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Abstract

Background: Cerebral palsy (CP) is a physical disability that affects movement and posture. Approximately 17 million people
worldwide and 34,000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers
are the most commonly used clinical tools to measure joint angles and positions in children with CP.

Objective: This paper presents collaborative research between the School of Electrical Engineering, Computing and Mathematical
Sciences at Curtin University and a team of clinicians in a multicenter randomized controlled trial involving children with CP.
This study aims to develop a digital solution for mass data collection using inertial measurement units (IMUs) and the application
of machine learning (ML) to classify the movement features associated with CP to determine the effectiveness of therapy. The
results were calculated without the need to measure Euler, quaternion, and joint measurement calculation, reducing the time
required to classify the data.

Methods: Custom IMUs were developed to record the usual wrist movements of participants in 2 age groups. The first age
group consisted of participants approaching 3 years of age, and the second age group consisted of participants approaching 15
years of age. Both groups consisted of participants with and without CP. The IMU data were used to calculate the joint angle of
the wrist movement and determine the range of motion. A total of 9 different ML algorithms were used to classify the movement
features associated with CP. This classification can also confirm if the current treatment (in this case, the use of wrist extension)
is effective.

Results: Upon completion of the project, the wrist joint angle was successfully calculated and validated against Vicon motion
capture. In addition, the CP movement was classified as a feature using ML on raw IMU data. The Random Forrest algorithm
achieved the highest accuracy of 87.75% for the age range approaching 15 years, and C4.5 decision tree achieved the highest
accuracy of 89.39% for the age range approaching 3 years.

Conclusions: Anecdotal feedback from Minimising Impairment Trial researchers was positive about the potential for IMUs to
contribute accurate data about active range of motion, especially in children, for whom goniometric methods are challenging.
There may also be potential to use IMUs for continued monitoring of hand movements throughout the day.

Trial Registration: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12614001276640,
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367398; ANZCTR ACTRN12614001275651,
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367422
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Introduction

Background
Cerebral palsy (CP) is a condition that affects a person’s ability
to move [1,2]. It occurs as a result of injury to the developing
brain during pregnancy or a short time after birth [3]. CP
presents with different characteristics in different people, as the
damage to the brain is not identical in every person  [1]. The
movement difficulties experienced by people with CP are
divided into three main categories: spastic motor type, in which
muscles appear stiff and tight (most common); dyskinetic type,
which involves involuntary movement patterns; and ataxic type,
which involves uncoordinated muscle movements that can affect
balance and sense of positioning in space  [3,4]. The level of
severity and combination of symptoms can differ from person
to person [5]. For example, one person could have weakness in
one hand, which can lead to difficulty in writing or tying
shoelaces, whereas another person may have little control over
their movement or speech because CP can also affect the
person’s ability to coordinate the muscles around the mouth
and tongue [5].

There are many different clinical classification systems for upper
limb function in children with CP with different levels of
complexity. In a review by McConnell et al [6], 18 different
clinical classification systems were identified and reviewed
according to whether they classified function or deformity and
by considering the quality of psychometric evidence for each
method. These methods were rated based on the clinical utility
of each system using previously published tools [6]. An example
of clinical classification system is House [7] classification,
which contains four categories of thumb deformities. Another
example of clinical classification is that by Green and Banks
[8], which contains four subgroups of poor, fair, good, and
excellent based on the use of the hand by the individual with
CP. These classification methods demonstrate the complexity
of clinical classification of hand movement in children with CP
and the diverse approaches taken to achieve it.

As of early 2021, there is no single method for completely
curing or preventing CP. Public health measures such as
mandatory seatbelts, pool fencing, and rubella vaccinations are
among the prevention methods currently in use [9].
Physiotherapy and occupational therapy focus on encouraging
a person’s day-to-day movement skills and abilities, such as
sitting, walking, dressing, and toileting, and use a range of
specialist interventions such as movement and goal-directed
training and provision of equipments, such as walking frames,
wheelchairs, supportive seating, footwear, and orthotics [9].
When studying children with CP, range of motion, which is the
capability of a joint to go through its complete spectrum of
movement, may become a crucial component of research.
Passive range of motion can be defined as the range of motion
when an external force causes movement of the joint and is the
maximum range of motion, whereas active range can be

achieved when opposing muscles contract and relax, resulting
in child- or person-initiated joint movement [10].

Occupational therapists use upper limb orthoses for children
with CP who have muscle overactivity caused by spasticity, but
there is little evidence of the long-term effects of these methods
[11]. The clinical rationale is that the orthoses help preserve the
range of movement; however, they are complex to construct,
expensive, and can cause discomfort for the children wearing
them [11]. To address the need for robust evidence, a multicenter
randomized controlled trial (RCT) is being used to evaluate the
effectiveness of wrist hand orthoses to prevent loss of range of
movement in children with CP (see Experiment Setup and Data
Collection for details). This RCT used inertial measurement
units (IMUs) to measure active movement in children with CP,
to address two measurement problems: (1) the complex
movement patterns of children with CP make it difficult for
therapists to accurately apply typical clinical measures, such as
a goniometer (an instrument that measures the available range
of motion at a joint) and (2) young children’s small hands and
difficulty following detailed movement instructions make it
difficult to achieve reliable measurements.

Existing Methods
General movement assessment is used, which is a noninvasive
and cost-effective method for identifying babies at risk of CP
[12]. This assessment is done by recording a 3- to 5-minute
video of an awake infant lying on their back while they were
calm and alert without the presence of toys and pacifiers. Parents
can be present and record the video, but they should not interact
with their babies. This video is then observed and assessed by
trained health professionals to detect signs of the disorder [3,12].
This process becomes easier when infants grow older, as they
can follow the instructions of the medical professionals to
perform different tasks so that their movement can be monitored.
This assessment is mainly used as a diagnostic tool for the early
detection of CP, and it is not used to quantify the range of
movement or motion.

In clinical research, the goniometer and inclinometer are used
to measure joint angles in children with CP [13]. A goniometer
is an instrument that measures the joint angle, and depending
on the nature of the experiment, it can measure the available
range of motion at a joint. It can be used to monitor changes in
joint angles in clinical settings [14]. The traditional method of
using angle-measuring tools is not accurate and reliable,
according to some recent studies [13]. Accurately measuring
range of motion (ROM) is an important part of clinical
assessment as this information is used to guide treatment plans,
determine treatment efficacy, and monitor individual’s response
to treatment [15]. Goniometric measures rely on the ability of
the clinician to accurately palpate bony landmarks and visually
estimate the alignment of the axis and arms of the goniometer
to the joint that is being measured. Goniometers are versatile,
reliable, and widely used, irrespective of their measurement
errors of up to 15 degrees. However, for active movement, the
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use of goniometers is very difficult, and their use may not be
possible in populations that are unable to respond to instructions
reliably [15].

A general approach for capturing movement is the use of digital
technologies, such as motion capture. Motion capture (also
referred to as mo-cap or mocap) is the process of digitally
recording the movement of people [16]. It is used in
entertainment, sports, medical applications, ergonomics, and
robotics. In filmmaking and game development, it refers to the
recording actions of actors for animations or visual effects. It
is also referred to as performance capture when it includes a
full body, face, and fingers or captures subtle expressions [16].
The equipment required for motion capture is extremely costly
and is not commonly available in a typical hospital; for example,
according to Thewlis et al [17], a simple Vicon system [18] cost
approximately Aus $250,000 (US $268,605.52) in 2011 [17].
Even if the equipment is available, it may be difficult to take
children to these motion analysis laboratories to conduct
measurements. Another limitation is the need for expert staff
to run the laboratories for the motion analysis of hand
movement.

Another approach is to measure gesture control using electronic
sensors, such as infrared (IR) light-emitting diodes. Gesture
recognition software for advanced smartphones was presented
in the paper found in the study by Kong et al [19]. The leap
motion sensor uses IR sensors to scan finger movements with
a typical field of view of 140°×120° [20]. This method is mostly
applied in the entertainment industry, so it does not meet the
need for accuracy in capturing the movement of people with
CP.

With the development of inertial sensor technologies,
IMU-based motion capture systems have been introduced in
the study of human motion. IMUs comprise an accelerometer,
gyroscope, and magnetometer that are connected to a
microcontroller and can be used to capture orientation. In recent
years, there have been several IMU-based motion capture
research studies, such as studies of gait modulation in patients
with foot drop problems [21] and human activity recognition
using thigh angle derived from a single thigh-mounted IMU
data [2]. The use of IMUs for hand movement in free space is
currently underdeveloped, primarily due to the lack of a clear
calibration reset point compared with gait analysis. Another
benefit of IMU solutions is flexibility in the collection window.
From a practical point of view, the data measured during any
session using motion capture technologies or any nonportable
devices that require the patient to be at a certain location at a
certain time, which may not be a period when certain movement
characteristics are present or typical. For example, the patient
could be having a good day or fatigued coincidentally during
the clinic visit. IMU measurements outside the predefined time
may avoid errors in the data collection. In addition, patient’s
compliance would potentially increase in the case of children,
where their movement is taking place in their home environment
compared with organized clinic visits. The challenge would
then be to filter a larger data set to remove outliers, which is
already a problem even when clinicians are involved. Therefore,
the IMU data collection needs to be streamlined so that data
can be captured easily without any need for clinical or technical
expertise.

An overview of all the relevant existing methods, including
their advantages and disadvantages can be seen in Table 1.

Table 1. Evaluation of existing methods.

DisadvantagesAdvantagesType of approach

Goniometers [14] •• Lack of accuracyLow cost
• •Can provide measurements very quickly Does not provide long-term tracking of movement

unless repeated multiple times
• Difficult when children are involved

Video capture [16] •• Very costlyVery accurate
• •Can provide real-time orientation and active

movement
Continued monitoring is not possible outside the
motion capture studio

• Long set up time
• Facilities are not available to everyone

IRa LEDb gesture recognition [20] •• Lack of accuracyLow cost
• •Portable Not possible for continued monitoring

• Mostly developed for entertainment use

IMUc [22] •• IMUs drift over timeLow cost
• •Can provide a reasonably accurate orienta-

tion frame
The postprocessing of IMU data can be lengthy

• Low power consumption
• Portable

aIR: infrared radio.
bLED: light-emitting diode.
cIMU: inertial measurement unit.
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Contribution of the Paper
This paper presents collaborative research between the
Department of Electrical Engineering and Computing at Curtin
University and the investigator team of a multicenter RCT
involving children with CP [11]. The novelty of this work is
the mass data collection and application area of the sensor
system. To achieve this goal, 2 small, low-cost, custom-built
IMUs were developed to capture the hand movements of
participants in 2 age groups. The first age group had participants
approaching 3 years, and the second age group had participants
approaching 15 years. Both groups comprised participants with
and without CP. Custom sensors were needed because
commercial sensors are costly and do not provide raw sensor
data. This means that validation cannot be performed easily. In
addition, the use of custom sensors will avoid preprocessing by
a third party. The designed sensors were capable of measuring
wrist joint movement as the angle difference between 2 parallel
sensors, which simplifies a 3D system problem to a 2D one.
Therefore, only the relative motion was used, and the impact
of the environment was ignored. This approach facilitates a
reliable and valid method to capture changes over time.
Capturing ROM over time is important because children with
CP have secondary musculoskeletal complications, which means
they are at risk of losing movement range. The proposed
low-cost sensor system could also provide the means for active
and continuous tracking of wrist joint movement during usual
or predetermined tasks and actions that are currently not possible
using traditional goniometric methods.

A second contribution of this paper is the application of ML to
raw IMU data to classify the movement features associated with
CP without the need to measure Euler, quaternion, and joint
measurement calculations. This means that the processing time
will be reduced because of using raw data for classification.
This classification aims to investigate the existence of
characteristics of CP movement, which is different from the
clinical classification used for CP as a condition. This

classification can also confirm if treatment (in this case, the use
of wrist extension) is effective. After the initial data collection,
9 different ML algorithms were used to classify CP as a feature:
the Random Forrest algorithm achieved the highest accuracy
of 87.75% for the age range approaching 15 years, and C4.5
decision tree achieved the highest accuracy with 89.39% for
the age range approaching 3 years. The result of this
classification aligns with existing research work in which ML
is applied to classify footdrop using IMUs [23]. The results of
this project showed that decision tree-based ML algorithms
were the most accurate compared with other methods, which
could be used as a guideline for similar human joint
measurements.

Methods

Sensor Development
A custom-built IMU was developed to capture the hand
movements of children with CP for this project. The IMU
consisted of an MPU 9250, a custom-built Arduino Pro Mini,
and a 2.4-GHz radio frequency (RF) radio. Each sensor was
powered by a small 90 mAh, 3.7-V rechargeable lithium battery
and could support up to 3 hours of nonstop measurement. The
custom Arduino Pro Mini was previously designed by Dr
Weiyang Xu as part of his thesis titled Design and Validation
of a Portable Wireless Data Acquisition System for Measuring
Human Joint Angles in Medical Applications [24]. The IMU
data were captured using a simple receiver dongle that used an
RF radio transceiver connected to an Arduino Uno and was read
from the serial communication link. Both RF modules were
connected using a serial peripheral interface (SPI), and the IMU

was connected using an interintegrated circuit (I2C) connection.
The designed IMU is shown in Figures 1 and 2. A summary of
the specifications of the IMU is presented in Table 2. These
sensors were validated against a goniometer and Vicon motion
capture system, the results of which can be found in the studies
by Walmsley et al [15] and Xu et al [25].
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Figure 1. The MPU9150 (blue printed circuit board [PCB]), custom-built Arduino Pro Mini (green PCB), and RF Module (red PCB); a comparison
of the inertial measurement unit with an Australian five-cent coin; and the 3D printed case for the sensor [24].

Figure 2. The receiver dongle in the 3D printed case [24].

Table 2. Specification of the inertial measurement unit (IMU).

ValueParameterElectronic Module

MPU 9250 IMU •• Range of ±2 g, ±4 g, ±8 g and ±16 gAccelerometer FS range
• •Gyroscope FS range Range of ±250, ±500, ±1000 and ±2000°/sec

•• Range of ±1200 µTMagnetometer FS range

nRF24L01 Transceiver •• 2.4GHzISMa band operation
• 250 kbps, 1 and 2 Mbps• Air data rate
• 0, −6, −12 or −18 dBm• Programmable output power

Arduino Pro mini •• 3.3 V or 5 VCircuit operating voltage
• •Clock Speed 8 MHz (3.3 V version) or 16 MHz (5 V version)

•• 32 KBFlash memory

Arduino Uno •• 5 VCircuit operating voltage
• •Clock Speed 16 MHz

•• 32 KBFlash memory

aISM: Industrial, Scientific, and Medical.

JMIR Rehabil Assist Technol 2021 | vol. 8 | iss. 4 | e29769 | p. 5https://rehab.jmir.org/2021/4/e29769
(page number not for citation purposes)

Khaksar et alJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The SPI is a synchronous, full-duplex serial bus standard that
was introduced by Motorola to support communication between
a master processor and multiple slaves [26]. This protocol used
Serial Clock sent by the master to synchronize master and slave;
Serial Data Out to stream from the device; Serial Date In to
stream into the device; Slave Select to enable slave, which is
omitted in point-to-point connotations [26]. The master–slave
connection for the RF module is shown in Figure 3. SPI was
used to connect the RF module to the custom build module,
where Arduino was the master and the RF module was the slave.
The same connection was used on the receiver to connect the

RF module and Arduino Uno with the Arduino acting as the
master and the RF module acting as the slave. This decision
was made because of the inclusion of Master In Slave Out and
Master Out Slave In data lines that facilitate full-duplex
communication, a fast communication speed that can go to 10
Mbps or more; inclusion of push-pull drivers that provide good
signal integrity, not limited to 8-bit words for bits transferred;
use of master’s clock by the slave, which removed the need for
precision oscillators, and lower power requirements compared
with other serial buses because of less circuitry.

Figure 3. The left diagram shows the serial peripheral interface (SPI) connection between Arduino Uno and the RF module, and the right diagram
shows the SPI connection between the custom Arduino Pro mini and the RF module. MISO: Master In Slave Out; MOSI: Master Out Slave In; RF:
radio-frequency; SCLK: Serial Clock.

The designed sensors needed to wirelessly transfer data to avoid
hindering the hand movements of the participants in the project.
Popular wireless communication technologies include Bluetooth,
RF, WiFi, and infrared. The popular frequency range for
wireless communication includes subGHz below 1 GHz (for
long-range) and 2.4 GHz (for short-range). The proposed joint
movement calculation system uses an nRF24L01 RF transceiver
[27] (transmitter-receiver integrated on the same chip) module,
which operates on a 2.4-GHz frequency band using 125 channels
in the frequency range of 2.4 GHz-2.525 GHz. The module uses
a license-free industrial, scientific, and medical frequency and
can cover a distance of up to 1000 m. To improve the data loss
at this crowded frequency band around 2.4 GHz, the nRF24L01
RF transceiver module uses a low noise amplifier [27]. The data
rate requirement of the proposed joint movement calculation is
not very high. This RF transceiver module is an improvement
as it supports data rates in the range of 250 kbps-2 Mbps. The
RF transceiver module connects with the Arduino module using
SPI through Serial Clock, Master In Slave Out, and Master Out
Slave In pins. The nRF24L01 RF transceiver is an ultralow

power drawing of 26 µA of current in standby mode and 900
nA of current under down mode [27].

The I2C bus is a synchronous serial protocol originally
developed by Philips Semiconductor (now known as NXP

semiconductors) in the early 1980s [26]. The main aim of I2C
was originally to support the board-level interconnection of ID
modules and peripherals [26]. This protocol used serial data,
and Serial Clock and ground for a half-duplex connection, which
is capable of handling multiple masters and slaves. Serial Clock
synchronizes all bus transfers, and serial data carries the data
being transferred [26]. The connection of the MPU 9250 module
is shown in Figure 4. The structure of the timing diagram for

I2C is shown in Figure 5. The I2C was used to connect the IMU
module to the custom-built IMU, with the Arduino acting as
the master and the IMU acting as the slave. This decision was
made because of the incorporation of Acknowledgment and No
Acknowledgment functionality that improves error handling,
flexible data transmission rates, addressability of each devices
bus, and requiring only 2 signal lines.

Figure 4. Schematic of the I2C connection between the custom Arduino Pro Mini and the inertial measurement unit. SCL: Serial Clock Line; SDA:
Serial Data Line.
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Figure 5. I2C timing diagram. SCL: Serial Clock Line; SDA: Serial Data Line.

The IMUs comprise an accelerometer, gyroscope, and
magnetometer. Using sensor fusion techniques, an object’s
orientation can be captured using differential equations
describing its dynamic behavior, which can be derived from the
Newton-Euler by means of the Euler angle parametrization [28].
Quaternion is another method for capturing the orientation of
an object, which is a four-element vector that can be used to
encode any rotation in a 3D coordinate system [28]. In this
study, to simplify calculations, raw acceleration and angular
velocity were captured and used to measure the wrist joint angle.
The requirements and specifications of this research lead to the
selection of IMUs owing to their low cost, low power
consumption, and ability to provide orientation with the relevant
update rate.

Joint Angle Calculations
The sensors collected raw acceleration and angular velocity in
the X-, Y-, and Z-axes, and the results were postprocessed in
MATLAB using a 2-sensor-based joint orientation algorithm.
This algorithm shows the difference in relative movements
between 2 sensors when they share the same frame and zero
position [24]. The Z- and Y-axes of both sensors need to be
parallel to each other, so the X-axis of both sensors merge into
the wrist center. This means that the wrist joint movement can
be measured as the angle difference between the 2 sensors. The
use of 2 parallel sensors for joint calculation simplifies the 3D
system problem to a 2D one. The orientation of the MPU9250
is shown in Figure 6 [29] and the placement of the sensors is
shown in Figure 7.

Figure 6. Orientation of the MPU9250 inertial measurement unit chip, where X is Roll, Y is Pitch, and Z is Yaw [29].

Figure 7. Sensor placement showing sensor 1 connected to the back of the hand and sensor 2 connected above the wrist.

Using 2 sensors creates a relative system, so the rotation on the
Y-axis or the orientation on the X-Z plane can simply be
calculated using the following formula:

According to the tangent function, the angle of ß can be initially
calculated using the acceleration from the X-and Z-axes, where
x is the angle between the net acceleration and the acceleration
on the X-Z plane. Therefore, the tangent of ß can be calculated
as follows:

JMIR Rehabil Assist Technol 2021 | vol. 8 | iss. 4 | e29769 | p. 7https://rehab.jmir.org/2021/4/e29769
(page number not for citation purposes)

Khaksar et alJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The angles used in equation (2) can be seen in Figure 8.

The data sample rate for both sensors was set to 100 Hz, which
reduced the difference in angular velocity measurements
between each sample.

Unlike traditional yaw, pitch, and roll orientation systems, a
reference plane was unnecessary in the present algorithm as

both sensor axes were aligned so that the joint movement was
equivalent to the orientation difference between the sensors.
Therefore, only relative motion was used, and the impact from
the environment was ignored [24].

The orientation of each individual sensor was calculated using
the orientation reading and angle movement during each
sampling period, and a complementary filter introduced a
high-pass filter to the main orientation tracker and adjusted with
a low passed value from the accelerometer’s orientation
measurement [24].

Figure 8. 3D system for acceleration.

As the desired accuracy cannot be achieved by using only the
acceleration, sensor fusion was used to increase the measurement
accuracy by combining the data from both the accelerometer
and the gyroscope. The accelerometer output was independent
of each sample during the measurement period; therefore, θzx,
θyz, and θzy, which are the projected orientation angles on the
X-Z, Y-Z, and Z-Y planes, respectively, were used as rough
measurements. The gyroscope’s angular velocity ωgf was added
to describe the actual change between samples and can be
calculated after subtracting the average static drift and using a
Savitzky-Golay filter to calibrate the moving average drift [24].
The gyroscope’s angular velocity can be calculated using the
following formula:

Here, is the average static drift, which can be calculated
using the following equation:

In the formula given above, n, m, and r are random integers and
m is larger than 3. The total number of samples needs to be
larger than n + (m−1) r + 100 m. These calculations lead to the
following sensor fusion algorithm, which is based on a
complementary filter:

where a, b, and c are the names of thåe measurement axes and
n+1 is the current order of the sample. σc (n + 1) is the filtered

angle along the c-axis. Therefore, ωgfc represents the rotation
on the c-axis, and θab is the current angle on the a-b plane, which
is based on accelerometer measurements. Finally, the
combination of high pas factor h and low pas factor l is 1 [24].

The results of these joint calculations were validated in the study
by Sharif Bidabadi et al [30] against a 3D Vicon video capture
setup. The accuracy of the setup was written in a different paper
found in the study by Walmsley et al [15], where a custom-made
robotic device with predetermined angles was designed, where
the sensors detected peak angles with mean errors ranging from
−0.95° to 0.11° when one wearable sensor was static and the
other dynamic. When 2 wearable sensors were moving,
movement at a higher speed (90°/s) had a mean error range of
−2.63° to 0.54° and movement at a slower speed (30°/s) had a
mean error range of −0.92° to 2.90° [15].

Data Preprocessing
The IMU sensors generated time-series data from the
accelerometer, gyroscope, and magnetometer around the 3 axes.
First, small sections were removed from readings taken at the
beginning of the experiments when the IMU sensors were not
stabilized. Then, the remaining data collected by each sensor
from each experiment in 3 orientations (ie, pitch, row, and yaw)
were converted into frequency-domain representations by
performing fast Fourier transform. Converting data to the
frequency domain can successfully capture the characteristics
of gait motion, as shown by similar experiments in [23,31,32],
the interval between adjacent readings was approximated as 0.1
seconds and the fundamental frequency was calculated as 1/ttotal,
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where ttotal is the total time of the experiment. The amplitude
A, phase shift P, and peak frequency F of the first 5 harmonics
were collected into a feature vector. The feature vector for each
experiment was 1×270, and the 270 features were as follows:

Each experiment was then labeled 0 for a typically developing
child and 1 for a child with CP.

Classification by ML Algorithms
The problem of distinguishing typical hand movements from
hand movements of children with CP constitutes a binary
classification problem, that is, classification between two
classes. Various algorithms can be constructed using different
ML methods based on existing data that can be used to classify
unseen data. This process is called training. Some classical ML
algorithms commonly used in engineering problems include
linear classifiers such as Naïve Bayes and logistic regression,
decision trees such as the C4.5 decision tree and random forest,
support vector machine, k-nearest neighbors, and neural
networks such as multilayer perceptron and convolutional neural
networks. More sophisticated deep neural networks can also be
designed for classification problems; however, the size of
training data sets is a major concern. Other problems include
data bias, overfitting, a lack of computational resources, etc.

To decide between the 2 classes, ML algorithms for binary
classification establish decision boundaries that separate the
data points in the training data set from the 2 classes. This
process relies on optimizing a cost function that varies between
the algorithms. Most algorithms, such as logistic regression,
support vector machine, decision trees, and neural networks,
aim to construct a model with parameters that are learned from
the training data set, whereas some algorithms operate directly
on the data set, for example, k-nearest neighbors. Although
there are numerous libraries and tools offering implementations
of ML algorithms [33,34], the performance of the individual
algorithm depends on the nature of the problem and the
properties of the data set. Choosing the algorithm that performs
best for a particular problem is subject to investigation.

Experiment Setup and Data Collection
As a part of an Australia-wide CP research study called the
Minimising Impairment Trial (MIT) and Infant Wrist Hand
Orthosis Trial (iWHOTs), the IMU sensors were used to capture
the wrist movements of 2 groups of participants. The MIT trial
included children with and without CP aged 5-15 years, and the
iWHOT included children aged 6 months to 3 years. These
studies were multisite RCTs that aimed to evaluate whether
long-term use of rigid wrist or hand orthoses in children with
CP, combined with usual multidisciplinary care, could prevent
or reduce musculoskeletal impairments, including muscle

stiffness or tone and loss of movement range, compared with
usual multidisciplinary care alone [11]. IMUs were used as an
outcome measure to capture the active wrist ROM. During each
assessment session, the participants completed several wrist
movement activities such as making a stop sign motion, picking
up small objects, playing with toys, pressing a big button, and
so on. The aim of these activities was to assess the ROM used
during active movement and task performance while data were
collected via sensors. In addition, goniometric measurements
of the joint movement was collected. The detailed protocol of
this research has been published [11] if the reader is interested
in more information about the clinical aspects of this trial.

For this project, the aim was to capture CP movement as a
feature by ML on the raw IMU data by focusing on the data
collected during the stop sign task in the MIT and iWHOT.
Each participant was asked to perform a simple stop sign motion
to capture the maximum wrist joint angle as well as the
maximum range of movement. To achieve this study’s aim, two
separate experiments were run using participants who were
approaching the age of 3 years from iWHOT and participants
who were approaching the age of 15 years from MIT. From
MIT, 263 samples from 89 participants with CP and 199 samples
of typical movement data captured from 30 participants without
CP were used. The participants without CP simulated typical
movements to reach 199 samples. From iWHOT, 171 samples
from 51 participants with CP and 149 samples from 20
participants without CP were used.

Cross-validation, which is 90% training and 10% testing, were
used 10 times to train and test the classifier, which can be seen
in the next section of this paper. The CP data were collected by
the research teams working on the MIT and iWHOT trial
according to ethically approved procedures (HREC REF
201406EP) and with signed, informed consent from all the
participants’ parents or guardians. Deidentified data were used
to produce ML results, which are analyzed in the Discussion
section of this paper.

Results

Figures 9 and 10 show the raw data captured for a stop sign
motion trial of a participant without CP, starting from the
stationary position to a stop sign and again to a stationary
position. These data included the accelerometer and gyroscope
in 3 axes. Figure 11 shows the placement of the sensors on the
hand and above the wrist.

After the data were captured, they were processed and run
through the different equations described in the joint calculation
section of the report. Through these calculations, the drift was
removed, and the joint angle was calculated, the results of which
are shown in Figure 12.
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Figure 9. Raw data captured with the sensor connected to the hand (data without CP). CP: cerebral palsy.

Figure 10. Raw data captured with the sensor connected above the wrist (data without CP). CP: cerebral palsy.
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Figure 11. Stop sign motion required by the participants.

Figure 12. Joint angle results from a participant without CP. CP: cerebral palsy.

The stop sign trials from participants with CP were captured
using the same IMUs as those used in the previous group. The
results of the raw data captured from the CP participants are
shown in Figures 13 and 14. The results of the calculated joint
angles are shown in Figure 15.

Anecdotal feedback from MIT and iWHOT researchers was
positive about the potential of IMUs to contribute accurate data

about active ROM, especially in children for whom goniometric
methods are challenging.

After the initial angles were calculated, several classical ML
models were trained to create a classifier for the captured data.
The Waikato Environment for Knowledge Analysis platform
[34] version 3.8 was chosen as the platform for these
experiments. Waikato Environment for Knowledge Analysis is
a collection of open-source ML algorithms and contains tools
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for data preparation, classification, regression, clustering,
association rule mining, and visualization [34]. The algorithms
used consisted of ZeroR, OneR, Bayes Net, Naïve Bays, logistic
regression, C4.5 decision tree, random forest, support vector

machine, multilayer perceptron, and k-nearest neighbors. The
authors analysis of the produced ML results can be found in the
Discussion section of this paper.

Figure 13. Raw data captured with the sensor connected to the hand (data with CP). CP: cerebral palsy.

Figure 14. Raw data captured with the sensor connected above the wrist (data with CP). CP: cerebral palsy.
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Figure 15. Joint angle results from a participant with CP. CP: cerebral palsy.

Discussion

Principal Findings
The resultant evaluation metrics are accuracy, the number of
correctly classified instances over the total number of instances,
the area under the curve (AUC), and the area under the receiver
operating characteristic (ROC) curve. The ROC curve maps the
true positive rates as the x-coordinate and false positive rates
as the y-coordinate. Ten-fold cross-validation was adopted,
splitting the data set into 10 parts, training the models with 9
parts, and testing with 1 part each time for a total of 10 times.
The accuracy and AUC were obtained by averaging the 10 sets
of results and taking the weighted average of the 2 classes. The
baseline of the experiments was obtained from ZeroR, a

classifier that predicts the class that occurs most often in the
training data set as the label without considering other features.

Table 3 presents the results of the 9-ML algorithms on the
classification using the MIT data. The baseline obtained from
ZeroR showed 57.02% accuracy and 0.493 AUC. The best
accuracy was 85.75% yielded by random forest, and the best
AUC was 0.890 yielded by k-nearest neighbors. Figure 16 shows
the ROC curves of the 9 ML algorithms and the baseline. OneR,
k-nearest neighbors, multilayer perception, and random forest
all produce reasonable ROC curves and are expected to perform
well for the problem. Naïve Bayes performs better than the other
algorithms owing to the conditional independence assumption
it makes. Because the frequency space features are interrelated,
it is unreasonable to make this assumption.

Table 3. Machine learning result using minimizing impairment training data, showing the best accuracy.

AUCaAccuracy (%)Algorithm

0.84884.23OneR

0.74972.79Logistic regression

0.75265.23Naïve Bayes

0.83280.99Bayes Net

0.74074.95C4.5 decision tree

0.86785.75Random forest b

0.86580.35Multilayer perceptron

0.79479.70Support vector machine

0.89082.07K-nearest neighbors

0.81578.45Average

aAUC: area under the curve.
bThe best accuracy and area under the curve values are italicized.

JMIR Rehabil Assist Technol 2021 | vol. 8 | iss. 4 | e29769 | p. 13https://rehab.jmir.org/2021/4/e29769
(page number not for citation purposes)

Khaksar et alJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 16. The ROC curves of 10 classification algorithms using the Minimising Impairment Trial data. The area under the curve values are the areas
between the ROC curves and the x-axis. ROC: receiver operating characteristic.

Curiously, OneR uses only a single feature and achieves 84.23%
classification accuracy. The algorithm uses the 91st feature,
which is the phase shift corresponding to the second harmonic
obtained from the hand sensor. This phenomenon may indicate
that the most useful information for classification is recorded
by the hand sensor and that omitting one sensor may be possible
in the future.

Table 4 presents the results of the 9-ML algorithms in binary
classification using the iWHOT data. The baseline obtained
from ZeroR showed 53.44% accuracy and 0.494 AUC. The best
accuracy was obtained by the C4.5 decision tree at 85.75%, and
the best AUC was obtained by Naive Bayes at 0.890. Figure 17

shows the ROC curves of the 9-ML algorithms plus the baseline.
Although all models appear to be reasonable classifiers for the
problem, it is worth noting that OneR, which classifies based
on one feature alone, already achieves 88.13% accuracy and
0.886 AUC. The deciding feature is the amplitude of the
acceleration in the row direction on the hand sensor, which
corresponds to the most important piece of information in a
real-world scenario. The relative underperformance of the more
sophisticated algorithms, in contrast, may be due to the observed
noises in the training data that lead to biases in the learned
models. Such noises include the sensors falling off the
participant, the participant not following instructions, etc.

Table 4. Machine learning result using Infant Wrist Hand Orthosis Trial data.

AUCaAccuracy (%)Algorithm

0.88688.13OneR

0.90680.94Logistic regression

0.943 b86.88Naive Bayes

0.92188.43Bayes Net

0.85889.38C4.5 decision tree

0.91781.88Random forest

0.93781.25Multilayer perceptron

0.78383.75Support vector machine

0.89683.44K-nearest neighbors

0.89484.90Average

aAUC: area under the curve.
bThe best accuracy and area under the curve values are italicized.
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Figure 17. The ROC curves of 10 classification algorithms using the Infant Wrist Hand Orthosis Trial data. The area under the curve values are the
areas between the ROC curves and the x-axis. ROC: receiver operating characteristic.

Conclusions
Upon completion of the project, the wrist joint angle was
successfully calculated, and CP movement was classified as a
feature using ML on raw IMU data. Anecdotal positive feedback
from MIT and iWHOT researchers was also received regarding
the potential for IMUs to contribute accurate data about active
ROM, especially where the use of goniometers can be
challenging. There may also be the potential to use IMUs for
continued monitoring of hand movements throughout the day.
The sensor size needs to be reduced to make it more comfortable
to wear. Examples of ML and IMU data captured for medical
purposes can be seen in the paper titled Classification of foot
drop gait characteristic due to lumbar radiculopathy using
machine learning algorithms [23]. This paper looks at the
classification of IMU data captured from hospital patients with
foot drop issues using supervised learning and uses 11 different
ML classifiers and shows that random forest was the most
accurate method with an accuracy of 88.45% for a specific data
set [23]. Some of the other ML algorithms used were SVM,
Naive Bayers, and deep learning, which gave accuracies of
86.87%, 86.87%, and 86.06%, respectively [14]. Bidabadi et al
[30] showed results were very similar to the current findings,
although the focus was on a different joint. This suggests that
decision-tree-based ML algorithms may be the best option for
classifying IMU data for joint movement. The classifier used
in this study would be able to distinguish atypical and reduced
movement, which can potentially be useful for people with
different joint movement disorders such as arthritis and
Parkinson disease.

There are some limitations to the IMU setup used in this study,
such as the inherent drift of IMUs, which can be corrected by

the drift mitigation techniques described in the methods. These
techniques may prove problematic for longer trials. There were
other issues during the data collection sessions, such as touching
the 2 (hand and forearm) sensors because of the small hands of
some participants or accidental touching of the sensors by the
therapist while using the goniometer, which leads to an increase
in noise in the data. Bugs in the data collection interface created
for technicians also resulted in some corrupted data and data
loss, which added to the preprocessing time of the ML section
of this study. Finally, at the initial stages of the project, the scale
of the accelerometer was set at +2 g because the slower moving
trials rarely reached this value. Once free play situations were
introduced that would usually contain rapid movement,
particularly in younger children, it was observed that the scale
of g needed to be extended beyond this threshold, which resulted
in reduced accuracy. This reduction caused some data loss, so
the scale was switched to +16 g for faster trials.

As part of future work, real-time calculation of joint angle and
orientation data can be implemented so that direct quaternions
can be collected and used for this calculation. The research team
involved in this paper began the preliminary work on this next
step and plans to publish their results once the solution has been
fully created. The sensor setup will also be updated to remove
the reliance on a separate receiver dongle by switching the
communication module to Bluetooth Low Energy transfer to a
smartphone application. These changes to the user experience
and the medium of transfer would improve the utility of the
process of data collection, better continued monitoring of
children with CP, and quicker trial sessions in routine
appointments for children with CP.
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