although their results differed 

from the current study, given that the breast density parameters were analyzed only on 

the T1-weighted sequences, they are still consistent with our findings, which showed 

that there was no evidence of a difference in the breast volumes between the non-fat-

suppression and the fat-suppression groups (Table 4.3). A possible explanation for this 

could be that the measurement of breast volumes based on these two groups was not 

considerably influenced by the applied imaging techniques and/or segmentation 

method. Despite the breast volumes measured from the T2-weighted sequences with 

and without fat suppression being higher than those of the T1-weighted sequences, the 

difference between the two imaging groups was not significant. This can be attributed 

to the matrix sizes of the T2-weighted images used with the non-fat-suppressed and 

fat-suppressed sequences (i.e., MR Seq. 1 and 6), which were 336 × 448 and 358 × 

448, respectively. 

However, there was a statistically significant difference between fibroglandular tissue 

volume and percentage of breast density, indicating higher values in the fat-suppressed 

sequences (MR Seq. 4, 5, and 6) compared to the non-fat-suppressed sequences (MR 

Seq. 1, 2, and 3), as shown in Tables 4.2 and 4.3. This difference can be explained in 

part by the relatively good contrast enhancement and/or visualization observed 

between the fibroglandular and the fatty structures resulting from the suppression of 

fat signals, as was evident in the TIRM with fat-suppressed T2-weighted image (Figure 

4.2F). Although the signal-to-noise ratio and tissue contrast in the non-fat-suppressed 

images were higher than those in the fat-suppressed images, the results for the fat-

suppression group were significantly higher than those for the non-fat-suppression 
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group. Nevertheless, the scanning times for the fat-suppressed sequences were longer 

than those for the non-fat-suppressed sequences, except for the TIRM, which was 1 

min 51 s. As shown in Table 4.2, breast volume, fibroglandular tissue volume, and 

percentage of breast density analyzed with TIRM were considerably higher than those 

of the T1- and T2-weighted sequences with and without fat suppression. Compared to 

these sequences, the observed increase in breast density parameters from the T2-

weighted and TIRM acquisition was probably due to their individual characteristics: 

the T2-weighted image with fat-suppression technique is known to improve fluid 

intensity visualization, while TIRM is known to provide more anatomical 

information.4,44 Similar findings were obtained by Bu et al,4 who suggested that the 

combined DWI and TIRM could be used as an alternative imaging protocol for the 

screening of women with dense breast tissue. Despite being preliminary findings, our 

study indicates that TIRM could be incorporated with fat-suppression techniques for 

the assessment of breast density. Therefore, the fat-suppressed T2-weighted image 

with TIRM acquisition can be a promising technique for the quantitative assessment 

of breast density, although further research should be conducted to verify this 

suggestion. 

Overall, the observed differences in breast density measurements between the fat-

suppression and non-fat-suppression groups can be attributed to several factors: the 

segmentation method, image quality, scanning/technical parameters, and tissue 

contrast achieved by using different MRI pulse sequences. There are, however, other 

possible reasons; the applied fat-suppression techniques are more susceptible to 

magnetic field inhomogeneity, especially in the case of the 3T MRI system, where the 

field heterogeneity can be more protuberant. As shown in Figure 4.2, the high levels 

of inhomogeneity in both the fat-suppressed and non-fat-suppressed images might be 
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the major factor—if not the only factor—that can cause such a variation in the 

segmentation and/or quantification of breast density parameters. 

Although this study suggests that the fat-suppressed sequences are more useful than 

the non-fat-suppressed sequences for the segmentation/measurement of fibroglandular 

tissue volume and breast density, it is subject to several limitations. First, the 

assessment of breast density parameters was carried out on a developed 3D-printed 

breast model using silicone and peanut oils as tissue-equivalent materials and may not 

reflect the exact distribution of both fibroglandular and fatty structures as seen in 

human breast tissues. This limitation could be addressed by further research with the 

use of more realistic breast models for MRI scanning. Second, the high levels of 

inhomogeneity in both the fat-suppressed and non-fat-suppressed images could have 

influenced the segmentation and breast density measurements. This is unavoidable due 

to the complexity of the MRI scanning sequences. Third, the breast density parameters 

were segmented and measured using a semi-automated method, which implies that the

prospective source of variation between such measurements could be due to a high 

level of dependency on user interaction. For this reason, multiple 

segmentations/measurements of the breast density parameters were consistently 

conducted by the same observer to minimize potential intra-observer variations. 

However, the applicability of the proposed segmentation and measurement method is 

relatively high as an interactive 3D tool and would be more useful in the long-term 

assessment of breast density. Finally, with the implementation of different imaging 

techniques, acquisition types, and fat-suppression methods, caution must be applied as 

the findings might not be transferable to clinical practice without further investigation. 
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For future research, a greater focus on the TIRM with a fat-suppression technique 

could produce interesting findings on the quantification of breast density, especially 

for women at high risk of developing breast cancer. Quantitative assessment of breast 

density parameters in participants’ clinical breast MRI datasets, could also be used to 

investigate and validate this observation.

4.6 Conclusion

A significant difference was found between the non-fat-suppression and fat-

suppression MRI sequences for the quantitative measurements of the volume of 

fibroglandular tissue and the percentage of breast density. In general, the findings 

suggest that fat-suppressed sequences are an efficient scanning technique that reflects 

the exact composition of breast tissues. TIRM with fat-suppressed T2-weighted 

sequence can be a promising imaging protocol for the segmentation and/or 

quantification of breast density. Further research is required to verify these findings so 

that the optimal breast MRI protocols can be developed for clinical application.

 

4.7 References

1. Chen JH, Chang YC, Chang D, Wang YT, Nie K, Chang RF, Nalcioglu O, 

Huang CS, Su MY. Reduction of breast density following tamoxifen treatment 

evaluated by 3-D MRI: Preliminary study. Magn Reson Imaging. 2011; 

29(1):91-98.

2. Wang J, Azziz A, Fan B, Malkov S, Klifa C, Newitt D, Yitta S, Hylton N, 

Kerlikowske K, Shepherd JA. Agreement of mammographic measures of 

volumetric breast density to MRI. PLoS ONE. 2013; 8(12):e81653.



127

3. Tagliafico A, Bignotti B, Tagliafico G, Astengo D, Martino L, Airaldi S, 

Signori A, Sormani MP, Houssami N, Calabrese M. Breast density assessment 

using a 3T MRI system: Comparison among different sequences. PLoS ONE. 

2014; 9(6):e99027.

4. Bu Y, Xia J, Joseph B, Zhao X, Xu M, Yu Y, Qi S, Shah KA, Wang S, Hu J. 

Non-contrast MRI for breast screening: Preliminary study on detectability of 

benign and malignant lesions in women with dense breasts. Breast Cancer Res

Treat. 2019; 177(3):629–639.

5. Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O’Meara ES, Buist DS,

Kerlikowske K, Van Ravesteyn NT, Trentham-Dietz A, Mandelblatt JS. Risk 

factors for breast cancer for women aged 40 to 49 years: A systematic review 

and meta-analysis. Ann Intern Med. 2012; 156(9):635–648.

6. McCormack VA, Dos Santos Silva I. Breast density and parenchymal patterns 

as markers of breast cancer risk: A meta-analysis. Cancer Epidem Biomar. 

2006; 15(6): 1159–1169.

7. Kerlikowske K, Ichikawa L, Miglioretti DL, Buist DS, Vacek PM, Smith-

Bindman R, Yankaskas B, Carney PA, Ballard-Barbash R. Longitudinal 

measurement of clinical mammographic breast density to improve estimation 

of breast cancer risk. J Natl Cancer Inst. 2007; 99(5):386–395.

8. Sindi R, Sá Dos Reis C, Bennett C, Stevenson G, Sun Z. Quantitative 

Measurements of Breast Density Using Magnetic Resonance Imaging: A 

Systematic Review and Meta-Analysis. J Clin Med. 2019; 8(5):745.

9. Sindi R, Sun Z. Optimal protocols for quantitative assessment of breast density 

using magnetic resonance imaging. Australas Med J. 2019; 12(6):186–188.



128

10. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. 

Systematic review: Using magnetic resonance imaging to screen women at 

high risk for breast cancer. Ann Intern Med. 2008; 148(9):671–679.

11. Nayeem F, Ju H, Brunder DG, Nagamani M, Anderson KE, Khamapirad T, Lu 

LJ. Similarity of fibroglandular breast tissue content measured from magnetic 

resonance and mammographic images and by a mathematical algorithm. Int J 

Breast Cancer. 2014; 2014:961679.

12. Lin M, Chan S, Chen JH, Chang D, Nie K, Chen ST, Lin CJ, Shih TC, 

Nalcioglu O, Su MY. A new bias field correction method combining N3 and 

FCM for improved segmentation of breast density on MRI. Med Phys. 2011; 

38(1):5-14.

13. Doran SJ, Hipwell JH, Denholm R, Eiben B, Busana M, Hawkes DJ, Leach 

MO, Silva ID. Breast MRI segmentation for density estimation: Do different 

methods give the same results and how much do differences matter? Med Phys. 

2017; 44(9):4573-4592.

14. Tagliafico A, Tagliafico G, Tosto S, Chiesa F, Martinoli C, Derchi LE, 

Calabrese M. Mammographic density estimation: comparison among BI-

RADS categories, a semi-automated software and a fully automated one. 

Breast. 2009; 18(1):35-40.

15. Boston RC, Schnall MD, Englander SA, Landis JR, Moate PJ. Estimation of 

the content of fat and parenchyma in breast tissue using MRI T1 histograms 

and phantoms. Magn Reson Imaging. 2005; 23(4):591-599.

16. Lu LJ, Nishino TK, Johnson RF, Nayeem F, Brunder DG, Ju H, Leonard Jr 

MH, Grady JJ, Khamapirad T. Comparison of breast tissue measurements 



129

using magnetic resonance imaging, digital mammography and a mathematical 

algorithm. Phys Med Biol. 2012; 57(21):6903–6927.

17. Chang DH, Chen JH, Lin M, Bahri S, Yu HJ, Mehta RS, Nie K, Hsiang DJ, 

Nalcioglu O, Su MY. Comparison of breast density measured on MR images 

acquired using fat‐suppressed versus non-fat‐suppressed sequences. Med Phys. 

2011; 38(11):5961-5968.

18. Nie K, Chang D, Chen JH, Hsu CC, Nalcioglu O, Su MY. Quantitative analysis 

of breast parenchymal patterns using 3D fibroglandular tissues segmented 

based on MRI. Med Phys. 2010; 37(1):217–226.

19. Pertuz S, McDonald ES, Weinstein SP, Conant EF, Kontos D. Fully automated 

quantitative estimation of volumetric breast density from digital breast 

tomosynthesis images: Preliminary results and comparison with digital 

mammography and MR imaging. Radiology. 2016; 279(1):65–74.

20. Ledger AE, Scurr ED, Hughes J, Macdonald A, Wallace T, Thomas K, Wilson 

R, Leach MO, Schmidt MA. Comparison of Dixon sequences for estimation of 

percent breast fibroglandular tissue. PLoS ONE. 2016; 11(3):e0152152.

21. Miyazaki M, Wheaton A, Kitane S. Enhanced fat suppression technique for 

breast imaging. J Magn Reson Imaging. 2013; 38(4):981–986.

22. Kalovidouri A, Firmenich N, Delattre BM, Picarra M, Becker CD, Montet X,

Botsikas D. Fat suppression techniques for breast MRI: Dixon versus spectral 

fat saturation for 3D T1-weighted at 3 T. Radiol Med. 2017; 122(10):731–742.

23. Le-Petross H, Kundra V, Szklaruk J, Wei W, Hortobagyi GN, Ma J. Fast three-

dimensional dual echo Dixon technique improves fat suppression in breast 

MRI. J Magn Reson Imaging. 2010; 31(4):889–894.



130

24. Dogan BE, Ma J, Hwang K, Liu P, Yang WT. T1-weighted 3D dynamic 

contrast-enhanced MRI of the breast using a dual-echo Dixon technique at 3 

T. J Magn Reson Imaging. 2011; 34(4):842–851.

25. Clauser P, Pinker K, Helbich TH, Kapetas P, Bernathova M, Baltzer PA. Fat 

saturation in dynamic breast MRI at 3 Tesla: Is the Dixon technique superior 

to spectral fat saturation? A visual grading characteristics study. Eur Radiol. 

2014; 24(9):2213–2219.

26. An YY, Kim SH, Kang BJ. Differentiation of malignant and benign breast 

lesions: Added value of the qualitative analysis of breast lesions on diffusion-

weighted imaging (DWI) using readout-segmented echo-planar imaging at 3.0 

T. PLoS ONE. 2017; 12(3):e0174681. 

27. Beckett KR, Moriarity AK, Langer JM. Safe use of contrast media: What the 

radiologist needs to know. Radiographics. 2015; 35(6):1738–1750.

28. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku JI, Haruyama T,

Kitajima K, Furui S. Gadolinium-based contrast agent accumulates in the brain 

even in subjects without severe renal dysfunction: Evaluation of autopsy brain 

specimens with inductively coupled plasma mass spectroscopy. Radiology.

2015; 276(1):228–232.

29. Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium retention and 

toxicity—An update. Adv Chronic Kidney Dis. 2017; 24(3):138–146.

30. Del Grande F, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE, Carrino

JA. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal 

system. Radiographics. 2014; 34(1):217–233.

31. McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from Picture to 

Proton. Cambridge University Press; 2017.



131

32. Brown MA, Semelka RC, Dale BM. MRI: Basic principles and applications. 

John Wiley & Sons, Inc; 2015.

33. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: Guidelines from the 

European society of breast imaging. Eur Radiol. 2008; 18(7):1307-1318.

34. Hauer MP, Uhl M, Allmann KH, Laubenberger J, Zimmerhackl LB, Langer

M. Comparison of turbo inversion recovery magnitude (TIRM) with T2-

weighted turbo spin-echo and T1-weighted spin-echo MR imaging in the early 

diagnosis of acute osteomyelitis in children. Pediatr Radiol. 1998; 28(11):846–

850.

35. Freed M, Badal A, Jennings RJ, de Las Heras H, Myers KJ, Badano A. X-ray 

properties of an anthropomorphic breast phantom for MRI and x-ray imaging. 

Phys Med Biol. 2011; 56(12):3513–3533.

36. Carton AK, Bakic P, Ullberg C, Derand H, Maidment AD. Development of a 

physical 3D anthropomorphic breast phantom. Med Phys. 2011; 38(2):891-

896.

37. Mazzara GP, Briggs RW, Wu Z, Steinbach BG. Use of a modified 

polysaccharide gel in developing a realistic breast phantom for MRI. Magn

Reson Imaging. 1996; 14(6):639–648.

38. Liney GP, Tozer DJ, Turnbull LW. A simple and realistic tissue-equivalent 

breast phantom for MRI. J Magn Reson Imaging. 1999; 10(6):968–971.

39. Freed M, de Zwart JA, Loud JT, El Khouli RH, Myers KJ, Greene MH, Duyn 

JH, Badano A. An anthropomorphic phantom for quantitative evaluation of 

breast MRI. Med Phys. 2011; 38(2):743-753.



132

40. Burfeindt MJ, Colgan TJ, Mays RO, Shea JD, Behdad N, Van Veen BD, 

Hagness SC. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast 

Imaging Validation. IEEE Antennas Wirel Propag Lett. 2012; 11:1610-1613.

41. Dantuma M, van Dommelen R, Manohar S. Semi-anthropomorphic 

photoacoustic breast phantom. Biomed Opt Express. 2019; 10(11):5921-5939.

42. He Y, Liu Y, Dyer BA, Boone JM, Liu S, Chen T, Zheng F, Zhu Y, Sun Y, 

Rong Y, Qiu J. 3D-printed breast phantom for multi-purpose and multi-

modality imaging. Quant Imaging Med Surg. 2019; 9(1):63-74.

43. Sindi R, Wong YH, Yeong CH, Sun Z. Development of patient-specific 3D-

printed breast phantom using silicone and peanut oils for magnetic resonance 

imaging. Quant Imaging Med Surg. 2020; 10(6):1237–1248.

44. Westra C, Dialani V, Mehta TS, Eisenberg RL. Using T2-weighted sequences 

to more accurately characterize breast masses seen on MRI. Am J Roentgenol.

2014; 202(3):183–190. 



133

Chapter 5                                                         

Quantitative Measurement of Breast Density in a High-

risk Group Using Fat-suppressed and Non-fat-

suppressed T2-weighted Magnetic Resonance Imaging

Sequences
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5.1 Abstract

Background: T2-weighted imaging is one of the standard magnetic resonance 

imaging (MRI) protocols used in breast scanning. However, the relative role of T2-

weighted images with/without the use of fat-suppression techniques in the quantitative 

assessment of breast density remains limited across a variety of T2-weighted 

sequences. Purpose: This study aimed to investigate the difference between the 

quantitative measurements of breast volume, fibroglandular tissue volume, and 

percentage of breast density of two MR techniques, the non-fat-suppressed versus the 

fat-suppressed T2-weighted imaging sequences in a cohort of 11 high-risk women. 

Methods: Breast volume, fibroglandular tissue volume, and percentage of breast 

density from these imaging techniques were quantitatively measured using the 

Analyze 14.0 software. Averages of repeated-measures observations were conducted 

using the Bland-Altman comparison of measurements to examine the difference 

between the non-fat-suppressed and fat-suppressed T2-weighted sequences with 

regard to the quantitative assessments of breast density parameters. Results: The 

results revealed no indication of measurement bias between the non-fat-suppressed 

and fat-suppressed T2-weighted imaging sequences with respect to breast density 

parameters, and no evidence to reject the presumption that the differences were 

normally distributed. Although the volume of fibroglandular tissue and the percentage 

of breast density were higher in the non-fat-suppressed sequence than in the fat-

suppressed sequence, the differences were not statistically significant (p > 0.05). 

Conclusions: This study showed no substantial differences between the non-fat-

suppressed and fat-suppressed sequences in the quantitative measurement of breast 

density parameters; however, further studies with inclusion of a larger sample size are 

required to validate the complementary role of T2-weighted imaging in this regard.



135

Keywords MRI; fibroglandular tissue; adipose tissue; breast density; segmentation; 
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5.2 Introduction

Breast density, a measure of dense fibroglandular tissue compared to fatty, non-dense 

tissue, is an independent risk factor for breast cancer.1-4 Evidence suggests that the 

prospective risk of breast cancer is three to five times higher for women with dense 

breasts than for women with fatty breasts.5-7 Most information about breast density 

estimation and screening for breast cancer is obtained through full-field digital 

mammography (FFDM), a two-dimensional imaging technique.8, 9 However, the 

evaluation of breast density based on mammograms is limited due to tissue 

overlapping, variations in breast compression, and inappropriate positioning, which 

can lead to artefacts and insufficient imaging of breast tissue.10, 11 Magnetic resonance 

imaging (MRI), an adjuvant modality of breast imaging, has been proposed to be used 

in women at high risk of developing breast cancer, such as those with the breast cancer 

susceptibility gene (BRCA-positive genetic mutation carriers), a family history of 

breast cancer, and high breast density.12-15 MRI has been used to estimate actual breast 

density because it provides a three-dimensional volume representation of breast 

structure with excellent soft tissue contrast, which assists in the differentiation between 

fibroglandular and fatty, or adipose tissues.16-19

Conventionally, the evaluation of breast density is based on a qualitative approach 

recommended by the American College of Radiology (ACR) Breast Imaging 
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Reporting and Data System (BI-RADS), which classifies density into four categories 

based on the amount of fibroglandular tissue: 1) almost entirely fat; 2) scattered 

fibroglandular tissue; 3) heterogeneous fibroglandular tissue; and 4) extreme 

fibroglandular tissue.20, 21 Despite standardization guidelines, however, research has 

consistently shown that BI-RADS scores are subjective and vary between readers, 

resulting in inter- and even intra-reader variability.22-24 Various methods of 

quantifying breast density, with a variety of algorithms or techniques documented in 

the literature, have been proposed to address this limitation.25-31 Nevertheless, in the 

quantitative assessment of breast density, these methods were based on a semi-

automatic thresholding and/or segmentation methodology, and much uncertainty 

remains about the optimal method in this regard.25-32 Similarly, for the evaluation of 

breast density, different MR breast-imaging protocols and/or sequences have been 

used, varying from contrast- to non-contrast-enhanced imaging with/without the 

application of fat-suppression techniques.3, 4, 32-40

The inversion-based technique known as the short-TI inversion recovery (STIR) 

sequence is among the most widely used fat-suppression techniques in breast imaging 

due to its insensitivity to B0 and B1 heterogeneity.41, 42 STIR is obtained by a 180° non-

spectral-selective inversion pulse followed by either a single 90° pulse or a pair of 90°

and 180° pulses for inversion recovery (IR) and spin-echo (SE) imaging, 

respectively.36, 38, 41-43 Although fat-suppression techniques have been shown to 

enhance the visibility of pathology, contrast enhancement, and image quality, thereby 

allowing for a better differentiation between fibroglandular and fatty tissue, no 

agreement has yet been reached on which MR breast-imaging protocols are 

appropriate for the quantitative assessment of breast density, particularly for women 

at high risk of developing breast cancer.41, 44 Fundamentally, the MRI studies used 
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T2-weighted images to identify diseased tissue in almost all parts of the body; while 

T2-weighted turbo spin-echo (TSE) pulse sequences have been widely reported in 

breast MRI to help classify lesion characterization and thus improve the differential 

diagnosis, their complementary role in breast density assessment remains largely 

unexplored.45-48

The primary aim of this study was to investigate the differences between the 

quantitative measurements of breast volume, fibroglandular tissue volume, and 

percentage of breast density of two MR techniques, non-fat-suppressed T2-weighted 

TSE versus fat-suppressed T2-weighted STIR imaging sequences, in a cohort of high-

risk women. The tested hypothesis was that the T2-weighted image features 

with/without the use of fat-suppression techniques can assist in the differentiation of 

fibroglandular and fatty tissue, allowing for more accurate measurement of breast 

density parameters, thus highlighting the potential risk of developing breast cancer in 

high-risk women.

 

5.3 Materials and Methods

5.3.1 Study Subjects and MR Scanning Protocol 

The study group consisted of 11 female subjects who had breast MRI examinations 

conducted between 2009 and 2010. All participants were cancer-free but at high risk 

of developing breast cancer and confirmed to be normal without prior breast surgery 

or radiation therapy on the chest wall. MRI studies were performed on a 1.5T system 

(Philips, Best, The Netherlands) in a prone position using a dedicated bilateral 8-

channel breast coil. The imaging protocol included axial non-fat-suppressed T2-

weighted TSE and fat-suppressed T2-weighted STIR images. The version of two-



138

dimensional-STIR imaging used in this study employed a 180° non-spectral-selective 

inversion pulse followed by a single 90° pulse for the fat-suppression technique. In all 

cases, both the imaging acquisitions used for the quantitative assessment of breast 

density parameters were acquired before the injection of contrast for the T1-weighted 

dynamic contrast-enhanced imaging. Table 5.1 shows the image acquisition 

parameters of the MRI sequences used in this study.

5.3.2 Quantitative Measurement: Breast Volume, Fibroglandular Tissue Volume, 

and Percentage of Breast Density

With a semi-automated segmentation/measurement method, breast volume and 

fibroglandular tissue volume were quantitatively assessed using commercially 

available biomedical imaging software, Analyze V 14.0 (AnalyzeDirect, Inc., Lexana, 

KS, USA). Two steps were implemented to measure the percentage of breast density 

from MRI volumes: breast segmentation and fibroglandular tissue segmentation. 

Breast segmentation is proposed to separate the breast’s body from the surrounding 

structure, while segmentation of fibroglandular tissue separates the glandular tissue 

from the fatty tissue. 

The breast’s boundary was first semi-automatically delineated to separate the breast’s 

body from the surrounding structures, using an interactive method based on the 

threshold signal intensity function by placing seed points on a series of 2D axial slices 

comprising the whole volume of the breast. To identify the region of interest, the 

minimum and maximum threshold limits were then modified. The software 

impulsively interpolated between these slices and produced a mask of the entire breast 

volume. Once the breast segmentation process was completed, an automated method, 

using a variety of morphological processes and spatial filters, was carried out to 
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segment the fibroglandular tissue from the surrounding fatty tissue. Following this, the 

volume of the breast and the volume of fibroglandular tissue were quantified using a 

3D-measuring tool based on the size intensity function. Finally, the ratio of the 

fibroglandular tissue volume relative to the total breast volume was determined as the 

percentage of breast density.

5.3.3 Data Synthesis

In this retrospective study, the MRI data for 11 high-risk women were examined. The 

women were recruited from The Cancer Imaging Archive (TCIA) Public Access 

(https://www.cancerimagingarchive.net), and both non-fat-suppressed T2-weighted 

TSE and fat-suppressed T2-weighted STIR images were available for them. For each 

woman, a two-fold segmentation of both the breast volume and the fibroglandular 

tissue volume was performed, thus extracting two segments of each MRI sequence. 

Consequently, the measurements were conducted twice with respect to the breast 

volume, the fibroglandular tissue volume, and thus the percentage of breast density.

Finally, the average of each pair of values was calculated as a final observation for 

each patient/MRI sequence combination and reflected as an estimate of the true 

numerical value of each of the subjects of interest in the analysis (i.e. breast density 

parameters). This aimed to avoid the variance from causing significant 

underestimation/overestimation of other variance components.

5.3.4 Statistical Analysis

Statistical analyses were conducted using NCSS V 19.0.5 (NCSS, LLC. Kaysville, 

Utah, USA). Averages of repeated-measures observations through the Bland-Altman 

comparison of measurements were conducted to examine the difference between the 



140

non-fat-suppressed T2-weighted TSE and the fat-suppressed T2-weighted STIR MRI 

sequences with regard to the quantitative measurements of breast volume, 

fibroglandular tissue volume, and percentage of breast density. The null hypothesis 

was that the differences between the two MRI sequences would all be zero throughout 

the range. 

The Bland-Altman model was employed to test the outcomes on the assumption that 

both measurement methods (i.e. two MRI sequences) would yield exactly the same 

numerical value of the metric of interest (i.e. breast volume, fibroglandular tissue 

volume, and percentage of breast density) and provide a graphical representation of 

bias, if any, in one method relative to the other. The Bland-Altman scatter plots were 

produced for the two MRI sequences, demonstrating the difference against the 

average, which illustrates a system with zero bias of one method relative to the other 

with respect to breast volume, fibroglandular tissue volume, and percentage of breast 

density. The normality assumptions of the datasets distributed were also examined 

using the Shapiro-Wilk, Skewness, Kurtosis, and Omnibus tests. Statistical 

significance was evaluated using the one-sample t-test as appropriate and set at the 5% 

level.
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Table 5.1. Image acquisition parameters of the MR breast-imaging sequences used in this study.

Patient
No.

MRI sequence
Acquisition

type
Orientation,

Slice No.
TR
(ms)

TE
(ms)

TI
(ms)

FOV
(mm)

Matrix
size

Slice thickness
(mm)

Flip angle
(°)

NSA
Scan time

(min)

1.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4132.6 120.0 640×640 333×464 2.0 90 3 4.33

Fat-suppressed T2W
(STIR) 4344.9 70.0 165 640×640 304×332 2.0 90 2 4.43

2.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4130.0 120.0 560×560 433×540 2.0 90 3 5.57

Fat-suppressed T2W
(STIR) 4347.7 70.0 165 480×480 304×332 2.0 90 2 4.43

3.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4132.6 120.0 576×576 367×500 2.0 90 3 4.75

Fat-suppressed T2W
(STIR) 4344.9 70.0 165 576×576 342×364 2.0 90 2 4.95

4.

Non-fat-suppressed T2W
(TSE) 2D Axial, 86

4375.8 120.0 576×576 367×512 2.0 90 3 5.03

Fat-suppressed T2W
(STIR) 4655.2 70.0 165 576×576 342×368 2.0 90 2 5.30

5.

Non-fat-suppressed T2W
(TSE)

2D Axial, 86
4375.7 120.0 528×528 333×456 2.0 90 3 4.59

Fat-suppressed T2W
(STIR) 4655.2 70.0 165 512×512 304×328 2.0 90 2 4.74

6.

Non-fat-suppressed T2W
(TSE) 2D Axial, 86

4375.7 120.0 480×480 300×412 2.0 90 3 4.15

Fat-suppressed T2W
(STIR) 4655.3 70.0 165 480×480 266×300 2.0 90 2 4.18

7.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4132.6 120.0 480×480 300×408 2.0 90 3 3.92

Fat-suppressed T2W
(STIR) 4347.7 70.0 165 480×480 304×324 2.0 90 2 4.43



142

Table 5.1. Continued.

Abbreviations: TR: repetition time; TE: echo time; TI: inversion time; FOV: field-of-view; NSA: number of signal averages/excitations; T2W: T2-weighted; TSE: turbo spin-echo; STIR: short-

TI inversion recovery; 2D: two-dimensional.

Patient
No.

MRI sequence
Acquisition

type
Orientation,

Slice No.
TR
(ms)

TE
(ms)

TI
(ms)

FOV
(mm)

Matrix
size

Slice thickness
(mm)

Flip angle
(°)

NSA
Scan time

(min)

8.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4132.6 120.0 640×640 383×524 2.0 90 3 4.95

Fat-suppressed T2W
(STIR)

4344.9 70.0 165 640×640 361×384 2.0 90 2 5.21

9.

Non-fat-suppressed T2W
(TSE) 2D Axial, 84

4128.2 120.0 528×528 367×440 2.0 90 3 4.74

Fat-suppressed T2W
(STIR)

4347.6 70.0 165 448×448 304×340 2.0 90 2 4.43

10.

Non-fat-suppressed T2W
(TSE)

2D Axial, 84
4132.6 120.0 640×640 383×524 2.0 90 3 4.95

Fat-suppressed T2W
(STIR)

4344.9 70.0 165 640×640 361×384 2.0 90 2 5.21

11.

Non-fat-suppressed T2W
(TSE)

2D Axial, 80
4862.0 120.0 432×432 267×380 2.0 90 3 3.30

Fat-suppressed T2W
(STIR)

4344.9 70.0 165 432×432 247×276 2.0 90 2 3.64
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5.4 Results

5.4.1 Quantitative Measurement of Breast Volume, Fibroglandular Tissue 

Volume, and Percentage of Breast Density

Table 5.2 provides the quantitative measurements (average and SD) of the breast 

volume, fibroglandular tissue volume, and percentage of breast density measured on 

these two MRI sequences. The differences between the two MRI sequences and their 

averages are highlighted in Table 5.3.

5.4.2 Comparison of Measurements Between Non-fat-suppressed and Fat-

suppressed T2-weighted MRI Sequences

Table 5.4 lists the descriptive statistics, including mean, SD, 95% confidence interval 

limits, and other values for the breast density parameters. Table 5.5 demonstrates the 

results of the Bland-Altman analyses for breast volume, fibroglandular tissue volume, 

and percentage of breast density measured on the two MRI sequences, while Table 5.6

shows the tests of normality of differences assumption. Figure 5.1 plots the Bland-

Altman comparison of the MRI sequences (i.e. the difference between the two MRI 

sequences against their average) with respect to breast density parameters. Figure 5.2 

displays the degree of agreement between the non-fat-suppressed T2-weighted TSE 

and the fat-suppressed T2-weighted STIR MRI sequences for each of the breast 

density parameters.

In the whole group of 11 patients, although the breast volume measured from the non-

fat-suppressed T2-weighted TSE sequence, 2745.978 ± 1469.893 cm3 (average ± Std 

Dev), was lower than that of the fat-suppressed T2-weighted STIR sequence, 2885.557
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± 1568.706 cm3, the difference was not statistically significant (t = -1.960, p = 0.078),

with a mean difference of -139.579 ± 236.191 cm3 and a standard error of 71.214.

(A)
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(B)
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(C)

Figure 5.1. Bland-Altman plots for the breast density parameters agreement analysis (N = 11). (A)
breast volume, (B) fibroglandular tissue volume, and (C) percentage of breast density measured from 
the non-fat-suppressed T2-weighted TSE and fat-suppressed T2-weighted STIR MR sequences. The 
average of the breast density parameters of the two sequences is on the x-axis, while the estimated mean 
difference (a measure of the bias between the two sequences) is on the y-axis. Limits of agreement are 
shown as solid, black lines with 95% confidence intervals (as light dotted black line), and bias (as dark 
dotted black line) with 95% confidence interval. Note that the limits of agreement are calculated as the 
mean difference ± 1.96 Std Dev, where the Std Dev is determined from the array of difference value. 
The factor 1.96 indicates the assumption that the difference values are normally distributed. The upper 
and lower limits of the agreement 1.96 Std Dev are displayed above and below zero, not the mean 
difference. The differences between the two MRI sequences and their averages are listed in Table 5.3, 
while the Bland-Altman analyses, including the bias and limits of agreement are in Table 5.5.
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(A)
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(B)
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(C)

Figure 5.2. Scatter plots display the degree of agreement between the non-fat-suppressed T2-weighted 
TSE and the fat-suppressed T2-weighted STIR MRI sequences for (A) breast volume, (B)
fibroglandular tissue volume, and (C) percentage of breast density. The breast density parameters (A, 
B, and C) measured from the fat-suppressed T2-weighted STIR MRI sequence are on the x-axis; from 
the non-fat-suppressed T2-weighted TSE MRI sequence are on the y-axis. The dotted black line shows 
the line of equality (i.e., the line of perfect agreement); the Bland-Altman correlation of 1 indicates 
perfect agreement, while the value of 0 indicates complete discord. The level of agreements between 
the two MRI sequences are listed in Table 5.4, with a correlation coefficient of 0.990 for breast volume, 
0.458 for fibroglandular tissue volume, and 0.858 for percentage of breast density.
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The 95% tolerance limits of agreement were -602.513, 323.355. Likewise, there was 

no significant difference (t = 0.628, p = 0.544) between the volume of fibroglandular 

tissue measured on the non-fat-suppressed T2-weighted TSE sequence, 276.909 ±

129.250 cm3, and the fat-suppressed T2-weighted STIR sequence, 252.844 ± 113.393 

cm3, with a mean difference of 24.065 ± 127.041 cm3 and a standard error of 38.304.

The 95% tolerance limits of agreement were -224.935, 273.066. Further, the 

percentage of breast density was 13.308 ± 8.429% for the non-fat-suppressed T2-

weighted TSE sequence and 11.821 ± 7.989% for the fat-suppressed T2-weighted 

STIR sequence, which was not statistically significant (t = 1.122, p = 0.288), with a 

mean difference of 1.487 ± 4.395% and a standard error of 1.325. Consequently, the 

fat-suppressed T2-weighted sequence appeared to result in a lower reading, by 

between -1.466 and 4.439 (95% confidence limits), than that of the non-fat-suppressed 

T2-weighted sequence. Despite this observation, the 95% tolerance limits of

agreement (-7.127 and 10.101) were wide apart to give preference to one sequence

over the other with respect to the quantitative measurement of breast density, as shown

in Table 5.5.

The most prominent finding to emerge from the data was the comparatively high 

standard deviation of breast density parameters, which resulted in high individual 

variation among patients. However, the estimate of the standard deviations of the 

differences in both breast volume and breast density decreased, as some of the 

influence of repeated measurement error was accordingly eliminated. The results also

indicated, as shown in Table 5.4, that the level of agreement between the non-fat-

suppressed T2-weighted TSE and the fat-suppressed T2-weighted STIR MRI 

sequences had a correlation coefficient of 0.990 for breast volume, 0.458 for 

fibroglandular tissue volume, and 0.858 for percentage of breast density. Although the 
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breast volume measured on the non-fat-suppressed and the fat-suppressed T2-

weighted MRI sequences was almost correlated (r = 0.990), as shown in Figure 5.2A,

there was no evidence of agreement between the two measurement sequences.

From the data in Figure 5.1A, it is apparent that the differences in breast volume

between the non-fat-suppressed and the fat-suppressed T2-weighted MRI sequences

for patients 1, 3, 4, and 10 were -494.768, -337.405, -299.050, and -255.885,

respectively, suggesting a rise in negative bias with increasing volumes. Nevertheless,

there was a small negative bias associated with small breast volumes in patients 2, 6,

and 8, with a mean difference of -31.246, -127.223, and -107.728, respectively. In

contrast to breast volumes, however, there was a considerable dispersion in the volume

of fibroglandular tissue and the percentage of breast density measured in the fat-

suppressed and non-fat-suppressed T2-weighted sequences, as shown in Figures 5.2B

and C, which made the bias more difficult to detect.

Overall, the results indicated that no evidence of measurement bias was found between 

the non-fat-suppressed T2-weighted TSE and the fat-suppressed T2-weighted STIR 

MRI sequences; furthermore, there was no proof to reject the hypothesis that the

differences are normally distributed, since the majority of the mean difference is

allocated between the upper and lower limits of the agreement, as shown in Figure 5.1
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Table 5.2. Results of the estimated mean and standard deviation of breast volume, fibroglandular tissue volume, and percentage of breast density for high-risk women using 
non-fat-suppressed T2-weighted TSE (Non-fat-sup) and fat-suppressed T2-weighted STIR (Fat-sup) MRI sequences.

Patient No. 

Breast Volume (cm3) Fibroglandular Tissue Volume (cm3) Breast Density (%)

Non-fat-sup Fat-sup Non-fat-sup Fat-sup Non-fat-sup Fat-sup

(Average ± Std Dev*) (Average ± Std Dev) (Average ± Std Dev)

1. 4704.994 ± 65.824 5199.762 ± 69.849 221.663 ± 2.766 412.044 ± 5.566 4.712 ± 0.125 7.924 ± 0.001

2. 1276.573 ± 55.662 1307.819 ± 18.326 194.122 ± 5.251 120.019 ± 6.744 15.212 ± 0.252 9.182 ± 0.644

3. 3410.015 ± 159.200 3747.420 ± 110.919 91.110 ± 0.190 116.867 ± 4.800 2.675 ± 0.130 3.122 ± 0.220

4. 4111.758 ± 129.505 4410.808 ± 112.994 203.099 ± 0.272 190.414 ± 1.649 4.942 ± 0.162 4.319 ± 0.148

5. 4114.339 ± 136.961 3942.410 ± 207.191 357.578 ± 1.452 214.143 ± 2.613 8.695 ± 0.254 5.438 ± 0.219

6. 1610.203 ± 59.582 1737.426 ± 92.531 394.813 ± 10.743 395.112 ± 3.372 24.524 ± 0.240 22.768 ± 1.018

7. 1497.314 ± 31.837 1722.762 ± 101.423 295.482 ± 78.072 423.934 ± 63.778 19.794 ± 5.635 24.541 ± 2.257

8. 1999.096 ± 3.499 2106.824 ± 25.886 332.697 ± 31.276 262.204 ± 6.461 16.641 ± 1.535 12.448 ± 0.460

9. 2010.286 ± 9.746 1664.973 ± 36.490 544.060 ± 16.391 286.927 ± 6.915 27.066 ± 0.947 17.233 ± 0.038

10. 4669.732 ± 145.690 4925.616 ± 12.496 282.503 ± 18.919 168.012 ± 4.897 6.046 ± 0.217 3.411 ± 0.108

11. 801.447 ± 3.427 975.309 ± 56.272 128.875 ± 3.048 191.609 ± 10.022 16.080 ± 0.312 19.649 ± 0.106

* Standard deviation.
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Table 5.3. Difference between the non-fat-suppressed T2-weighted TSE (Non-fat-sup) and fat-suppressed T2-weighted STIR (Fat-sup) MRI sequences and their average for 
breast volume, fibroglandular tissue volume, and percentage of breast density measured in high-risk women. 

Patient No. 
Breast Volume (cm3) Fibroglandular Tissue Volume (cm3) Breast Density (%)

Difference* Average** Difference Average Difference Average

1. -494.768 4952.378 -190.381 316.853 -3.212 6.318

2. -31.246 1292.196 74.104 157.070 6.030 12.197

3. -337.405 3578.717 -25.757 103.989 -0.447 2.898

4. -299.050 4261.283 12.685 196.757 0.623 4.630

5. 171.929 4028.375 143.435 285.861 3.258 7.066

6. -127.223 1673.814 -0.299 394.962 1.756 23.646

7. -225.448 1610.038 -128.453 359.708 -4.747 22.168

8. -107.728 2052.960 70.493 297.450 4.193 14.545

9. 345.313 1837.629 257.133 415.493 9.833 22.149

10. -255.885 4797.674 114.492 225.257 2.635 4.729

11. -173.862 888.378 -62.734 160.242 -3.569 17.864

* The difference between the two MRI sequences = (Non-fat-sup - Fat-sup); ** the average of the two MRI sequences = (Non-fat-sup + Fat-sup)/2.
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Table 5.4. Descriptive statistics of breast volume, fibroglandular tissue volume, and percentage of 
breast density measured on the non-fat-suppressed T2-weighted TSE (Non-fat-sup) and fat-suppressed 
T2-weighted STIR (Fat-sup) MRI sequences in high-risk women.

Variable Count Mean Std Dev* 95.0% LCL of 
Mean

95.0% LCL of 
Mean

Breast Volume (cm3)

Non-fat-
sup 1 2745.978 1469.893 1758.490 3733.465

Fat-sup 1 2885.557 1568.706 1831.686 3939.428

Difference 1 -139.579 236.191 -298.255 19.096

Correlation Coefficient = 0.990; SE** (10 df***) = 71.214; Prob Level**** = 0.078; T-Statistics 
= -1.960

Fibroglandular Tissue Volume (cm)

Non-fat-
sup 1 276.909 129.250 190.078 363.740

Fat-sup 1 252.844 113.393 176.665 329.022

Difference 1 24.065 127.041 -61.282 109.413

Correlation Coefficient = 0.458; SE (10 df) = 38.304; Prob Level = 0.544; T-Statistics = 
0.628

Breast Density (%)

Non-fat-
sup 1 13.308 8.429 7.645 18.971

Fat-sup 1 11.821 7.989 6.454 17.188

Difference 1 1.487 4.395 -1.466 4.439

Correlation Coefficient = 0.858; SE (10 df) = 1.325; Prob Level = 0.288; T-Statistics = 1.122

* Standard deviation; ** Standard error; *** The degrees of freedom; **** The significance level of 
the F-ratio (i.e., the probability that the difference between data is significant or not). The significant 
difference between the quantitative measurements of the breast volume, the fibroglandular volume, and 
the percentage of breast density measured on the non-fat suppressed T2-weighted TSE and the fat-
suppressed T2-weighted STIR MRI sequences was determined at the 5% level using the one-sample t-
test.
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Table 5.5. Bland-Altman Analysis (Bias and limits of agreement) for breast volume, fibroglandular 
tissue volume, and percentage of breast density between the non-fat-suppressed T2-weighted TSE 
(Non-fat-sup) and fat-suppressed T2-weighted STIR (Fat-sup) MRI sequences.

Variable Count Mean Std Dev 95.0% LCL 
of Mean

95.0% LCL 
of Mean

Breast Volume (cm3)

Bias (Difference) 1 -139.579 236.191 -298.255 19.096

Lower Limit of 
Agreement 1 -602.513 125.646 -882.470 -322.557

Upper Limit of 
Agreement 1 323.355 125.646 43.399 603.311

Fibroglandular Tissue Volume (cm3)

Bias (Difference) 1 24.065 127.041 -61.282 109.413

Lower Limit of 
Agreement 1 -224.935 67.582 -375.516 -74.354

Upper Limit of 
Agreement 1 273.066 67.582 122.484 423.647

Breast Density (%)

Bias (Difference) 1 1.487 4.395 -1.466 4.439

Lower Limit of 
Agreement 1 -7.128 2.338 -12.337 -1.918

Upper Limit of 
Agreement 1 10.101 2.338 4.891 15.310

 

 
Table 5.6. Test of normality of differences assumption for breast volume, fibroglandular tissue volume, 
and percentage of breast density between the non-fat-suppressed T2-weighted TSE and fat-suppressed 
T2-weighted STIR MRI sequences.

Assumption Variable Value Prob Level Decision (α = 0.050)

Shapiro-
Wilk 

Breast Volume
Fibroglandular Tissue 
Volume
Breast Density 

0.950
0.992
0.971

0.642
0.999
0.893

Cannot reject 
normality

Skewness 
Breast Volume
Fibroglandular Tissue 
Volume
Breast Density

1.243
0.106
0.497

0.214
0.916
0.619

Cannot reject 
normality

Kurtosis
Breast Volume
Fibroglandular Tissue 
Volume
Breast Density

0.754
0.226
0.008

0.451
0.821
0.994

Cannot reject 
normality

Omnibus
Breast Volume
Fibroglandular Tissue 
Volume
Breast Density

2.113
0.062
0.247

0.348
0.969
0.884

Cannot reject 
normality
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5.5 Discussion

Although T2-weighted imaging has been confirmed as a standard part of clinical breast 

MRI protocols across a variety of T2-weighted sequences, the relative role of T2-

weighted images with/without the use of fat-suppression techniques in the quantitative 

assessment of breast density remains limited. It was hypothesized that the T2-weighted 

imaging features can assist in the differentiation between fibroglandular and fatty 

tissue, and allow for more accurate measurement of breast density. In this study, the 

non-fat-suppressed T2-weighted TSE and the fat-suppressed T2-weighted STIR MR 

imaging sequences were compared in 11 women with an increased risk of developing 

breast cancer with regard to their quantitative measurements of breast volume, 

fibroglandular tissue volume, and percentage of breast density. The results showed 

that there was no indication of measurement bias between the non-fat-suppressed and 

the fat-suppressed T2-weighted imaging sequences with respect to breast density 

parameters, and that there was no evidence to refute the presumption that the 

differences were normally distributed. 

Although the breast volume measured in the fat-suppressed T2-weighted sequence was 

slightly higher than that in the non-fat-suppressed T2-weighted sequence and the 

difference was close to significant (p = 0.078), the findings showed no significant 

difference in the breast density parameters analyzed from the two imaging techniques. 

A possible explanation for these results could be that the skin is more prominent on 

the fat-suppressed images than on the non-fat-suppressed images; this could be the 

cause of such a difference in measurements, although it was considered as part of the 

breast volume for both sequences. Even though the signal-to-noise ratio was much 

higher for the non-fat-suppressed images than for the fat-suppressed images,44, 49 the 
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difference can also be explained in part by the contrast between the breast tissues and 

the surrounding tissues. Although it was well defined in both sequences, it could be a 

source of variation in the segmentation and/or measurement of breast volume and 

breast density outcomes. A previous study showed that the breast volume, 

fibroglandular tissue volume, and percentage of breast density measured in the T1-

weighted sequences with and without fat-suppression techniques are highly 

correlated.44 Although these results differed from the current study, which specified 

that the breast density parameters were quantified on the T1-weighted images, they are 

consistent with our findings, which showed that the breast volumes measured on the 

non-fat-suppressed and the fat-suppressed sequences were almost identical.

As the quantification of breast density parameters was based on different density

prototypes, the findings showed that the difference in breast volume between the non-

fat-suppressed and the fat-suppressed T2-weighted MRI sequences could be classified

into two patterns: the first indicates small negative differences associated with small

volumes, while the second indicates large negative differences associated with large

volumes, as shown in Figure 5.1A. This clustering in both the non-fat-suppressed and

the fat-suppressed T2-weighted sequences suggests that a systematic effect may be a

reason for this rather than a random variation. However, the volume of fibroglandular

tissue and the percentage of breast density measured in both sequences were noticeably

dispersed, making the bias more difficult to detect, as shown in Figures 5.1B and C. It

is possible, therefore, that the segmentation method of the breast volume and

fibroglandular tissue volume may have been affected by the variation of the subject,

although this needs to be confirmed by future research.
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Another important finding arising from this study was that the percentage of breast 

density measured on the non-fat-suppressed T2-weighted sequence was subsequently 

increased compared to the fat-suppressed T2-weighted sequence because of the 

increased fibroglandular tissue volume and decreased breast volume. The assessment 

of breast density varies with pulse sequence, image quality, and fibroglandular tissue 

segmentation. This may result in a profound effect on the efficiency of the 

segmentation and/or measurement method and consequently on the results of breast 

density parameters. The segmentation and/or measurement of breast density 

parameters could be affected by the various levels of inhomogeneity in both the fat-

suppressed and non-fat-suppressed MR images. The difference could also be attributed 

to the fact that breast MRI is obtained with a surface coil covering a wide region, which 

results in varying signal strength depending on the location of the tissue being imaged. 

While this study reported that no substantial difference was observed between the non-

fat-suppressed and the fat-suppressed T2-weighted imaging sequences for the 

quantitative measurement of breast density parameters, the findings are subject to 

certain limitations. First, the type of fat suppression used in this study relied on an 

inversion-based approach, which is just one of several methods; caution must be used, 

as it might not be possible to extrapolate the results to all fat-suppression techniques. 

Second, although the acquisition of the non-fat-suppressed and fat-supressed 

sequences was based on a two-dimensional imaging, the scanning parameters, such as 

field-of-view and matrix size, were relatively different; this may play a role in the

segmentation and/or measurement of breast density; however, caution should be 

applied because the results may not applicable to clinical practice without further 

investigations. Further research to examine the impact of the scanning/technical 

parameters on the quantitative measurement of breast density would be suggested. 
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Third, the association of breast density parameters and the T2-weighted imaging 

sequences could not be further explored, as the sample size was limited. It must be 

acknowledged that the small sample size was selected because of the expected 

complexity of recruiting cancer-free patients at high risk of developing breast cancer. 

Nevertheless, a further study with a larger sample size to determine exactly how the 

non-fat-suppressed and fat-suppressed T2-weighted sequences influence the 

quantification of breast density would be desirable. Further, the study is limited by the 

lack of information about the patient age; this may highlight the potential correlation 

between age dependency and the results, thus explaining the disparity between the two

MRI sequences with respect to the patterns of breast density parameters, because the

distribution of fibroglandular tissue varies from age to age and from person to person.

Finally, using a semi-automated method, the breast density parameters were

segmented and measured; this means that the prospective cause of such a discrepancy

between the non-fat-suppressed and fat-suppressed sequences could be due to a high

degree of reliance on user interaction. In future studies, it might be possible to use deep 

learning method to segment breast and fibroglandular tissue,50, 51 in which the degree 

of difference between the non-fat-suppressed and fat-suppressed T2-weighted imaging 

sequences could be more accurately assessed with regard to the quantitative 

measurement of breast density in MRI volumes. 

5.6 Conclusion

Of the two types of scanning techniques used in this study, there seems to be no 

substantial difference between the non-fat-suppressed and fat-suppressed MR pulse 

sequences for the quantitative measurement of breast density parameters; however, a 
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much larger study is required to determine the complementary role of T2-weighted 

imaging in this regard.
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Conclusions and Future Directions
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6.1 Conclusions

This study was performed to investigate the quantitative assessments of breast density 

using breast MR imaging protocols with the aim of determining the optimal breast 

MRI protocol. Through both phantom experiments and clinical data analysis, expected 

outcomes are achieved with significant findings as reported below.

A systematic review and meta-analysis study was conducted to evaluate the existing

research on quantitative assessment of breast density using MRI data. This was the 

first comprehensive systematic review and meta-analysis of pooling the results of 38 

studies reporting all breast density segmentation/measurement methods and scanning 

protocols using MRI data. Results of the analysis are summarised as follows: 

The review confirmed high levels of heterogeneity within the breast density 

studies, primarily due to the applications of MR breast-imaging protocols and 

the use of breast density segmentation/measurement methods.

The study revealed that the assessment of breast density varied with pulse 

sequence, image quality, and fibroglandular tissue segmentation. This may 

result in a profound effect on the efficiency of the segmentation and/or 

measurement method and consequently on the results of breast density 

parameters.

The analysis confirmed that the non-contrast-enhanced T1-weighted 

acquisition was commonly utilized among all MR breast-imaging protocols 

and the FCM is the most frequently used algorithm amongst the breast density 

segmentation/measurement methods. 
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This research successfully identified the appropriate materials for simulating the MRI 

related-characteristics of fibroglandular and adipose breast tissues, and developed a 

personalized 3D-printed breast model using 3D-printing techniques and tissue 

mimicking materials for the assessment of breast density. Outcomes are stated as 

follows:

Anthropomorphic shapes of skin and fibroglandular tissues were constructed 

using 3D-printing techniques based on the segmentations of breast MR images 

from a selected healthy patient’s data.

All the 3D skin and fibroglandular region shells were designed as hollow 

structures using polylactic acid and photopolymer resin.

The silicone and peanut oils were found to closely resemble the T1 relaxation 

times and imaging characteristics of fibroglandular and adipose breast tissues,

respectively.

The phantom was used to test different breast MR imaging protocols to 

determine the optimum scanning parameters for the quantitative assessment of 

breast density.

The breast density parameters were quantitatively assessed using a personalized 3D-

printed breast model and an objective comparison between the non-fat-suppressed and 

fat-suppressed MRI sequences. Findings are summarised as follows: 

The volume of fibroglandular tissue and the percentage of breast density were 

significantly higher in the fat-suppressed sequences than in the non-fat-

suppressed sequences; however, the difference in breast volume was not 

statistically significant. 
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The fat-suppressed sequences tended to be more useful than the non-fat-

suppressed sequences for the quantitative measurements of the volume of 

fibroglandular tissue and the percentage of breast density.

A fat-suppressed T2-weighted with turbo inversion recovery magnitude 

(TIRM) imaging sequence was superior to the non-fat- and fat-suppressed T1-

and T2-weighted sequences for the quantitative measurement of breast density 

due to its ability to represent the exact breast tissue compositions. 

The segmentation and/or measurement of breast density parameters could be 

affected by the various levels of inhomogeneity in both the fat-suppressed and 

non-fat-suppressed MR images. 

The difference could also be attributed to the fact that breast MRI is obtained 

with a surface coil covering a wide region, which results in varying signal 

strength depending on the location of the tissue being imaged.

Finally, the breast density parameters were quantitatively assessed in a cohort of high-

risk women based on an objective comparison between the fat-suppressed and non-

fat-suppressed T2-weighted MRI. Key findings are stated as follows:

The results revealed no indication of measurement bias between the non-fat-

suppressed and fat-suppressed T2-weighted imaging sequences with respect to 

breast density parameters, and no evidence to reject the presumption that the 

differences were normally distributed. 

Although the breast volume measured in the fat-suppressed T2-weighted 

sequence was slightly higher than that in the non-fat-suppressed T2-weighted 

sequence and the difference was close to significant, the findings showed no 
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significant difference in the breast density parameters analyzed from the two 

imaging techniques. 

This study showed no substantial differences between the non-fat-suppressed 

and fat-suppressed T2-weighted imaging sequences in the quantitative 

measurement of breast density parameters; however, further studies with 

inclusion of a larger sample size are required to validate the complementary

role of T2-weighted imaging in this regard.

Although the acquisition of the non-fat-suppressed and fat-supressed 

sequences was based on a two-dimensional imaging, the scanning parameters, 

such as field-of-view and matrix size, were relatively different; this may play

a role in the segmentation and/or measurement of breast density, and therefore 

in the results.

The type of fat suppression used in this study relied on an inversion-based 

approach, which is just one of several methods; caution must be used, as it 

might not be possible to extrapolate the results to all fat-suppression 

techniques.

6.2 Future Directions

This research has intensified the need for a standardized imaging protocol and/or 

measurement method for the evaluation of breast density predominantly for women at 

an elevated risk of developing breast cancer, for those with high breast density. The

study showed how 3D-printing techniques and tissue mimicking materials can be used 

to construct a customized breast model for the quantitative assessment of breast 

density. The findings also indicate that the silicone and peanut oils can effectively 
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mimic the T1 relaxation times and MR imaging characteristics of fibroglandular and 

adipose breast tissues. The proposed methodologies can be used as a preliminary work 

for breast structure simulations and the development of further patient models based 

on MRI datasets.

Although the fat-suppressed sequences were more useful for the quantitative 

measurements of the volume of fibroglandular tissue and the percentage of breast 

density in a patient-specific 3D-printed breast model than the non-fat-suppressed 

sequences, this work was limited by the fact that breast density parameters were

segmented and measured using a semi-automated method, which indicates that the

prospective cause of such a difference between the aforementioned imaging sequences

could be due to a high degree of reliance on user interaction.

A fat-suppressed T2-weighted with TIRM imaging sequence was superior to the non-

fat- and fat-suppressed T1- and T2-weighted sequences for the quantitative 

measurement of breast density due to its ability to represent the exact breast tissue 

compositions. Despite being preliminary findings, the study indicates that TIRM could 

be incorporated with fat-suppression techniques for the assessment of breast density. 

The fat-suppressed T2-weighted image with TIRM acquisition can be a promising 

technique for the quantitative assessment of breast density, although further research 

should be conducted to verify this suggestion. Despite the fact that there were no

substantial differences between the non-fat-suppressed and fat-suppressed T2-

weighted imaging sequences for the quantitative measurement of breast density

parameters in a cohort of high-risk women, the study’s findings are constrained by the

small sample size.



174

Many questions and potential research directions have emerged as a result of this 

study, which would need to be investigated further. Some suggestions for future 

research are as follows:

3D-printed breast models can be used to guide breast reconstructive surgery to 

improve clinical outcomes. This can be enhanced further by the use of a variety

of customized breast implants in different shapes and sizes.

A more realistic breast phantom with different amounts of breast composition

could be created using 3D-printing technique and tissue mimicking materials.

This can correspond to the four categories of the ACR BI-RADS atlas, 

allowing an estimation of the volume of fibroglandular tissue, and thus breast 

density.

Another possible area of future research would be to examine more closely the 

observed correlations between silicone oil’s T1 relaxation time and 

fibroglandular tissue.

Multiple MR breast-imaging protocols are suggested, not only to measure the 

breast density but also to assess the impact of implementing various image 

quality parameters (i.e., FOV, matrix size and slice thickness) on the 

segmentation/measurement of breast density.

More research would be required to evaluate the Analyze 14.0 software’s 

effectiveness in the segmentation/measurement of breast density, especially in 

the differentiation between fibroglandular and fatty tissues. 

A further study with a larger sample size would be desirable to determine 

exactly how the non-fat-suppressed and fat-suppressed T2-weighted imaging 

sequences influence the quantification of breast density, and thus allowing

more robust conclusions to be drawn. 
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Deep learning methods may be used to segment breast and fibroglandular 

tissue, in which the degree of difference between the non-fat-suppressed and 

fat-suppressed imaging sequences could be more accurately assessed in terms 

of the efficiency and accuracy of quantitative measurement of breast density 

in MRI volumes. 
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Abstract: Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty tissue, 
is confirmed as an independent risk factor of breast cancer. Although there has been an increasing 
interest in the quantitative assessment of breast density, no research has investigated the optimal 
technical approach of breast MRI in this aspect. Therefore, we performed a systematic review and 
meta-analysis to analyze the current studies on quantitative assessment of breast density using MRI 
and to determine the most appropriate technical/operational protocol. Databases (PubMed, 
EMBASE, ScienceDirect, and Web of Science) were searched systematically for eligible studies. 
Single arm meta-analysis was conducted to determine quantitative values of MRI in breast density 
assessments. Combined means with their 95% confidence interval (CI) were calculated using a fixed-
effect model. In addition, subgroup meta-analyses were performed with stratification by breast 
density segmentation/measurement method. Furthermore, alternative groupings based on 
statistical similarities were identified via a cluster analysis employing study means and standard 
deviations in a Nearest Neighbor/Single Linkage  A total of 38 studies matched the inclusion criteria 
for this systematic review. Twenty-one of these studies were judged to be eligible for meta-analysis. 
The results indicated, generally, high levels of heterogeneity between study means within groups 
and high levels of heterogeneity between study variances within groups. The studies in two main 
clusters identified by the cluster analysis were also subjected to meta-analyses. The review 
confirmed high levels of heterogeneity within the breast density studies, considered to be due 
mainly to the applications of MR breast-imaging protocols and the use of breast density 
segmentation/measurement methods. Further research should be performed to determine the most 
appropriate protocol and method for quantifying breast density using MRI. 

Keywords: Magnetic resonance imaging; breast density; fibroglandular-tissue; systematic review 
and meta-analysis; cluster analysis; segmentation; FCM; breast-imaging protocol; non-contrast-
enhanced T1-weighted 

 

1. Introduction 

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty tissue, is an 
independent risk factor for breast cancer [1–3]. Consistent with this risk relationship, women who 
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have dense breasts have a likelihood of developing breast cancer that is fourfold higher than those 
with fatty breasts [4,5]. Most of the information regarding breast density has been acquired with two-
dimensional imaging, which is mammography. However, the evaluation of breast density based on 
mammograms is limited due to the overlapping of tissues, variations in breast compression, and 
inappropriate positioning that lead to artefacts (skin folder) and inclusion of insufficient breast tissue 
[6,7]. These factors could affect mammography’s performance for precise, reliable measurements of 
small changes in breast density over brief timespans [8,9]. 

Magnetic resonance imaging (MRI), an alternative imaging modality in breast imaging can 
estimate the actual breast density value because it provides a three-dimensional volume assessment 
of breast tissue, with excellent contrast resolution in the differentiation between fibroglandular and 
fatty tissues [10–13]. Conventionally, breast density is assessed qualitatively using the American 
College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) atlas, which is a 
classification system commonly used for mammography, according to which density has four 
categories based on the amount of fibroglandular tissue: “(1) almost entirely fat, (2) scattered 
fibroglandular tissue, (3) heterogeneous fibroglandular dense and (4) extreme fibroglandular tissue” 
[14,15]. The interpretations of these four categories are also applied for MRI. Despite its long clinical 
success, the BI-RADS scoring atlas is subjective and varies between readers, even within the same 
reader [16]. To overcome a subjective assessment of breast density and to reduce inter- and intra-
reader variability, different methods for quantitative breast density have been proposed, with a range 
of algorithms or methods reported in the literature [17–22]. Each of these methods were shown to 
have advantages and limitations through the use of semi-automatic thresholding and segmentation 
approaches for quantitative assessment of breast density. 

There is no doubt that MRI is one of the most useful modalities for breast imaging and that the 
analysis of breast density in quantitative synthesis is a well-established approach. In spite of the fact 
that extensive research has been carried out on breast density measurements, no consensus has been 
reached about the optimal approach to quantify breast density using MRI. Therefore, the purpose of 
this review is to analyze the current methods for the quantitative assessment of breast density using 
MRI over the past decade of publications. Due to the expected heterogeneity of MRI scanning 
protocols, both systematic review and meta-analysis were performed to analyze the available studies. 

2. Materials and Methods 

This systematic review and meta-analysis were performed according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria [23,24]. No ethics committee 
approval was required. 

2.1. Search Strategy and Eligibility Criteria 

A systematic literature review was conducted of studies that 
 Briefly, a search for studies published between 1 January 2009 and 31 

December 2018 was conducted in different databases: PubMed (MEDLINE, U.S. National Library of 
Medicine and National Institutes of Health, Bethesda, MD, USA), EMBASE (Elsevier, Amsterdam, 
The Netherlands), ScienceDirect (Elsevier, Amsterdam, The Netherlands), and Web of Science 
(Clarivate Analytics, Philadelphia, PA, USA) using the search terms detailed below. 

Systematic search expressions were employed using MeSH (medical subject headings) in 
PubMed and the thesaurus in EMBASE, ScienceDirect, and Web of Science. A search structure was 
based on combining three main terms as follows: “breast density,” “quantitative analysis,” and 
“MRI.” The exact search expressions were “Breast Density” (MeSH term) OR “fibroglandular tissue” 
(Text word) OR “breast densit*” (Text word) OR “FGT” (Text word) OR “FT” (Text word) OR 
“fibroglandular densit*” (Text word) AND “Quantitative analysis” (Subject heading) AND 
“Magnetic Resonance Imaging” (MeSH term) OR “nuclear magnetic resonance imaging” (Text word) 
OR “MRI” (Text word) OR “magnetic resonance imaging” (Text word). The criteria for selecting the 
studies for eligibility were based on their title, abstract, and subsequently the full text, this was 
performed independently by two reviewers (R.S. and Z.S.). Studies addressing the quantitative 
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analysis of breast density using MRI were considered eligible for inclusion and also studies on human 
subjects since 2009 had to be published in peer-reviewed journals and written in English. For study 
inclusion, the subjects must have undergone breast MRI studies and the breast density measurement 
method is known. Eligible studies were retrieved, and full manuscripts were read. No restricted 
conditions have been applied in terms of study characteristics, the purpose of study, and the results. 
Publications were only included in the analysis if the measurement of breast density had been 
performed in a quantitative manner regardless of the MRI technique or breast density 
segmentation/measurement method. 

2.2. Data Extraction 

On completing the eligibility screening, the process of data extraction from the included studies 
was carried out manually by the same two reviewers. Descriptive data were extracted for all variables 
as follows: the first author’s surname; year of publication; journal of publication; study type; total 
number of participants/patients; mean age; age range of participants/patients; MRI technique (pulse 
sequence/breast-imaging protocol and static magnetic field strength); and breast 
segmentation/measurement method. For each study analyzed, estimates of breast volume, 
fibroglandular-tissue volume and percentage breast density were recorded using descriptive 
statistics, arithmetic means and standard deviations, whenever appropriate. Due to the 
heterogeneous nature of this analysis, some of the included studies produced their results in a median 
and interquartile range (IQR). Accordingly, the researchers decided to stratify results and excluded 
them from the meta-analysis only. 

2.3. Data Synthesis 

The combinations of MRI techniques and the applied breast segmentation/measurement 
methods encountered in the studies were considered to be technologically heterogeneous. To address 
this issue and acquire more reasonable estimates, the analyses were stratified by breast segmentation 
method into three discrete groups (fuzzy c-mean clustering (FCM), FCM and nonparametric 
nonuniformity normalization (N3), and signal intensity thresholding). In each sub meta-analysis, the 
number of the included studies were selected on the basis of a degree of homogeneity of their breast 
density segmentation/measurement results. 

2.4. Statistical Analysis 

The measurement of breast density as ascertained by MRI using semi- or fully-automated 
segmentation method was assessed. The primary outcome was the percentage breast density (%BD). 
Data input for each study within a group consisted of the study size (N), the ‘raw’ study mean (i.e., 
with no re-scaling or standardization), and the study standard deviation. The data was analyzed by 
the “metamean” function in the “meta” package in the R system, Version 3.4.1 (http://www.r-
project.org/). This facilitates the meta-analysis of a single arm trial, as opposed to the traditional two 
arm trial with a control group and a treatment group, equivalent to a one-way analysis of variance. 
A forest plot was generated, displaying the individual study (%BD) means with 95% confidence 
interval (CI) limits, inverse variance study weights, and the pooled mean and confidence limits. 
Heterogeneity of study means was assessed using Cochran’s Q-test, and heterogeneity of study 
variances was assessed with Bartlett’s test. A conclusion to pool studies requires both heterogeneity 
tests to be non-significant at the 5% level. 

As an alternative to grouping the studies on a technological basis, a cluster analysis was run to 
investigate any similarities between studies with respect to two attributes, namely study mean and 
study standard deviation. The International Business Machines Statistical Package for the Social 
Sciences (IBM SPSS) Statistics software Version 25.0 was used for cluster analysis. The procedure 
provides for a wide selection of combinations of distance measures and clustering methods, but for 
the current application, the simplest of these was chosen, namely Euclidean distance and nearest 
neighbor agglomeration. This algorithm calculates a proximity matrix of distances between all 
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possible pairs of studies and allocates the closest pair into a cluster, then examines the remaining 
clusters to identify which is the next nearest or whether there is a pair that are closer to one another, 
and so on. 

3. Results 

3.1. Literature Search 

Figure 1 presents an overview of the systematic search of the literature through different 
databases. The complete search yielded 941 studies. After removing duplicates (n = 70), 871 were 
screened, based on their titles, which resulted in 765 being excluded, followed by 27 of the remaining 
studies being excluded on the basis of their abstracts. Of the remaining 79 studies, the full manuscript 
was retrieved and reviewed. Forty-one studies did not meet the selection inclusion criteria: no 
adequate breast density data (n = 20), qualitative analysis (n = 12), editorials (n = 4), conference 
abstracts (n = 3), post-mortem study (n = 1), and phantom study (n = 1). Finally, 38 studies attained 
the inclusion criteria [1–3,5,11,25–57] and were included in the analysis as shown in Table 1. 

 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart 
of systematic review and meta-analysis of the excluded and included studies. 

 



J. Clin. Med. 2019, 8, 745 5 of 23 

3.2. Systematic Review 

Table 1 demonstrates some of the main characteristics of the 38 included studies, while Figure 2 
shows details of the study design and MRI system used in these studies. Several MRI sequences were 
used to enable the precise differentiation between adipose and fibroglandular tissues; of these, non-
contrast-enhanced T1-weighted was widely used either with 2D spin echo or 3D gradient echo. In 
fact, 16 studies (41.03%) used non-contrast-enhanced T1-weighted [1,2,26–29,31,33,35,44,45,48–51,53], 
while in 12 studies (30.77%) non-contrast-enhanced images were integrated with contrast-enhanced 
images [25,36–44,47,49]. In terms of breast density segmentation/measurement, the majority of the 
studies (20 studies; 51.28%) used FCM clustering algorithm [1,2,11,25–29,31–42], while 7 studies 
(17.95%) used FCM and N3 algorithm [45–51], 4 studies (10.26%) interactive thresholding algorithm 
[3,5,52,53], 4 studies (10.26%) in-house customized software [29,53–55], one study (2.56%) manual 
software [57]; however, two studies did not provide the information [43,44].  

Among the thirty-eight studies included in the systematic review and meta-analysis, 21 studies 
qualified for meta-analysis since they reported the percent breast density using an identical 
expression of measurement and dispersion [1,3,11,25–32,36–38,45,48–50,53–55] (Table 2). However, 
for the remaining 17 studies, the percent breast density was reported in different format: in eight of 
these studies, it was defined as a median and interquartile range (IQR) [2,39–44,47], and in the other 
nine, it was reported either in different measurement unit or the subject’s sets were not independent, 
due to multiple usage [5,33–35,46,51,52,56,57]. To perform the meta-analysis precisely, all the 
measured quantities should be reported in an identical expression of measurement and dispersion, 
thus we decided to exclude them from the meta-analysis. 

 

Figure 2. Flowchart of the study characteristics (study design, MRI system, MRI sequence, Breast 
Density (BD) segmentation method) of 38 studies. 
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3.4. Subgroup Analyses 

The final inclusion consisted of a total of twenty-one studies in the meta-analyses; the forest plots 
and pooled results are shown in Figure 3. 

 
(A) 

 
(B) 

 
(C) 

Figure 3. Cont. 
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(D) 

 
(E) 

Figure 3. Forest plot of the study means, and 95% confidence limits of the breast density among 21 
included studies in the subgroup meta-analyses. (A) Fixed effect meta-analysis of the fuzzy c-mean 
clustering (FCM) group of studies of % breast density. (B) Fixed effect meta-analysis of the FCM group 
of studies of % dense breast volume. (C) Fixed effect meta-analysis of the FCM and N3 group of 
studies of % breast density. (D) Fixed effect meta-analysis of the semi-automated threshold group of 
studies of % breast density. (E) Fixed effect meta-analysis of the semi-automated threshold group of 
studies of % breast density. 

3.4.1. Fuzzy C-mean Clustering (FCM) 

The FCM subgroup consisted of 13 studies, of which, 10 studies reported breast density as a 
percentage breast density (% BD) [1,11,25–32], whereas 3 studies as a percentage of the dense breast 
volume (% DBV) [36–38]. On one hand, 10 studies with inclusion of 634 patients were included, as 
Figure 3A shows, there is a wide range of mean values as well as standard deviation (SDs) from those 
studies, which indicated enormous heterogeneity among study means (Cochran’s Q test: X2 = 86.93, 
P < 0.0001). Indeed, there is a substantial heterogeneity among study variances (Bartlett’s test: X2 = 
110.59, P < 0.0001). On the other hand, three studies with inclusion of 528 patients were analyzed. 
Figure 3B shows there is a high level of homogeneity among study means (Cochran’s Q test: X2 = 0.13, 
P = 0.94), and a high level of homogeneity among study variances (Bartlett’s test: X2 = 0.12, P = 0.94), 
which would be expected as those studies used an identical combination of MR technique and breast 
density segmentation/measurement approach. 

3.4.2. FCM and Nonparametric Nonuniformity Normalization (N3) 

The FCM and N3 subgroup included 4 studies with inclusion of 126 patients [45,48–50], as Figure 
3C shows, there is a wide range of mean values as well as SDs from those studies, which indicated 
tremendous heterogeneity among study means (Cochran’s Q test: X2 = 99.94, P < 0.0001). Indeed, there 
is a substantial heterogeneity among study variances (Bartlett’s test: X2 = 45.41, P < 0.0001), which 
would be expected as those studies used different MR breast-imaging protocols.
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Table 1. Characteristics of the included studies in the systematic review and meta-analysis. 

Author, 
year of 

publication 

Study 
design 

Study 
participants 

Age range, 
average 

(Years) or 
Mean ± SD 

MR Scanner 
Manufacturer, 
Field Strength 

(Tesla) 

MRI 
Sequence 

Orientation, 
Slice No. 

TR/TE 
(ms) 

FOV 
(cm) 

Slice 
Thickness 

(mm) 

Matrix 
size 

Flip 
angle 

(°) 
Breast coil Segmentation 

method 

Chang, 2011 
[25] Retro. 38 28–82, 48 Philips, 3.0 

Fat-
suppressed 3D 

SPAIR 
Axial, 160 6.20/1.26 

3.01–
38.0 1.0 480 × 480 12 NA 

FCM 
Non-fat-

suppressed 2D 
TSE 

Axial, 84 800/8.6 31.0–
38.0 

2.0 480 × 480 90 NA 

Nie, 2010 
[26]  

NA 230 50 ± 11.0 Philips, 1.5 
Non-fat-

suppressed 3D 
SGRE (T1W)  

Axial, 32 8.1/4.0 
31.0–
38.0 

4.0 256 × 256 20 NA FCM 

Pertuz, 2016 
[27] 

Retro. 68 24–82, 52 Siemens, 1.5 
Non-fat-

suppressed 
(T1W) 

NA NA NA 2.4–3.5 512 × 512 NA NA FCM 

Moon, 2018 
[28]  

Retro. 98 51.81 ± 11.08 GE, 1.5 
Non-fat-

suppressed 
(T1W) 

Axial 6.2/2.1 20.0 1.0 512 × 217 NA NA FCM 

Chen, 2010 
[29] 

Retro. 35 45 ± 7 Philips, 1.5 
Non-fat-

suppressed 3D 
SGRE (T1W) 

Axial, 32 8.1/4.0 38.0 3.0–4.0 256 × 128 20 

Dedicated 
4-channel 

phased 
array 

FCM 

Chen, 2016 
[31] 

Retro. 23 40.5 ± 8.2 Philips, 3.0 
Non-fat-

suppressed 2D 
TSE (T1W) 

Axial, 90 654/9.0 33.0 2.0 328 × 384 NA NA FCM 

Moon, 2011 
[32] 

Retro. 40 50.9 ± 9.4 GE, 1.5 

Fat-
suppressed 3D 

GRE (T1W) 
(VIBRANT) 

Sagittal, 144–
192 6.1/2.5 19.0 1.5 512 × 512 NA NA FCM 

Klifa, 2010 
[11] 

Retro. 35 28–59, 43 GE, 1.5 

Fat-
suppressed 3D 

Fast GRE 
(T1W) 

Axial, 60 8.0/4.2 NA 2.0 NA 20 

Dedicated 
bilateral 
phased 
array 

FCM 

Chen, 2011 
[1] 

Retro. 16 33–51, 43 GE, 1.5 
Non-fat-

suppressed 3D 
(T1W) 

Axial, 56 7.4/3.3 30 2.0 512 × 512 NA 
Dedicated 
8-channel 
bilateral 

FCM 
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Nie, 2010 
[33] 

Retro. 50 NA Philips, 1.5 
Non-fat-

suppressed 3D 
GRE (T1W) 

Axial, 32 8.1/4.0 38.0 4.0 256 × 128 20 NA FCM 

Kim, 2014 
[34] 

Retro. 80 27–68, 44 GE, 1.5 

Fat-
suppressed 2D 

FSE (T2W) 
Sagittal 

5500-
7150/82 

20.0 1.5 256 × 160 NA 
Dedicated 
8-channel 
bilateral 

FCM Fat-
suppressed 3D 

Fast SGRE 
(T2W) 

Sagittal 6.2/2.5 20.0 1.5 256 × 160 10 
Dedicated 
8-channel 
bilateral 

Nie, 2010 
[35] 

Retro. 321 54 ± 12 Philips, 1.5 
Non-fat-

suppressed 3D 
SGRE (T1W) 

Axial, 32 8.1/4.0 
32.0–
38.0 

4.0 256 × 128 20 

Dedicated 
4-channel 
phased-

array 

FCM 

Wang, 2013 
[2] 

Retro. 99 47.2 ± 12.1 GE, 1.5/3.0 
Non-fat-

suppressed 
(T1W) 

Axial NA NA 2.0 NA NA 

Dedicated 
bilateral 
phased-

array 

FCM 

Bertrand, 
2015 [36] 

Pros. 182 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal 

NA 
32.0–
40.0 

NA NA NA 
Dedicated 

RF coil 
FCM 

Bertrand, 
2016 [37] 

Pros. 172 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

NA NA 
32.0–
40.0 

NA NA NA 
Dedicated 

RF coil 
FCM 

Dorgan, 
2012 [38] 

Retro. 174 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal NA 

32.0–
40.0 NA NA NA 

Dedicated 
RF coil FCM 

Gabriel, 
2013 [39] NA 182 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal 

NA 
32.0–
40.0 

NA NA NA 
Dedicated 

RF coil FCM 

Jung, 2015 
[40] 

Pros. 180 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal NA 

32.0–
40.0 NA NA NA 

Dedicated 
RF coil FCM 

Jung, 2016 
[41] Pros. 177 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal NA 

32.0–
40.0 NA NA NA 

Dedicated 
RF coil FCM 
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Dorgan, 
2013 [42] 

C.S. 176 
27.0–27.3, 

27.2 
NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal 

NA 
32.0–
40.0 

NA NA NA 
Dedicated 

RF coil 
FCM 

Jung, 2015 
[43] 

Pros. 177 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal 

NA NA NA NA NA 
Dedicated 

RF coil 
NA 

Jones, 2015 
[44] 

C.S. 172 25–29 NA, 1.5/3.0 

Non-fat- and 
fat-suppressed 
3D Fast GRE 

(T1W) 

Axial and 
Coronal 

NA NA NA NA NA 
Dedicated 

RF coil 
NA 

Chen, 2012 
[45] 

Pros. 34 20–64, 35 

GE, 1.5  
Non-fat-

suppressed 2D 
FSE (T1W) 

Axial 607/9.0 38.0 2.0 256 × 192 NA 
Dedicated 
8-channel 
bilateral 

FCM and N3 

GE, 3.0 
Non-fat-

suppressed 2D 
FSE (T1W) 

Axial 650/9.0 38.0 2.0 256 × 192 NA 
Dedicated 
8-channel 
bilateral 

Philips, 3.0 
Non-fat-

suppressed 2D 
FSE (T1W) 

Axial 650/9.0 33.0 2.0 328 × 384 NA 

Dedicated 
16-

channel 
bilateral 

Siemens, 1.5 
Non-fat-

suppressed 2D 
FSE (T1W) 

Axial 650/9.8 33.0 2.0 330 × 384 20 
Dedicated 
4-channel 
bilateral 

Chen, 2015 
[46] 

NA 32 22–53, 41 Siemens, 1.5 
Non-fat-

suppressed 2D 
FSE (T1W) 

Axial 650/9.8 33.0 2.0 
256 × 256 
and 512 

× 512 
NA 

Dedicated 
4-channel 
bilateral 

FCM and N3 

Chen, 2013 
[47] 

NA 44 28–82, 47 Philips, 3.0 

Non-fat-
suppressed 2D 

TSE (T1W) 
Axial 800/8.6 31.0–

38.0 
2.0 480 × 480 90 

Dedicated 
4-channel 
bilateral 

FCM and N3 
Fat-

suppressed 3D 
GRE (T1W) 

Axial 6.2/1.26 
31.0–
36.0 

2.0 480 × 480 12 
Dedicated 
4-channel 
bilateral 

Chan, 2011 
[48] NA 30 

Pre: (N = 24) 

Siemens, 1.5 
Non-fat-

suppressed 3D 
GRE (T1W) 

Axial 11/4.7 35.0 2.0 256 × 256 20 
4-channel 

dual-
mode 

FCM and N3 
23–48, 29 

Post: (N = 6) 
51–61, 57 
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Table 1. Cont. 

Choi, 2017 
[49] 

Retro. 38 32–79, 45 Philips, 3.0 

Non-fat-
suppressed SE 

(T1W) 
Axial 620/10 

20.0–
34.0 3.0 332 × 332 NA 

Dedicated 
7-channel 
bilateral 

FCM and N3 
STIR and SE-

EPI (DW) 
Axial 3265/54 35.0 4.0 288 × 288 90 

Dedicated 
7-channel 
bilateral 

Chen, 2013 
[50] 

NA 24 23–48, 29 Siemens, 1.5 

Non-fat-
suppressed 3D 

Fast GRE 
(T1W) 

Axial 11/4.7 35.0 2.0 256 × 256 20 
4-channel 

dual-
mode 

FCM and N3 

Clendenen, 
2013 [51] 

NA 9 24–31 Siemens, 3.0 

Non-fat-
suppressed 3D 

VIBE (T1W) 
Axial 4.19/1.62 

26.9 × 
20.2 × 
28.8 

0.6 × 0.6 × 
1 

448 × 336 
× 288 12 

Dedicated 
7-channel 
bilateral 

FCM and N3 3-Point Dixon 
Non-fat-

suppressed 3D 
FLASH (T1W) 

Axial 
7.6/3.37, 
4.17. 4.96 

NA 
0.88 × 0.88 

× 1.5 
NA 10 

Dedicated 
7-channel 
bilateral 

McDonald, 
2014 [52] 

Retro. 103 47 ± 11 Philips, 3.0 
EPI-Parallel 

Imaging 
(DWI) 

NA 5336/61 36.0 5.0 240 × 240 NA 
Dedicated 
16 channel 

bilateral 

Semi-
automated 
Interactive 
Threshold 

Tagliafico, 
2013 [5] 

Pros. 48 35–67, 41 GE, 3.0 

3D Fast SGRE 
and Fat-

suppressed 3D 
GRE (T1W) 
(VIBRANT) 

NA 6.2/3.0 NA NA 350 × 350 10 
Dedicated 
8-channel 
bilateral 

Semi-
automated 
Interactive 
Threshold 

IDEAL NA 4380/130.
872 

NA NA 360 × 360 90 
Dedicated 
8-channel 
bilateral 
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Table 1. Cont. 

Tagliafico, 
2014 [3] NA 48 35–67, 41 GE, 3.0 

TSE (T1W) NA 600/9.0 NA 4.0 350 × 350 90 
Dedicated 
8-channel 
bilateral 

Semi-
automated 
Interactive 
Threshold 

TSE (T2W) NA 5200/103 NA 4.0 350 × 350 90 
Dedicated 
8-channel 
bilateral 

Fat-
suppressed 3D 

GRE (T1W) 
(VIBRANT) 

NA 6.2/3.0 NA 1.2 350 × 350 10 
Dedicated 
8-channel 
bilateral 

IDEAL NA 4380/130 NA 1.2 360 × 360 90 
Dedicated 
8-channel 
bilateral 

Chen, 2013 
[53] 

NA 24 23–48, 29.4 Siemens, 1.5 
Non-fat-

suppressed 3D 
GRE (T1W) 

Axial 11/4.7 35.0 2.0 256 × 256 20 NA 

Semi-
automated 
Interactive 
Threshold 

Ha, 2016 
[30] 

Retro. 60 54.2 GE, 1.5/3.0 

Fat-
suppressed 
Fast SGRE 

(T1W) 

Axial 17/2.4 
18.0-
22.0 

2.0 256 × 192 35 
8-channel 

breast 
array 

Semi-
automated  
(In-house 
software) 

Ledger, 2016 
[54] 

Retro. 10 23–50, 31 Siemens, 1.5 

HR/LR  
3D GRE 
(PDW) 

Axial 7.34/4.77, 
2.39 

NA NA NA 4 

Sentinelle 
variable 

coil 
geometry 

Semi-
automated  
(In-house 
software) 

HR/LR 
3D GRE (T1W) 

Axial 
7.34/4.77, 

2.39 NA NA NA 25 

Sentinelle 
variable 

coil 
geometry 

LR 2D SE 
(T1W) Axial 500/12 NA 7.0 NA NA 

Sentinelle 
variable 

coil 
geometry 

Wengert, 
2015 [55] 

Pros. 43 21–71, 38 Siemens, 3.0 Dixon Axial, 192 
NA/6.0, 

2.45, 2.67 
NA NA 352 × 352 6 

Dedicated 
4-channel 
bilateral 

Fully-
automated 

(AUQV) 

O’Flynn, 
2014 [56] 

Retro. 33 

(N = 17): 

Siemens, 1.5 
Fat-

suppressed 
SS-EPI (DWI) 

Axial 6300/83 34.0 5.0 NA NA 
Dedicated 
4-channel 
bilateral 

Dedicated IDL 
based software 

for ADC 
calculation 

33–49, 43 
(N = 16): 
27–49, 40 
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Table 1. Cont. 

Kim, 2016 
[57] 

Pros. 57 32–74, 50.8 Siemens, 3.0 

Fat-
suppressed 
TSE (T2W) 

Sagittal 7623/91 
22 × 
22 3.0 320 × 246 NA 

Dedicated 
4-breast 

array 

Manually 
Fat-

suppressed 
SS-EPI (DWI) 

Axial 5200/74 340 × 
179 

5.0 80 × 190 NA 
Dedicated 
4-breast 

array 
Fat-

suppressed 3D 
FLASH (T1W) 

Sagittal 4.5/1.6 
22 × 
22 2.0 352 × 292 20 

Dedicated 
4-breast 

array 

Abbreviations: Retro.: retrospective; Pros.: prospective; C.S.: cross-sectional; Pre.: pre-menopausal; Post.: post-menopausal; T1W: T1-weighted; T2W: T2-weighted; 
SPAIR: spectral attenuated inversion recovery; TSE: turbo spin-echo; SGRE: spoiled gradient-echo; VIBRANT: volume image breast assessment; GRE: gradient-
echo; FSE: fast spin-echo; STIR: short-TI inversion recovery; DWI: diffusion-weighted imaging; VIBE: volumetric interpolated breath-hold examination; FLASH: 
fast low angle shot; IDEAL: iterative decomposition of water and fat with echo asymmetry and least squares estimation; HR: high-resolution; LR: low-resolution; 
PDW: proton density-weighted; SS-EPI: single shot- echo-planar imaging; FCM: fuzzy c-mean clustering algorithm; N3: non-parametric non-uniformity 
normalization; AUQV: automated user-independent quantitative volumetric. 
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Table 2. Sample size, Mean, and SD of breast volume, fibroglandular volume, and percent of breast 
density of the (21) included studies in the subgroup meta-analyses. 

Author, Year 
Breast Volume, BV 

(cm3) 
Fibroglandular Volume, 

FV (cm3)  Breast Density, BD 
(%) 

Mean SD Mean SD N Mean SD 
Chang, 2011 [25] 681  359 100  58 38 17.50 9.50 

Nie, 2010 [26] 
- - 104  62 141 15.30 8.10 
- - 112  73 89 16.70  10.10 

Perutz, 2016 [27] 2210  1125 297  128 68 16.60  11.20 
Moon, 2018 [28] 537.59   287.74 - - 89 20.30  8.60 
Chen, 2010 [29] - - - - 35 16.6 0  9.30 

Ha, 2016 [30] - - - - 60 15.30 10.07 
Chen, 2016 [31 ] 537.59  287.74 - - 23 24.71  15.16 
Moon, 2011 [32] 544.90 207.41 - - 40 23.79 16.62 
Klifa, 2010 [11] - - - - 35 28.0 18.00 
Chen, 2011 [1] 358 174 79 66 16 22.10 2.60 

Bertrand, 2015 [36] 413.5 364.3 104.2 70.6 182 27.60 20.50 
Bertrand, 2016 [37] 418.7 369.3 104.7 70.3 172 27.40 20.00 
Dorgan, 2012 [38] - - 104.67 71.28 174 28.15 20.39 
Chen, 2012 [45] 528 263 117 82 34 24.10 12.40 
Choi, 2017 [49] - - - - 38 14.80 14.40 

Chan, 2011 [48] 
- - - - 6 8.70 3.40 
- - - - 24 21.20 8.30 

Chen, 2013 [50] - - - - 24 7.50 3.80 
Tagliafico, 2014 [3] - - - - 48 55.00 23.20 
Ledger, 2016 [54] 482.6 296.2 135.2 56.2 10 35.40 16.20 
Chen, 2013 [53] - - 48.1 24.7  24 20.20 7.80 

Wengert, 2015 [55] 1462.43 803.38 - - 43 26.05 19.47 

3.4.3. Interactive Semi-Automated Threshold 

Two studies [3,54] comprising of 58 patients were included in the analysis, which indicated a 
considerable heterogeneity among study means (Cochran’s Q test: X2 = 10.26, P = 0.0014). In contrast, 
there was no evidence of heterogeneity among study variances (Bartlett’s test: X2 = 1.61, P = 0.2072). 

On the other hand, two studies with inclusion of 67 patients [53,55] were analyzed as shown in 
Figure 3E, there was no evidence of heterogeneity among study means (Cochran’s Q test: X2 = 3.01, P 
= 0.0825), which would be expected as those studies used the same MRI technique and breast density 
measurement. However, there is a substantial heterogeneity among study variances (Bartlett’s test: 
X2 = 18.84, P < 0.0001). 

3.5. Cluster Analysis 

The results obtained from the clustering analysis “Dendrogram using Single Linkage” are shown 
in Figure 4. From this data, it can be seen that a hierarchical diagram showing various distances (0–
25) at which studies joined various groups. On that basis, six clusters were identified. A list of cluster 
membership, study means, SDs, and coefficient of variations (CVs) (expressed as a percentage) is 
shown in Table 3. A scatter plot of the study means versus SDs is shown in Figure 5, the legend in 
the scatter plot indicates the number of studies in each cluster. Cluster markers with solid fill indicate 
clusters with two or more studies, whereas open markers indicate singletons. Cluster 1 included nine 
studies that analyzed breast density with a combination of contrast and non-contrast T1-weighted 
either with 2D spin echo or 3D gradient echo; however, Choi [49] used diffusion-weighted scanning 
technique. From the data in Table 3 (Cluster 1), it is apparent that the CVs are varied in value, but in 
Choi’s study [49] the CV is almost 100% because of the mean and SD are almost identical. In contrast, 
the CVs for Chan [48] and Chen [53] are much lower than the rest of the included studies, largely 
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because of the small SDs and the breast segmentation methods being used which are FCM and N3 
and interactive semi-automated threshold algorithms, respectively. 

 
Figure 4. Dendrogram clustering analysis using “Single Linkage” method of the study means, and 
study SDs among 21 included studies in the subgroup meta-analyses. 

Table 3. Study size (N), mean, SD, coefficient of variations (CV), and cluster membership of the 
included studies. 

Study Code Author, Year N Mean SD CV Cluster Membership 
P1.01 Chang, 2011 [25] 38 17.50 9.50 54.29 1 
P1.04 Nie, 2010 [26] 89 16.70 10.10 60.48 1 
P1.05 Pertuz, 2016 [27] 68 16.60 11.20 67.47 1 
P1.06 Moon, 2018 [28] 89 20.30 8.60 42.36 1 
P1.07 Chen, 2010 [29] 35 16.60 9.30 56.02 1 
P1.08 Ha, 2016 [30] 60 15.30 10.07 65.82 1 
P4.13 Choi, 2017 [49] 38 14.80 14.40 97.30 1 
P4.15 Chan, 2011 [48] 24 21.20 8.30 39.15 1 
P6.03 Chen, 2013 [53] 24 20.20 7.80 38.61 1 
P1.09 Chen, 2016 [31] 23 24.71 15.16 61.35 2 
P1.10 Moon, 2011 [32] 40 23.79 16.62 69.86 2 
P1.11 Klifa, 2010 [11] 35 28.00 18.00 64.29 2 
P3.01 Bertrand,2015 [36] 182 27.60 20.50 74.28 2 
P3.02 Bertrand, 2016 [37] 172 27.40 20.00 72.99 2 
P3.03 Dorgan, 2012 [38] 174 28.15 20.39 72.43 2 
P4.03 Chen, 2012 [45] 34 24.10 12.40 51.45 2 
P6.05 Wengert, 2015 [55] 43 26.05 19.47 74.74 2 
P1.12 Chen, 2011 [1] 16 22.10 2.60 11.76 3 
P4.14 Chan, 2011 [48] 6 8.70 3.40 39.08 4 
P4.16 Chen, 2013 [50] 24 7.50 3.80 50.67 4 
P5.04 Tagliafico, 2014 [3] 48 55.00 23.20 42.18 5 
P5.08 Ledger, 2016 [54] 10 33.40 16.20 45.76 6 

In contrast, cluster 2 consisted of 8 studies that assessed breast density with a combination of 
contrast- and non-contrast-enhanced T1-weighted with 3D gradient echo, however, Chen [31] and 
Chen [45] used non-contrast- and contrast-enhanced T1-weighted with 2D spin-echo, respectively. 
Indeed, Chen [45] analyzed breast density using FCM and N3 algorithms. From the data in Figure 5 
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and Table 3 (Cluster 2), it is apparent that the CVs are almost within a closed range except for Chen 
[45] where the CV is much lower than the remaining studies because of the small SD and the breast 
segmentation method that previously mentioned. Also, Wengert [55] used Dixon method as a 
technical protocol for breast-imaging, although they measured the breast density using in-house 
customized software, the mean and SD are not different to the other included studies. The most 
striking result to emerge from the data in Figure 5 and Table 3 (Cluster 3–6) is the Chen [1] study (i.e., 
Cluster 3), although it used non-contrast-enhanced T1-weighted with 3D gradient echo and analyzed 
breast density by FCM algorithm, the CV (11.67%) is much lower than the remaining studies, mainly 
because of the small SD. 

Cluster 4 included two studies Chan [48] and Chen [50] that assessed breast density using FCM 
and N3 algorithms and non-contrast-enhanced T1-weighted with 3D gradient echo. As can be seen 
from the data in Figure 5 and Table 3 (Cluster 3–6) the study means and SDs are not different. In 
contrast to this Cluster 5, the Tagliafico study [3] used 3D contrast-enhanced T1-weighted gradient 
echo sequence and analyzed the breast density by semi-automated interactive threshold, in 
particular, (MedDensity). As Figure 5 and Table 3 (Cluster 3–6) show, the study mean is much higher 
than the remaining studies, largely because of the technical method used. Finally, cluster 6 consisted 
of Lodger [54], this is the only study that used proton density weighted sequence. Detailed 
information of clustering membership, study means, SDs, and CVs is shown in Table 3, Figures 4 and 
5. 

Switching from technology groupings of studies to groupings identified by the cluster analysis, 
meta-analysis of cluster 1 revealed that the study means, and study variances are both heterogeneous 
(Cochran’s test for heterogeneity of study means, X2 = 22.26, P = 0.0045, and Bartlett’s test for 
heterogeneity of study variances, X2 = 21.47, P = 0.0060, see Figure 6A). When Choi [49] was excluded 
(because of the very large CV), the cluster has improved somewhat, which would be expected as this 
study used different protocols (i.e. diffusion-weighted imaging). It can be seen from the data in Figure 
6B that the study variances are no longer heterogeneous (X2 = 8.84, P = 0.2641), although the study 
means remain heterogeneous (X2 = 19.54, P = 0.0066). In contrast, meta-analysis of cluster 2 indicated 
that the study means are not heterogeneous (X2 = 4.77, P = 0.6874), while the study variances are 
mildly heterogeneous (X2 = 15.54, P = 0.0206, see Figure 7). 
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(A) 
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Figure 5. Scatter plot of the study means versus SDs using 6-clusters memberships of the 21 included 
studies in the subgroup meta-analyses. Legend indicates the number of studies in each cluster, solid 
fill represents clusters with two or more studies, while open markers represent singleton study. 
Scatterplot of study means versus SDs with study codes (A) and without study codes (B). 
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(B) 

Figure 6. Forest plot of the study means, and 95% confidence limits of the studies in Cluster 1 
with/without P4.13 (Choi, 2017) of % breast density. (A) Fixed effect meta-analysis of the studies in 
Cluster 1 (9 studies) of % breast density. (B) Fixed effect meta-analysis of the studies in Cluster 1 (8 
studies) of % breast density. 

 
Figure 7. Forest plot of the study means, and 95% confidence limits of the studies in Cluster 2 (8 
studies) of % breast density. 
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4. Discussion 

The present systematic review and meta-analysis was performed to analyze the current studies 
on quantitative breast density using MRI and to determine the most appropriate 
technical/operational protocol. Through reviewing 38 studies from the literature, despite many 
methods and protocols available, no gold standard has been established with a wide range of 
heterogeneous methods or protocols used in these studies. To the best of our knowledge, this is the 
first comprehensive systematic review and meta-analysis of pooling the results of all breast density 
segmentation/measurement methods using MRI data. The analysis indicated that the non-contrast-
enhanced T1-weighted acquisition was commonly utilized among all MR breast-imaging protocols. 
Another important finding of this analysis was that the FCM is the most frequently used algorithm 
amongst the breast density segmentation/measurement methods. Also, the results showed that a high 
level of heterogeneity was mainly associated with the breast-imaging protocols and the breast density 
segmentation/measurement methods. 

Further attempts have been made by using clustering methods and meta-analysis to identify 
groups of studies which are as homogeneous as possible within groups and as heterogeneous as 
possible between groups. The included studies were grouped together into clusters based on their 
nearest neighbor Euclidean distances. On that basis, clusters 1 and 2 were considered as the most 
valuable results. Briefly, cluster 1 consisted of 9 studies [25–30,48,49,53], as shown from the data in 
Table 3 and Figure 6A that the CVs are varied in value, but in Choi [49] the CV is almost 100% because 
of the mean and SD are almost identical. This result may be explained by the fact that among the 8 
studies [11,31,32,36–38,45,55], the breast-imaging protocol was a combination of contrast- and non-
contrast-enhanced T1-weighted either with 2D spin echo or 3D gradient echo, while in Choi [49] the 
MRI protocol used was diffusion-weighted imaging. Consequently, it is advisable to exclude it from 
the meta-analysis to reduce the heterogeneity within cluster 1. Consistent with this hypothesis, the 
results have improved in somewhat, even though the study variances are not heterogeneous (P > 
0.05), the study means are heterogeneous (P < 0.05) (Figure 6B). Although exclusion of Choi [49] did 
not reduce the heterogeneity, these results should be interpreted with caution. The discrepancy could 
be largely attributed to that although the MR breast-imaging protocols are not dissimilar (i.e., 
contrast- and non-contrast-enhanced T1-weighted), the breast segmentation/measurement methods 
are vice versa (i.e., FCM, FCM and N3, and in-house customized software). In contrast, cluster 2 
included 8 studies, in 3 of these studies the breast density was reported as a (%DBV), while the 
remaining as a (% BD). Among these studies, the contrast- and non-contrast-enhanced T1-weighted 
was often used. From the data in Table 3 and Figure 7, it is apparent that the study means are not 
dissimilar (P > 0.05), although the study variances are heterogeneous (P < 0.05). Among the 21 studies 
included in the cluster analysis, although the fixed effect meta-analysis of cluster 2 has improved 
slightly, the heterogeneity within group still exist. There are two likely causes for this heterogeneity: 
the applied MR breast-imaging protocol and the used breast density segmentation/measurement 
methods. 

Although the study has successfully confirmed the variation in the breast density 
segmentation/measurement methods using MRI data, the findings are subject to several limitations. 
First, the heterogeneity of study aims, the study design utilized, and the technical/operational 
methods applied, for instance, the MR breast-imaging protocol, MR scanner manufacturer, and the 
static magnetic field strength present challenges for performing the meta-analysis. Second, the breast 
density segmentation/measurement algorithm used is another limitation. Although we classified the 
included studies into discrete subgroups (i.e., FCM, FCM and N3, and interactive semi-automated 
threshold), and applied stratified analyses, the heterogeneity remains. Third, the definition of the 
breast density was inconsistent because some studies reported it as a percentage of dense breast 
volume, while the others as a percentage of breast density. Fourth, among the 38 studies included in 
this analysis, only 21 studies were eligible for meta-analysis due to the statistical requirements for the 
input values that should be in identical expression of measurement and dispersion. In addition, some 
of the included studies used the same set of the subject multiple times for different purpose and 
feature. Even though we decided to rectify the issue by selecting one of the results of data at random, 
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or by any meaningful clinical criterion, the heterogeneity continues to exist. Notwithstanding these 
limitations, the study further supports the idea of developing a standard MRI protocol for the 
quantitative assessment of breast density. 

Future research can be suggested according to findings of this review. A recent study has 
reported the feasibility of creating a realistic 3D printed breast phantom for quality control purpose 
[58]. Thus, we consider 3D printing technique can be used to develop a patient-specific 3D printed 
breast phantom with different amounts of breast composition to quantify the volume of FGT. Further, 
the 3D printed model can be used to examine several MR breast-imaging protocols not only to 
measure the breast density but also to assess the impact of implementing various image quality 
parameters (i.e., FOV, matrix size and slice thickness) on the segmentation/measurement of breast 
density. Finally, the accuracy of different breast density/FGT segmentation methods can be 
determined. 

5. Conclusion 

This systematic review and meta-analysis confirms and substantiates the variation among the 
breast density segmentation/measurement methods using MRI. Furthermore, subgroup meta-
analyses and further clustering methods indicated that a significant heterogeneity within and 
between groups exist. The analysis confirmed that the non-contrast-enhanced T1-weighted 
acquisition was commonly utilized among all MR breast-imaging protocols and the FCM is the most 
frequently used algorithm amongst the breast density segmentation/measurement methods. Future 
work will need to determine the most appropriate protocol and method for quantifying breast 
density using MRI. 
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Introduction

Breast magnetic resonance imaging (MRI) is a well-
established approach in the diagnosis of breast disease, and 
it has become an important modality in the screening of 

women at high-risk of breast cancer, preoperative staging 

of newly diagnosed breast cancer, and follow-up of breast 

cancer treatment (1-3). Hence, the European Society of 

Breast Imaging (EUSOBI) has recommended that breast 

Original Article

Development of patient-specific 3D-printed breast phantom using 
silicone and peanut oils for magnetic resonance imaging

Rooa Sindi1,2, Yin How Wong3, Chai Hong Yeong3, Zhonghua Sun1

1Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia; 2Radio-diagnostic and 

Medical Imaging Department, Medical Physics Section, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia; 3School of Medicine, 

Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia

Correspondence to: Zhonghua Sun. Professor, Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, 

Perth, WA 6845, Australia. Email: z.sun@curtin.edu.au.

Background: Despite increasing reports of 3D printing in medical applications, the use of 3D printing in 
breast imaging is limited, thus, personalized 3D-printed breast model could be a novel approach to overcome 
current limitations in utilizing breast magnetic resonance imaging (MRI) for quantitative assessment of 
breast density. The aim of this study is to develop a patient-specific 3D-printed breast phantom and to 

adipose tissues.
Methods: A patient-specific 3D-printed breast model was generated using 3D-printing techniques for 
the construction of the hollow skin and fibroglandular region shells. Then, the T1 relaxation times of 
the five selected materials (agarose gel, silicone rubber with/without fish oil, silicone oil, and peanut oil) 
were measured on a 3T MRI system to determine the appropriate ones to represent the MR imaging 

T1 relaxation times of the corresponding tissues: 1,324.42±167.63 and 449.27±26.09 ms, respectively. Finally, 

hollow breast shells.
Results: The silicone and peanut oils were found to closely resemble the T1 relaxation times and imaging 
characteristics of these two tissues, which are 1,515.8±105.5 and 405.4±15.1 ms, respectively. The agarose gel 
with different concentrations, ranging from 0.5 to 2.5 wt%, was found to have the longest T1 relaxation times.
Conclusions: A patient-specific 3D-printed breast phantom was successfully designed and constructed 
using silicone and peanut oils to simulate the MR imaging characteristics of fibroglandular and adipose 
tissues. The phantom can be used to investigate different MR breast imaging protocols for the quantitative 
assessment of breast density.

Keywords: Magnetic resonance imaging (MRI); T1 and T2 relaxation times; fibroglandular-tissue; breast 

density; 3D-printing; fused deposition modelling (FDM); digital light processing (DLP); polylactic acid (PLA); 

photopolymer resin; silicone oil; peanut oil
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MRI be used as an adjuvant modality in women at high-
risk of developing breast cancer (3), for those with (BRCA-
positive genetic mutation carriers), family history, and/or 
high breast density (4).

Breast density, a measure of fibroglandular, dense 
tissue relative to fatty, non-dense tissue, is an independent 
risk factor of breast cancer (5-7). Consistent with this 
risk relationship, women who have dense breasts have 
a likelihood of developing breast cancer that is fourfold 
higher than those with fatty breasts (8,9). Currently various 
methods have been developed and introduced to segment/
measure breast density using MRI: the utilization of a 
clustering algorithm, the segmentation of glandular and 
fatty tissues with an interactive thresholding algorithm, a 
logistic function approach and a curve-fitting algorithm; 
each has its advantages and limitations (10-14). However, 
there are certain drawbacks associated with the use of 
these algorithms as most of them are interpreted as 
measurements with a semi-automatic thresholding and 
segmentation methods. Likewise, different MR breast-
imaging protocols have been used to differentiate between 
adipose and fibroglandular tissues ranging from non-
contrast-enhanced T1-weighted to contrast-enhanced T1-
weighted and diffusion-weighted acquisitions (15-19). 
Despite improvements in the quantitative assessment of 
breast density using MR imaging, there has been no general 
agreement about the optimal scanning protocol in this 
aspect. A recent systematic review and meta-analysis about 

these variations among breast segmentation/measurement 
methods and MR breast-imaging protocols (20).

In recent years, there has been an increasing interest in 
3D printing techniques, which are being used in different 
medical domains such as cardiovascular disease, orthopedic 
surgery, prosthetics, and neurosurgery (21-24). 3D-printed 
models have been shown to assist in the development of 
many surgical implants, which can improve the individual’s 
understanding of such a complex anatomical structure (21).  
Several studies have produced anthropomorphic breast 
phantoms for X-ray imaging, but there is still insufficient 
data available for MR imaging (25-30). Carton et al. 
developed a 3D anthropomorphic breast phantom for 
the evaluation of image quality of 2D and 3D breast 
X-ray imaging systems. This phantom was based on a 
computational model and a rapid prototyping technique to 
generate breast phantom with different compositions, sizes, 
and shapes by using a tissue-equivalent material (25). While 
the phantom has effectively demonstrated a heterogeneous 

distribution of the fibroglandular and adipose tissues 
that can be analogous to the clinical breast images, it has 
certain limitations in terms of its fabrication method and 
application. The phantom has been printed in slabs form, 
which is very complicated to manufacture and it is a time-
consuming process (25).

Although some research has been carried out on the use 
of 3D printing techniques to develop a breast phantom for 
MR imaging, only few studies have attempted to generate a 
personalized 3D-printed breast phantom based on a realistic 
breast MR images that can be similar to the anatomical 
structures seen in human tissues (26-30). Burfeindt et al. (26)  
reported a new and convenient synthetic procedure to 
develop an MRI-derived 3D-printed breast phantom for the 
preclinical use in microwave breast-imaging experiments. 
Although the phantom has successfully simulated the 
dielectric properties of the biological breast tissues, it 
has been designed for microwave breast-imaging rather 
than for MR imaging system (26). Furthermore, the 
importance of realistic phantom structure in the assessment 
of photoacoustic breast imaging systems for the purpose of 
simulating the acoustic and optical breast tissues properties 
was demonstrated in a study by Dantuma et al. (27), in which 
a semi-anthropomorphic 3D-printed moulds derived from 
a MRI segmented numerical breast model was developed 
to produce real breast morphology using polyvinyl chloride 
plastisol (PVCP). However, there are limits to how 
far the phantom that has been designed for ultrasound 
and photoacoustic imaging can be used to simulate 
the MR imaging characteristics of breast tissues (27).  
Moreover, He et al. (28) developed a 3D-printed breast 
phantom for machine calibration and image optimization in 
multi-modalities imaging, where a mixture of PVC powder 
and softener (i.e., dioctyl terephthalate) was used as a tissue-
mimicking material (TMM) of breast tissues. Although the 
study has successful demonstrated the simulation of breast 
structures, it has certain limitations in terms of the lack of 
the appearance, variability, and heterogeneity of structures 
that are presented in the physiological tissues (28). Another 
potential limitation is that the T1 and T2 relaxation 
times of the materials were measured and found to be 
shorter than those reported in the physiological human 
breast tissues (28,29). While most of the aforementioned 
phantoms address their objectives in the medical imaging 
discipline, there are currently no phantoms available to 
evaluate the breast density based on a realistic morphology 
of breast structures derived from a MR images of human 
tissues. Likewise, uncertainties still exist about the most 
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appropriate TMMs that can be used to simulate the MR-
related characteristics and appearance of breast structures, 
particularly fibroglandular tissue. Such a personalized 
3D-printed breast model could be used to examine different 
MR breast-imaging protocols not only to evaluate the 
breast density but also to determine the impact of applying 
various image quality parameters on the segmentation/
measurement methods of breast density. Therefore, the 

breast phantom and to identify the most appropriate 
materials for simulating the MR imaging characteristics of 

Methods

Patient data

Ethical approval was obtained from Curtin University’s 
Human Research Ethics Committee (HREC) and King 
Fahd Armed Forces Hospital’s (Jeddah) Research and Ethics 
Committee. A random sample of patients with no history of 
breast disease was retrospectively reviewed from an existing 
breast MRI database. The criteria for selecting the subjects 
were the following: no previous surgery, no radiotherapy 
treatment on the chest wall, no history of breast cancer, 
and a Breast Imaging-Reporting and Data System (BI-

radiology resident to match the selection criteria. The 
breast MRI examination was performed using 1.5T system 
(MAGNETOM Aera, Siemens, Germany) with a dedicated 
breast coil (18 channels). The MR breast imaging protocol 
was chosen based on the recommendations of a recent 
systematic review and meta-analysis (20) as high-resolution 
non-contrast-enhanced T1-weighted images to allow a 

tissues: TR/TE 11.8/6.0 ms; matrix size 384×384; slice 
thickness 0.9 mm with no gap.

Image post-processing and segmentation process

A series of image post-processing and segmentation of 
the volumetric data was performed. First, the anonymized 
Digital Imaging and Communications in Medicine 
(DICOM) MR images were imported into the commercially 
available software Analyze 12.0 (AnalyzeDirect, Inc., 
Lexana, KS, USA) to segment the non-contrast-enhanced 
T1-weighted breast images. Second, the breast’s boundary 
was delineated manually to distinguish the breast’s body 
from the surrounding tissues (pectoral muscle, heart, lungs, 
and thorax) on each 2D slice based on grayscale intensity, 
displayed in a histogram. Then, the 3D breast volume 
was created by these 2D images and was subsequently 
used to design the 3D-printed breast model. Finally, the 
3D segmented MR breast volume was saved as a standard 
tessellation language (STL) file for further image post-
processing and 3D printing. Figure 1 presents a schematic 
flowchart of the process of developing a patient-specific 
3D-printed breast model using MRI data. For more details, 
the phantom consists of three main parts: the outer shell, 
simulating the skin layer, and the internal structures, 
which include fibroglandular and fat tissues, imitating the 
breast composition. To generate the skin shell, the STL 
file containing the 3D segmented MR breast volume was 
imported into the Blender software, version 2.79b (Blender 
Foundation, Amsterdam, Netherlands) to hollow the model 
and ensure that all the internal structures were perfectly 
extracted.

On the other hand, the DICOM MR breast dataset was 
loaded into the 3D Slicer software, version 4.10.2 [National 
Alliance for Medical Image Computing (NA-MIC)] to 
segment out the fibroglandular tissue and ensure that all 

Hollow models for fat and 
fibroglandular tissues as 

shown in STL file

Data acquisition Image segmentation Post processing

2D DICOM MR breast image 3D segmented volume data

Figure 1
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the surrounding structures were completely removed. To 
increase reliability of the segmentation, each slice was 
segmented in different orientations using the threshold 
function, which was adjusted manually. This approach 
was used to threshold the DICOM dataset so that only 
the fibroglandular tissue structures were kept in the final 

3.5.474, Autodesk Inc., San Rafael, CA, USA) open-source 
software for further edit. Any deformities or free-floating 

editing process.

Overview and breast phantom design

This part is divided into three sections, each detailing the 
construction process related to the 3D-printed breast model 
components.

Skin layer
Based on the dimensions of a realistic tissue, the outer 
phantom shell had an average thickness of 3.0 mm, which 
corresponds to the normal skin thickness. The cover 
of the skin shell was designed using a computer-aided 
design (CAD) software. The skin shell and the cover 
were fabricated with fused deposition modelling (FDM) 
technology using polylactic acid (PLA) (Polymaker, 
Shanghai, China) on a Raise3D N2 Plus 3D printer 
(Raise3D, Irvine, CA, USA). The skin shell was printed 
with a layer height of 0.15 mm, average printing time of  
40 hours, and a resolution of 12.5 μm (Figure 2).

Fibroglandular region
The fibroglandular models constitute the internal 

component of the 3D-printed breast phantom. While 
various definitions of the term “breast density” have 
been proposed, in this study, the term “fibroglandular 
tissue” is used to refer to the breast density. Naturally, 
the fibroglandular region contains variable shapes and/or 

tissue is based on a subjective assessment recommended by 
the American College of Radiology (ACR) BI-RADS, which 
is commonly used for mammography but also for MRI. 
The BI-RADS atlas can be described as a classification 
system that characterises breast density on the basis of 
the amount of fibroglandular tissue into four categories: 
(I) almost entirely fat, (II) scattered fibroglandular tissue, 

In order to simulate the MR imaging characteristics, 
the 3D fibroglandular models were designed as hollow 
structures with an average thickness of 2.0 mm. The 

processing (DLP) technology on an Anycubic Photon S 3D 
DLP UV resin printer (Shenzhen Anycubic Technology 
Co. Ltd., Shenzhen, China) using white photopolymer 
resin (Magma H LINE Photopolymer Resin) from Magma 
Filament, Malaysia. A curing time of 10 sec per layer, a 
layer thickness of 0.05 mm, and a resolution of 47 μm were 
used to fabricate the fibroglandular models. The printing 

about 17 hours (Figure 3).

Fat/adipose region
This region comprises a considerable part of the 3D-printed 
breast model. It consists of a selected material that simulates 
the MR imaging relaxation times of adipose tissue.

Figure 2 
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Fibroglandular TMMs

Agarose gels with different concentrations vary in their 
ability to simulate the MR imaging characteristics of T1 and 
T2 relaxation times of an extensive range of human tissues 
(33,34). In a study investigating the T1 and T2 relaxation 
times of four sample phantom liquids, Gach et al. (33) 
found that silicone oil had the longest T1 and T2 times 
on a 3T MRI system: 1,068.29±5.95 and 566.40±4.68 ms, 
respectively. These results provide further support to the 
hypothesis that agarose gel or silicone oil could be used to 
mimic the MR imaging characteristics of fibroglandular 
tissue based on T1 and/or T2 relaxation times. Thus, four 
different raw materials were scanned to determine which 
one could be used to mimic the T1 and/or T2 relaxation 
times of fibroglandular tissue. The candidate materials 
were silicone oil with a viscosity of 50 mm2/s at 25  
(TEX Chemical Inc., Country), agarose (Thermo Fisher, 
Waltham, MA, USA), silicone rubber RTV (Craftiviti Sdn. 

Australia) (Figure 4).

Fat/adipose TMMs

As Niebuhr et al. (35) reported, olive oil successfully 
simulates the MR imaging relaxation times of adipose tissue 
in abdominal and pelvic tissues measured in-vivo. In another 

study, Niebuhr et al. (34) found that peanut oil efficiently 
simulates the MR imaging characteristics of subcutaneous 
fat for pelvis phantoms. Peanut oil was preferred in this 
study for several reasons, including its relatively similar 
MR imaging characteristics (T1 and T2 relaxation times) 
for adipose tissue, its translucent appearance, and its high 
oxidation stability (34,35). These characteristics suggest 
that peanut oil could be a performed material to mimic 
the T1 and/or T2 relaxation times of breast adipose tissue. 
Two types of peanut oil were scanned for testing: peanut 
oil Basso (raw material: Arachis hypogea; price: US$ 5/1L; 
Basso), and peanut oil Pressed Purity (raw materials: oleic 
acid (96.2%) and linoleic acid (13.2%), price: US$18/1.5L, 
Proteco Oils) (Figure 4).

Breast phantom construction

The T1 relaxation times of the five selected materials 

oil, and peanut oil) were measured at room temperature 
using a 3T MRI system to determine which ones could 
be used to mimic the MR imaging characteristics of 
fibroglandular and adipose tissues. The results were then 
compared to the reference values of T1 relaxation times of 
the corresponding tissues. Following this, the materials that 
matched the T1 relaxation times of the respective tissues 

Figure 3 
thickness of the wall is 2.0 mm. DLP, digital light processing.
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Results

3D-printed hollow models

The 3D-pr inted  model s  o f  the  hol low sk in  and 
fibroglandular region shells were scanned on a 3T MRI 
system (MAGNETOM Prisma, Siemens Healthcare, 
Erlangen, Germany) to check whether the models printed 
with the PLA or the photopolymer resin produce MR 
signals corresponding with these tissue features. Fortunately, 
no MR signal was observed from scanning the 3D-printed 
hollow models, indicating the possibility of using these 
materials for breast structure simulation and further patient 
models. It is important to note that the selected materials 
were checked when the 3D printing was initially performed 
and then checked again at the end of the breast phantom 
construction.

Sample characteristics

The five selected materials were scanned on the same 3T 
MRI system, with the materials placed in the 18-channel 
body and 32-channel spine coils. The MR breast scanning 
was chosen based on the institutional clinical protocol using 

3D T1- and T2-weighted turbo spin echo (TSE) sequences: 
TR/TE 650.0/10.0 ms; matrix size 384×384; slice thickness 
2.9 mm; no gap, and TR/TE 6,080.0/78.0 ms; matrix size 
384×384; slice thickness 4.0 mm; no gap, respectively.

Figure 5 presents the MR imaging T1 relaxation times of 

fish oil, silicone oil, and peanut oil) simulating the breast 
composition. Figure 5D shows that the T1-weighted image 
of the silicone oil was associated with a mid-grey signal 
intensity, which is usually related to water-based tissues 
characterized by a moderate T1 relaxation time. On the 
other hand, Figure 5E,F shows that the T1-weighted images 
of the peanut oils indicated a high signal intensity, which 
was within expectation, as fat-based tissues have a short T1 
relaxation time. In contrast, the T1-weighted images of the 
agarose gel with different concentrations, 0.5 to 2.5 wt%; 
were associated with low signal intensity, which is mainly 

Figure 5G,H,I,J,K).

T1 relaxation times of the sample materials

The T1 relaxation times of these five materials are listed 
in Table 1. Silicone oil had a T1 relaxation time similar to 

Figure 4 
50 mm2/s; (E) peanut oil (Basoo); (F) peanut oil (pressed purity); (G) agarose gel 0.5 wt%; (H) agarose gel 1.0 wt%; (I) agarose gel 1.5 wt%; (J) 
agarose gel 2.0 wt%; (K) agarose gel 2.5 wt%.

A B C D E

F G H I J K
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the Basso and Pressed Purity peanut oils had T1 relaxation 
times analogous to that of adipose tissue: 405.4±15.1 and 
404.1±10.5 ms, respectively. For comparison, the T1 and 
T2 relaxation times of fibroglandular and adipose tissues 

measured using a 1.5T and a 3T MRI system are presented 
in Table 2.

As shown in Table 1, the agarose gel with different 
concentrations, ranging from 0.5 to 2.5 wt%, had the 
longest T1 relaxation times, which are similar to that 
of free water. The interesting finding is that the lowest 
concentration was associated with the highest T1 relaxation 
time. Overall, the results presented in Table 1 and Figure 5 
indicate that the silicone and peanut oils closely resemble 

and adipose tissues, respectively. Therefore, these materials 

Figure 6 provides an overview of the construction process 

using UV-curable photopolymer resin. Following this, the 

shell model using acrylic-based adhesive. Further, the space 

with peanut oil. A home-made silicone gasket and cover 
were used to enclose the breast phantom. Finally, the cover 
was tighten using the commercially available polycarbonate 
bolt and nuts.

Scanning of the 3D-printed breast phantom

The MR images of the phantom were acquired following 
the same breast imaging protocols described in the Results, 
Sample Characteristics. The phantom was scanned in a 

Figure 5 
of 50 mm2/s; (E) peanut oil (Basoo); (F) peanut oil (Pressed Purity); (G) agarose gel 0.5 wt%; (H) agarose gel 1.0 wt%; (I) agarose gel 1.5 
wt%; (J) agarose gel 2.0 wt%; (K) agarose gel 2.5 wt%.

Table 1 T1 Relaxation times of different materials for tissue 
surrogates used in the experiment

Phantom, TMM
T1 (average SD, ms),  

3T Siemens MR Scanner

Fibroglandular shell No signal

Skin/outer shell No signal

Silicone rubber 577.2±107.8

Silicone rubber with fish oil 902.1±120.5

Fresh silicone rubber 638.3±108.5

Silicone oil 50 mm
2
/s* 1,515.8±105.5

Peanut oil (Basso) 405.4±15.1

Peanut oil (pressed purity) 404.1±10.5

Agarose gel 0.5 wt% 4015.5±100.2

Agarose gel 1.0 wt% 3,877.8±130.5

Agarose gel 1.5 wt% 3,404.8±255.9

Agarose gel 2.0 wt% 3,572.6±100.4

Agarose gel 2.5 wt% 3,617.2±101.5

*, Viscosity unit. TMM, tissue-mimicking material.

A B C D E

F G H I J K
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prone position using a dedicated 18-channel breast coil. 
Figure 7 shows the T1- and T2-weighted MR images 
of a patient-specific 3D-printed breast phantom using 

and adipose tissues, respectively. These oils presented an 

acceptable level of contrast and MR-related characteristics 
in both the T1- and the T2-weighted images. One of 
the most noticeable features of this phantom is that it is 
slightly inhomogeneous. However, this feature simulates 
the considerable inhomogeneity as often observed among 

Table 2 T1 and T2 Relaxation times of the breast tissues at 1.5T and 3T using FSE-IR scans (36)

Tissue (reference)
T1 (average SD, ms), 

1.5T

T2 (average SD, ms), 

1.5T
T1 (average SD, ms), 3T T2 (average SD, ms), 3T

Adipose/fat 372.04±8.6 53.33±2.11 449.27±26.09 52.96±1.54

Fibroglandular 1,135.98±151.37 57.51±10.15 1,324.42±167.63 54.36±9.35

FSE-IR, Fast Spin Echo-Inversion Recovery.

Skin/outer shell model

The fibroglandular models were attached to the skin shell model using acrylic-based 
adhesive. Then, the skin shell model was filled with a peanut oil.

The peanut oil was enclosed in the breast phantom using a silicone gasket and cover. 
Finally, the cover was tightened up using polycarbonate bolt and nuts.

Fibroglandular shell models 
were filled with a silicone oil.

Figure 6 Flow chart showing 3D construction of the breast phantom. 3D printing technique was used to create the hollow shells for skin 
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the irregular distribution of the patient. Overall, the results 
shown in Table 1 and Figure 5 indicate that the MR imaging 
T1 relaxation times of the silicone and peanut oils used 

similar to their respective reference values reported in the 
literature.

Discussion

breast phantom and to determine the most appropriate 
materials for simulating the MR imaging characteristics 
of fibroglandular and adipose tissues. Anthropomorphic 

using 3D-printing techniques based on the segmentations 
of breast MR images from a selected healthy patient’s 

designed as hollow structures using PLA and photopolymer 
resin. Since no MR signal was generated by the 3D-printed 
hollow models of those corresponding shells, different 
materials were selected to search for suitable ones with 
silicone oil and peanut oil being the most appropriate 

and adipose tissues.
It was assumed that the T1 relaxation times would 

effectively supplement and extend our knowledge about 

times longer than their T2 values. A comparison of the 
T1 relaxation times of the scanned materials with breast 
structure and literature reports showed that the silicone and 
peanut oils closely resemble the MR imaging T1 relaxation 

in the T1 relaxation times between different concentrations 
of agarose gel, which exhibited long T1 relaxation times, 
similar to that of water. Nevertheless, the agarose gel 
can be mixed with a gadolinium-based contrast agent for 
T1 adaptation, and can thus be used to simulate the MR 
imaging relaxation times of a wide range of human tissues. 
However, this would be costly and requires precautions 
when handling the contrast agent. Another unexpected 

between the Basso and Pressed Purity peanut oils. However, 

noting that the Basso peanut oil was preferable due to its 
purity, availability, and low cost.

Figure 7 MR images of the 3D printed breast phantom. (A) T1-weighted image; (B) T2-weighted image using TSE scans. TSE, turbo spin 
echo.

A

B
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the silicone and peanut oils demonstrated an acceptable 
level of contrast and MR-related characteristics of breast 
structures in both the T1- and the T2-weighted images. 
These findings are in line with Niebuhr et al. (34),  
who suggested that peanut oil efficiently simulates the 
MR imaging characteristics of subcutaneous fat for 
pelvis phantoms. In accordance with the present results, 
previous studies demonstrated that silicone oil with a 
viscosity of 50 mm2/s had the longest T1 and T2 relaxation 
times on a 3T MRI system (33,35). However, silicone 
oil was not previously used for simulating the MR-
related characteristics of breast structures, particularly 

breast phantom.
The observed correlation between silicone oil’s T1 

to its chemical composition and physical properties such 

that silicone and peanut oils can be used to efficiently 
simulate the MR imaging characteristics of breast 
structures and produce further models. An implication 
of this is the possibility to examine different MR breast 
imaging protocols to identify the most appropriate for 
the quantitative assessment of breast density. For future 
investigations, it might be possible to use different chemical 
compositions and physical properties of silicone oils 
to evaluate the MR imaging relaxation times of breast 
structures. Since the relationship between silicone oil and 

is required to better understand it.
Although the study has successfully designed and 

the findings are subject to several limitations. The study 
was not specifically designed to evaluate the mechanical 
properties of breast tissue components, such as elastic 
modulus or tissue strength. Examining the mechanical 
features along with the physical properties of selected 
materials could provide an idea of their characteristics 
and allow more detailed comparisons to the human breast 
tissue. Moreover, there are certain drawbacks to the use 
of 3D printing techniques for the construction of skin and 
fibroglandular hollow shells. One of them is the potential 
risk for some of the connected structures to break easily 
during the cleaning process. For this reason, several models 
of varying wall thicknesses, ranging between 1.0 and  
2.5 mm, were printed. However, increasing the thickness of 

photopolymer resin can cause considerable deformation of 

process was performed manually for each model to ensure 
that all the small gaps had been completely sealed.

A further study on a patient-specific 3D-printed breast 
phantom will be conducted with a focus on different 
percentages of fibroglandular tissue. This can correspond 
to the four categories of the ACR BI-RADS atlas, thus 
allowing an estimation of the volumes of fibroglandular 
tissue. Varying its proportions will allow the quantitative 
assessments of breast density to be performed.

Conclusions

In this study, a patient-specific 3D-printed breast 
phantom was successfully constructed using silicone and 
peanut oils to simulate the MR-related characteristics of 
breast fibroglandular and adipose tissues. The proposed 
methodologies can be used as a preliminary work for breast 
structure simulations and the construction of further patient 
models using MRI dataset. The phantom can be used to 
test different breast MR imaging protocols to determine the 
optimum scanning parameters and analysis algorithms for 
the quantitative assessment of breast density.
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Abstract: Despite the development and implementation of several MRI techniques for breast density
assessments, there is no consensus on the optimal protocol in this regard. This study aimed to
determine the most appropriate MRI protocols for the quantitative assessment of breast density using
a personalized 3D-printed breast model. The breast model was developed using silicone and peanut
oils to simulate the MRI related-characteristics of fibroglandular and adipose breast tissues, and then
scanned on a 3T MRI system using non-fat-suppressed and fat-suppressed sequences. Breast volume,
fibroglandular tissue volume, and percentage of breast density from these imaging sequences were
objectively assessed using Analyze 14.0 software. Finally, the repeated-measures analysis of variance
(ANOVA) was performed to examine the differences between the quantitative measurements of
breast volume, fibroglandular tissue volume, and percentage of breast density with respect to the
corresponding sequences. The volume of fibroglandular tissue and the percentage of breast density
were significantly higher in the fat-suppressed sequences than in the non-fat-suppressed sequences
(p < 0.05); however, the difference in breast volume was not statistically significant (p = 0.529).
Further, a fat-suppressed T2-weighted with turbo inversion recovery magnitude (TIRM) imaging
sequence was superior to the non-fat- and fat-suppressed T1- and T2-weighted sequences for the
quantitative measurement of breast density due to its ability to represent the exact breast tissue
compositions. This study shows that the fat-suppressed sequences tended to be more useful than the
non-fat-suppressed sequences for the quantitative measurements of the volume of fibroglandular
tissue and the percentage of breast density.

Keywords: MRI; fibroglandular tissue; breast density; 3D-printed model; fat suppression; TIRM

1. Introduction

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty tissue, has been
determined as an independent risk factor for developing breast cancer [1–4]. Previous studies have
reported that the potential risk of breast cancer in women with dense breasts is three- to five-fold
higher than in women with fatty breasts [5–7]. Recent developments in breast cancer screening
have intensified the need for a standardized imaging protocol and/or measurement method for the
evaluation of breast density predominantly for women at an elevated risk of developing breast cancer,
such as those with high breast density [4,8–10]. A considerable amount of literature has been published
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on the assessment of breast density with several methods and algorithms proposed to segment and/or
measure breast density using MRI datasets [11–19]. Nevertheless, research has consistently shown that
these methods/algorithms seem to have certain drawbacks, mostly due to the use of a semi-automatic
approach or a high-level of dependency on user interaction. Likewise, numerous MR breast-imaging
protocols have been applied to the screening and/or the assessment of breast density, ranging from
contrast- to non-contrast-enhanced imaging with or without the implementation of fat-suppression
techniques [3,4,8–10,20–25]. To date, there has been little consensus on the optimal MR breast-imaging
protocol and measurement method for breast density screening and/or assessment, especially in the
context of women with dense breast tissues.

The dynamic contrast-enhanced (DCE)-MRI technique has been widely used for the screening
of women at high risk of breast cancer and has been included in standard clinical breast MRI
protocols [4,8]. Despite its long clinical success, DCE-MRI has certain disadvantages, such as long
scanning time, high cost, and potential harm caused by the contrast agent [4,26]. Although contradictory
findings have been reported in the literature about the precipitation and accumulation of gadolinium
contrast-based agents in the brain, there is no general agreement regarding the risk of repeated
gadolinium administration [4,27–29]. Nevertheless, questions have been raised about the safety of
prolonged use of DCE-MRI as a primary screening method for the detection of breast cancer and/or the
assessment of breast density. On the other hand, the fat-suppression technique has been suggested
in breast MRI to improve the visibility of pathology, contrast enhancement, and image quality, thus
allowing for better differentiation between dense fibroglandular and non-dense fatty tissues [17,30].
It has been combined with other techniques and/or sequence types due to the difficulty of eliminating
the high signal intensity associated with fatty tissues [17,30]. Several methods have been proposed for
fat suppression in breast MRI, including chemical shift spectral-selective saturation (CHESS) based on
the chemical shift variation between fat and water, inversion recovery (IR) based on variation in T1
relaxation time, hybrid CHESS–inversion recovery methods, and Dixon fat–water separation based on
phase variation between fat and water signals at different echo times (TEs) [3,17,20,30–32].

Non-fat-suppressed and fat-suppressed T1-weighted images are frequently used with either 2D
spin echo (SE) or 3D gradient echo (GRE) in standard clinical breast MRI protocols [8,17]. Nevertheless,
there is no consensus as to which of these sequences/techniques is the most efficient in this regard.
The American College of Radiology (ACR) has recommended that the fat-suppressed images with high
spatial resolution be used in clinical breast MRI protocols as images acquired with this sequence can
eliminate misregistration, which mainly occurs when a patient moves during the acquisition of pre- and
post-contrast images [8,17]. However, this recommendation contrasts with that of the European Society
of Breast Imaging (EUSOBI), which considers non-fat-suppressed sequences based on the acquisition
of subtraction images more useful [17,33]. Despite this, there seems to be some consensus that other
breast MRI techniques, including T2-weighted images, DCE, and diffusion-weighted imaging (DWI),
tend to benefit from its combination with fat-suppression techniques for several reasons [1,8,17,30].
For instance, turbo inversion recovery magnitude (TIRM), a type of inversion recovery sequence with
the advantage of short image acquisition time, has been widely used in the delineation of tumor
and/or lymphatic spread and could possibly be combined with fat-suppression technique for the
assessment of breast density [4,34]. Patient-specific 3D-printed breast models, derived from a patient’s
MR imaging data and comparable to the anatomical structures of human tissues, can be a valuable tool
for examining different breast MRI protocols, testing the radio frequency coils, and evaluating system
performance [35–42]. The aim of this study is to determine the most appropriate MR breast-imaging
protocols for the quantitative assessment of breast density using a personalized 3D-printed breast
model based on an objective comparison between the non-fat-suppressed and fat-suppressed sequences.
We hypothesize that fat-suppressed sequences allow for more accurate assessment of breast density
while TIRM with fat-suppressed sequence further enhances its accuracy in quantitative assessment of
breast density.
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2. Materials and Methods

2.1. Study Subject: A Personalized 3D-Printed Breast Model

A personalized 3D-printed breast model which was developed in our previous study [43] used
3D-printing techniques and tissue-mimicking materials (TMMs) with the intention of simulating
the MR-related characteristics of fibroglandular and adipose breast tissues for the quantitative
assessment of breast density. The model consisted of two main parts: an outer shell to simulate
the breast outline, and an inner shell filled with silicone and peanut oils to mimic the internal
breast compositions. The results showed that the silicone and peanut oils successfully resemble the
MR-imaging characteristics and T1 relaxation times of fibroglandular and adipose breast tissues,
respectively [43]. This combination of findings further supports the hypothesis that such a model
could be used to examine different MR breast-imaging protocols in order to determine the optimum
for the quantitative assessment of breast density. Figure 1 demonstrates the schematic flowchart of the
construction process for developing a personalized 3D-printed breast model.

Figure 1. Flow chart demonstrates the construction process of the personalized 3D-printed breast
model for MRI. Reprinted with permission under open access from Sindi et al. [43].
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2.2. MR Scanning Protocol

The 3D-printed breast model was scanned on a 3T MRI system (MAGNETOM Prisma, Siemens
Healthcare, Erlangen, Germany) in a prone position using a dedicated 18-channel breast coil. Different
MR imaging sequences were applied to improve the visibility of structure and contrast enhancement,
thus allowing for better differentiation between fatty non-glandular and glandular structures. Table 1
displays the image acquisition parameters of the six MR imaging sequences used in this study.

2.3. Quantitative Measurement: Breast Volume, Fibroglandular Tissue Volume, and Percentage of
Breast Density

Breast volume and fibroglandular tissue volume were objectively measured with a semi-automated
segmentation method using a commercially available biomedical imaging software, Analyze V 14.0
(AnalyzeDirect, Inc., Lexana, KS, USA). Two steps were performed to measure the percentage of breast
density from MRI data: breast segmentation and fibroglandular tissue segmentation. The purpose of
breast segmentation is to separate the breast’s body from the surrounding structure and/or background,
while fibroglandular tissue segmentation separates the glandular from the fatty tissue.

To differentiate the breast’s body from the background, the breast’s boundary was first delineated
semi-automatically using an interactive tool based on the threshold signal intensity function by
setting seed points on a series of 2D axial slices comprising the entire breast volume. The minimum
and maximum threshold limits were then adjusted to define the region of interest. The software
spontaneously interpolated between these slices and generated a mask of the whole breast volume.
Once the breast’s body was segmented out, an automated method incorporating several morphological
processing operations and spatial filters were used to segment out the fibroglandular tissue from
the surrounding fatty tissue. Upon completion of this segmentation process, the breast volume and
fibroglandular tissue volume were measured using a 3D-measurement tool based on the size intensity
function. The percentage of breast density was then computed as the ratio of the fibroglandular tissue
volume relative to the total breast volume. Finally, the results were analyzed to assess the differences
between the measurement of breast volume, fibroglandular tissue volume, and percentage of breast
density based on the different MRI sequences.

2.4. Data Synthesis

The acquisition of the different MRI sequences and the implementation of several fat-suppression
techniques, as applied in the proposed study, are considered to be technically heterogeneous. To address
this complexity and provide more objective comparisons, the six MRI sequence compartments
were re-configured into a two-way cross-classification, namely two fat-suppression categories:
non-fat-suppression MRI sequences (i.e., MR Seq. 1, 2, and 3) and fat-suppression MRI sequences
(i.e., MR Seq. 4, 5, and 6). For the purpose of the analysis, the segmentation processes of both the
breast volume and the fibroglandular tissue volume were performed three times, thus extracting three
segments from each MRI sequence. Subsequently, the measurements were conducted three times with
respect to the volume of the breast, the volume of the fibroglandular tissue, and, thereby, the percentage
of the breast density.
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Table 1. Image acquisition parameters of the MR breast-imaging sequences using a personalized 3D-printed breast model.

No. MRI Sequence Acquisition
Type

Orientation,
Slice No.

TR
(ms)

TE
(ms) TI (ms) FOV

(mm)
Matrix

Size
Slice Thickness

(mm)
Flip

Angle (◦) NSA Scan Time
(min)

1. Non-fat-suppressed
TSE (T2W) 2D Axial, 33 6080 78 350 × 350 336 × 448 4.0 80 1 1.10

2. Non-fat-suppressed
TSE (T1W) 2D Axial, 37 709 10 350 × 350 224 × 320 2.9 130 2 2.38

3. Non-fat-suppressed
TSE SPACE (T1W) 3D Axial, 88 600 3.4 400 × 400 256 × 256 1.6 120 2 2.47

4. Fat-suppressed TSE
SPACE (T1W) 3D Axial, 88 1500 3.4 400 × 400 256 ×2 56 1.6 120 1 4.58

5.
Fat-suppressed TSE

SPACE SPAIR
(T1W)

3D Axial, 88 1500 3.4 400 × 400 256 × 256 1.6 120 1 4.58

6.
Fat-suppressed
IR/PFP TIRM

(T2W)
2D Axial, 37 4120 70 230 340 × 340 358 × 448 3.0 80 2 1.51

Abbreviations—TR: repetition time; TE: echo time; TI: inversion time; FOV: field-of-view; NSA: number of signal averages/excitations; 2D: two-dimensional; 3D: three-dimensional; TSE:
turbo (fast) spin-echo; T1W: T1-weighted; T2W: T2-weighted; SPACE: sampling perfection with application optimized contrasts using different flip angle evolution; SPAIR: spectral
attenuation inversion recovery; IR: inversion recovery; PFP: partial Fourier phase; TIRM: turbo inversion recovery magnitude.
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2.5. Statistical Analysis

Statistical analyses were conducted using NCSS V 19.0.5 (NCSS, LLC., Kaysville, UT, USA).
The repeated-measures analysis of variance (ANOVA) was performed to examine the difference between
the quantitative measurements of breast volume, fibroglandular tissue volume, and percentage of
breast density with regard to the non-fat-suppressed and fat-suppressed MRI sequences. This variance
model was employed to account for the variation both between sequences (i.e., between subjects)
and within repeated measurements (i.e., within subjects). Significance levels were set at the 5% level.
Descriptive data and box plots were also produced for all variables, demonstrating the distribution and
median of breast volume, fibroglandular tissue volume, and percentage of breast density measured in
the non-fat-suppressed and fat-suppressed imaging groups.

3. Results

3.1. Scanning of the Personalized 3D-Printed Breast Model

Figure 2 shows the MR images of the personalized 3D-printed breast model using silicone and
peanut oils as surrogates for fibroglandular and fatty breast tissues, respectively, for the various
scanning sequences. These oils produced a reasonable level of contrast and MR-related characteristics
amongst the T1- and T2-weighted images with and without the implementation of the fat-suppression
techniques. Although the most noticeable feature of the personalized 3D-printed breast model was
that it was somewhat inhomogeneous, this feature nevertheless mimics the substantial inhomogeneity
sometimes encountered in patients’ irregular distributions.

The suppression of fat signals in the T1-weighted images with both SPACE and SPAIR
acquisitions did not substantially increase the contrast enhancement or visualization between the
dense fibroglandular and non-dense fatty structures (Figure 2D,E). A possible explanation for this
could be that these types of acquisitions are highly affected by inhomogeneity in the magnetic field,
demonstrating inhomogeneous fat suppression in the fatty structures. On the contrary, Figure 2F
shows that the fat-suppressed T2-weighted image with TIRM acquisition demonstrated a homogenous
high signal intensity in the fibroglandular structure and a low signal intensity in the fatty structure
for both the right and left breasts. The suppression of fat signals significantly improved the contrast
between the fibroglandular and fatty structures, further enhanced visualization, and provided more
anatomical information which may assist in the segmentation and/or quantification of breast density.

Figure 2. Cont.
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Figure 2. Central axial slice of a personalized 3D-printed breast model for the different MR
imaging pulse sequences. (A) Non-fat-suppressed TSE (T2W); (B) Non-fat-suppressed TSE (T1W);
(C) Non-fat-suppressed TSE SPACE (T1W); (D) Fat-suppressed TSE SPACE (T1W); (E) Fat-suppressed
TSE SPACE SPAIR (T1W); (F) Fat-suppressed IR/PFP TIRM (T2W). For pulse sequences, refer to Table 1.

3.2. Quantitative Measurement of Breast Volume, Fibroglandular Tissue Volume, and Percentage of
Breast Density

Table 2 displays the quantitative measurements (mean and standard deviations) of the breast
volume, fibroglandular tissue volume, and percentage of breast density for the different MRI sequences.
For the SPACE T1-weighted images (i.e., MR Seq. 3 and 4), there was evidence of a difference in breast
density between the non-fat-suppressed sequence (7.719 ± 0.366%) and the fat-suppressed sequence
(11.698 ± 0.351%). This difference can be explained by the direct relationship between fibroglandular
tissue volume and breast density, as shown in Table 2, the volume of fibroglandular tissue measured in
the fat-suppressed sequence (i.e., MR Seq. 4) was higher than that in the non-fat-suppressed sequence
(i.e., MR Seq. 3): 53.940 ± 1.083 cm3 and 34.261 ± 1.809 cm3, respectively.

For the breast density assessment, there was a substantial difference between the
non-fat-suppressed sequence (5.401 ± 0.165%) and the fat-suppressed sequence (9.498 ± 0.930%)
measured in the T2-weighted images, MR Seq. 1 and MR Seq. 6, respectively. This difference might
explain the relatively good improvement in the contrast between the fibroglandular and fatty structures
(Figure 2F) owing to the implementation of the fat-suppression technique, which had a major effect on
the segmentation process and, therefore, the measurement of breast density.

By contrast, the means of the breast density for the non-fat suppressed (i.e., MR Seq. 2) and the
fat-suppressed (i.e., MR Seq. 5) were 7.733 ± 0.365% and 10.467 ± 0.084%, respectively. A comparison of
MR Seq. 2 and MR Seq. 5 revealed that the breast volume, fibroglandular tissue volume, and percentage
of breast density measured in the fat-suppressed sequence tended to be higher than that measured in
the non-fat-suppressed sequence (Table 2).
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Table 2. Results of the estimated mean and standard deviation of breast volume, fibroglandular
tissue volume, and percentage of breast density for the different MRI sequences using a personalized
3D-printed breast model.

MRI Sequence * Breast Volume (cm3)
Fibroglandular

Tissue Volume (cm3) Breast Density (%)

Mean SD Mean SD Mean SD

Non-fat-suppression group (MR Sequences 1, 2, and 3)

MR Seq. 1 (N = 3) 592.291 5.065 31.984 0.735 5.401 0.165
MR Seq. 2 (N = 3) 388.793 4.159 30.067 1.159 7.733 0.365
MR Seq. 3 (N = 3) 443.884 11.913 34.261 1.809 7.719 0.366
Combined (N = 9) 474.989 91.406 32.104 2.144 6.952 1.194

Fat-suppression group (MR Sequences 4, 5, and 6)

MR Seq. 4 (N = 3) 461.188 4.699 53.940 1.083 11.698 0.351
MR Seq. 5 (N = 3) 462.948 11.882 48.456 1.140 10.467 0.084
MR Seq. 6 (N = 3) 715.784 32.097 67.794 3.623 9.498 0.930
Combined (N = 9) 546.640 128.031 56.730 8.854 10.555 1.077

* For pulse sequences, refer to Table 1.

3.3. Comparison of Measurements Between Non-Fat-Suppression and Fat-Suppression Groups

Table 3 demonstrates the results (mean, standard error, F-ratio, and P-value) of the
repeated-measures ANOVA of breast volume, fibroglandular tissue volume, and percentage of
breast density with respect to the non-fat-suppression and fat-suppression groups. The box plots of
these parameters for the two groups are shown in Figure 3.

Table 3. Results of the repeated-measures ANOVA, including total mean, standard error (SE), F-ratio,
probability level (Prob level) of breast volume, fibroglandular tissue volume, and percentage of breast
density between two imaging groups: non-fat-suppressed and fat-suppressed MRI pulse sequences.

Breast Density
Parameter

Non-Fat-Suppressed (N = 9) Fat-Suppressed (N = 9)
F-Ratio Prob Level **

Mean SE (4 df *) Mean SE (4 df *)

Breast volume (cm3) 474.989 73.639 546.640 73.639 0.47 0.5293

Fibroglandular tissue
volume (cm3) 32.104 4.158 56.730 4.158 17.54 0.0138

Breast density (%) 6.952 0.709 10.555 0.709 12.90 0.0229

* The degrees of freedom; ** The significance level of the F-ratio (the probability that the difference between
data is significant or not). The significant difference between the quantitative measurements of breast volume,
fibroglandular volume, and percentage of breast density based on the non-fat suppressed and the fat-suppressed
MRI sequences was determined at the 5% level.

For breast volume, although the mean measured from the non-fat-suppression group (474.989 cm3)
tended to be lower than that from the fat-suppression group (546.640 cm3), the difference was not
statistically significant (p = 0.5293), with an F-ratio of 0.47 and a standard error for both means
of 73.639. However, for the fibroglandular tissue volume and the percentage of breast density,
the repeated-measures ANOVA showed that the difference between the non-fat-suppression group
and the fat-suppression group was statistically significant at the 5% level. The values measured from
the non-fat-suppression group were lower than those from the fat-suppression group, as shown in
Table 2; Table 3. The mean volume of fibroglandular tissue was 32.104 cm3 for the non-fat-suppression
group and 56.730 cm3 for the fat-suppression group, which was statistically significant (F = 17.54;
p = 0.0138), with a standard error of 4.158. Likewise, there was a significant difference (F = 12.90;
p = 0.0229) between the two groups: the mean breast density measured in the non-fat-suppression
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group (6.952%) tended to be lower than that of the fat-suppression group (10.555%), with a standard
error for both means of 0.709.

Figure 3. Cont.
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Figure 3. Box plots demonstrate the distribution and median of three main parameters: (A) breast
volume, (B) fibroglandular tissue volume, and (C) percentage of breast density measured on the
non-fat-suppressed and the fat-suppressed MRI sequences. The six MRI sequences compartments were
re-configured into a two-way cross-classification, namely two fat-suppression categories. As shown,
“1/No” is the non-fat-suppression, “2/Yes” is the fat-suppression, which are on the x-axis, while the
three parameters measured with respect to these two corresponding categories are on the y-axis.

4. Discussion

Recently, for women with an elevated risk of developing breast cancer, such as those with high
breast density, the importance of establishing a standardized MRI protocol and/or measurement
method for the assessment of breast density has increased in clinical and research domains. Although
fat-suppressed and non-fat-suppressed sequences have frequently been included for both T1- and
T2-weighted images in clinical breast MRI protocol, there is no agreement on which of these sequences
should be used in this regard [1,8,17,30]. The current study was designed to determine the most
appropriate MRI sequence for the quantitative assessment of breast density using a personalized
3D-printed breast model [43] based on an objective comparison between fat-suppressed and
non-fat-suppressed sequences. Six MRI sequences were acquired and categorized into fat-suppression
and non-fat-suppression categories to examine the difference between the quantitative measurements
of breast volume, fibroglandular tissue volume, and percentage of breast density between these two
imaging groups.

Comparing the two fat-suppression groups, the repeated-measures ANOVA showed that the
differences between the non-fat-suppressed and fat-suppressed MRI sequences (i.e., MR Seq. 1, 2, and 3
and MR Seq. 4, 5, and 6) were statistically significant at the 5% level for both fibroglandular tissue volume
and percentage of breast density. On the contrary, the observed difference between these corresponding
sequences was not statistically significant with respect to breast volume. The current findings seem
to be consistent with other research documenting that the assessment of breast density is considered
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to fluctuate with MRI sequences and with the application of fat-suppression techniques [3,16,17].
A comparison of our results with Chang et al. [17], who suggested that breast volumes measured in
T1-weighted sequences with and without fat suppression were almost identical for a similar case,
is encouraging. Although their results differed from the current study, given that the breast density
parameters were analyzed only on the T1-weighted sequences, they are still consistent with our
findings, which showed that there was no evidence of a difference in the breast volumes between the
non-fat-suppression and the fat-suppression groups (Table 3). A possible explanation for this could be
that the measurement of breast volumes based on these two groups was not considerably influenced by
the applied imaging techniques and/or segmentation method. Despite the breast volumes measured
from the T2-weighted sequences with and without fat suppression being higher than those of the
T1-weighted sequences, the difference between the two imaging groups was not significant. This can
be attributed to the matrix sizes of the T2-weighted images used with the non-fat-suppressed and
fat-suppressed sequences (i.e., MR Seq. 1 and 6), which were 336 × 448 and 358 × 448, respectively.

However, there was a statistically significant difference between fibroglandular tissue volume
and percentage of breast density, indicating higher values in the fat-suppressed sequences (MR Seq.
4, 5, and 6) compared to the non-fat-suppressed sequences (MR Seq. 1, 2, and 3), as shown in
Tables 2 and 3. This difference can be explained in part by the relatively good contrast enhancement
and/or visualization observed between the fibroglandular and the fatty structures resulting from
the suppression of fat signals, as was evident in the TIRM with fat-suppressed T2-weighted image
(Figure 2F). Although the signal-to-noise ratio and tissue contrast in the non-fat-suppressed images
were higher than those in the fat-suppressed images, the results for the fat-suppression group were
significantly higher than those for the non-fat-suppression group. Nevertheless, the scanning times for
the fat-suppressed sequences were longer than those for the non-fat-suppressed sequences, except for
the TIRM, which was 1 min 51 s. As shown in Table 2, breast volume, fibroglandular tissue volume,
and percentage of breast density analyzed with TIRM were considerably higher than those of the
T1- and T2-weighted sequences with and without fat suppression. Compared to these sequences,
the observed increase in breast density parameters from the T2-weighted and TIRM acquisition was
probably due to their individual characteristics: the T2-weighted image with fat-suppression technique
is known to improve fluid intensity visualization, while TIRM is known to provide more anatomical
information [4,44]. Similar findings were obtained by Bu et al. [4], who suggested that the combined
DWI and TIRM could be used as an alternative imaging protocol for the screening of women with dense
breast tissue. Despite being preliminary findings, our study indicates that TIRM could be incorporated
with fat-suppression techniques for the assessment of breast density. Therefore, the fat-suppressed
T2-weighted image with TIRM acquisition can be a promising technique for the quantitative assessment
of breast density, although further research should be conducted to verify this suggestion.

Overall, the observed differences in breast density measurements between the fat-suppression
and non-fat-suppression groups can be attributed to several factors: the segmentation method,
image quality, scanning/technical parameters, and tissue contrast achieved by using different MRI
pulse sequences. There are, however, other possible reasons; the applied fat-suppression techniques
are more susceptible to magnetic field inhomogeneity, especially in the case of the 3T MRI system,
where the field heterogeneity can be more protuberant. As shown in Figure 2, the high levels of
inhomogeneity in both the fat-suppressed and non-fat-suppressed images might be the major factor—if
not the only factor—that can cause such a variation in the segmentation and/or quantification of breast
density parameters.

Although this study suggests that the fat-suppressed sequences are more useful than the
non-fat-suppressed sequences for the segmentation/measurement of fibroglandular tissue volume and
breast density, it is subject to several limitations. First, the assessment of breast density parameters was
carried out on a developed 3D-printed breast model using silicone and peanut oils as tissue-equivalent
materials and may not reflect the exact distribution of both fibroglandular and fatty structures as
seen in human breast tissues. This limitation could be addressed by further research with the use of
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more realistic breast models for MRI scanning. Second, the high levels of inhomogeneity in both the
fat-suppressed and non-fat-suppressed images could have influenced the segmentation and breast
density measurements. This is unavoidable due to the complexity of the MRI scanning sequences.
Third, the breast density parameters were segmented and measured using a semi-automated method,
which implies that the prospective source of variation between such measurements could be due to a
high level of dependency on user interaction. For this reason, multiple segmentations/measurements of
the breast density parameters were consistently conducted by the same observer to minimize potential
intra-observer variations. However, the applicability of the proposed segmentation and measurement
method is relatively high as an interactive 3D tool and would be more useful in the long-term assessment
of breast density. Finally, with the implementation of different imaging techniques, acquisition types,
and fat-suppression methods, caution must be applied as the findings might not be transferable to
clinical practice without further investigation.

For future research, a greater focus on the TIRM with a fat-suppression technique could produce
interesting findings on the quantification of breast density, especially for women at high risk of
developing breast cancer. Quantitative assessment of breast density parameters in participants’ clinical
breast MRI datasets, could also be used to investigate and validate this observation.

5. Conclusions

A significant difference was found between the non-fat-suppression and fat-suppression MRI
sequences for the quantitative measurements of the volume of fibroglandular tissue and the percentage
of breast density. In general, the findings suggest that fat-suppressed sequences are an efficient
scanning technique that reflects the exact composition of breast tissues. TIRM with fat-suppressed
T2-weighted sequence can be a promising imaging protocol for the segmentation and/or quantification
of breast density. Further research is required to verify these findings so that the optimal breast MRI
protocols can be developed for clinical application.
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ABSTRACT 
 

 
Three-dimensional (3D) printing has become an increasingly 
developed technique in the medical field and has been used in 
many clinical applications. Research has consistently shown 
that 3D-printed models derived from patient’s imaging data 
can serve as valuable tools for examining different breast-MRI 
protocols, testing radiofrequency coils, and evaluating system 
performance. This editorial highlights the utility of 
personalized 3D-printed breast model for the quantitative 
breast density assessment using MRI. A personalized 3D-
printed breast model was developed and fabricated using 
silicone and peanut oils to mimic the MR-associated 
properties of fibroglandular and adipose breast tissues. The 
silicone and peanut oils’ T1 relaxation times were 
correspondingly determined on a 3T MRI system and linked to 
the tissue reference values.  

 

Key Words 
Magnetic resonance imaging (MRI), breast density, 
fibroglandular-tissue, three-dimensional printing, model, 
silicone oil, peanut oil, quantitative, assessment 

Implications for Practice:  

1. What is known about this subject?  
Magnetic resonance imaging (MRI) is widely used as an 
adjuvant modality for the screening of women at high-risk 
of developing breast cancer, such as those with high 
breast density.1,2 Although some research has been 
conducted on the use of 3D printing techniques to 
develop breast phantoms for MRI, there are currently no 
phantoms available for quantitative breast density 
assessment based on a realistic morphology of breast 
structures derived from MR images of human tissues. 3-10  

 
2. What new information is offered in this editorial? 
Personalized 3D-printed breast model using silicone and 
peanut oils simulates the MR-related characteristics and 
appearance of fibroglandular and adipose breast tissues, 
respectively. This editorial summarises our research 
experience of using 3D printing techniques and tissue 
mimicking materials (TMMs) to resemble the T1 
relaxation times of the corresponding breast tissues. 
 
3. What are the implications for research, policy, or 
practice?  
A personalized 3D-printed breast model can be used to 
identify the optimal breast MRI protocol and 
measurement method for the quantitative assessment of 
breast density, thus estimating the risk of developing of 
breast cancer.  
 

Introduction 
Breast density-an autonomous risk element of breast 
cancer-is defined as a measure of dense fibroglandular 
tissue relative to non-dense fatty tissue.11-13 In line with 
this risk association, women with dense breasts have 
shown a greater probability of inducing breast cancer 
relative to those with fatty breasts.14,15 
Although some research has been carried out on the 
development of anthropomorphic breast models for X-ray 
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imaging, there is still inadequate data available for MR 
imaging.3-10 Also, much uncertainty still exists as to whether 
the most relevant TMMs are able to sufficiently replicate the 
MR-related characteristics and resemblance of breast 
structures, especially fibroglandular tissue.16-19 This has been 
corroborated by our latest experiment using 3D-printing 
methods and tissue-equivalent materials to mimic the breast 
tissue relaxation times for MR imaging.20 Notwithstanding 
considerable information about the role of MRI’s in 
quantitative breast density analysis, the optimal imaging 
protocol and measurement method have not generally been 
agreed in this repect.21,22 This editorial summarises some of 
the experiment’s main findings and demonstrates the utility of 
a personalized 3D-printed breast model for quantitative 
breast density assessment using MRI. 
 

Personalized 3D-printed breast model using silicone and 
peanut oils for quantitative breast density assessment  
3D-printed models based on patients’ imaging data have 
allowed to learn procedures, educate students, and enhance 
the individual’s perception of complex anatomical structures 
and pathologies by using such realistic reproductions. In this 
study, a 3D-printed breast model was developed, with the 
intention of providing a more precise assessment of breast 
density based on a realistic morphological breast structures 
that obtained from MR images of human-tissue. The breast 
examination was performed on a 1.5T MRI system 
(MAGNETOM Aera, Siemens, Germany) with a dedicated 
breast coil. Based on the recommendations from our recent 
systematic review and meta-analysis, the protocol for breast 
imaging has been selected as high-resolution, non-contrast-
enhanced T1-weighted images, which assist in the distinction 
between non-glandular fatty tissue and glandular tissue.21 
 
Overview and design 

The personalized 3D-pinted breast model comprises two main 
parts: an outer shell, which simulates the texture and form of 
the skin, and an inner structure, including fibroglandular and 
fatty tissues, which imitates the breast compositions. Firstly, 
the 3D skin shell and the cover have been made from 
polylactic acid (PLA) with the fused deposition modelling 
(FDM) technology. 20 The outer shell was printed in 0.15 mm 
layer height, took an average of 40 hours printing time, and 
had a 3.0 mm average thickness and 12.5 μm resolution (Table 
1). Figure 1 shows the personalized 3D-printed breast model 
of the outer skin layer and sections to be filled with 
fibroglandular- and adipose-equivalent tissues. Then, the 3D 
fibroglandular models were constructed as hollow structures 
and have been made from photopolymer resin with the digital 
light processing (DLP) technology. 20 They were printed with 
10 seconds of curing time per layer, 0.05 mm in layer 

thickness, took an average of 17 hours printing time for 
both left- and right-models, and had a 2.0 mm average 
thickness and 47 μm resolution (Table 1). Figure 2 shows 
the fabrication of the hollow 3D-printed for both left- and 
right-fibroglandular models. Finally, the fibroglandular 
models were submerged in a fat-equivalent medium to 
replicate the adipose tissue’s MR-related properties and 
T1 relaxation time. The hollow skin and fibroglandular 3D-
printed models were scanned on a 3T MRI system 
(MAGNETOM Prisma, Siemens, Germany) to ensure 
neither the PLA nor the photopolymer resin produce MR 
signal. 
 

Results and discussion 
The T1 relaxation times of the five designated substances 
(agarose gel, silicone rubber with/without fish oil, silicone 
oil, and peanut oil) were determined on the same 3T MRI 
system, with the objective of simulating the MR-
associated properties of the fibroglandular and adipose 
breast tissues. As shown in Table 2, results indicated that 
the silicone and peanut oils were found to be closely 
analogous to the T1 relaxation times and MR-associated 
properties of the respective tissues, which are 1515.8 ± 
105.5 and 405.4 ± 15.1 ms, respectively. Consequently, 
those substances were selected to fill the hollow 3D-
printed models. Figure 3 demonstrates a summary of the 
fabrication procedure of the personalized 3D-printed 
breast model. In a brief summary, the hollow 3D-printed 
fibroglandular models were filled with a silicone oil and 
then closed using UV-curable resin. Subsequently, the 
fibroglandular models were fastened inside the skin 
model using an acrylic-based adhesive. Next, the space 
between the skin shell and the fibroglandular models was 
filled with a peanut oil. Thereafter, the breast model was 
bounded with a self-constructed silicone gasket and 
cover. Finally, the cover was sealed using polycarbonate 
bolts and nuts. On completion of the construction 
process, the personalized 3D-printed breast model was 
examined on the same 3T MRI system in a prone position 
using a dedicated 18-channel breast coil. Interestingly, T1- 
and T2-weighted MR images of the personalized 3D-
printed breast model using silicone and peanut oils 
showed that such model can be utilized as substitutes for 
the fibroglandular and adipose tissues, respectively. As 
shown in Figure 4, these selected oils in both T1- and T2-
weighted images, yielded a tolerable degree of contrast 
and MR-associated features. Overall, the T1 relaxation 
times of the silicone and peanut oils used to imitate the 
fibroglandular and adipose breast tissues are comparable 
to their corresponding reference values stated in the 
literature. 
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Summary and conclusion 
Personalized 3D-printed breast model based on TMMs can be 
used to determine the optimum MR breast-imaging protocols 
and measurement methods for the purpose of providing more 
precise assessments of breast density, thus estimating the risk 
of breast cancer. The developed model represents a novel 
approach of utilizing 3D-printing technique by further 
expanding its applications in the medical domain. 
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Figure 1: 3D-printed breast model of the outer skin layer and 
compartments to be filled with fibroglandular- and adipose-
equivalent tissues. Reprinted with permission under the 
open access from Sindi et al.20 

 

 
The 3D-printed skin shell and the cover have been made from 
polylactic acid (PLA) on a Raise3D N2 Plus 3D printer with the 
FDM technology. The outer shell was printed in 0.15mm layer 
height, took an average of 40 hours printing time, and had a 
3.0mm average thickness and 12.5μm resolution.  
 
Figure 2: 3D-printed models of the internal structures, which 
are the fibroglandular hollow structures. Reprinted with 
permission under the open access from Sindi et al.20 
 

 
The 3D-printed fibroglandular models were constructed as 
hollow structures and have been made from photopolymer 
resin on an Anycubic Photon S 3D DLP UV resin printer with 
the digital light processing (DLP) technology. They were 
printed with 10 seconds of curing time per layer, 0.05mm in 
layer thickness, took an average of 17 hours printing time for 
both left- and right-models, and had a 2.0mm average 
thickness and 47μm resolution  
 

Figure 3: Flow chart demonstrates the construction 
process of the personalized 3D-printed breast model for 
MRI. Reprinted with permission under the open access 
from Sindi et al.20 

 
 
Figure 4: MR images of the personalized 3D-printed 
breast model. (A): T1-weighted image. (B): T2-weighted 
image using turbo spin echo (TSE) pulse sequence. 
Reprinted with permission under the open access from 
Sindi et al.20 
 

 
The T1- and T2-weighted MR images of the personalized 
3D-printed breast model using silicone and peanut oils as 
TMMs of the fibroglandular and adipose breast tissues, 
respectively. 
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Table 1: 3D-Printing parameters used for the development of 
the personalized 3D-printed breast model 
 

(*): For both left and right fibroglandular models. 
 
Table 2: T1 Relaxation times of different materials for tissue 
surrogates used in the experiment. Reprinted with 
permission under the open access from Sindi et al.20 
 

(*): Viscosity unit. 

3D printing 
parameters  

Skin 
model 

Fibroglandular 
model 

Thickness (mm) 3.0 2.0 

Layer height (mm) 0.15 0.05 

Resolution (μm) 12.5 47 

Curing time (sec) - 10 

Printing time (h) 40 17* 

Phantom T1 (average±SD, 
ms), 3T Siemens 
MR Scanner 

Tissue Mimicking Material 

Fibroglandular shell No signal 

Skin/outer shell No signal 

Silicone rubber 577.2±107.8 

Silicone rubber with fish oil 902.1±120.5 

Fresh Silicone rubber 638.3±108.5 

Silicone oil 50mm2/s* 1515.8±105.5 

Peanut oil (Basso) 405.4±15.1 

Peanut Oil (Pressed Purity) 404.1±10.5 

Agarose gel 0.5wt% 4015.5±100.2 

Agarose gel 1.0wt% 3877.8±130.5 

Agarose gel 1.5wt% 3404.8±255.9 

Agarose gel 2.0wt% 3572.6±100.4 

Agarose gel 2.5wt% 3617.2±101.5 
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