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Abstract

This thesis is concerned with the use of computational optimal control methods to determine

optimal strategies for operating raceway ponds in order to maximise the lipid yield of microalgae

grown therein. The idea of using lipids from microalgae as a base for biofuels to mitigate the worlds

dependence on crude oil has been considered by researchers over several decades. This strategy

of generating biofuels is not currently considered to be cost competitive with fuels generated from

crude oil. At the same time, incremental yield improvements of both biomass and lipids produced in

bioreactors are continually being made and it is not yet clear if or when we will reach a point where

this process is as or more economical then generating fuels from crude. Thus the main purpose of

this thesis is to explore a variety of strategies by which lipid yield from microalgae may be improved

in order to get a better understanding of the ultimate potential of this technology. Our background

is in mathematics and computing and we hence choose to work with mathematical models of algal

growth rather than trying to test strategies on actual raceway ponds. While this leads to obvious

limitations in the direct applicability of our results, it also allows us to employ powerful numerical

optimisation tools to develop strategies rather trying to incrementally develop these strategies by

a long sequence of time consuming experiments on actual ponds. Although the optimal strategies

developed in this manner may not perform as well in practice as they do for a mathematical model,

they will give practitioners a useful guide to improving the algal growth process and may even lead

to new insights into the growth process itself.

We start by briefly describing the human use of microalgae over history with a particular focus

on biofuel production. Next, we examine a variety of mathematical models of algal growth, both

in a general setting and in the context of raceway ponds. Microalgae growth can be influenced

by temperature, light, nutrient availability, CO2 availability, and pH level. All of these processes

have been analysed and modelled mathematically, starting with simple Michaelis-Menten-Monod

kinetics, concerned only in a single substrate, and leading to complex systems of differential and

algebraic equations which track various combinations of light intensity, chlorophyll, temperature,

iv



intra and extracellular nutrients, lipid biomass, and total biomass. We consider the suitability of

various models towards the aim of optimising lipid production and then choose the most appropriate

one for the basis of our computational studies. This model combines a Droop growth model, a

Michaelis-Menten-Monod type model of light intensity, and a temperature effect model for the

total growth of microalgae where nitrogen, light intensity, and temperature are all limiting factors

of growth. The setting of the model is a raceway pond bioreactor that assumes a completely mixed

medium.

The problem of maximising biomass or lipid growth can be formulated as an optimal control

problem. We give a brief review of this general class of mathematical optimisation problems and

the necessary conditions for a locally optimal solution. As most practically orientated problems in

this class are too complex to solve analytically, we review a range of existing numerical solution

methods, particularly those which are used in this thesis.

Next, we describe in detail the mathematical model which forms the basis of the numerical

studies in this thesis. We give an open loop optimal control formulation for maximising either

biomass or lipid yield. We then transform the system of differential algebraic equations in the model

to a system of ordinary differential equations in order to make the problem suitable for solution

by the MISER optimal control package we intend to use. This introduces dynamics for average

light intensity and chlorophyll, yielding a total of seven state variables. We then use MISER to

determine the optimal inflow rates to maximise either biomass or lipids and compare these results

to those published previously with the original model. Our results yield a 10% improvement in

biomass and a 20% improvement in lipids and are very close to satisfying the first order conditions

of optimality. For the remainder of the thesis, we are focussed on lipid production only and we

measure any further lipid yield improvements with respect to this base case lipid result.

Next, we modify the original optimal control formulation of the model to allow for variable nu-

trient concentration of the inflow (as a second control variable) as well as making the initial nutrient

concentration of the pond a decision variable. For modest increases in nutrient concentration, we

show that lipid yield can be improved by about 28% over the that in the base case. Higher upper

bounds on the nutrient concentrations lead to further improvements still. We test the robustness

of the corresponding optimal controls with respect to various disturbances of the dynamics and we

also formulate and solve a feedback optimal control version of the problem. Both the open loop

and feedback optimal controls appear to be quite robust with respect to these disturbances.

We next consider the possibility of variable raceway depth. In the first instance, we assume the

depth to be constant over the time horizon and model it as a decision variable within the problem
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formulation. If we maintain the same pond volume, the solution generated demonstrates that lipid

yield can be improved by over 40% with a very shallow pond at the expense of a much larger surface

area. If instead we choose to fix the surface area and allow volume to vary with the chosen depth,

the resulting lipid yield improvement is about 8% over that of the base case (assuming the same

amount of initial nutrients and biomass as for the base case model). As a second variation, we also

consider the case where the pond depth is allowed to vary over the time horizon. This requires an

additional state variable to model depth as well as an additional control to allow for variable outflow.

The modified dynamics are again transformed into a system of ordinary differential equations and

the resulting problem is solved with MISER. Numerical results show that the lipid yield can be

increased by 67% compared to that obtained with the base case when pond depth is allowed to

vary over the time horizon.

The open loop control results generated thus far have the common feature of a washout period,

i.e. high flow rates are imposed near the end of the time horizon in order to maximise the algae

harvest. This is consistent with the batch process nature of the optimal control formulation but

it also leaves a pond largely depleted of algae at the end if the process. As preparing the pond

for the next batch may be quite costly, we also consider a modified optimal control model which

allows for a continuous operation of the pond. This is done by imposing terminal constraints on

the state variables of the model such that the terminal states are equal to their values at the start

of the time horizon. At the same time, we allow the initial and final values of the state variables

to be decision variables. This turns out be a more challenging numerical problem to solve and the

best solution obtained by MISER proved to be somewhat suboptimal. However, we are able to

use another computational method to derive an optimal solution to this problem. Both solutions

give an improvement of around 45% in lipid yield over that obtained for the base case problem.

However, we also show that the optimal periodic boundary conditions are difficult to reach in finite

time from arbitrary initial conditions. Nevertheless, the optimal periodic solution provides a useful

benchmark which can inform the design of more practical control algorithms for the system in the

future.

We conclude the thesis by outlining the main shortcomings of the existing model and optimal

control formulations and suggest a variety of ideas for future numerical studies in this area.
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Chapter 1

Introduction

1.1 Microalgae and their role in the World

Algae is the name given to a range of aquatic organisms which are capable of carrying out photo-

synthesis (the process of converting the energy in sunlight to generate carbohydrates). Common

examples of algae familiar to most of us are seaweeds and pond scum which often make aquatic

environments less attractive to humans. In fact, there exists a huge variety of algae. Many of these

have the potential for human use while many more are actually critical to human existence.

Algae differ from higher level plants in that they lack features such as roots, stems, leaves,

and a vascular system to circulate water and nutrients through their bodies. Some algae are

multicellular and take on a leafy appearance such as giant kelp which can grow as long as 60

metres. Most, however, are unicellular and exist as single, microscopic cells, and are hence referred

to as microalgae. Even microalgae can exist in a chain or group structure, thereby making them

visible to the naked eye. Their sizes can be measured in terms of micrometres and they are specially

adapted to a fluid environment dominated by viscous forces. Microalgae in both freshwater and

marine environments are essential to maintain life on the planet. They are estimated to contribute

about half of our planets oxygen production and simultaneously consume large amounts of carbon

dioxide. In addition, microalgae are considered the basis of the marine food web, being the primary

food source of many marine species such as molluscs, filtering bivalves, and the larval stages of fish

and crustaceans.

The variety of microalgae is huge with an estimated 200,000 - 800,000 species inhabiting the

planet. Only about 50,000 of these have been identified so far. More than 15,000 distinct chemical

compounds originating from algal biomass have been isolated. These include carotenoids, antioxi-
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dants, fatty acids, enzymes, polymers, peptides, toxins, and sterols [82]. Human use of microalgae

has a long history with the first documented incidence being the consumption of the Nostoc genus

of blue-green algae as a food source during famine by the Chinese 2000 years ago. The Aztec of

middle America are reported to have harvested microalgae from natural lakes for human consump-

tion as far back as the 1600s [14, 26]. Today, microalgae are grown and harvested commercially in

many countries of the world, yielding a range of products that can be used for pharmaceuticals,

food supplements, cosmetics, animal feed and feed for aquaculture operations [12, 82, 103, 128].

The worlds largest microalgae production plant consisting of a 250 hectare series of artificial ponds

is located in the Hutt Lagoon, about 450 km north of the Western Australian state capital Perth.

The main product is β-carotene, used as a food colouring and vitamin A supplement.

In many parts of the world, microalgal blooms occur in freshwater lakes and rivers, often due to

human influence. An algal bloom results from excess availability of nutrients (often due to release

of untreated waste-water or fertiliser run-off from intensive farming operations) combined with high

water temperatures and slow water flow. Algal cells can multiply rapidly in these conditions leading

to high biomass loads, low oxygen levels, and release of toxins. This often results in the mass death

of other aquatic species. However, the same algal species involved in these algal blooms can also be

used in a targeted way to treat waste-water and extract excess nutrients. Indeed, there are many

publications which examine the dynamics of algal blooms and many others looking at the use of

algae in water purification [88, 113, 124].

1.2 Biofuel and Microalgae

As the earth’s supply of easily accessible crude oil depletes, various substitutes of have been consid-

ered. Among these are biofuels which can be classed into four distinct generations. First generation

biofuels are made from edible high energy crops grown on arable land where their sugar, starch,

and vegetable oils are converted to ethanol or biodiesel with yeast fermentation or transesterifica-

tion, respectively. However, growing these crops has an obvious negative impact on global food

production, thus sparking research into further areas. Second generation biofuels are created from

non-edible waste plant or animal biomass. The main fuel produced in this way is methane which

is used mainly for power generation, but it is not a very useful substitute for crude oil. Third

generation biofuels use microalgae with a large lipid concentration as a feedstock which can be

grown on non-arable land. A major advantage of microalgae over terrestrial plants is that they

can grow 20-30 times faster. Fourth generation biofuels refer to genetically modified versions of

2



micro-organisms to improve the hydrogen to carbon yield as well as providing an artificial carbon-

sink. This promotes absorption of carbon dioxide from the atmosphere, thereby reducing the worlds

overall carbon-footprint [1].

The composition of microalgae is by no means uniform but varies considerably between different

species and even within the same species when exposed to different environments. Many microalgae

can endure in a wide variety of environments. It is possible to concentrate various desirable products

in these species by changing environmental conditions such as temperature, illumination, pH, carbon

dioxide supply, salinity, and nutrient concentration. Nutrient availability can effect microalgae

growth in a number of ways. In the context of biofuel production, it is interesting to note that

when starved of nutrients, some species will accumulate lipids more rapidly thanks to photosynthesis

and respiration [12, 66, 116].

The first documented proposals to grow microalgae as a source of lipids for food or fuel appeared

in 1942 [41, 42] in Germany. In the early 1950s efforts were made in the US, England, Germany,

Japan, and Israel to grow and process algae on a larger scale [19] with little to no success. Renewed

efforts in the area appeared in the 1970s as a consequence of crude oil shortages due to political

instability in the Middle East. The US Department of Energy established the Aquatic Species

Programme (ASP) in 1978 with the aim of developing liquid transportation fuel from algae which

could compete with crude oil. It examined a large variety of algal species as well as a range of

growth and production systems over an 18 year period until its closure in 1996 due to record low

oil prices. While the program demonstrated that large scale production of fuel from algae grown in

outdoor ponds was possible, the cost of production could not compete with that of crude oil [116].

Although not directly concerned with the growth of algae for fuel, Japan’s research institute

of Innovative Technology for the earth (RITE) started a research programme with the aim of

CO2 sequestration via the growth of microalgae. It was shown that microalgae could be grown

successfully using power plant flue gas as a CO2 source [92] and this has had a significant influence

on subsequent algal biofuel research [82, 128]. Note that CO2 sequestration was also a focus of

the ASP [115, 116]. More recently the US National Renewable Energy Laboratory (NREL) has

continued the ASP’s work in biofuel production from microalgae [115].

In the early 2000s, rising crude oil prices led to a renewed interest in algal biofuels with numerous

research projects funded in the US, Europe, the Middle East, and Australia among many other

places [98]. Several companies started selling algae derived fuel from 2012, but this did not continue

very long and most of them either no longer exist or they have switched to producing higher valued

lipids for human consumption [36, 127].
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1.2.1 Cultivation of Microalgae

Farming of microalgae combines the growth of biomass with different methods of harvest and

extraction [82, 105, 128]. Microalgae growth occurs in a ‘bioreactor’ which is either a closed

or open system. Biomass harvest is usually done through centrifugal or flocculation methods.

Lipid extraction is performed with cell disruption or cell rupture and the subsequent application of

solvents, if needed. We discuss these briefly below.

Bioreactors

Bioreactor is the general term for various biological production systems and these can be either

industrial plants or ponds [17]. More specifically, a photo-bioreactor is a system for growing micro-

bial, algal or plant cells in which these carry out a photo-biological reaction. A bioreactor system

can be closed, open, or a hybrid of both. Closed systems are those where the culture is sealed from

the environment; open systems are those where the culture is directly exposed to it. Note that the

term photo-bioreactor is commonly understood to describe a closed system [82].

Closed Systems

For algal growth, closed system photo-bioreactors usually consist of a set of containers containing a

mixture of water, microalgae, and CO2. Closed system photo-bioreactors allow for a set environment

of temperature and light for the culture to grow in. This environment is usually managed in such

a way as to provide the optimal growth conditions for the algae [12, 82, 132].

This flexibility allows for the cultivation of many algal species which would not survive in an

open pond. Closed systems are often made of transparent containers and pipes which allows for

greater light penetration into the culture, although the light does first have to cross the reactor

walls.

Closed systems have a number of obvious advantages.

� The growth environment can be well controlled in terms of nutrient concentrations, temper-

ature, and light exposure.

� Atmospheric contamination can be kept to a minimum.

� Evaporation can be minimised.

As a consequence of these advantages, closed systems are capable of growing algae to much higher

densities than open systems. This subsequently leads to more efficient harvesting of the algae.
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Unfortunately, closed systems also suffer from many limitations:

� High capital costs, especially with the use of glass for vessels or tubing. Less expensive

materials such as plastics can reduce the cost significantly but these also need to be renewed

more frequently. Costs also increase significantly with scale.

� Biofouling of the vessels or tubing frequently occurs and can be expensive to correct.

� Cooling is often required and artificial lighting is also frequently employed. Both of these can

lead to very high energy costs.

As a consequence the cost of biomass production in closed systems is estimated to be one order

of magnitude higher than that of corresponding open systems. Thus, commercially viable closed

systems are currently only used for high value products such as pharmaceuticals and cosmetics.

Open systems

Open systems can take various forms such as a shallow lagoon/pond, an inclined system, a circular

central-pivot pond, or a raceway pond [12, 14]. Shallow ponds are of varying sizes and have been

used with microalgae as simple waste-water treatment systems for thousands of years. Shallow

ponds are also often fertilised with manure as a means for the growth of algal biomass.

Inclined systems have the cultures flow down an angled surface. It is collected at the bottom

and then pumped back to the top of the inclined surface. This circulation is maintained during

daylight while at night the culture is aerated and mixed in a large tank to reduce pumping costs

and maintain its temperature.

Circular central-pivot ponds can be up to 50 metres in diameter and are mixed with a rotating

arm mounted at the centre of the pond [14]. These are some of the oldest pond types used for

commercial algae production. One of their disadvantages is uneven mixing due to the arm travelling

over a greater distance at the periphery.

Raceway ponds are easily scalable and generally the most economical to create and operate.

They are the most widely used system for microalgae production commercially. The simplest type

of these ponds is a ditch dug from the ground with appropriately sloped sides. Viewed from the top,

the shape of a raceway pond is usually an oval. A paddle usually drives water around the raceway

to keep the culture mixed. The flow rate is typically between 20 and 30 cm s−1 [14]. Commercial

algae raceway ponds are plastic lined using materials such as HDPE textile or PVC. The lining,

although expensive, results in less resistance to water circulation. When correctly installed, these
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liners can last around 20 years [14]. Ponds can be directly dug into the ground and lined, or they

may be built up from the ground with concrete blocks or concrete cast in situ, after which lining is

usually also installed. Concrete is not suitable with seawater unless it is epoxy coated which adds

significantly to the expense.

The main advantages of open systems compared to closed ones are as follows:

� They have much lower capital and maintenance costs.

� They require far less energy to operate.

� They can be easily scaled up to handle large volumes which is especially important in waste

water treatment.

� Although they are not suitable for all algae species, they mimic the natural environment of

many of them.

Open systems do have a wide range of disadvantages:

� They are directly influenced by weather conditions. Evaporation and rain make it difficult

to control the water level and therefore algal and nutrient concentrations. Artificial heating

and cooling are usually not viable so the temperature can fluctuate significantly. Seasonal

variations and unpredictable cloud cover result in inconsistent insolation.

� They are easily contaminated by other algae and bacteria.

� They occupy a significant area.

Note that the last of these disadvantages is less of a problem in remote locations such as the north

west coast of Western Australia where large tracts of land as well as seawater and consistent sunlight

are readily available [15, 115].

It is also possible to partially or fully cover raceway ponds to limit contamination and evapo-

ration. In colder climates, covers can help to maintain a suitable temperature, while temperatures

may become excessive when covers are used in warmer locations. Finally note that for most raceway

pond operations, the only source of CO2 required for algae growth is from the atmosphere. Since

only about 0.04% of the atmosphere is CO2, this situation can lead to a significant restriction on

algal growth. It is possible (and often desirable if a pond is situated close to a power plant with

CO2 emissions) to enrich the CO2 supply by aerating the water directly with CO2 [62]. Despite

their many disadvantages, most researchers currently consider raceway ponds as the only viable
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option for producing large volumes of lipid biofuels from algae. The algae growth model we consider

throughout this thesis assumes growth in a raceway pond.

1.2.2 Post-growth Treatment

Although we do not address the harvesting aspect of farming algae in this thesis, it is worth noting

that the greatest efficiency and cost uncertainties in the overall production of biofuels from algae

are related to harvesting and processing of the biomass. For algal biomass to be converted to biofuel

the following processes are required:

� Harvesting the algae.

� Disruption of the cells.

� Extraction of the lipids.

Harvesting Options

For large volume cultures and a wide variety of algal species, centrifugation is most commonly used.

Although effective, this process required expensive equipment and high energy inputs [128].

Flocculation, sometimes in combination with centrifugation or dissolved air flotation, is another

widely used method for harvesting algal biomass. Flocculation is the aggregation of particles in

suspension to form clusters which can then increase the settling rate. This reduces or avoids

altogether the need for centrifugation. However, the efficiency of flocculation depends greatly on

the species type and its growth stage [128].

Extraction of Lipids

Most species of algae accumulate lipids inside their cell walls. Thus the main focus of extraction

methods is to break open the cell wall first. This can be achieved with physical (e.g. freezing and

thawing), mechanical (crushing, blending, ultrasonic vibrations, etc.), chemical (e.g. solvents) or

enzymatic methods (enzymes to decompose walls).

Pretreatments such as drying the biomass are desirable but often are not viable due to high

energy requirements. No one method has yet been adopted for a broad range of algae, since each

species has different characteristics that require an adaptation of existing methods [128].
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1.2.3 The aim of this thesis

The growth of microalgae can be changed by a large number of environmental factors. The most

influential of these are temperature, light, nutrient availability, CO2 availability, and pH level.

Each species of microalgae has their own optimal temperature range, light intensity, and pH level,

although only some of these can be controlled in an open raceway pond. Our aim in this thesis

is to see how much the productivity of raceway ponds can ultimately be improved in an idealised

setting. While the results may not be directly applicable to the operation of actual raceway ponds,

it is important to better understand the ultimate potentials of this technology if it is to ever become

a viable alternative to crude oil.

We investigate several different approaches of operating a raceway pond so that the total algal

lipids produced are maximised. Rather than implementing a variety of strategies on actual ponds

which we don’t have the means to do, we are going to work with a mathematical model of algal

lipid growth in a raceway pond setting. A range of such models with varying levels of complexity

is available in the literature and reviewed in the next section.

1.2.4 Microalgae growth models

There is a long history of modelling the growth of microalgae mathematically with the first studies

appearing in the 1940s [89, 90]. Most of the early publications are aimed at better understanding of

the basic contributors to algal growth and adopt features of other kinds of biological growth. Some

models consider algal growth from an environmental point of view in order to better understand

how to limit algal blooms in natural lake and river systems [18, 61]. These often concentrate on the

movement of algae in the water column and its light exposure. Models which concern themselves

with the production of microalgae tend to assume a well mixed pond or closed production system, so

more emphasis is placed on the actual growth of cells and their main contributors such as nutrients

and light.

A basic growth model is the Monod equation [89, 90] where growth is defined as

µ = µmax
S

Ks + S
. (1.2.1)

Here, µmax is the maximum growth rate, S is the concentration of a limited substrate, and Ks is

the half saturation constant for S. It should be noted that Ks and µmax are empirical coefficients.

The equation has the same form as the Michaelis-Menten kinetics equation used widely in biology.
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The model is thus sometimes referred to as the Michaelis-Menten-Monod model.

Another basic growth model is the Droop model which describes the algal growth rate as depen-

dant on the total level of nutrients in the cell. Nutrient levels are described by what is known as the

intracellular quota which is the ratio of nutrient concentration to biomass concentration [29–31].

The growth rate equation is given by

µ = µmax

(
1− Q0

Q

)
, (1.2.2)

where µmax is the maximum possible growth rate, Q is the intracellular quota, and Q0 is the

minimal cell quota (below which growth will cease). This model is well widely used for nutrient

limited environments and has been shown to predict microalgae growth more accurately than the

Monod equation [24, 119].

Liebig’s law of the minimum (proposed in 1840 by Carl Sprengel and popularised subsequently

by Justus von Liebig) was first applied to plant or crop growth where it was found that an unlimited

supply of nutrients could only increase the rate of plant growth to a certain point, and also that

only increasing the supply of the most limited nutrient would increase the rate of growth. Thus,

the growth rate is given by

µ = min (F1, F2, . . . , Fn) , (1.2.3)

where F1, . . . , Fn are terms representing growth limiting functions. Note that the non-smooth

nature of Liebig’s law can cause problems with numerical simulation and optimisation tools.

Below, we consider a range of algal growth models in the literature.

“A model of phytoplankton growth on multiple nutrients based on the Michaelis-

Menten-Monod uptake, Droop’s growth and Liebig’s law”[65]

This simple model involves the extracellular concentration of multiple nutrients, the intracellular

concentration of multiple nutrients within the microalgae, and the algae cell density. It is assumed

that nutrients are independent of each other in regards to their uptake and incorporation paths

into the algal cells. The model uses the Liebig’s law of the minimum in determining the growth

rate. There is no consideration of light, temperature or CO2 and the model also only looks at the

total biomass, so lipid growth is difficult to determine.
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“Phytoplankton growth and stoichiometry under multiple nutrient limitation”[60]

This model looks at two inorganic nutrients represented by two intracellular nutrient cell quotas

as well as the total microalgae biomass. The overall environment is a simple bioreactor where

fresh medium is continuously added while the culture liquid is removed at the same rate to keep

the volume constant, known as a chemostat. The model assumes a single supply rate and two

different input nutrient concentrations. Nutrient uptake is assumed to depend on inorganic nutrient

concentrations, but not on the intracellular nutrient stores. Nutrient cell quotas increase based on

Michaelis-Menten kinetics and decrease due to dilution based on growth. The microalgae biomass

is modelled to grow based on Droop’s formulation combined with Liebig’s law of the minimum

for multiple-nutrient-limited growth and decrease due to density-independent mortality. It is also

assumed, for simplicity, that the microalgae has the same hypothetical infinite quota growth rate

for both nutrients. This model also has no consideration of light, temperature, or CO2, and again

only looks at a total biomass, so it is not suitable for the optimisation of lipid growth.

“Growth and neutral lipid synthesis in green microalgae: a mathematical model”[95]

Algal biomass concentration (excluding neutral lipids), neutral lipid concentration, chlorophyll

content of biomass, and the extracellular nitrogen concentration are modelled dynamically here.

Biomass growth is either nitrogen limited or light-limited represented by Liebig’s law of the min-

imum. Nitrogen limited growth is modelled using the cell quota model. Light limited growth is

modelled by the Poisson single-hit model of algae photosynthesis which has the general form of

p(I) = pm

[
1− exp

(
−aIΦ
pm

)]
,

where pm is the light-saturated photosynthesis rate, a is the optical cross section of chlorophyll, I

is irradiance, and Φ is quantum efficiency. Note that −aIΦ thus represents the light-limited rate.

The total biomass quota is defined as

Q̃ =
AQ

A+ L
,

where Q is the nitrogen quota of non-lipid biomass, L is the neutral lipid concentration, and A

is the algal biomass concentration excluding neutral lipids. Self-shading and depth of the reactor

are incorporated by using the Lambert-Beer law. Briefly, this relates the absorption of light to a

material it is travelling through. The value of irradiance at a specific depth, x, is related to the
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surface irradiance I0 by

I(x) = I0 exp(−aHAx), (1.2.4)

where HA is chlorophyll density as H is chlorophyll content. It is assumed that biomass density

from mixing is homogeneous and as such, (1.2.4) can be integrated by a total bioreactor depth of

z to give

I(A,H) =
I0

aHAz
(1− exp(−aHAz)). (1.2.5)

This model ignores temperature and CO2, but it does separate lipids from the total biomass and

does consider light intensity.

Views on Liebig’s Law.

The use of Liebig’s law was questioned in [94], where different growth models were fitted to a

wide range of microalgae datasets with the aim of minimising residual mean squares. It was found

that growth models based on the product of multiple Michaelis-Menten-Monod terms resulted in

a superior fit. Most of the more recent models are also using Michaelis-Menten-Monod terms for

growth in preference to Liebig’s law. The Michaelis-Menten-Monod products also lead to smooth

dynamics which are easier to simulate and optimise. Due to these disadvantages as well as the

non-smoothness of Liebig’s Law, we have opted to not implement any models that use it.

“Modeling microalgal growth in an airlift-driven raceway reactor”[58]

This model considers the dependence of growth on CO2. The raceway is equipped with an airlift

system instead of a standard raceway paddle. It is a complex model based on a well-mixed system

that looks at dissolved CO2 transfer with mass balance equations between the rate of transfer to

the surface atmosphere, from sparging air, from the supplemental supply in the down-flow, and

the rate of consumption by microalgae. The model also considers the dependence of growth on

light, temperature, and nitrogen. Unfortunately, it only calculates a total biomass, thus making it

unsuited to the optimisation of lipid growth.

“Optimal strategies for biomass productivity maximization in a photobioreactor using

natural light”[39]

This model looks at a photobioreactor that allows light to be included when calculating the rate

of growth, although, the effect of temperature is ignored. Optimal control is used in this model

using the dilution rate of biomass as a control variable, however this model only represents a closed
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system. It is also unfortunate that it is only nitrogen concentration and total biomass growth that

are considered in the overall model, making it difficult to identify and optimise total lipid growth.

Optimising microalgal production in raceway systems [91]

A comprehensive model that combines many of the key drivers of growth and the influences of

temperature and light is given by Muñoz-Tamayo et al. [91]. This raceway model is based on a

combination of the Bernard [8] biomass model and the Mairet et al. [79, 80] lipid production model.

It should be noted that both of these are themselves extensions of the Droop model [29]. In this

new model, it is assumed that nitrogen, temperature, and light are the key limiting factors for the

growth of microalgae. Temperature is assumed to have a homogeneous effect on uptake, growth,

and respiration rates and, along with light, it also influences the ratio of chlorophyll and nitrogen.

The absorption of light is described by the Lambert-Beer law and light also affects the growth

rate. The model is presented in detail in Chapter 2. A novel feature of [91] is the use of optimal

control methods to optimise both biomass and lipid contents of the raceway pond. Prior to [91],

[39] was the only other publication to take this approach. However, the model in [39] is purposely

kept simple to allow the use of analytic tools in optimal control to determine an optimal solution.

The model in [91] has enough added complexity to then require numerical methods to determine

an optimal control solution as the analytic approach becomes too difficult. As we shall show in

Chapter 2, the numerical solutions obtained in [91] are some way off from being truly optimal. It

was this observation which initially sparked our interest in the problem and we set out to find an

improved optimal control for the raceway pond operation. This model forms the basis of most of

the work in this thesis as it has sufficient flexibility to explore a wide range of operational changes

to the raceway pond. In the next section, we review the basic formulation of an optimal control

problem, solution methods, and optimality criteria.

1.3 Optimal Control

1.3.1 Basics of Optimal control theory

In this thesis, we are concerned with maximising the growth of algal lipids in a raceway pond. As

we shall see, this problem can be cast in the form of an optimal control problem and solved with

numerical methods specifically developed for such problems. In this section we give a brief review

of a general class of optimal control problems and associated numerical solution methods.
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A general optimisation problem consists of an objective function which must be either max-

imised or minimised subject to a set of constraints. In a static optimisation problem (also called a

mathematical programming problem), the objective and constraints depend on a finite number of

variables and the constraints are purely algebraic. In contrast, in a dynamic optimisation problem

(also known as an optimal control problem), the objective depends on variables which are them-

selves functions (known as control functions or simply controls, typically depending on time) and

there are dynamic constraints in the form of differential equations. Optimal control problems arise

in a wide variety of disciplines, such as power generation [107], submarine movement [125], cancer

chemotherapy [81], spacecraft control [37, 44, 45, 67], process control [9, 27, 72, 76, 129], and many

others [122].

1.3.2 General Optimal Control Problem

A general class of optimal control problems can be written as follows. Find a function u which

maps the interval [0, tf ) to a set U ∈ Rr so as to minimise

g0(u) = Φ0(x(tf )) +

∫ tf

0

ψ0(t,x(t),u(t))dt, (1.3.1)

subject to dynamic constraints

dx

dt
= f(t,x(t),u(t)), t ∈ [0, tf ) (1.3.2)

with initial conditions

x(0) = x0 ∈ Rn, (1.3.3)

subject to the canonical constraints

gi = 0, i = 1, 2, . . . , Ne (1.3.4a)

gi ≤ 0, i = Ne + 1, Ne + 2, . . . , N, (1.3.4b)

with

gi(u) = Φi(x(tf )) +

∫ tf

0

ψi(t,x(t),u(t))dt, i = 1, . . . , N, (1.3.4c)
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Note that

x(t) = [x1(t), x2(t), . . . , xn(t)]
⊤ (1.3.5a)

and

u(t) = [u1(t), u2(t), . . . , ur(t)]
⊤ (1.3.5b)

are the state variables and control variables, respectively [122]. [0, tf ] is referred to as the time

horizon of the problem with tf known as the terminal time. Here n and r are the dimensions of state

and control functions, respectively. g0 is known as the objective functional while gi, i = 1, . . . , N ,

are called constraint functionals. U is the control restraint set defined as

U = {u = [u1, . . . , ur]
⊤ ∈ Rr|ui,min ≤ ui ≤ ui,max, i = 1, . . . , r}, (1.3.6)

where ui,min and ui,max, i = 1, . . . , r, are given lower and upper bounds of the individual control

components.

Note that most mathematical literature on optimisation defines problem classes in terms of

minimising an objective as we have done here. There is no loss of generality with this approach

since maximising a particular objective g is equivalent to minimising −g. Problems in later chapters

which require an object to be maximised can thus still be considered to belong to the class defined

here.

It is assumed that:

1. Φi is a continuously differentiable function for i = 0, 1, . . . , N .

2. ψi is continuously differentiable with respect to x and u as well as piecewise continuous with

respect to t for i = 0, 1, . . . , N .

3. f = [f1, . . . , fn] ∈ Rn are continuously differentiable functions with respect to all of their

arguments.

4. u is piecewise continuous.
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1.3.3 Pontryagin Minimum Principle

Consider the basic unconstrained problem (U = Rr):

min
u

{
g(u) = Φ(x(tf )) +

∫ tf

0

ψ(t,x(t),u(t))dt

}
, (1.3.7)

subject to

dx

dt
= f(t,x(t),u(t)), t ∈ [0, tf ) (1.3.8)

x(0) = x0 ∈ Rn. (1.3.9)

The dynamic constraints can be added to the objective functional using λ(t) ∈ Rn as a Lagrange

multiplier, which is often referred to as the costate. The appended objective functional is

g∗(u) = Φ(x(tf )) +

∫ tf

0

[
ψ(t,x(t),u(t)) + (λ(t))⊤

(
f(t,x(t),u(t))− dx(t)

dt

)]
dt (1.3.10)

which is equivalent to g(u) as long as the dynamic equations hold.

We define the Hamiltonian function as

H(t,x,u,λ) = ψ(t,x,u) + (λ(t))⊤f(t,x,u). (1.3.11)

In the classical calculus of variations which assumes an unconstrained control, the first order

optimality conditions for an optimal control are known as the Euler-Lagrange equations [122]. In

addition to the state dynamics (1.3.8) and initial conditions (1.3.9) being satisfied, they prescribe

dynamics and terminal conditions for the costate,

dλ(t)

dt
= −

[
∂H(t,x,u,λ)

∂x

]⊤
, (1.3.12a)

λ(tf ) =

[
∂Φ(x(tf ))

∂x

]⊤
, (1.3.12b)

and they require that the derivative of the Hamiltonian with respect to the control must vanish

along an optimal trajectory, i.e.

[
∂H(t,x,u,λ)

∂u

]⊤
= 0, ∀t ∈ [0, tf ]. (1.3.12c)

In the more general situation the controls are constrained by upper and lower bounds, i.e. u(t) ∈
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U, t ∈ [0, tf ], where U is defined by (1.3.6). In this case, the Euler-Lagrange equations are replaced

by the well known Pontryagin Minimum Principle [101]. This states that for an optimal control u∗

and the corresponding optimal state x∗ and costate λ∗ it is necessary that

dx∗(t)

dt
=

[
∂H(t,x∗,u∗,λ∗)

∂λ

]⊤
= f(t,x∗(t),u∗(t)), (1.3.13a)

x∗(0) = x0, (1.3.13b)

dλ∗(t)

dt
=

[
∂H(t,x∗,u∗,λ∗)

∂x

]⊤
, (1.3.13c)

λ(tf ) =

[
∂Φ(x(tf ))

∂x

]⊤
, (1.3.13d)

and

min
v∈U

H(t,x∗,v,λ∗) = H(t,x∗,u∗,λ∗),∀t ∈ [0, tf ], (1.3.13e)

except possibly on a finite subset of [0, tf ]. In other words, the control at almost every instant is

chosen so that the Hamiltonian is minimised at that instant.

Also, if we add the terminal condition x∗(tf ) = xf then, if u∗ is an optimal control, x∗ and λ∗

are the corresponding optimal state and costate variables, then it is necessary that [101]

dx∗(t)

dt
=

[
∂H(t,x∗,u∗,λ∗)

∂λ

]⊤
= f(t,x∗(t),u∗(t)), (1.3.14a)

x∗(0) = x0, (1.3.14b)

x∗(tf ) = xf , (1.3.14c)

dλ∗(t)

dt
=

[
∂H(t,x∗,u∗,λ∗)

∂x

]⊤
, (1.3.14d)

and

min
v∈U

H(t,x∗,v,λ∗) = H(t,x∗,u∗,λ∗),∀t ∈ [0, tf ], (1.3.14e)

except possibly on a finite subset of [0, tf ]. Clearly, the only change in this case is the replacement

of the terminal costate constraint with the terminal state constraint.

We shall make use of both of these results to analyse solutions of various versions of the raceway

optimal control in later chapters.

In optimal control problems where both the objective and dynamics are linear with respect to
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the control variables, the Hamiltonian equation can be written as

H =

[
r∑
1

Ki(t,x
∗,λ∗)u∗i

]
+Kr+1(t,x

∗,λ∗). (1.3.15)

Here, Ki for i = 1, . . . , r are coefficients for each control and Kr+1 is a term not involving any of

the controls. Given the control bounds, (1.3.6), the sign of Ki for i = 1, . . . , r (which is referred

to as a switching function) then determines the choice of the control. Clearly, minimisation of H

requires

u∗i (t) =


u∗i,min, if Ki(t) > 0,

u∗i,max, if Ki(t) < 0,

undetermined, if Ki(t) = 0,

(1.3.16)

for i = 1, . . . , r. If the third case does not arise, we have a so-called bang-bang solution. If the third

case does come into play over a non-trivial interval in [0, tf ], we say that the control is singular on

this interval. In some fortuitous situations, the first order necessary conditions stated above can

be used to determine an analytic form of the optimal control. For the vast majority of practical

problems, this is not possible and numerical solution methods are required instead.

1.3.4 Numerical Solution Methods for Optimal Control Problems

The Pontryagin Minimum Principle briefly outlined in the previous section can be used to derive

analytical solutions for a variety of relatively simple optimal control problems when the number

of states and controls is small and the dynamics take certain basic forms. A well known example

is the linear quadratic regulator (LQR) problem where an optimal linear feedback control can be

readily derived and which has many applications in engineering [3]. Other examples occur in the

study of economics and management where optimal control solutions of various basic problems lead

to important principles applied in these disciplines [53].

However, most real world problems arising in science and engineering are considerably more

complex in terms of dimension and nonlinearity and analytic solutions are generally not feasible for

these [9, 11, 22, 25, 43, 44, 49, 67, 69, 73, 78, 81, 121, 123, 130, 131]. Consequently, a wide variety

of computational algorithms has been developed to find numerical solutions for optimal control

problems and we give a brief review of these in this section.

It must be noted that designing and coding a generic algorithm for solving a broad class of
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optimal control problems numerically is a challenging task. Many of the successful algorithms

in existence have taken years of development, testing, and continual improvement to reach their

current form. The individuals and teams behind these algorithms thus have had limited time

and incentive to concern themselves with someone else’s algorithm. As a consequence, there are

very few, if any, publications which give a detailed comparison of algorithms in terms of their

performance or efficiency. Furthermore, the usage of any one algorithm tends to be largely confined

to the team which designed it and their associates.

Dynamic Programming and Iterative Dynamic Programming

Dynamic Programming is an optimisation technique which is useful for problems which can be

broken down into simpler sub-problems in a recursive manner. It was proposed in the 1950s by

Richard Bellman [7] and relies on the so-called Principle of Optimality. Optimal path finding

problems in networks are an obvious application of the method but it is also used widely for a

range of other discrete optimisation problems [28]. In the context of optimal control problems,

the method can be applied to discrete approximations of these problems. However, it suffers from

the so-called Curse of Dimensionality. This arises in problems with multiple state variables due

to the large number of approximated points needed in the multidimensional state space to apply

the method. Thus, direct applications of dynamic programming to optimal control problems are

limited to problems with a small number of states and controls.

A variation is known as Iterative Dynamic Programming (IDP) was proposed by Rein Luus

in 1989 [75] in order to overcome the curse of dimensionality. In its original form, IDP allows

for piecewise constant controls over a chosen partition of the time horizon. Over each interval

of this partition, a finite set of control values is considered. The dynamics of the problem are

integrated numerically over each interval for each value of the control in turn to generate a set of

accessible points in the state space, thereby limiting the number of points needing to be considered

in that space and avoiding the curse of dimensionality. A coarse optimal solution can then be

determined by dynamic programming. Successive refinements around this coarse trajectory can

then be generated until they converge to a satisfactory solution. The method was later extended

to allow for piecewise linear continuous controls and a variety of constraints could be included via

the use of penalty methods [77]. IDP has been successfully applied to many challenging optimal

control problems, particularly in the area of chemical engineering [76, 78]. Its developers claim it

to be robust and capable of avoiding local optima since the underlying optimisation process avoids

the use of gradients with respect to control parameters [77]. A novice user may find it difficult to
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choose values for the various tuning parameters of the method. These include the region contraction

factor, number of allowable control values at each stage, initial region size and restoration factor.

Indirect Methods

It can be seen that the various versions of the Pontryagin minimum principle (see (1.3.13) and (1.3.14)

in Section 1.3.3) constituting the first order necessary conditions for an optimal solution essentially

yield a two point boundary value problem (TPBVP) with the combined state-costate dynamics

needing to be solved subject to conditions given at both the initial and terminal time. The tra-

ditional approach for solving a TPBVP is known as a shooting method [102]. This considers the

TPBVP in the form of an initial value problem with the unknown components of the initial condi-

tions assumed to be variables. Guesses are made for the values of these variables and the dynamics

are integrated forward in time. The resulting terminal values of the state and costate are then

compared with the terminal conditions of the TPBVP and the differences are recorded. The aim

is to then adjust the variables successively until these differences are reduced to zero. The problem

with this approach is that the forward integration of the dynamics is often unstable, particularly

for the costate component. An improvement of the shooting method is known as multiple shoot-

ing, where conditions are fixed at several points in the interior of the time horizon and integration

proceeds between these points. In the context of optimal control problems, the multiple shooting

approach also allows for additional constraints to be imposed in the interior of the time horizon.

The software BNDSCO [93] implements an extended version of multiple shooting to solve a general

class of optimal control problems.

The Leapfrog method [57] is another approach for solving the TPBVP arising in optimal con-

trol. Like multiple shooting, the time horizon is partitioned and local optimal controls are found

separately over each subinterval. Starting with a feasible trajectory, improvements are made iter-

atively by determining piecewise optimal trajectories over pairs of subintervals (defined by three

successive time points) and updating the optimal state at the middle time point. As the algorithm

progresses, it is possible to eliminate time points which in turn improve its efficiency. Under some

broad assumptions, the algorithm is shown to converge to a solution which satisfies the Pontryagin

minimum principle.

Another indirect approach is to solve the TPBVP by means of collocation methods. Collocation

methods, more advanced versions of which are also known as pseudo spectral methods, involve

a partition of the time horizon and assume a piecewise polynomial form for both the controls,

states, and costates. By enforcing requirements of state and costate values and derivatives at
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the knot points of the partition, the differential equations defining the dynamics are replaced by

corresponding algebraic equations. Controls can then be chosen so that the optimality conditions

are satisfied at the so-called collocation points (the midpoints of the intervals defined by the chosen

partition). The objective can be approximated using appropriate quadrature formulae consistent

with the given partition of the time horizon. It can be shown that collocation methods are, in

fact, special cases of Runge-Kutta numerical integration methods. As noted in [32], this indirect

approach can lead to a situation where the resulting control does not converge to the true optimal

control unless the partition, integration scheme and quadrature rule are chosen in a consistent

manner.

Direct Methods

As the name would suggest, direct methods attempt to solve an optimal control problem directly

and without invoking the optimality conditions prescribed by the minimum principle. As opti-

mal control problems by their very nature are infinite dimensional optimisation problems, direct

methods require some form of finite dimensional representation of the control. In addition, the

dynamical system defining the state variables needs to be solved numerically using some form of

Runge-Kutta integration scheme. Within the class of direct methods, we distinguish between the

full discretisation methods and control parameterisation. In full discretisation approaches the dis-

cretised dynamics are viewed as algebraic constraints and the state as well as control values at the

knot points of the discretisation scheme are both treated as variables. Control parameterisation, to

be discussed in more detail below, expresses only the controls in terms of a finite number of variables

and the resulting states are calculated numerically but not treated as variables themselves.

The simplest direct approach is to choose a partition of the time horizon, replace the differential

equations describing the dynamics by a Runge-Kutta scheme consistent with the knot points of the

partition and replace any integral terms in the objective by a quadrature formula also consistent

with the partition. The state and control values at all knot point are treated as variables and

the resulting discretised problem now consists minimising an objective function subject to a large

number of algebraic constraints (resulting from the Runge-Kutta scheme). Both the objective and

constraints are generally nonlinear. To ensure a reasonable degree of accuracy for most practical

problems, the partition of the time horizon needs to be quite fine. This, in turn, mean a large

number of knots and generally leads to a large scale nonlinear programming problem (NLP) to be

solved. This approach was simply not feasible up until the 1990s due to constraints in computing

power and a lack of suitable NLP solvers. However, large scale NLP solvers such as SNOPT [35]

20



and IPOPT [126] are now available which can take advantage of the sparse nature of the NLP

resulting from discretisation (due to the nature of the Runge-Kutta schemes). A popular recent

approach [114] has been to interface these NLP solvers with a mathematical modelling environment

such as AMPL [33] where the discretised problem can be coded with relative ease and gradients

of objective and constraints are determined by automatic differentiation [38]. This is one of the

computational approaches we use to solve several versions of the algae growth problems described

in this thesis.

A lot of variations of the basic approach outlined in the last paragraph exist in the literature.

Many practitioners prefer the use of a simple Euler method with a uniform partition of the time

horizon instead of higher order Runge-Kutta schemes due to the ease of implementation. A com-

prehensive Fortran based package which employs a 4th order Runge-Kutta method with automatic

partition refinement is NUDOCCCS [20, 21].

As noted above, collocation methods are effectively special cases of Runge-Kutta schemes. Nev-

ertheless, many publications specifically use the term direct collocation when these methods are

applied to optimal control problems in the direct sense. A variety of such methods exists, differing

in the order of approximation of both the control and dynamic approximation and using both fixed

and adjustable partitions of the time horizon. Two well known softwares that belong to this class

of solution methods are DIRCOL [120] and GPOPS [104].

In most direct methods, the NLP resulting from the discretisation of the original optimal control

problem is solved directly by one of a range of existing NLP solvers. An alternatively approach

is to apply a more elaborate method to solve the NLP. One such method is known as the Inexact

Restauration (IR) method [10] which is itself an extension of a much earlier method known as

the Sequential Gradient Restauration algorithm [85–87]. Each step of an IR algorithm consists

of a restoration phase where infeasibility is reduced and an optimality phase where an appended

objective is minimised approximately subject to a linear approximation of the constraints. Both

phases involve the solution of a much simpler NLP which can again be solved by any one of a range

of generic NLP solvers. The main advantage of IR is improved convergence to optimal solutions

compared to the straightforward use of a generic NLP solver. For optimal control problems, this

approach has been successfully reported in [4, 55, 56].

Once a solution for an optimal control problem has been attained, it is desirable to check

whether it satisfies the necessary and sufficient conditions for optimality. While this task has often

been neglected in the past, it is shown in [23] that it can be achieved for the full discretisation

approach. For the necessary conditions (minimum principle), it is necessary to first determine the
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costates corresponding to the optimal solution. These can be calculated using the optimal Lagrange

multipliers of the NLP. The sufficient conditions are more difficult to verify directly, but they can be

checked numerically by considering the corresponding sufficient conditions of the discretised NLP.

As was the case for indirect methods, in the full discretisation approach there is a need to match

the choice of time horizon partitions, quadratures, and numerical integrations schemes carefully so

that the resulting sequence of discrete approximations of the original problem are consistent in the

sense that their solutions converge to that of the original problem [99, 100]. The RIOTS optimal

control toolbox [111, 112] available in MATLAB [83] follows this requirement.

Control Parameterisation

Figure 1.3.1: A piecewise constant parameterisation of kth control
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As we have noted previously, an optimal control problem is an infinite dimensional optimisation

problem which requires some form of discretisation before one can attempt to solve it numerically

so we again need to partition the time horizon. In the control parameterisation approach, the

control functions are expressed in terms of a finite number of variables, often referred to as control

parameters. For example, one can express the control as a linear combination of low order basis

splines with finite support which is equivalent to defining them as being piecewise polynomial over

one or more subintervals of the chosen partition. The variables (control parameters) are then

effectively just the coefficients of these polynomials. For each instance of the control parameters,

one can then substitute the corresponding controls into the dynamics of the problem and integrate

these to obtain the corresponding states. The integration of the dynamics needs to be performed

numerically using some type of Runge-Kutta scheme and the partition of the time horizon for
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this integration is typically much finer than that chosen for the parameterisation of the controls.

The objective and any constraints of the problem are then also evaluated using a quadrature

scheme consistent with this fine partition. In this way we obtain a NLP approximation of the

original problem, but it has far fewer variables than the corresponding NLP obtained in the full

discretisation approach and it is thus much less time consuming to solve. However, this saving in

computational time is offset by the additional time required to numerically integrate the dynamics

at each iteration of the NLP solver. In addition, if one wishes to supply the gradients of the objective

and constraints with respect to the control parameters (see [122] for the appropriate formulae for

these gradients) to the NLP solver, one is required to set up and solve a separate costate dynamical

system for the objective and each one of the constraints. While this further increases the overall

computational time required, it will speed up the converge of the NLP solution.

One of the simplest yet often used forms of control parameterisation is to allow each component

of the control, uk, k = 1, . . . , r, to be a piecewise constant function consistent with a given partition

of the time horizon with M intervals, as shown in Figure 1.3.1. The control parameters to be

optimised in this case are the heights, hki , i = 1, . . . ,M , in the individual subintervals of the

partition. As many practical optimal control problems are such that their Hamiltonian is linear in

the control, leading to the optimal control being either bang-bang or bang-singular, this seemingly

naive choice actually lends itself reasonably well to their numerical solution. If a piecewise linear

continuous approximation is required for the control, one can easily generate this by defining it as

the integrand of another piecewise constant control function (which then requires a simple additional

equation in the system dynamics). This process can be repeated for still higher order piecewise

polynomial continuous approximations if required (see Chapter 9 of [122]).

The accuracy of the solution obtained by solving an approximate problem obtained by control

parameterisation can be improved by increasing the number of time points in the partition defin-

ing the control. If one considers a sequence of partitions with increasingly smaller subintervals,

convergence of the resulting approximate optimal objective values to the true objective has been

established in [117], although convergence of the corresponding controls to the true optimal con-

trol has only been demonstrated for problems involving linear dynamics [122]. Nevertheless, the

controls typically end up sufficiently close to the true optimal control for practical purposes.

Note that in the above description of control parameterisation, the partition of the time horizon

is assumed to be fixed. For the case of a piecewise constant control as shown in Figure 1.3.1, the

durations, τi, i = 1, . . . ,M , for which each control stays constant is thus also assumed to be fixed.

It would be preferable to consider these to be variables to be optimised along with the control values
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over each interval so that exact switching times for a bang-bang control could be determined, for

example. The gradients of objective and constraints with respect to these time durations can be

determined either in terms of the Hamiltonian of the problem [122] or by introducing a sequence of

auxiliary systems integrated forward in time [74]. The latter approach is similar to the switching

time computation (STC) method introduced in [54]. In the context of control parameterisation with

piecewise constant controls, however, a more convenient way to allow for variable time durations is

to introduce a new time scale and an auxiliary piecewise constant control function consistent with

a uniform fixed partition on that time scale. The piecewise constant values of this auxiliary control

are the time durations of the partition in the original time scale. The link between the two time

scales is that the derivative of time in the original scale with respect to time in the transformed

scale is simply this auxiliary control. Time in the original scale can then be treated as an auxiliary

state of the problem. The transformed problem thus has a fixed partition with one additional state

and one additional piecewise constant control and the standard control parameterisation approach

with piecewise constant controls can be used to solve it. This idea was originally proposed in [63]

and has been widely used to solve a variety different classes of optimal control problems [64, 68,

71, 72].

A general purpose optimal control software known as MISER [51] implements the control param-

eterisation approach as described above for the general class problems defined by in Section 1.3.2.

It is used to solve the majority of the computational models considered in this thesis. MISER is

written in FORTRAN and capable of solving a wide range of optimal control problems with many

types of constraints [51]. We do not give detailed discussion of all these capabilities here as most

of algal growth models examined in this thesis are either unconstrained or only involve relatively

simple terminal state constraints. One feature worth mentioning is that MISER will allow the for-

mulation of problems involving individual decision variables other than those associated with the

controls. These are referred to as system parameters and may appear in any term of the generic

problem in Section 1.3.2, including the right hand side of the initial conditions of the dynamics. For

instance, they can be used to model unspecified initial conditions which often feature in application

problems.

MISER requires the user to specify the functional form of their problem via a set of FORTRAN

subroutines. There are separate subroutines for:

� the objective and constraint integral and nonintegral terms,

� the initial conditions of the dynamics,
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� the right hand sides of the system dynamics,

� the derivatives of all of these functions with respect to system parameters, states, and controls.

These subroutines are to be completed by user and then compiled with the rest of the MISER

software into an executable program. Other features of a problem, such as:

� the dimensions of state, control, and system parameter vectors,

� the start and end point of the time horizon,

� the partition of the time horizon for the piecewise constant control,

� the upper and lowers bounds for controls and system parameters,

� the number of constraints and their type

are specified in a text file to be completed by the user. In addition, the text file allows the user to

specify optional parameters for the integration of the state and costate dynamics as well as for the

optimisation subroutine used within MISER. MISER allows for several different NLP solvers to be

invoked for the discretised problem resulting from control parameterisation. It is supplied with the

sequential quadratic programming subroutine NLPQL [110] but allows for 3 other packages to be

used subject to availability of these to the user. Integration of the state and costate dynamics in

MISER is handled by the subroutine LSODA [97] which uses an adaptive 6th order Runge-Kutta

method. Note that LSODA is invoked successively over a series of subintervals of a partition of the

time horizon which is much finer than that used to define the piecewise constant controls. Instead

of the original NLPQL supplied with MISER, we have modified MISER to use NLPQLP [109], an

updated version of NLPQL.

The availability of many software packages for the numerical solution of optimal control prob-

lems might suggest that solving them is a trivial exercise. Indeed, relatively simple problems can

be coded by proficient practitioners in a matter of minutes and solutions obtained in a matter

of seconds thereafter. Many realistic problems display a much higher degree of complexity and

therefore present a range of challenges. For example, the right hand sides of the dynamic equations

may be defined by several layers of algebraic equations rather than simple expressions, making it

very difficult to determine their derivatives [118]. The dynamics of the states or costates may be

stiff (some components change much more rapidly with time than others), requiring excessive com-

putational time for their solution or failing to integrate altogether. Due to limited computational

accuracy, gradients with respect to system or control parameters may be fuzzy and lead to slow
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convergence of the NLP solver or even failure to find a solution at all. More challenging problems

can have an underlying nonsparse NLP with many hundreds of variables requiring hundreds or

thousands of iterations to solve. As a guide, for the algal growth models considered in this thesis,

the computational time to determine an individual optimal solution on a personal computer is in

the order of days.

1.4 Thesis Outline

We briefly outline the contents of the thesis below.

In Chapter 2 we apply numerical optimal control methods to the existing algae growth model

[91] with the aim to determine the best performance of the model under known conditions using

a variety of decision variables. To allow the use of the MISER optimal control package, we first

transform the system of differential algebraic equations (DAEs) in the existing model to a system

of ordinary differential equations (ODEs) which introduces dynamics for average light intensity and

chlorophyll. In addition we allow for variable nitrogen concentration of the inflow as well as variable

initial nitrogen concentration of the raceway. Our main focus is on optimising of the production

of lipids and we show that yield can be improved significantly over previous results. We calculate

both open and closed loop optimal controllers and test their robustness. Finally we also consider

raceway depth as a decision variable which results in a further yield improvement.

In Chapter 3 we present a modified model of the algae growth model with the additional

feature of variable pond depth. This requires an additional state variable to model depth as well

as additional control to allow for variable outflow. We once again convert the modified system of

DAEs into an equivalent system of ODEs and apply MISER to solve the resulting problem. We

show that the lipid yield of the process can be increased by 67% compared to that obtained with

a fixed pond depth.

In Chapter 4 we allow for variable periodic boundary conditions on the states of the problem

to allow for an ongoing, rather than a batch operation. We show that significant improvements

in lipid yield can be achieved with this approach compared to those outlined earlier in the thesis.

However, we also show that the optimal periodic boundary conditions are difficult to reach in finite

time from arbitrary initial conditions. Nevertheless, the optimal periodic solution provides a useful

benchmark which can inform the design of more practical control algorithms for the system in the

future. Some formulations of the problem in this Chapter are quite difficult to solve and we use

two distinct numerical solution methods.
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In Chapter 5, we summarise the findings of this thesis. We also point out the shortcomings of

the models used in this thesis and we suggest a number of ideas to be tested in the future numerical

studies.
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Chapter 2

Optimal Control for Microalgae on

a Raceway Model

2.1 Introduction

A comprehensive algae growth model that combines many of the key drivers of growth and the

influences of temperature and light is given by Muñoz-Tamayo et al. [91]. This raceway model

is based on a combination of the Bernard [8] biomass model and the Mairet et al. [79, 80] lipid

production model. In this new model, it is assumed that nitrogen and light are the key limiting

factors for the growth of microalgae.

While the focus in Muñoz-Tamayo et al. [91] is on determining a quasi-optimal closed loop

control for the purposes of online implementation, we are more interested in investigating the

potential performance of the system by calculating open loop optimal controls. The open loop

optimal control formulation allows for the inclusion of a variety of system and control constraints,

the combined optimisation of certain system parameters and controls, and the formulation of many

different objectives [70]. Although we only consider some minor variations of the original model,

there are other practical variations which are investigated in Chapters 3 and 4. While open loop

optimal controls generally lack robustness with respect to uncertainties, we show that there is

only a minor degradation of the performance of the optimal control when various disturbances are

introduced.

We use the computational optimal control package MISER 3.3 [51] to optimise the performance

of the existing model [91]. The dynamics in this model are described by a system of differential
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algebraic equations (DAEs), but, like many computational optimal control packages, MISER is only

able to solve problems involving ordinary differential equations (ODEs). Hence, we first transform

the DAEs in the model to an equivalent system of ODEs.

The original dynamic model [91] includes just one control variable, the input flow rate. We

also allow the influent nitrogen concentration to vary over time and consider the initial extracel-

lular nitrogen concentration to be a decision variable (both of these were assumed constant in

Muñoz-Tamayo et al. [91]). Numerical results show that optimal yields of biomass and lipids can

be easily determined with this approach and that significant improvement in lipid yields can be

achieved. As practical considerations often favour a continuous operation of the raceway, we also

formulate and solve an optimal feedback control problem and test the performance of the resulting

closed loop control. Finally, we show that further improvements in yield are possible if raceway

depth is also considered as a decision variable. This chapter is largely based on [47].

2.2 Existing Model

Table 2.1: State Variable, Control Variable, System Parameter and Function Definitions

Variables Definition Units

s Nitrogen concentration gN m−3

qn Nitrogen quota gN (gC)
−1

x Carbon biomass concentration gC m−3

xl Lipid carbon concentration gC m−3

xf Functional carbon concentration gC m−3

L Pond depth m
Ī Average light intensity µmol photons m−2 s−1

Chl Chlorophyll concentration gChl m
−3

I0 Incident light intensity µmol photons m−2 s−1

T Raceway temperature ◦C
ϕT Temperature factor affecting growth kinetics
λ Optical depth

µ Growth rate h−1

ρ Nitrogen uptake rate gN (gC h)
−1

θN Chl:N ratio gChl (gN)
−1

ξ Attenuation factor m−1

R Overall respiration rate h−1

fin Feeding flow rate m3 h−1

fout Extraction flow rate m3 h−1

ηL Efficiency of light absorption
tf final time point h

The model proposed by Muñoz-Tamayo et al. [91] is given by the mass balance equations for a
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completely mixed reactor at a constant volume V below.

ṡ = finsin/V − fins/V − ρx,

q̇n = ρ− (µ−R)qn,

ẋ = (µ− fin/V −R)x,

ẋl = βqnµx− γρx− r0ϕTxl − finxl/V,

ẋf = (α+ γ)ρx− r0ϕTxf − finxf/V,

(2.2.1)

where s is the extracellular nitrogen concentration and qn is the internal nitrogen quota. The

concentration of total carbon biomass x is the sum of three carbon pools: storage lipids xl, functional

pool xf , and carbohydrates xg [79, 80, 91]. Only x, xl, and xf are modelled in the dynamics since

Table 2.2: Parameter Definition and Values

Parameters Definition Units Value

α Protein synthesis coefficient gC(gN)
−1

3.0

β Fatty acid synthesis coefficient gC(gN)
−1

3.80
ϵI Dissociation light constant µmol photons m−2 s−1 50

φ Biosynthesis cost coefficient gC(gN)
−1

1.30

γ Fatty acid mobilisation coefficient gC(gN)
−1

2.90
v Reduction factor of nitrogen uptake during night 0.19

µ̃ Theoretical maximum specific growth rate h−1 8.7916× 10−2

ρ̄ Maximum uptake rate gC(gN h)
−1

4.16× 10−3

a Light attenuation due to chlorophyll m2 (g Chl)
−1 2.0

b Light attenuation due to background turbidity m−1 0.087
g1 Coefficient (2.2.16) gN (gChl)

−1 16.74
g2 Coefficient (2.2.16) gN (gChl

◦C)−1 0.39
g3 Coefficient (2.2.16) gN (gChlµmol photons m−2 s−1)−1 1.4× 10−3

g4 Coefficient (2.2.16) ◦C−1 0.0015
Ks Nitrogen saturation constant gN m−3 0.018
KsI Light saturation constant µmol photons m−2 s−1 1.5× 102

m Hill coefficient 3.0

Ql Saturation cell quota gN(gC)
−1

0.20

Q0 Minimum nitrogen cell quota gN(gC)
−1

0.05

r0 Maintenance respiration rate h−1 4.16× 10−4

Tmin Lower temperature for microalgae growth ◦C -0.20
Tmax Upper temperature for microalgae growth ◦C 33.30
Topt Temperature at which growth rate is maximal ◦C 26.70
sin Influent nitrogen concentration gN m−3 50.0
Ta Coefficient (2.2.3) ◦C -5.75
Tb Coefficient (2.2.3) ◦C 20.75
ta time point h 3.733
tb time point h 4.9
tc time point h 19.1
td time point h 20.267
I0a Coefficient (2.2.4) µmol photons m−2 s−1 -3.890408560
I0b Coefficient (2.2.4) µmol photons m−2 s−1 -52.13043162
I0c Coefficient (2.2.4) µmol photons m−2 s−1 141.6278134
I0d Coefficient (2.2.4) µmol photons m−2 s−1 841.1792340
I0e Coefficient (2.2.4) µmol photons m−2 s−1 358.8207660
I0f Coefficient (2.2.4) µmol photons m−2 s−1 3.890411835
I0g Coefficient (2.2.4) µmol photons m−2 s−1 -52.13042142
I0h Coefficient (2.2.4) µmol photons m−2 s−1 -141.6278049
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xg can always be calculated as x−xl−xf . Derivatives are with respect to t, this being the time of

day measured in hours where t = 0 corresponds to midnight. The influent nitrogen concentration

is sin and fin is the inflow rate. Unlike Muñoz-Tamayo et al. [91], we consider both sin and fin

to be control variables. The functions µ, ρ, R, ϕT represent the average growth rate, nitrogen

uptake rate, overall respiration rate and temperature effect, respectively. These are described in

more detail below. α, β, r0, and V are model constants whose values are given in Table 2.2. We

assume that the initial value of s is to be optimised, so

s(0) = z1, (2.2.2)

where z1 is a decision variable. In Muñoz-Tamayo et al. [91], z1 was fixed to the value 2. The initial

values of qn, x, xl, and xf can also be found in Table 2.2.

Outdoor microalgae raceway systems are strongly influenced by temperature and light. In this

model, these effects are implemented via homogeneous effects on uptake, growth, and respiration

as well as by setting the Chl:N ratio to be dependent on temperature and light. The equations are

given below.

To describe temperature, T (t), following the information in Muñoz-Tamayo et al. [91], we use

T (t) = Ta cos(tπ/12) + Tb, (2.2.3)

where Ta, and Tb are given in Table 2.2. I0(t) (incident light intensity) is described in Muñoz-Tamayo

et al. [91] as a truncated wave function. The graph given for I0(t) [91] is non-smooth at sunrise

and sunset. Since MISER works best with smooth functions, we use a smoothed version given by

I0(t)=



0, (t mod 24) ≤ ta,

I0a((t mod 24)−ta)5+I0b((t mod 24)−ta)4+I0c((t mod 24)−ta)3, ta < (t mod 24)≤ tb,

I0d sin(((t mod 24)−6)π/12)+I0e, tb < (t mod 24)≤ tc,

I0f ((t mod 24)−td)5+I0g((t mod 24)−td)4+I0h((t mod 24)−td)3, tc < (t mod 24)≤ td,

0, (t mod 24) > td.

(2.2.4)

where [ta, tb] and [tc, td] can be interpreted as the dawn and dusk periods respectively, mod repre-

sents the remainder function (modulo operation), and I0a, . . . , I0h are constants which are chosen
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so that they result in a continuous second derivative. The values for these constants are given in

Table 2.2. For ease of notation, T (t) and I0(t) are referred to below as T and I0 respectively.

The light intensity at reactor depth z (z = L corresponds to the bottom of the reactor), Iz, is

then given by

Iz = I0 exp(−ξz), (2.2.5)

where

ξ = aChl + b (2.2.6)

is the light attenuation factor, Chl represents the concentration of chlorophyll, and a as well as b

are constants whose values are also given in Table 2.2 [91].

On this basis, the growth rate at depth z with a hypothetical infinite nitrogen quota is given as

µz = µ̃
Iz

Iz +KsI
. (2.2.7)

Integration of (2.2.7) over the raceway depth gives us

¯̄µ =
µ̃

ξL
ln

I0 +KsI

I0 exp(−ξL) +KsI
, (2.2.8)

which leads to the overall growth rate of

µ = ¯̄µϕT

(
1− Q0

qn

)
, (2.2.9)

where

ϕT =



0, T < Tmin,

(T−Tmax)(T−Tmin)
2

(Topt−Tmin)[(Topt−Tmin)(T−Topt)− (Topt−Tmax)(Topt+Tmin−2T )]
, T ∈ [Tmin, Tmax],

0, T > Tmax

(2.2.10)

represents the temperature effect. Furthermore, µ̃, Q0, L,KsI , Tmin, Tmax, and Topt are constants

whose values are listed in Table 2.2.
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The respiration rate is given by

R = r0ϕT + φρ, (2.2.11)

where ρ is the nitrogen uptake rate given by

ρ = ρ̄ϕT
s

s+Ks

(
v + (1− v)

Īm

Īm + ϵmI

)(
1− qn

Ql

)
. (2.2.12)

Here φ, ρ̄, Ks, v, m, ϵI , and Ql are constants whose values can be found in Table 2.2. Ī is defined

as average irradiance and can be found by the integration of (2.2.5) along the raceway depth (z),

averaged by the total depth (L). This gives

Ī =

∫ L

0
Izdz

L
=

I0
ξL

(1− exp(−ξL)). (2.2.13)

By substituting (2.2.6) into (2.2.13) we get

Ī =
I0

(aChl + b)L
(1− exp(−(aChl + b)L)). (2.2.14)

The Chl to nitrogen ratio is given as

θ−1
N = (g1 − g2T ) + g3Ī exp(−g4T ), (2.2.15)

where g1, g2, g3, and g4 are constants (see Table 2.2) and Chl is assumed to correlate to particulate

nitrogen (xqn) [91]. From this, we have

Chl =
xqn

(g1 − g2T ) + g3Ī exp(−g4T )
. (2.2.16)

(2.2.1)–(2.2.16) constitutes a system of differential algebraic equations (DAEs).

2.3 DAEs to ODEs

We intend to use MISER [51] to find optimal controls for the model defined in Section 2.2. MISER

is designed to solve problems involving ordinary differential equations (ODEs) only and it cannot

directly accommodate the system of DAEs defined by (2.2.1)–(2.2.16). However, it is possible to

transform a system of DAEs to an equivalent system of ODEs. A general approach is to differentiate
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the original system k times until the derivatives for all variables appear (where k is the so called

index of the DAE) [16, 52]. The system (2.2.1)–(2.2.16) is a DAE of index of 1 and there are only

two states, Ī and Chl, for which we require derivatives with respect to time t.

A general DAE system can be written in the form

E1ẋ1(t) = f1(t,x1(t),x2(t)) (2.3.1)

0 = f2(t,x1(t),x2(t)), (2.3.2)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the state variables, f1 : R × Rn1 × Rn2 → Rn1 and f2 :

R×Rn1×Rn2 → Rn2 are given functions, and n1+n2 = n. For the remainder of this thesis, we adopt

the convention that for a real valued function of a vector variable, h(y), y = [y1, y2, . . . , yl]
⊤ ∈ Rl,

the gradient with respect to y is defined as a row vector.

Using the approach in Jennings et al. [52], we differentiate (2.3.2) with respect to time t to yield

∂f2
∂t

+
∂f2
∂x1

ẋ1 +
∂f2
∂x2

ẋ2 = 0,

(2.3.3)

which gives

∂f2
∂x1

ẋ1 +
∂f2
∂x2

ẋ2 = −∂f2
∂t

. (2.3.4)

Combining (2.3.4) with (2.3.1), we have

E1 0

∂f2
∂x1

∂f2
∂x2


ẋ1

ẋ2

 =

 f1

−∂f2
∂t

 . (2.3.5)

If we assume the system of DAEs (2.3.1) and (2.3.2) is of index 1, then the matrix ∂f2
∂x2

is of full

and constant rank n2.
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For our application, we have E1 = I and we let

x1 = [s, qn, x, xl, xf ]
⊤
, (2.3.6)

x2 =
[
Ī , Chl

]⊤
, (2.3.7)

ẋ1(t) = f1(t,x1(t),x2(t)), (2.3.8)

f1(t,x1(t),x2(t)) = [ṡ, q̇n, ẋ, ẋl, ẋf ]
⊤
, (2.3.9)

f2(t,x1(t),x2(t)) = [f21, f22]
⊤
, (2.3.10)

and, from (2.2.13) and (2.2.16) respectively,

f21 =
I0
ξL

(1− exp(−ξL))− Ī , (2.3.11)

f22 =
xqn

(g1 − g2T ) + g3Ī exp(−g4T )
− Chl. (2.3.12)

In this context, (2.3.5) may be written as

 I 0

∂f2
∂x1

∂f2
∂x2


ẋ1

ẋ2

 =

 f1

−∂f2
∂t

 . (2.3.13)

Since ∂f2
∂x2

is of full rank, the matrix in (2.3.13) is invertible and we may write

ẋ1

ẋ2

 =

 I 0

∂f2
∂x1

∂f2
∂x2


−1  f1

−∂f2
∂t

 . (2.3.14)

Letting x(t) = [x1(t),x2(t)]
⊤
, (2.3.14) may be written as

ẋ(t) =

 I 0

∂f2
∂x1

∂f2
∂x2


−1  f1

−∂f2
∂t

 . (2.3.15)
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Note that, by virtue of (2.3.11) and (2.3.12), we have

 I 0

∂f2
∂x1

∂f2
∂x2

 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 ∂f21
∂Chl

0 ∂f22
∂qn

∂f22
∂x 0 0 ∂f22

∂Ī
−1



and

 f1

−∂f2
∂t

 =



ṡ

q̇n

ẋ

ẋl

ẋf

−∂f21
∂t

−∂f22
∂t



.

Using Maple [34], we then find that (2.3.15) may be written as

ẋ(t) =



ṡ

q̇n

ẋ

ẋl

ẋf

−
(
∂f21
∂Chl

∂f22
∂qn

q̇n

)
−

(
∂f21
∂Chl

∂f22
∂x

ẋ

)
− ∂f21

∂t
−

(
∂f21
∂Chl

∂f22
∂t

)
∂f21
∂Chl

∂f22
∂Ī

− 1

−
(
∂f22
∂qn

q̇n

)
−

(
∂f22
∂x

ẋ

)
−
(
∂f22
∂Ī

∂f21
∂t

)
− ∂f22

∂t
∂f21
∂Chl

∂f22
∂Ī

− 1



. (2.3.16)

As we now have just ordinary differential equations defining all state variables, we need to specify

initial values for Ī and Chl. By referring to the I0 graph in Muñoz-Tamayo et al. [91] or considering

(2.2.4), we can see that at t = 0, I0 = 0. Substituting this value into (2.2.13), we have

Ī(0) =
0

ξL
(1− exp(−ξL)) = 0. (2.3.17)

With this, we can substitute qn(0) and x(0) (the values given in Table 2.2), T (0) (found from

(2.2.3)), and (2.3.17) into (2.2.16) to find

Chl(0) =
x(0)qn(0)

(g1 − g2T (0)) + g3Ī(0) exp(−g4T (0))
= 9.091× 10−1gChl. (2.3.18)

Note that this transformation preserves the original dynamics and guaranties satisfaction of alge-
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braic equations [52]. It is routinely used in the optimal control literature for a variety of applications

[2]. The resulting system of ODE’s is now suitable for implementation with MISER.

2.4 Problem Formulation

In this study, we are interested in optimising the performance of the raceway model by choosing

the input flow rate (fin), the inflow nitrogen concentration (sin), and the initial extracellular

nitrogen concentration (s(0)). Guided by the objectives in Muñoz-Tamayo et al. [91], the aim is to

maximise either the biomass productivity or the lipid productivity. Both of these objectives can be

incorporated in the following combined optimal control and optimal parameter selection problem

max
fin
sin
z1

∫ tf

0

ψ(t,x(t), fin(t))dt (2.4.1)

subject to the dynamics (2.3.16), the initial conditions,

s(0) = z1,

qn(0) = 0.09,

x(0) = 110,

xl(0) = 22,

xf (0) = 55,

Ī(0) = 0,

Chl(0) = 0.909,

(2.4.2)

the control bounds

0 ≤ fin(t) ≤ 0.8333,

0 ≤ sin(t) ≤ 100

(2.4.3)

and the parameter bounds

0 ≤ z1 ≤ 5.

Note that the initial conditions for qn, x, xl, and xf are taken from [91].

The upper bound of fin corresponds to a maximum rate of 20m3 per day, chosen after personal

consultation with the authors of the original model [91].
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If the objective is to optimise lipid productivity then

ψ(t,x(t), fin(t)) = fin(t)xl(t) = fin(t)xl(t). (2.4.4)

Alternatively, if the objective is to optimise biomass productivity, then

ψ(t,x(t), fin(t)) = fin(t)x(t) = fin(t)x(t). (2.4.5)

MISER employs the control parameterisation technique which allows for a variety of different

parametrised forms of the control functions [51]. We have chosen piecewise constant controls over

the time horizon [0, 720] (720 hours is equivalent to 30 days) with a uniform partition into 1 hour

intervals. Note that MISER will only guarantee a locally optimal solution as it uses the sequential

quadratic programming (SQP) method NLPQLP [109] to solve the underlying optimisation prob-

lem. Whilst using a standard home computer with an Intel core i7-7700K 4.2Ghz, convergence to

solutions can take approximately 4-5 hours.

The Hamiltonian function of the problem, H, can be written in the general form

H = K3 + (K2sin +K1)fin, (2.4.6)

where the termsK1,K2, andK3 are functions of the various states. Note that the formulation of the

problem in MISER means that K1,K2, and K3 are readily computable within existing subroutines.

If sin is a fixed value (i.e. not a control variable), then this can be re-written as

H =M1fin +M2, (2.4.7)

where M1 and M2 are functions of the states only. Maximisation of H then requires

f∗in =


0.8333, if M1 > 0,

0, if M1 < 0,

undetermined, if M1 = 0.

(2.4.8)

If sin is a control variable then H reverts back to the general form (2.4.6). Although H contains

a product term of the controls, the non-negativity of fin and sin makes it relatively easy to analyse

the optimality conditions. The switching function for fin is K2sin+K1 and the switching function
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for sin is K2fin. Thus maximisation of H requires

f∗in =


0.8333, if K2sin +K1 > 0,

0, if K2sin +K1 < 0,

undetermined, if K2sin +K1 = 0,

(2.4.9a)

and

s∗in =


100, if K2fin > 0,

0, if K2fin < 0,

undetermined, if K2fin = 0.

(2.4.9b)

The switching functions will be plotted along with the corresponding controls to see if the optimality

conditions given by (2.4.8) and (2.4.9) are satisfied.

2.5 Base Results

The results presented in this chapter have been previously published by the candidate in [47].

It is important to acknowledge several errors in the model as presented in [47]. Firstly, temper-

ature should, of course, be in the units of ◦C and Ks should be in the units of gN m−3. Next, all

coefficients I0a, I0b, . . . , I0h (due to confusion of the time units used), as well as L were reported

incorrectly, the correct values (as actually used for the numerical result in [47]) are listed in Ta-

ble 2.2. Also, there was a lack of accuracy in converting gC over 30 days to tons ha−1 a−1. Finally,

we discovered an error in our model code where the value of 5 µmol photonsm−2 s−1 instead of 50

µmol photonsm−2 s−1 was used for ϵI . For the results presented in this thesis, all of these errors

have been corrected. Note that the revised results exhibit very similar behaviour to those presented

in [47].

The first set of results assume that the influent nitrogen concentration, sin, is set to 50 for the

duration of the time horizon and that the initial extracellular nitrogen concentration, s(0) = z1, is

fixed to the value 2. This scenario corresponds to the open loop optimal control problem solved

in Muñoz-Tamayo et al. [91]. We find that the resulting optimal objective function value for lipids

(2.4.4) is 7584.4 gC (grams of carbon) and that for mass (2.4.5) is 48681 gC (we use MISER [51]
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to solve the lipid scenario with the options of: number of knots in the partition for the control

= 721, tolx = 10−9, tolpsi = 10−7, hmax = 10−2, maxite = 1000, epsopt = 10−12, epscon = 10−8,

imerit = 2, and ilql = 1 as well as using the NLPQLP optimiser [109]). The corresponding optimal

control control fin for each case is shown in Figures 2.5.1 and 2.5.2, respectively. In both cases,

the control appears to be of bang-singular type and the signs of the switching functions appear

to generally follow the required optimality conditions (2.4.8). Note that we don’t expect exact

satisfaction of optimality conditions here as the partition of the time horizon is fixed so that the

exact switching instants of the optimal control could not be determined. We did attempt to solve

these problems using the time scale transformations described in Section 1.3.4 in an attempt to

optimise the switching times, but resulting transformed problems proved to be too difficult to solve

numerically. Note that the figure displaying corresponding inflow rates for the results in [91] does

not show a bang-singular pattern indicating that these solutions are far from optimal. Assuming,

as in Muñoz-Tamayo et al. [91], that carbon contributes 56% of ash free dry weight, the yields are

equivalent to 28.928 tons ha−1 a−1 and 185.67 tons ha−1 a−1, respectively. They compare well to

the corresponding results in Muñoz-Tamayo et al. [91] which are approximately 24 tons ha−1 a−1

and 168 tons ha−1 a−1, respectively, and which themselves are noted to be consistent with other

productivities reported in the literature. However, as pointed out in Muñoz-Tamayo et al. [91], we

note that our results are also based on temperature and light profiles for the month of June, so

cannot be extrapolated directly to an annual operation. Figure 2.5.3 combines the optimal inflow

rates for both objectives. Note that the objective of maximum lipid yield results in higher inflow

rates earlier in the time horizon and a 2-3 day period of zero flow towards the end of the time

horizon. As can be seen in Figure 2.5.4, this zero flow period results in a zero extracellular nitrogen

concentration between day 25 and day 27 which promotes the growth of lipids (see Figure 2.5.7).

Also, both solutions involve a distinct period of maximum inflow at the end of the time horizon

due to the need to harvest the microalgae. In the literature, this is sometimes referred to as a

washout period. The extracellular nitrogen concentration and other state variables are shown in

Figures 2.5.4–2.5.10. As in Muñoz-Tamayo et al. [91], we also present the neutral lipid quota, xl

x ,

and the efficiency of light absorption, ηL = 1− exp(−ξL) in Figures 2.5.11 and 2.5.12, respectively.

Note that the latter is simply a measure of how efficiently light is being absorbed in the pond. A

value of 1 would indicate complete absorption.

We consider the above results for lipids to be a base case to which further results aimed at

improving lipid production will be compared, both in this and in subsequent chapters.
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Figure 2.5.1: Fixed sin and s(0). fin and switching function (Lipids)
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Figure 2.5.2: Fixed sin and s(0). fin and switching function (Biomass)
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Figure 2.5.3: Fixed sin and s(0). fin (Inflow rate)
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Figure 2.5.4: Fixed sin and s(0). s (Extracellular nitrogen concentration)
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Figure 2.5.5: Fixed sin and s(0). qn (Nitrogen quota)
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Figure 2.5.6: Fixed sin and s(0). x (Carbon biomass concentration)
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Figure 2.5.7: Fixed sin and s(0). xl (Lipid carbon concentration)
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Figure 2.5.8: Fixed sin and s(0). xf (Functional carbon concentration)
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Figure 2.5.9: Fixed sin and s(0). Ī (Average light intensity)

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Maximising lipids Maximising biomass

Figure 2.5.10: Fixed sin and s(0). Chl (Chlorophyll concentration)
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Figure 2.5.11: Fixed sin and s(0). xl
x

(Lipid Quota)
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Figure 2.5.12: Fixed sin and s(0). ηL (Efficiency of light absorption)
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2.6 Varying Nitrogen Supply

We now allow a variable influent nitrogen concentration with the bounds

0 ≤ sin ≤ 100, t ∈ [0, 720], (2.6.1)

and we also allow s(0) = z1 to be variable with

0 ≤ z1 ≤ 5. (2.6.2)

We consider only the objective (2.4.1) with integrand (2.4.4) from now on, i.e., the aim is to

maximise the production of lipids. We denote this as Problem P for later reference. Optimisation

of Problem P achieves a total yield of 9701.5 gC (37.003 tons ha−1 a−1) which is a 27.91% im-

provement over the base case result in Section 2.5. We use MISER to solve Problem P with the

options of: number of knots in the partition for the control = 721, tolx = 10−9, tolpsi = 10−9,

hmax = 10−4, maxite = 1000, epsopt = 10−8, epscon = 10−9, imerit = 2, and ilql = 1 as well as

using the NLPQLP optimiser [109]. Graphs of the optimal controls, states, and efficiency of light

absorption can be found in Figures 2.6.1–2.6.10. Similar to the results in Figures 2.5.4 and 2.5.7,

it would appear that lipid production can be maximised by a combination of higher extracellular

nitrogen concentration early on and a ‘starvation period’ of low or zero nitrogen concentration close

to the end of the process (note the zero feeding flow rate between day 22 and day 27 in Figure 2.6.1).

The optimal value of s(0) = z1 = 5 and sin is at its upper bound for most of the time horizon.

Note that the efficiency of light absorption has increased over most of the time horizon (compare

the solid lined curves in Figures 2.5.12 and 2.6.10).

The results for Problem P indicate that there is significant potential to increase yield if more

nitrogen can be made available early. Indeed, if we increase the upper bounds on sin and z1 in

(2.6.1) and (2.6.2) to 500 and 100, respectively, we finally see a limit of this potential with a

resulting yield of 11735 gC (44.760 tons ha−1 a−1) a 54.73% improvement over the base case result.

The corresponding optimal z1 = 100 and the optimal sin barely reaches the upper bound of 500 in

this case (at which point fin = 0 and thus the sin value there has no effect on nitrogen supply, see

Figures 2.6.11 and 2.6.12). Note also that fin is generally reduced compared to the original version

of Problem P , since not much is inflow is required to raise the extracellular nitrogen concentration.

In contrast, there are now also two distinct intervals of zero extracellular nitrogen concentration (see

Figure 2.6.13) which lead to two rapid growth phases for lipids (see Figure 2.6.15). The efficiency
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Figure 2.6.1: Variable sin and s(0). fin (Inflow rate)
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of light absorption (Figure 2.6.16) show excellent utilisation of insolation in this case. One must

acknowledge that the high nitrogen concentration obtained with these results are unlikely to be

reached in practice, though.
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Figure 2.6.2: Variable sin and s(0). sin (Influent Nitrogen Concentration)
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Figure 2.6.3: Variable sin and s(0). s (Extracellular Nitrogen Concentration)
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Figure 2.6.4: Variable sin and s(0). qn (Nitrogen quota)
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Figure 2.6.5: Variable sin and s(0). x (Carbon biomass concentration)
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Figure 2.6.6: Variable sin and s(0). xl (Lipid carbon concentration)
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Figure 2.6.7: Variable sin and s(0). xf (Functional carbon concentration)
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Figure 2.6.8: Variable sin and s(0). Ī (Average light intensity)
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Figure 2.6.9: Variable sin and s(0). Chl (Chlorophyll concentration)
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Figure 2.6.10: Variable sin and s(0). ηL (Efficiency of light absorption)
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Figure 2.6.11: Extreme Nitrogen. fin (Inflow Rate)
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Figure 2.6.12: Extreme Nitrogen. sin (Influent Nitrogen Concentration)
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Figure 2.6.13: Extreme Nitrogen. s (Extracellular Nitrogen Concentration)
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Figure 2.6.14: Extreme Nitrogen. x (Carbon biomass concentration)
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Figure 2.6.15: Extreme Nitrogen. xl (Lipid carbon concentration)
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Figure 2.6.16: Extreme Nitrogen. ηL (Lipid carbon concentration)
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2.7 Robustness of Solutions

A general concern with open loop optimal controls is their lack of robustness with respect to

modelling uncertainties and noise. We thus consider the performance of the optimal open loop

control obtained for Problem P in the previous section when it is applied to a disturbed dynamic

model of the raceway. We consider 4 disturbance types as follows.

1. The values of I0(t) as defined in (2.2.4) are multiplied by 0.3 on a specific day (which may

correspond to this day being cloudy).

2. The values of T (t) as defined by (2.2.3) are multiplied by 0.3 on a specific day.

3. Both the changes in types 1 and 2 applied together on a specific day

4. The theoretical maximum specific growth rate, µ̃, is multiplied by 0.7 over the entire time

horizon, which corresponds to the algae being stressed [91].

Disturbance types 1–3 are applied on Days 4 and 28. We now apply the optimal control calculated

for the undisturbed model to the disturbed one. This turns out to have a relatively minor impact

on the yield of the process with objective values in the range of 97.51% and 100.01% of the original

optimal yield for Problem P . While the efficiency of light absorption (ηL) drops slightly on the

days when the disturbances are active, it also recovers fairly quickly afterwards (see Figures 2.7.1

and 2.7.2). Predictably, Disturbance type 4 has a more significant impact on the yield. When the

optimal control calculated for the undisturbed model is applied to the disturbed one, the resulting

yield is only 68% of the original optimal value. However, even the optimised open loop control

calculated for the disturbed model gives a yield which is only 74% of the original. Hence optimal

solution of Problem P still performs quite well in the context of this disturbance. Overall, open

loop optimal controls calculated for Problem P appear to be quite robust with respect to a range

of disturbances.
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Figure 2.7.1: Day 4 disturbance type 3 (Efficiency of light absorption)
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Figure 2.7.2: Day 28 disturbance type 3 (Efficiency of light absorption)
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2.8 Optimal Closed Loop Control

As noted in Muñoz-Tamayo et al. [91], a practical alternative to an open loop optimal control

computation is the design of a closed loop controller which maintains the operation of the raceway

near an optimal quasi set point (note that an actual set point does not exist in the usual sense

due to the daily fluctuation of insolation and temperature). In this section, we formulate and solve

a simple closed loop optimal control problem and demonstrate the performance of the resulting

closed loop optimal control.

For a closed loop formulation, the controls fin and sin should be defined in terms of quantities

that can be measured easily. Clearly, both I0(t) and T (t) fall into this category. It is also possible

to estimate the light intensity at the bottom of the raceway, IL(t), if a point source of artificial

light is used during the night [91]. Thus we propose the following affine feedback control functions

fin = z2I0 + z3IL + z4T + z5, (2.8.1)

sin = z6I0 + z7IL + z8T + z9, (2.8.2)

where z2-z9 are coefficients to be optimised. As for Problem P , we also require the constraints

0 ≤ z1 ≤ 5, (2.8.3)

0 ≤ fin ≤ 0.8333, t ∈ [0, 720], (2.8.4)

0 ≤ sin ≤ 100, t ∈ [0, 720]. (2.8.5)

The optimal feedback control problem can now be formulated as determining the optimal values

of z1-z9 which will maximise the objective (2.4.1) with integrand (2.4.4) subject to the dynamics

(2.3.16), the initial conditions given in (2.4.2) [47, 91], and constraints from (2.8.3)–(2.8.5). This

constitutes an optimal parameter selection problem subject to all time state inequality constraints

(2.8.4) and (2.8.5). While all time state inequality constraints can be difficult to handle, the MISER

software has a built in algorithm [51, 52] to deal with them and it is also set up to deal with pure

optimal parameter selection problems. The solution determined by MISER gives s(0) = 5 with

fin=2.09397261×10−4I0−5.07177158×10−4IL+1.87050051×10−2T+2.12531628×10−4, (2.8.6)

sin=−1.54036112×10−2I0−6.80976078×10−3IL+42.6185859T+71.7318223 (2.8.7)

and a corresponding yield of 6798.4 gC (25.930 tons ha−1 a−1). Clearly, this is significantly lower
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than the optimal yield of 9701.5 gC (37.003 tons ha−1 a−1) obtained for the open loop optimal

control Problem P since the closed loop control structure does not allow for a large fin near

the end of the time horizon to flush out the product (see Figure 2.8.1). Nevertheless, the closed

loop control drives the system to an efficient quasi setpoint which then allows continued high

productivity into the future if so desired. Indeed, Figure 2.8.3, shows that the efficiency of light

absorption, ηL is driven to and maintained at a very high level by the optimal closed loop control.

Productivity rates for both the open and closed loop optimal controllers are shown in Figure 2.8.4.

For further illustration, we extend the simulation of the dynamics (2.3.16) to 60 days, using the

optimal feedback control (2.8.6) and (2.8.7). This results in a total yield of 17628 gC over 60 days

(33.617 tons ha−1 a−1), i.e., a lipid production of 10829 gC (41.303 tons ha−1 a−1) from Day 30 to

Day 60. While this exceeds the 0-30 day yield resulting from the open loop optimal control, it has

to be remembered that these two scenarios start with different initial conditions. Ultimately, the

operator needs to decide whether a 30 day batch operation is more profitable than a continuous

quasi setpoint operation beyond 30 days or not.

To test the robustness of the closed loop optimal controls, we apply the same range of distur-

bances we used in the open loop case to the closed loop system but with the time horizon extended

to 60 days. In the case of reduced I0 and T , we also introduce a similar reduction of these functions

on Day 58 of the simulation. Results of these tests are marginally more favourable than for the

open loop control tests over 30 days, with the yields saying in the range of 98.6-100.3% of the

original when I0 and T are reduced and close to 70% of the original when µ̃ is reduced to 70% of

its original value for all of the 60 days.
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Figure 2.8.1: Open Loop vs Closed Loop fin (Inflow rate)
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Figure 2.8.2: Open Loop vs Closed Loop fin (Influent nitrogen concentration)
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Figure 2.8.3: Open Loop vs Closed Loop ηL (Efficiency of light absorption)
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Figure 2.8.4: Open Loop vs Closed Loop (Cumulative Productivity)
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2.9 Optimal Raceway Depth

Figure 2.9.1: L as a Decision Variable, Fixed As. fin (Inflow Rate)
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In this section, we allow the raceway depth, L, to be a decision variable to see if this can improve

the yield of the process. To avoid confusion with the impact of other variables, we consider once

more the original formulation of the problem with fixed nitrogen inflow concentration sin = 50 and

with a fixed initial extracellular nitrogen concentration s(0) = 2. We need to set upper and lower

bounds for L. Choosing a minimal depth of 3cm and a maximal depth of 3m gives

0.03 ≤ L ≤ 3. (2.9.1)

We use the MISER options of: number of knots in the partition for the control = 721, tolx = 10−7,

tolpsi = 10−7, hmax = 10−4, maxite = 1000, epsopt = 10−5, epscon = 10−5, imerit = 2, and

ilql = 2 as well as using the NLPQLP optimiser [109].

Our objective is to maximise lipid production by determining an optimal fin and L and we

find that corresponding optimal solution results in L = 0.03 metres, i.e. the minimum allowed

depth with a lipid yield of 10967 gC, which is a 44.6% improvement over the base case result.
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Figure 2.9.2: L as a Decision Variable, Fixed As. s (Extracellular Nitrogen Concentration)
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Figure 2.9.3: L as a Decision Variable, Fixed As. qn (Nitrogen quota)
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Figure 2.9.4: L as a Decision Variable, Fixed As. x (Carbon biomass concentration)
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Given the nature of the process and the fact that we are dealing with a fixed volume V , this is

hardly surprising since a shallow pond will make the best utilisation of available light. However the

surface area has to increase tenfold over that of the base case and a shallow pond is likely to have

significantly more evaporation. Rather than maintaining a fixed volume, a more practical limitation

for raceway ponds is the available surface area, As = V/L. Using the original values of V = 17.1m3

and L = 0.3m we have As = 57m2. We thus consider another version of the problem where As is

fixed, L is a decision variable and the resulting volume is given by V = AsL. The optimal lipid yield

for this version of the problem is 10317 gC (39.351 tons ha−1 a−1), a 36.0% improvement over the

base case with a corresponding optimal depth L = 1.8238 m. What we find with this solution is a

significant increase in the total volume and it also appears that the maximum bound on the inflow

rate fin is now limiting the performance of the process, as there is simply not enough time to flush

the product from the raceway. If we increase this upper bound in proportion with the increased

volume, we now find that the optimal depth becomes L = 3 with a corresponding yield of 13877 gC

(52.928 tons ha−1 a−1), a 83.0% improvement over the base case. While the yields resulting from

a fixed surface area and a variable depth appear to be a significant improvement over the original

result, most of this is simply due to maintaining the same initial values of s(0), qn(0), x(0), xl(0),
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Figure 2.9.5: L as a Decision Variable, Fixed As. xl (Lipid carbon concentration)
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xf (0), Ī(0), and Chl(0) with a significant larger volume, i.e. a lot more biomass and nitrogen is

already present at the start of the process. In fact, the efficiency of light absorption for these cases

turns out to be quite low.

As a final revision we thus consider a fixed surface area As with L to be a decision variable, but

with a fixed amount of resources (nitrogen, biomass, etc.) at t=0. This can be achieved by dividing

the previous initial values of s(0), x(0), xl(0), xf (0), and Chl(0) by the change in volume which is

equivalent to multiplying them by 0.3/L. Fortunately, MISER3 does allow the appearance of the

decision variable L in the initial conditions. This version of the problem results in an optimal yield

of 8093.0 gC (30.868 tons ha−1 a−1) which is an improvement of 6.7% over the base case yield. The

corresponding optimal depth is 0.98770m. Figures 2.9.1–2.9.9 show the optimal fin, state variables

and efficiency of light absorption for this case. It is interesting to note that this case does not

exhibit a period of nitrogen starvation that was present for our previous results. Light is being

absorbed quite efficiently since the larger volume allows for lower algal concentration, lending in

turn to better light penetration of the pond.
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Figure 2.9.6: L as a Decision Variable, Fixed As. xf (Functional carbon concentration)
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Figure 2.9.7: L as a Decision Variable, Fixed As. Ī (Average light intensity)
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Figure 2.9.8: L as a Decision Variable, Fixed As. Chl (Chlorophyll concentration)
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Figure 2.9.9: L as a Decision Variable, Fixed As. ηL (Efficiency of light absorption)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Efficiency of Light Absorption

68



2.10 Conclusions

We have considered an existing dynamic algae growth model [91] which consists of 7 state variables

and is described by a system of ordinary differential and algebraic equations. Our main focus

here in is on the computation of open loop optimal controls with the main aim of maximising

lipid production. We start with transformation of the system into a standard ordinary differential

equation format. We also consider a slightly more general version of the problem where the influent

nitrogen concentration as well as the initial extracellular nitrogen concentration are allowed to be

variable. Numerical results show that significant improvements in lipid production are theoretically

possible.

The existing model offers significant scope for further numerical studies. For example, the depth

of a raceway pond could be altered over time to further improve productivity. This feature can be

incorporated into the existing model with an additional control function to model the outflow and

an additional state function to keep track of the total volume. We investigate this idea in Chapter 3.

Part of the purpose of the optimal control formulation and 30 day time horizon used for the model

in Muñoz-Tamayo et al. [91] was to see if the optimal control solution would approach some kind

of (periodic) steady state and then derive a quasi-optimal closed loop control on the basis of this.

However, our open loop optimal control results consistently show an extended high inflow period

near the end of the 30 day period due to the need to harvest the microalgae. This is because an

open loop control problem over a fixed time horizon defines the operation as a batch process. Thus

the question of whether a batch operation or a continuous operation will ultimately yield a better

rate of production arises. This issue is addressed in some detail for a different dynamic model in

Bayen et al. [5]. However, the techniques used there cannot be used for the present microalgae

model due to it’s greater complexity and extensive numerical studies are required instead. Our

work in Chapter 4 goes some way to addressing this question.
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Chapter 3

Changing the Pond Depth

3.1 Introduction

Algae bioreactors come in many different forms, ranging from natural lake systems in large scale

operations [14] to fully sealed glass tubes in a laboratory setting [13, 132] to maximise light pene-

tration. A good compromise between the need for high growth rates and reasonable capital costs

is given by open raceway ponds with paddle wheels typically used to keep the water circulating.

Raceways ponds come in various sizes, with the larger ones often consisting of plastic lined channels

dug out of the ground. Many studies considering algae growth for potential biofuel production con-

sider smaller scale raceway ponds with a depth of around 30 cm [6, 91]. Ideally, ponds should be as

shallow as possible so that algae cells have maximum exposure to light. However, for a given pond

volume, very shallow ponds require a very large surface area which significantly increases capital

costs and it also leads to very high rates of evaporation. Hence, a depth of 30 cm is generally

considered to be a good compromise in practice [6, 13].

The growth of micro algae in raceway ponds has been modelled mathematically by a number

of publications [50, 80, 96]. In the previous chapter, we have adopted a comprehensive model first

published in [91]. This model consists of a set of differential algebraic equations (DAEs) to describe

the algae growth process over a 30 day batch operation in a pond of 30cm depth. The only control

considered in this model is the inflow of water containing a given concentration of nitrogen. Since

the pond volume is fixed, the inflow automatically results in an equivalent outflow of pond water

from which the algae can then be harvested. By converting the DAEs to an equivalent system

of ordinary differential equations (ODEs) and employing computational optimal control methods,

we were able to show that an optimal yield of 7584.4 gC equivalent of lipids could be produced
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[47]. The computed optimal control strategy involved a rapid initial growth of cells, followed by a

period of nutrient (nitrogen) starvation to build up lipids within the cells and finally a ’wash out’

to harvest the algae. Upon suggestion from one of the reviewers of this work, we then considered

the depth of the pond to be an additional decision variable while keeping the surface area constant.

Note that maintaining the initial algal and nutrient concentrations in this scenario always results

in the depth going to its upper bound, since this will result in the largest initial algal mass which

can still be grown and harvested later. However, we also found in this case that the growth phase

does not occur optimally with low utilisation of available light due to the excessive pond depth. A

more practical scenario can be obtained by keeping the initial algal and nutrient mass in the pond

the same as for the original model so that a greater depth and therefore volume would simply result

in a lower initial concentration of both algae and nutrients. With this scenario, we found that the

a pond depth of just over 90 cm along with an associated optimal control of inflow would increase

lipid yield by around 6.7% over that from the original model [47].

The question of what raceway pond depth is best has been considered by a number of publi-

cations. In [59], experiments were conducted with paddle driven ponds having depths of 20, 30

and 40cm. The authors found that the most biomass was obtained with a 20cm pond depth and

also noted that this resulted in the best settleability of algae (which aids the harvesting process)

and requires the least amount of energy to circulate the pond water. In contrast, [108] considered

a different experimental set up using a side entry axial flow impeller rather than a paddle wheel.

This generally requires less energy and results in better mixing of the pond. The authors found

that a pond depth of 1 metre resulted in better productivity than the typical depth of 30cm, giving

some support to the numerical results we obtained in our previous work. In [6], ponds in a range

of different climatic environments are considered. Both pond depth and the so called hydraulic

retention time (HRT) are considered as decision variables, where the HRT essentially determines

how much of the pond is drained at a fixed time every day in order to harvest the algae. The

authors demonstrate good algal mass yield improvements if both pond depth and HRT are varied

appropriately in different seasons. Note that it is difficult to compare these results and others in

literature directly, as they are conducted in different environments with different algae species. For

example, our adopted mathematical model of the process assumes that the pond is uniformly mixed

and it is not concerned with the means by which this mixing occurs.

Our aim in this chapter is to explore another option of varying the pond depth. Since the pond

depth at any instant has a significant impact on the light penetration down into the pond, we

want to explore whether adjusting the pond depth during the batch process can further increase
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the total lipid yield. Varying pond depth can be achieved by having a distinct outflow rate of

pond water rather than simply assuming that the outflow is equal to the inflow. We thus have

two control variables (inflow and outflow) instead of just one. This also requires the addition of a

another differential equation to describe the dynamics of the pond depth. Once again converting the

modified system of DAEs to an equivalent system of ODEs, we then apply computational optimal

control methods to determine optimal inflow and outflow regimes. It is shown that these increase

the lipid yield of the process by more then 67% over the base case model where only inflow is varied.

This chapter is largely based on [48].

3.2 Problem Formulation

The raceway model under consideration is based on the mass balance equations for a completely

mixed reactor at a constant volume given in [91]. We now assume that the pond depth, L, is a

function of time t, where t is measured in hours. We also assume that the pond surface area, As,

remains fixed. This means that the volume of the pond, V = LAs, now also depends on t and all

occurrences of V in the original dynamics are replaced by LAs. The original model assumed that

any inflow fin to the pond would spill over to keep V constant and fin was considered as the only

control variable. We create a second control variable fout to represent the chosen outflow rate. A

simple differential equation then describes the dynamics of L. Combining this with the original

model, we obtain the following modified dynamics for the current problem.

ṡ = finsin/(LAs)− fouts/(LAs)− ρx,

q̇n = ρ− (µ−R)qn,

ẋ = (µ− fout/(LAs)−R)x,

ẋl = βqnµx− γρx− r0ϕTxl − foutxl/(LAs),

ẋf = (α+ γ)ρx− r0ϕTxf − foutxf/(LAs),

L̇ = (fin − fout)/As,

(3.2.1)

where the meaning of the dynamic variables and their units are described in Table 2.1. The

derivatives are with respect to time and t = 0 corresponds to midnight of the first day. The control

variables are fin and fout, the feeding flow (inflow) and extraction flow (outflow) rates respectively.

The functions µ, ρ, R, ϕT represent average growth rate, nitrogen uptake rate, overall respiration

rate, and temperature effect, respectively, and these are defined in Chapter 2. The values of the
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model constants α, β, γ, r0, As and sin are based on [91] and given in Table 2.2.

The dynamics defined by (3.2.1) and (2.2.3)–(2.2.16) again constitute a system of differential

algebraic equations of index 1. We use the same approach as that outlined in Section 2.3 to convert

it to a system of ordinary differential equations. We may once again write the system of DAEs in

the form

ẋ1(t) = f1(t,x1(t),x2(t)), (3.2.2)

0 = f2(t,x1(t),x2(t)), (3.2.3)

where

x1 = [s, qn, x, xl, xf , L]
⊤
, (3.2.4)

x2 =
[
Ī , Chl

]⊤
, (3.2.5)

f1(t,x1(t),x2(t)) =
[
ṡ, q̇n, ẋ, ẋl, ẋf , L̇

]⊤
, (3.2.6)

f2(t,x1(t),x2(t)) = [f21, f22]
⊤
, (3.2.7)

f21 =
I0
ξL

(1− exp(−ξL))− Ī , (3.2.8)

f22 =
xqn

(g1 − g2T ) + g3Ī exp(−g4T )
− Chl. (3.2.9)

(3.2.10)

The latter two equations follow from (2.2.13) and (2.2.16). We have

 I 0

∂f2
∂x1

∂f2
∂x2


ẋ1

ẋ2

 =

 f1

−∂f2
∂t

 . (3.2.11)

Since ∂f2
∂x2

is again of full rank, the matrix in (3.2.11) is invertible and we may write

ẋ1

ẋ2

 =

 I 0

∂f2
∂x1

∂f2
∂x2


−1  f1

−∂f2
∂t

 . (3.2.12)
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Letting x(t) = [x1(t),x2(t)]
⊤

(3.2.12) may be written as

ẋ(t) =

 I 0

∂f2
∂x1

∂f2
∂x2


−1  f1

−∂f2
∂t

 . (3.2.13)

Note that, by virtue of (3.2.8) and (3.2.9), we have

 I 0

∂f2
∂x1

∂f2
∂x2

 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 ∂f21
∂L −1 ∂f21

∂Chl

0 ∂f22
∂qn

∂f22
∂x 0 0 0 ∂f22

∂Ī
−1



and

 f1

−∂f2
∂t

 =



ṡ

q̇n

ẋ

ẋl

ẋf

L̇

−∂f21
∂t

−∂f22
∂t



.

Using SymPy [84] to determine the inverse of this matrix, we may write (3.2.13) as

ẋ(t) =



ṡ

q̇n

ẋ

ẋl

ẋf

L̇

−
(

∂f21
∂t

)
−
(

∂f21
∂Chl

∂f22
∂t

)
−
(

∂f21
∂Chl

∂f22
∂qn

q̇n

)
−
(

∂f21
∂Chl

∂f22
∂x ẋ

)
−
(

∂f21
∂Chl

∂f21
∂L

∂f22
∂Ī

L̇
)

∂f21
∂Chl

∂f22
∂Ī

−1
+L̇

∂f21
∂L

−
(

∂f21
∂t

∂f22
∂Ī

)
−
(

∂f21
∂L

∂f22
∂Ī

L̇
)
−
(

∂f22
∂t

)
−

(
∂f22
∂qn

q̇n

)
−
(

∂f22
∂x ẋ

)
∂f21
∂Chl

∂f22
∂Ī

− 1



, (3.2.14)

which is a system of first order ODEs as required. Initial values for Ī(0) and Chl(0) are the same

as those we derived in Chapter 2. Again, note that this transformation preserves the original

dynamics and guaranties satisfaction of the algebraic equations. The resulting system of ODE’s is

now suitable for implementation with MISER.
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The initial conditions for the state variables are the same as in Chapter 2 [47, 91].

s(0) = 2,

qn(0) = 0.09,

x(0) = 110,

xl(0) = 22,

xf (0) = 55,

L(0) = 0.3,

Ī(0) = 0,

Chl(0) = 0.909.

(3.2.15)

The problem of maximising lipid production is given by

max
fin
fout

∫ tf

0

fout(t)xl(t)dt, (3.2.16)

subject to the dynamics of the transformed system of DAEs (3.2.1), the initial conditions (3.2.15)

and the control variable bounds

0 ≤ fin(t) ≤ 0.8333,

0 ≤ fout(t) ≤ 0.8333.

(3.2.17)

To compare the results from this problem with the base case problem in Chapter 2, we consider a

time horizon of 30 days which corresponds to tf = 720.

3.3 Results

The base case problem with fin = fout and a constant depth of L = 0.3 over the entire time horizon

that we solved in Chapter 2 yields 7584.4 gC (grams of carbon) of lipids (28.928 tons ha−1 a−1).

The new problem is solved with MISER (with the options of: number of knots in the partition

for the control = 721, tolx = 10−9, tolpsi = 10−9, hmax = 10−4, maxite = 1000, epsopt = 10−8,

epscon = 10−9, imerit = 2, and ilql = 1 as well as using the NLPQLP optimiser [109]). We assume

a piecewise constant parameterisation of fin and fout over a fixed partition of [0, tf ] with 1 hour

intervals. This results in a yield of 12706 gC of lipids (48.462 tons ha−1 a−1) which is a significant

increase of 67%. Our result also represents a significant increase of approximately 108% over that

found by [91] (approximately 6100 gC or 24 tons ha−1 a−1).
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Figure 3.3.1: Variable Pond Depth. fin
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The numerical solution for this problem is very close to satisfying the first order optimality con-

ditions dictated by the minimum principle [101]. Briefly, the Hamiltonian function of the problem,

H, may be written as

H = K1fin +K2fout +K3. (3.3.1)

The K1, K2, and K3 terms contain the various state variables. Owing to the complexity of the

transformed dynamics, we choose not to write out the complete expressions for K1, K2, and K3

here, but they are readily computable within the existing subroutines we use in MISER. As H

is linear in both of the control variables, maximising the Hamiltonian function requires that each

control takes on the upper bound (0.8333) when its switching function is positive, the lower bound

(0) when its switching function is negative, and may be between the bounds (singular) when its

switching function is zero. Figures 3.3.1 and 3.3.2 both show conditions are satisfied over most of

the time horizon. Note that since the partition for the piecewise constant control is fixed, we cannot

determine the exact optimal switching times so the conditions are not satisfied exactly when the

controls go from one bound to another.
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Figure 3.3.2: Variable Pond Depth. fout
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In Figures 3.3.2–3.3.4 we see that the outflow remains zero for the first half of the time horizon

so that the intermittent inflow builds up the depth of the pond to almost 2.5 metres. Figure 3.3.5

shows a brief nitrogen starvation period between days 9 and 11, much earlier than what we see for

the optimised base case model in Chapter 2, see Figure 2.6.3. Because of this, we see a significant

increase in lipid carbon concentration, xl, over the same period in Figure 3.3.6. After the starvation

period, the inflow goes to its upper bound which increases the depth (Figure 3.3.3), until the outflow,

fout (Figure 3.3.1), comes in at it’s upper bound on day 15. This balances the depth until inflow is

reduced to zero for most of the remaining time period after day 24. Outflow remains at its upper

bound after this time to harvest as much algae as possible.

The efficiency of light absorption shown in Figure 3.3.7 and the average light intensity, Ī, shown

in Figure 3.3.4 demonstrate a significant increase of light absorption over the total time period from

what is shown for the corresponding base case problem in Chapter 2, see Figures 2.5.12 and 2.5.9,

respectively. The deeper pond allows for more algal growth which is then able to utilise the available

light more efficiently.

Another interesting feature born out by these results can be noted by the comparison of Fig-

ures 2.5.5 and 3.3.8. The internal nitrogen quota, qn, tends to remain fairly constant for the base

77



Figure 3.3.3: Variable Pond Depth. L
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case result. For the results of Chapter 3, qn increases somewhat and overall is greater than for the

base case. Further to our discussion in Chapter 2, it would appear that lipid growth is stimulated

more directly by a lower external nitrogen concentration, s, than by the internal nitrogen quota,

qn.
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Figure 3.3.4: Variable Pond Depth. Ī
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Figure 3.3.5: Variable Pond Depth. s
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Figure 3.3.6: Variable Pond Depth. xl
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Figure 3.3.7: Variable Pond Depth. ηL
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Figure 3.3.8: Variable Pond Depth. qn
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Figure 3.3.9: Variable Pond Depth. x
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Figure 3.3.10: Variable Pond Depth. xf

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Functional Carbon Concentration

82



3.4 Conclusion

The model of algae growth in a raceway pond given in [91] is modified to contain the additional

feature of variable pond depth. To achieve this, we use a new state variable to model depth as well

as an additional control to represent variable outflow. We apply the numerical optimal control of

MISER to this model and see that the lipid yield of the process is increased by 67% for the modified

model.

Note that this is purely a numerical study and it is unlikely that the demonstrated yields gains

can be reproduced in an actual pond. For example, our adopted model assumes that the process is

not limited by the available carbon dioxide as there is no CO2 driven limit on growth. One could

address this shortcoming by applying a similar physical structure as that suggested in [96], but

this would result in much more complex mathematical model, and thus a much longer computation

time. Furthermore, the 2.5 metre pond depth that we observe in our optimal solution may not

be practically feasible as tall side walls could have a significant shadowing effect on the available

light. The representation of fixed daily temperature and irradiance is also somewhat unrealistic,

but other typical light and temperature profiles for different seasons and global positions could be

readily adopted.

Nevertheless, numerical results suggest that the variable depth option has some significant

potential for yield improvement and should be considered further in future studies.
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Chapter 4

Optimizing a microalgae raceway

model with periodic boundary

conditions

4.1 Introduction

For the base case algal raceway pond model in Chapter 2, we were able to generate an open loop

optimal control fin which resulted in a lipid yield equivalent to 28.928 tons ha−1 a−1. The resulting

optimal strategy involves a build up of total biomass, followed by a starvation period in order to

promote the growth of lipids, and a final flush or wash out period to harvest these lipids. As noted

Chapter 2, the downside of this high yield is a raceway pond depleted of algae at the end of the

time horizon.

In this chapter we investigate a different strategy of operating the raceway pond. With the aim of

a continuing algae growth and harvesting operation, we not only optimise the yield but also impose

periodic boundary conditions on the state of the system so that it returns to its initial configuration

at the end of the time horizon. Mathematically, this requires the addition of appropriate terminal

state constraints to the model and also treating the start and end state values as decision variables.

While a formal proof for the existence of an optimal periodic solution [5] is too difficult for the

given dynamics, we are able to show numerically that such a solution exists and that it results in

good lipid yields.

Finally we consider the practicality of the optimal periodic solution by formulating another
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optimal control problem where we aim to drive the model from a given initial state to the optimal

periodic boundary state. Numerical results for this problem appear to suggest that the optimal

periodic state can not be reached in finite time. While this clearly limits the practicality of the

optimal periodic solution, it still represents an important benchmark for future studies. This

chapter is largely based on [46].

4.2 New Problem Formulation

Table 4.1: MISER periodic optimal initial conditions

State Definition Units Value

s∗ Nitrogen concentration initial condition gN m−1 2.79046

q∗n Nitrogen quota initial condition gN(gC)
−1

0.13082
x∗ Carbon biomass concentration initial condition gC m−3 743.10323
x∗l Lipid carbon optimal periodic concentration initial condition gC m−3 162.07085
x∗f Functional carbon initial condition gC m−3 542.05475

Table 4.2: AMPL periodic optimal initial conditions

State Definition Units Value

s∗ Nitrogen concentration initial condition gN m−1 6.09022

q∗n Nitrogen quota initial condition gN(gC)
−1

0.13105
x∗ Carbon biomass concentration initial condition gC m−3 716.58193
x∗l Lipid carbon optimal periodic concentration initial condition gC m−3 156.74079
x∗f Functional carbon initial condition gC m−3 523.45648

As noted in the previous section, we would like to formulate a new problem so that the raceway

pond finishes in the same state in which it begins the process, thus allowing for ongoing operations.

As the daily insolation and temperature profiles are assumed to repeat, it is reasonable to fix the

time horizon to a single day, i.e. tf = 24 in the notation of Chapter 2. We briefly consider longer

time horizons in Section 4.4. Furthermore, we wish to find an optimal start/end state for the

process. These aims can be conveniently achieved by regarding the initial values of the states as

decision variables, i.e.

s(0) = z1,

qn(0) = z2,

x(0) = z3,

xl(0) = z4,

xf (0) = z5

(4.2.1)
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Figure 4.2.1: (MISER) 1 day period - fin
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and by imposing the following set of terminal state constraints

s(tf ) = z1,

qn(tf ) = z2,

x(tf ) = z3,

xl(tf ) = z4,

xf (tf ) = z5,

(4.2.2)

where z1, z2, . . . , z5 are decision variables. The Initial condition for Ī and Chl follow from (2.3.17)

and (2.3.18):

Ī(0) = 0,

Chl(0) =
z3z2

g1 − g2T (0)
,

(4.2.3)

and terminal constraints are not required as both of these states continually maintain their depen-

dence on the other states due to the transformed dynamics (2.3.16).

Note that the dynamics are quite sensitive to the choice of z1, z2, . . . , z5. For this reason we
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Figure 4.2.2: (AMPL) 1 day period - fin
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need to impose some bounds for the decision variables z1, z2, . . . , z5. As a guide, we look at the

approximate maximum and minimum values reached by each state variable over the time horizon

in our previous results in Chapter 2. Hence, we adopt the following bounds.

0 ≤ z1 ≤ 30,

0.05 ≤ z2 ≤ 0.2,

85 ≤ z3 ≤ 1250,

14 ≤ z4 ≤ 350,

44 ≤ z5 ≤ 600.

(4.2.4)

Note that in the solutions presented below, none of the bounds in (4.2.4) are active.

Consider the problem of finding z1, z2, . . . , z5, sin, and fin to maximise the objective (2.4.1)

with integrand (2.4.4) (maximising lipids) subject to the dynamics (2.3.16), the initial conditions

(4.2.1), and the constraints (2.4.3), (4.2.2), and (4.2.4). We then employed the MISER optimal

control software (with the MISER options of: number of knots in the partition for the control

= 25, tolx = 10−9, tolpsi = 10−9, hmax = 10−4, maxite = 1000, epsopt = 10−9, epscon = 10−9,
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Figure 4.2.3: (MISER) 1 day period - s
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imerit = 2, and ilql = 1 as well as using the NLPQLP optimiser [109]) to solve this problem

numerically, allowing for piecewise constant control functions fin and sin consistent with a partition

of [0, tf ] into 24 subintervals. We consider the subinterval of both uniform length (1 hour ass for

the computations in Chapter 2) or varying length (via a time scale transformation [106]). Several

solutions were obtained by starting with varying initial guesses of the optimisation parameters.

The best feasible solution resulted in both controls taking on a constant value for the entire time

horizon with fin = 0.09368, sin = 100 and the corresponding optimal z1, z2, . . . , z5 values given in

Table 4.1. The corresponding optimal lipid yield is 41.745 tons ha−1 a−1 (10944.8 gC over 30 days)

which is a significant improvement on our base case batch result in Chapter 2.

While a single control value for the entire time horizon has an obvious appeal in terms of ease of

use and practical application, we were not convinced that we had obtained the best possible solution

to the problem. This solution had arisen when we allowed for variable control knot points and our

past numerical experience has been that the use of the associated time scale transformation often

results in getting stuck in suboptimal local minimisers of the underlying mathematical programming

problem. It turns out that while the obtained solution is feasible, it does not satisfy the requirements

of the minimum principle. The Hamiltonian and switching functions of the problem are the same
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Figure 4.2.4: (MISER) 1 day period - qn
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as those for the problem described in Section 2.4 given by (2.4.6) and (2.4.9), respectively. The

solution obtained has sin = 100 throughout. Maximising the Hamiltonian requires that fin should

take on its upper bound when its switching function is greater than 0 and it should take on the

value zero when its switching function is less than 0. However, looking at Figure 4.2.1, we see that

fin is strictly between its bounds even though its switching function is positive throughout the time

horizon. Graphs of the associated state variables are shown in Figures 4.2.3–4.2.7 and the efficiency

of light absorption, is given by Figure 4.2.8.

Next, we try a different numerical solution strategy by formulating a discretised version of the

problem in the AMPL [33] modelling environment and using the IPOPT [126] optimisation package

(we employ the implicit Euler scheme to approximate the differential equations and the traditional

trapezoidal rule to approximate the objective integral, use the AMPL options of timesteps = 24000,

abs boundtol = 1, as well as the IPOPT options of max iter = 10000, acceptable tol = 10−12).

Although this approach approximates the dynamics and objective integral less accurately, the step-

size used still yields sufficiently accurate results for practical purposes. Given the MISER solution

resulted in sin going straight to its upper bound, we simply assumed sin = 100 and allowed only fin

and z1, z2, . . . , z5 to be variable. The resulting optimal control fin now has a bang-singular pattern
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Figure 4.2.5: (MISER) 1 day period - x
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as shown in Figure 4.2.2. Note that the dotted curve in Figure 4.2.2 is the switching function

for fin. Its sign pattern confirms that the obtained solution satisfies the minimum principle. The

optimal z1, z2, . . . , z5 values are given in Table 4.2. The corresponding optimal lipid yield of 42.029

tons ha−1 a−1 (11019.4 gC over 30 days) is a slight improvement again on that obtained with the

suboptimal constant control calculated by MISER. Graphs of the associated state variables are

shown in Figures 4.2.9–4.2.13 and the efficiency of light absorption, is given by Figure 4.2.14.

Note that both solutions obtained in this section satisfy all of the specified boundary conditions

and are thus feasible. Even though the constant control solution obtained by MISER is not optimal

in the strict sense of the minimum principle, its simple form makes it easier to use in practice and

its lipid yield is not very different to that f the optimal result. Both sets of results exhibit a near

complete utilization of the available insolation (see Figures 4.2.8 and 4.2.14). We thus continue to

consider both solutions in the next section.
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Figure 4.2.6: (MISER) 1 day period - xl
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Figure 4.2.7: (MISER) 1 day period - xf
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Figure 4.2.8: (MISER) 1 day period - ηL
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Figure 4.2.9: (AMPL) 1 day period - s
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Figure 4.2.10: (AMPL) 1 day period - qn
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Figure 4.2.11: (AMPL) 1 day period - x
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Figure 4.2.12: (AMPL) 1 day period - xl
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Figure 4.2.13: (AMPL) 1 day period - xf
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Figure 4.2.14: (AMPL) 1 day period - ηL
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4.3 Initialization Problem

The periodic formulation of the problem in Section 4.2 assumes that it is possible to start the

process with some optimised initial states. Thus the question of whether it is possible to drive

the system to these states from a given starting point arises. We use s∗, q∗n, x
∗, x∗l , and x∗f to

denote the optimal z1, z2, . . . , z5 in Tables 4.1 and 4.2, respectively. We also need to consider some

reasonable initial values of s(0), qn(0), x(0), xl(0), and xf (0). For these, we simply go back to the

values given for the original model, i.e. (2.4.2) as well as

s(0) = 2.0. (4.3.1)

The aim is to reach the targets s(tf ) = s∗, qn(tf ) = q∗n, x(tf ) = x∗, xl(tf ) = x∗l , and xf (tf ) = x∗f at

some terminal time tf . When we formulated a problem with these terminal constraints at tf = 720

(30 days, the duration of our initial batch problem), MISER was unable to obtain a solution

satisfying them. Hence, we formulated a different problem, where we now want to minimise the

objective

min
fin
sin

(
s(tf )− s∗

s∗

)2

+

(
qn(tf )− q∗n

q∗n

)2

+

(
x(tf )− x∗

x∗

)2

+

(
xl(tf )− x∗l

x∗l

)2

+

(
xf (tf )− x∗f

x∗f

)2

,

(4.3.2)

subject to the dynamics (2.3.16), the initial conditions (2.4.2) and (4.3.1), and the control bounds

(2.4.3). Note again that associated state variables Ī and Chl obey their own associated boundary

conditions because they are dependant on qn, x, and I0, so they do not need to be part of the

objective. If it is possible to reach the desired states exactly, we should find the objective function

going to zero. We solve the problem with MISER beginning with tf = 720 (30 days). The optimal

objective value obtained is 4.89183858×10−3 with the corresponding terminal states being at most

5.2792 percent off their desired value. As we increase the time horizon to 40, 50 and 60 days,

we see that the objective value gets closer to zero, but never appears to reach it (see Table 4.3).

Attempts to solve this same problem with the AMPL/IPOPT solution (with s∗, q∗n, x
∗, x∗l , and x

∗
f

Table 4.3: MISER initialization problem

Time Horizon Objective Value Maximum state deviation

30 days 4.89183858× 10−3 5.2792%
40 days 3.96110743× 10−4 1.4266%
50 days 3.75673645× 10−5 0.5148%
60 days 2.93231726× 10−5 0.4530%
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representing the optimal z1, z2, . . . , z5 in Table 4.2) also did not result in a zero objective value. The

numerical results appear to suggest that we cannot reach the desired periodic state value in finite

time from the chosen initial state. Extensive numerical studies would be required to determine the

existence of a set of initial states that would allow the model to reach the desired periodic state in

finite time, but this is beyond the scope of the present study.

4.4 Conclusion

We have considered an optimal control model of an algae growth process with periodic boundary

conditions with the view of an ongoing growth and harvesting operation. Numerical results show

that solutions satisfying the periodic boundary conditions can be determined with the additional

benefit of significantly improved yields compared to the previous batch model. While the optimised

boundary conditions appear to be difficult to reach from typical initial conditions of the model,

the results still represent useful benchmarks to guide the development of future practical control

algorithms.

It is worth noting that the lipid yields resulting from the problem with periodic boundary

conditions are only marginally better than that obtained from the feedback control formulation

extended from 30 to 60 days in Section 2.8. As time progresses, one would expect the optimal

feedback control to drive the system to some form of quasi-steady state which may also yield a

reasonably good quality solution to the problem with periodic boundary conditions posed in this

chapter.

Note that we have also solved the problem with periodic boundary conditions for different

time horizon durations (tf = {24,48,72,96,120,720}, corresponding to 1,2,3,4,5,and 30 days) to

see whether yield could be further improved. We were not able to determine any substantial

improvements in yield from this approach. The best improvement is approximately 1% above the

1 day result.
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Chapter 5

Conclusions and Future Studies

In this thesis we have used computational optimal control methods to determine optimal strategies

for operating raceway ponds in order to maximise the lipid yield of the harvested algae. We first

solved a base case model with the only control being the inflow rate and numerically determined

an optimal solution which yielded about 20% more lipids than the only other previously published

result for this model. We then considered a range of different methods of operating the raceway

pond allowing for both additional controls (inflow nutrient concentration and outflow in the case

of variable raceway depth) and additional decision variables (initial and terminal conditions for

various model states and fixed raceway depth) and found corresponding optimal solutions for these

controls and decision variables. A range of significant lipid yield improvements of up to 67% over

that for our own base case result were obtained. These results demonstrate clearly that there is

still significant future potential to improve microalgae lipid production in raceway ponds. It is

also worth noting that significant yield improvements were achieved for both batch and continuous

operating models of raceway ponds.

We have by no means exhausted the full range of possible operating strategies for raceway

ponds. For example, in the model where pond depth was varied over the time horizon, we kept

the initial pond depth at 30cm to allow for an easier comparison of results to those of our base

case model. However, it should be possible to also model the initial pond depth as a decision

variable in this case. Similarly, we did not allow for variable pond depth when we proposed the

models incorporating varying nutrient inflow or periodic boundary conditions, respectively. One

can reasonably expect further improvements in lipid yields if these strategies were to be considered

in combination.

We must, of course, acknowledge the obvious shortcomings of the basic approach taken in
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this thesis. Since we have only considered a mathematical model of algal growth, it is unlikely

that the optimal strategies we have derived would reproduce the same lipid yield improvements

when applied to actual raceway ponds. Biological growth processes actually involve very complex

chemical reactions. Modelling these in their entirety would result in models that are actually

too time consuming to optimise or even simulate. On the other hand, mathematical biology is

continually evolving and existing models are already able to capture most of the key features of

the underlying processes in many instances. In the context of models of algal growth in raceway

ponds, we considered a range of existing models and selected the one most suitable for our purposes

[91]. While it captures most of key drivers and limitations of algal growth, it would be desirable in

future studies to also include the impact of carbon dioxide on growth. It may be possible to adapt

aspects of an existing model incorporating CO2 such as [58] into the one considered here without

significantly increasing its complexity. This would allow us to incorporate other objectives such as

CO2 mitigation into our model. A more complete model would also take into account the capital

costs of building a raceway, discounted over its expected period of operation. Capital costs will

depend on depth L but may also include additional factors such as the pond layout and equipment.

Additionally, it would be desirable to also include the cost of harvesting the algae, which likely

depends on the concentration of biomass in the outflow.

Another criticism which can be levelled at the existing model is the assumption of fixed daily

temperature and irradiance profiles which are clearly unrealistic in practice. It would be interesting

to replace these profiles with ones which vary between days (based on weather predictions) and

then see how the optimal controls change in response. Techniques similar to those used for the

operation of a solar car over a five day race [40] may be useful here. If a year round operation is to

be considered, typical light and temperature profiles for other seasons should also be adopted.

Throughout the thesis, we have noted possible limitations of the alternative strategies we pro-

posed. For example, we noted that a significant increase in pond depth may not be feasible if

this introduces shadowing effects that are not catered for with the light propagation aspects of

the existing model. It may be possible to overcome these shadowing effects if the pond walls are

sloped rather than strictly vertical (indeed, for larger raceway ponds dug out of the ground, this

is already the case). This will require some further model changes in terms of the relationships

between volume, surface area, depth, and light propagation but, again, these should not add a great

deal of complexity to the existing model.

Another interesting aspect of this thesis is the experience gained in the use of different com-

putational optimal control methods. We employed both control parameterisation (via the MISER
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package) and full discretisation/parameterisation (via the use of AMPL/IPOPT). The various ver-

sions of the problem we considered proved to be challenging for both of these methods. While a full

discretisation is much easier to implement from a user point of view (for instance, conversion of the

system of differential algebraic equations to one of ordinary differential equations is not required as

the algebraic equations simply form an additional set of constraints in the fully discretised prob-

lem), we found that extending the time horizon of the problem to anything beyond 6 days would

result in a discretised problem that was simply too large to be solved. The control parameterisation

approach was able to deal with longer time horizons (up to 60 days) without too much difficulty, but

it would often converge to suboptimal solutions from different initial guesses. Also, we would have

liked to make more use control parameterisation in conjunction with a time scale transformation

in order to better localise the optimal switching times of the bang-singular controls, but in most

cases this also resulted in problems too large to solve or it would lead to premature convergence to

poor locally optimal solutions. The insight given by the patterns of bang-singular optimal controls

we have determined in this thesis may allow for more efficient parameterisations of the controls in

future studies.

In conclusion, we hope that the results presented in this thesis will encourage researchers in

algal growth to contemplate a much wider range of strategies of raceway pond operation than is

currently being considered. There is clearly potential to significantly increase lipid yields in this

field. We also hope that our results will encourage the wider adoption of mathematical modelling

and computational optimal control methods for biological systems.
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